xref: /openbmc/linux/drivers/net/ethernet/sfc/efx_channels.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include "efx_channels.h"
14 #include "efx.h"
15 #include "efx_common.h"
16 #include "tx_common.h"
17 #include "rx_common.h"
18 #include "nic.h"
19 #include "sriov.h"
20 #include "workarounds.h"
21 
22 /* This is the first interrupt mode to try out of:
23  * 0 => MSI-X
24  * 1 => MSI
25  * 2 => legacy
26  */
27 unsigned int efx_interrupt_mode = EFX_INT_MODE_MSIX;
28 
29 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
30  * i.e. the number of CPUs among which we may distribute simultaneous
31  * interrupt handling.
32  *
33  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
34  * The default (0) means to assign an interrupt to each core.
35  */
36 unsigned int rss_cpus;
37 
38 static unsigned int irq_adapt_low_thresh = 8000;
39 module_param(irq_adapt_low_thresh, uint, 0644);
40 MODULE_PARM_DESC(irq_adapt_low_thresh,
41 		 "Threshold score for reducing IRQ moderation");
42 
43 static unsigned int irq_adapt_high_thresh = 16000;
44 module_param(irq_adapt_high_thresh, uint, 0644);
45 MODULE_PARM_DESC(irq_adapt_high_thresh,
46 		 "Threshold score for increasing IRQ moderation");
47 
48 /* This is the weight assigned to each of the (per-channel) virtual
49  * NAPI devices.
50  */
51 static int napi_weight = 64;
52 
53 /***************
54  * Housekeeping
55  ***************/
56 
57 int efx_channel_dummy_op_int(struct efx_channel *channel)
58 {
59 	return 0;
60 }
61 
62 void efx_channel_dummy_op_void(struct efx_channel *channel)
63 {
64 }
65 
66 static const struct efx_channel_type efx_default_channel_type = {
67 	.pre_probe		= efx_channel_dummy_op_int,
68 	.post_remove		= efx_channel_dummy_op_void,
69 	.get_name		= efx_get_channel_name,
70 	.copy			= efx_copy_channel,
71 	.want_txqs		= efx_default_channel_want_txqs,
72 	.keep_eventq		= false,
73 	.want_pio		= true,
74 };
75 
76 /*************
77  * INTERRUPTS
78  *************/
79 
80 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
81 {
82 	cpumask_var_t thread_mask;
83 	unsigned int count;
84 	int cpu;
85 
86 	if (rss_cpus) {
87 		count = rss_cpus;
88 	} else {
89 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
90 			netif_warn(efx, probe, efx->net_dev,
91 				   "RSS disabled due to allocation failure\n");
92 			return 1;
93 		}
94 
95 		count = 0;
96 		for_each_online_cpu(cpu) {
97 			if (!cpumask_test_cpu(cpu, thread_mask)) {
98 				++count;
99 				cpumask_or(thread_mask, thread_mask,
100 					   topology_sibling_cpumask(cpu));
101 			}
102 		}
103 
104 		free_cpumask_var(thread_mask);
105 	}
106 
107 	if (count > EFX_MAX_RX_QUEUES) {
108 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
109 			       "Reducing number of rx queues from %u to %u.\n",
110 			       count, EFX_MAX_RX_QUEUES);
111 		count = EFX_MAX_RX_QUEUES;
112 	}
113 
114 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
115 	 * table entries that are inaccessible to VFs
116 	 */
117 #ifdef CONFIG_SFC_SRIOV
118 	if (efx->type->sriov_wanted) {
119 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
120 		    count > efx_vf_size(efx)) {
121 			netif_warn(efx, probe, efx->net_dev,
122 				   "Reducing number of RSS channels from %u to %u for "
123 				   "VF support. Increase vf-msix-limit to use more "
124 				   "channels on the PF.\n",
125 				   count, efx_vf_size(efx));
126 			count = efx_vf_size(efx);
127 		}
128 	}
129 #endif
130 
131 	return count;
132 }
133 
134 static int efx_allocate_msix_channels(struct efx_nic *efx,
135 				      unsigned int max_channels,
136 				      unsigned int extra_channels,
137 				      unsigned int parallelism)
138 {
139 	unsigned int n_channels = parallelism;
140 	int vec_count;
141 	int tx_per_ev;
142 	int n_xdp_tx;
143 	int n_xdp_ev;
144 
145 	if (efx_separate_tx_channels)
146 		n_channels *= 2;
147 	n_channels += extra_channels;
148 
149 	/* To allow XDP transmit to happen from arbitrary NAPI contexts
150 	 * we allocate a TX queue per CPU. We share event queues across
151 	 * multiple tx queues, assuming tx and ev queues are both
152 	 * maximum size.
153 	 */
154 	tx_per_ev = EFX_MAX_EVQ_SIZE / EFX_TXQ_MAX_ENT(efx);
155 	tx_per_ev = min(tx_per_ev, EFX_MAX_TXQ_PER_CHANNEL);
156 	n_xdp_tx = num_possible_cpus();
157 	n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, tx_per_ev);
158 
159 	vec_count = pci_msix_vec_count(efx->pci_dev);
160 	if (vec_count < 0)
161 		return vec_count;
162 
163 	max_channels = min_t(unsigned int, vec_count, max_channels);
164 
165 	/* Check resources.
166 	 * We need a channel per event queue, plus a VI per tx queue.
167 	 * This may be more pessimistic than it needs to be.
