1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/filter.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <net/gre.h> 16 #include "efx_common.h" 17 #include "efx_channels.h" 18 #include "efx.h" 19 #include "mcdi.h" 20 #include "selftest.h" 21 #include "rx_common.h" 22 #include "tx_common.h" 23 #include "nic.h" 24 #include "mcdi_port_common.h" 25 #include "io.h" 26 #include "mcdi_pcol.h" 27 #include "ef100_rep.h" 28 29 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 30 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 31 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 32 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 33 module_param(debug, uint, 0); 34 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 35 36 /* This is the time (in jiffies) between invocations of the hardware 37 * monitor. 38 * On Falcon-based NICs, this will: 39 * - Check the on-board hardware monitor; 40 * - Poll the link state and reconfigure the hardware as necessary. 41 * On Siena-based NICs for power systems with EEH support, this will give EEH a 42 * chance to start. 43 */ 44 static unsigned int efx_monitor_interval = 1 * HZ; 45 46 /* How often and how many times to poll for a reset while waiting for a 47 * BIST that another function started to complete. 48 */ 49 #define BIST_WAIT_DELAY_MS 100 50 #define BIST_WAIT_DELAY_COUNT 100 51 52 /* Default stats update time */ 53 #define STATS_PERIOD_MS_DEFAULT 1000 54 55 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 56 static const char *const efx_reset_type_names[] = { 57 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 58 [RESET_TYPE_ALL] = "ALL", 59 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 60 [RESET_TYPE_WORLD] = "WORLD", 61 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 62 [RESET_TYPE_DATAPATH] = "DATAPATH", 63 [RESET_TYPE_MC_BIST] = "MC_BIST", 64 [RESET_TYPE_DISABLE] = "DISABLE", 65 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 66 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 67 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 68 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 69 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 70 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 71 }; 72 73 #define RESET_TYPE(type) \ 74 STRING_TABLE_LOOKUP(type, efx_reset_type) 75 76 /* Loopback mode names (see LOOPBACK_MODE()) */ 77 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 78 const char *const efx_loopback_mode_names[] = { 79 [LOOPBACK_NONE] = "NONE", 80 [LOOPBACK_DATA] = "DATAPATH", 81 [LOOPBACK_GMAC] = "GMAC", 82 [LOOPBACK_XGMII] = "XGMII", 83 [LOOPBACK_XGXS] = "XGXS", 84 [LOOPBACK_XAUI] = "XAUI", 85 [LOOPBACK_GMII] = "GMII", 86 [LOOPBACK_SGMII] = "SGMII", 87 [LOOPBACK_XGBR] = "XGBR", 88 [LOOPBACK_XFI] = "XFI", 89 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 90 [LOOPBACK_GMII_FAR] = "GMII_FAR", 91 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 92 [LOOPBACK_XFI_FAR] = "XFI_FAR", 93 [LOOPBACK_GPHY] = "GPHY", 94 [LOOPBACK_PHYXS] = "PHYXS", 95 [LOOPBACK_PCS] = "PCS", 96 [LOOPBACK_PMAPMD] = "PMA/PMD", 97 [LOOPBACK_XPORT] = "XPORT", 98 [LOOPBACK_XGMII_WS] = "XGMII_WS", 99 [LOOPBACK_XAUI_WS] = "XAUI_WS", 100 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 101 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 102 [LOOPBACK_GMII_WS] = "GMII_WS", 103 [LOOPBACK_XFI_WS] = "XFI_WS", 104 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 105 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 106 }; 107 108 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 109 * queued onto this work queue. This is not a per-nic work queue, because 110 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 111 */ 112 static struct workqueue_struct *reset_workqueue; 113 114 int efx_create_reset_workqueue(void) 115 { 116 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 117 if (!reset_workqueue) { 118 printk(KERN_ERR "Failed to create reset workqueue\n"); 119 return -ENOMEM; 120 } 121 122 return 0; 123 } 124 125 void efx_queue_reset_work(struct efx_nic *efx) 126 { 127 queue_work(reset_workqueue, &efx->reset_work); 128 } 129 130 void efx_flush_reset_workqueue(struct efx_nic *efx) 131 { 132 cancel_work_sync(&efx->reset_work); 133 } 134 135 void efx_destroy_reset_workqueue(void) 136 { 137 if (reset_workqueue) { 138 destroy_workqueue(reset_workqueue); 139 reset_workqueue = NULL; 140 } 141 } 142 143 /* We assume that efx->type->reconfigure_mac will always try to sync RX 144 * filters and therefore needs to read-lock the filter table against freeing 145 */ 146 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only) 147 { 148 if (efx->type->reconfigure_mac) { 149 down_read(&efx->filter_sem); 150 efx->type->reconfigure_mac(efx, mtu_only); 151 up_read(&efx->filter_sem); 152 } 153 } 154 155 /* Asynchronous work item for changing MAC promiscuity and multicast 156 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 157 * MAC directly. 