1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/filter.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <net/gre.h>
16 #include "efx_common.h"
17 #include "efx_channels.h"
18 #include "efx.h"
19 #include "mcdi.h"
20 #include "selftest.h"
21 #include "rx_common.h"
22 #include "tx_common.h"
23 #include "nic.h"
24 #include "mcdi_port_common.h"
25 #include "io.h"
26 #include "mcdi_pcol.h"
27 #include "ef100_rep.h"
28 
29 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
30 			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
31 			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
32 			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
33 module_param(debug, uint, 0);
34 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
35 
36 /* This is the time (in jiffies) between invocations of the hardware
37  * monitor.
38  */
39 static unsigned int efx_monitor_interval = 1 * HZ;
40 
41 /* How often and how many times to poll for a reset while waiting for a
42  * BIST that another function started to complete.
43  */
44 #define BIST_WAIT_DELAY_MS	100
45 #define BIST_WAIT_DELAY_COUNT	100
46 
47 /* Default stats update time */
48 #define STATS_PERIOD_MS_DEFAULT 1000
49 
50 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
51 static const char *const efx_reset_type_names[] = {
52 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
53 	[RESET_TYPE_ALL]                = "ALL",
54 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
55 	[RESET_TYPE_WORLD]              = "WORLD",
56 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
57 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
58 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
59 	[RESET_TYPE_DISABLE]            = "DISABLE",
60 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
61 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
62 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
63 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
64 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
65 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
66 };
67 
68 #define RESET_TYPE(type) \
69 	STRING_TABLE_LOOKUP(type, efx_reset_type)
70 
71 /* Loopback mode names (see LOOPBACK_MODE()) */
72 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
73 const char *const efx_loopback_mode_names[] = {
74 	[LOOPBACK_NONE]		= "NONE",
75 	[LOOPBACK_DATA]		= "DATAPATH",
76 	[LOOPBACK_GMAC]		= "GMAC",
77 	[LOOPBACK_XGMII]	= "XGMII",
78 	[LOOPBACK_XGXS]		= "XGXS",
79 	[LOOPBACK_XAUI]		= "XAUI",
80 	[LOOPBACK_GMII]		= "GMII",
81 	[LOOPBACK_SGMII]	= "SGMII",
82 	[LOOPBACK_XGBR]		= "XGBR",
83 	[LOOPBACK_XFI]		= "XFI",
84 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
85 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
86 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
87 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
88 	[LOOPBACK_GPHY]		= "GPHY",
89 	[LOOPBACK_PHYXS]	= "PHYXS",
90 	[LOOPBACK_PCS]		= "PCS",
91 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
92 	[LOOPBACK_XPORT]	= "XPORT",
93 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
94 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
95 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
96 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
97 	[LOOPBACK_GMII_WS]	= "GMII_WS",
98 	[LOOPBACK_XFI_WS]	= "XFI_WS",
99 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
100 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
101 };
102 
103 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
104  * queued onto this work queue. This is not a per-nic work queue, because
105  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
106  */
107 static struct workqueue_struct *reset_workqueue;
108 
109 int efx_create_reset_workqueue(void)
110 {
111 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
112 	if (!reset_workqueue) {
113 		printk(KERN_ERR "Failed to create reset workqueue\n");
114 		return -ENOMEM;
115 	}
116 
117 	return 0;
118 }
119 
120 void efx_queue_reset_work(struct efx_nic *efx)
121 {
122 	queue_work(reset_workqueue, &efx->reset_work);
123 }
124 
125 void efx_flush_reset_workqueue(struct efx_nic *efx)
126 {
127 	cancel_work_sync(&efx->reset_work);
128 }
129 
130 void efx_destroy_reset_workqueue(void)
131 {
132 	if (reset_workqueue) {
133 		destroy_workqueue(reset_workqueue);
134 		reset_workqueue = NULL;
135 	}
136 }
137 
138 /* We assume that efx->type->reconfigure_mac will always try to sync RX
139  * filters and therefore needs to read-lock the filter table against freeing
140  */
141 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
142 {
143 	if (efx->type->reconfigure_mac) {
144 		down_read(&efx->filter_sem);
145 		efx->type->reconfigure_mac(efx, mtu_only);
146 		up_read(&efx->filter_sem);
147 	}
148 }
149 
150 /* Asynchronous work item for changing MAC promiscuity and multicast
151  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
152  * MAC directly.
153  */
154 static void efx_mac_work(struct work_struct *data)
155 {
156 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
157 
158 	mutex_lock(&efx->mac_lock);
159 	if (efx->port_enabled)
160 		efx_mac_reconfigure(efx, false);
161 	mutex_unlock(&efx->mac_lock);
162 }
163 
164 int efx_set_mac_address(struct net_device *net_dev, void *data)
165 {
166 	struct efx_nic *efx = efx_netdev_priv(net_dev);
167 	struct sockaddr *addr = data;
168 	u8 *new_addr = addr->sa_data;
169 	u8 old_addr[6];
170 	int rc;
171 
172 	if (!is_valid_ether_addr(new_addr)) {
173 		netif_err(efx, drv, efx->net_dev,
174 			  "invalid ethernet MAC address requested: %pM\n",
175 			  new_addr);
176 		return -EADDRNOTAVAIL;
177 	}
178 
179 	/* save old address */
180 	ether_addr_copy(old_addr, net_dev->dev_addr);
181 	eth_hw_addr_set(net_dev, new_addr);
182 	if (efx->type->set_mac_address) {
183 		rc = efx->type->set_mac_address(efx);
184 		if (rc) {
185 			eth_hw_addr_set(net_dev, old_addr);
186 			return rc;
187 		}
188 	}
189 
190 	/* Reconfigure the MAC */
191 	mutex_lock(&efx->mac_lock);
192 	efx_mac_reconfigure(efx, false);
193 	mutex_unlock(&efx->mac_lock);
194 
195 	return 0;
196 }
197 
198 /* Context: netif_addr_lock held, BHs disabled. */
199 void efx_set_rx_mode(struct net_device *net_dev)
200 {
201 	struct efx_nic *efx = efx_netdev_priv(net_dev);
202 
203 	if (efx->port_enabled)
204 		queue_work(efx->workqueue, &efx->mac_work);
205 	/* Otherwise efx_start_port() will do this */
206 }
207 
208 int efx_set_features(struct net_device *net_dev, netdev_features_t data)
209 {
210 	struct efx_nic *efx = efx_netdev_priv(net_dev);
211 	int rc;
212 
213 	/* If disabling RX n-tuple filtering, clear existing filters */
214 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
215 		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
216 		if (rc)
217 			return rc;
218 	}
219 
220 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
221 	 * If rx-fcs is changed, mac_reconfigure updates that too.
