xref: /openbmc/linux/drivers/net/ethernet/sfc/efx_common.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include "efx_common.h"
15 #include "efx_channels.h"
16 #include "efx.h"
17 #include "mcdi.h"
18 #include "selftest.h"
19 #include "rx_common.h"
20 #include "tx_common.h"
21 #include "nic.h"
22 #include "io.h"
23 #include "mcdi_pcol.h"
24 
25 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
26 			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
27 			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
28 			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
29 module_param(debug, uint, 0);
30 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
31 
32 /* This is the time (in jiffies) between invocations of the hardware
33  * monitor.
34  * On Falcon-based NICs, this will:
35  * - Check the on-board hardware monitor;
36  * - Poll the link state and reconfigure the hardware as necessary.
37  * On Siena-based NICs for power systems with EEH support, this will give EEH a
38  * chance to start.
39  */
40 static unsigned int efx_monitor_interval = 1 * HZ;
41 
42 /* How often and how many times to poll for a reset while waiting for a
43  * BIST that another function started to complete.
44  */
45 #define BIST_WAIT_DELAY_MS	100
46 #define BIST_WAIT_DELAY_COUNT	100
47 
48 /* Default stats update time */
49 #define STATS_PERIOD_MS_DEFAULT 1000
50 
51 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
52 const char *const efx_reset_type_names[] = {
53 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
54 	[RESET_TYPE_ALL]                = "ALL",
55 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
56 	[RESET_TYPE_WORLD]              = "WORLD",
57 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
58 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
59 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
60 	[RESET_TYPE_DISABLE]            = "DISABLE",
61 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
62 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
63 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
64 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
65 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
66 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
67 };
68 
69 #define RESET_TYPE(type) \
70 	STRING_TABLE_LOOKUP(type, efx_reset_type)
71 
72 /* Loopback mode names (see LOOPBACK_MODE()) */
73 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
74 const char *const efx_loopback_mode_names[] = {
75 	[LOOPBACK_NONE]		= "NONE",
76 	[LOOPBACK_DATA]		= "DATAPATH",
77 	[LOOPBACK_GMAC]		= "GMAC",
78 	[LOOPBACK_XGMII]	= "XGMII",
79 	[LOOPBACK_XGXS]		= "XGXS",
80 	[LOOPBACK_XAUI]		= "XAUI",
81 	[LOOPBACK_GMII]		= "GMII",
82 	[LOOPBACK_SGMII]	= "SGMII",
83 	[LOOPBACK_XGBR]		= "XGBR",
84 	[LOOPBACK_XFI]		= "XFI",
85 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
86 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
87 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
88 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
89 	[LOOPBACK_GPHY]		= "GPHY",
90 	[LOOPBACK_PHYXS]	= "PHYXS",
91 	[LOOPBACK_PCS]		= "PCS",
92 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
93 	[LOOPBACK_XPORT]	= "XPORT",
94 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
95 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
96 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
97 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
98 	[LOOPBACK_GMII_WS]	= "GMII_WS",
99 	[LOOPBACK_XFI_WS]	= "XFI_WS",
100 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
101 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
102 };
103 
104 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
105  * queued onto this work queue. This is not a per-nic work queue, because
106  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
107  */
108 static struct workqueue_struct *reset_workqueue;
109 
110 int efx_create_reset_workqueue(void)
111 {
112 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
113 	if (!reset_workqueue) {
114 		printk(KERN_ERR "Failed to create reset workqueue\n");
115 		return -ENOMEM;
116 	}
117 
118 	return 0;
119 }
120 
121 void efx_queue_reset_work(struct efx_nic *efx)
122 {
123 	queue_work(reset_workqueue, &efx->reset_work);
124 }
125 
126 void efx_flush_reset_workqueue(struct efx_nic *efx)
127 {
128 	cancel_work_sync(&efx->reset_work);
129 }
130 
131 void efx_destroy_reset_workqueue(void)
132 {
133 	if (reset_workqueue) {
134 		destroy_workqueue(reset_workqueue);
135 		reset_workqueue = NULL;
136 	}
137 }
138 
139 /* We assume that efx->type->reconfigure_mac will always try to sync RX
140  * filters and therefore needs to read-lock the filter table against freeing
141  */
142 void efx_mac_reconfigure(struct efx_nic *efx)
143 {
144 	if (efx->type->reconfigure_mac) {
145 		down_read(&efx->filter_sem);
146 		efx->type->reconfigure_mac(efx);
147 		up_read(&efx->filter_sem);
148 	}
149 }
150 
151 /* Asynchronous work item for changing MAC promiscuity and multicast
152  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
153  * MAC directly.