168 	 */
169 	if (n_channels >= max_channels) {
170 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
171 		netif_warn(efx, drv, efx->net_dev,
172 			   "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
173 			   n_xdp_ev, n_channels, max_channels);
174 		netif_warn(efx, drv, efx->net_dev,
175 			   "XDP_TX and XDP_REDIRECT might decrease device's performance\n");
176 	} else if (n_channels + n_xdp_tx > efx->max_vis) {
177 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
178 		netif_warn(efx, drv, efx->net_dev,
179 			   "Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n",
180 			   n_xdp_tx, n_channels, efx->max_vis);
181 		netif_warn(efx, drv, efx->net_dev,
182 			   "XDP_TX and XDP_REDIRECT might decrease device's performance\n");
183 	} else if (n_channels + n_xdp_ev > max_channels) {
184 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_SHARED;
185 		netif_warn(efx, drv, efx->net_dev,
186 			   "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
187 			   n_xdp_ev, n_channels, max_channels);
188 
189 		n_xdp_ev = max_channels - n_channels;
190 		netif_warn(efx, drv, efx->net_dev,
191 			   "XDP_TX and XDP_REDIRECT will work with reduced performance (%d cpus/tx_queue)\n",
192 			   DIV_ROUND_UP(n_xdp_tx, tx_per_ev * n_xdp_ev));
193 	} else {
194 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_DEDICATED;
195 	}
196 
197 	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_BORROWED) {
198 		efx->n_xdp_channels = n_xdp_ev;
199 		efx->xdp_tx_per_channel = tx_per_ev;
200 		efx->xdp_tx_queue_count = n_xdp_tx;
201 		n_channels += n_xdp_ev;
202 		netif_dbg(efx, drv, efx->net_dev,
203 			  "Allocating %d TX and %d event queues for XDP\n",
204 			  n_xdp_ev * tx_per_ev, n_xdp_ev);
205 	} else {
206 		efx->n_xdp_channels = 0;
207 		efx->xdp_tx_per_channel = 0;
208 		efx->xdp_tx_queue_count = n_xdp_tx;
209 	}
210 
211 	if (vec_count < n_channels) {
212 		netif_err(efx, drv, efx->net_dev,
213 			  "WARNING: Insufficient MSI-X vectors available (%d < %u).\n",
214 			  vec_count, n_channels);
215 		netif_err(efx, drv, efx->net_dev,
216 			  "WARNING: Performance may be reduced.\n");
217 		n_channels = vec_count;
218 	}
219 
220 	n_channels = min(n_channels, max_channels);
221 
222 	efx->n_channels = n_channels;
223 
224 	/* Ignore XDP tx channels when creating rx channels. */
225 	n_channels -= efx->n_xdp_channels;
226 
227 	if (efx_separate_tx_channels) {
228 		efx->n_tx_channels =
229 			min(max(n_channels / 2, 1U),
230 			    efx->max_tx_channels);
231 		efx->tx_channel_offset =
232 			n_channels - efx->n_tx_channels;
233 		efx->n_rx_channels =
234 			max(n_channels -
235 			    efx->n_tx_channels, 1U);
236 	} else {
237 		efx->n_tx_channels = min(n_channels, efx->max_tx_channels);
238 		efx->tx_channel_offset = 0;
239 		efx->n_rx_channels = n_channels;
240 	}
241 
242 	efx->n_rx_channels = min(efx->n_rx_channels, parallelism);
243 	efx->n_tx_channels = min(efx->n_tx_channels, parallelism);
244 
245 	efx->xdp_channel_offset = n_channels;
246 
247 	netif_dbg(efx, drv, efx->net_dev,
248 		  "Allocating %u RX channels\n",
249 		  efx->n_rx_channels);
250 
251 	return efx->n_channels;
252 }
253 
254 /* Probe the number and type of interrupts we are able to obtain, and
255  * the resulting numbers of channels and RX queues.
256  */
257 int efx_probe_interrupts(struct efx_nic *efx)
258 {
259 	unsigned int extra_channels = 0;
260 	unsigned int rss_spread;
261 	unsigned int i, j;
262 	int rc;
263 
264 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
265 		if (efx->extra_channel_type[i])
266 			++extra_channels;
267 
268 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
269 		unsigned int parallelism = efx_wanted_parallelism(efx);
270 		struct msix_entry xentries[EFX_MAX_CHANNELS];
271 		unsigned int n_channels;
272 
273 		rc = efx_allocate_msix_channels(efx, efx->max_channels,
274 						extra_channels, parallelism);
275 		if (rc >= 0) {
276 			n_channels = rc;
277 			for (i = 0; i < n_channels; i++)
278 				xentries[i].entry = i;
279 			rc = pci_enable_msix_range(efx->pci_dev, xentries, 1,
280 						   n_channels);
281 		}
282 		if (rc < 0) {
283 			/* Fall back to single channel MSI */
284 			netif_err(efx, drv, efx->net_dev,
285 				  "could not enable MSI-X\n");
286 			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
