1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2020 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_netdev.h"
26 
27 #define EF100_MAX_VIS 4096
28 #define EF100_NUM_MCDI_BUFFERS	1
29 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
30 
31 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
32 
33 /*	MCDI
34  */
35 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
36 {
37 	struct ef100_nic_data *nic_data = efx->nic_data;
38 
39 	if (dma_addr)
40 		*dma_addr = nic_data->mcdi_buf.dma_addr +
41 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
42 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
43 }
44 
45 static int ef100_get_warm_boot_count(struct efx_nic *efx)
46 {
47 	efx_dword_t reg;
48 
49 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
50 
51 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
52 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
53 		efx->state = STATE_DISABLED;
54 		return -ENETDOWN;
55 	} else {
56 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
57 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
58 	}
59 }
60 
61 static void ef100_mcdi_request(struct efx_nic *efx,
62 			       const efx_dword_t *hdr, size_t hdr_len,
63 			       const efx_dword_t *sdu, size_t sdu_len)
64 {
65 	dma_addr_t dma_addr;
66 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
67 
68 	memcpy(pdu, hdr, hdr_len);
69 	memcpy(pdu + hdr_len, sdu, sdu_len);
70 	wmb();
71 
72 	/* The hardware provides 'low' and 'high' (doorbell) registers
73 	 * for passing the 64-bit address of an MCDI request to
74 	 * firmware.  However the dwords are swapped by firmware.  The
75 	 * least significant bits of the doorbell are then 0 for all
76 	 * MCDI requests due to alignment.
77 	 */
78 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
79 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
80 }
81 
82 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
83 {
84 	const efx_dword_t hdr =
85 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
86 
87 	rmb();
88 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
89 }
90 
91 static void ef100_mcdi_read_response(struct efx_nic *efx,
92 				     efx_dword_t *outbuf, size_t offset,
93 				     size_t outlen)
94 {
95 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
96 
97 	memcpy(outbuf, pdu + offset, outlen);
98 }
99 
100 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
101 {
102 	struct ef100_nic_data *nic_data = efx->nic_data;
103 	int rc;
104 
105 	rc = ef100_get_warm_boot_count(efx);
106 	if (rc < 0) {
107 		/* The firmware is presumably in the process of
108 		 * rebooting.  However, we are supposed to report each
109 		 * reboot just once, so we must only do that once we
110 		 * can read and store the updated warm boot count.
111 		 */
112 		return 0;
113 	}
114 
115 	if (rc == nic_data->warm_boot_count)
116 		return 0;
117 
118 	nic_data->warm_boot_count = rc;
119 
120 	return -EIO;
121 }
122 
123 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
124 {
125 }
126 
127 /*	MCDI calls
128  */
129 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
130 {
131 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
132 	size_t outlen;
133 	int rc;
134 
135 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
136 
137 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
138 			  outbuf, sizeof(outbuf), &outlen);
139 	if (rc)
140 		return rc;
141 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
142 		return -EIO;
143 
144 	ether_addr_copy(mac_address,
145 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
146 	return 0;
147 }
148 
149 static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
150 {
151 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
152 	struct ef100_nic_data *nic_data = efx->nic_data;
153 	u8 vi_window_mode;
154 	size_t outlen;
155 	int rc;
156 
157 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
158 
159 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
160 			  outbuf, sizeof(outbuf), &outlen);
161 	if (rc)
162 		return rc;
163 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
164 		netif_err(efx, drv, efx->net_dev,
165 			  "unable to read datapath firmware capabilities\n");
166 		return -EIO;
167 	}
168 
169 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
170 					     GET_CAPABILITIES_OUT_FLAGS1);
171 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
172 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
173 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
174 		nic_data->datapath_caps3 = 0;
175 	else
176 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
177 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
178 
179 	vi_window_mode = MCDI_BYTE(outbuf,
180 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
181 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
182 	if (rc)
183 		return rc;
184 
185 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3))
186 		efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
187 	efx->num_mac_stats = MCDI_WORD(outbuf,
188 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
189 	netif_dbg(efx, probe, efx->net_dev,
190 		  "firmware reports num_mac_stats = %u\n",
191 		  efx->num_mac_stats);
192 	return 0;
193 }
194 
195 /*	Event handling
196  */
197 static int ef100_ev_probe(struct efx_channel *channel)
198 {
199 	/* Allocate an extra descriptor for the QMDA status completion entry */
200 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
201 				    (channel->eventq_mask + 2) *
202 				    sizeof(efx_qword_t),
203 				    GFP_KERNEL);
204 }
205 
206 static int ef100_ev_init(struct efx_channel *channel)
207 {
208 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
209 
210 	/* initial phase is 0 */
211 	clear_bit(channel->channel, nic_data->evq_phases);
212 
213 	return efx_mcdi_ev_init(channel, false, false);
214 }
215 