222 	 */
223 	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
224 					  NETIF_F_RXFCS)) {
225 		/* efx_set_rx_mode() will schedule MAC work to update filters
226 		 * when a new features are finally set in net_dev.
227 		 */
228 		efx_set_rx_mode(net_dev);
229 	}
230 
231 	return 0;
232 }
233 
234 /* This ensures that the kernel is kept informed (via
235  * netif_carrier_on/off) of the link status, and also maintains the
236  * link status's stop on the port's TX queue.
237  */
238 void efx_link_status_changed(struct efx_nic *efx)
239 {
240 	struct efx_link_state *link_state = &efx->link_state;
241 
242 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
243 	 * that no events are triggered between unregister_netdev() and the
244 	 * driver unloading. A more general condition is that NETDEV_CHANGE
245 	 * can only be generated between NETDEV_UP and NETDEV_DOWN
246 	 */
247 	if (!netif_running(efx->net_dev))
248 		return;
249 
250 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
251 		efx->n_link_state_changes++;
252 
253 		if (link_state->up)
254 			netif_carrier_on(efx->net_dev);
255 		else
256 			netif_carrier_off(efx->net_dev);
257 	}
258 
259 	/* Status message for kernel log */
260 	if (link_state->up)
261 		netif_info(efx, link, efx->net_dev,
262 			   "link up at %uMbps %s-duplex (MTU %d)\n",
263 			   link_state->speed, link_state->fd ? "full" : "half",
264 			   efx->net_dev->mtu);
265 	else
266 		netif_info(efx, link, efx->net_dev, "link down\n");
267 }
268 
269 unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
270 {
271 	/* The maximum MTU that we can fit in a single page, allowing for
272 	 * framing, overhead and XDP headroom + tailroom.
273 	 */
274 	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
275 		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
276 		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
277 
278 	return PAGE_SIZE - overhead;
279 }
280 
281 /* Context: process, rtnl_lock() held. */
282 int efx_change_mtu(struct net_device *net_dev, int new_mtu)
283 {
284 	struct efx_nic *efx = efx_netdev_priv(net_dev);
285 	int rc;
286 
287 	rc = efx_check_disabled(efx);
288 	if (rc)
289 		return rc;
290 
291 	if (rtnl_dereference(efx->xdp_prog) &&
292 	    new_mtu > efx_xdp_max_mtu(efx)) {
293 		netif_err(efx, drv, efx->net_dev,
294 			  "Requested MTU of %d too big for XDP (max: %d)\n",
295 			  new_mtu, efx_xdp_max_mtu(efx));
296 		return -EINVAL;
297 	}
298 
299 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
300 
301 	efx_device_detach_sync(efx);
302 	efx_stop_all(efx);
303 
304 	mutex_lock(&efx->mac_lock);
305 	net_dev->mtu = new_mtu;
306 	efx_mac_reconfigure(efx, true);
307 	mutex_unlock(&efx->mac_lock);
308 
309 	efx_start_all(efx);
310 	efx_device_attach_if_not_resetting(efx);
311 	return 0;
312 }
313 
314 /**************************************************************************
315  *
316  * Hardware monitor
317  *
318  **************************************************************************/
319 
320 /* Run periodically off the general workqueue */
321 static void efx_monitor(struct work_struct *data)
322 {
323 	struct efx_nic *efx = container_of(data, struct efx_nic,
324 					   monitor_work.work);
325 
326 	netif_vdbg(efx, timer, efx->net_dev,
327 		   "hardware monitor executing on CPU %d\n",
328 		   raw_smp_processor_id());
329 	BUG_ON(efx->type->monitor == NULL);
330 
331 	/* If the mac_lock is already held then it is likely a port
332 	 * reconfiguration is already in place, which will likely do
333 	 * most of the work of monitor() anyway.
334 	 */
335 	if (mutex_trylock(&efx->mac_lock)) {
336 		if (efx->port_enabled && efx->type->monitor)
337 			efx->type->monitor(efx);
338 		mutex_unlock(&efx->mac_lock);
339 	}
340 
341 	efx_start_monitor(efx);
342 }
343 
344 void efx_start_monitor(struct efx_nic *efx)
345 {
346 	if (efx->type->monitor)
347 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
348 				   efx_monitor_interval);
349 }
350 
351 /**************************************************************************
352  *
353  * Event queue processing
354  *
355  *************************************************************************/
356 
357 /* Channels are shutdown and reinitialised whilst the NIC is running
358  * to propagate configuration changes (mtu, checksum offload), or
359  * to clear hardware error conditions
360  */
361 static void efx_start_datapath(struct efx_nic *efx)
362 {
363 	netdev_features_t old_features = efx->net_dev->features;
364 	bool old_rx_scatter = efx->rx_scatter;
365 	size_t rx_buf_len;
366 
367 	/* Calculate the rx buffer allocation parameters required to
368 	 * support the current MTU, including padding for header
369 	 * alignment and overruns.
