1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include "efx_common.h" 15 #include "efx_channels.h" 16 #include "efx.h" 17 #include "mcdi.h" 18 #include "selftest.h" 19 #include "rx_common.h" 20 #include "tx_common.h" 21 #include "nic.h" 22 #include "mcdi_port_common.h" 23 #include "io.h" 24 #include "mcdi_pcol.h" 25 26 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 27 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 28 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 29 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 30 module_param(debug, uint, 0); 31 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 32 33 /* This is the time (in jiffies) between invocations of the hardware 34 * monitor. 35 * On Falcon-based NICs, this will: 36 * - Check the on-board hardware monitor; 37 * - Poll the link state and reconfigure the hardware as necessary. 38 * On Siena-based NICs for power systems with EEH support, this will give EEH a 39 * chance to start. 40 */ 41 static unsigned int efx_monitor_interval = 1 * HZ; 42 43 /* How often and how many times to poll for a reset while waiting for a 44 * BIST that another function started to complete. 45 */ 46 #define BIST_WAIT_DELAY_MS 100 47 #define BIST_WAIT_DELAY_COUNT 100 48 49 /* Default stats update time */ 50 #define STATS_PERIOD_MS_DEFAULT 1000 51 52 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 53 const char *const efx_reset_type_names[] = { 54 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 55 [RESET_TYPE_ALL] = "ALL", 56 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 57 [RESET_TYPE_WORLD] = "WORLD", 58 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 59 [RESET_TYPE_DATAPATH] = "DATAPATH", 60 [RESET_TYPE_MC_BIST] = "MC_BIST", 61 [RESET_TYPE_DISABLE] = "DISABLE", 62 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 63 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 64 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 65 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 66 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 67 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 68 }; 69 70 #define RESET_TYPE(type) \ 71 STRING_TABLE_LOOKUP(type, efx_reset_type) 72 73 /* Loopback mode names (see LOOPBACK_MODE()) */ 74 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 75 const char *const efx_loopback_mode_names[] = { 76 [LOOPBACK_NONE] = "NONE", 77 [LOOPBACK_DATA] = "DATAPATH", 78 [LOOPBACK_GMAC] = "GMAC", 79 [LOOPBACK_XGMII] = "XGMII", 80 [LOOPBACK_XGXS] = "XGXS", 81 [LOOPBACK_XAUI] = "XAUI", 82 [LOOPBACK_GMII] = "GMII", 83 [LOOPBACK_SGMII] = "SGMII", 84 [LOOPBACK_XGBR] = "XGBR", 85 [LOOPBACK_XFI] = "XFI", 86 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 87 [LOOPBACK_GMII_FAR] = "GMII_FAR", 88 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 89 [LOOPBACK_XFI_FAR] = "XFI_FAR", 90 [LOOPBACK_GPHY] = "GPHY", 91 [LOOPBACK_PHYXS] = "PHYXS", 92 [LOOPBACK_PCS] = "PCS", 93 [LOOPBACK_PMAPMD] = "PMA/PMD", 94 [LOOPBACK_XPORT] = "XPORT", 95 [LOOPBACK_XGMII_WS] = "XGMII_WS", 96 [LOOPBACK_XAUI_WS] = "XAUI_WS", 97 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 98 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 99 [LOOPBACK_GMII_WS] = "GMII_WS", 100 [LOOPBACK_XFI_WS] = "XFI_WS", 101 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 102 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 103 }; 104 105 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 106 * queued onto this work queue. This is not a per-nic work queue, because 107 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 108 */ 109 static struct workqueue_struct *reset_workqueue; 110 111 int efx_create_reset_workqueue(void) 112 { 113 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 114 if (!reset_workqueue) { 115 printk(KERN_ERR "Failed to create reset workqueue\n"); 116 return -ENOMEM; 117 } 118 119 return 0; 120 } 121 122 void efx_queue_reset_work(struct efx_nic *efx) 123 { 124 queue_work(reset_workqueue, &efx->reset_work); 125 } 126 127 void efx_flush_reset_workqueue(struct efx_nic *efx) 128 { 129 cancel_work_sync(&efx->reset_work); 130 } 131 132 void efx_destroy_reset_workqueue(void) 133 { 134 if (reset_workqueue) { 135 destroy_workqueue(reset_workqueue); 136 reset_workqueue = NULL; 137 } 138 } 139 140 /* We assume that efx->type->reconfigure_mac will always try to sync RX 141 * filters and therefore needs to read-lock the filter table against freeing 142 */ 143 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only) 144 { 145 if (efx->type->reconfigure_mac) { 146 down_read(&efx->filter_sem); 147 efx->type->reconfigure_mac(efx, mtu_only); 148 up_read(&efx->filter_sem); 149 } 150 } 151 152 /* Asynchronous work item for changing MAC promiscuity and multicast 153 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 154 * MAC directly. 