158 */ 159 static void efx_mac_work(struct work_struct *data) 160 { 161 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 162 163 mutex_lock(&efx->mac_lock); 164 if (efx->port_enabled) 165 efx_mac_reconfigure(efx, false); 166 mutex_unlock(&efx->mac_lock); 167 } 168 169 int efx_set_mac_address(struct net_device *net_dev, void *data) 170 { 171 struct efx_nic *efx = efx_netdev_priv(net_dev); 172 struct sockaddr *addr = data; 173 u8 *new_addr = addr->sa_data; 174 u8 old_addr[6]; 175 int rc; 176 177 if (!is_valid_ether_addr(new_addr)) { 178 netif_err(efx, drv, efx->net_dev, 179 "invalid ethernet MAC address requested: %pM\n", 180 new_addr); 181 return -EADDRNOTAVAIL; 182 } 183 184 /* save old address */ 185 ether_addr_copy(old_addr, net_dev->dev_addr); 186 eth_hw_addr_set(net_dev, new_addr); 187 if (efx->type->set_mac_address) { 188 rc = efx->type->set_mac_address(efx); 189 if (rc) { 190 eth_hw_addr_set(net_dev, old_addr); 191 return rc; 192 } 193 } 194 195 /* Reconfigure the MAC */ 196 mutex_lock(&efx->mac_lock); 197 efx_mac_reconfigure(efx, false); 198 mutex_unlock(&efx->mac_lock); 199 200 return 0; 201 } 202 203 /* Context: netif_addr_lock held, BHs disabled. */ 204 void efx_set_rx_mode(struct net_device *net_dev) 205 { 206 struct efx_nic *efx = efx_netdev_priv(net_dev); 207 208 if (efx->port_enabled) 209 queue_work(efx->workqueue, &efx->mac_work); 210 /* Otherwise efx_start_port() will do this */ 211 } 212 213 int efx_set_features(struct net_device *net_dev, netdev_features_t data) 214 { 215 struct efx_nic *efx = efx_netdev_priv(net_dev); 216 int rc; 217 218 /* If disabling RX n-tuple filtering, clear existing filters */ 219 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 220 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 221 if (rc) 222 return rc; 223 } 224 225 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 226 * If rx-fcs is changed, mac_reconfigure updates that too. 227 */ 228 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 229 NETIF_F_RXFCS)) { 230 /* efx_set_rx_mode() will schedule MAC work to update filters 231 * when a new features are finally set in net_dev. 232 */ 233 efx_set_rx_mode(net_dev); 234 } 235 236 return 0; 237 } 238 239 /* This ensures that the kernel is kept informed (via 240 * netif_carrier_on/off) of the link status, and also maintains the 241 * link status's stop on the port's TX queue. 242 */ 243 void efx_link_status_changed(struct efx_nic *efx) 244 { 245 struct efx_link_state *link_state = &efx->link_state; 246 247 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 248 * that no events are triggered between unregister_netdev() and the 249 * driver unloading. A more general condition is that NETDEV_CHANGE 250 * can only be generated between NETDEV_UP and NETDEV_DOWN 251 */ 252 if (!netif_running(efx->net_dev)) 253 return; 254 255 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 256 efx->n_link_state_changes++; 257 258 if (link_state->up) 259 netif_carrier_on(efx->net_dev); 260 else 261 netif_carrier_off(efx->net_dev); 262 } 263 264 /* Status message for kernel log */ 265 if (link_state->up) 266 netif_info(efx, link, efx->net_dev, 267 "link up at %uMbps %s-duplex (MTU %d)\n", 268 link_state->speed, link_state->fd ? "full" : "half", 269 efx->net_dev->mtu); 270 else 271 netif_info(efx, link, efx->net_dev, "link down\n"); 272 } 273 274 unsigned int efx_xdp_max_mtu(struct efx_nic *efx) 275 { 276 /* The maximum MTU that we can fit in a single page, allowing for 277 * framing, overhead and XDP headroom + tailroom. 278 */ 279 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) + 280 efx->rx_prefix_size + efx->type->rx_buffer_padding + 281 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM; 282 283 return PAGE_SIZE - overhead; 284 } 285 286 /* Context: process, rtnl_lock() held. */ 287 int efx_change_mtu(struct net_device *net_dev, int new_mtu) 288 { 289 struct efx_nic *efx = efx_netdev_priv(net_dev); 290 int rc; 291 292 rc = efx_check_disabled(efx); 293 if (rc) 294 return rc; 295 296 if (rtnl_dereference(efx->xdp_prog) && 297 new_mtu > efx_xdp_max_mtu(efx)) { 298 netif_err(efx, drv, efx->net_dev, 299 "Requested MTU of %d too big for XDP (max: %d)\n", 300 new_mtu, efx_xdp_max_mtu(efx)); 301 return -EINVAL; 302 } 303 304 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 305 306 efx_device_detach_sync(efx); 307 efx_stop_all(efx); 308 309 mutex_lock(&efx->mac_lock); 310 net_dev->mtu = new_mtu; 311 efx_mac_reconfigure(efx, true); 312 mutex_unlock(&efx->mac_lock); 313 314 efx_start_all(efx); 315 efx_device_attach_if_not_resetting(efx); 316 return 0; 317 } 318 319 /************************************************************************** 320 * 321 * Hardware monitor 322 * 323 **************************************************************************/ 324 325 /* Run periodically off the general workqueue */ 326 static void efx_monitor(struct work_struct *data) 327 { 328 struct efx_nic *efx = container_of(data, struct efx_nic, 329 monitor_work.work); 330 331 netif_vdbg(efx, timer, efx->net_dev, 332 "hardware monitor executing on CPU %d\n", 333 raw_smp_processor_id()); 334 BUG_ON(efx->type->monitor == NULL); 335 336 /* If the mac_lock is already held then it is likely a port 337 * reconfiguration is already in place, which will likely do 338 * most of the work of monitor() anyway. 