370 	 */
371 	efx->rx_dma_len = (efx->rx_prefix_size +
372 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
373 			   efx->type->rx_buffer_padding);
374 	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
375 		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
376 
377 	if (rx_buf_len <= PAGE_SIZE) {
378 		efx->rx_scatter = efx->type->always_rx_scatter;
379 		efx->rx_buffer_order = 0;
380 	} else if (efx->type->can_rx_scatter) {
381 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
382 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
383 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
384 				       EFX_RX_BUF_ALIGNMENT) >
385 			     PAGE_SIZE);
386 		efx->rx_scatter = true;
387 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
388 		efx->rx_buffer_order = 0;
389 	} else {
390 		efx->rx_scatter = false;
391 		efx->rx_buffer_order = get_order(rx_buf_len);
392 	}
393 
394 	efx_rx_config_page_split(efx);
395 	if (efx->rx_buffer_order)
396 		netif_dbg(efx, drv, efx->net_dev,
397 			  "RX buf len=%u; page order=%u batch=%u\n",
398 			  efx->rx_dma_len, efx->rx_buffer_order,
399 			  efx->rx_pages_per_batch);
400 	else
401 		netif_dbg(efx, drv, efx->net_dev,
402 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
403 			  efx->rx_dma_len, efx->rx_page_buf_step,
404 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
405 
406 	/* Restore previously fixed features in hw_features and remove
407 	 * features which are fixed now
408 	 */
409 	efx->net_dev->hw_features |= efx->net_dev->features;
410 	efx->net_dev->hw_features &= ~efx->fixed_features;
411 	efx->net_dev->features |= efx->fixed_features;
412 	if (efx->net_dev->features != old_features)
413 		netdev_features_change(efx->net_dev);
414 
415 	/* RX filters may also have scatter-enabled flags */
416 	if ((efx->rx_scatter != old_rx_scatter) &&
417 	    efx->type->filter_update_rx_scatter)
418 		efx->type->filter_update_rx_scatter(efx);
419 
420 	/* We must keep at least one descriptor in a TX ring empty.
421 	 * We could avoid this when the queue size does not exactly
422 	 * match the hardware ring size, but it's not that important.
423 	 * Therefore we stop the queue when one more skb might fill
424 	 * the ring completely.  We wake it when half way back to
425 	 * empty.
426 	 */
427 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
428 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
429 
430 	/* Initialise the channels */
431 	efx_start_channels(efx);
432 
433 	efx_ptp_start_datapath(efx);
434 
435 	if (netif_device_present(efx->net_dev))
436 		netif_tx_wake_all_queues(efx->net_dev);
437 }
438 
439 static void efx_stop_datapath(struct efx_nic *efx)
440 {
441 	EFX_ASSERT_RESET_SERIALISED(efx);
442 	BUG_ON(efx->port_enabled);
443 
444 	efx_ptp_stop_datapath(efx);
445 
446 	efx_stop_channels(efx);
447 }
448 
449 /**************************************************************************
450  *
451  * Port handling
452  *
453  **************************************************************************/
454 
455 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
456  * force the Autoneg bit on.
457  */
458 void efx_link_clear_advertising(struct efx_nic *efx)
459 {
460 	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
461 	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
462 }
463 
464 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
465 {
466 	efx->wanted_fc = wanted_fc;
467 	if (efx->link_advertising[0]) {
468 		if (wanted_fc & EFX_FC_RX)
469 			efx->link_advertising[0] |= (ADVERTISED_Pause |
470 						     ADVERTISED_Asym_Pause);
471 		else
472 			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
473 						      ADVERTISED_Asym_Pause);
474 		if (wanted_fc & EFX_FC_TX)
475 			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
476 	}
477 }
478 
479 static void efx_start_port(struct efx_nic *efx)
480 {
481 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
482 	BUG_ON(efx->port_enabled);
483 
484 	mutex_lock(&efx->mac_lock);
485 	efx->port_enabled = true;
486 
487 	/* Ensure MAC ingress/egress is enabled */
488 	efx_mac_reconfigure(efx, false);
489 
490 	mutex_unlock(&efx->mac_lock);
491 }
492 
493 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
494  * and the async self-test, wait for them to finish and prevent them
495  * being scheduled again.  This doesn't cover online resets, which
496  * should only be cancelled when removing the device.
497  */
498 static void efx_stop_port(struct efx_nic *efx)
499 {
500 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
501 
502 	EFX_ASSERT_RESET_SERIALISED(efx);
503 
504 	mutex_lock(&efx->mac_lock);
505 	efx->port_enabled = false;
506 	mutex_unlock(&efx->mac_lock);
507 
508 	/* Serialise against efx_set_multicast_list() */
509 	netif_addr_lock_bh(efx->net_dev);
510 	netif_addr_unlock_bh(efx->net_dev);
511 
512 	cancel_delayed_work_sync(&efx->monitor_work);
513 	efx_selftest_async_cancel(efx);
514 	cancel_work_sync(&efx->mac_work);
515 }
516 
517 /* If the interface is supposed to be running but is not, start
518  * the hardware and software data path, regular activity for the port
519  * (MAC statistics, link polling, etc.) and schedule the port to be
520  * reconfigured.  Interrupts must already be enabled.  This function
521  * is safe to call multiple times, so long as the NIC is not disabled.
522  * Requires the RTNL lock.
523  */
524 void efx_start_all(struct efx_nic *efx)
525 {
526 	EFX_ASSERT_RESET_SERIALISED(efx);
527 	BUG_ON(efx->state == STATE_DISABLED);
528 
529 	/* Check that it is appropriate to restart the interface. All
530 	 * of these flags are safe to read under just the rtnl lock
531 	 */
532 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
533 	    efx->reset_pending)
534 		return;
535 
536 	efx_start_port(efx);
537 	efx_start_datapath(efx);
538 
539 	/* Start the hardware monitor if there is one */
540 	efx_start_monitor(efx);
541 
542 	efx_selftest_async_start(efx);
543 
544 	/* Link state detection is normally event-driven; we have
545 	 * to poll now because we could have missed a change
546 	 */
547 	mutex_lock(&efx->mac_lock);
548 	if (efx_mcdi_phy_poll(efx))
549 		efx_link_status_changed(efx);
550 	mutex_unlock(&efx->mac_lock);
551 
552 	if (efx->type->start_stats) {
553 		efx->type->start_stats(efx);
554 		efx->type->pull_stats(efx);
555 		spin_lock_bh(&efx->stats_lock);
556 		efx->type->update_stats(efx, NULL, NULL);
557 		spin_unlock_bh(&efx->stats_lock);
558 	}
559 }
560 
561 /* Quiesce the hardware and software data path, and regular activity
562  * for the port without bringing the link down.  Safe to call multiple
563  * times with the NIC in almost any state, but interrupts should be
564  * enabled.  Requires the RTNL lock.
