xref: /openbmc/linux/drivers/net/ethernet/sfc/ef100_rep.c (revision b1c3d2beed8ef3699fab106340e33a79052df116)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2019 Solarflare Communications Inc.
5  * Copyright 2020-2022 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_rep.h"
13 #include "ef100_netdev.h"
14 #include "ef100_nic.h"
15 #include "mae.h"
16 #include "rx_common.h"
17 #include "tc_bindings.h"
18 
19 #define EFX_EF100_REP_DRIVER	"efx_ef100_rep"
20 
21 #define EFX_REP_DEFAULT_PSEUDO_RING_SIZE	64
22 
23 static int efx_ef100_rep_poll(struct napi_struct *napi, int weight);
24 
25 static int efx_ef100_rep_init_struct(struct efx_nic *efx, struct efx_rep *efv,
26 				     unsigned int i)
27 {
28 	efv->parent = efx;
29 	efv->idx = i;
30 	INIT_LIST_HEAD(&efv->list);
31 	efv->dflt.fw_id = MC_CMD_MAE_ACTION_RULE_INSERT_OUT_ACTION_RULE_ID_NULL;
32 	INIT_LIST_HEAD(&efv->dflt.acts.list);
33 	INIT_LIST_HEAD(&efv->rx_list);
34 	spin_lock_init(&efv->rx_lock);
35 	efv->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
36 			  NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
37 			  NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
38 			  NETIF_MSG_TX_ERR | NETIF_MSG_HW;
39 	return 0;
40 }
41 
42 static int efx_ef100_rep_open(struct net_device *net_dev)
43 {
44 	struct efx_rep *efv = netdev_priv(net_dev);
45 
46 	netif_napi_add(net_dev, &efv->napi, efx_ef100_rep_poll);
47 	napi_enable(&efv->napi);
48 	return 0;
49 }
50 
51 static int efx_ef100_rep_close(struct net_device *net_dev)
52 {
53 	struct efx_rep *efv = netdev_priv(net_dev);
54 
55 	napi_disable(&efv->napi);
56 	netif_napi_del(&efv->napi);
57 	return 0;
58 }
59 
60 static netdev_tx_t efx_ef100_rep_xmit(struct sk_buff *skb,
61 				      struct net_device *dev)
62 {
63 	struct efx_rep *efv = netdev_priv(dev);
64 	struct efx_nic *efx = efv->parent;
65 	netdev_tx_t rc;
66 
67 	/* __ef100_hard_start_xmit() will always return success even in the
68 	 * case of TX drops, where it will increment efx's tx_dropped.  The
69 	 * efv stats really only count attempted TX, not success/failure.
70 	 */
71 	atomic64_inc(&efv->stats.tx_packets);
72 	atomic64_add(skb->len, &efv->stats.tx_bytes);
73 	netif_tx_lock(efx->net_dev);
74 	rc = __ef100_hard_start_xmit(skb, efx, dev, efv);
75 	netif_tx_unlock(efx->net_dev);
76 	return rc;
77 }
78 
79 static int efx_ef100_rep_get_port_parent_id(struct net_device *dev,
80 					    struct netdev_phys_item_id *ppid)
81 {
82 	struct efx_rep *efv = netdev_priv(dev);
83 	struct efx_nic *efx = efv->parent;
84 	struct ef100_nic_data *nic_data;
85 
86 	nic_data = efx->nic_data;
87 	/* nic_data->port_id is a u8[] */
88 	ppid->id_len = sizeof(nic_data->port_id);
89 	memcpy(ppid->id, nic_data->port_id, sizeof(nic_data->port_id));
90 	return 0;
91 }
92 
93 static int efx_ef100_rep_get_phys_port_name(struct net_device *dev,
94 					    char *buf, size_t len)
95 {
96 	struct efx_rep *efv = netdev_priv(dev);
97 	struct efx_nic *efx = efv->parent;
98 	struct ef100_nic_data *nic_data;
99 	int ret;
100 
101 	nic_data = efx->nic_data;
102 	ret = snprintf(buf, len, "p%upf%uvf%u", efx->port_num,
103 		       nic_data->pf_index, efv->idx);
104 	if (ret >= len)
105 		return -EOPNOTSUPP;
106 
107 	return 0;
108 }
109 
110 static int efx_ef100_rep_setup_tc(struct net_device *net_dev,
111 				  enum tc_setup_type type, void *type_data)
112 {
113 	struct efx_rep *efv = netdev_priv(net_dev);
114 	struct efx_nic *efx = efv->parent;
115 
116 	if (type == TC_SETUP_CLSFLOWER)