155 */ 156 static void efx_mac_work(struct work_struct *data) 157 { 158 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 159 160 mutex_lock(&efx->mac_lock); 161 if (efx->port_enabled) 162 efx_mac_reconfigure(efx, false); 163 mutex_unlock(&efx->mac_lock); 164 } 165 166 int efx_set_mac_address(struct net_device *net_dev, void *data) 167 { 168 struct efx_nic *efx = netdev_priv(net_dev); 169 struct sockaddr *addr = data; 170 u8 *new_addr = addr->sa_data; 171 u8 old_addr[6]; 172 int rc; 173 174 if (!is_valid_ether_addr(new_addr)) { 175 netif_err(efx, drv, efx->net_dev, 176 "invalid ethernet MAC address requested: %pM\n", 177 new_addr); 178 return -EADDRNOTAVAIL; 179 } 180 181 /* save old address */ 182 ether_addr_copy(old_addr, net_dev->dev_addr); 183 ether_addr_copy(net_dev->dev_addr, new_addr); 184 if (efx->type->set_mac_address) { 185 rc = efx->type->set_mac_address(efx); 186 if (rc) { 187 ether_addr_copy(net_dev->dev_addr, old_addr); 188 return rc; 189 } 190 } 191 192 /* Reconfigure the MAC */ 193 mutex_lock(&efx->mac_lock); 194 efx_mac_reconfigure(efx, false); 195 mutex_unlock(&efx->mac_lock); 196 197 return 0; 198 } 199 200 /* Context: netif_addr_lock held, BHs disabled. */ 201 void efx_set_rx_mode(struct net_device *net_dev) 202 { 203 struct efx_nic *efx = netdev_priv(net_dev); 204 205 if (efx->port_enabled) 206 queue_work(efx->workqueue, &efx->mac_work); 207 /* Otherwise efx_start_port() will do this */ 208 } 209 210 int efx_set_features(struct net_device *net_dev, netdev_features_t data) 211 { 212 struct efx_nic *efx = netdev_priv(net_dev); 213 int rc; 214 215 /* If disabling RX n-tuple filtering, clear existing filters */ 216 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 217 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 218 if (rc) 219 return rc; 220 } 221 222 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 223 * If rx-fcs is changed, mac_reconfigure updates that too. 224 */ 225 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 226 NETIF_F_RXFCS)) { 227 /* efx_set_rx_mode() will schedule MAC work to update filters 228 * when a new features are finally set in net_dev. 229 */ 230 efx_set_rx_mode(net_dev); 231 } 232 233 return 0; 234 } 235 236 /* This ensures that the kernel is kept informed (via 237 * netif_carrier_on/off) of the link status, and also maintains the 238 * link status's stop on the port's TX queue. 239 */ 240 void efx_link_status_changed(struct efx_nic *efx) 241 { 242 struct efx_link_state *link_state = &efx->link_state; 243 244 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 245 * that no events are triggered between unregister_netdev() and the 246 * driver unloading. A more general condition is that NETDEV_CHANGE 247 * can only be generated between NETDEV_UP and NETDEV_DOWN 248 */ 249 if (!netif_running(efx->net_dev)) 250 return; 251 252 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 253 efx->n_link_state_changes++; 254 255 if (link_state->up) 256 netif_carrier_on(efx->net_dev); 257 else 258 netif_carrier_off(efx->net_dev); 259 } 260 261 /* Status message for kernel log */ 262 if (link_state->up) 263 netif_info(efx, link, efx->net_dev, 264 "link up at %uMbps %s-duplex (MTU %d)\n", 265 link_state->speed, link_state->fd ? "full" : "half", 266 efx->net_dev->mtu); 267 else 268 netif_info(efx, link, efx->net_dev, "link down\n"); 269 } 270 271 unsigned int efx_xdp_max_mtu(struct efx_nic *efx) 272 { 273 /* The maximum MTU that we can fit in a single page, allowing for 274 * framing, overhead and XDP headroom + tailroom. 275 */ 276 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) + 277 efx->rx_prefix_size + efx->type->rx_buffer_padding + 278 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM; 279 280 return PAGE_SIZE - overhead; 281 } 282 283 /* Context: process, rtnl_lock() held. */ 284 int efx_change_mtu(struct net_device *net_dev, int new_mtu) 285 { 286 struct efx_nic *efx = netdev_priv(net_dev); 287 int rc; 288 289 rc = efx_check_disabled(efx); 290 if (rc) 291 return rc; 292 293 if (rtnl_dereference(efx->xdp_prog) && 294 new_mtu > efx_xdp_max_mtu(efx)) { 295 netif_err(efx, drv, efx->net_dev, 296 "Requested MTU of %d too big for XDP (max: %d)\n", 297 new_mtu, efx_xdp_max_mtu(efx)); 298 return -EINVAL; 299 } 300 301 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 302 303 efx_device_detach_sync(efx); 304 efx_stop_all(efx); 305 306 mutex_lock(&efx->mac_lock); 307 net_dev->mtu = new_mtu; 308 efx_mac_reconfigure(efx, true); 309 mutex_unlock(&efx->mac_lock); 310 311 efx_start_all(efx); 312 efx_device_attach_if_not_resetting(efx); 313 return 0; 314 } 315 316 /************************************************************************** 317 * 318 * Hardware monitor 319 * 320 **************************************************************************/ 321 322 /* Run periodically off the general workqueue */ 323 static void efx_monitor(struct work_struct *data) 324 { 325 struct efx_nic *efx = container_of(data, struct efx_nic, 326 monitor_work.work); 327 328 netif_vdbg(efx, timer, efx->net_dev, 329 "hardware monitor executing on CPU %d\n", 330 raw_smp_processor_id()); 331 BUG_ON(efx->type->monitor == NULL); 332 333 /* If the mac_lock is already held then it is likely a port 334 * reconfiguration is already in place, which will likely do 335 * most of the work of monitor() anyway. 