287 				efx->interrupt_mode = EFX_INT_MODE_MSI;
288 			else
289 				return rc;
290 		} else if (rc < n_channels) {
291 			netif_err(efx, drv, efx->net_dev,
292 				  "WARNING: Insufficient MSI-X vectors"
293 				  " available (%d < %u).\n", rc, n_channels);
294 			netif_err(efx, drv, efx->net_dev,
295 				  "WARNING: Performance may be reduced.\n");
296 			n_channels = rc;
297 		}
298 
299 		if (rc > 0) {
300 			for (i = 0; i < efx->n_channels; i++)
301 				efx_get_channel(efx, i)->irq =
302 					xentries[i].vector;
303 		}
304 	}
305 
306 	/* Try single interrupt MSI */
307 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
308 		efx->n_channels = 1;
309 		efx->n_rx_channels = 1;
310 		efx->n_tx_channels = 1;
311 		efx->n_xdp_channels = 0;
312 		efx->xdp_channel_offset = efx->n_channels;
313 		rc = pci_enable_msi(efx->pci_dev);
314 		if (rc == 0) {
315 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
316 		} else {
317 			netif_err(efx, drv, efx->net_dev,
318 				  "could not enable MSI\n");
319 			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
320 				efx->interrupt_mode = EFX_INT_MODE_LEGACY;
321 			else
322 				return rc;
323 		}
324 	}
325 
326 	/* Assume legacy interrupts */
327 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
328 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
329 		efx->n_rx_channels = 1;
330 		efx->n_tx_channels = 1;
331 		efx->n_xdp_channels = 0;
332 		efx->xdp_channel_offset = efx->n_channels;
333 		efx->legacy_irq = efx->pci_dev->irq;
334 	}
335 
336 	/* Assign extra channels if possible, before XDP channels */
337 	efx->n_extra_tx_channels = 0;
338 	j = efx->xdp_channel_offset;
339 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
340 		if (!efx->extra_channel_type[i])
341 			continue;
342 		if (j <= efx->tx_channel_offset + efx->n_tx_channels) {
343 			efx->extra_channel_type[i]->handle_no_channel(efx);
344 		} else {
345 			--j;
346 			efx_get_channel(efx, j)->type =
347 				efx->extra_channel_type[i];
348 			if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
349 				efx->n_extra_tx_channels++;
350 		}
351 	}
352 
353 	rss_spread = efx->n_rx_channels;
354 	/* RSS might be usable on VFs even if it is disabled on the PF */
355 #ifdef CONFIG_SFC_SRIOV
356 	if (efx->type->sriov_wanted) {
357 		efx->rss_spread = ((rss_spread > 1 ||
358 				    !efx->type->sriov_wanted(efx)) ?
359 				   rss_spread : efx_vf_size(efx));
360 		return 0;
361 	}
362 #endif
363 	efx->rss_spread = rss_spread;
364 
365 	return 0;
366 }
367 
368 #if defined(CONFIG_SMP)
369 void efx_set_interrupt_affinity(struct efx_nic *efx)
370 {
371 	struct efx_channel *channel;
372 	unsigned int cpu;
373 
374 	efx_for_each_channel(channel, efx) {
375 		cpu = cpumask_local_spread(channel->channel,
376 					   pcibus_to_node(efx->pci_dev->bus));
377 		irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
378 	}
379 }
380 
381 void efx_clear_interrupt_affinity(struct efx_nic *efx)
382 {
383 	struct efx_channel *channel;
384 
385 	efx_for_each_channel(channel, efx)
386 		irq_set_affinity_hint(channel->irq, NULL);
387 }
388 #else
389 void
390 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
391 {
392 }
393 
394 void
395 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
396 {
397 }
398 #endif /* CONFIG_SMP */
399 
400 void efx_remove_interrupts(struct efx_nic *efx)
401 {
402 	struct efx_channel *channel;
403 
404 	/* Remove MSI/MSI-X interrupts */
405 	efx_for_each_channel(channel, efx)
406 		channel->irq = 0;
407 	pci_disable_msi(efx->pci_dev);
408 	pci_disable_msix(efx->pci_dev);
409 
410 	/* Remove legacy interrupt */
411 	efx->legacy_irq = 0;
412 }
413 
414 /***************
415  * EVENT QUEUES
416  ***************/
417 
418 /* Create event queue
419  * Event queue memory allocations are done only once.  If the channel
420  * is reset, the memory buffer will be reused; this guards against
421  * errors during channel reset and also simplifies interrupt handling.
422  */
423 int efx_probe_eventq(struct efx_channel *channel)
424 {
425 	struct efx_nic *efx = channel->efx;
426 	unsigned long entries;
427 
428 	netif_dbg(efx, probe, efx->net_dev,
429 		  "chan %d create event queue\n", channel->channel);
430 
431 	/* Build an event queue with room for one event per tx and rx buffer,
432 	 * plus some extra for link state events and MCDI completions.
