xref: /openbmc/linux/drivers/net/ethernet/sfc/falcon/efx.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "workarounds.h"
31 
32 /**************************************************************************
33  *
34  * Type name strings
35  *
36  **************************************************************************
37  */
38 
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
41 const char *const ef4_loopback_mode_names[] = {
42 	[LOOPBACK_NONE]		= "NONE",
43 	[LOOPBACK_DATA]		= "DATAPATH",
44 	[LOOPBACK_GMAC]		= "GMAC",
45 	[LOOPBACK_XGMII]	= "XGMII",
46 	[LOOPBACK_XGXS]		= "XGXS",
47 	[LOOPBACK_XAUI]		= "XAUI",
48 	[LOOPBACK_GMII]		= "GMII",
49 	[LOOPBACK_SGMII]	= "SGMII",
50 	[LOOPBACK_XGBR]		= "XGBR",
51 	[LOOPBACK_XFI]		= "XFI",
52 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 	[LOOPBACK_GPHY]		= "GPHY",
57 	[LOOPBACK_PHYXS]	= "PHYXS",
58 	[LOOPBACK_PCS]		= "PCS",
59 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 	[LOOPBACK_XPORT]	= "XPORT",
61 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 	[LOOPBACK_XFI_WS]	= "XFI_WS",
67 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 };
70 
71 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
72 const char *const ef4_reset_type_names[] = {
73 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
74 	[RESET_TYPE_ALL]                = "ALL",
75 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
76 	[RESET_TYPE_WORLD]              = "WORLD",
77 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
78 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
79 	[RESET_TYPE_DISABLE]            = "DISABLE",
80 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85 };
86 
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88  * queued onto this work queue. This is not a per-nic work queue, because
89  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
90  */
91 static struct workqueue_struct *reset_workqueue;
92 
93 /* How often and how many times to poll for a reset while waiting for a
94  * BIST that another function started to complete.
95  */
96 #define BIST_WAIT_DELAY_MS	100
97 #define BIST_WAIT_DELAY_COUNT	100
98 
99 /**************************************************************************
100  *
101  * Configurable values
102  *
103  *************************************************************************/
104 
105 /*
106  * Use separate channels for TX and RX events
107  *
108  * Set this to 1 to use separate channels for TX and RX. It allows us
109  * to control interrupt affinity separately for TX and RX.
110  *
111  * This is only used in MSI-X interrupt mode
112  */
113 bool ef4_separate_tx_channels;
114 module_param(ef4_separate_tx_channels, bool, 0444);
115 MODULE_PARM_DESC(ef4_separate_tx_channels,
116 		 "Use separate channels for TX and RX");
117 
118 /* This is the weight assigned to each of the (per-channel) virtual
119  * NAPI devices.
120  */
121 static int napi_weight = 64;
122 
123 /* This is the time (in jiffies) between invocations of the hardware
124  * monitor.
125  * On Falcon-based NICs, this will:
126  * - Check the on-board hardware monitor;
127  * - Poll the link state and reconfigure the hardware as necessary.
128  * On Siena-based NICs for power systems with EEH support, this will give EEH a
129  * chance to start.
130  */
131 static unsigned int ef4_monitor_interval = 1 * HZ;
132 
133 /* Initial interrupt moderation settings.  They can be modified after
134  * module load with ethtool.
135  *
136  * The default for RX should strike a balance between increasing the
137  * round-trip latency and reducing overhead.
138  */
139 static unsigned int rx_irq_mod_usec = 60;
140 
141 /* Initial interrupt moderation settings.  They can be modified after
142  * module load with ethtool.
143  *
144  * This default is chosen to ensure that a 10G link does not go idle
145  * while a TX queue is stopped after it has become full.  A queue is
146  * restarted when it drops below half full.  The time this takes (assuming
147  * worst case 3 descriptors per packet and 1024 descriptors) is
148  *   512 / 3 * 1.2 = 205 usec.
149  */
150 static unsigned int tx_irq_mod_usec = 150;
151 
152 /* This is the first interrupt mode to try out of:
153  * 0 => MSI-X
154  * 1 => MSI
155  * 2 => legacy
156  */
157 static unsigned int interrupt_mode;
158 
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160  * i.e. the number of CPUs among which we may distribute simultaneous
161  * interrupt handling.
162  *
163  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164  * The default (0) means to assign an interrupt to each core.
165  */
166 static unsigned int rss_cpus;
167 module_param(rss_cpus, uint, 0444);
168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
169 
170 static bool phy_flash_cfg;
171 module_param(phy_flash_cfg, bool, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
173 
174 static unsigned irq_adapt_low_thresh = 8000;
175 module_param(irq_adapt_low_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh,
177 		 "Threshold score for reducing IRQ moderation");
178 
179 static unsigned irq_adapt_high_thresh = 16000;
180 module_param(irq_adapt_high_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh,
182 		 "Threshold score for increasing IRQ moderation");
183 
184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
185 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
186 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
187 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
188 module_param(debug, uint, 0);
189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
190 
191 /**************************************************************************
192  *
193  * Utility functions and prototypes
194  *
195  *************************************************************************/
196 
197 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
198 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
199 static void ef4_remove_channel(struct ef4_channel *channel);
200 static void ef4_remove_channels(struct ef4_nic *efx);
201 static const struct ef4_channel_type ef4_default_channel_type;
202 static void ef4_remove_port(struct ef4_nic *efx);
203 static void ef4_init_napi_channel(struct ef4_channel *channel);
204 static void ef4_fini_napi(struct ef4_nic *efx);
205 static void ef4_fini_napi_channel(struct ef4_channel *channel);
206 static void ef4_fini_struct(struct ef4_nic *efx);
207 static void ef4_start_all(struct ef4_nic *efx);
208 static void ef4_stop_all(struct ef4_nic *efx);
209 
210 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
211 	do {						\
212 		if ((efx->state == STATE_READY) ||	\
213 		    (efx->state == STATE_RECOVERY) ||	\
214 		    (efx->state == STATE_DISABLED))	\
215 			ASSERT_RTNL();			\
216 	} while (0)
217 
218 static int ef4_check_disabled(struct ef4_nic *efx)
219 {
220 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
221 		netif_err(efx, drv, efx->net_dev,
222 			  "device is disabled due to earlier errors\n");
223 		return -EIO;
224 	}
225 	return 0;
226 }
227 
228 /**************************************************************************
229  *
230  * Event queue processing
231  *
232  *************************************************************************/
233 
234 /* Process channel's event queue
235  *
236  * This function is responsible for processing the event queue of a
237  * single channel.  The caller must guarantee that this function will
238  * never be concurrently called more than once on the same channel,
239  * though different channels may be being processed concurrently.
240  */
241 static int ef4_process_channel(struct ef4_channel *channel, int budget)
242 {
243 	struct ef4_tx_queue *tx_queue;
244 	int spent;
245 
246 	if (unlikely(!channel->enabled))
247 		return 0;
248 
249 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
250 		tx_queue->pkts_compl = 0;
251 		tx_queue->bytes_compl = 0;
252 	}
253 
254 	spent = ef4_nic_process_eventq(channel, budget);
255 	if (spent && ef4_channel_has_rx_queue(channel)) {
256 		struct ef4_rx_queue *rx_queue =
257 			ef4_channel_get_rx_queue(channel);
258 
259 		ef4_rx_flush_packet(channel);
260 		ef4_fast_push_rx_descriptors(rx_queue, true);
261 	}
262 
263 	/* Update BQL */
264 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
265 		if (tx_queue->bytes_compl) {
266 			netdev_tx_completed_queue(tx_queue->core_txq,
267 				tx_queue->pkts_compl, tx_queue->bytes_compl);
268 		}
269 	}
270 
271 	return spent;
272 }
273 
274 /* NAPI poll handler
275  *
276  * NAPI guarantees serialisation of polls of the same device, which
277  * provides the guarantee required by ef4_process_channel().
278  */
279 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
280 {
281 	int step = efx->irq_mod_step_us;
282 
283 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
284 		if (channel->irq_moderation_us > step) {
285 			channel->irq_moderation_us -= step;
286 			efx->type->push_irq_moderation(channel);
287 		}
288 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
289 		if (channel->irq_moderation_us <
290 		    efx->irq_rx_moderation_us) {
291 			channel->irq_moderation_us += step;
292 			efx->type->push_irq_moderation(channel);
293 		}
294 	}
295 
296 	channel->irq_count = 0;
297 	channel->irq_mod_score = 0;
298 }
299 
300 static int ef4_poll(struct napi_struct *napi, int budget)
301 {
302 	struct ef4_channel *channel =
303 		container_of(napi, struct ef4_channel, napi_str);
304 	struct ef4_nic *efx = channel->efx;
305 	int spent;
306 
307 	netif_vdbg(efx, intr, efx->net_dev,
308 		   "channel %d NAPI poll executing on CPU %d\n",
309 		   channel->channel, raw_smp_processor_id());
310 
311 	spent = ef4_process_channel(channel, budget);
312 
313 	if (spent < budget) {
314 		if (ef4_channel_has_rx_queue(channel) &&
315 		    efx->irq_rx_adaptive &&
316 		    unlikely(++channel->irq_count == 1000)) {
317 			ef4_update_irq_mod(efx, channel);
318 		}
319 
320 		ef4_filter_rfs_expire(channel);
321 
322 		/* There is no race here; although napi_disable() will
323 		 * only wait for napi_complete(), this isn't a problem
324 		 * since ef4_nic_eventq_read_ack() will have no effect if
325 		 * interrupts have already been disabled.
326 		 */
327 		napi_complete_done(napi, spent);
328 		ef4_nic_eventq_read_ack(channel);
329 	}
330 
331 	return spent;
332 }
333 
334 /* Create event queue
335  * Event queue memory allocations are done only once.  If the channel
336  * is reset, the memory buffer will be reused; this guards against
337  * errors during channel reset and also simplifies interrupt handling.
338  */
339 static int ef4_probe_eventq(struct ef4_channel *channel)
340 {
341 	struct ef4_nic *efx = channel->efx;
342 	unsigned long entries;
343 
344 	netif_dbg(efx, probe, efx->net_dev,
345 		  "chan %d create event queue\n", channel->channel);
346 
347 	/* Build an event queue with room for one event per tx and rx buffer,
348 	 * plus some extra for link state events and MCDI completions. */
349 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
350 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
351 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
352 
353 	return ef4_nic_probe_eventq(channel);
354 }
355 
356 /* Prepare channel's event queue */
357 static int ef4_init_eventq(struct ef4_channel *channel)
358 {
359 	struct ef4_nic *efx = channel->efx;
360 	int rc;
361 
362 	EF4_WARN_ON_PARANOID(channel->eventq_init);
363 
364 	netif_dbg(efx, drv, efx->net_dev,
365 		  "chan %d init event queue\n", channel->channel);
366 
367 	rc = ef4_nic_init_eventq(channel);
368 	if (rc == 0) {
369 		efx->type->push_irq_moderation(channel);
370 		channel->eventq_read_ptr = 0;
371 		channel->eventq_init = true;
372 	}
373 	return rc;
374 }
375 
376 /* Enable event queue processing and NAPI */
377 void ef4_start_eventq(struct ef4_channel *channel)
378 {
379 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
380 		  "chan %d start event queue\n", channel->channel);
381 
382 	/* Make sure the NAPI handler sees the enabled flag set */
383 	channel->enabled = true;
384 	smp_wmb();
385 
386 	napi_enable(&channel->napi_str);
387 	ef4_nic_eventq_read_ack(channel);
388 }
389 
390 /* Disable event queue processing and NAPI */
391 void ef4_stop_eventq(struct ef4_channel *channel)
392 {
393 	if (!channel->enabled)
394 		return;
395 
396 	napi_disable(&channel->napi_str);
397 	channel->enabled = false;
398 }
399 
400 static void ef4_fini_eventq(struct ef4_channel *channel)
401 {
402 	if (!channel->eventq_init)
403 		return;
404 
405 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 		  "chan %d fini event queue\n", channel->channel);
407 
408 	ef4_nic_fini_eventq(channel);
409 	channel->eventq_init = false;
410 }
411 
412 static void ef4_remove_eventq(struct ef4_channel *channel)
413 {
414 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
415 		  "chan %d remove event queue\n", channel->channel);
416 
417 	ef4_nic_remove_eventq(channel);
418 }
419 
420 /**************************************************************************
421  *
422  * Channel handling
423  *
424  *************************************************************************/
425 
426 /* Allocate and initialise a channel structure. */
427 static struct ef4_channel *
428 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
429 {
430 	struct ef4_channel *channel;
431 	struct ef4_rx_queue *rx_queue;
432 	struct ef4_tx_queue *tx_queue;
433 	int j;
434 
435 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
436 	if (!channel)
437 		return NULL;
438 
439 	channel->efx = efx;
440 	channel->channel = i;
441 	channel->type = &ef4_default_channel_type;
442 
443 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
444 		tx_queue = &channel->tx_queue[j];
445 		tx_queue->efx = efx;
446 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
447 		tx_queue->channel = channel;
448 	}
449 
450 	rx_queue = &channel->rx_queue;
451 	rx_queue->efx = efx;
452 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
453 
454 	return channel;
455 }
456 
457 /* Allocate and initialise a channel structure, copying parameters
458  * (but not resources) from an old channel structure.