336 */ 337 if (mutex_trylock(&efx->mac_lock)) { 338 if (efx->port_enabled && efx->type->monitor) 339 efx->type->monitor(efx); 340 mutex_unlock(&efx->mac_lock); 341 } 342 343 efx_start_monitor(efx); 344 } 345 346 void efx_start_monitor(struct efx_nic *efx) 347 { 348 if (efx->type->monitor) 349 queue_delayed_work(efx->workqueue, &efx->monitor_work, 350 efx_monitor_interval); 351 } 352 353 /************************************************************************** 354 * 355 * Event queue processing 356 * 357 *************************************************************************/ 358 359 /* Channels are shutdown and reinitialised whilst the NIC is running 360 * to propagate configuration changes (mtu, checksum offload), or 361 * to clear hardware error conditions 362 */ 363 static void efx_start_datapath(struct efx_nic *efx) 364 { 365 netdev_features_t old_features = efx->net_dev->features; 366 bool old_rx_scatter = efx->rx_scatter; 367 size_t rx_buf_len; 368 369 /* Calculate the rx buffer allocation parameters required to 370 * support the current MTU, including padding for header 371 * alignment and overruns. 372 */ 373 efx->rx_dma_len = (efx->rx_prefix_size + 374 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 375 efx->type->rx_buffer_padding); 376 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM + 377 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM); 378 379 if (rx_buf_len <= PAGE_SIZE) { 380 efx->rx_scatter = efx->type->always_rx_scatter; 381 efx->rx_buffer_order = 0; 382 } else if (efx->type->can_rx_scatter) { 383 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 384 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 385 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 386 EFX_RX_BUF_ALIGNMENT) > 387 PAGE_SIZE); 388 efx->rx_scatter = true; 389 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 390 efx->rx_buffer_order = 0; 391 } else { 392 efx->rx_scatter = false; 393 efx->rx_buffer_order = get_order(rx_buf_len); 394 } 395 396 efx_rx_config_page_split(efx); 397 if (efx->rx_buffer_order) 398 netif_dbg(efx, drv, efx->net_dev, 399 "RX buf len=%u; page order=%u batch=%u\n", 400 efx->rx_dma_len, efx->rx_buffer_order, 401 efx->rx_pages_per_batch); 402 else 403 netif_dbg(efx, drv, efx->net_dev, 404 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 405 efx->rx_dma_len, efx->rx_page_buf_step, 406 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 407 408 /* Restore previously fixed features in hw_features and remove 409 * features which are fixed now 410 */ 411 efx->net_dev->hw_features |= efx->net_dev->features; 412 efx->net_dev->hw_features &= ~efx->fixed_features; 413 efx->net_dev->features |= efx->fixed_features; 414 if (efx->net_dev->features != old_features) 415 netdev_features_change(efx->net_dev); 416 417 /* RX filters may also have scatter-enabled flags */ 418 if ((efx->rx_scatter != old_rx_scatter) && 419 efx->type->filter_update_rx_scatter) 420 efx->type->filter_update_rx_scatter(efx); 421 422 /* We must keep at least one descriptor in a TX ring empty. 423 * We could avoid this when the queue size does not exactly 424 * match the hardware ring size, but it's not that important. 425 * Therefore we stop the queue when one more skb might fill 426 * the ring completely. We wake it when half way back to 427 * empty. 428 */ 429 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 430 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 431 432 /* Initialise the channels */ 433 efx_start_channels(efx); 434 435 efx_ptp_start_datapath(efx); 436 437 if (netif_device_present(efx->net_dev)) 438 netif_tx_wake_all_queues(efx->net_dev); 439 } 440 441 static void efx_stop_datapath(struct efx_nic *efx) 442 { 443 EFX_ASSERT_RESET_SERIALISED(efx); 444 BUG_ON(efx->port_enabled); 445 446 efx_ptp_stop_datapath(efx); 447 448 efx_stop_channels(efx); 449 } 450 451 /************************************************************************** 452 * 453 * Port handling 454 * 455 **************************************************************************/ 456 457 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 458 * force the Autoneg bit on. 459 */ 460 void efx_link_clear_advertising(struct efx_nic *efx) 461 { 462 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 463 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 464 } 465 466 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 467 { 468 efx->wanted_fc = wanted_fc; 469 if (efx->link_advertising[0]) { 