565  */
566 void efx_stop_all(struct efx_nic *efx)
567 {
568 	EFX_ASSERT_RESET_SERIALISED(efx);
569 
570 	/* port_enabled can be read safely under the rtnl lock */
571 	if (!efx->port_enabled)
572 		return;
573 
574 	if (efx->type->update_stats) {
575 		/* update stats before we go down so we can accurately count
576 		 * rx_nodesc_drops
577 		 */
578 		efx->type->pull_stats(efx);
579 		spin_lock_bh(&efx->stats_lock);
580 		efx->type->update_stats(efx, NULL, NULL);
581 		spin_unlock_bh(&efx->stats_lock);
582 		efx->type->stop_stats(efx);
583 	}
584 
585 	efx_stop_port(efx);
586 
587 	/* Stop the kernel transmit interface.  This is only valid if
588 	 * the device is stopped or detached; otherwise the watchdog
589 	 * may fire immediately.
590 	 */
591 	WARN_ON(netif_running(efx->net_dev) &&
592 		netif_device_present(efx->net_dev));
593 	netif_tx_disable(efx->net_dev);
594 
595 	efx_stop_datapath(efx);
596 }
597 
598 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
599 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
600 {
601 	struct efx_nic *efx = efx_netdev_priv(net_dev);
602 
603 	spin_lock_bh(&efx->stats_lock);
604 	efx_nic_update_stats_atomic(efx, NULL, stats);
605 	spin_unlock_bh(&efx->stats_lock);
606 }
607 
608 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
609  * the MAC appropriately. All other PHY configuration changes are pushed
610  * through phy_op->set_settings(), and pushed asynchronously to the MAC
611  * through efx_monitor().
612  *
613  * Callers must hold the mac_lock
614  */
615 int __efx_reconfigure_port(struct efx_nic *efx)
616 {
617 	enum efx_phy_mode phy_mode;
618 	int rc = 0;
619 
620 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
621 
622 	/* Disable PHY transmit in mac level loopbacks */
623 	phy_mode = efx->phy_mode;
624 	if (LOOPBACK_INTERNAL(efx))
625 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
626 	else
627 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
628 
629 	if (efx->type->reconfigure_port)
630 		rc = efx->type->reconfigure_port(efx);
631 
632 	if (rc)
633 		efx->phy_mode = phy_mode;
634 
635 	return rc;
636 }
637 
638 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
639  * disabled.
640  */
641 int efx_reconfigure_port(struct efx_nic *efx)
642 {
643 	int rc;
644 
645 	EFX_ASSERT_RESET_SERIALISED(efx);
646 
647 	mutex_lock(&efx->mac_lock);
648 	rc = __efx_reconfigure_port(efx);
649 	mutex_unlock(&efx->mac_lock);
650 
651 	return rc;
652 }
653 
654 /**************************************************************************
655  *
656  * Device reset and suspend
657  *
658  **************************************************************************/
659 
660 static void efx_wait_for_bist_end(struct efx_nic *efx)
661 {
662 	int i;
663 
664 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
665 		if (efx_mcdi_poll_reboot(efx))
666 			goto out;
667 		msleep(BIST_WAIT_DELAY_MS);
668 	}
669 
670 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
671 out:
672 	/* Either way unset the BIST flag. If we found no reboot we probably
673 	 * won't recover, but we should try.
674 	 */
675 	efx->mc_bist_for_other_fn = false;
676 }
677 
678 /* Try recovery mechanisms.
679  * For now only EEH is supported.
680  * Returns 0 if the recovery mechanisms are unsuccessful.
681  * Returns a non-zero value otherwise.
682  */
683 int efx_try_recovery(struct efx_nic *efx)
684 {
685 #ifdef CONFIG_EEH
686 	/* A PCI error can occur and not be seen by EEH because nothing
687 	 * happens on the PCI bus. In this case the driver may fail and
688 	 * schedule a 'recover or reset', leading to this recovery handler.
689 	 * Manually call the eeh failure check function.
690 	 */
691 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
692 	if (eeh_dev_check_failure(eehdev)) {
693 		/* The EEH mechanisms will handle the error and reset the
694 		 * device if necessary.
695 		 */
696 		return 1;
697 	}
698 #endif
699 	return 0;
700 }
701 
702 /* Tears down the entire software state and most of the hardware state
703  * before reset.
704  */
705 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
706 {
707 	EFX_ASSERT_RESET_SERIALISED(efx);
708 
709 	if (method == RESET_TYPE_MCDI_TIMEOUT)
710 		efx->type->prepare_flr(efx);
711 
712 	efx_stop_all(efx);
713 	efx_disable_interrupts(efx);
714 
715 	mutex_lock(&efx->mac_lock);
716 	down_write(&efx->filter_sem);
717 	mutex_lock(&efx->rss_lock);
718 	efx->type->fini(efx);
719 }
720 
721 /* Context: netif_tx_lock held, BHs disabled. */
722 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
723 {
724 	struct efx_nic *efx = efx_netdev_priv(net_dev);
725 
726 	netif_err(efx, tx_err, efx->net_dev,
727 		  "TX stuck with port_enabled=%d: resetting channels\n",
728 		  efx->port_enabled);
729 
730 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
731 }
732 
733 /* This function will always ensure that the locks acquired in
734  * efx_reset_down() are released. A failure return code indicates
735  * that we were unable to reinitialise the hardware, and the
736  * driver should be disabled. If ok is false, then the rx and tx
737  * engines are not restarted, pending a RESET_DISABLE.