117 		return efx_tc_flower(efx, net_dev, type_data, efv);
118 	if (type == TC_SETUP_BLOCK)
119 		return efx_tc_setup_block(net_dev, efx, type_data, efv);
120 
121 	return -EOPNOTSUPP;
122 }
123 
124 static void efx_ef100_rep_get_stats64(struct net_device *dev,
125 				      struct rtnl_link_stats64 *stats)
126 {
127 	struct efx_rep *efv = netdev_priv(dev);
128 
129 	stats->rx_packets = atomic64_read(&efv->stats.rx_packets);
130 	stats->tx_packets = atomic64_read(&efv->stats.tx_packets);
131 	stats->rx_bytes = atomic64_read(&efv->stats.rx_bytes);
132 	stats->tx_bytes = atomic64_read(&efv->stats.tx_bytes);
133 	stats->rx_dropped = atomic64_read(&efv->stats.rx_dropped);
134 	stats->tx_errors = atomic64_read(&efv->stats.tx_errors);
135 }
136 
137 const struct net_device_ops efx_ef100_rep_netdev_ops = {
138 	.ndo_open		= efx_ef100_rep_open,
139 	.ndo_stop		= efx_ef100_rep_close,
140 	.ndo_start_xmit		= efx_ef100_rep_xmit,
141 	.ndo_get_port_parent_id	= efx_ef100_rep_get_port_parent_id,
142 	.ndo_get_phys_port_name	= efx_ef100_rep_get_phys_port_name,
143 	.ndo_get_stats64	= efx_ef100_rep_get_stats64,
144 	.ndo_setup_tc		= efx_ef100_rep_setup_tc,
145 };
146 
147 static void efx_ef100_rep_get_drvinfo(struct net_device *dev,
148 				      struct ethtool_drvinfo *drvinfo)
149 {
150 	strscpy(drvinfo->driver, EFX_EF100_REP_DRIVER, sizeof(drvinfo->driver));
151 }
152 
153 static u32 efx_ef100_rep_ethtool_get_msglevel(struct net_device *net_dev)
154 {
155 	struct efx_rep *efv = netdev_priv(net_dev);
156 
157 	return efv->msg_enable;
158 }
159 
160 static void efx_ef100_rep_ethtool_set_msglevel(struct net_device *net_dev,
161 					       u32 msg_enable)
162 {
163 	struct efx_rep *efv = netdev_priv(net_dev);
164 
165 	efv->msg_enable = msg_enable;
166 }
167 
168 static void efx_ef100_rep_ethtool_get_ringparam(struct net_device *net_dev,
169 						struct ethtool_ringparam *ring,
170 						struct kernel_ethtool_ringparam *kring,
171 						struct netlink_ext_ack *ext_ack)
172 {
173 	struct efx_rep *efv = netdev_priv(net_dev);
174 
175 	ring->rx_max_pending = U32_MAX;
176 	ring->rx_pending = efv->rx_pring_size;
177 }
178 
179 static int efx_ef100_rep_ethtool_set_ringparam(struct net_device *net_dev,
180 					       struct ethtool_ringparam *ring,
181 					       struct kernel_ethtool_ringparam *kring,
182 					       struct netlink_ext_ack *ext_ack)
183 {
184 	struct efx_rep *efv = netdev_priv(net_dev);
185 
186 	if (ring->rx_mini_pending || ring->rx_jumbo_pending || ring->tx_pending)
187 		return -EINVAL;
188 
189 	efv->rx_pring_size = ring->rx_pending;
190 	return 0;
191 }
192 
193 static const struct ethtool_ops efx_ef100_rep_ethtool_ops = {
194 	.get_drvinfo		= efx_ef100_rep_get_drvinfo,
195 	.get_msglevel		= efx_ef100_rep_ethtool_get_msglevel,
196 	.set_msglevel		= efx_ef100_rep_ethtool_set_msglevel,
197 	.get_ringparam		= efx_ef100_rep_ethtool_get_ringparam,
198 	.set_ringparam		= efx_ef100_rep_ethtool_set_ringparam,
199 };
200 
201 static struct efx_rep *efx_ef100_rep_create_netdev(struct efx_nic *efx,
202 						   unsigned int i)
203 {
204 	struct net_device *net_dev;
205 	struct efx_rep *efv;
206 	int rc;
207 
208 	net_dev = alloc_etherdev_mq(sizeof(*efv), 1);
209 	if (!net_dev)
210 		return ERR_PTR(-ENOMEM);
211 
212 	efv = netdev_priv(net_dev);
213 	rc = efx_ef100_rep_init_struct(efx, efv, i);
214 	if (rc)
215 		goto fail1;
216 	efv->net_dev = net_dev;
217 	rtnl_lock();
218 	spin_lock_bh(&efx->vf_reps_lock);