433 	 */
434 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
435 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
436 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
437 
438 	return efx_nic_probe_eventq(channel);
439 }
440 
441 /* Prepare channel's event queue */
442 int efx_init_eventq(struct efx_channel *channel)
443 {
444 	struct efx_nic *efx = channel->efx;
445 	int rc;
446 
447 	EFX_WARN_ON_PARANOID(channel->eventq_init);
448 
449 	netif_dbg(efx, drv, efx->net_dev,
450 		  "chan %d init event queue\n", channel->channel);
451 
452 	rc = efx_nic_init_eventq(channel);
453 	if (rc == 0) {
454 		efx->type->push_irq_moderation(channel);
455 		channel->eventq_read_ptr = 0;
456 		channel->eventq_init = true;
457 	}
458 	return rc;
459 }
460 
461 /* Enable event queue processing and NAPI */
462 void efx_start_eventq(struct efx_channel *channel)
463 {
464 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
465 		  "chan %d start event queue\n", channel->channel);
466 
467 	/* Make sure the NAPI handler sees the enabled flag set */
468 	channel->enabled = true;
469 	smp_wmb();
470 
471 	napi_enable(&channel->napi_str);
472 	efx_nic_eventq_read_ack(channel);
473 }
474 
475 /* Disable event queue processing and NAPI */
476 void efx_stop_eventq(struct efx_channel *channel)
477 {
478 	if (!channel->enabled)
479 		return;
480 
481 	napi_disable(&channel->napi_str);
482 	channel->enabled = false;
483 }
484 
485 void efx_fini_eventq(struct efx_channel *channel)
486 {
487 	if (!channel->eventq_init)
488 		return;
489 
490 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
491 		  "chan %d fini event queue\n", channel->channel);
492 
493 	efx_nic_fini_eventq(channel);
494 	channel->eventq_init = false;
495 }
496 
497 void efx_remove_eventq(struct efx_channel *channel)
498 {
499 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
500 		  "chan %d remove event queue\n", channel->channel);
501 
502 	efx_nic_remove_eventq(channel);
503 }
504 
505 /**************************************************************************
506  *
507  * Channel handling
508  *
509  *************************************************************************/
510 
511 #ifdef CONFIG_RFS_ACCEL
512 static void efx_filter_rfs_expire(struct work_struct *data)
513 {
514 	struct delayed_work *dwork = to_delayed_work(data);
515 	struct efx_channel *channel;
516 	unsigned int time, quota;
517 
518 	channel = container_of(dwork, struct efx_channel, filter_work);
519 	time = jiffies - channel->rfs_last_expiry;
520 	quota = channel->rfs_filter_count * time / (30 * HZ);
521 	if (quota >= 20 && __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, quota)))
522 		channel->rfs_last_expiry += time;
523 	/* Ensure we do more work eventually even if NAPI poll is not happening */
524 	schedule_delayed_work(dwork, 30 * HZ);
525 }
526 #endif
527 
528 /* Allocate and initialise a channel structure. */
529 static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i)
530 {
531 	struct efx_rx_queue *rx_queue;
532 	struct efx_tx_queue *tx_queue;
533 	struct efx_channel *channel;
534 	int j;
535 
536 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
537 	if (!channel)
538 		return NULL;
539 
540 	channel->efx = efx;
541 	channel->channel = i;
542 	channel->type = &efx_default_channel_type;
543 
544 	for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
545 		tx_queue = &channel->tx_queue[j];
546 		tx_queue->efx = efx;
547 		tx_queue->queue = -1;
548 		tx_queue->label = j;
549 		tx_queue->channel = channel;
550 	}
551 
552 #ifdef CONFIG_RFS_ACCEL
553 	INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
554 #endif
555 
556 	rx_queue = &channel->rx_queue;
557 	rx_queue->efx = efx;
558 	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
559 
560 	return channel;
561 }
562 
563 int efx_init_channels(struct efx_nic *efx)
564 {
565 	unsigned int i;
566 
567 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
568 		efx->channel[i] = efx_alloc_channel(efx, i);
569 		if (!efx->channel[i])
570 			return -ENOMEM;
571 		efx->msi_context[i].efx = efx;
572 		efx->msi_context[i].index = i;
573 	}
574 
575 	/* Higher numbered interrupt modes are less capable! */
576 	efx->interrupt_mode = min(efx->type->min_interrupt_mode,
577 				  efx_interrupt_mode);
578 
579 	efx->max_channels = EFX_MAX_CHANNELS;
580 	efx->max_tx_channels = EFX_MAX_CHANNELS;
581 
582 	return 0;
583 }
584 
585 void efx_fini_channels(struct efx_nic *efx)
586 {
587 	unsigned int i;
588 
589 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
590 		if (efx->channel[i]) {
591 			kfree(efx->channel[i]);
592 			efx->channel[i] = NULL;
593 		}
594 }
595 
596 /* Allocate and initialise a channel structure, copying parameters
597  * (but not resources) from an old channel structure.
598  */
599 struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel)
600 {
601 	struct efx_rx_queue *rx_queue;
602 	struct efx_tx_queue *tx_queue;
603 	struct efx_channel *channel;
604 	int j;
605 
606 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
607 	if (!channel)
608 		return NULL;
609 
610 	*channel = *old_channel;
611 
612 	channel->napi_dev = NULL;
613 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
614 	channel->napi_str.napi_id = 0;
615 	channel->napi_str.state = 0;
616 	memset(&channel->eventq, 0, sizeof(channel->eventq));
617 
618 	for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
619 		tx_queue = &channel->tx_queue[j];
620 		if (tx_queue->channel)
621 			tx_queue->channel = channel;
622 		tx_queue->buffer = NULL;
623 		tx_queue->cb_page = NULL;
624 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
625 	}
626 
627 	rx_queue = &channel->rx_queue;
628 	rx_queue->buffer = NULL;
629 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
630 	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
631 #ifdef CONFIG_RFS_ACCEL
632 	INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
633 #endif
634 
635 	return channel;
636 }
637 
638 static int efx_probe_channel(struct efx_channel *channel)
639 {
640 	struct efx_tx_queue *tx_queue;
641 	struct efx_rx_queue *rx_queue;
642 	int rc;
643 
644 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
645 		  "creating channel %d\n", channel->channel);
646 
647 	rc = channel->type->pre_probe(channel);
648 	if (rc)
649 		goto fail;
650 
651 	rc = efx_probe_eventq(channel);
652 	if (rc)
653 		goto fail;
654 
655 	efx_for_each_channel_tx_queue(tx_queue, channel) {
656 		rc = efx_probe_tx_queue(tx_queue);
657 		if (rc)
658 			goto fail;
659 	}
660 
661 	efx_for_each_channel_rx_queue(rx_queue, channel) {
662 		rc = efx_probe_rx_queue(rx_queue);
663 		if (rc)
664 			goto fail;
665 	}
666 
667 	channel->rx_list = NULL;
668 
669 	return 0;
670 
671 fail:
672 	efx_remove_channel(channel);
673 	return rc;
674 }
675 
676 void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
677 {
678 	struct efx_nic *efx = channel->efx;
679 	const char *type;
680 	int number;
681 
682 	number = channel->channel;
683 
684 	if (number >= efx->xdp_channel_offset &&
685 	    !WARN_ON_ONCE(!efx->n_xdp_channels)) {
686 		type = "-xdp";
687 		number -= efx->xdp_channel_offset;
688 	} else if (efx->tx_channel_offset == 0) {
689 		type = "";
690 	} else if (number < efx->tx_channel_offset) {
691 		type = "-rx";
692 	} else {
693 		type = "-tx";
694 		number -= efx->tx_channel_offset;
695 	}
696 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
697 }
698 
699 void efx_set_channel_names(struct efx_nic *efx)
700 {
701 	struct efx_channel *channel;
702 
703 	efx_for_each_channel(channel, efx)
704 		channel->type->get_name(channel,
705 					efx->msi_context[channel->channel].name,
706 					sizeof(efx->msi_context[0].name));
707 }
708 
709 int efx_probe_channels(struct efx_nic *efx)
710 {
711 	struct efx_channel *channel;
712 	int rc;
713 
714 	/* Restart special buffer allocation */
715 	efx->next_buffer_table = 0;
716 
717 	/* Probe channels in reverse, so that any 'extra' channels
718 	 * use the start of the buffer table. This allows the traffic
719 	 * channels to be resized without moving them or wasting the
720 	 * entries before them.