738  */
739 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
740 {
741 	int rc;
742 
743 	EFX_ASSERT_RESET_SERIALISED(efx);
744 
745 	if (method == RESET_TYPE_MCDI_TIMEOUT)
746 		efx->type->finish_flr(efx);
747 
748 	/* Ensure that SRAM is initialised even if we're disabling the device */
749 	rc = efx->type->init(efx);
750 	if (rc) {
751 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
752 		goto fail;
753 	}
754 
755 	if (!ok)
756 		goto fail;
757 
758 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
759 	    method != RESET_TYPE_DATAPATH) {
760 		rc = efx_mcdi_port_reconfigure(efx);
761 		if (rc && rc != -EPERM)
762 			netif_err(efx, drv, efx->net_dev,
763 				  "could not restore PHY settings\n");
764 	}
765 
766 	rc = efx_enable_interrupts(efx);
767 	if (rc)
768 		goto fail;
769 
770 #ifdef CONFIG_SFC_SRIOV
771 	rc = efx->type->vswitching_restore(efx);
772 	if (rc) /* not fatal; the PF will still work fine */
773 		netif_warn(efx, probe, efx->net_dev,
774 			   "failed to restore vswitching rc=%d;"
775 			   " VFs may not function\n", rc);
776 #endif
777 
778 	if (efx->type->rx_restore_rss_contexts)
779 		efx->type->rx_restore_rss_contexts(efx);
780 	mutex_unlock(&efx->rss_lock);
781 	efx->type->filter_table_restore(efx);
782 	up_write(&efx->filter_sem);
783 
784 	mutex_unlock(&efx->mac_lock);
785 
786 	efx_start_all(efx);
787 
788 	if (efx->type->udp_tnl_push_ports)
789 		efx->type->udp_tnl_push_ports(efx);
790 
791 	return 0;
792 
793 fail:
794 	efx->port_initialized = false;
795 
796 	mutex_unlock(&efx->rss_lock);
797 	up_write(&efx->filter_sem);
798 	mutex_unlock(&efx->mac_lock);
799 
800 	return rc;
801 }
802 
803 /* Reset the NIC using the specified method.  Note that the reset may
804  * fail, in which case the card will be left in an unusable state.
805  *
806  * Caller must hold the rtnl_lock.
807  */
808 int efx_reset(struct efx_nic *efx, enum reset_type method)
809 {
810 	int rc, rc2 = 0;
811 	bool disabled;
812 
813 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
814 		   RESET_TYPE(method));
815 
816 	efx_device_detach_sync(efx);
817 	/* efx_reset_down() grabs locks that prevent recovery on EF100.
818 	 * EF100 reset is handled in the efx_nic_type callback below.
819 	 */
820 	if (efx_nic_rev(efx) != EFX_REV_EF100)
821 		efx_reset_down(efx, method);
822 
823 	rc = efx->type->reset(efx, method);
824 	if (rc) {
825 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
826 		goto out;
827 	}
828 
829 	/* Clear flags for the scopes we covered.  We assume the NIC and
830 	 * driver are now quiescent so that there is no race here.
831 	 */
832 	if (method < RESET_TYPE_MAX_METHOD)
833 		efx->reset_pending &= -(1 << (method + 1));
834 	else /* it doesn't fit into the well-ordered scope hierarchy */
835 		__clear_bit(method, &efx->reset_pending);
836 
837 	/* Reinitialise bus-mastering, which may have been turned off before
838 	 * the reset was scheduled. This is still appropriate, even in the
839 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
840 	 * can respond to requests.
841 	 */
842 	pci_set_master(efx->pci_dev);
843 
844 out:
845 	/* Leave device stopped if necessary */
846 	disabled = rc ||
847 		method == RESET_TYPE_DISABLE ||
848 		method == RESET_TYPE_RECOVER_OR_DISABLE;
849 	if (efx_nic_rev(efx) != EFX_REV_EF100)
850 		rc2 = efx_reset_up(efx, method, !disabled);
851 	if (rc2) {
852 		disabled = true;
853 		if (!rc)
854 			rc = rc2;
855 	}
856 
857 	if (disabled) {
858 		dev_close(efx->net_dev);
859 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
860 		efx->state = STATE_DISABLED;
861 	} else {
862 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
863 		efx_device_attach_if_not_resetting(efx);
864 	}
865 	return rc;
866 }
867 
868 /* The worker thread exists so that code that cannot sleep can
869  * schedule a reset for later.
870  */
871 static void efx_reset_work(struct work_struct *data)
872 {
873 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
874 	unsigned long pending;
875 	enum reset_type method;
876 
877 	pending = READ_ONCE(efx->reset_pending);
878 	method = fls(pending) - 1;
879 
880 	if (method == RESET_TYPE_MC_BIST)
881 		efx_wait_for_bist_end(efx);
882 
883 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
884 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
885 	    efx_try_recovery(efx))
886 		return;
887 
888 	if (!pending)
889 		return;
890 
891 	rtnl_lock();
892 
893 	/* We checked the state in efx_schedule_reset() but it may
894 	 * have changed by now.  Now that we have the RTNL lock,
895 	 * it cannot change again.