154  */
155 static void efx_mac_work(struct work_struct *data)
156 {
157 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
158 
159 	mutex_lock(&efx->mac_lock);
160 	if (efx->port_enabled)
161 		efx_mac_reconfigure(efx);
162 	mutex_unlock(&efx->mac_lock);
163 }
164 
165 /* This ensures that the kernel is kept informed (via
166  * netif_carrier_on/off) of the link status, and also maintains the
167  * link status's stop on the port's TX queue.
168  */
169 void efx_link_status_changed(struct efx_nic *efx)
170 {
171 	struct efx_link_state *link_state = &efx->link_state;
172 
173 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
174 	 * that no events are triggered between unregister_netdev() and the
175 	 * driver unloading. A more general condition is that NETDEV_CHANGE
176 	 * can only be generated between NETDEV_UP and NETDEV_DOWN
177 	 */
178 	if (!netif_running(efx->net_dev))
179 		return;
180 
181 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
182 		efx->n_link_state_changes++;
183 
184 		if (link_state->up)
185 			netif_carrier_on(efx->net_dev);
186 		else
187 			netif_carrier_off(efx->net_dev);
188 	}
189 
190 	/* Status message for kernel log */
191 	if (link_state->up)
192 		netif_info(efx, link, efx->net_dev,
193 			   "link up at %uMbps %s-duplex (MTU %d)\n",
194 			   link_state->speed, link_state->fd ? "full" : "half",
195 			   efx->net_dev->mtu);
196 	else
197 		netif_info(efx, link, efx->net_dev, "link down\n");
198 }
199 
200 unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
201 {
202 	/* The maximum MTU that we can fit in a single page, allowing for
203 	 * framing, overhead and XDP headroom + tailroom.
204 	 */
205 	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
206 		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
207 		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
208 
209 	return PAGE_SIZE - overhead;
210 }
211 
212 /* Context: process, rtnl_lock() held. */
213 int efx_change_mtu(struct net_device *net_dev, int new_mtu)
214 {
215 	struct efx_nic *efx = netdev_priv(net_dev);
216 	int rc;
217 
218 	rc = efx_check_disabled(efx);
219 	if (rc)
220 		return rc;
221 
222 	if (rtnl_dereference(efx->xdp_prog) &&
223 	    new_mtu > efx_xdp_max_mtu(efx)) {
224 		netif_err(efx, drv, efx->net_dev,
225 			  "Requested MTU of %d too big for XDP (max: %d)\n",
226 			  new_mtu, efx_xdp_max_mtu(efx));
227 		return -EINVAL;
228 	}
229 
230 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
231 
232 	efx_device_detach_sync(efx);
233 	efx_stop_all(efx);
234 
235 	mutex_lock(&efx->mac_lock);
236 	net_dev->mtu = new_mtu;
237 	efx_mac_reconfigure(efx);
238 	mutex_unlock(&efx->mac_lock);
239 
240 	efx_start_all(efx);
241 	efx_device_attach_if_not_resetting(efx);
242 	return 0;
243 }
244 
245 /**************************************************************************
246  *
247  * Hardware monitor
248  *
249  **************************************************************************/
250 
251 /* Run periodically off the general workqueue */
252 static void efx_monitor(struct work_struct *data)
253 {
254 	struct efx_nic *efx = container_of(data, struct efx_nic,
255 					   monitor_work.work);
256 
257 	netif_vdbg(efx, timer, efx->net_dev,
258 		   "hardware monitor executing on CPU %d\n",
259 		   raw_smp_processor_id());
260 	BUG_ON(efx->type->monitor == NULL);
261 
262 	/* If the mac_lock is already held then it is likely a port
263 	 * reconfiguration is already in place, which will likely do
264 	 * most of the work of monitor() anyway.
265 	 */
266 	if (mutex_trylock(&efx->mac_lock)) {
267 		if (efx->port_enabled && efx->type->monitor)
268 			efx->type->monitor(efx);
269 		mutex_unlock(&efx->mac_lock);
270 	}
271 
272 	efx_start_monitor(efx);
273 }
274 
275 void efx_start_monitor(struct efx_nic *efx)
276 {
277 	if (efx->type->monitor)
278 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
279 				   efx_monitor_interval);
280 }
281 
282 /**************************************************************************
283  *
284  * Event queue processing
285  *
286  *************************************************************************/
287 
288 /* Channels are shutdown and reinitialised whilst the NIC is running
289  * to propagate configuration changes (mtu, checksum offload), or
290  * to clear hardware error conditions
291  */
292 static void efx_start_datapath(struct efx_nic *efx)
293 {
294 	netdev_features_t old_features = efx->net_dev->features;
295 	bool old_rx_scatter = efx->rx_scatter;
296 	size_t rx_buf_len;
297 
298 	/* Calculate the rx buffer allocation parameters required to
299 	 * support the current MTU, including padding for header
300 	 * alignment and overruns.