721 	 */
722 	efx_for_each_channel_rev(channel, efx) {
723 		rc = efx_probe_channel(channel);
724 		if (rc) {
725 			netif_err(efx, probe, efx->net_dev,
726 				  "failed to create channel %d\n",
727 				  channel->channel);
728 			goto fail;
729 		}
730 	}
731 	efx_set_channel_names(efx);
732 
733 	return 0;
734 
735 fail:
736 	efx_remove_channels(efx);
737 	return rc;
738 }
739 
740 void efx_remove_channel(struct efx_channel *channel)
741 {
742 	struct efx_tx_queue *tx_queue;
743 	struct efx_rx_queue *rx_queue;
744 
745 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
746 		  "destroy chan %d\n", channel->channel);
747 
748 	efx_for_each_channel_rx_queue(rx_queue, channel)
749 		efx_remove_rx_queue(rx_queue);
750 	efx_for_each_channel_tx_queue(tx_queue, channel)
751 		efx_remove_tx_queue(tx_queue);
752 	efx_remove_eventq(channel);
753 	channel->type->post_remove(channel);
754 }
755 
756 void efx_remove_channels(struct efx_nic *efx)
757 {
758 	struct efx_channel *channel;
759 
760 	efx_for_each_channel(channel, efx)
761 		efx_remove_channel(channel);
762 
763 	kfree(efx->xdp_tx_queues);
764 }
765 
766 int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767 {
768 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 	unsigned int i, next_buffer_table = 0;
770 	u32 old_rxq_entries, old_txq_entries;
771 	int rc, rc2;
772 
773 	rc = efx_check_disabled(efx);
774 	if (rc)
775 		return rc;
776 
777 	/* Not all channels should be reallocated. We must avoid
778 	 * reallocating their buffer table entries.
779 	 */
780 	efx_for_each_channel(channel, efx) {
781 		struct efx_rx_queue *rx_queue;
782 		struct efx_tx_queue *tx_queue;
783 
784 		if (channel->type->copy)
785 			continue;
786 		next_buffer_table = max(next_buffer_table,
787 					channel->eventq.index +
788 					channel->eventq.entries);
789 		efx_for_each_channel_rx_queue(rx_queue, channel)
790 			next_buffer_table = max(next_buffer_table,
791 						rx_queue->rxd.index +
792 						rx_queue->rxd.entries);
793 		efx_for_each_channel_tx_queue(tx_queue, channel)
794 			next_buffer_table = max(next_buffer_table,
795 						tx_queue->txd.index +
796 						tx_queue->txd.entries);
797 	}
798 
799 	efx_device_detach_sync(efx);
800 	efx_stop_all(efx);
801 	efx_soft_disable_interrupts(efx);
802 
803 	/* Clone channels (where possible) */
804 	memset(other_channel, 0, sizeof(other_channel));
805 	for (i = 0; i < efx->n_channels; i++) {
806 		channel = efx->channel[i];
807 		if (channel->type->copy)
808 			channel = channel->type->copy(channel);
809 		if (!channel) {
810 			rc = -ENOMEM;
811 			goto out;
812 		}
813 		other_channel[i] = channel;
814 	}
815 
816 	/* Swap entry counts and channel pointers */
817 	old_rxq_entries = efx->rxq_entries;
818 	old_txq_entries = efx->txq_entries;
819 	efx->rxq_entries = rxq_entries;
820 	efx->txq_entries = txq_entries;
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		efx->channel[i] = other_channel[i];
824 		other_channel[i] = channel;
825 	}
826 
827 	/* Restart buffer table allocation */
828 	efx->next_buffer_table = next_buffer_table;
829 
830 	for (i = 0; i < efx->n_channels; i++) {
831 		channel = efx->channel[i];
832 		if (!channel->type->copy)
833 			continue;
834 		rc = efx_probe_channel(channel);
835 		if (rc)
836 			goto rollback;
837 		efx_init_napi_channel(efx->channel[i]);
838 	}
839 
840 out:
841 	/* Destroy unused channel structures */
842 	for (i = 0; i < efx->n_channels; i++) {
843 		channel = other_channel[i];
844 		if (channel && channel->type->copy) {
845 			efx_fini_napi_channel(channel);
846 			efx_remove_channel(channel);
847 			kfree(channel);
848 		}
849 	}
850 
851 	rc2 = efx_soft_enable_interrupts(efx);
852 	if (rc2) {
853 		rc = rc ? rc : rc2;
854 		netif_err(efx, drv, efx->net_dev,
855 			  "unable to restart interrupts on channel reallocation\n");
856 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 	} else {
858 		efx_start_all(efx);
859 		efx_device_attach_if_not_resetting(efx);
860 	}
861 	return rc;
862 
863 rollback:
864 	/* Swap back */
865 	efx->rxq_entries = old_rxq_entries;
866 	efx->txq_entries = old_txq_entries;
867 	for (i = 0; i < efx->n_channels; i++) {
868 		channel = efx->channel[i];
869 		efx->channel[i] = other_channel[i];
870 		other_channel[i] = channel;
871 	}
872 	goto out;
873 }
874 
875 static inline int
876 efx_set_xdp_tx_queue(struct efx_nic *efx, int xdp_queue_number,
877 		     struct efx_tx_queue *tx_queue)
878 {