459  */
460 static struct ef4_channel *
461 ef4_copy_channel(const struct ef4_channel *old_channel)
462 {
463 	struct ef4_channel *channel;
464 	struct ef4_rx_queue *rx_queue;
465 	struct ef4_tx_queue *tx_queue;
466 	int j;
467 
468 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
469 	if (!channel)
470 		return NULL;
471 
472 	*channel = *old_channel;
473 
474 	channel->napi_dev = NULL;
475 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
476 	channel->napi_str.napi_id = 0;
477 	channel->napi_str.state = 0;
478 	memset(&channel->eventq, 0, sizeof(channel->eventq));
479 
480 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
481 		tx_queue = &channel->tx_queue[j];
482 		if (tx_queue->channel)
483 			tx_queue->channel = channel;
484 		tx_queue->buffer = NULL;
485 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
486 	}
487 
488 	rx_queue = &channel->rx_queue;
489 	rx_queue->buffer = NULL;
490 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
491 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
492 
493 	return channel;
494 }
495 
496 static int ef4_probe_channel(struct ef4_channel *channel)
497 {
498 	struct ef4_tx_queue *tx_queue;
499 	struct ef4_rx_queue *rx_queue;
500 	int rc;
501 
502 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
503 		  "creating channel %d\n", channel->channel);
504 
505 	rc = channel->type->pre_probe(channel);
506 	if (rc)
507 		goto fail;
508 
509 	rc = ef4_probe_eventq(channel);
510 	if (rc)
511 		goto fail;
512 
513 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
514 		rc = ef4_probe_tx_queue(tx_queue);
515 		if (rc)
516 			goto fail;
517 	}
518 
519 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
520 		rc = ef4_probe_rx_queue(rx_queue);
521 		if (rc)
522 			goto fail;
523 	}
524 
525 	return 0;
526 
527 fail:
528 	ef4_remove_channel(channel);
529 	return rc;
530 }
531 
532 static void
533 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
534 {
535 	struct ef4_nic *efx = channel->efx;
536 	const char *type;
537 	int number;
538 
539 	number = channel->channel;
540 	if (efx->tx_channel_offset == 0) {
541 		type = "";
542 	} else if (channel->channel < efx->tx_channel_offset) {
543 		type = "-rx";
544 	} else {
545 		type = "-tx";
546 		number -= efx->tx_channel_offset;
547 	}
548 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
549 }
550 
551 static void ef4_set_channel_names(struct ef4_nic *efx)
552 {
553 	struct ef4_channel *channel;
554 
555 	ef4_for_each_channel(channel, efx)
556 		channel->type->get_name(channel,
557 					efx->msi_context[channel->channel].name,
558 					sizeof(efx->msi_context[0].name));
559 }
560 
561 static int ef4_probe_channels(struct ef4_nic *efx)
562 {
563 	struct ef4_channel *channel;
564 	int rc;
565 
566 	/* Restart special buffer allocation */
567 	efx->next_buffer_table = 0;
568 
569 	/* Probe channels in reverse, so that any 'extra' channels
570 	 * use the start of the buffer table. This allows the traffic
571 	 * channels to be resized without moving them or wasting the
572 	 * entries before them.
573 	 */
574 	ef4_for_each_channel_rev(channel, efx) {
575 		rc = ef4_probe_channel(channel);
576 		if (rc) {
577 			netif_err(efx, probe, efx->net_dev,
578 				  "failed to create channel %d\n",
579 				  channel->channel);
580 			goto fail;
581 		}
582 	}
583 	ef4_set_channel_names(efx);
584 
585 	return 0;
586 
587 fail:
588 	ef4_remove_channels(efx);
589 	return rc;
590 }
591 
592 /* Channels are shutdown and reinitialised whilst the NIC is running
593  * to propagate configuration changes (mtu, checksum offload), or
594  * to clear hardware error conditions
595  */
596 static void ef4_start_datapath(struct ef4_nic *efx)
597 {
598 	netdev_features_t old_features = efx->net_dev->features;
599 	bool old_rx_scatter = efx->rx_scatter;
600 	struct ef4_tx_queue *tx_queue;
601 	struct ef4_rx_queue *rx_queue;
602 	struct ef4_channel *channel;
603 	size_t rx_buf_len;
604 
605 	/* Calculate the rx buffer allocation parameters required to
606 	 * support the current MTU, including padding for header
607 	 * alignment and overruns.
608 	 */
609 	efx->rx_dma_len = (efx->rx_prefix_size +
610 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
611 			   efx->type->rx_buffer_padding);
612 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
613 		      efx->rx_ip_align + efx->rx_dma_len);
614 	if (rx_buf_len <= PAGE_SIZE) {
615 		efx->rx_scatter = efx->type->always_rx_scatter;
616 		efx->rx_buffer_order = 0;
617 	} else if (efx->type->can_rx_scatter) {
618 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
619 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
620 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
621 				       EF4_RX_BUF_ALIGNMENT) >
622 			     PAGE_SIZE);
623 		efx->rx_scatter = true;
624 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
625 		efx->rx_buffer_order = 0;
626 	} else {
627 		efx->rx_scatter = false;
628 		efx->rx_buffer_order = get_order(rx_buf_len);
629 	}
630 
631 	ef4_rx_config_page_split(efx);
632 	if (efx->rx_buffer_order)
633 		netif_dbg(efx, drv, efx->net_dev,
634 			  "RX buf len=%u; page order=%u batch=%u\n",
635 			  efx->rx_dma_len, efx->rx_buffer_order,
636 			  efx->rx_pages_per_batch);
637 	else
638 		netif_dbg(efx, drv, efx->net_dev,
639 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
640 			  efx->rx_dma_len, efx->rx_page_buf_step,
641 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
642 
643 	/* Restore previously fixed features in hw_features and remove
644 	 * features which are fixed now
645 	 */
646 	efx->net_dev->hw_features |= efx->net_dev->features;
647 	efx->net_dev->hw_features &= ~efx->fixed_features;
648 	efx->net_dev->features |= efx->fixed_features;
649 	if (efx->net_dev->features != old_features)
650 		netdev_features_change(efx->net_dev);
651 
652 	/* RX filters may also have scatter-enabled flags */
653 	if (efx->rx_scatter != old_rx_scatter)
654 		efx->type->filter_update_rx_scatter(efx);
655 
656 	/* We must keep at least one descriptor in a TX ring empty.
657 	 * We could avoid this when the queue size does not exactly
658 	 * match the hardware ring size, but it's not that important.
659 	 * Therefore we stop the queue when one more skb might fill
660 	 * the ring completely.  We wake it when half way back to
661 	 * empty.
662 	 */
663 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
664 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
665 
666 	/* Initialise the channels */
667 	ef4_for_each_channel(channel, efx) {
668 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
669 			ef4_init_tx_queue(tx_queue);
670 			atomic_inc(&efx->active_queues);
671 		}
672 
673 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 			ef4_init_rx_queue(rx_queue);
675 			atomic_inc(&efx->active_queues);
676 			ef4_stop_eventq(channel);
677 			ef4_fast_push_rx_descriptors(rx_queue, false);
678 			ef4_start_eventq(channel);
679 		}
680 
681 		WARN_ON(channel->rx_pkt_n_frags);
682 	}
683 
684 	if (netif_device_present(efx->net_dev))
685 		netif_tx_wake_all_queues(efx->net_dev);
686 }
687 
688 static void ef4_stop_datapath(struct ef4_nic *efx)
689 {
690 	struct ef4_channel *channel;
691 	struct ef4_tx_queue *tx_queue;
692 	struct ef4_rx_queue *rx_queue;
693 	int rc;
694 
695 	EF4_ASSERT_RESET_SERIALISED(efx);
696 	BUG_ON(efx->port_enabled);
697 
698 	/* Stop RX refill */
699 	ef4_for_each_channel(channel, efx) {
700 		ef4_for_each_channel_rx_queue(rx_queue, channel)
701 			rx_queue->refill_enabled = false;
702 	}
703 
704 	ef4_for_each_channel(channel, efx) {
705 		/* RX packet processing is pipelined, so wait for the
706 		 * NAPI handler to complete.  At least event queue 0
707 		 * might be kept active by non-data events, so don't
708 		 * use napi_synchronize() but actually disable NAPI
709 		 * temporarily.
710 		 */
711 		if (ef4_channel_has_rx_queue(channel)) {
712 			ef4_stop_eventq(channel);
713 			ef4_start_eventq(channel);
714 		}
715 	}
716 
717 	rc = efx->type->fini_dmaq(efx);
718 	if (rc && EF4_WORKAROUND_7803(efx)) {
719 		/* Schedule a reset to recover from the flush failure. The
720 		 * descriptor caches reference memory we're about to free,
721 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
722 		 * the MACs because of the pending reset.
723 		 */
724 		netif_err(efx, drv, efx->net_dev,
725 			  "Resetting to recover from flush failure\n");
726 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
727 	} else if (rc) {
728 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
729 	} else {
730 		netif_dbg(efx, drv, efx->net_dev,
731 			  "successfully flushed all queues\n");
732 	}
733 
734 	ef4_for_each_channel(channel, efx) {
735 		ef4_for_each_channel_rx_queue(rx_queue, channel)
736 			ef4_fini_rx_queue(rx_queue);
737 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
738 			ef4_fini_tx_queue(tx_queue);
739 	}
740 }
741 
742 static void ef4_remove_channel(struct ef4_channel *channel)
743 {
744 	struct ef4_tx_queue *tx_queue;
745 	struct ef4_rx_queue *rx_queue;
746 
747 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
748 		  "destroy chan %d\n", channel->channel);
749 
750 	ef4_for_each_channel_rx_queue(rx_queue, channel)
751 		ef4_remove_rx_queue(rx_queue);
752 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
753 		ef4_remove_tx_queue(tx_queue);
754 	ef4_remove_eventq(channel);
755 	channel->type->post_remove(channel);
756 }
757 
758 static void ef4_remove_channels(struct ef4_nic *efx)
759 {
760 	struct ef4_channel *channel;
761 
762 	ef4_for_each_channel(channel, efx)
763 		ef4_remove_channel(channel);
764 }
765 
766 int
767 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
768 {
769 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
770 	u32 old_rxq_entries, old_txq_entries;
771 	unsigned i, next_buffer_table = 0;
772 	int rc, rc2;
773 
774 	rc = ef4_check_disabled(efx);
775 	if (rc)
776 		return rc;
777 
778 	/* Not all channels should be reallocated. We must avoid
779 	 * reallocating their buffer table entries.