301 	 */
302 	efx->rx_dma_len = (efx->rx_prefix_size +
303 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
304 			   efx->type->rx_buffer_padding);
305 	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
306 		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
307 
308 	if (rx_buf_len <= PAGE_SIZE) {
309 		efx->rx_scatter = efx->type->always_rx_scatter;
310 		efx->rx_buffer_order = 0;
311 	} else if (efx->type->can_rx_scatter) {
312 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
313 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
314 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
315 				       EFX_RX_BUF_ALIGNMENT) >
316 			     PAGE_SIZE);
317 		efx->rx_scatter = true;
318 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
319 		efx->rx_buffer_order = 0;
320 	} else {
321 		efx->rx_scatter = false;
322 		efx->rx_buffer_order = get_order(rx_buf_len);
323 	}
324 
325 	efx_rx_config_page_split(efx);
326 	if (efx->rx_buffer_order)
327 		netif_dbg(efx, drv, efx->net_dev,
328 			  "RX buf len=%u; page order=%u batch=%u\n",
329 			  efx->rx_dma_len, efx->rx_buffer_order,
330 			  efx->rx_pages_per_batch);
331 	else
332 		netif_dbg(efx, drv, efx->net_dev,
333 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
334 			  efx->rx_dma_len, efx->rx_page_buf_step,
335 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
336 
337 	/* Restore previously fixed features in hw_features and remove
338 	 * features which are fixed now
339 	 */
340 	efx->net_dev->hw_features |= efx->net_dev->features;
341 	efx->net_dev->hw_features &= ~efx->fixed_features;
342 	efx->net_dev->features |= efx->fixed_features;
343 	if (efx->net_dev->features != old_features)
344 		netdev_features_change(efx->net_dev);
345 
346 	/* RX filters may also have scatter-enabled flags */
347 	if ((efx->rx_scatter != old_rx_scatter) &&
348 	    efx->type->filter_update_rx_scatter)
349 		efx->type->filter_update_rx_scatter(efx);
350 
351 	/* We must keep at least one descriptor in a TX ring empty.
352 	 * We could avoid this when the queue size does not exactly
353 	 * match the hardware ring size, but it's not that important.
354 	 * Therefore we stop the queue when one more skb might fill
355 	 * the ring completely.  We wake it when half way back to
356 	 * empty.
357 	 */
358 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
359 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
360 
361 	/* Initialise the channels */
362 	efx_start_channels(efx);
363 
364 	efx_ptp_start_datapath(efx);
365 
366 	if (netif_device_present(efx->net_dev))
367 		netif_tx_wake_all_queues(efx->net_dev);
368 }
369 
370 static void efx_stop_datapath(struct efx_nic *efx)
371 {
372 	EFX_ASSERT_RESET_SERIALISED(efx);
373 	BUG_ON(efx->port_enabled);
374 
375 	efx_ptp_stop_datapath(efx);
376 
377 	efx_stop_channels(efx);
378 }
379 
380 /**************************************************************************
381  *
382  * Port handling
383  *
384  **************************************************************************/
385 
386 static void efx_start_port(struct efx_nic *efx)
387 {
388 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
389 	BUG_ON(efx->port_enabled);
390 
391 	mutex_lock(&efx->mac_lock);
392 	efx->port_enabled = true;
393 
394 	/* Ensure MAC ingress/egress is enabled */
395 	efx_mac_reconfigure(efx);
396 
397 	mutex_unlock(&efx->mac_lock);
398 }
399 
400 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
401  * and the async self-test, wait for them to finish and prevent them
402  * being scheduled again.  This doesn't cover online resets, which
403  * should only be cancelled when removing the device.