339 */ 340 if (mutex_trylock(&efx->mac_lock)) { 341 if (efx->port_enabled && efx->type->monitor) 342 efx->type->monitor(efx); 343 mutex_unlock(&efx->mac_lock); 344 } 345 346 efx_start_monitor(efx); 347 } 348 349 void efx_start_monitor(struct efx_nic *efx) 350 { 351 if (efx->type->monitor) 352 queue_delayed_work(efx->workqueue, &efx->monitor_work, 353 efx_monitor_interval); 354 } 355 356 /************************************************************************** 357 * 358 * Event queue processing 359 * 360 *************************************************************************/ 361 362 /* Channels are shutdown and reinitialised whilst the NIC is running 363 * to propagate configuration changes (mtu, checksum offload), or 364 * to clear hardware error conditions 365 */ 366 static void efx_start_datapath(struct efx_nic *efx) 367 { 368 netdev_features_t old_features = efx->net_dev->features; 369 bool old_rx_scatter = efx->rx_scatter; 370 size_t rx_buf_len; 371 372 /* Calculate the rx buffer allocation parameters required to 373 * support the current MTU, including padding for header 374 * alignment and overruns. 375 */ 376 efx->rx_dma_len = (efx->rx_prefix_size + 377 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 378 efx->type->rx_buffer_padding); 379 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM + 380 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM); 381 382 if (rx_buf_len <= PAGE_SIZE) { 383 efx->rx_scatter = efx->type->always_rx_scatter; 384 efx->rx_buffer_order = 0; 385 } else if (efx->type->can_rx_scatter) { 386 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 387 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 388 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 389 EFX_RX_BUF_ALIGNMENT) > 390 PAGE_SIZE); 391 efx->rx_scatter = true; 392 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 393 efx->rx_buffer_order = 0; 394 } else { 395 efx->rx_scatter = false; 396 efx->rx_buffer_order = get_order(rx_buf_len); 397 } 398 399 efx_rx_config_page_split(efx); 400 if (efx->rx_buffer_order) 401 netif_dbg(efx, drv, efx->net_dev, 402 "RX buf len=%u; page order=%u batch=%u\n", 403 efx->rx_dma_len, efx->rx_buffer_order, 404 efx->rx_pages_per_batch); 405 else 406 netif_dbg(efx, drv, efx->net_dev, 407 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 408 efx->rx_dma_len, efx->rx_page_buf_step, 409 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 410 411 /* Restore previously fixed features in hw_features and remove 412 * features which are fixed now 413 */ 414 efx->net_dev->hw_features |= efx->net_dev->features; 415 efx->net_dev->hw_features &= ~efx->fixed_features; 416 efx->net_dev->features |= efx->fixed_features; 417 if (efx->net_dev->features != old_features) 418 netdev_features_change(efx->net_dev); 419 420 /* RX filters may also have scatter-enabled flags */ 421 if ((efx->rx_scatter != old_rx_scatter) && 422 efx->type->filter_update_rx_scatter) 423 efx->type->filter_update_rx_scatter(efx); 424 425 /* We must keep at least one descriptor in a TX ring empty. 426 * We could avoid this when the queue size does not exactly 427 * match the hardware ring size, but it's not that important. 428 * Therefore we stop the queue when one more skb might fill 429 * the ring completely. We wake it when half way back to 430 * empty. 431 */ 432 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 433 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 434 435 /* Initialise the channels */ 436 efx_start_channels(efx); 437 438 efx_ptp_start_datapath(efx); 439 440 if (netif_device_present(efx->net_dev)) 441 netif_tx_wake_all_queues(efx->net_dev); 442 } 443 444 static void efx_stop_datapath(struct efx_nic *efx) 445 { 446 EFX_ASSERT_RESET_SERIALISED(efx); 447 BUG_ON(efx->port_enabled); 448 449 efx_ptp_stop_datapath(efx); 450 451 efx_stop_channels(efx); 452 } 453 454 /************************************************************************** 455 * 456 * Port handling 457 * 458 **************************************************************************/ 459 460 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 461 * force the Autoneg bit on. 462 */ 463 void efx_link_clear_advertising(struct efx_nic *efx) 464 { 465 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 466 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 467 } 468 469 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 470 { 471 efx->wanted_fc = wanted_fc; 472 if (efx->link_advertising[0]) { 473 if (wanted_fc & EFX_FC_RX) 474 efx->link_advertising[0] |= (ADVERTISED_Pause | 475 ADVERTISED_Asym_Pause); 476 else 477 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 478 ADVERTISED_Asym_Pause); 479 if (wanted_fc & EFX_FC_TX) 480 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 481 } 482 } 483 484 static void efx_start_port(struct efx_nic *efx) 485 { 486 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 487 BUG_ON(efx->port_enabled); 488 489 mutex_lock(&efx->mac_lock); 490 efx->port_enabled = true; 491 492 /* Ensure MAC ingress/egress is enabled */ 493 efx_mac_reconfigure(efx, false); 494 495 mutex_unlock(&efx->mac_lock); 496 } 497 498 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 499 * and the async self-test, wait for them to finish and prevent them 500 * being scheduled again. This doesn't cover online resets, which 501 * should only be cancelled when removing the device. 