470 if (wanted_fc & EFX_FC_RX) 471 efx->link_advertising[0] |= (ADVERTISED_Pause | 472 ADVERTISED_Asym_Pause); 473 else 474 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 475 ADVERTISED_Asym_Pause); 476 if (wanted_fc & EFX_FC_TX) 477 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 478 } 479 } 480 481 static void efx_start_port(struct efx_nic *efx) 482 { 483 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 484 BUG_ON(efx->port_enabled); 485 486 mutex_lock(&efx->mac_lock); 487 efx->port_enabled = true; 488 489 /* Ensure MAC ingress/egress is enabled */ 490 efx_mac_reconfigure(efx, false); 491 492 mutex_unlock(&efx->mac_lock); 493 } 494 495 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 496 * and the async self-test, wait for them to finish and prevent them 497 * being scheduled again. This doesn't cover online resets, which 498 * should only be cancelled when removing the device. 499 */ 500 static void efx_stop_port(struct efx_nic *efx) 501 { 502 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 503 504 EFX_ASSERT_RESET_SERIALISED(efx); 505 506 mutex_lock(&efx->mac_lock); 507 efx->port_enabled = false; 508 mutex_unlock(&efx->mac_lock); 509 510 /* Serialise against efx_set_multicast_list() */ 511 netif_addr_lock_bh(efx->net_dev); 512 netif_addr_unlock_bh(efx->net_dev); 513 514 cancel_delayed_work_sync(&efx->monitor_work); 515 efx_selftest_async_cancel(efx); 516 cancel_work_sync(&efx->mac_work); 517 } 518 519 /* If the interface is supposed to be running but is not, start 520 * the hardware and software data path, regular activity for the port 521 * (MAC statistics, link polling, etc.) and schedule the port to be 522 * reconfigured. Interrupts must already be enabled. This function 523 * is safe to call multiple times, so long as the NIC is not disabled. 524 * Requires the RTNL lock. 525 */ 526 void efx_start_all(struct efx_nic *efx) 527 { 528 EFX_ASSERT_RESET_SERIALISED(efx); 529 BUG_ON(efx->state == STATE_DISABLED); 530 531 /* Check that it is appropriate to restart the interface. All 532 * of these flags are safe to read under just the rtnl lock 533 */ 534 if (efx->port_enabled || !netif_running(efx->net_dev) || 535 efx->reset_pending) 536 return; 537 538 efx_start_port(efx); 539 efx_start_datapath(efx); 540 541 /* Start the hardware monitor if there is one */ 542 efx_start_monitor(efx); 543 544 /* Link state detection is normally event-driven; we have 545 * to poll now because we could have missed a change 546 */ 547 mutex_lock(&efx->mac_lock); 548 if (efx_mcdi_phy_poll(efx)) 549 efx_link_status_changed(efx); 550 mutex_unlock(&efx->mac_lock); 551 552 if (efx->type->start_stats) { 553 efx->type->start_stats(efx); 554 efx->type->pull_stats(efx); 555 spin_lock_bh(&efx->stats_lock); 556 efx->type->update_stats(efx, NULL, NULL); 557 spin_unlock_bh(&efx->stats_lock); 558 } 559 } 560 561 /* Quiesce the hardware and software data path, and regular activity 562 * for the port without bringing the link down. Safe to call multiple 563 * times with the NIC in almost any state, but interrupts should be 564 * enabled. Requires the RTNL lock. 565 */ 566 void efx_stop_all(struct efx_nic *efx) 567 { 568 EFX_ASSERT_RESET_SERIALISED(efx); 569 570 /* port_enabled can be read safely under the rtnl lock */ 571 if (!efx->port_enabled) 572 return; 573 574 if (efx->type->update_stats) { 575 /* update stats before we go down so we can accurately count 576 * rx_nodesc_drops 577 */ 578 efx->type->pull_stats(efx); 579 spin_lock_bh(&efx->stats_lock); 580 efx->type->update_stats(efx, NULL, NULL); 581 spin_unlock_bh(&efx->stats_lock); 582 efx->type->stop_stats(efx); 583 } 584 585 efx_stop_port(efx); 586 587 /* Stop the kernel transmit interface. This is only valid if 588 * the device is stopped or detached; otherwise the watchdog 589 * may fire immediately. 590 */ 591 WARN_ON(netif_running(efx->net_dev) && 592 netif_device_present(efx->net_dev)); 593 netif_tx_disable(efx->net_dev); 594 595 efx_stop_datapath(efx); 596 } 597 598 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 599 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) 600 { 601 struct efx_nic *efx = netdev_priv(net_dev); 602 603 spin_lock_bh(&efx->stats_lock); 604 efx->type->update_stats(efx, NULL, stats); 605 spin_unlock_bh(&efx->stats_lock); 606 } 607 608 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 609 * the MAC appropriately. All other PHY configuration changes are pushed 610 * through phy_op->set_settings(), and pushed asynchronously to the MAC 611 * through efx_monitor(). 612 * 613 * Callers must hold the mac_lock 614 */ 615 int __efx_reconfigure_port(struct efx_nic *efx) 616 { 617 enum efx_phy_mode phy_mode; 618 int rc = 0; 619 620 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 621 622 /* Disable PHY transmit in mac level loopbacks */ 623 phy_mode = efx->phy_mode; 624 if (LOOPBACK_INTERNAL(efx)) 625 efx->phy_mode |= PHY_MODE_TX_DISABLED; 626 else 627 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 628 629 if (efx->type->reconfigure_port) 630 rc = efx->type->reconfigure_port(efx); 631 632 if (rc) 633 efx->phy_mode = phy_mode; 634 635 return rc; 636 } 637 638 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 639 * disabled. 