896 	 */
897 	if (efx_net_active(efx->state))
898 		(void)efx_reset(efx, method);
899 
900 	rtnl_unlock();
901 }
902 
903 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
904 {
905 	enum reset_type method;
906 
907 	if (efx_recovering(efx->state)) {
908 		netif_dbg(efx, drv, efx->net_dev,
909 			  "recovering: skip scheduling %s reset\n",
910 			  RESET_TYPE(type));
911 		return;
912 	}
913 
914 	switch (type) {
915 	case RESET_TYPE_INVISIBLE:
916 	case RESET_TYPE_ALL:
917 	case RESET_TYPE_RECOVER_OR_ALL:
918 	case RESET_TYPE_WORLD:
919 	case RESET_TYPE_DISABLE:
920 	case RESET_TYPE_RECOVER_OR_DISABLE:
921 	case RESET_TYPE_DATAPATH:
922 	case RESET_TYPE_MC_BIST:
923 	case RESET_TYPE_MCDI_TIMEOUT:
924 		method = type;
925 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
926 			  RESET_TYPE(method));
927 		break;
928 	default:
929 		method = efx->type->map_reset_reason(type);
930 		netif_dbg(efx, drv, efx->net_dev,
931 			  "scheduling %s reset for %s\n",
932 			  RESET_TYPE(method), RESET_TYPE(type));
933 		break;
934 	}
935 
936 	set_bit(method, &efx->reset_pending);
937 	smp_mb(); /* ensure we change reset_pending before checking state */
938 
939 	/* If we're not READY then just leave the flags set as the cue
940 	 * to abort probing or reschedule the reset later.
941 	 */
942 	if (!efx_net_active(READ_ONCE(efx->state)))
943 		return;
944 
945 	/* efx_process_channel() will no longer read events once a
946 	 * reset is scheduled. So switch back to poll'd MCDI completions.
947 	 */
948 	efx_mcdi_mode_poll(efx);
949 
950 	efx_queue_reset_work(efx);
951 }
952 
953 /**************************************************************************
954  *
955  * Dummy NIC operations
956  *
957  * Can be used for some unimplemented operations
958  * Needed so all function pointers are valid and do not have to be tested
959  * before use
960  *
961  **************************************************************************/
962 int efx_port_dummy_op_int(struct efx_nic *efx)
963 {
964 	return 0;
965 }
966 void efx_port_dummy_op_void(struct efx_nic *efx) {}
967 
968 /**************************************************************************
969  *
970  * Data housekeeping
971  *
972  **************************************************************************/
973 
974 /* This zeroes out and then fills in the invariants in a struct
975  * efx_nic (including all sub-structures).
976  */
977 int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev)
978 {
979 	int rc = -ENOMEM;
980 
981 	/* Initialise common structures */
982 	INIT_LIST_HEAD(&efx->node);
983 	INIT_LIST_HEAD(&efx->secondary_list);
984 	spin_lock_init(&efx->biu_lock);
985 #ifdef CONFIG_SFC_MTD
986 	INIT_LIST_HEAD(&efx->mtd_list);
987 #endif
988 	INIT_WORK(&efx->reset_work, efx_reset_work);
989 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
990 	efx_selftest_async_init(efx);
991 	efx->pci_dev = pci_dev;
992 	efx->msg_enable = debug;
993 	efx->state = STATE_UNINIT;
994 	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
995 
996 	efx->rx_prefix_size = efx->type->rx_prefix_size;
997 	efx->rx_ip_align =
998 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
999 	efx->rx_packet_hash_offset =
1000 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1001 	efx->rx_packet_ts_offset =
1002 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1003 	INIT_LIST_HEAD(&efx->rss_context.list);
1004 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1005 	mutex_init(&efx->rss_lock);
1006 	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1007 	spin_lock_init(&efx->stats_lock);
1008 	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1009 	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1010 	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1011 	mutex_init(&efx->mac_lock);
1012 	init_rwsem(&efx->filter_sem);
1013 #ifdef CONFIG_RFS_ACCEL
1014 	mutex_init(&efx->rps_mutex);
1015 	spin_lock_init(&efx->rps_hash_lock);
1016 	/* Failure to allocate is not fatal, but may degrade ARFS performance */
1017 	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1018 				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1019 #endif
1020 	spin_lock_init(&efx->vf_reps_lock);
1021 	INIT_LIST_HEAD(&efx->vf_reps);
1022 	INIT_WORK(&efx->mac_work, efx_mac_work);
1023 	init_waitqueue_head(&efx->flush_wq);
1024 
1025 	efx->tx_queues_per_channel = 1;
1026 	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1027 	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1028 
1029 	efx->mem_bar = UINT_MAX;
1030 
1031 	rc = efx_init_channels(efx);
1032 	if (rc)
1033 		goto fail;
1034 
1035 	/* Would be good to use the net_dev name, but we're too early */
1036 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1037 		 pci_name(pci_dev));
1038 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1039 	if (!efx->workqueue) {
1040 		rc = -ENOMEM;
1041 		goto fail;
1042 	}
1043 
1044 	return 0;
1045 
1046 fail:
1047 	efx_fini_struct(efx);
1048 	return rc;
1049 }
1050 
1051 void efx_fini_struct(struct efx_nic *efx)
1052 {
1053 #ifdef CONFIG_RFS_ACCEL
1054 	kfree(efx->rps_hash_table);
1055 #endif
1056 
1057 	efx_fini_channels(efx);
1058 
1059 	kfree(efx->vpd_sn);
1060 
1061 	if (efx->workqueue) {
1062 		destroy_workqueue(efx->workqueue);
1063 		efx->workqueue = NULL;
1064 	}
1065 }
1066 
1067 /* This configures the PCI device to enable I/O and DMA. */
1068 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1069 		unsigned int mem_map_size)
1070 {
1071 	struct pci_dev *pci_dev = efx->pci_dev;
1072 	int rc;
1073 
1074 	efx->mem_bar = UINT_MAX;
1075 	pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar);
1076 
1077 	rc = pci_enable_device(pci_dev);