879 	if (xdp_queue_number >= efx->xdp_tx_queue_count)
880 		return -EINVAL;
881 
882 	netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is XDP %u, HW %u\n",
883 		  tx_queue->channel->channel, tx_queue->label,
884 		  xdp_queue_number, tx_queue->queue);
885 	efx->xdp_tx_queues[xdp_queue_number] = tx_queue;
886 	return 0;
887 }
888 
889 int efx_set_channels(struct efx_nic *efx)
890 {
891 	struct efx_tx_queue *tx_queue;
892 	struct efx_channel *channel;
893 	unsigned int next_queue = 0;
894 	int xdp_queue_number;
895 	int rc;
896 
897 	efx->tx_channel_offset =
898 		efx_separate_tx_channels ?
899 		efx->n_channels - efx->n_tx_channels : 0;
900 
901 	if (efx->xdp_tx_queue_count) {
902 		EFX_WARN_ON_PARANOID(efx->xdp_tx_queues);
903 
904 		/* Allocate array for XDP TX queue lookup. */
905 		efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count,
906 					     sizeof(*efx->xdp_tx_queues),
907 					     GFP_KERNEL);
908 		if (!efx->xdp_tx_queues)
909 			return -ENOMEM;
910 	}
911 
912 	/* We need to mark which channels really have RX and TX
913 	 * queues, and adjust the TX queue numbers if we have separate
914 	 * RX-only and TX-only channels.
915 	 */
916 	xdp_queue_number = 0;
917 	efx_for_each_channel(channel, efx) {
918 		if (channel->channel < efx->n_rx_channels)
919 			channel->rx_queue.core_index = channel->channel;
920 		else
921 			channel->rx_queue.core_index = -1;
922 
923 		if (channel->channel >= efx->tx_channel_offset) {
924 			if (efx_channel_is_xdp_tx(channel)) {
925 				efx_for_each_channel_tx_queue(tx_queue, channel) {
926 					tx_queue->queue = next_queue++;
927 					rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
928 					if (rc == 0)
929 						xdp_queue_number++;
930 				}
931 			} else {
932 				efx_for_each_channel_tx_queue(tx_queue, channel) {
933 					tx_queue->queue = next_queue++;
934 					netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is HW %u\n",
935 						  channel->channel, tx_queue->label,
936 						  tx_queue->queue);
937 				}
938 
939 				/* If XDP is borrowing queues from net stack, it must use the queue
940 				 * with no csum offload, which is the first one of the channel
941 				 * (note: channel->tx_queue_by_type is not initialized yet)
942 				 */
943 				if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
944 					tx_queue = &channel->tx_queue[0];
945 					rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
946 					if (rc == 0)
947 						xdp_queue_number++;
948 				}
949 			}
950 		}
951 	}
952 	WARN_ON(efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_DEDICATED &&
953 		xdp_queue_number != efx->xdp_tx_queue_count);
954 	WARN_ON(efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED &&
955 		xdp_queue_number > efx->xdp_tx_queue_count);
956 
957 	/* If we have more CPUs than assigned XDP TX queues, assign the already
958 	 * existing queues to the exceeding CPUs
959 	 */
960 	next_queue = 0;
961 	while (xdp_queue_number < efx->xdp_tx_queue_count) {
962 		tx_queue = efx->xdp_tx_queues[next_queue++];
963 		rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
964 		if (rc == 0)
965 			xdp_queue_number++;
966 	}
967 
968 	rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
969 	if (rc)
970 		return rc;
971 	return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
972 }
973 
974 bool efx_default_channel_want_txqs(struct efx_channel *channel)
975 {
976 	return channel->channel - channel->efx->tx_channel_offset <
977 		channel->efx->n_tx_channels;
978 }
979 
980 /*************
981  * START/STOP
982  *************/
983 
984 int efx_soft_enable_interrupts(struct efx_nic *efx)
985 {
986 	struct efx_channel *channel, *end_channel;
987 	int rc;
988 
989 	BUG_ON(efx->state == STATE_DISABLED);
990 
991 	efx->irq_soft_enabled = true;
992 	smp_wmb();
993 
994 	efx_for_each_channel(channel, efx) {
995 		if (!channel->type->keep_eventq) {
996 			rc = efx_init_eventq(channel);
997 			if (rc)
998 				goto fail;
999 		}
1000 		efx_start_eventq(channel);
1001 	}
1002 
1003 	efx_mcdi_mode_event(efx);
1004 
1005 	return 0;
1006 fail:
1007 	end_channel = channel;
1008 	efx_for_each_channel(channel, efx) {
1009 		if (channel == end_channel)
1010 			break;
1011 		efx_stop_eventq(channel);
1012 		if (!channel->type->keep_eventq)
1013 			efx_fini_eventq(channel);
1014 	}
1015 
1016 	return rc;
1017 }
1018 
1019 void efx_soft_disable_interrupts(struct efx_nic *efx)
1020 {
1021 	struct efx_channel *channel;
1022 