780 	 */
781 	ef4_for_each_channel(channel, efx) {
782 		struct ef4_rx_queue *rx_queue;
783 		struct ef4_tx_queue *tx_queue;
784 
785 		if (channel->type->copy)
786 			continue;
787 		next_buffer_table = max(next_buffer_table,
788 					channel->eventq.index +
789 					channel->eventq.entries);
790 		ef4_for_each_channel_rx_queue(rx_queue, channel)
791 			next_buffer_table = max(next_buffer_table,
792 						rx_queue->rxd.index +
793 						rx_queue->rxd.entries);
794 		ef4_for_each_channel_tx_queue(tx_queue, channel)
795 			next_buffer_table = max(next_buffer_table,
796 						tx_queue->txd.index +
797 						tx_queue->txd.entries);
798 	}
799 
800 	ef4_device_detach_sync(efx);
801 	ef4_stop_all(efx);
802 	ef4_soft_disable_interrupts(efx);
803 
804 	/* Clone channels (where possible) */
805 	memset(other_channel, 0, sizeof(other_channel));
806 	for (i = 0; i < efx->n_channels; i++) {
807 		channel = efx->channel[i];
808 		if (channel->type->copy)
809 			channel = channel->type->copy(channel);
810 		if (!channel) {
811 			rc = -ENOMEM;
812 			goto out;
813 		}
814 		other_channel[i] = channel;
815 	}
816 
817 	/* Swap entry counts and channel pointers */
818 	old_rxq_entries = efx->rxq_entries;
819 	old_txq_entries = efx->txq_entries;
820 	efx->rxq_entries = rxq_entries;
821 	efx->txq_entries = txq_entries;
822 	for (i = 0; i < efx->n_channels; i++) {
823 		channel = efx->channel[i];
824 		efx->channel[i] = other_channel[i];
825 		other_channel[i] = channel;
826 	}
827 
828 	/* Restart buffer table allocation */
829 	efx->next_buffer_table = next_buffer_table;
830 
831 	for (i = 0; i < efx->n_channels; i++) {
832 		channel = efx->channel[i];
833 		if (!channel->type->copy)
834 			continue;
835 		rc = ef4_probe_channel(channel);
836 		if (rc)
837 			goto rollback;
838 		ef4_init_napi_channel(efx->channel[i]);
839 	}
840 
841 out:
842 	/* Destroy unused channel structures */
843 	for (i = 0; i < efx->n_channels; i++) {
844 		channel = other_channel[i];
845 		if (channel && channel->type->copy) {
846 			ef4_fini_napi_channel(channel);
847 			ef4_remove_channel(channel);
848 			kfree(channel);
849 		}
850 	}
851 
852 	rc2 = ef4_soft_enable_interrupts(efx);
853 	if (rc2) {
854 		rc = rc ? rc : rc2;
855 		netif_err(efx, drv, efx->net_dev,
856 			  "unable to restart interrupts on channel reallocation\n");
857 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
858 	} else {
859 		ef4_start_all(efx);
860 		netif_device_attach(efx->net_dev);
861 	}
862 	return rc;
863 
864 rollback:
865 	/* Swap back */
866 	efx->rxq_entries = old_rxq_entries;
867 	efx->txq_entries = old_txq_entries;
868 	for (i = 0; i < efx->n_channels; i++) {
869 		channel = efx->channel[i];
870 		efx->channel[i] = other_channel[i];
871 		other_channel[i] = channel;
872 	}
873 	goto out;
874 }
875 
876 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
877 {
878 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
879 }
880 
881 static const struct ef4_channel_type ef4_default_channel_type = {
882 	.pre_probe		= ef4_channel_dummy_op_int,
883 	.post_remove		= ef4_channel_dummy_op_void,
884 	.get_name		= ef4_get_channel_name,
885 	.copy			= ef4_copy_channel,
886 	.keep_eventq		= false,
887 };
888 
889 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
890 {
891 	return 0;
892 }
893 
894 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
895 {
896 }
897 
898 /**************************************************************************
899  *
900  * Port handling
901  *
902  **************************************************************************/
903 
904 /* This ensures that the kernel is kept informed (via
905  * netif_carrier_on/off) of the link status, and also maintains the
906  * link status's stop on the port's TX queue.
907  */
908 void ef4_link_status_changed(struct ef4_nic *efx)
909 {
910 	struct ef4_link_state *link_state = &efx->link_state;
911 
912 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
913 	 * that no events are triggered between unregister_netdev() and the
914 	 * driver unloading. A more general condition is that NETDEV_CHANGE
915 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
916 	if (!netif_running(efx->net_dev))
917 		return;
918 
919 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
920 		efx->n_link_state_changes++;
921 
922 		if (link_state->up)
923 			netif_carrier_on(efx->net_dev);
924 		else
925 			netif_carrier_off(efx->net_dev);
926 	}
927 
928 	/* Status message for kernel log */
929 	if (link_state->up)
930 		netif_info(efx, link, efx->net_dev,
931 			   "link up at %uMbps %s-duplex (MTU %d)\n",
932 			   link_state->speed, link_state->fd ? "full" : "half",
933 			   efx->net_dev->mtu);
934 	else
935 		netif_info(efx, link, efx->net_dev, "link down\n");
936 }
937 
938 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
939 {
940 	efx->link_advertising = advertising;
941 	if (advertising) {
942 		if (advertising & ADVERTISED_Pause)
943 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
944 		else
945 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
946 		if (advertising & ADVERTISED_Asym_Pause)
947 			efx->wanted_fc ^= EF4_FC_TX;
948 	}
949 }
950 
951 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
952 {
953 	efx->wanted_fc = wanted_fc;
954 	if (efx->link_advertising) {
955 		if (wanted_fc & EF4_FC_RX)
956 			efx->link_advertising |= (ADVERTISED_Pause |
957 						  ADVERTISED_Asym_Pause);
958 		else
959 			efx->link_advertising &= ~(ADVERTISED_Pause |
960 						   ADVERTISED_Asym_Pause);
961 		if (wanted_fc & EF4_FC_TX)
962 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
963 	}
964 }
965 
966 static void ef4_fini_port(struct ef4_nic *efx);
967 
968 /* We assume that efx->type->reconfigure_mac will always try to sync RX
969  * filters and therefore needs to read-lock the filter table against freeing
970  */
971 void ef4_mac_reconfigure(struct ef4_nic *efx)
972 {
973 	down_read(&efx->filter_sem);
974 	efx->type->reconfigure_mac(efx);
975 	up_read(&efx->filter_sem);
976 }
977 
978 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
979  * the MAC appropriately. All other PHY configuration changes are pushed
980  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
981  * through ef4_monitor().
982  *
983  * Callers must hold the mac_lock
984  */
985 int __ef4_reconfigure_port(struct ef4_nic *efx)
986 {
987 	enum ef4_phy_mode phy_mode;
988 	int rc;
989 
990 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
991 
992 	/* Disable PHY transmit in mac level loopbacks */
993 	phy_mode = efx->phy_mode;
994 	if (LOOPBACK_INTERNAL(efx))
995 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
996 	else
997 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
998 
999 	rc = efx->type->reconfigure_port(efx);
1000 
1001 	if (rc)
1002 		efx->phy_mode = phy_mode;
1003 
1004 	return rc;
1005 }
1006 
1007 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1008  * disabled. */
1009 int ef4_reconfigure_port(struct ef4_nic *efx)
1010 {
1011 	int rc;
1012 
1013 	EF4_ASSERT_RESET_SERIALISED(efx);
1014 
1015 	mutex_lock(&efx->mac_lock);
1016 	rc = __ef4_reconfigure_port(efx);
1017 	mutex_unlock(&efx->mac_lock);
1018 
1019 	return rc;
1020 }
1021 
1022 /* Asynchronous work item for changing MAC promiscuity and multicast
1023  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1024  * MAC directly. */
1025 static void ef4_mac_work(struct work_struct *data)
1026 {
1027 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1028 
1029 	mutex_lock(&efx->mac_lock);
1030 	if (efx->port_enabled)
1031 		ef4_mac_reconfigure(efx);
1032 	mutex_unlock(&efx->mac_lock);
1033 }
1034 
1035 static int ef4_probe_port(struct ef4_nic *efx)
1036 {
1037 	int rc;
1038 
1039 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1040 
1041 	if (phy_flash_cfg)
1042 		efx->phy_mode = PHY_MODE_SPECIAL;
1043 
1044 	/* Connect up MAC/PHY operations table */
1045 	rc = efx->type->probe_port(efx);
1046 	if (rc)
1047 		return rc;
1048 
1049 	/* Initialise MAC address to permanent address */
1050 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1051 
1052 	return 0;
1053 }
1054 
1055 static int ef4_init_port(struct ef4_nic *efx)
1056 {
1057 	int rc;
1058 
1059 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1060 
1061 	mutex_lock(&efx->mac_lock);
1062 
1063 	rc = efx->phy_op->init(efx);
1064 	if (rc)
1065 		goto fail1;
1066 
1067 	efx->port_initialized = true;
1068 
1069 	/* Reconfigure the MAC before creating dma queues (required for
1070 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1071 	ef4_mac_reconfigure(efx);
1072 
1073 	/* Ensure the PHY advertises the correct flow control settings */
1074 	rc = efx->phy_op->reconfigure(efx);
1075 	if (rc && rc != -EPERM)
1076 		goto fail2;
1077 
1078 	mutex_unlock(&efx->mac_lock);
1079 	return 0;
1080 
1081 fail2:
1082 	efx->phy_op->fini(efx);
1083 fail1:
1084 	mutex_unlock(&efx->mac_lock);
1085 	return rc;
1086 }
1087 
1088 static void ef4_start_port(struct ef4_nic *efx)
1089 {
1090 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1091 	BUG_ON(efx->port_enabled);
1092 
1093 	mutex_lock(&efx->mac_lock);
1094 	efx->port_enabled = true;
1095 
1096 	/* Ensure MAC ingress/egress is enabled */
1097 	ef4_mac_reconfigure(efx);
1098 
1099 	mutex_unlock(&efx->mac_lock);
1100 }
1101 
1102 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1103  * and the async self-test, wait for them to finish and prevent them
1104  * being scheduled again.  This doesn't cover online resets, which
1105  * should only be cancelled when removing the device.
1106  */
1107 static void ef4_stop_port(struct ef4_nic *efx)
1108 {
1109 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1110 
1111 	EF4_ASSERT_RESET_SERIALISED(efx);
1112 
1113 	mutex_lock(&efx->mac_lock);
1114 	efx->port_enabled = false;
1115 	mutex_unlock(&efx->mac_lock);
1116 
1117 	/* Serialise against ef4_set_multicast_list() */
1118 	netif_addr_lock_bh(efx->net_dev);
1119 	netif_addr_unlock_bh(efx->net_dev);
1120 
1121 	cancel_delayed_work_sync(&efx->monitor_work);
1122 	ef4_selftest_async_cancel(efx);
1123 	cancel_work_sync(&efx->mac_work);
1124 }
1125 
1126 static void ef4_fini_port(struct ef4_nic *efx)
1127 {
1128 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1129 
1130 	if (!efx->port_initialized)
1131 		return;
1132 
1133 	efx->phy_op->fini(efx);
1134 	efx->port_initialized = false;
1135 
1136 	efx->link_state.up = false;
1137 	ef4_link_status_changed(efx);
1138 }
1139 
1140 static void ef4_remove_port(struct ef4_nic *efx)
1141 {
1142 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1143 
1144 	efx->type->remove_port(efx);
1145 }
1146 
1147 /**************************************************************************
1148  *
1149  * NIC handling
1150  *
1151  **************************************************************************/
1152 
1153 static LIST_HEAD(ef4_primary_list);
1154 static LIST_HEAD(ef4_unassociated_list);
1155 
1156 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1157 {
1158 	return left->type == right->type &&
1159 		left->vpd_sn && right->vpd_sn &&
1160 		!strcmp(left->vpd_sn, right->vpd_sn);
1161 }
1162 
1163 static void ef4_associate(struct ef4_nic *efx)
1164 {
1165 	struct ef4_nic *other, *next;
1166 
1167 	if (efx->primary == efx) {
1168 		/* Adding primary function; look for secondaries */
1169 
1170 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1171 		list_add_tail(&efx->node, &ef4_primary_list);
1172 
1173 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1174 					 node) {
1175 			if (ef4_same_controller(efx, other)) {
1176 				list_del(&other->node);
1177 				netif_dbg(other, probe, other->net_dev,
1178 					  "moving to secondary list of %s %s\n",
1179 					  pci_name(efx->pci_dev),
1180 					  efx->net_dev->name);
1181 				list_add_tail(&other->node,
1182 					      &efx->secondary_list);
1183 				other->primary = efx;
1184 			}
1185 		}
1186 	} else {
1187 		/* Adding secondary function; look for primary */
1188 
1189 		list_for_each_entry(other, &ef4_primary_list, node) {
1190 			if (ef4_same_controller(efx, other)) {
1191 				netif_dbg(efx, probe, efx->net_dev,
1192 					  "adding to secondary list of %s %s\n",
1193 					  pci_name(other->pci_dev),
1194 					  other->net_dev->name);
1195 				list_add_tail(&efx->node,
1196 					      &other->secondary_list);
1197 				efx->primary = other;
1198 				return;
1199 			}
1200 		}
1201 
1202 		netif_dbg(efx, probe, efx->net_dev,
1203 			  "adding to unassociated list\n");
1204 		list_add_tail(&efx->node, &ef4_unassociated_list);
1205 	}
1206 }
1207 
1208 static void ef4_dissociate(struct ef4_nic *efx)
1209 {
1210 	struct ef4_nic *other, *next;
1211 
1212 	list_del(&efx->node);
1213 	efx->primary = NULL;
1214 
1215 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1216 		list_del(&other->node);
1217 		netif_dbg(other, probe, other->net_dev,
1218 			  "moving to unassociated list\n");
1219 		list_add_tail(&other->node, &ef4_unassociated_list);
1220 		other->primary = NULL;
1221 	}
1222 }
1223 
1224 /* This configures the PCI device to enable I/O and DMA. */
1225 static int ef4_init_io(struct ef4_nic *efx)
1226 {
1227 	struct pci_dev *pci_dev = efx->pci_dev;
1228 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1229 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1230 	int rc, bar;
1231 
1232 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1233 
1234 	bar = efx->type->mem_bar;
1235 
1236 	rc = pci_enable_device(pci_dev);
1237 	if (rc) {
1238 		netif_err(efx, probe, efx->net_dev,
1239 			  "failed to enable PCI device\n");
1240 		goto fail1;
1241 	}
1242 
1243 	pci_set_master(pci_dev);
1244 
1245 	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1246 	 * down to 32 bits, because some architectures will allow 40 bit
1247 	 * masks event though they reject 46 bit masks.