502 */ 503 static void efx_stop_port(struct efx_nic *efx) 504 { 505 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 506 507 EFX_ASSERT_RESET_SERIALISED(efx); 508 509 mutex_lock(&efx->mac_lock); 510 efx->port_enabled = false; 511 mutex_unlock(&efx->mac_lock); 512 513 /* Serialise against efx_set_multicast_list() */ 514 netif_addr_lock_bh(efx->net_dev); 515 netif_addr_unlock_bh(efx->net_dev); 516 517 cancel_delayed_work_sync(&efx->monitor_work); 518 efx_selftest_async_cancel(efx); 519 cancel_work_sync(&efx->mac_work); 520 } 521 522 /* If the interface is supposed to be running but is not, start 523 * the hardware and software data path, regular activity for the port 524 * (MAC statistics, link polling, etc.) and schedule the port to be 525 * reconfigured. Interrupts must already be enabled. This function 526 * is safe to call multiple times, so long as the NIC is not disabled. 527 * Requires the RTNL lock. 528 */ 529 void efx_start_all(struct efx_nic *efx) 530 { 531 EFX_ASSERT_RESET_SERIALISED(efx); 532 BUG_ON(efx->state == STATE_DISABLED); 533 534 /* Check that it is appropriate to restart the interface. All 535 * of these flags are safe to read under just the rtnl lock 536 */ 537 if (efx->port_enabled || !netif_running(efx->net_dev) || 538 efx->reset_pending) 539 return; 540 541 efx_start_port(efx); 542 efx_start_datapath(efx); 543 544 /* Start the hardware monitor if there is one */ 545 efx_start_monitor(efx); 546 547 /* Link state detection is normally event-driven; we have 548 * to poll now because we could have missed a change 549 */ 550 mutex_lock(&efx->mac_lock); 551 if (efx_mcdi_phy_poll(efx)) 552 efx_link_status_changed(efx); 553 mutex_unlock(&efx->mac_lock); 554 555 if (efx->type->start_stats) { 556 efx->type->start_stats(efx); 557 efx->type->pull_stats(efx); 558 spin_lock_bh(&efx->stats_lock); 559 efx->type->update_stats(efx, NULL, NULL); 560 spin_unlock_bh(&efx->stats_lock); 561 } 562 } 563 564 /* Quiesce the hardware and software data path, and regular activity 565 * for the port without bringing the link down. Safe to call multiple 566 * times with the NIC in almost any state, but interrupts should be 567 * enabled. Requires the RTNL lock. 568 */ 569 void efx_stop_all(struct efx_nic *efx) 570 { 571 EFX_ASSERT_RESET_SERIALISED(efx); 572 573 /* port_enabled can be read safely under the rtnl lock */ 574 if (!efx->port_enabled) 575 return; 576 577 if (efx->type->update_stats) { 578 /* update stats before we go down so we can accurately count 579 * rx_nodesc_drops 580 */ 581 efx->type->pull_stats(efx); 582 spin_lock_bh(&efx->stats_lock); 583 efx->type->update_stats(efx, NULL, NULL); 584 spin_unlock_bh(&efx->stats_lock); 585 efx->type->stop_stats(efx); 586 } 587 588 efx_stop_port(efx); 589 590 /* Stop the kernel transmit interface. This is only valid if 591 * the device is stopped or detached; otherwise the watchdog 592 * may fire immediately. 593 */ 594 WARN_ON(netif_running(efx->net_dev) && 595 netif_device_present(efx->net_dev)); 596 netif_tx_disable(efx->net_dev); 597 598 efx_stop_datapath(efx); 599 } 600 601 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 602 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) 603 { 604 struct efx_nic *efx = efx_netdev_priv(net_dev); 605 606 spin_lock_bh(&efx->stats_lock); 607 efx_nic_update_stats_atomic(efx, NULL, stats); 608 spin_unlock_bh(&efx->stats_lock); 609 } 610 611 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 612 * the MAC appropriately. All other PHY configuration changes are pushed 613 * through phy_op->set_settings(), and pushed asynchronously to the MAC 614 * through efx_monitor(). 615 * 616 * Callers must hold the mac_lock 617 */ 618 int __efx_reconfigure_port(struct efx_nic *efx) 619 { 620 enum efx_phy_mode phy_mode; 621 int rc = 0; 622 623 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 624 625 /* Disable PHY transmit in mac level loopbacks */ 626 phy_mode = efx->phy_mode; 627 if (LOOPBACK_INTERNAL(efx)) 628 efx->phy_mode |= PHY_MODE_TX_DISABLED; 629 else 630 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 631 632 if (efx->type->reconfigure_port) 633 rc = efx->type->reconfigure_port(efx); 634 635 if (rc) 636 efx->phy_mode = phy_mode; 637 638 return rc; 639 } 640 641 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 642 * disabled. 643 */ 644 int efx_reconfigure_port(struct efx_nic *efx) 645 { 646 int rc; 647 648 EFX_ASSERT_RESET_SERIALISED(efx); 649 650 mutex_lock(&efx->mac_lock); 651 rc = __efx_reconfigure_port(efx); 652 mutex_unlock(&efx->mac_lock); 653 654 return rc; 655 } 656 657 /************************************************************************** 658 * 659 * Device reset and suspend 660 * 661 **************************************************************************/ 662 663 static void efx_wait_for_bist_end(struct efx_nic *efx) 664 { 665 int i; 666 667 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 668 if (efx_mcdi_poll_reboot(efx)) 669 goto out; 670 msleep(BIST_WAIT_DELAY_MS); 671 } 672 673 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 674 out: 675 /* Either way unset the BIST flag. If we found no reboot we probably 676 * won't recover, but we should try. 677 */ 678 efx->mc_bist_for_other_fn = false; 679 } 680 681 /* Try recovery mechanisms. 682 * For now only EEH is supported. 683 * Returns 0 if the recovery mechanisms are unsuccessful. 684 * Returns a non-zero value otherwise. 685 */ 686 int efx_try_recovery(struct efx_nic *efx) 687 { 688 #ifdef CONFIG_EEH 689 /* A PCI error can occur and not be seen by EEH because nothing 690 * happens on the PCI bus. In this case the driver may fail and 691 * schedule a 'recover or reset', leading to this recovery handler. 692 * Manually call the eeh failure check function. 