1023 	if (efx->state == STATE_DISABLED)
1024 		return;
1025 
1026 	efx_mcdi_mode_poll(efx);
1027 
1028 	efx->irq_soft_enabled = false;
1029 	smp_wmb();
1030 
1031 	if (efx->legacy_irq)
1032 		synchronize_irq(efx->legacy_irq);
1033 
1034 	efx_for_each_channel(channel, efx) {
1035 		if (channel->irq)
1036 			synchronize_irq(channel->irq);
1037 
1038 		efx_stop_eventq(channel);
1039 		if (!channel->type->keep_eventq)
1040 			efx_fini_eventq(channel);
1041 	}
1042 
1043 	/* Flush the asynchronous MCDI request queue */
1044 	efx_mcdi_flush_async(efx);
1045 }
1046 
1047 int efx_enable_interrupts(struct efx_nic *efx)
1048 {
1049 	struct efx_channel *channel, *end_channel;
1050 	int rc;
1051 
1052 	/* TODO: Is this really a bug? */
1053 	BUG_ON(efx->state == STATE_DISABLED);
1054 
1055 	if (efx->eeh_disabled_legacy_irq) {
1056 		enable_irq(efx->legacy_irq);
1057 		efx->eeh_disabled_legacy_irq = false;
1058 	}
1059 
1060 	efx->type->irq_enable_master(efx);
1061 
1062 	efx_for_each_channel(channel, efx) {
1063 		if (channel->type->keep_eventq) {
1064 			rc = efx_init_eventq(channel);
1065 			if (rc)
1066 				goto fail;
1067 		}
1068 	}
1069 
1070 	rc = efx_soft_enable_interrupts(efx);
1071 	if (rc)
1072 		goto fail;
1073 
1074 	return 0;
1075 
1076 fail:
1077 	end_channel = channel;
1078 	efx_for_each_channel(channel, efx) {
1079 		if (channel == end_channel)
1080 			break;
1081 		if (channel->type->keep_eventq)
1082 			efx_fini_eventq(channel);
1083 	}
1084 
1085 	efx->type->irq_disable_non_ev(efx);
1086 
1087 	return rc;
1088 }
1089 
1090 void efx_disable_interrupts(struct efx_nic *efx)
1091 {
1092 	struct efx_channel *channel;
1093 
1094 	efx_soft_disable_interrupts(efx);
1095 
1096 	efx_for_each_channel(channel, efx) {
1097 		if (channel->type->keep_eventq)
1098 			efx_fini_eventq(channel);
1099 	}
1100 
1101 	efx->type->irq_disable_non_ev(efx);
1102 }
1103 
1104 void efx_start_channels(struct efx_nic *efx)
1105 {
1106 	struct efx_tx_queue *tx_queue;
1107 	struct efx_rx_queue *rx_queue;
1108 	struct efx_channel *channel;
1109 
1110 	efx_for_each_channel(channel, efx) {
1111 		efx_for_each_channel_tx_queue(tx_queue, channel) {
1112 			efx_init_tx_queue(tx_queue);
1113 			atomic_inc(&efx->active_queues);
1114 		}
1115 
1116 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1117 			efx_init_rx_queue(rx_queue);
1118 			atomic_inc(&efx->active_queues);
1119 			efx_stop_eventq(channel);
1120 			efx_fast_push_rx_descriptors(rx_queue, false);
1121 			efx_start_eventq(channel);
1122 		}
1123 
1124 		WARN_ON(channel->rx_pkt_n_frags);
1125 	}
1126 }
1127 
1128 void efx_stop_channels(struct efx_nic *efx)
1129 {
1130 	struct efx_tx_queue *tx_queue;
1131 	struct efx_rx_queue *rx_queue;
1132 	struct efx_channel *channel;
1133 	int rc = 0;
1134 
1135 	/* Stop RX refill */
1136 	efx_for_each_channel(channel, efx) {
1137 		efx_for_each_channel_rx_queue(rx_queue, channel)
1138 			rx_queue->refill_enabled = false;
1139 	}
1140 
1141 	efx_for_each_channel(channel, efx) {
1142 		/* RX packet processing is pipelined, so wait for the
1143 		 * NAPI handler to complete.  At least event queue 0
1144 		 * might be kept active by non-data events, so don't
1145 		 * use napi_synchronize() but actually disable NAPI
1146 		 * temporarily.
1147 		 */
1148 		if (efx_channel_has_rx_queue(channel)) {
1149 			efx_stop_eventq(channel);
1150 			efx_start_eventq(channel);
1151 		}
1152 	}
1153 
1154 	if (efx->type->fini_dmaq)
1155 		rc = efx->type->fini_dmaq(efx);
1156 
1157 	if (rc) {
1158 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
1159 	} else {
1160 		netif_dbg(efx, drv, efx->net_dev,
1161 			  "successfully flushed all queues\n");
1162 	}
1163 
1164 	efx_for_each_channel(channel, efx) {
1165 		efx_for_each_channel_rx_queue(rx_queue, channel)
1166 			efx_fini_rx_queue(rx_queue);
1167 		efx_for_each_channel_tx_queue(tx_queue, channel)
1168 			efx_fini_tx_queue(tx_queue);
1169 	}
1170 }
1171 
1172 /**************************************************************************
1173  *
1174  * NAPI interface
1175  *
1176  *************************************************************************/
1177 
1178 /* Process channel's event queue
1179  *
1180  * This function is responsible for processing the event queue of a
1181  * single channel.  The caller must guarantee that this function will
1182  * never be concurrently called more than once on the same channel,
1183  * though different channels may be being processed concurrently.