404  */
405 static void efx_stop_port(struct efx_nic *efx)
406 {
407 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
408 
409 	EFX_ASSERT_RESET_SERIALISED(efx);
410 
411 	mutex_lock(&efx->mac_lock);
412 	efx->port_enabled = false;
413 	mutex_unlock(&efx->mac_lock);
414 
415 	/* Serialise against efx_set_multicast_list() */
416 	netif_addr_lock_bh(efx->net_dev);
417 	netif_addr_unlock_bh(efx->net_dev);
418 
419 	cancel_delayed_work_sync(&efx->monitor_work);
420 	efx_selftest_async_cancel(efx);
421 	cancel_work_sync(&efx->mac_work);
422 }
423 
424 /* If the interface is supposed to be running but is not, start
425  * the hardware and software data path, regular activity for the port
426  * (MAC statistics, link polling, etc.) and schedule the port to be
427  * reconfigured.  Interrupts must already be enabled.  This function
428  * is safe to call multiple times, so long as the NIC is not disabled.
429  * Requires the RTNL lock.
430  */
431 void efx_start_all(struct efx_nic *efx)
432 {
433 	EFX_ASSERT_RESET_SERIALISED(efx);
434 	BUG_ON(efx->state == STATE_DISABLED);
435 
436 	/* Check that it is appropriate to restart the interface. All
437 	 * of these flags are safe to read under just the rtnl lock
438 	 */
439 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
440 	    efx->reset_pending)
441 		return;
442 
443 	efx_start_port(efx);
444 	efx_start_datapath(efx);
445 
446 	/* Start the hardware monitor if there is one */
447 	efx_start_monitor(efx);
448 
449 	/* Link state detection is normally event-driven; we have
450 	 * to poll now because we could have missed a change
451 	 */
452 	mutex_lock(&efx->mac_lock);
453 	if (efx->phy_op->poll(efx))
454 		efx_link_status_changed(efx);
455 	mutex_unlock(&efx->mac_lock);
456 
457 	if (efx->type->start_stats) {
458 		efx->type->start_stats(efx);
459 		efx->type->pull_stats(efx);
460 		spin_lock_bh(&efx->stats_lock);
461 		efx->type->update_stats(efx, NULL, NULL);
462 		spin_unlock_bh(&efx->stats_lock);
463 	}
464 }
465 
466 /* Quiesce the hardware and software data path, and regular activity
467  * for the port without bringing the link down.  Safe to call multiple
468  * times with the NIC in almost any state, but interrupts should be
469  * enabled.  Requires the RTNL lock.
470  */
471 void efx_stop_all(struct efx_nic *efx)
472 {
473 	EFX_ASSERT_RESET_SERIALISED(efx);
474 
475 	/* port_enabled can be read safely under the rtnl lock */
476 	if (!efx->port_enabled)
477 		return;
478 
479 	if (efx->type->update_stats) {
480 		/* update stats before we go down so we can accurately count
481 		 * rx_nodesc_drops
482 		 */
483 		efx->type->pull_stats(efx);
484 		spin_lock_bh(&efx->stats_lock);
485 		efx->type->update_stats(efx, NULL, NULL);
486 		spin_unlock_bh(&efx->stats_lock);
487 		efx->type->stop_stats(efx);
488 	}
489 
490 	efx_stop_port(efx);
491 
492 	/* Stop the kernel transmit interface.  This is only valid if
493 	 * the device is stopped or detached; otherwise the watchdog
494 	 * may fire immediately.
495 	 */
496 	WARN_ON(netif_running(efx->net_dev) &&
497 		netif_device_present(efx->net_dev));
498 	netif_tx_disable(efx->net_dev);
499 
500 	efx_stop_datapath(efx);
501 }
502 
503 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
504 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
505 {
506 	struct efx_nic *efx = netdev_priv(net_dev);
507 
508 	spin_lock_bh(&efx->stats_lock);
509 	efx->type->update_stats(efx, NULL, stats);
510 	spin_unlock_bh(&efx->stats_lock);
511 }
512 
513 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
514  * the MAC appropriately. All other PHY configuration changes are pushed
515  * through phy_op->set_settings(), and pushed asynchronously to the MAC
516  * through efx_monitor().
517  *
518  * Callers must hold the mac_lock
519  */
520 int __efx_reconfigure_port(struct efx_nic *efx)
521 {
522 	enum efx_phy_mode phy_mode;
523 	int rc = 0;
524 
525 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
526 
527 	/* Disable PHY transmit in mac level loopbacks */
528 	phy_mode = efx->phy_mode;
529 	if (LOOPBACK_INTERNAL(efx))
530 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
531 	else
532 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
533 
534 	if (efx->type->reconfigure_port)
535 		rc = efx->type->reconfigure_port(efx);
536 
537 	if (rc)
538 		efx->phy_mode = phy_mode;
539 
540 	return rc;
541 }
542 
543 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
544  * disabled.