640 */ 641 int efx_reconfigure_port(struct efx_nic *efx) 642 { 643 int rc; 644 645 EFX_ASSERT_RESET_SERIALISED(efx); 646 647 mutex_lock(&efx->mac_lock); 648 rc = __efx_reconfigure_port(efx); 649 mutex_unlock(&efx->mac_lock); 650 651 return rc; 652 } 653 654 /************************************************************************** 655 * 656 * Device reset and suspend 657 * 658 **************************************************************************/ 659 660 static void efx_wait_for_bist_end(struct efx_nic *efx) 661 { 662 int i; 663 664 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 665 if (efx_mcdi_poll_reboot(efx)) 666 goto out; 667 msleep(BIST_WAIT_DELAY_MS); 668 } 669 670 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 671 out: 672 /* Either way unset the BIST flag. If we found no reboot we probably 673 * won't recover, but we should try. 674 */ 675 efx->mc_bist_for_other_fn = false; 676 } 677 678 /* Try recovery mechanisms. 679 * For now only EEH is supported. 680 * Returns 0 if the recovery mechanisms are unsuccessful. 681 * Returns a non-zero value otherwise. 682 */ 683 int efx_try_recovery(struct efx_nic *efx) 684 { 685 #ifdef CONFIG_EEH 686 /* A PCI error can occur and not be seen by EEH because nothing 687 * happens on the PCI bus. In this case the driver may fail and 688 * schedule a 'recover or reset', leading to this recovery handler. 689 * Manually call the eeh failure check function. 690 */ 691 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 692 if (eeh_dev_check_failure(eehdev)) { 693 /* The EEH mechanisms will handle the error and reset the 694 * device if necessary. 695 */ 696 return 1; 697 } 698 #endif 699 return 0; 700 } 701 702 /* Tears down the entire software state and most of the hardware state 703 * before reset. 704 */ 705 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 706 { 707 EFX_ASSERT_RESET_SERIALISED(efx); 708 709 if (method == RESET_TYPE_MCDI_TIMEOUT) 710 efx->type->prepare_flr(efx); 711 712 efx_stop_all(efx); 713 efx_disable_interrupts(efx); 714 715 mutex_lock(&efx->mac_lock); 716 down_write(&efx->filter_sem); 717 mutex_lock(&efx->rss_lock); 718 efx->type->fini(efx); 719 } 720 721 /* Context: netif_tx_lock held, BHs disabled. */ 722 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue) 723 { 724 struct efx_nic *efx = netdev_priv(net_dev); 725 726 netif_err(efx, tx_err, efx->net_dev, 727 "TX stuck with port_enabled=%d: resetting channels\n", 728 efx->port_enabled); 729 730 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 731 } 732 733 /* This function will always ensure that the locks acquired in 734 * efx_reset_down() are released. A failure return code indicates 735 * that we were unable to reinitialise the hardware, and the 736 * driver should be disabled. If ok is false, then the rx and tx 737 * engines are not restarted, pending a RESET_DISABLE. 738 */ 739 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 740 { 741 int rc; 742 743 EFX_ASSERT_RESET_SERIALISED(efx); 744 745 if (method == RESET_TYPE_MCDI_TIMEOUT) 746 efx->type->finish_flr(efx); 747 748 /* Ensure that SRAM is initialised even if we're disabling the device */ 749 rc = efx->type->init(efx); 750 if (rc) { 751 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 752 goto fail; 753 } 754 755 if (!ok) 756 goto fail; 757 758 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 759 method != RESET_TYPE_DATAPATH) { 760 rc = efx_mcdi_port_reconfigure(efx); 761 if (rc && rc != -EPERM) 762 netif_err(efx, drv, efx->net_dev, 763 "could not restore PHY settings\n"); 764 } 765 766 rc = efx_enable_interrupts(efx); 767 if (rc) 768 goto fail; 769 770 #ifdef CONFIG_SFC_SRIOV 771 rc = efx->type->vswitching_restore(efx); 772 if (rc) /* not fatal; the PF will still work fine */ 773 netif_warn(efx, probe, efx->net_dev, 774 "failed to restore vswitching rc=%d;" 775 " VFs may not function\n", rc); 776 #endif 777 778 if (efx->type->rx_restore_rss_contexts) 779 efx->type->rx_restore_rss_contexts(efx); 780 mutex_unlock(&efx->rss_lock); 781 efx->type->filter_table_restore(efx); 782 up_write(&efx->filter_sem); 783 if (efx->type->sriov_reset) 784 efx->type->sriov_reset(efx); 785 786 mutex_unlock(&efx->mac_lock); 787 788 efx_start_all(efx); 789 790 if (efx->type->udp_tnl_push_ports) 791 efx->type->udp_tnl_push_ports(efx); 792 793 return 0; 794 795 fail: 796 efx->port_initialized = false; 797 798 mutex_unlock(&efx->rss_lock); 799 up_write(&efx->filter_sem); 800 mutex_unlock(&efx->mac_lock); 801 802 return rc; 803 } 804 805 /* Reset the NIC using the specified method. Note that the reset may 806 * fail, in which case the card will be left in an unusable state. 