1248 	 */
1249 	while (dma_mask > 0x7fffffffUL) {
1250 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 		if (rc == 0)
1252 			break;
1253 		dma_mask >>= 1;
1254 	}
1255 	if (rc) {
1256 		netif_err(efx, probe, efx->net_dev,
1257 			  "could not find a suitable DMA mask\n");
1258 		goto fail2;
1259 	}
1260 	netif_dbg(efx, probe, efx->net_dev,
1261 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1262 
1263 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 	rc = pci_request_region(pci_dev, bar, "sfc");
1265 	if (rc) {
1266 		netif_err(efx, probe, efx->net_dev,
1267 			  "request for memory BAR failed\n");
1268 		rc = -EIO;
1269 		goto fail3;
1270 	}
1271 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1272 	if (!efx->membase) {
1273 		netif_err(efx, probe, efx->net_dev,
1274 			  "could not map memory BAR at %llx+%x\n",
1275 			  (unsigned long long)efx->membase_phys, mem_map_size);
1276 		rc = -ENOMEM;
1277 		goto fail4;
1278 	}
1279 	netif_dbg(efx, probe, efx->net_dev,
1280 		  "memory BAR at %llx+%x (virtual %p)\n",
1281 		  (unsigned long long)efx->membase_phys, mem_map_size,
1282 		  efx->membase);
1283 
1284 	return 0;
1285 
1286  fail4:
1287 	pci_release_region(efx->pci_dev, bar);
1288  fail3:
1289 	efx->membase_phys = 0;
1290  fail2:
1291 	pci_disable_device(efx->pci_dev);
1292  fail1:
1293 	return rc;
1294 }
1295 
1296 static void ef4_fini_io(struct ef4_nic *efx)
1297 {
1298 	int bar;
1299 
1300 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1301 
1302 	if (efx->membase) {
1303 		iounmap(efx->membase);
1304 		efx->membase = NULL;
1305 	}
1306 
1307 	if (efx->membase_phys) {
1308 		bar = efx->type->mem_bar;
1309 		pci_release_region(efx->pci_dev, bar);
1310 		efx->membase_phys = 0;
1311 	}
1312 
1313 	/* Don't disable bus-mastering if VFs are assigned */
1314 	if (!pci_vfs_assigned(efx->pci_dev))
1315 		pci_disable_device(efx->pci_dev);
1316 }
1317 
1318 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1319 {
1320 	size_t i;
1321 
1322 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 		efx->rx_indir_table[i] =
1324 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1325 }
1326 
1327 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1328 {
1329 	cpumask_var_t thread_mask;
1330 	unsigned int count;
1331 	int cpu;
1332 
1333 	if (rss_cpus) {
1334 		count = rss_cpus;
1335 	} else {
1336 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 			netif_warn(efx, probe, efx->net_dev,
1338 				   "RSS disabled due to allocation failure\n");
1339 			return 1;
1340 		}
1341 
1342 		count = 0;
1343 		for_each_online_cpu(cpu) {
1344 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 				++count;
1346 				cpumask_or(thread_mask, thread_mask,
1347 					   topology_sibling_cpumask(cpu));
1348 			}
1349 		}
1350 
1351 		free_cpumask_var(thread_mask);
1352 	}
1353 
1354 	if (count > EF4_MAX_RX_QUEUES) {
1355 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1356 			       "Reducing number of rx queues from %u to %u.\n",
1357 			       count, EF4_MAX_RX_QUEUES);
1358 		count = EF4_MAX_RX_QUEUES;
1359 	}
1360 
1361 	return count;
1362 }
1363 
1364 /* Probe the number and type of interrupts we are able to obtain, and
1365  * the resulting numbers of channels and RX queues.
1366  */
1367 static int ef4_probe_interrupts(struct ef4_nic *efx)
1368 {
1369 	unsigned int extra_channels = 0;
1370 	unsigned int i, j;
1371 	int rc;
1372 
1373 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1374 		if (efx->extra_channel_type[i])
1375 			++extra_channels;
1376 
1377 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1378 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1379 		unsigned int n_channels;
1380 
1381 		n_channels = ef4_wanted_parallelism(efx);
1382 		if (ef4_separate_tx_channels)
1383 			n_channels *= 2;
1384 		n_channels += extra_channels;
1385 		n_channels = min(n_channels, efx->max_channels);
1386 
1387 		for (i = 0; i < n_channels; i++)
1388 			xentries[i].entry = i;
1389 		rc = pci_enable_msix_range(efx->pci_dev,
1390 					   xentries, 1, n_channels);
1391 		if (rc < 0) {
1392 			/* Fall back to single channel MSI */
1393 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1394 			netif_err(efx, drv, efx->net_dev,
1395 				  "could not enable MSI-X\n");
1396 		} else if (rc < n_channels) {
1397 			netif_err(efx, drv, efx->net_dev,
1398 				  "WARNING: Insufficient MSI-X vectors"
1399 				  " available (%d < %u).\n", rc, n_channels);
1400 			netif_err(efx, drv, efx->net_dev,
1401 				  "WARNING: Performance may be reduced.\n");
1402 			n_channels = rc;
1403 		}
1404 
1405 		if (rc > 0) {
1406 			efx->n_channels = n_channels;
1407 			if (n_channels > extra_channels)
1408 				n_channels -= extra_channels;
1409 			if (ef4_separate_tx_channels) {
1410 				efx->n_tx_channels = min(max(n_channels / 2,
1411 							     1U),
1412 							 efx->max_tx_channels);
1413 				efx->n_rx_channels = max(n_channels -
1414 							 efx->n_tx_channels,
1415 							 1U);
1416 			} else {
1417 				efx->n_tx_channels = min(n_channels,
1418 							 efx->max_tx_channels);
1419 				efx->n_rx_channels = n_channels;
1420 			}
1421 			for (i = 0; i < efx->n_channels; i++)
1422 				ef4_get_channel(efx, i)->irq =
1423 					xentries[i].vector;
1424 		}
1425 	}
1426 
1427 	/* Try single interrupt MSI */
1428 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1429 		efx->n_channels = 1;
1430 		efx->n_rx_channels = 1;
1431 		efx->n_tx_channels = 1;
1432 		rc = pci_enable_msi(efx->pci_dev);
1433 		if (rc == 0) {
1434 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1435 		} else {
1436 			netif_err(efx, drv, efx->net_dev,
1437 				  "could not enable MSI\n");
1438 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1439 		}
1440 	}
1441 
1442 	/* Assume legacy interrupts */
1443 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1444 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1445 		efx->n_rx_channels = 1;
1446 		efx->n_tx_channels = 1;
1447 		efx->legacy_irq = efx->pci_dev->irq;
1448 	}
1449 
1450 	/* Assign extra channels if possible */
1451 	j = efx->n_channels;
1452 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1453 		if (!efx->extra_channel_type[i])
1454 			continue;
1455 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1456 		    efx->n_channels <= extra_channels) {
1457 			efx->extra_channel_type[i]->handle_no_channel(efx);
1458 		} else {
1459 			--j;
1460 			ef4_get_channel(efx, j)->type =
1461 				efx->extra_channel_type[i];
1462 		}
1463 	}
1464 
1465 	efx->rss_spread = efx->n_rx_channels;
1466 
1467 	return 0;
1468 }
1469 
1470 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1471 {
1472 	struct ef4_channel *channel, *end_channel;
1473 	int rc;
1474 
1475 	BUG_ON(efx->state == STATE_DISABLED);
1476 
1477 	efx->irq_soft_enabled = true;
1478 	smp_wmb();
1479 
1480 	ef4_for_each_channel(channel, efx) {
1481 		if (!channel->type->keep_eventq) {
1482 			rc = ef4_init_eventq(channel);
1483 			if (rc)
1484 				goto fail;
1485 		}
1486 		ef4_start_eventq(channel);
1487 	}
1488 
1489 	return 0;
1490 fail:
1491 	end_channel = channel;
1492 	ef4_for_each_channel(channel, efx) {
1493 		if (channel == end_channel)
1494 			break;
1495 		ef4_stop_eventq(channel);
1496 		if (!channel->type->keep_eventq)
1497 			ef4_fini_eventq(channel);
1498 	}
1499 
1500 	return rc;
1501 }
1502 
1503 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1504 {
1505 	struct ef4_channel *channel;
1506 
1507 	if (efx->state == STATE_DISABLED)
1508 		return;
1509 
1510 	efx->irq_soft_enabled = false;
1511 	smp_wmb();
1512 
1513 	if (efx->legacy_irq)
1514 		synchronize_irq(efx->legacy_irq);
1515 
1516 	ef4_for_each_channel(channel, efx) {
1517 		if (channel->irq)
1518 			synchronize_irq(channel->irq);
1519 
1520 		ef4_stop_eventq(channel);
1521 		if (!channel->type->keep_eventq)
1522 			ef4_fini_eventq(channel);
1523 	}
1524 }
1525 
1526 static int ef4_enable_interrupts(struct ef4_nic *efx)
1527 {
1528 	struct ef4_channel *channel, *end_channel;
1529 	int rc;
1530 
1531 	BUG_ON(efx->state == STATE_DISABLED);
1532 
1533 	if (efx->eeh_disabled_legacy_irq) {
1534 		enable_irq(efx->legacy_irq);
1535 		efx->eeh_disabled_legacy_irq = false;
1536 	}
1537 
1538 	efx->type->irq_enable_master(efx);
1539 
1540 	ef4_for_each_channel(channel, efx) {
1541 		if (channel->type->keep_eventq) {
1542 			rc = ef4_init_eventq(channel);
1543 			if (rc)
1544 				goto fail;
1545 		}
1546 	}
1547 
1548 	rc = ef4_soft_enable_interrupts(efx);
1549 	if (rc)
1550 		goto fail;
1551 
1552 	return 0;
1553 
1554 fail:
1555 	end_channel = channel;
1556 	ef4_for_each_channel(channel, efx) {
1557 		if (channel == end_channel)
1558 			break;
1559 		if (channel->type->keep_eventq)
1560 			ef4_fini_eventq(channel);
1561 	}
1562 
1563 	efx->type->irq_disable_non_ev(efx);
1564 
1565 	return rc;
1566 }
1567 
1568 static void ef4_disable_interrupts(struct ef4_nic *efx)
1569 {
1570 	struct ef4_channel *channel;
1571 
1572 	ef4_soft_disable_interrupts(efx);
1573 
1574 	ef4_for_each_channel(channel, efx) {
1575 		if (channel->type->keep_eventq)
1576 			ef4_fini_eventq(channel);
1577 	}
1578 
1579 	efx->type->irq_disable_non_ev(efx);
1580 }
1581 
1582 static void ef4_remove_interrupts(struct ef4_nic *efx)
1583 {
1584 	struct ef4_channel *channel;
1585 
1586 	/* Remove MSI/MSI-X interrupts */
1587 	ef4_for_each_channel(channel, efx)
1588 		channel->irq = 0;
1589 	pci_disable_msi(efx->pci_dev);
1590 	pci_disable_msix(efx->pci_dev);
1591 
1592 	/* Remove legacy interrupt */
1593 	efx->legacy_irq = 0;
1594 }
1595 
1596 static void ef4_set_channels(struct ef4_nic *efx)
1597 {
1598 	struct ef4_channel *channel;
1599 	struct ef4_tx_queue *tx_queue;
1600 
1601 	efx->tx_channel_offset =
1602 		ef4_separate_tx_channels ?
1603 		efx->n_channels - efx->n_tx_channels : 0;
1604 
1605 	/* We need to mark which channels really have RX and TX
1606 	 * queues, and adjust the TX queue numbers if we have separate
1607 	 * RX-only and TX-only channels.
1608 	 */
1609 	ef4_for_each_channel(channel, efx) {
1610 		if (channel->channel < efx->n_rx_channels)
1611 			channel->rx_queue.core_index = channel->channel;
1612 		else
1613 			channel->rx_queue.core_index = -1;
1614 
1615 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1616 			tx_queue->queue -= (efx->tx_channel_offset *
1617 					    EF4_TXQ_TYPES);
1618 	}
1619 }
1620 
1621 static int ef4_probe_nic(struct ef4_nic *efx)
1622 {
1623 	int rc;
1624 
1625 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1626 
1627 	/* Carry out hardware-type specific initialisation */
1628 	rc = efx->type->probe(efx);
1629 	if (rc)
1630 		return rc;
1631 
1632 	do {
1633 		if (!efx->max_channels || !efx->max_tx_channels) {
1634 			netif_err(efx, drv, efx->net_dev,
1635 				  "Insufficient resources to allocate"
1636 				  " any channels\n");
1637 			rc = -ENOSPC;
1638 			goto fail1;
1639 		}
1640 
1641 		/* Determine the number of channels and queues by trying
1642 		 * to hook in MSI-X interrupts.