693 */ 694 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 695 if (eeh_dev_check_failure(eehdev)) { 696 /* The EEH mechanisms will handle the error and reset the 697 * device if necessary. 698 */ 699 return 1; 700 } 701 #endif 702 return 0; 703 } 704 705 /* Tears down the entire software state and most of the hardware state 706 * before reset. 707 */ 708 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 709 { 710 EFX_ASSERT_RESET_SERIALISED(efx); 711 712 if (method == RESET_TYPE_MCDI_TIMEOUT) 713 efx->type->prepare_flr(efx); 714 715 efx_stop_all(efx); 716 efx_disable_interrupts(efx); 717 718 mutex_lock(&efx->mac_lock); 719 down_write(&efx->filter_sem); 720 mutex_lock(&efx->rss_lock); 721 efx->type->fini(efx); 722 } 723 724 /* Context: netif_tx_lock held, BHs disabled. */ 725 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue) 726 { 727 struct efx_nic *efx = efx_netdev_priv(net_dev); 728 729 netif_err(efx, tx_err, efx->net_dev, 730 "TX stuck with port_enabled=%d: resetting channels\n", 731 efx->port_enabled); 732 733 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 734 } 735 736 /* This function will always ensure that the locks acquired in 737 * efx_reset_down() are released. A failure return code indicates 738 * that we were unable to reinitialise the hardware, and the 739 * driver should be disabled. If ok is false, then the rx and tx 740 * engines are not restarted, pending a RESET_DISABLE. 741 */ 742 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 743 { 744 int rc; 745 746 EFX_ASSERT_RESET_SERIALISED(efx); 747 748 if (method == RESET_TYPE_MCDI_TIMEOUT) 749 efx->type->finish_flr(efx); 750 751 /* Ensure that SRAM is initialised even if we're disabling the device */ 752 rc = efx->type->init(efx); 753 if (rc) { 754 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 755 goto fail; 756 } 757 758 if (!ok) 759 goto fail; 760 761 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 762 method != RESET_TYPE_DATAPATH) { 763 rc = efx_mcdi_port_reconfigure(efx); 764 if (rc && rc != -EPERM) 765 netif_err(efx, drv, efx->net_dev, 766 "could not restore PHY settings\n"); 767 } 768 769 rc = efx_enable_interrupts(efx); 770 if (rc) 771 goto fail; 772 773 #ifdef CONFIG_SFC_SRIOV 774 rc = efx->type->vswitching_restore(efx); 775 if (rc) /* not fatal; the PF will still work fine */ 776 netif_warn(efx, probe, efx->net_dev, 777 "failed to restore vswitching rc=%d;" 778 " VFs may not function\n", rc); 779 #endif 780 781 if (efx->type->rx_restore_rss_contexts) 782 efx->type->rx_restore_rss_contexts(efx); 783 mutex_unlock(&efx->rss_lock); 784 efx->type->filter_table_restore(efx); 785 up_write(&efx->filter_sem); 786 if (efx->type->sriov_reset) 787 efx->type->sriov_reset(efx); 788 789 mutex_unlock(&efx->mac_lock); 790 791 efx_start_all(efx); 792 793 if (efx->type->udp_tnl_push_ports) 794 efx->type->udp_tnl_push_ports(efx); 795 796 return 0; 797 798 fail: 799 efx->port_initialized = false; 800 801 mutex_unlock(&efx->rss_lock); 802 up_write(&efx->filter_sem); 803 mutex_unlock(&efx->mac_lock); 804 805 return rc; 806 } 807 808 /* Reset the NIC using the specified method. Note that the reset may 809 * fail, in which case the card will be left in an unusable state. 810 * 811 * Caller must hold the rtnl_lock. 812 */ 813 int efx_reset(struct efx_nic *efx, enum reset_type method) 814 { 815 int rc, rc2 = 0; 816 bool disabled; 817 818 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 819 RESET_TYPE(method)); 820 821 efx_device_detach_sync(efx); 822 /* efx_reset_down() grabs locks that prevent recovery on EF100. 823 * EF100 reset is handled in the efx_nic_type callback below. 824 */ 825 if (efx_nic_rev(efx) != EFX_REV_EF100) 826 efx_reset_down(efx, method); 827 828 rc = efx->type->reset(efx, method); 829 if (rc) { 830 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 831 goto out; 832 } 833 834 /* Clear flags for the scopes we covered. We assume the NIC and 835 * driver are now quiescent so that there is no race here. 836 */ 837 if (method < RESET_TYPE_MAX_METHOD) 838 efx->reset_pending &= -(1 << (method + 1)); 839 else /* it doesn't fit into the well-ordered scope hierarchy */ 840 __clear_bit(method, &efx->reset_pending); 841 842 /* Reinitialise bus-mastering, which may have been turned off before 843 * the reset was scheduled. This is still appropriate, even in the 844 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 845 * can respond to requests. 846 */ 847 pci_set_master(efx->pci_dev); 848 849 out: 850 /* Leave device stopped if necessary */ 851 disabled = rc || 852 method == RESET_TYPE_DISABLE || 853 method == RESET_TYPE_RECOVER_OR_DISABLE; 854 if (efx_nic_rev(efx) != EFX_REV_EF100) 855 rc2 = efx_reset_up(efx, method, !disabled); 856 if (rc2) { 857 disabled = true; 858 if (!rc) 859 rc = rc2; 860 } 861 862 if (disabled) { 863 dev_close(efx->net_dev); 864 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 865 efx->state = STATE_DISABLED; 866 } else { 867 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 868 efx_device_attach_if_not_resetting(efx); 869 } 870 return rc; 871 } 872 873 /* The worker thread exists so that code that cannot sleep can 874 * schedule a reset for later. 