807 * 808 * Caller must hold the rtnl_lock. 809 */ 810 int efx_reset(struct efx_nic *efx, enum reset_type method) 811 { 812 int rc, rc2 = 0; 813 bool disabled; 814 815 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 816 RESET_TYPE(method)); 817 818 efx_device_detach_sync(efx); 819 /* efx_reset_down() grabs locks that prevent recovery on EF100. 820 * EF100 reset is handled in the efx_nic_type callback below. 821 */ 822 if (efx_nic_rev(efx) != EFX_REV_EF100) 823 efx_reset_down(efx, method); 824 825 rc = efx->type->reset(efx, method); 826 if (rc) { 827 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 828 goto out; 829 } 830 831 /* Clear flags for the scopes we covered. We assume the NIC and 832 * driver are now quiescent so that there is no race here. 833 */ 834 if (method < RESET_TYPE_MAX_METHOD) 835 efx->reset_pending &= -(1 << (method + 1)); 836 else /* it doesn't fit into the well-ordered scope hierarchy */ 837 __clear_bit(method, &efx->reset_pending); 838 839 /* Reinitialise bus-mastering, which may have been turned off before 840 * the reset was scheduled. This is still appropriate, even in the 841 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 842 * can respond to requests. 843 */ 844 pci_set_master(efx->pci_dev); 845 846 out: 847 /* Leave device stopped if necessary */ 848 disabled = rc || 849 method == RESET_TYPE_DISABLE || 850 method == RESET_TYPE_RECOVER_OR_DISABLE; 851 if (efx_nic_rev(efx) != EFX_REV_EF100) 852 rc2 = efx_reset_up(efx, method, !disabled); 853 if (rc2) { 854 disabled = true; 855 if (!rc) 856 rc = rc2; 857 } 858 859 if (disabled) { 860 dev_close(efx->net_dev); 861 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 862 efx->state = STATE_DISABLED; 863 } else { 864 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 865 efx_device_attach_if_not_resetting(efx); 866 } 867 return rc; 868 } 869 870 /* The worker thread exists so that code that cannot sleep can 871 * schedule a reset for later. 872 */ 873 static void efx_reset_work(struct work_struct *data) 874 { 875 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 876 unsigned long pending; 877 enum reset_type method; 878 879 pending = READ_ONCE(efx->reset_pending); 880 method = fls(pending) - 1; 881 882 if (method == RESET_TYPE_MC_BIST) 883 efx_wait_for_bist_end(efx); 884 885 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 886 method == RESET_TYPE_RECOVER_OR_ALL) && 887 efx_try_recovery(efx)) 888 return; 889 890 if (!pending) 891 return; 892 893 rtnl_lock(); 894 895 /* We checked the state in efx_schedule_reset() but it may 896 * have changed by now. Now that we have the RTNL lock, 897 * it cannot change again. 898 */ 899 if (efx->state == STATE_READY) 900 (void)efx_reset(efx, method); 901 902 rtnl_unlock(); 903 } 904 905 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 906 { 907 enum reset_type method; 908 909 if (efx->state == STATE_RECOVERY) { 910 netif_dbg(efx, drv, efx->net_dev, 911 "recovering: skip scheduling %s reset\n", 912 RESET_TYPE(type)); 913 return; 914 } 915 916 switch (type) { 917 case RESET_TYPE_INVISIBLE: 918 case RESET_TYPE_ALL: 919 case RESET_TYPE_RECOVER_OR_ALL: 920 case RESET_TYPE_WORLD: 921 case RESET_TYPE_DISABLE: 922 case RESET_TYPE_RECOVER_OR_DISABLE: 923 case RESET_TYPE_DATAPATH: 924 case RESET_TYPE_MC_BIST: 925 case RESET_TYPE_MCDI_TIMEOUT: 926 method = type; 927 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 928 RESET_TYPE(method)); 929 break; 930 default: 931 method = efx->type->map_reset_reason(type); 932 netif_dbg(efx, drv, efx->net_dev, 933 "scheduling %s reset for %s\n", 934 RESET_TYPE(method), RESET_TYPE(type)); 935 break; 936 } 937 938 set_bit(method, &efx->reset_pending); 939 smp_mb(); /* ensure we change reset_pending before checking state */ 940 941 /* If we're not READY then just leave the flags set as the cue 942 * to abort probing or reschedule the reset later. 943 */ 944 if (READ_ONCE(efx->state) != STATE_READY) 945 return; 946 947 /* efx_process_channel() will no longer read events once a 948 * reset is scheduled. So switch back to poll'd MCDI completions. 949 */ 950 efx_mcdi_mode_poll(efx); 951 952 efx_queue_reset_work(efx); 953 } 954 955 /************************************************************************** 956 * 957 * Dummy NIC operations 958 * 959 * Can be used for some unimplemented operations 960 * Needed so all function pointers are valid and do not have to be tested 961 * before use 962 * 963 **************************************************************************/ 964 int efx_port_dummy_op_int(struct efx_nic *efx) 965 { 966 return 0; 967 } 968 void efx_port_dummy_op_void(struct efx_nic *efx) {} 969 970 /************************************************************************** 971 * 972 * Data housekeeping 973 * 974 **************************************************************************/ 975 976 /* This zeroes out and then fills in the invariants in a struct 977 * efx_nic (including all sub-structures). 