1643 		 */
1644 		rc = ef4_probe_interrupts(efx);
1645 		if (rc)
1646 			goto fail1;
1647 
1648 		ef4_set_channels(efx);
1649 
1650 		/* dimension_resources can fail with EAGAIN */
1651 		rc = efx->type->dimension_resources(efx);
1652 		if (rc != 0 && rc != -EAGAIN)
1653 			goto fail2;
1654 
1655 		if (rc == -EAGAIN)
1656 			/* try again with new max_channels */
1657 			ef4_remove_interrupts(efx);
1658 
1659 	} while (rc == -EAGAIN);
1660 
1661 	if (efx->n_channels > 1)
1662 		netdev_rss_key_fill(&efx->rx_hash_key,
1663 				    sizeof(efx->rx_hash_key));
1664 	ef4_set_default_rx_indir_table(efx);
1665 
1666 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1667 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1668 
1669 	/* Initialise the interrupt moderation settings */
1670 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1671 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1672 				true);
1673 
1674 	return 0;
1675 
1676 fail2:
1677 	ef4_remove_interrupts(efx);
1678 fail1:
1679 	efx->type->remove(efx);
1680 	return rc;
1681 }
1682 
1683 static void ef4_remove_nic(struct ef4_nic *efx)
1684 {
1685 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1686 
1687 	ef4_remove_interrupts(efx);
1688 	efx->type->remove(efx);
1689 }
1690 
1691 static int ef4_probe_filters(struct ef4_nic *efx)
1692 {
1693 	int rc;
1694 
1695 	spin_lock_init(&efx->filter_lock);
1696 	init_rwsem(&efx->filter_sem);
1697 	mutex_lock(&efx->mac_lock);
1698 	down_write(&efx->filter_sem);
1699 	rc = efx->type->filter_table_probe(efx);
1700 	if (rc)
1701 		goto out_unlock;
1702 
1703 #ifdef CONFIG_RFS_ACCEL
1704 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1705 		struct ef4_channel *channel;
1706 		int i, success = 1;
1707 
1708 		ef4_for_each_channel(channel, efx) {
1709 			channel->rps_flow_id =
1710 				kcalloc(efx->type->max_rx_ip_filters,
1711 					sizeof(*channel->rps_flow_id),
1712 					GFP_KERNEL);
1713 			if (!channel->rps_flow_id)
1714 				success = 0;
1715 			else
1716 				for (i = 0;
1717 				     i < efx->type->max_rx_ip_filters;
1718 				     ++i)
1719 					channel->rps_flow_id[i] =
1720 						RPS_FLOW_ID_INVALID;
1721 		}
1722 
1723 		if (!success) {
1724 			ef4_for_each_channel(channel, efx)
1725 				kfree(channel->rps_flow_id);
1726 			efx->type->filter_table_remove(efx);
1727 			rc = -ENOMEM;
1728 			goto out_unlock;
1729 		}
1730 
1731 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1732 	}
1733 #endif
1734 out_unlock:
1735 	up_write(&efx->filter_sem);
1736 	mutex_unlock(&efx->mac_lock);
1737 	return rc;
1738 }
1739 
1740 static void ef4_remove_filters(struct ef4_nic *efx)
1741 {
1742 #ifdef CONFIG_RFS_ACCEL
1743 	struct ef4_channel *channel;
1744 
1745 	ef4_for_each_channel(channel, efx)
1746 		kfree(channel->rps_flow_id);
1747 #endif
1748 	down_write(&efx->filter_sem);
1749 	efx->type->filter_table_remove(efx);
1750 	up_write(&efx->filter_sem);
1751 }
1752 
1753 static void ef4_restore_filters(struct ef4_nic *efx)
1754 {
1755 	down_read(&efx->filter_sem);
1756 	efx->type->filter_table_restore(efx);
1757 	up_read(&efx->filter_sem);
1758 }
1759 
1760 /**************************************************************************
1761  *
1762  * NIC startup/shutdown
1763  *
1764  *************************************************************************/
1765 
1766 static int ef4_probe_all(struct ef4_nic *efx)
1767 {
1768 	int rc;
1769 
1770 	rc = ef4_probe_nic(efx);
1771 	if (rc) {
1772 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1773 		goto fail1;
1774 	}
1775 
1776 	rc = ef4_probe_port(efx);
1777 	if (rc) {
1778 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1779 		goto fail2;
1780 	}
1781 
1782 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1783 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1784 		rc = -EINVAL;
1785 		goto fail3;
1786 	}
1787 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1788 
1789 	rc = ef4_probe_filters(efx);
1790 	if (rc) {
1791 		netif_err(efx, probe, efx->net_dev,
1792 			  "failed to create filter tables\n");
1793 		goto fail4;
1794 	}
1795 
1796 	rc = ef4_probe_channels(efx);
1797 	if (rc)
1798 		goto fail5;
1799 
1800 	return 0;
1801 
1802  fail5:
1803 	ef4_remove_filters(efx);
1804  fail4:
1805  fail3:
1806 	ef4_remove_port(efx);
1807  fail2:
1808 	ef4_remove_nic(efx);
1809  fail1:
1810 	return rc;
1811 }
1812 
1813 /* If the interface is supposed to be running but is not, start
1814  * the hardware and software data path, regular activity for the port
1815  * (MAC statistics, link polling, etc.) and schedule the port to be
1816  * reconfigured.  Interrupts must already be enabled.  This function
1817  * is safe to call multiple times, so long as the NIC is not disabled.
1818  * Requires the RTNL lock.
1819  */
1820 static void ef4_start_all(struct ef4_nic *efx)
1821 {
1822 	EF4_ASSERT_RESET_SERIALISED(efx);
1823 	BUG_ON(efx->state == STATE_DISABLED);
1824 
1825 	/* Check that it is appropriate to restart the interface. All
1826 	 * of these flags are safe to read under just the rtnl lock */
1827 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1828 	    efx->reset_pending)
1829 		return;
1830 
1831 	ef4_start_port(efx);
1832 	ef4_start_datapath(efx);
1833 
1834 	/* Start the hardware monitor if there is one */
1835 	if (efx->type->monitor != NULL)
1836 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1837 				   ef4_monitor_interval);
1838 
1839 	efx->type->start_stats(efx);
1840 	efx->type->pull_stats(efx);
1841 	spin_lock_bh(&efx->stats_lock);
1842 	efx->type->update_stats(efx, NULL, NULL);
1843 	spin_unlock_bh(&efx->stats_lock);
1844 }
1845 
1846 /* Quiesce the hardware and software data path, and regular activity
1847  * for the port without bringing the link down.  Safe to call multiple
1848  * times with the NIC in almost any state, but interrupts should be
1849  * enabled.  Requires the RTNL lock.
1850  */
1851 static void ef4_stop_all(struct ef4_nic *efx)
1852 {
1853 	EF4_ASSERT_RESET_SERIALISED(efx);
1854 
1855 	/* port_enabled can be read safely under the rtnl lock */
1856 	if (!efx->port_enabled)
1857 		return;
1858 
1859 	/* update stats before we go down so we can accurately count
1860 	 * rx_nodesc_drops
1861 	 */
1862 	efx->type->pull_stats(efx);
1863 	spin_lock_bh(&efx->stats_lock);
1864 	efx->type->update_stats(efx, NULL, NULL);
1865 	spin_unlock_bh(&efx->stats_lock);
1866 	efx->type->stop_stats(efx);
1867 	ef4_stop_port(efx);
1868 
1869 	/* Stop the kernel transmit interface.  This is only valid if
1870 	 * the device is stopped or detached; otherwise the watchdog
1871 	 * may fire immediately.
1872 	 */
1873 	WARN_ON(netif_running(efx->net_dev) &&
1874 		netif_device_present(efx->net_dev));
1875 	netif_tx_disable(efx->net_dev);
1876 
1877 	ef4_stop_datapath(efx);
1878 }
1879 
1880 static void ef4_remove_all(struct ef4_nic *efx)
1881 {
1882 	ef4_remove_channels(efx);
1883 	ef4_remove_filters(efx);
1884 	ef4_remove_port(efx);
1885 	ef4_remove_nic(efx);
1886 }
1887 
1888 /**************************************************************************
1889  *
1890  * Interrupt moderation
1891  *
1892  **************************************************************************/
1893 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1894 {
1895 	if (usecs == 0)
1896 		return 0;
1897 	if (usecs * 1000 < efx->timer_quantum_ns)
1898 		return 1; /* never round down to 0 */
1899 	return usecs * 1000 / efx->timer_quantum_ns;
1900 }
1901 
1902 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1903 {
1904 	/* We must round up when converting ticks to microseconds
1905 	 * because we round down when converting the other way.
1906 	 */
1907 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1908 }
1909 
1910 /* Set interrupt moderation parameters */
1911 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1912 			    unsigned int rx_usecs, bool rx_adaptive,
1913 			    bool rx_may_override_tx)
1914 {
1915 	struct ef4_channel *channel;
1916 	unsigned int timer_max_us;
1917 
1918 	EF4_ASSERT_RESET_SERIALISED(efx);
1919 
1920 	timer_max_us = efx->timer_max_ns / 1000;
1921 
1922 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1923 		return -EINVAL;
1924 
1925 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1926 	    !rx_may_override_tx) {
1927 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1928 			  "RX and TX IRQ moderation must be equal\n");
1929 		return -EINVAL;
1930 	}
1931 
1932 	efx->irq_rx_adaptive = rx_adaptive;
1933 	efx->irq_rx_moderation_us = rx_usecs;
1934 	ef4_for_each_channel(channel, efx) {
1935 		if (ef4_channel_has_rx_queue(channel))
1936 			channel->irq_moderation_us = rx_usecs;
1937 		else if (ef4_channel_has_tx_queues(channel))
1938 			channel->irq_moderation_us = tx_usecs;
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1945 			    unsigned int *rx_usecs, bool *rx_adaptive)
1946 {
1947 	*rx_adaptive = efx->irq_rx_adaptive;
1948 	*rx_usecs = efx->irq_rx_moderation_us;
1949 
1950 	/* If channels are shared between RX and TX, so is IRQ
1951 	 * moderation.  Otherwise, IRQ moderation is the same for all
1952 	 * TX channels and is not adaptive.
1953 	 */
1954 	if (efx->tx_channel_offset == 0) {
1955 		*tx_usecs = *rx_usecs;
1956 	} else {
1957 		struct ef4_channel *tx_channel;
1958 
1959 		tx_channel = efx->channel[efx->tx_channel_offset];
1960 		*tx_usecs = tx_channel->irq_moderation_us;
1961 	}
1962 }
1963 
1964 /**************************************************************************
1965  *
1966  * Hardware monitor
1967  *
1968  **************************************************************************/
1969 
1970 /* Run periodically off the general workqueue */
1971 static void ef4_monitor(struct work_struct *data)
1972 {
1973 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1974 					   monitor_work.work);
1975 
1976 	netif_vdbg(efx, timer, efx->net_dev,
1977 		   "hardware monitor executing on CPU %d\n",
1978 		   raw_smp_processor_id());
1979 	BUG_ON(efx->type->monitor == NULL);
1980 
1981 	/* If the mac_lock is already held then it is likely a port
1982 	 * reconfiguration is already in place, which will likely do
1983 	 * most of the work of monitor() anyway. */
1984 	if (mutex_trylock(&efx->mac_lock)) {
1985 		if (efx->port_enabled)
1986 			efx->type->monitor(efx);
1987 		mutex_unlock(&efx->mac_lock);
1988 	}
1989 
1990 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1991 			   ef4_monitor_interval);
1992 }
1993 
1994 /**************************************************************************
1995  *
1996  * ioctls
1997  *
1998  *************************************************************************/
1999 
2000 /* Net device ioctl
2001  * Context: process, rtnl_lock() held.