219 	list_add_tail(&efv->list, &efx->vf_reps);
220 	spin_unlock_bh(&efx->vf_reps_lock);
221 	if (netif_running(efx->net_dev) && efx->state == STATE_NET_UP) {
222 		netif_device_attach(net_dev);
223 		netif_carrier_on(net_dev);
224 	} else {
225 		netif_carrier_off(net_dev);
226 		netif_tx_stop_all_queues(net_dev);
227 	}
228 	rtnl_unlock();
229 
230 	net_dev->netdev_ops = &efx_ef100_rep_netdev_ops;
231 	net_dev->ethtool_ops = &efx_ef100_rep_ethtool_ops;
232 	net_dev->min_mtu = EFX_MIN_MTU;
233 	net_dev->max_mtu = EFX_MAX_MTU;
234 	net_dev->features |= NETIF_F_LLTX;
235 	net_dev->hw_features |= NETIF_F_LLTX;
236 	return efv;
237 fail1:
238 	free_netdev(net_dev);
239 	return ERR_PTR(rc);
240 }
241 
242 static int efx_ef100_configure_rep(struct efx_rep *efv)
243 {
244 	struct efx_nic *efx = efv->parent;
245 	u32 selector;
246 	int rc;
247 
248 	efv->rx_pring_size = EFX_REP_DEFAULT_PSEUDO_RING_SIZE;
249 	/* Construct mport selector for corresponding VF */
250 	efx_mae_mport_vf(efx, efv->idx, &selector);
251 	/* Look up actual mport ID */
252 	rc = efx_mae_lookup_mport(efx, selector, &efv->mport);
253 	if (rc)
254 		return rc;
255 	pci_dbg(efx->pci_dev, "VF %u has mport ID %#x\n", efv->idx, efv->mport);
256 	/* mport label should fit in 16 bits */
257 	WARN_ON(efv->mport >> 16);
258 
259 	return efx_tc_configure_default_rule_rep(efv);
260 }
261 
262 static void efx_ef100_deconfigure_rep(struct efx_rep *efv)
263 {
264 	struct efx_nic *efx = efv->parent;
265 
266 	efx_tc_deconfigure_default_rule(efx, &efv->dflt);
267 }
268 
269 static void efx_ef100_rep_destroy_netdev(struct efx_rep *efv)
270 {
271 	struct efx_nic *efx = efv->parent;
272 
273 	rtnl_lock();
274 	spin_lock_bh(&efx->vf_reps_lock);
275 	list_del(&efv->list);
276 	spin_unlock_bh(&efx->vf_reps_lock);
277 	rtnl_unlock();
278 	synchronize_rcu();
279 	free_netdev(efv->net_dev);
280 }
281 
282 int efx_ef100_vfrep_create(struct efx_nic *efx, unsigned int i)
283 {
284 	struct efx_rep *efv;
285 	int rc;
286 
287 	efv = efx_ef100_rep_create_netdev(efx, i);
288 	if (IS_ERR(efv)) {
289 		rc = PTR_ERR(efv);
290 		pci_err(efx->pci_dev,
291 			"Failed to create representor for VF %d, rc %d\n", i,
292 			rc);
293 		return rc;
294 	}
295 	rc = efx_ef100_configure_rep(efv);
296 	if (rc) {
297 		pci_err(efx->pci_dev,
298 			"Failed to configure representor for VF %d, rc %d\n",
299 			i, rc);
300 		goto fail1;
301 	}
302 	rc = register_netdev(efv->net_dev);
303 	if (rc) {
304 		pci_err(efx->pci_dev,
305 			"Failed to register representor for VF %d, rc %d\n",
306 			i, rc);
307 		goto fail2;
308 	}
309 	pci_dbg(efx->pci_dev, "Representor for VF %d is %s\n", i,
310 		efv->net_dev->name);
311 	return 0;
312 fail2:
313 	efx_ef100_deconfigure_rep(efv);
314 fail1:
315 	efx_ef100_rep_destroy_netdev(efv);
316 	return rc;
317 }
318 
319 void efx_ef100_vfrep_destroy(struct efx_nic *efx, struct efx_rep *efv)
320 {
321 	struct net_device *rep_dev;
322 
323 	rep_dev = efv->net_dev;
324 	if (!rep_dev)
325 		return;
326 	netif_dbg(efx, drv, rep_dev, "Removing VF representor\n");
327 	unregister_netdev(rep_dev);
328 	efx_ef100_deconfigure_rep(efv);
329 	efx_ef100_rep_destroy_netdev(efv);
330 }
331 
332 void efx_ef100_fini_vfreps(struct efx_nic *efx)
333 {
334 	struct ef100_nic_data *nic_data = efx->nic_data;
335 	struct efx_rep *efv, *next;
336 
337 	if (!nic_data->grp_mae)
338 		return;
339 
340 	list_for_each_entry_safe(efv, next, &efx->vf_reps, list)
341 		efx_ef100_vfrep_destroy(efx, efv);
342 }
343 