875 */ 876 static void efx_reset_work(struct work_struct *data) 877 { 878 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 879 unsigned long pending; 880 enum reset_type method; 881 882 pending = READ_ONCE(efx->reset_pending); 883 method = fls(pending) - 1; 884 885 if (method == RESET_TYPE_MC_BIST) 886 efx_wait_for_bist_end(efx); 887 888 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 889 method == RESET_TYPE_RECOVER_OR_ALL) && 890 efx_try_recovery(efx)) 891 return; 892 893 if (!pending) 894 return; 895 896 rtnl_lock(); 897 898 /* We checked the state in efx_schedule_reset() but it may 899 * have changed by now. Now that we have the RTNL lock, 900 * it cannot change again. 901 */ 902 if (efx_net_active(efx->state)) 903 (void)efx_reset(efx, method); 904 905 rtnl_unlock(); 906 } 907 908 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 909 { 910 enum reset_type method; 911 912 if (efx_recovering(efx->state)) { 913 netif_dbg(efx, drv, efx->net_dev, 914 "recovering: skip scheduling %s reset\n", 915 RESET_TYPE(type)); 916 return; 917 } 918 919 switch (type) { 920 case RESET_TYPE_INVISIBLE: 921 case RESET_TYPE_ALL: 922 case RESET_TYPE_RECOVER_OR_ALL: 923 case RESET_TYPE_WORLD: 924 case RESET_TYPE_DISABLE: 925 case RESET_TYPE_RECOVER_OR_DISABLE: 926 case RESET_TYPE_DATAPATH: 927 case RESET_TYPE_MC_BIST: 928 case RESET_TYPE_MCDI_TIMEOUT: 929 method = type; 930 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 931 RESET_TYPE(method)); 932 break; 933 default: 934 method = efx->type->map_reset_reason(type); 935 netif_dbg(efx, drv, efx->net_dev, 936 "scheduling %s reset for %s\n", 937 RESET_TYPE(method), RESET_TYPE(type)); 938 break; 939 } 940 941 set_bit(method, &efx->reset_pending); 942 smp_mb(); /* ensure we change reset_pending before checking state */ 943 944 /* If we're not READY then just leave the flags set as the cue 945 * to abort probing or reschedule the reset later. 946 */ 947 if (!efx_net_active(READ_ONCE(efx->state))) 948 return; 949 950 /* efx_process_channel() will no longer read events once a 951 * reset is scheduled. So switch back to poll'd MCDI completions. 952 */ 953 efx_mcdi_mode_poll(efx); 954 955 efx_queue_reset_work(efx); 956 } 957 958 /************************************************************************** 959 * 960 * Dummy NIC operations 961 * 962 * Can be used for some unimplemented operations 963 * Needed so all function pointers are valid and do not have to be tested 964 * before use 965 * 966 **************************************************************************/ 967 int efx_port_dummy_op_int(struct efx_nic *efx) 968 { 969 return 0; 970 } 971 void efx_port_dummy_op_void(struct efx_nic *efx) {} 972 973 /************************************************************************** 974 * 975 * Data housekeeping 976 * 977 **************************************************************************/ 978 979 /* This zeroes out and then fills in the invariants in a struct 980 * efx_nic (including all sub-structures). 981 */ 982 int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev) 983 { 984 int rc = -ENOMEM; 985 986 /* Initialise common structures */ 987 INIT_LIST_HEAD(&efx->node); 988 INIT_LIST_HEAD(&efx->secondary_list); 989 spin_lock_init(&efx->biu_lock); 990 #ifdef CONFIG_SFC_MTD 991 INIT_LIST_HEAD(&efx->mtd_list); 992 #endif 993 INIT_WORK(&efx->reset_work, efx_reset_work); 994 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 995 efx_selftest_async_init(efx); 996 efx->pci_dev = pci_dev; 997 efx->msg_enable = debug; 998 efx->state = STATE_UNINIT; 999 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 1000 1001 efx->rx_prefix_size = efx->type->rx_prefix_size; 1002 efx->rx_ip_align = 1003 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 1004 efx->rx_packet_hash_offset = 1005 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 1006 efx->rx_packet_ts_offset = 1007 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 1008 INIT_LIST_HEAD(&efx->rss_context.list); 1009 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 1010 mutex_init(&efx->rss_lock); 1011 efx->vport_id = EVB_PORT_ID_ASSIGNED; 1012 spin_lock_init(&efx->stats_lock); 1013 efx->vi_stride = EFX_DEFAULT_VI_STRIDE; 1014 efx->num_mac_stats = MC_CMD_MAC_NSTATS; 1015 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); 1016 mutex_init(&efx->mac_lock); 1017 init_rwsem(&efx->filter_sem); 1018 #ifdef CONFIG_RFS_ACCEL 1019 mutex_init(&efx->rps_mutex); 1020 spin_lock_init(&efx->rps_hash_lock); 1021 /* Failure to allocate is not fatal, but may degrade ARFS performance */ 1022 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, 1023 sizeof(*efx->rps_hash_table), GFP_KERNEL); 1024 #endif 1025 spin_lock_init(&efx->vf_reps_lock); 1026 INIT_LIST_HEAD(&efx->vf_reps); 1027 INIT_WORK(&efx->mac_work, efx_mac_work); 1028 init_waitqueue_head(&efx->flush_wq); 1029 1030 efx->tx_queues_per_channel = 1; 1031 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE; 1032 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1033 1034 efx->mem_bar = UINT_MAX; 1035 1036 rc = efx_init_channels(efx); 1037 if (rc) 1038 goto fail; 1039 1040 /* Would be good to use the net_dev name, but we're too early */ 1041 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 1042 pci_name(pci_dev)); 1043 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 1044 if (!efx->workqueue) { 1045 rc = -ENOMEM; 1046 goto fail; 1047 } 1048 1049 return 0; 1050 1051 fail: 1052 efx_fini_struct(efx); 1053 return rc; 1054 } 1055 1056 void efx_fini_struct(struct efx_nic *efx) 1057 { 1058 #ifdef CONFIG_RFS_ACCEL 1059 kfree(efx->rps_hash_table); 