978 */ 979 int efx_init_struct(struct efx_nic *efx, 980 struct pci_dev *pci_dev, struct net_device *net_dev) 981 { 982 int rc = -ENOMEM; 983 984 /* Initialise common structures */ 985 INIT_LIST_HEAD(&efx->node); 986 INIT_LIST_HEAD(&efx->secondary_list); 987 spin_lock_init(&efx->biu_lock); 988 #ifdef CONFIG_SFC_MTD 989 INIT_LIST_HEAD(&efx->mtd_list); 990 #endif 991 INIT_WORK(&efx->reset_work, efx_reset_work); 992 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 993 efx_selftest_async_init(efx); 994 efx->pci_dev = pci_dev; 995 efx->msg_enable = debug; 996 efx->state = STATE_UNINIT; 997 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 998 999 efx->net_dev = net_dev; 1000 efx->rx_prefix_size = efx->type->rx_prefix_size; 1001 efx->rx_ip_align = 1002 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 1003 efx->rx_packet_hash_offset = 1004 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 1005 efx->rx_packet_ts_offset = 1006 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 1007 INIT_LIST_HEAD(&efx->rss_context.list); 1008 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 1009 mutex_init(&efx->rss_lock); 1010 efx->vport_id = EVB_PORT_ID_ASSIGNED; 1011 spin_lock_init(&efx->stats_lock); 1012 efx->vi_stride = EFX_DEFAULT_VI_STRIDE; 1013 efx->num_mac_stats = MC_CMD_MAC_NSTATS; 1014 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); 1015 mutex_init(&efx->mac_lock); 1016 #ifdef CONFIG_RFS_ACCEL 1017 mutex_init(&efx->rps_mutex); 1018 spin_lock_init(&efx->rps_hash_lock); 1019 /* Failure to allocate is not fatal, but may degrade ARFS performance */ 1020 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, 1021 sizeof(*efx->rps_hash_table), GFP_KERNEL); 1022 #endif 1023 efx->mdio.dev = net_dev; 1024 INIT_WORK(&efx->mac_work, efx_mac_work); 1025 init_waitqueue_head(&efx->flush_wq); 1026 1027 efx->tx_queues_per_channel = 1; 1028 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE; 1029 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1030 1031 efx->mem_bar = UINT_MAX; 1032 1033 rc = efx_init_channels(efx); 1034 if (rc) 1035 goto fail; 1036 1037 /* Would be good to use the net_dev name, but we're too early */ 1038 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 1039 pci_name(pci_dev)); 1040 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 1041 if (!efx->workqueue) { 1042 rc = -ENOMEM; 1043 goto fail; 1044 } 1045 1046 return 0; 1047 1048 fail: 1049 efx_fini_struct(efx); 1050 return rc; 1051 } 1052 1053 void efx_fini_struct(struct efx_nic *efx) 1054 { 1055 #ifdef CONFIG_RFS_ACCEL 1056 kfree(efx->rps_hash_table); 1057 #endif 1058 1059 efx_fini_channels(efx); 1060 1061 kfree(efx->vpd_sn); 1062 1063 if (efx->workqueue) { 1064 destroy_workqueue(efx->workqueue); 1065 efx->workqueue = NULL; 1066 } 1067 } 1068 1069 /* This configures the PCI device to enable I/O and DMA. */ 1070 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask, 1071 unsigned int mem_map_size) 1072 { 1073 struct pci_dev *pci_dev = efx->pci_dev; 1074 int rc; 1075 1076 efx->mem_bar = UINT_MAX; 1077 1078 netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar); 1079 1080 rc = pci_enable_device(pci_dev); 1081 if (rc) { 1082 netif_err(efx, probe, efx->net_dev, 1083 "failed to enable PCI device\n"); 1084 goto fail1; 1085 } 1086 1087 pci_set_master(pci_dev); 1088 1089 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1090 if (rc) { 1091 netif_err(efx, probe, efx->net_dev, 1092 "could not find a suitable DMA mask\n"); 1093 goto fail2; 1094 } 1095 netif_dbg(efx, probe, efx->net_dev, 1096 "using DMA mask %llx\n", (unsigned long long)dma_mask); 1097 1098 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1099 if (!efx->membase_phys) { 1100 netif_err(efx, probe, efx->net_dev, 1101 "ERROR: No BAR%d mapping from the BIOS. " 1102 "Try pci=realloc on the kernel command line\n", bar); 1103 rc = -ENODEV; 1104 goto fail3; 1105 } 1106 1107 rc = pci_request_region(pci_dev, bar, "sfc"); 1108 if (rc) { 1109 netif_err(efx, probe, efx->net_dev, 1110 "request for memory BAR[%d] failed\n", bar); 1111 rc = -EIO; 1112 goto fail3; 1113 } 1114 efx->mem_bar = bar; 1115 efx->membase = ioremap(efx->membase_phys, mem_map_size); 1116 if (!efx->membase) { 1117 netif_err(efx, probe, efx->net_dev, 1118 "could not map memory BAR[%d] at %llx+%x\n", bar, 1119 (unsigned long long)efx->membase_phys, mem_map_size); 1120 rc = -ENOMEM; 1121 goto fail4; 1122 } 1123 netif_dbg(efx, probe, efx->net_dev, 1124 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar, 1125 (unsigned long long)efx->membase_phys, mem_map_size, 1126 efx->membase); 1127 1128 return 0; 1129 1130 fail4: 1131 pci_release_region(efx->pci_dev, bar); 1132 fail3: 1133 