1078 	if (rc) {
1079 		pci_err(pci_dev, "failed to enable PCI device\n");
1080 		goto fail1;
1081 	}
1082 
1083 	pci_set_master(pci_dev);
1084 
1085 	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1086 	if (rc) {
1087 		pci_err(efx->pci_dev, "could not find a suitable DMA mask\n");
1088 		goto fail2;
1089 	}
1090 	pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask);
1091 
1092 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1093 	if (!efx->membase_phys) {
1094 		pci_err(efx->pci_dev,
1095 			"ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n",
1096 			bar);
1097 		rc = -ENODEV;
1098 		goto fail3;
1099 	}
1100 
1101 	rc = pci_request_region(pci_dev, bar, "sfc");
1102 	if (rc) {
1103 		pci_err(efx->pci_dev,
1104 			"request for memory BAR[%d] failed\n", bar);
1105 		rc = -EIO;
1106 		goto fail3;
1107 	}
1108 	efx->mem_bar = bar;
1109 	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1110 	if (!efx->membase) {
1111 		pci_err(efx->pci_dev,
1112 			"could not map memory BAR[%d] at %llx+%x\n", bar,
1113 			(unsigned long long)efx->membase_phys, mem_map_size);
1114 		rc = -ENOMEM;
1115 		goto fail4;
1116 	}
1117 	pci_dbg(efx->pci_dev,
1118 		"memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1119 		(unsigned long long)efx->membase_phys, mem_map_size,
1120 		efx->membase);
1121 
1122 	return 0;
1123 
1124 fail4:
1125 	pci_release_region(efx->pci_dev, bar);
1126 fail3:
1127 	efx->membase_phys = 0;
1128 fail2:
1129 	pci_disable_device(efx->pci_dev);
1130 fail1:
1131 	return rc;
1132 }
1133 
1134 void efx_fini_io(struct efx_nic *efx)
1135 {
1136 	pci_dbg(efx->pci_dev, "shutting down I/O\n");
1137 
1138 	if (efx->membase) {
1139 		iounmap(efx->membase);
1140 		efx->membase = NULL;
1141 	}
1142 
1143 	if (efx->membase_phys) {
1144 		pci_release_region(efx->pci_dev, efx->mem_bar);
1145 		efx->membase_phys = 0;
1146 		efx->mem_bar = UINT_MAX;
1147 	}
1148 
1149 	/* Don't disable bus-mastering if VFs are assigned */
1150 	if (!pci_vfs_assigned(efx->pci_dev))
1151 		pci_disable_device(efx->pci_dev);
1152 }
1153 
1154 #ifdef CONFIG_SFC_MCDI_LOGGING
1155 static ssize_t mcdi_logging_show(struct device *dev,
1156 				 struct device_attribute *attr,
1157 				 char *buf)
1158 {
1159 	struct efx_nic *efx = dev_get_drvdata(dev);
1160 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1161 
1162 	return sysfs_emit(buf, "%d\n", mcdi->logging_enabled);
1163 }
1164 
1165 static ssize_t mcdi_logging_store(struct device *dev,
1166 				  struct device_attribute *attr,
1167 				  const char *buf, size_t count)
1168 {
1169 	struct efx_nic *efx = dev_get_drvdata(dev);
1170 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1171 	bool enable = count > 0 && *buf != '0';
1172 
1173 	mcdi->logging_enabled = enable;
1174 	return count;
1175 }
1176 
1177 static DEVICE_ATTR_RW(mcdi_logging);
1178 
1179 void efx_init_mcdi_logging(struct efx_nic *efx)
1180 {
1181 	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1182 
1183 	if (rc) {
1184 		netif_warn(efx, drv, efx->net_dev,
1185 			   "failed to init net dev attributes\n");
1186 	}
1187 }
1188 
1189 void efx_fini_mcdi_logging(struct efx_nic *efx)
1190 {
1191 	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1192 }
1193 #endif
1194 
1195 /* A PCI error affecting this device was detected.
1196  * At this point MMIO and DMA may be disabled.
1197  * Stop the software path and request a slot reset.
1198  */
1199 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1200 					      pci_channel_state_t state)
1201 {
1202 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1203 	struct efx_nic *efx = pci_get_drvdata(pdev);
1204 
1205 	if (state == pci_channel_io_perm_failure)
1206 		return PCI_ERS_RESULT_DISCONNECT;
1207 
1208 	rtnl_lock();
1209 
1210 	if (efx->state != STATE_DISABLED) {
1211 		efx->state = efx_recover(efx->state);
1212 		efx->reset_pending = 0;
1213 
1214 		efx_device_detach_sync(efx);
1215 
1216 		if (efx_net_active(efx->state)) {
1217 			efx_stop_all(efx);
1218 			efx_disable_interrupts(efx);
1219 		}
1220 
1221 		status = PCI_ERS_RESULT_NEED_RESET;
1222 	} else {
1223 		/* If the interface is disabled we don't want to do anything
1224 		 * with it.
1225 		 */
1226 		status = PCI_ERS_RESULT_RECOVERED;
1227 	}
1228 
1229 	rtnl_unlock();
1230 
1231 	pci_disable_device(pdev);
1232 
1233 	return status;
1234 }
1235 
1236 /* Fake a successful reset, which will be performed later in efx_io_resume. */
1237 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1238 {
1239 	struct efx_nic *efx = pci_get_drvdata(pdev);
1240 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1241 
1242 	if (pci_enable_device(pdev)) {
1243 		netif_err(efx, hw, efx->net_dev,
1244 			  "Cannot re-enable PCI device after reset.\n");
1245 		status =  PCI_ERS_RESULT_DISCONNECT;
1246 	}
1247 
1248 	return status;
1249 }
1250 
1251 /* Perform the actual reset and resume I/O operations. */
1252 static void efx_io_resume(struct pci_dev *pdev)
1253 {
1254 	struct efx_nic *efx = pci_get_drvdata(pdev);
1255 	int rc;
1256 
1257 	rtnl_lock();
1258 
1259 	if (efx->state == STATE_DISABLED)
1260 		goto out;
1261 
1262 	rc = efx_reset(efx, RESET_TYPE_ALL);
1263 	if (rc) {
1264 		netif_err(efx, hw, efx->net_dev,
1265 			  "efx_reset failed after PCI error (%d)\n", rc);
1266 	} else {
1267 		efx->state = efx_recovered(efx->state);
1268 		netif_dbg(efx, hw, efx->net_dev,
1269 			  "Done resetting and resuming IO after PCI error.\n");
1270 	}
1271 
1272 out:
1273 	rtnl_unlock();
1274 }
1275 
1276 /* For simplicity and reliability, we always require a slot reset and try to
1277  * reset the hardware when a pci error affecting the device is detected.