1060 #endif 1061 1062 efx_fini_channels(efx); 1063 1064 kfree(efx->vpd_sn); 1065 1066 if (efx->workqueue) { 1067 destroy_workqueue(efx->workqueue); 1068 efx->workqueue = NULL; 1069 } 1070 } 1071 1072 /* This configures the PCI device to enable I/O and DMA. */ 1073 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask, 1074 unsigned int mem_map_size) 1075 { 1076 struct pci_dev *pci_dev = efx->pci_dev; 1077 int rc; 1078 1079 efx->mem_bar = UINT_MAX; 1080 pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar); 1081 1082 rc = pci_enable_device(pci_dev); 1083 if (rc) { 1084 pci_err(pci_dev, "failed to enable PCI device\n"); 1085 goto fail1; 1086 } 1087 1088 pci_set_master(pci_dev); 1089 1090 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1091 if (rc) { 1092 pci_err(efx->pci_dev, "could not find a suitable DMA mask\n"); 1093 goto fail2; 1094 } 1095 pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask); 1096 1097 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1098 if (!efx->membase_phys) { 1099 pci_err(efx->pci_dev, 1100 "ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n", 1101 bar); 1102 rc = -ENODEV; 1103 goto fail3; 1104 } 1105 1106 rc = pci_request_region(pci_dev, bar, "sfc"); 1107 if (rc) { 1108 pci_err(efx->pci_dev, 1109 "request for memory BAR[%d] failed\n", bar); 1110 rc = -EIO; 1111 goto fail3; 1112 } 1113 efx->mem_bar = bar; 1114 efx->membase = ioremap(efx->membase_phys, mem_map_size); 1115 if (!efx->membase) { 1116 pci_err(efx->pci_dev, 1117 "could not map memory BAR[%d] at %llx+%x\n", bar, 1118 (unsigned long long)efx->membase_phys, mem_map_size); 1119 rc = -ENOMEM; 1120 goto fail4; 1121 } 1122 pci_dbg(efx->pci_dev, 1123 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar, 1124 (unsigned long long)efx->membase_phys, mem_map_size, 1125 efx->membase); 1126 1127 return 0; 1128 1129 fail4: 1130 pci_release_region(efx->pci_dev, bar); 1131 fail3: 1132 efx->membase_phys = 0; 1133 fail2: 1134 pci_disable_device(efx->pci_dev); 1135 fail1: 1136 return rc; 1137 } 1138 1139 void efx_fini_io(struct efx_nic *efx) 1140 { 1141 pci_dbg(efx->pci_dev, "shutting down I/O\n"); 1142 1143 if (efx->membase) { 1144 iounmap(efx->membase); 1145 efx->membase = NULL; 1146 } 1147 1148 if (efx->membase_phys) { 1149 pci_release_region(efx->pci_dev, efx->mem_bar); 1150 efx->membase_phys = 0; 1151 efx->mem_bar = UINT_MAX; 1152 } 1153 1154 /* Don't disable bus-mastering if VFs are assigned */ 1155 if (!pci_vfs_assigned(efx->pci_dev)) 1156 pci_disable_device(efx->pci_dev); 1157 } 1158 1159 #ifdef CONFIG_SFC_MCDI_LOGGING 1160 static ssize_t mcdi_logging_show(struct device *dev, 1161 struct device_attribute *attr, 1162 char *buf) 1163 { 1164 struct efx_nic *efx = dev_get_drvdata(dev); 1165 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1166 1167 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 1168 } 1169 1170 static ssize_t mcdi_logging_store(struct device *dev, 1171 struct device_attribute *attr, 1172 const char *buf, size_t count) 1173 { 1174 struct efx_nic *efx = dev_get_drvdata(dev); 1175 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1176 bool enable = count > 0 && *buf != '0'; 1177 1178 mcdi->logging_enabled = enable; 1179 return count; 1180 } 1181 1182 static DEVICE_ATTR_RW(mcdi_logging); 1183 1184 void efx_init_mcdi_logging(struct efx_nic *efx) 1185 { 1186 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1187 1188 if (rc) { 1189 netif_warn(efx, drv, efx->net_dev, 1190 "failed to init net dev attributes\n"); 1191 } 1192 } 1193 1194 void efx_fini_mcdi_logging(struct efx_nic *efx) 1195 { 1196 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1197 } 1198 #endif 1199 1200 /* A PCI error affecting this device was detected. 1201 * At this point MMIO and DMA may be disabled. 1202 * Stop the software path and request a slot reset. 1203 */ 1204 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 1205 pci_channel_state_t state) 1206 { 1207 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1208 struct efx_nic *efx = pci_get_drvdata(pdev); 1209 1210 if (state == pci_channel_io_perm_failure) 1211 return PCI_ERS_RESULT_DISCONNECT; 1212 1213 rtnl_lock(); 1214 1215 if (efx->state != STATE_DISABLED) { 1216 efx->state = efx_recover(efx->state); 1217 efx->reset_pending = 0; 1218 1219 efx_device_detach_sync(efx); 1220 1221 if (efx_net_active(efx->state)) { 1222 efx_stop_all(efx); 1223 efx_disable_interrupts(efx); 1224 } 1225 1226 status = PCI_ERS_RESULT_NEED_RESET; 1227 } else { 1228 /* If the interface is disabled we don't want to do anything 1229 * with it. 1230 */ 1231 status = PCI_ERS_RESULT_RECOVERED; 1232 } 1233 1234 rtnl_unlock(); 1235 1236 pci_disable_device(pdev); 1237 1238 return status; 1239 } 1240 1241 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 1242 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 1243 { 1244 struct efx_nic *efx = pci_get_drvdata(pdev); 1245 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1246 1247 if (pci_enable_device(pdev)) { 1248 netif_err(efx, hw, efx->net_dev, 1249 "Cannot re-enable PCI device after reset.