1184  */
1185 static int efx_process_channel(struct efx_channel *channel, int budget)
1186 {
1187 	struct efx_tx_queue *tx_queue;
1188 	struct list_head rx_list;
1189 	int spent;
1190 
1191 	if (unlikely(!channel->enabled))
1192 		return 0;
1193 
1194 	/* Prepare the batch receive list */
1195 	EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
1196 	INIT_LIST_HEAD(&rx_list);
1197 	channel->rx_list = &rx_list;
1198 
1199 	efx_for_each_channel_tx_queue(tx_queue, channel) {
1200 		tx_queue->pkts_compl = 0;
1201 		tx_queue->bytes_compl = 0;
1202 	}
1203 
1204 	spent = efx_nic_process_eventq(channel, budget);
1205 	if (spent && efx_channel_has_rx_queue(channel)) {
1206 		struct efx_rx_queue *rx_queue =
1207 			efx_channel_get_rx_queue(channel);
1208 
1209 		efx_rx_flush_packet(channel);
1210 		efx_fast_push_rx_descriptors(rx_queue, true);
1211 	}
1212 
1213 	/* Update BQL */
1214 	efx_for_each_channel_tx_queue(tx_queue, channel) {
1215 		if (tx_queue->bytes_compl) {
1216 			netdev_tx_completed_queue(tx_queue->core_txq,
1217 						  tx_queue->pkts_compl,
1218 						  tx_queue->bytes_compl);
1219 		}
1220 	}
1221 
1222 	/* Receive any packets we queued up */
1223 	netif_receive_skb_list(channel->rx_list);
1224 	channel->rx_list = NULL;
1225 
1226 	return spent;
1227 }
1228 
1229 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
1230 {
1231 	int step = efx->irq_mod_step_us;
1232 
1233 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
1234 		if (channel->irq_moderation_us > step) {
1235 			channel->irq_moderation_us -= step;
1236 			efx->type->push_irq_moderation(channel);
1237 		}
1238 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
1239 		if (channel->irq_moderation_us <
1240 		    efx->irq_rx_moderation_us) {
1241 			channel->irq_moderation_us += step;
1242 			efx->type->push_irq_moderation(channel);
1243 		}
1244 	}
1245 
1246 	channel->irq_count = 0;
1247 	channel->irq_mod_score = 0;
1248 }
1249 
1250 /* NAPI poll handler
1251  *
1252  * NAPI guarantees serialisation of polls of the same device, which
1253  * provides the guarantee required by efx_process_channel().
1254  */
1255 static int efx_poll(struct napi_struct *napi, int budget)
1256 {
1257 	struct efx_channel *channel =
1258 		container_of(napi, struct efx_channel, napi_str);
1259 	struct efx_nic *efx = channel->efx;
1260 #ifdef CONFIG_RFS_ACCEL
1261 	unsigned int time;
1262 #endif
1263 	int spent;
1264 
1265 	netif_vdbg(efx, intr, efx->net_dev,
1266 		   "channel %d NAPI poll executing on CPU %d\n",
1267 		   channel->channel, raw_smp_processor_id());
1268 
1269 	spent = efx_process_channel(channel, budget);
1270 
1271 	xdp_do_flush_map();
1272 
1273 	if (spent < budget) {
1274 		if (efx_channel_has_rx_queue(channel) &&
1275 		    efx->irq_rx_adaptive &&
1276 		    unlikely(++channel->irq_count == 1000)) {
1277 			efx_update_irq_mod(efx, channel);
1278 		}
1279 
1280 #ifdef CONFIG_RFS_ACCEL
1281 		/* Perhaps expire some ARFS filters */
1282 		time = jiffies - channel->rfs_last_expiry;
1283 		/* Would our quota be >= 20? */
1284 		if (channel->rfs_filter_count * time >= 600 * HZ)
1285 			mod_delayed_work(system_wq, &channel->filter_work, 0);
1286 #endif
1287 
1288 		/* There is no race here; although napi_disable() will
1289 		 * only wait for napi_complete(), this isn't a problem
1290 		 * since efx_nic_eventq_read_ack() will have no effect if
1291 		 * interrupts have already been disabled.
1292 		 */
1293 		if (napi_complete_done(napi, spent))
1294 			efx_nic_eventq_read_ack(channel);
1295 	}
1296 
1297 	return spent;
1298 }
1299 
1300 void efx_init_napi_channel(struct efx_channel *channel)
1301 {
1302 	struct efx_nic *efx = channel->efx;
1303 
1304 	channel->napi_dev = efx->net_dev;
1305 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1306 		       efx_poll, napi_weight);
1307 }
1308 
1309 void efx_init_napi(struct efx_nic *efx)
1310 {
1311 	struct efx_channel *channel;
1312 
1313 	efx_for_each_channel(channel, efx)
1314 		efx_init_napi_channel(channel);
1315 }
1316 
1317 void efx_fini_napi_channel(struct efx_channel *channel)
1318 {
1319 	if (channel->napi_dev)
1320 		netif_napi_del(&channel->napi_str);
1321 
1322 	channel->napi_dev = NULL;
1323 }
1324 
1325 void efx_fini_napi(struct efx_nic *efx)
1326 {
1327 	struct efx_channel *channel;
1328 
1329 	efx_for_each_channel(channel, efx)
1330 		efx_fini_napi_channel(channel);
1331 }
1332