545  */
546 int efx_reconfigure_port(struct efx_nic *efx)
547 {
548 	int rc;
549 
550 	EFX_ASSERT_RESET_SERIALISED(efx);
551 
552 	mutex_lock(&efx->mac_lock);
553 	rc = __efx_reconfigure_port(efx);
554 	mutex_unlock(&efx->mac_lock);
555 
556 	return rc;
557 }
558 
559 /**************************************************************************
560  *
561  * Device reset and suspend
562  *
563  **************************************************************************/
564 
565 static void efx_wait_for_bist_end(struct efx_nic *efx)
566 {
567 	int i;
568 
569 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
570 		if (efx_mcdi_poll_reboot(efx))
571 			goto out;
572 		msleep(BIST_WAIT_DELAY_MS);
573 	}
574 
575 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
576 out:
577 	/* Either way unset the BIST flag. If we found no reboot we probably
578 	 * won't recover, but we should try.
579 	 */
580 	efx->mc_bist_for_other_fn = false;
581 }
582 
583 /* Try recovery mechanisms.
584  * For now only EEH is supported.
585  * Returns 0 if the recovery mechanisms are unsuccessful.
586  * Returns a non-zero value otherwise.
587  */
588 int efx_try_recovery(struct efx_nic *efx)
589 {
590 #ifdef CONFIG_EEH
591 	/* A PCI error can occur and not be seen by EEH because nothing
592 	 * happens on the PCI bus. In this case the driver may fail and
593 	 * schedule a 'recover or reset', leading to this recovery handler.
594 	 * Manually call the eeh failure check function.
595 	 */
596 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
597 	if (eeh_dev_check_failure(eehdev)) {
598 		/* The EEH mechanisms will handle the error and reset the
599 		 * device if necessary.
600 		 */
601 		return 1;
602 	}
603 #endif
604 	return 0;
605 }
606 
607 /* Tears down the entire software state and most of the hardware state
608  * before reset.
609  */
610 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
611 {
612 	EFX_ASSERT_RESET_SERIALISED(efx);
613 
614 	if (method == RESET_TYPE_MCDI_TIMEOUT)
615 		efx->type->prepare_flr(efx);
616 
617 	efx_stop_all(efx);
618 	efx_disable_interrupts(efx);
619 
620 	mutex_lock(&efx->mac_lock);
621 	down_write(&efx->filter_sem);
622 	mutex_lock(&efx->rss_lock);
623 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
624 	    method != RESET_TYPE_DATAPATH)
625 		efx->phy_op->fini(efx);
626 	efx->type->fini(efx);
627 }
628 
629 /* This function will always ensure that the locks acquired in
630  * efx_reset_down() are released. A failure return code indicates
631  * that we were unable to reinitialise the hardware, and the
632  * driver should be disabled. If ok is false, then the rx and tx
633  * engines are not restarted, pending a RESET_DISABLE.
634  */
635 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
636 {
637 	int rc;
638 
639 	EFX_ASSERT_RESET_SERIALISED(efx);
640 
641 	if (method == RESET_TYPE_MCDI_TIMEOUT)
642 		efx->type->finish_flr(efx);
643 
644 	/* Ensure that SRAM is initialised even if we're disabling the device */
645 	rc = efx->type->init(efx);
646 	if (rc) {
647 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
648 		goto fail;
649 	}
650 
651 	if (!ok)
652 		goto fail;
653 
654 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
655 	    method != RESET_TYPE_DATAPATH) {
656 		rc = efx->phy_op->init(efx);
657 		if (rc)
658 			goto fail;
659 		rc = efx->phy_op->reconfigure(efx);
660 		if (rc && rc != -EPERM)
661 			netif_err(efx, drv, efx->net_dev,
662 				  "could not restore PHY settings\n");
663 	}
664 
665 	rc = efx_enable_interrupts(efx);
666 	if (rc)
667 		goto fail;
668 
669 #ifdef CONFIG_SFC_SRIOV
670 	rc = efx->type->vswitching_restore(efx);
671 	if (rc) /* not fatal; the PF will still work fine */
672 		netif_warn(efx, probe, efx->net_dev,
673 			   "failed to restore vswitching rc=%d;"
674 			   " VFs may not function\n", rc);
675 #endif
676 
677 	if (efx->type->rx_restore_rss_contexts)
678 		efx->type->rx_restore_rss_contexts(efx);
679 	mutex_unlock(&efx->rss_lock);
680 	efx->type->filter_table_restore(efx);
681 	up_write(&efx->filter_sem);
682 	if (efx->type->sriov_reset)
683 		efx->type->sriov_reset(efx);
684 
685 	mutex_unlock(&efx->mac_lock);
686 
687 	efx_start_all(efx);
688 
689 	if (efx->type->udp_tnl_push_ports)
690 		efx->type->udp_tnl_push_ports(efx);
691 
692 	return 0;
693 
694 fail:
695 	efx->port_initialized = false;
696 
697 	mutex_unlock(&efx->rss_lock);
698 	up_write(&efx->filter_sem);
699 	mutex_unlock(&efx->mac_lock);
700 
701 	return rc;
702 }
703 
704 /* Reset the NIC using the specified method.  Note that the reset may
705  * fail, in which case the card will be left in an unusable state.