2002  */
2003 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2004 {
2005 	struct ef4_nic *efx = netdev_priv(net_dev);
2006 	struct mii_ioctl_data *data = if_mii(ifr);
2007 
2008 	/* Convert phy_id from older PRTAD/DEVAD format */
2009 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2010 	    (data->phy_id & 0xfc00) == 0x0400)
2011 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2012 
2013 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2014 }
2015 
2016 /**************************************************************************
2017  *
2018  * NAPI interface
2019  *
2020  **************************************************************************/
2021 
2022 static void ef4_init_napi_channel(struct ef4_channel *channel)
2023 {
2024 	struct ef4_nic *efx = channel->efx;
2025 
2026 	channel->napi_dev = efx->net_dev;
2027 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2028 		       ef4_poll, napi_weight);
2029 }
2030 
2031 static void ef4_init_napi(struct ef4_nic *efx)
2032 {
2033 	struct ef4_channel *channel;
2034 
2035 	ef4_for_each_channel(channel, efx)
2036 		ef4_init_napi_channel(channel);
2037 }
2038 
2039 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2040 {
2041 	if (channel->napi_dev)
2042 		netif_napi_del(&channel->napi_str);
2043 
2044 	channel->napi_dev = NULL;
2045 }
2046 
2047 static void ef4_fini_napi(struct ef4_nic *efx)
2048 {
2049 	struct ef4_channel *channel;
2050 
2051 	ef4_for_each_channel(channel, efx)
2052 		ef4_fini_napi_channel(channel);
2053 }
2054 
2055 /**************************************************************************
2056  *
2057  * Kernel net device interface
2058  *
2059  *************************************************************************/
2060 
2061 /* Context: process, rtnl_lock() held. */
2062 int ef4_net_open(struct net_device *net_dev)
2063 {
2064 	struct ef4_nic *efx = netdev_priv(net_dev);
2065 	int rc;
2066 
2067 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2068 		  raw_smp_processor_id());
2069 
2070 	rc = ef4_check_disabled(efx);
2071 	if (rc)
2072 		return rc;
2073 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2074 		return -EBUSY;
2075 
2076 	/* Notify the kernel of the link state polled during driver load,
2077 	 * before the monitor starts running */
2078 	ef4_link_status_changed(efx);
2079 
2080 	ef4_start_all(efx);
2081 	ef4_selftest_async_start(efx);
2082 	return 0;
2083 }
2084 
2085 /* Context: process, rtnl_lock() held.
2086  * Note that the kernel will ignore our return code; this method
2087  * should really be a void.
2088  */
2089 int ef4_net_stop(struct net_device *net_dev)
2090 {
2091 	struct ef4_nic *efx = netdev_priv(net_dev);
2092 
2093 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2094 		  raw_smp_processor_id());
2095 
2096 	/* Stop the device and flush all the channels */
2097 	ef4_stop_all(efx);
2098 
2099 	return 0;
2100 }
2101 
2102 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2103 static void ef4_net_stats(struct net_device *net_dev,
2104 			  struct rtnl_link_stats64 *stats)
2105 {
2106 	struct ef4_nic *efx = netdev_priv(net_dev);
2107 
2108 	spin_lock_bh(&efx->stats_lock);
2109 	efx->type->update_stats(efx, NULL, stats);
2110 	spin_unlock_bh(&efx->stats_lock);
2111 }
2112 
2113 /* Context: netif_tx_lock held, BHs disabled. */
2114 static void ef4_watchdog(struct net_device *net_dev)
2115 {
2116 	struct ef4_nic *efx = netdev_priv(net_dev);
2117 
2118 	netif_err(efx, tx_err, efx->net_dev,
2119 		  "TX stuck with port_enabled=%d: resetting channels\n",
2120 		  efx->port_enabled);
2121 
2122 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2123 }
2124 
2125 
2126 /* Context: process, rtnl_lock() held. */
2127 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2128 {
2129 	struct ef4_nic *efx = netdev_priv(net_dev);
2130 	int rc;
2131 
2132 	rc = ef4_check_disabled(efx);
2133 	if (rc)
2134 		return rc;
2135 
2136 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2137 
2138 	ef4_device_detach_sync(efx);
2139 	ef4_stop_all(efx);
2140 
2141 	mutex_lock(&efx->mac_lock);
2142 	net_dev->mtu = new_mtu;
2143 	ef4_mac_reconfigure(efx);
2144 	mutex_unlock(&efx->mac_lock);
2145 
2146 	ef4_start_all(efx);
2147 	netif_device_attach(efx->net_dev);
2148 	return 0;
2149 }
2150 
2151 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2152 {
2153 	struct ef4_nic *efx = netdev_priv(net_dev);
2154 	struct sockaddr *addr = data;
2155 	u8 *new_addr = addr->sa_data;
2156 	u8 old_addr[6];
2157 	int rc;
2158 
2159 	if (!is_valid_ether_addr(new_addr)) {
2160 		netif_err(efx, drv, efx->net_dev,
2161 			  "invalid ethernet MAC address requested: %pM\n",
2162 			  new_addr);
2163 		return -EADDRNOTAVAIL;
2164 	}
2165 
2166 	/* save old address */
2167 	ether_addr_copy(old_addr, net_dev->dev_addr);
2168 	ether_addr_copy(net_dev->dev_addr, new_addr);
2169 	if (efx->type->set_mac_address) {
2170 		rc = efx->type->set_mac_address(efx);
2171 		if (rc) {
2172 			ether_addr_copy(net_dev->dev_addr, old_addr);
2173 			return rc;
2174 		}
2175 	}
2176 
2177 	/* Reconfigure the MAC */
2178 	mutex_lock(&efx->mac_lock);
2179 	ef4_mac_reconfigure(efx);
2180 	mutex_unlock(&efx->mac_lock);
2181 
2182 	return 0;
2183 }
2184 
2185 /* Context: netif_addr_lock held, BHs disabled. */
2186 static void ef4_set_rx_mode(struct net_device *net_dev)
2187 {
2188 	struct ef4_nic *efx = netdev_priv(net_dev);
2189 
2190 	if (efx->port_enabled)
2191 		queue_work(efx->workqueue, &efx->mac_work);
2192 	/* Otherwise ef4_start_port() will do this */
2193 }
2194 
2195 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2196 {
2197 	struct ef4_nic *efx = netdev_priv(net_dev);
2198 	int rc;
2199 
2200 	/* If disabling RX n-tuple filtering, clear existing filters */
2201 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2202 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2203 		if (rc)
2204 			return rc;
2205 	}
2206 
2207 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2208 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2209 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2210 		 * when a new features are finally set in net_dev.
2211 		 */
2212 		ef4_set_rx_mode(net_dev);
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 static const struct net_device_ops ef4_netdev_ops = {
2219 	.ndo_open		= ef4_net_open,
2220 	.ndo_stop		= ef4_net_stop,
2221 	.ndo_get_stats64	= ef4_net_stats,
2222 	.ndo_tx_timeout		= ef4_watchdog,
2223 	.ndo_start_xmit		= ef4_hard_start_xmit,
2224 	.ndo_validate_addr	= eth_validate_addr,
2225 	.ndo_do_ioctl		= ef4_ioctl,
2226 	.ndo_change_mtu		= ef4_change_mtu,
2227 	.ndo_set_mac_address	= ef4_set_mac_address,
2228 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2229 	.ndo_set_features	= ef4_set_features,
2230 	.ndo_setup_tc		= ef4_setup_tc,
2231 #ifdef CONFIG_RFS_ACCEL
2232 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2233 #endif
2234 };
2235 
2236 static void ef4_update_name(struct ef4_nic *efx)
2237 {
2238 	strcpy(efx->name, efx->net_dev->name);
2239 	ef4_mtd_rename(efx);
2240 	ef4_set_channel_names(efx);
2241 }
2242 
2243 static int ef4_netdev_event(struct notifier_block *this,
2244 			    unsigned long event, void *ptr)
2245 {
2246 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2247 
2248 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2249 	    event == NETDEV_CHANGENAME)
2250 		ef4_update_name(netdev_priv(net_dev));
2251 
2252 	return NOTIFY_DONE;
2253 }
2254 
2255 static struct notifier_block ef4_netdev_notifier = {
2256 	.notifier_call = ef4_netdev_event,
2257 };
2258 
2259 static ssize_t
2260 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2261 {
2262 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2263 	return sprintf(buf, "%d\n", efx->phy_type);
2264 }
2265 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2266 
2267 static int ef4_register_netdev(struct ef4_nic *efx)
2268 {
2269 	struct net_device *net_dev = efx->net_dev;
2270 	struct ef4_channel *channel;
2271 	int rc;
2272 
2273 	net_dev->watchdog_timeo = 5 * HZ;
2274 	net_dev->irq = efx->pci_dev->irq;
2275 	net_dev->netdev_ops = &ef4_netdev_ops;
2276 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2277 	net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2278 	net_dev->min_mtu = EF4_MIN_MTU;
2279 	net_dev->max_mtu = EF4_MAX_MTU;
2280 
2281 	rtnl_lock();
2282 
2283 	/* Enable resets to be scheduled and check whether any were
2284 	 * already requested.  If so, the NIC is probably hosed so we
2285 	 * abort.
2286 	 */
2287 	efx->state = STATE_READY;
2288 	smp_mb(); /* ensure we change state before checking reset_pending */
2289 	if (efx->reset_pending) {
2290 		netif_err(efx, probe, efx->net_dev,
2291 			  "aborting probe due to scheduled reset\n");
2292 		rc = -EIO;
2293 		goto fail_locked;
2294 	}
2295 
2296 	rc = dev_alloc_name(net_dev, net_dev->name);
2297 	if (rc < 0)
2298 		goto fail_locked;
2299 	ef4_update_name(efx);
2300 
2301 	/* Always start with carrier off; PHY events will detect the link */
2302 	netif_carrier_off(net_dev);
2303 
2304 	rc = register_netdevice(net_dev);
2305 	if (rc)
2306 		goto fail_locked;
2307 
2308 	ef4_for_each_channel(channel, efx) {
2309 		struct ef4_tx_queue *tx_queue;
2310 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2311 			ef4_init_tx_queue_core_txq(tx_queue);
2312 	}
2313 
2314 	ef4_associate(efx);
2315 
2316 	rtnl_unlock();
2317 
2318 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2319 	if (rc) {
2320 		netif_err(efx, drv, efx->net_dev,
2321 			  "failed to init net dev attributes\n");
2322 		goto fail_registered;
2323 	}
2324 	return 0;
2325 
2326 fail_registered:
2327 	rtnl_lock();
2328 	ef4_dissociate(efx);
2329 	unregister_netdevice(net_dev);
2330 fail_locked:
2331 	efx->state = STATE_UNINIT;
2332 	rtnl_unlock();
2333 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2334 	return rc;
2335 }
2336 
2337 static void ef4_unregister_netdev(struct ef4_nic *efx)
2338 {
2339 	if (!efx->net_dev)
2340 		return;
2341 
2342 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2343 
2344 	if (ef4_dev_registered(efx)) {
2345 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2346 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2347 		unregister_netdev(efx->net_dev);
2348 	}
2349 }
2350 
2351 /**************************************************************************
2352  *
2353  * Device reset and suspend
2354  *
2355  **************************************************************************/
2356 
2357 /* Tears down the entire software state and most of the hardware state
2358  * before reset.  */
2359 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2360 {
2361 	EF4_ASSERT_RESET_SERIALISED(efx);
2362 
2363 	ef4_stop_all(efx);
2364 	ef4_disable_interrupts(efx);
2365 
2366 	mutex_lock(&efx->mac_lock);
2367 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2368 	    method != RESET_TYPE_DATAPATH)
2369 		efx->phy_op->fini(efx);
2370 	efx->type->fini(efx);
2371 }
2372 
2373 /* This function will always ensure that the locks acquired in
2374  * ef4_reset_down() are released. A failure return code indicates
2375  * that we were unable to reinitialise the hardware, and the
2376  * driver should be disabled. If ok is false, then the rx and tx
2377  * engines are not restarted, pending a RESET_DISABLE. */
2378 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2379 {
2380 	int rc;
2381 
2382 	EF4_ASSERT_RESET_SERIALISED(efx);
2383 
2384 	/* Ensure that SRAM is initialised even if we're disabling the device */
2385 	rc = efx->type->init(efx);
2386 	if (rc) {
2387 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2388 		goto fail;
2389 	}
2390 
2391 	if (!ok)
2392 		goto fail;
2393 
2394 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2395 	    method != RESET_TYPE_DATAPATH) {
2396 		rc = efx->phy_op->init(efx);
2397 		if (rc)
2398 			goto fail;
2399 		rc = efx->phy_op->reconfigure(efx);
2400 		if (rc && rc != -EPERM)
2401 			netif_err(efx, drv, efx->net_dev,
2402 				  "could not restore PHY settings\n");
2403 	}
2404 
2405 	rc = ef4_enable_interrupts(efx);
2406 	if (rc)
2407 		goto fail;
2408 
2409 	down_read(&efx->filter_sem);
2410 	ef4_restore_filters(efx);
2411 	up_read(&efx->filter_sem);
2412 
2413 	mutex_unlock(&efx->mac_lock);
2414 
2415 	ef4_start_all(efx);
2416 
2417 	return 0;
2418 
2419 fail:
2420 	efx->port_initialized = false;
2421 
2422 	mutex_unlock(&efx->mac_lock);
2423 
2424 	return rc;
2425 }
2426 
2427 /* Reset the NIC using the specified method.  Note that the reset may
2428  * fail, in which case the card will be left in an unusable state.