\n"); 1250 status = PCI_ERS_RESULT_DISCONNECT; 1251 } 1252 1253 return status; 1254 } 1255 1256 /* Perform the actual reset and resume I/O operations. */ 1257 static void efx_io_resume(struct pci_dev *pdev) 1258 { 1259 struct efx_nic *efx = pci_get_drvdata(pdev); 1260 int rc; 1261 1262 rtnl_lock(); 1263 1264 if (efx->state == STATE_DISABLED) 1265 goto out; 1266 1267 rc = efx_reset(efx, RESET_TYPE_ALL); 1268 if (rc) { 1269 netif_err(efx, hw, efx->net_dev, 1270 "efx_reset failed after PCI error (%d)\n", rc); 1271 } else { 1272 efx->state = efx_recovered(efx->state); 1273 netif_dbg(efx, hw, efx->net_dev, 1274 "Done resetting and resuming IO after PCI error.\n"); 1275 } 1276 1277 out: 1278 rtnl_unlock(); 1279 } 1280 1281 /* For simplicity and reliability, we always require a slot reset and try to 1282 * reset the hardware when a pci error affecting the device is detected. 1283 * We leave both the link_reset and mmio_enabled callback unimplemented: 1284 * with our request for slot reset the mmio_enabled callback will never be 1285 * called, and the link_reset callback is not used by AER or EEH mechanisms. 1286 */ 1287 const struct pci_error_handlers efx_err_handlers = { 1288 .error_detected = efx_io_error_detected, 1289 .slot_reset = efx_io_slot_reset, 1290 .resume = efx_io_resume, 1291 }; 1292 1293 /* Determine whether the NIC will be able to handle TX offloads for a given 1294 * encapsulated packet. 1295 */ 1296 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb) 1297 { 1298 struct gre_base_hdr *greh; 1299 __be16 dst_port; 1300 u8 ipproto; 1301 1302 /* Does the NIC support encap offloads? 1303 * If not, we should never get here, because we shouldn't have 1304 * advertised encap offload feature flags in the first place. 1305 */ 1306 if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port)) 1307 return false; 1308 1309 /* Determine encapsulation protocol in use */ 1310 switch (skb->protocol) { 1311 case htons(ETH_P_IP): 1312 ipproto = ip_hdr(skb)->protocol; 1313 break; 1314 case htons(ETH_P_IPV6): 1315 /* If there are extension headers, this will cause us to 1316 * think we can't offload something that we maybe could have. 1317 */ 1318 ipproto = ipv6_hdr(skb)->nexthdr; 1319 break; 1320 default: 1321 /* Not IP, so can't offload it */ 1322 return false; 1323 } 1324 switch (ipproto) { 1325 case IPPROTO_GRE: 1326 /* We support NVGRE but not IP over GRE or random gretaps. 1327 * Specifically, the NIC will accept GRE as encapsulated if 1328 * the inner protocol is Ethernet, but only handle it 1329 * correctly if the GRE header is 8 bytes long. Moreover, 1330 * it will not update the Checksum or Sequence Number fields 1331 * if they are present. (The Routing Present flag, 1332 * GRE_ROUTING, cannot be set else the header would be more 1333 * than 8 bytes long; so we don't have to worry about it.) 1334 */ 1335 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER) 1336 return false; 1337 if (ntohs(skb->inner_protocol) != ETH_P_TEB) 1338 return false; 1339 if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8) 1340 return false; 1341 greh = (struct gre_base_hdr *)skb_transport_header(skb); 1342 return !(greh->flags & (GRE_CSUM | GRE_SEQ)); 1343 case IPPROTO_UDP: 1344 /* If the port is registered for a UDP tunnel, we assume the 1345 * packet is for that tunnel, and the NIC will handle it as 1346 * such. If not, the NIC won't know what to do with it. 1347 */ 1348 dst_port = udp_hdr(skb)->dest; 1349 return efx->type->udp_tnl_has_port(efx, dst_port); 1350 default: 1351 return false; 1352 } 1353 } 1354 1355 netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev, 1356 netdev_features_t features) 1357 { 1358 struct efx_nic *efx = efx_netdev_priv(dev); 1359 1360 if (skb->encapsulation) { 1361 if (features & NETIF_F_GSO_MASK) 1362 /* Hardware can only do TSO with at most 208 bytes 1363 * of headers. 1364 */ 1365 if (skb_inner_transport_offset(skb) > 1366 EFX_TSO2_MAX_HDRLEN) 1367 features &= ~(NETIF_F_GSO_MASK); 1368 if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK)) 1369 if (!efx_can_encap_offloads(efx, skb)) 1370 features &= ~(NETIF_F_GSO_MASK | 1371 NETIF_F_CSUM_MASK); 1372 } 1373 return features; 1374 } 1375 1376 int efx_get_phys_port_id(struct net_device *net_dev, 1377 struct netdev_phys_item_id *ppid) 1378 { 1379 struct efx_nic *efx = efx_netdev_priv(net_dev); 1380 1381 if (efx->type->get_phys_port_id) 1382 return efx->type->get_phys_port_id(efx, ppid); 1383 else 1384 return -EOPNOTSUPP; 1385 } 1386 1387 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len) 1388 { 1389 struct efx_nic *efx = efx_netdev_priv(net_dev); 1390 1391 if (snprintf(name, len, "p%u", efx->port_num) >= len) 1392 return -EINVAL; 1393 return 0; 1394 } 1395 1396 void efx_detach_reps(struct efx_nic *efx) 1397 { 1398 struct net_device *rep_dev; 1399 struct efx_rep *efv; 1400 1401 ASSERT_RTNL(); 1402 netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n"); 1403 list_for_each_entry(efv, &efx->vf_reps, list) { 1404 rep_dev = efv->net_dev; 1405 if (!rep_dev) 1406 continue; 1407 netif_carrier_off(rep_dev); 1408 /* See efx_device_detach_sync() */ 1409 netif_tx_lock_bh(rep_dev); 1410 netif_tx_stop_all_queues(rep_dev); 1411 netif_tx_unlock_bh(rep_dev); 1412 } 1413 } 1414 1415 void efx_attach_reps(struct efx_nic *efx) 1416 { 1417 struct net_device *rep_dev; 1418 struct efx_rep *efv; 1419 1420 ASSERT_RTNL(); 1421 netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n"); 1422 list_for_each_entry(efv, &efx->vf_reps, list) { 1423 rep_dev = efv->net_dev; 1424 if (!rep_dev) 1425 continue; 1426 netif_tx_wake_all_queues(rep_dev); 1427 netif_carrier_on(rep_dev); 1428 } 1429 } 1430