706  *
707  * Caller must hold the rtnl_lock.
708  */
709 int efx_reset(struct efx_nic *efx, enum reset_type method)
710 {
711 	bool disabled;
712 	int rc, rc2;
713 
714 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
715 		   RESET_TYPE(method));
716 
717 	efx_device_detach_sync(efx);
718 	efx_reset_down(efx, method);
719 
720 	rc = efx->type->reset(efx, method);
721 	if (rc) {
722 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
723 		goto out;
724 	}
725 
726 	/* Clear flags for the scopes we covered.  We assume the NIC and
727 	 * driver are now quiescent so that there is no race here.
728 	 */
729 	if (method < RESET_TYPE_MAX_METHOD)
730 		efx->reset_pending &= -(1 << (method + 1));
731 	else /* it doesn't fit into the well-ordered scope hierarchy */
732 		__clear_bit(method, &efx->reset_pending);
733 
734 	/* Reinitialise bus-mastering, which may have been turned off before
735 	 * the reset was scheduled. This is still appropriate, even in the
736 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
737 	 * can respond to requests.
738 	 */
739 	pci_set_master(efx->pci_dev);
740 
741 out:
742 	/* Leave device stopped if necessary */
743 	disabled = rc ||
744 		method == RESET_TYPE_DISABLE ||
745 		method == RESET_TYPE_RECOVER_OR_DISABLE;
746 	rc2 = efx_reset_up(efx, method, !disabled);
747 	if (rc2) {
748 		disabled = true;
749 		if (!rc)
750 			rc = rc2;
751 	}
752 
753 	if (disabled) {
754 		dev_close(efx->net_dev);
755 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
756 		efx->state = STATE_DISABLED;
757 	} else {
758 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
759 		efx_device_attach_if_not_resetting(efx);
760 	}
761 	return rc;
762 }
763 
764 /* The worker thread exists so that code that cannot sleep can
765  * schedule a reset for later.
766  */
767 static void efx_reset_work(struct work_struct *data)
768 {
769 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
770 	unsigned long pending;
771 	enum reset_type method;
772 
773 	pending = READ_ONCE(efx->reset_pending);
774 	method = fls(pending) - 1;
775 
776 	if (method == RESET_TYPE_MC_BIST)
777 		efx_wait_for_bist_end(efx);
778 
779 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
780 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
781 	    efx_try_recovery(efx))
782 		return;
783 
784 	if (!pending)
785 		return;
786 
787 	rtnl_lock();
788 
789 	/* We checked the state in efx_schedule_reset() but it may
790 	 * have changed by now.  Now that we have the RTNL lock,
791 	 * it cannot change again.
792 	 */
793 	if (efx->state == STATE_READY)
794 		(void)efx_reset(efx, method);
795 
796 	rtnl_unlock();
797 }
798 
799 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
800 {
801 	enum reset_type method;
802 
803 	if (efx->state == STATE_RECOVERY) {
804 		netif_dbg(efx, drv, efx->net_dev,
805 			  "recovering: skip scheduling %s reset\n",
806 			  RESET_TYPE(type));
807 		return;
808 	}
809 
810 	switch (type) {
811 	case RESET_TYPE_INVISIBLE:
812 	case RESET_TYPE_ALL:
813 	case RESET_TYPE_RECOVER_OR_ALL:
814 	case RESET_TYPE_WORLD:
815 	case RESET_TYPE_DISABLE:
816 	case RESET_TYPE_RECOVER_OR_DISABLE:
817 	case RESET_TYPE_DATAPATH:
818 	case RESET_TYPE_MC_BIST:
819 	case RESET_TYPE_MCDI_TIMEOUT:
820 		method = type;
821 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
822 			  RESET_TYPE(method));
823 		break;
824 	default:
825 		method = efx->type->map_reset_reason(type);
826 		netif_dbg(efx, drv, efx->net_dev,
827 			  "scheduling %s reset for %s\n",
828 			  RESET_TYPE(method), RESET_TYPE(type));
829 		break;
830 	}
831 
832 	set_bit(method, &efx->reset_pending);
833 	smp_mb(); /* ensure we change reset_pending before checking state */
834 
835 	/* If we're not READY then just leave the flags set as the cue
836 	 * to abort probing or reschedule the reset later.