2429  *
2430  * Caller must hold the rtnl_lock.
2431  */
2432 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2433 {
2434 	int rc, rc2;
2435 	bool disabled;
2436 
2437 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2438 		   RESET_TYPE(method));
2439 
2440 	ef4_device_detach_sync(efx);
2441 	ef4_reset_down(efx, method);
2442 
2443 	rc = efx->type->reset(efx, method);
2444 	if (rc) {
2445 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2446 		goto out;
2447 	}
2448 
2449 	/* Clear flags for the scopes we covered.  We assume the NIC and
2450 	 * driver are now quiescent so that there is no race here.
2451 	 */
2452 	if (method < RESET_TYPE_MAX_METHOD)
2453 		efx->reset_pending &= -(1 << (method + 1));
2454 	else /* it doesn't fit into the well-ordered scope hierarchy */
2455 		__clear_bit(method, &efx->reset_pending);
2456 
2457 	/* Reinitialise bus-mastering, which may have been turned off before
2458 	 * the reset was scheduled. This is still appropriate, even in the
2459 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2460 	 * can respond to requests. */
2461 	pci_set_master(efx->pci_dev);
2462 
2463 out:
2464 	/* Leave device stopped if necessary */
2465 	disabled = rc ||
2466 		method == RESET_TYPE_DISABLE ||
2467 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2468 	rc2 = ef4_reset_up(efx, method, !disabled);
2469 	if (rc2) {
2470 		disabled = true;
2471 		if (!rc)
2472 			rc = rc2;
2473 	}
2474 
2475 	if (disabled) {
2476 		dev_close(efx->net_dev);
2477 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2478 		efx->state = STATE_DISABLED;
2479 	} else {
2480 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2481 		netif_device_attach(efx->net_dev);
2482 	}
2483 	return rc;
2484 }
2485 
2486 /* Try recovery mechanisms.
2487  * For now only EEH is supported.
2488  * Returns 0 if the recovery mechanisms are unsuccessful.
2489  * Returns a non-zero value otherwise.
2490  */
2491 int ef4_try_recovery(struct ef4_nic *efx)
2492 {
2493 #ifdef CONFIG_EEH
2494 	/* A PCI error can occur and not be seen by EEH because nothing
2495 	 * happens on the PCI bus. In this case the driver may fail and
2496 	 * schedule a 'recover or reset', leading to this recovery handler.
2497 	 * Manually call the eeh failure check function.
2498 	 */
2499 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2500 	if (eeh_dev_check_failure(eehdev)) {
2501 		/* The EEH mechanisms will handle the error and reset the
2502 		 * device if necessary.
2503 		 */
2504 		return 1;
2505 	}
2506 #endif
2507 	return 0;
2508 }
2509 
2510 /* The worker thread exists so that code that cannot sleep can
2511  * schedule a reset for later.
2512  */
2513 static void ef4_reset_work(struct work_struct *data)
2514 {
2515 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2516 	unsigned long pending;
2517 	enum reset_type method;
2518 
2519 	pending = READ_ONCE(efx->reset_pending);
2520 	method = fls(pending) - 1;
2521 
2522 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2523 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2524 	    ef4_try_recovery(efx))
2525 		return;
2526 
2527 	if (!pending)
2528 		return;
2529 
2530 	rtnl_lock();
2531 
2532 	/* We checked the state in ef4_schedule_reset() but it may
2533 	 * have changed by now.  Now that we have the RTNL lock,
2534 	 * it cannot change again.
2535 	 */
2536 	if (efx->state == STATE_READY)
2537 		(void)ef4_reset(efx, method);
2538 
2539 	rtnl_unlock();
2540 }
2541 
2542 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2543 {
2544 	enum reset_type method;
2545 
2546 	if (efx->state == STATE_RECOVERY) {
2547 		netif_dbg(efx, drv, efx->net_dev,
2548 			  "recovering: skip scheduling %s reset\n",
2549 			  RESET_TYPE(type));
2550 		return;
2551 	}
2552 
2553 	switch (type) {
2554 	case RESET_TYPE_INVISIBLE:
2555 	case RESET_TYPE_ALL:
2556 	case RESET_TYPE_RECOVER_OR_ALL:
2557 	case RESET_TYPE_WORLD:
2558 	case RESET_TYPE_DISABLE:
2559 	case RESET_TYPE_RECOVER_OR_DISABLE:
2560 	case RESET_TYPE_DATAPATH:
2561 		method = type;
2562 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2563 			  RESET_TYPE(method));
2564 		break;
2565 	default:
2566 		method = efx->type->map_reset_reason(type);
2567 		netif_dbg(efx, drv, efx->net_dev,
2568 			  "scheduling %s reset for %s\n",
2569 			  RESET_TYPE(method), RESET_TYPE(type));
2570 		break;
2571 	}
2572 
2573 	set_bit(method, &efx->reset_pending);
2574 	smp_mb(); /* ensure we change reset_pending before checking state */
2575 
2576 	/* If we're not READY then just leave the flags set as the cue
2577 	 * to abort probing or reschedule the reset later.
2578 	 */
2579 	if (READ_ONCE(efx->state) != STATE_READY)
2580 		return;
2581 
2582 	queue_work(reset_workqueue, &efx->reset_work);
2583 }
2584 
2585 /**************************************************************************
2586  *
2587  * List of NICs we support
2588  *
2589  **************************************************************************/
2590 
2591 /* PCI device ID table */
2592 static const struct pci_device_id ef4_pci_table[] = {
2593 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2594 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2595 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2596 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2597 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2598 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2599 	{0}			/* end of list */
2600 };
2601 
2602 /**************************************************************************
2603  *
2604  * Dummy PHY/MAC operations
2605  *
2606  * Can be used for some unimplemented operations
2607  * Needed so all function pointers are valid and do not have to be tested
2608  * before use
2609  *
2610  **************************************************************************/
2611 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2612 {
2613 	return 0;
2614 }
2615 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2616 
2617 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2618 {
2619 	return false;
2620 }
2621 
2622 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2623 	.init		 = ef4_port_dummy_op_int,
2624 	.reconfigure	 = ef4_port_dummy_op_int,
2625 	.poll		 = ef4_port_dummy_op_poll,
2626 	.fini		 = ef4_port_dummy_op_void,
2627 };
2628 
2629 /**************************************************************************
2630  *
2631  * Data housekeeping
2632  *
2633  **************************************************************************/
2634 
2635 /* This zeroes out and then fills in the invariants in a struct
2636  * ef4_nic (including all sub-structures).
2637  */
2638 static int ef4_init_struct(struct ef4_nic *efx,
2639 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2640 {
2641 	int i;
2642 
2643 	/* Initialise common structures */
2644 	INIT_LIST_HEAD(&efx->node);
2645 	INIT_LIST_HEAD(&efx->secondary_list);
2646 	spin_lock_init(&efx->biu_lock);
2647 #ifdef CONFIG_SFC_FALCON_MTD
2648 	INIT_LIST_HEAD(&efx->mtd_list);
2649 #endif
2650 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2651 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2652 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2653 	efx->pci_dev = pci_dev;
2654 	efx->msg_enable = debug;
2655 	efx->state = STATE_UNINIT;
2656 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2657 
2658 	efx->net_dev = net_dev;
2659 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2660 	efx->rx_ip_align =
2661 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2662 	efx->rx_packet_hash_offset =
2663 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2664 	efx->rx_packet_ts_offset =
2665 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2666 	spin_lock_init(&efx->stats_lock);
2667 	mutex_init(&efx->mac_lock);
2668 	efx->phy_op = &ef4_dummy_phy_operations;
2669 	efx->mdio.dev = net_dev;
2670 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2671 	init_waitqueue_head(&efx->flush_wq);
2672 
2673 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2674 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2675 		if (!efx->channel[i])
2676 			goto fail;
2677 		efx->msi_context[i].efx = efx;
2678 		efx->msi_context[i].index = i;
2679 	}
2680 
2681 	/* Higher numbered interrupt modes are less capable! */
2682 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2683 				  interrupt_mode);
2684 
2685 	/* Would be good to use the net_dev name, but we're too early */
2686 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2687 		 pci_name(pci_dev));
2688 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2689 	if (!efx->workqueue)
2690 		goto fail;
2691 
2692 	return 0;
2693 
2694 fail:
2695 	ef4_fini_struct(efx);
2696 	return -ENOMEM;
2697 }
2698 
2699 static void ef4_fini_struct(struct ef4_nic *efx)
2700 {
2701 	int i;
2702 
2703 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2704 		kfree(efx->channel[i]);
2705 
2706 	kfree(efx->vpd_sn);
2707 
2708 	if (efx->workqueue) {
2709 		destroy_workqueue(efx->workqueue);
2710 		efx->workqueue = NULL;
2711 	}
2712 }
2713 
2714 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2715 {
2716 	u64 n_rx_nodesc_trunc = 0;
2717 	struct ef4_channel *channel;
2718 
2719 	ef4_for_each_channel(channel, efx)
2720 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2721 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2722 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2723 }
2724 
2725 /**************************************************************************
2726  *
2727  * PCI interface
2728  *
2729  **************************************************************************/
2730 
2731 /* Main body of final NIC shutdown code
2732  * This is called only at module unload (or hotplug removal).
2733  */
2734 static void ef4_pci_remove_main(struct ef4_nic *efx)
2735 {
2736 	/* Flush reset_work. It can no longer be scheduled since we
2737 	 * are not READY.
2738 	 */
2739 	BUG_ON(efx->state == STATE_READY);
2740 	cancel_work_sync(&efx->reset_work);
2741 
2742 	ef4_disable_interrupts(efx);
2743 	ef4_nic_fini_interrupt(efx);
2744 	ef4_fini_port(efx);
2745 	efx->type->fini(efx);
2746 	ef4_fini_napi(efx);
2747 	ef4_remove_all(efx);
2748 }
2749 
2750 /* Final NIC shutdown
2751  * This is called only at module unload (or hotplug removal).  A PF can call
2752  * this on its VFs to ensure they are unbound first.
2753  */
2754 static void ef4_pci_remove(struct pci_dev *pci_dev)
2755 {
2756 	struct ef4_nic *efx;
2757 
2758 	efx = pci_get_drvdata(pci_dev);
2759 	if (!efx)
2760 		return;
2761 
2762 	/* Mark the NIC as fini, then stop the interface */
2763 	rtnl_lock();
2764 	ef4_dissociate(efx);
2765 	dev_close(efx->net_dev);
2766 	ef4_disable_interrupts(efx);
2767 	efx->state = STATE_UNINIT;
2768 	rtnl_unlock();
2769 
2770 	ef4_unregister_netdev(efx);
2771 
2772 	ef4_mtd_remove(efx);
2773 
2774 	ef4_pci_remove_main(efx);
2775 
2776 	ef4_fini_io(efx);
2777 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2778 
2779 	ef4_fini_struct(efx);
2780 	free_netdev(efx->net_dev);
2781 
2782 	pci_disable_pcie_error_reporting(pci_dev);
2783 };
2784 
2785 /* NIC VPD information
2786  * Called during probe to display the part number of the
2787  * installed NIC.  VPD is potentially very large but this should
2788  * always appear within the first 512 bytes.
2789  */
2790 #define SFC_VPD_LEN 512
2791 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2792 {
2793 	struct pci_dev *dev = efx->pci_dev;
2794 	char vpd_data[SFC_VPD_LEN];
2795 	ssize_t vpd_size;
2796 	int ro_start, ro_size, i, j;
2797 
2798 	/* Get the vpd data from the device */
2799 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2800 	if (vpd_size <= 0) {
2801 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2802 		return;
2803 	}
2804 
2805 	/* Get the Read only section */
2806 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2807 	if (ro_start < 0) {
2808 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2809 		return;
2810 	}
2811 
2812 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2813 	j = ro_size;
2814 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2815 	if (i + j > vpd_size)
2816 		j = vpd_size - i;
2817 
2818 	/* Get the Part number */
2819 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2820 	if (i < 0) {
2821 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2822 		return;
2823 	}
2824 
2825 	j = pci_vpd_info_field_size(&vpd_data[i]);
2826 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2827 	if (i + j > vpd_size) {
2828 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2829 		return;
2830 	}
2831 
2832 	netif_info(efx, drv, efx->net_dev,
2833 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2834 
2835 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2836 	j = ro_size;
2837 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2838 	if (i < 0) {
2839 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2840 		return;
2841 	}
2842 
2843 	j = pci_vpd_info_field_size(&vpd_data[i]);
2844 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2845 	if (i + j > vpd_size) {
2846 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2847 		return;
2848 	}
2849 
2850 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2851 	if (!efx->vpd_sn)
2852 		return;
2853 
2854 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2855 }
2856 
2857 
2858 /* Main body of NIC initialisation
2859  * This is called at module load (or hotplug insertion, theoretically).