344 static int efx_ef100_rep_poll(struct napi_struct *napi, int weight)
345 {
346 	struct efx_rep *efv = container_of(napi, struct efx_rep, napi);
347 	unsigned int read_index;
348 	struct list_head head;
349 	struct sk_buff *skb;
350 	bool need_resched;
351 	int spent = 0;
352 
353 	INIT_LIST_HEAD(&head);
354 	/* Grab up to 'weight' pending SKBs */
355 	spin_lock_bh(&efv->rx_lock);
356 	read_index = efv->write_index;
357 	while (spent < weight && !list_empty(&efv->rx_list)) {
358 		skb = list_first_entry(&efv->rx_list, struct sk_buff, list);
359 		list_del(&skb->list);
360 		list_add_tail(&skb->list, &head);
361 		spent++;
362 	}
363 	spin_unlock_bh(&efv->rx_lock);
364 	/* Receive them */
365 	netif_receive_skb_list(&head);
366 	if (spent < weight)
367 		if (napi_complete_done(napi, spent)) {
368 			spin_lock_bh(&efv->rx_lock);
369 			efv->read_index = read_index;
370 			/* If write_index advanced while we were doing the
371 			 * RX, then storing our read_index won't re-prime the
372 			 * fake-interrupt.  In that case, we need to schedule
373 			 * NAPI again to consume the additional packet(s).
374 			 */
375 			need_resched = efv->write_index != read_index;
376 			spin_unlock_bh(&efv->rx_lock);
377 			if (need_resched)
378 				napi_schedule(&efv->napi);
379 		}
380 	return spent;
381 }
382 
383 void efx_ef100_rep_rx_packet(struct efx_rep *efv, struct efx_rx_buffer *rx_buf)
384 {
385 	u8 *eh = efx_rx_buf_va(rx_buf);
386 	struct sk_buff *skb;
387 	bool primed;
388 
389 	/* Don't allow too many queued SKBs to build up, as they consume
390 	 * GFP_ATOMIC memory.  If we overrun, just start dropping.
391 	 */
392 	if (efv->write_index - READ_ONCE(efv->read_index) > efv->rx_pring_size) {
393 		atomic64_inc(&efv->stats.rx_dropped);
394 		if (net_ratelimit())
395 			netif_dbg(efv->parent, rx_err, efv->net_dev,
396 				  "nodesc-dropped packet of length %u\n",
397 				  rx_buf->len);
398 		return;
399 	}
400 
401 	skb = netdev_alloc_skb(efv->net_dev, rx_buf->len);
402 	if (!skb) {
403 		atomic64_inc(&efv->stats.rx_dropped);
404 		if (net_ratelimit())
405 			netif_dbg(efv->parent, rx_err, efv->net_dev,
406 				  "noskb-dropped packet of length %u\n",
407 				  rx_buf->len);
408 		return;
409 	}
410 	memcpy(skb->data, eh, rx_buf->len);
411 	__skb_put(skb, rx_buf->len);
412 
413 	skb_record_rx_queue(skb, 0); /* rep is single-queue */
414 
415 	/* Move past the ethernet header */
416 	skb->protocol = eth_type_trans(skb, efv->net_dev);
417 
418 	skb_checksum_none_assert(skb);
419 
420 	atomic64_inc(&efv->stats.rx_packets);
421 	atomic64_add(rx_buf->len, &efv->stats.rx_bytes);
422 
423 	/* Add it to the rx list */
424 	spin_lock_bh(&efv->rx_lock);
425 	primed = efv->read_index == efv->write_index;
426 	list_add_tail(&skb->list, &efv->rx_list);
427 	efv->write_index++;
428 	spin_unlock_bh(&efv->rx_lock);
429 	/* Trigger rx work */
430 	if (primed)
431 		napi_schedule(&efv->napi);
432 }
433 
434 struct efx_rep *efx_ef100_find_rep_by_mport(struct efx_nic *efx, u16 mport)
435 {
436 	struct efx_rep *efv, *out = NULL;
437 
438 	/* spinlock guards against list mutation while we're walking it;
439 	 * but caller must also hold rcu_read_lock() to ensure the netdev
440 	 * isn't freed after we drop the spinlock.
441 	 */
442 	spin_lock_bh(&efx->vf_reps_lock);
443 	list_for_each_entry(efv, &efx->vf_reps, list)
444 		if (efv->mport == mport) {
445 			out = efv;
446 			break;
447 		}
448 	spin_unlock_bh(&efx->vf_reps_lock);
449 	return out;
450 }
451