837 	 */
838 	if (READ_ONCE(efx->state) != STATE_READY)
839 		return;
840 
841 	/* efx_process_channel() will no longer read events once a
842 	 * reset is scheduled. So switch back to poll'd MCDI completions.
843 	 */
844 	efx_mcdi_mode_poll(efx);
845 
846 	efx_queue_reset_work(efx);
847 }
848 
849 /**************************************************************************
850  *
851  * Dummy PHY/MAC operations
852  *
853  * Can be used for some unimplemented operations
854  * Needed so all function pointers are valid and do not have to be tested
855  * before use
856  *
857  **************************************************************************/
858 int efx_port_dummy_op_int(struct efx_nic *efx)
859 {
860 	return 0;
861 }
862 void efx_port_dummy_op_void(struct efx_nic *efx) {}
863 
864 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
865 {
866 	return false;
867 }
868 
869 static const struct efx_phy_operations efx_dummy_phy_operations = {
870 	.init		 = efx_port_dummy_op_int,
871 	.reconfigure	 = efx_port_dummy_op_int,
872 	.poll		 = efx_port_dummy_op_poll,
873 	.fini		 = efx_port_dummy_op_void,
874 };
875 
876 /**************************************************************************
877  *
878  * Data housekeeping
879  *
880  **************************************************************************/
881 
882 /* This zeroes out and then fills in the invariants in a struct
883  * efx_nic (including all sub-structures).
884  */
885 int efx_init_struct(struct efx_nic *efx,
886 		    struct pci_dev *pci_dev, struct net_device *net_dev)
887 {
888 	int rc = -ENOMEM;
889 
890 	/* Initialise common structures */
891 	INIT_LIST_HEAD(&efx->node);
892 	INIT_LIST_HEAD(&efx->secondary_list);
893 	spin_lock_init(&efx->biu_lock);
894 #ifdef CONFIG_SFC_MTD
895 	INIT_LIST_HEAD(&efx->mtd_list);
896 #endif
897 	INIT_WORK(&efx->reset_work, efx_reset_work);
898 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
899 	efx_selftest_async_init(efx);
900 	efx->pci_dev = pci_dev;
901 	efx->msg_enable = debug;
902 	efx->state = STATE_UNINIT;
903 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
904 
905 	efx->net_dev = net_dev;
906 	efx->rx_prefix_size = efx->type->rx_prefix_size;
907 	efx->rx_ip_align =
908 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
909 	efx->rx_packet_hash_offset =
910 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
911 	efx->rx_packet_ts_offset =
912 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
913 	INIT_LIST_HEAD(&efx->rss_context.list);
914 	mutex_init(&efx->rss_lock);
915 	spin_lock_init(&efx->stats_lock);
916 	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
917 	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
918 	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
919 	mutex_init(&efx->mac_lock);
920 #ifdef CONFIG_RFS_ACCEL
921 	mutex_init(&efx->rps_mutex);
922 	spin_lock_init(&efx->rps_hash_lock);
923 	/* Failure to allocate is not fatal, but may degrade ARFS performance */
924 	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
925 				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
926 #endif
927 	efx->phy_op = &efx_dummy_phy_operations;
928 	efx->mdio.dev = net_dev;
929 	INIT_WORK(&efx->mac_work, efx_mac_work);
930 	init_waitqueue_head(&efx->flush_wq);
931 
932 	rc = efx_init_channels(efx);
933 	if (rc)
934 		goto fail;
935 
936 	/* Would be good to use the net_dev name, but we're too early */
937 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
938 		 pci_name(pci_dev));
939 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
940 	if (!efx->workqueue) {
941 		rc = -ENOMEM;
942 		goto fail;
943 	}
944 
945 	return 0;
946 
947 fail:
948 	efx_fini_struct(efx);
949 	return rc;
950 }
951 
952 void efx_fini_struct(struct efx_nic *efx)
953 {
954 #ifdef CONFIG_RFS_ACCEL
955 	kfree(efx->rps_hash_table);
956 #endif
957 
958 	efx_fini_channels(efx);
959 
960 	kfree(efx->vpd_sn);
961 
962 	if (efx->workqueue) {
963 		destroy_workqueue(efx->workqueue);
964 		efx->workqueue = NULL;
965 	}
966 }
967 
968 /* This configures the PCI device to enable I/O and DMA. */
969 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
970 		unsigned int mem_map_size)
971 {
972 	struct pci_dev *pci_dev = efx->pci_dev;
973 	int rc;
974 
975 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
976 
977 	rc = pci_enable_device(pci_dev);
978 	if (rc) {
979 		netif_err(efx, probe, efx->net_dev,
980 			  "failed to enable PCI device\n");
981 		goto fail1;
982 	}
983 
984 	pci_set_master(pci_dev);
985 
986 	/* Set the PCI DMA mask.  Try all possibilities from our
987 	 * genuine mask down to 32 bits, because some architectures
988 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
989 	 * masks event though they reject 46 bit masks.