1278  * We leave both the link_reset and mmio_enabled callback unimplemented:
1279  * with our request for slot reset the mmio_enabled callback will never be
1280  * called, and the link_reset callback is not used by AER or EEH mechanisms.
1281  */
1282 const struct pci_error_handlers efx_err_handlers = {
1283 	.error_detected = efx_io_error_detected,
1284 	.slot_reset	= efx_io_slot_reset,
1285 	.resume		= efx_io_resume,
1286 };
1287 
1288 /* Determine whether the NIC will be able to handle TX offloads for a given
1289  * encapsulated packet.
1290  */
1291 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1292 {
1293 	struct gre_base_hdr *greh;
1294 	__be16 dst_port;
1295 	u8 ipproto;
1296 
1297 	/* Does the NIC support encap offloads?
1298 	 * If not, we should never get here, because we shouldn't have
1299 	 * advertised encap offload feature flags in the first place.
1300 	 */
1301 	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1302 		return false;
1303 
1304 	/* Determine encapsulation protocol in use */
1305 	switch (skb->protocol) {
1306 	case htons(ETH_P_IP):
1307 		ipproto = ip_hdr(skb)->protocol;
1308 		break;
1309 	case htons(ETH_P_IPV6):
1310 		/* If there are extension headers, this will cause us to
1311 		 * think we can't offload something that we maybe could have.
1312 		 */
1313 		ipproto = ipv6_hdr(skb)->nexthdr;
1314 		break;
1315 	default:
1316 		/* Not IP, so can't offload it */
1317 		return false;
1318 	}
1319 	switch (ipproto) {
1320 	case IPPROTO_GRE:
1321 		/* We support NVGRE but not IP over GRE or random gretaps.
1322 		 * Specifically, the NIC will accept GRE as encapsulated if
1323 		 * the inner protocol is Ethernet, but only handle it
1324 		 * correctly if the GRE header is 8 bytes long.  Moreover,
1325 		 * it will not update the Checksum or Sequence Number fields
1326 		 * if they are present.  (The Routing Present flag,
1327 		 * GRE_ROUTING, cannot be set else the header would be more
1328 		 * than 8 bytes long; so we don't have to worry about it.)
1329 		 */
1330 		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1331 			return false;
1332 		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1333 			return false;
1334 		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1335 			return false;
1336 		greh = (struct gre_base_hdr *)skb_transport_header(skb);
1337 		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1338 	case IPPROTO_UDP:
1339 		/* If the port is registered for a UDP tunnel, we assume the
1340 		 * packet is for that tunnel, and the NIC will handle it as
1341 		 * such.  If not, the NIC won't know what to do with it.
1342 		 */
1343 		dst_port = udp_hdr(skb)->dest;
1344 		return efx->type->udp_tnl_has_port(efx, dst_port);
1345 	default:
1346 		return false;
1347 	}
1348 }
1349 
1350 netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1351 				     netdev_features_t features)
1352 {
1353 	struct efx_nic *efx = efx_netdev_priv(dev);
1354 
1355 	if (skb->encapsulation) {
1356 		if (features & NETIF_F_GSO_MASK)
1357 			/* Hardware can only do TSO with at most 208 bytes
1358 			 * of headers.
1359 			 */
1360 			if (skb_inner_transport_offset(skb) >
1361 			    EFX_TSO2_MAX_HDRLEN)
1362 				features &= ~(NETIF_F_GSO_MASK);
1363 		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1364 			if (!efx_can_encap_offloads(efx, skb))
1365 				features &= ~(NETIF_F_GSO_MASK |
1366 					      NETIF_F_CSUM_MASK);
1367 	}
1368 	return features;
1369 }
1370 
1371 int efx_get_phys_port_id(struct net_device *net_dev,
1372 			 struct netdev_phys_item_id *ppid)
1373 {
1374 	struct efx_nic *efx = efx_netdev_priv(net_dev);
1375 
1376 	if (efx->type->get_phys_port_id)
1377 		return efx->type->get_phys_port_id(efx, ppid);
1378 	else
1379 		return -EOPNOTSUPP;
1380 }
1381 
1382 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1383 {
1384 	struct efx_nic *efx = efx_netdev_priv(net_dev);
1385 
1386 	if (snprintf(name, len, "p%u", efx->port_num) >= len)
1387 		return -EINVAL;
1388 	return 0;
1389 }
1390 
1391 void efx_detach_reps(struct efx_nic *efx)
1392 {
1393 	struct net_device *rep_dev;
1394 	struct efx_rep *efv;
1395 
1396 	ASSERT_RTNL();
1397 	netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n");
1398 	list_for_each_entry(efv, &efx->vf_reps, list) {
1399 		rep_dev = efv->net_dev;
1400 		if (!rep_dev)
1401 			continue;
1402 		netif_carrier_off(rep_dev);
1403 		/* See efx_device_detach_sync() */
1404 		netif_tx_lock_bh(rep_dev);
1405 		netif_tx_stop_all_queues(rep_dev);
1406 		netif_tx_unlock_bh(rep_dev);
1407 	}
1408 }
1409 
1410 void efx_attach_reps(struct efx_nic *efx)
1411 {
1412 	struct net_device *rep_dev;
1413 	struct efx_rep *efv;
1414 
1415 	ASSERT_RTNL();
1416 	netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n");
1417 	list_for_each_entry(efv, &efx->vf_reps, list) {
1418 		rep_dev = efv->net_dev;
1419 		if (!rep_dev)
1420 			continue;
1421 		netif_tx_wake_all_queues(rep_dev);
1422 		netif_carrier_on(rep_dev);
1423 	}
1424 }
1425