2860  */
2861 static int ef4_pci_probe_main(struct ef4_nic *efx)
2862 {
2863 	int rc;
2864 
2865 	/* Do start-of-day initialisation */
2866 	rc = ef4_probe_all(efx);
2867 	if (rc)
2868 		goto fail1;
2869 
2870 	ef4_init_napi(efx);
2871 
2872 	rc = efx->type->init(efx);
2873 	if (rc) {
2874 		netif_err(efx, probe, efx->net_dev,
2875 			  "failed to initialise NIC\n");
2876 		goto fail3;
2877 	}
2878 
2879 	rc = ef4_init_port(efx);
2880 	if (rc) {
2881 		netif_err(efx, probe, efx->net_dev,
2882 			  "failed to initialise port\n");
2883 		goto fail4;
2884 	}
2885 
2886 	rc = ef4_nic_init_interrupt(efx);
2887 	if (rc)
2888 		goto fail5;
2889 	rc = ef4_enable_interrupts(efx);
2890 	if (rc)
2891 		goto fail6;
2892 
2893 	return 0;
2894 
2895  fail6:
2896 	ef4_nic_fini_interrupt(efx);
2897  fail5:
2898 	ef4_fini_port(efx);
2899  fail4:
2900 	efx->type->fini(efx);
2901  fail3:
2902 	ef4_fini_napi(efx);
2903 	ef4_remove_all(efx);
2904  fail1:
2905 	return rc;
2906 }
2907 
2908 /* NIC initialisation
2909  *
2910  * This is called at module load (or hotplug insertion,
2911  * theoretically).  It sets up PCI mappings, resets the NIC,
2912  * sets up and registers the network devices with the kernel and hooks
2913  * the interrupt service routine.  It does not prepare the device for
2914  * transmission; this is left to the first time one of the network
2915  * interfaces is brought up (i.e. ef4_net_open).
2916  */
2917 static int ef4_pci_probe(struct pci_dev *pci_dev,
2918 			 const struct pci_device_id *entry)
2919 {
2920 	struct net_device *net_dev;
2921 	struct ef4_nic *efx;
2922 	int rc;
2923 
2924 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2925 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2926 				     EF4_MAX_RX_QUEUES);
2927 	if (!net_dev)
2928 		return -ENOMEM;
2929 	efx = netdev_priv(net_dev);
2930 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2931 	efx->fixed_features |= NETIF_F_HIGHDMA;
2932 
2933 	pci_set_drvdata(pci_dev, efx);
2934 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2935 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2936 	if (rc)
2937 		goto fail1;
2938 
2939 	netif_info(efx, probe, efx->net_dev,
2940 		   "Solarflare NIC detected\n");
2941 
2942 	ef4_probe_vpd_strings(efx);
2943 
2944 	/* Set up basic I/O (BAR mappings etc) */
2945 	rc = ef4_init_io(efx);
2946 	if (rc)
2947 		goto fail2;
2948 
2949 	rc = ef4_pci_probe_main(efx);
2950 	if (rc)
2951 		goto fail3;
2952 
2953 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2954 			      NETIF_F_RXCSUM);
2955 	/* Mask for features that also apply to VLAN devices */
2956 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2957 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2958 
2959 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2960 
2961 	/* Disable VLAN filtering by default.  It may be enforced if
2962 	 * the feature is fixed (i.e. VLAN filters are required to
2963 	 * receive VLAN tagged packets due to vPort restrictions).
2964 	 */
2965 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2966 	net_dev->features |= efx->fixed_features;
2967 
2968 	rc = ef4_register_netdev(efx);
2969 	if (rc)
2970 		goto fail4;
2971 
2972 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2973 
2974 	/* Try to create MTDs, but allow this to fail */
2975 	rtnl_lock();
2976 	rc = ef4_mtd_probe(efx);
2977 	rtnl_unlock();
2978 	if (rc && rc != -EPERM)
2979 		netif_warn(efx, probe, efx->net_dev,
2980 			   "failed to create MTDs (%d)\n", rc);
2981 
2982 	rc = pci_enable_pcie_error_reporting(pci_dev);
2983 	if (rc && rc != -EINVAL)
2984 		netif_notice(efx, probe, efx->net_dev,
2985 			     "PCIE error reporting unavailable (%d).\n",
2986 			     rc);
2987 
2988 	return 0;
2989 
2990  fail4:
2991 	ef4_pci_remove_main(efx);
2992  fail3:
2993 	ef4_fini_io(efx);
2994  fail2:
2995 	ef4_fini_struct(efx);
2996  fail1:
2997 	WARN_ON(rc > 0);
2998 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2999 	free_netdev(net_dev);
3000 	return rc;
3001 }
3002 
3003 static int ef4_pm_freeze(struct device *dev)
3004 {
3005 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3006 
3007 	rtnl_lock();
3008 
3009 	if (efx->state != STATE_DISABLED) {
3010 		efx->state = STATE_UNINIT;
3011 
3012 		ef4_device_detach_sync(efx);
3013 
3014 		ef4_stop_all(efx);
3015 		ef4_disable_interrupts(efx);
3016 	}
3017 
3018 	rtnl_unlock();
3019 
3020 	return 0;
3021 }
3022 
3023 static int ef4_pm_thaw(struct device *dev)
3024 {
3025 	int rc;
3026 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3027 
3028 	rtnl_lock();
3029 
3030 	if (efx->state != STATE_DISABLED) {
3031 		rc = ef4_enable_interrupts(efx);
3032 		if (rc)
3033 			goto fail;
3034 
3035 		mutex_lock(&efx->mac_lock);
3036 		efx->phy_op->reconfigure(efx);
3037 		mutex_unlock(&efx->mac_lock);
3038 
3039 		ef4_start_all(efx);
3040 
3041 		netif_device_attach(efx->net_dev);
3042 
3043 		efx->state = STATE_READY;
3044 
3045 		efx->type->resume_wol(efx);
3046 	}
3047 
3048 	rtnl_unlock();
3049 
3050 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3051 	queue_work(reset_workqueue, &efx->reset_work);
3052 
3053 	return 0;
3054 
3055 fail:
3056 	rtnl_unlock();
3057 
3058 	return rc;
3059 }
3060 
3061 static int ef4_pm_poweroff(struct device *dev)
3062 {
3063 	struct pci_dev *pci_dev = to_pci_dev(dev);
3064 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3065 
3066 	efx->type->fini(efx);
3067 
3068 	efx->reset_pending = 0;
3069 
3070 	pci_save_state(pci_dev);
3071 	return pci_set_power_state(pci_dev, PCI_D3hot);
3072 }
3073 
3074 /* Used for both resume and restore */
3075 static int ef4_pm_resume(struct device *dev)
3076 {
3077 	struct pci_dev *pci_dev = to_pci_dev(dev);
3078 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3079 	int rc;
3080 
3081 	rc = pci_set_power_state(pci_dev, PCI_D0);
3082 	if (rc)
3083 		return rc;
3084 	pci_restore_state(pci_dev);
3085 	rc = pci_enable_device(pci_dev);
3086 	if (rc)
3087 		return rc;
3088 	pci_set_master(efx->pci_dev);
3089 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3090 	if (rc)
3091 		return rc;
3092 	rc = efx->type->init(efx);
3093 	if (rc)
3094 		return rc;
3095 	rc = ef4_pm_thaw(dev);
3096 	return rc;
3097 }
3098 
3099 static int ef4_pm_suspend(struct device *dev)
3100 {
3101 	int rc;
3102 
3103 	ef4_pm_freeze(dev);
3104 	rc = ef4_pm_poweroff(dev);
3105 	if (rc)
3106 		ef4_pm_resume(dev);
3107 	return rc;
3108 }
3109 
3110 static const struct dev_pm_ops ef4_pm_ops = {
3111 	.suspend	= ef4_pm_suspend,
3112 	.resume		= ef4_pm_resume,
3113 	.freeze		= ef4_pm_freeze,
3114 	.thaw		= ef4_pm_thaw,
3115 	.poweroff	= ef4_pm_poweroff,
3116 	.restore	= ef4_pm_resume,
3117 };
3118 
3119 /* A PCI error affecting this device was detected.
3120  * At this point MMIO and DMA may be disabled.
3121  * Stop the software path and request a slot reset.
3122  */
3123 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3124 					      enum pci_channel_state state)
3125 {
3126 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3127 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3128 
3129 	if (state == pci_channel_io_perm_failure)
3130 		return PCI_ERS_RESULT_DISCONNECT;
3131 
3132 	rtnl_lock();
3133 
3134 	if (efx->state != STATE_DISABLED) {
3135 		efx->state = STATE_RECOVERY;
3136 		efx->reset_pending = 0;
3137 
3138 		ef4_device_detach_sync(efx);
3139 
3140 		ef4_stop_all(efx);
3141 		ef4_disable_interrupts(efx);
3142 
3143 		status = PCI_ERS_RESULT_NEED_RESET;
3144 	} else {
3145 		/* If the interface is disabled we don't want to do anything
3146 		 * with it.
3147 		 */
3148 		status = PCI_ERS_RESULT_RECOVERED;
3149 	}
3150 
3151 	rtnl_unlock();
3152 
3153 	pci_disable_device(pdev);
3154 
3155 	return status;
3156 }
3157 
3158 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3159 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3160 {
3161 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3162 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3163 
3164 	if (pci_enable_device(pdev)) {
3165 		netif_err(efx, hw, efx->net_dev,
3166 			  "Cannot re-enable PCI device after reset.\n");
3167 		status =  PCI_ERS_RESULT_DISCONNECT;
3168 	}
3169 
3170 	return status;
3171 }
3172 
3173 /* Perform the actual reset and resume I/O operations. */
3174 static void ef4_io_resume(struct pci_dev *pdev)
3175 {
3176 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3177 	int rc;
3178 
3179 	rtnl_lock();
3180 
3181 	if (efx->state == STATE_DISABLED)
3182 		goto out;
3183 
3184 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3185 	if (rc) {
3186 		netif_err(efx, hw, efx->net_dev,
3187 			  "ef4_reset failed after PCI error (%d)\n", rc);
3188 	} else {
3189 		efx->state = STATE_READY;
3190 		netif_dbg(efx, hw, efx->net_dev,
3191 			  "Done resetting and resuming IO after PCI error.\n");
3192 	}
3193 
3194 out:
3195 	rtnl_unlock();
3196 }
3197 
3198 /* For simplicity and reliability, we always require a slot reset and try to
3199  * reset the hardware when a pci error affecting the device is detected.
3200  * We leave both the link_reset and mmio_enabled callback unimplemented:
3201  * with our request for slot reset the mmio_enabled callback will never be
3202  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3203  */
3204 static const struct pci_error_handlers ef4_err_handlers = {
3205 	.error_detected = ef4_io_error_detected,
3206 	.slot_reset	= ef4_io_slot_reset,
3207 	.resume		= ef4_io_resume,
3208 };
3209 
3210 static struct pci_driver ef4_pci_driver = {
3211 	.name		= KBUILD_MODNAME,
3212 	.id_table	= ef4_pci_table,
3213 	.probe		= ef4_pci_probe,
3214 	.remove		= ef4_pci_remove,
3215 	.driver.pm	= &ef4_pm_ops,
3216 	.err_handler	= &ef4_err_handlers,
3217 };
3218 
3219 /**************************************************************************
3220  *
3221  * Kernel module interface
3222  *
3223  *************************************************************************/
3224 
3225 module_param(interrupt_mode, uint, 0444);
3226 MODULE_PARM_DESC(interrupt_mode,
3227 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3228 
3229 static int __init ef4_init_module(void)
3230 {
3231 	int rc;
3232 
3233 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3234 
3235 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3236 	if (rc)
3237 		goto err_notifier;
3238 
3239 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3240 	if (!reset_workqueue) {
3241 		rc = -ENOMEM;
3242 		goto err_reset;
3243 	}
3244 
3245 	rc = pci_register_driver(&ef4_pci_driver);
3246 	if (rc < 0)
3247 		goto err_pci;
3248 
3249 	return 0;
3250 
3251  err_pci:
3252 	destroy_workqueue(reset_workqueue);
3253  err_reset:
3254 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3255  err_notifier:
3256 	return rc;
3257 }
3258 
3259 static void __exit ef4_exit_module(void)
3260 {
3261 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3262 
3263 	pci_unregister_driver(&ef4_pci_driver);
3264 	destroy_workqueue(reset_workqueue);
3265 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3266 
3267 }
3268 
3269 module_init(ef4_init_module);
3270 module_exit(ef4_exit_module);
3271 
3272 MODULE_AUTHOR("Solarflare Communications and "
3273 	      "Michael Brown <mbrown@fensystems.co.uk>");
3274 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3275 MODULE_LICENSE("GPL");
3276 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3277 MODULE_VERSION(EF4_DRIVER_VERSION);
3278