efx->membase_phys = 0; 1134 fail2: 1135 pci_disable_device(efx->pci_dev); 1136 fail1: 1137 return rc; 1138 } 1139 1140 void efx_fini_io(struct efx_nic *efx) 1141 { 1142 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1143 1144 if (efx->membase) { 1145 iounmap(efx->membase); 1146 efx->membase = NULL; 1147 } 1148 1149 if (efx->membase_phys) { 1150 pci_release_region(efx->pci_dev, efx->mem_bar); 1151 efx->membase_phys = 0; 1152 efx->mem_bar = UINT_MAX; 1153 } 1154 1155 /* Don't disable bus-mastering if VFs are assigned */ 1156 if (!pci_vfs_assigned(efx->pci_dev)) 1157 pci_disable_device(efx->pci_dev); 1158 } 1159 1160 #ifdef CONFIG_SFC_MCDI_LOGGING 1161 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, 1162 char *buf) 1163 { 1164 struct efx_nic *efx = dev_get_drvdata(dev); 1165 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1166 1167 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 1168 } 1169 1170 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, 1171 const char *buf, size_t count) 1172 { 1173 struct efx_nic *efx = dev_get_drvdata(dev); 1174 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1175 bool enable = count > 0 && *buf != '0'; 1176 1177 mcdi->logging_enabled = enable; 1178 return count; 1179 } 1180 1181 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); 1182 1183 void efx_init_mcdi_logging(struct efx_nic *efx) 1184 { 1185 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1186 1187 if (rc) { 1188 netif_warn(efx, drv, efx->net_dev, 1189 "failed to init net dev attributes\n"); 1190 } 1191 } 1192 1193 void efx_fini_mcdi_logging(struct efx_nic *efx) 1194 { 1195 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 1196 } 1197 #endif 1198 1199 /* A PCI error affecting this device was detected. 1200 * At this point MMIO and DMA may be disabled. 1201 * Stop the software path and request a slot reset. 1202 */ 1203 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 1204 pci_channel_state_t state) 1205 { 1206 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1207 struct efx_nic *efx = pci_get_drvdata(pdev); 1208 1209 if (state == pci_channel_io_perm_failure) 1210 return PCI_ERS_RESULT_DISCONNECT; 1211 1212 rtnl_lock(); 1213 1214 if (efx->state != STATE_DISABLED) { 1215 efx->state = STATE_RECOVERY; 1216 efx->reset_pending = 0; 1217 1218 efx_device_detach_sync(efx); 1219 1220 efx_stop_all(efx); 1221 efx_disable_interrupts(efx); 1222 1223 status = PCI_ERS_RESULT_NEED_RESET; 1224 } else { 1225 /* If the interface is disabled we don't want to do anything 1226 * with it. 1227 */ 1228 status = PCI_ERS_RESULT_RECOVERED; 1229 } 1230 1231 rtnl_unlock(); 1232 1233 pci_disable_device(pdev); 1234 1235 return status; 1236 } 1237 1238 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 1239 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 1240 { 1241 struct efx_nic *efx = pci_get_drvdata(pdev); 1242 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1243 1244 if (pci_enable_device(pdev)) { 1245 netif_err(efx, hw, efx->net_dev, 1246 "Cannot re-enable PCI device after reset.\n"); 1247 status = PCI_ERS_RESULT_DISCONNECT; 1248 } 1249 1250 return status; 1251 } 1252 1253 /* Perform the actual reset and resume I/O operations. */ 1254 static void efx_io_resume(struct pci_dev *pdev) 1255 { 1256 struct efx_nic *efx = pci_get_drvdata(pdev); 1257 int rc; 1258 1259 rtnl_lock(); 1260 1261 if (efx->state == STATE_DISABLED) 1262 goto out; 1263 1264 rc = efx_reset(efx, RESET_TYPE_ALL); 1265 if (rc) { 1266 netif_err(efx, hw, efx->net_dev, 1267 "efx_reset failed after PCI error (%d)\n", rc); 1268 } else { 1269 efx->state = STATE_READY; 1270 netif_dbg(efx, hw, efx->net_dev, 1271 "Done resetting and resuming IO after PCI error.\n"); 1272 } 1273 1274 out: 1275 rtnl_unlock(); 1276 } 1277 1278 /* For simplicity and reliability, we always require a slot reset and try to 1279 * reset the hardware when a pci error affecting the device is detected. 1280 * We leave both the link_reset and mmio_enabled callback unimplemented: 1281 * with our request for slot reset the mmio_enabled callback will never be 1282 * called, and the link_reset callback is not used by AER or EEH mechanisms. 1283 */ 1284 const struct pci_error_handlers efx_err_handlers = { 1285 .error_detected = efx_io_error_detected, 1286 .slot_reset = efx_io_slot_reset, 1287 .resume = efx_io_resume, 1288 }; 1289 1290 int efx_get_phys_port_id(struct net_device *net_dev, 1291 struct netdev_phys_item_id *ppid) 1292 { 1293 struct efx_nic *efx = netdev_priv(net_dev); 1294 1295 if (efx->type->get_phys_port_id) 1296 return efx->type->get_phys_port_id(efx, ppid); 1297 else 1298 return -EOPNOTSUPP; 1299 } 1300 1301 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len) 1302 { 1303 struct efx_nic *efx = netdev_priv(net_dev); 1304 1305 if (snprintf(name, len, "p%u", efx->port_num) >= len) 1306 return -EINVAL; 1307 return 0; 1308 } 1309