990 	 */
991 	while (dma_mask > 0x7fffffffUL) {
992 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
993 		if (rc == 0)
994 			break;
995 		dma_mask >>= 1;
996 	}
997 	if (rc) {
998 		netif_err(efx, probe, efx->net_dev,
999 			  "could not find a suitable DMA mask\n");
1000 		goto fail2;
1001 	}
1002 	netif_dbg(efx, probe, efx->net_dev,
1003 		  "using DMA mask %llx\n", (unsigned long long)dma_mask);
1004 
1005 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1006 	if (!efx->membase_phys) {
1007 		netif_err(efx, probe, efx->net_dev,
1008 			  "ERROR: No BAR%d mapping from the BIOS. "
1009 			  "Try pci=realloc on the kernel command line\n", bar);
1010 		rc = -ENODEV;
1011 		goto fail3;
1012 	}
1013 
1014 	rc = pci_request_region(pci_dev, bar, "sfc");
1015 	if (rc) {
1016 		netif_err(efx, probe, efx->net_dev,
1017 			  "request for memory BAR failed\n");
1018 		rc = -EIO;
1019 		goto fail3;
1020 	}
1021 
1022 	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1023 	if (!efx->membase) {
1024 		netif_err(efx, probe, efx->net_dev,
1025 			  "could not map memory BAR at %llx+%x\n",
1026 			  (unsigned long long)efx->membase_phys, mem_map_size);
1027 		rc = -ENOMEM;
1028 		goto fail4;
1029 	}
1030 	netif_dbg(efx, probe, efx->net_dev,
1031 		  "memory BAR at %llx+%x (virtual %p)\n",
1032 		  (unsigned long long)efx->membase_phys, mem_map_size,
1033 		  efx->membase);
1034 
1035 	return 0;
1036 
1037 fail4:
1038 	pci_release_region(efx->pci_dev, bar);
1039 fail3:
1040 	efx->membase_phys = 0;
1041 fail2:
1042 	pci_disable_device(efx->pci_dev);
1043 fail1:
1044 	return rc;
1045 }
1046 
1047 void efx_fini_io(struct efx_nic *efx, int bar)
1048 {
1049 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1050 
1051 	if (efx->membase) {
1052 		iounmap(efx->membase);
1053 		efx->membase = NULL;
1054 	}
1055 
1056 	if (efx->membase_phys) {
1057 		pci_release_region(efx->pci_dev, bar);
1058 		efx->membase_phys = 0;
1059 	}
1060 
1061 	/* Don't disable bus-mastering if VFs are assigned */
1062 	if (!pci_vfs_assigned(efx->pci_dev))
1063 		pci_disable_device(efx->pci_dev);
1064 }
1065 
1066 #ifdef CONFIG_SFC_MCDI_LOGGING
1067 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
1068 			     char *buf)
1069 {
1070 	struct efx_nic *efx = dev_get_drvdata(dev);
1071 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1072 
1073 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1074 }
1075 
1076 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
1077 			    const char *buf, size_t count)
1078 {
1079 	struct efx_nic *efx = dev_get_drvdata(dev);
1080 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1081 	bool enable = count > 0 && *buf != '0';
1082 
1083 	mcdi->logging_enabled = enable;
1084 	return count;
1085 }
1086 
1087 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
1088 
1089 void efx_init_mcdi_logging(struct efx_nic *efx)
1090 {
1091 	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1092 
1093 	if (rc) {
1094 		netif_warn(efx, drv, efx->net_dev,
1095 			   "failed to init net dev attributes\n");
1096 	}
1097 }
1098 
1099 void efx_fini_mcdi_logging(struct efx_nic *efx)
1100 {
1101 	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1102 }
1103 #endif
1104