216 static void ef100_ev_read_ack(struct efx_channel *channel)
217 {
218 	efx_dword_t evq_prime;
219 
220 	EFX_POPULATE_DWORD_2(evq_prime,
221 			     ERF_GZ_EVQ_ID, channel->channel,
222 			     ERF_GZ_IDX, channel->eventq_read_ptr &
223 					 channel->eventq_mask);
224 
225 	efx_writed(channel->efx, &evq_prime,
226 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
227 }
228 
229 static int ef100_ev_process(struct efx_channel *channel, int quota)
230 {
231 	struct efx_nic *efx = channel->efx;
232 	struct ef100_nic_data *nic_data;
233 	bool evq_phase, old_evq_phase;
234 	unsigned int read_ptr;
235 	efx_qword_t *p_event;
236 	int spent = 0;
237 	bool ev_phase;
238 	int ev_type;
239 
240 	if (unlikely(!channel->enabled))
241 		return 0;
242 
243 	nic_data = efx->nic_data;
244 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
245 	old_evq_phase = evq_phase;
246 	read_ptr = channel->eventq_read_ptr;
247 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
248 
249 	while (spent < quota) {
250 		p_event = efx_event(channel, read_ptr);
251 
252 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
253 		if (ev_phase != evq_phase)
254 			break;
255 
256 		netif_vdbg(efx, drv, efx->net_dev,
257 			   "processing event on %d " EFX_QWORD_FMT "\n",
258 			   channel->channel, EFX_QWORD_VAL(*p_event));
259 
260 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
261 
262 		switch (ev_type) {
263 		case ESE_GZ_EF100_EV_MCDI:
264 			efx_mcdi_process_event(channel, p_event);
265 			break;
266 		case ESE_GZ_EF100_EV_DRIVER:
267 			netif_info(efx, drv, efx->net_dev,
268 				   "Driver initiated event " EFX_QWORD_FMT "\n",
269 				   EFX_QWORD_VAL(*p_event));
270 			break;
271 		default:
272 			netif_info(efx, drv, efx->net_dev,
273 				   "Unhandled event " EFX_QWORD_FMT "\n",
274 				   EFX_QWORD_VAL(*p_event));
275 		}
276 
277 		++read_ptr;
278 		if ((read_ptr & channel->eventq_mask) == 0)
279 			evq_phase = !evq_phase;
280 	}
281 
282 	channel->eventq_read_ptr = read_ptr;
283 	if (evq_phase != old_evq_phase)
284 		change_bit(channel->channel, nic_data->evq_phases);
285 
286 	return spent;
287 }
288 
289 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
290 {
291 	struct efx_msi_context *context = dev_id;
292 	struct efx_nic *efx = context->efx;
293 
294 	netif_vdbg(efx, intr, efx->net_dev,
295 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
296 
297 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
298 		/* Note test interrupts */
299 		if (context->index == efx->irq_level)
300 			efx->last_irq_cpu = raw_smp_processor_id();
301 
302 		/* Schedule processing of the channel */
303 		efx_schedule_channel_irq(efx->channel[context->index]);
304 	}
305 
306 	return IRQ_HANDLED;
307 }
308 
309 static int ef100_phy_probe(struct efx_nic *efx)
310 {
311 	struct efx_mcdi_phy_data *phy_data;
312 	int rc;
313 
314 	/* Probe for the PHY */
315 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
316 	if (!efx->phy_data)
317 		return -ENOMEM;
318 
319 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
320 	if (rc)
321 		return rc;
322 
323 	/* Populate driver and ethtool settings */
324 	phy_data = efx->phy_data;
325 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
326 				efx->link_advertising);
327 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
328 						   false);
329 
330 	/* Default to Autonegotiated flow control if the PHY supports it */
331 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
332 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
333 		efx->wanted_fc |= EFX_FC_AUTO;
334 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
335 
336 	/* Push settings to the PHY. Failure is not fatal, the user can try to
337 	 * fix it using ethtool.
338 	 */
339 	rc = efx_mcdi_port_reconfigure(efx);
340 	if (rc && rc != -EPERM)
341 		netif_warn(efx, drv, efx->net_dev,
342 			   "could not initialise PHY settings\n");
343 
344 	return 0;
345 }
346 
347 /*	Other
348  */
349 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
350 {
351 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
352 
353 	efx_mcdi_filter_sync_rx_mode(efx);
354 
355 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
356 		return efx_mcdi_set_mtu(efx);
357 	return efx_mcdi_set_mac(efx);
358 }
359 
360 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
361 {
362 	if (reason == RESET_TYPE_TX_WATCHDOG)
363 		return reason;
364 	return RESET_TYPE_DISABLE;
365 }
366 
367 static int ef100_map_reset_flags(u32 *flags)
368 {
369 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
370 	if ((*flags & EF100_RESET_PORT)) {
371 		*flags &= ~EF100_RESET_PORT;
372 		return RESET_TYPE_ALL;
373 	}
374 	if (*flags & ETH_RESET_MGMT) {
375 		*flags &= ~ETH_RESET_MGMT;
376 		return RESET_TYPE_DISABLE;
377 	}
378 
379 	return -EINVAL;
380 }
381 
382 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
383 {
384 	int rc;
385 
386 	dev_close(efx->net_dev);
387 
388 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
389 		netif_device_attach(efx->net_dev);
390 		__clear_bit(reset_type, &efx->reset_pending);
391 		rc = dev_open(efx->net_dev, NULL);
392 	} else if (reset_type == RESET_TYPE_ALL) {
393 		rc = efx_mcdi_reset(efx, reset_type);
394 		if (rc)
395 			return rc;
396 
397 		netif_device_attach(efx->net_dev);
398 
399 		rc = dev_open(efx->net_dev, NULL);
400 	} else {
401 		rc = 1;	/* Leave the device closed */
402 	}
403 	return rc;
404 }
405 
406 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
407 				      struct netdev_phys_item_id *ppid)
408 {
409 	struct ef100_nic_data *nic_data = efx->nic_data;
410 
411 	if (!is_valid_ether_addr(nic_data->port_id))
412 		return -EOPNOTSUPP;
413 
414 	ppid->id_len = ETH_ALEN;
415 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
416 
417 	return 0;
418 }
419 
420 static unsigned int ef100_check_caps(const struct efx_nic *efx,
421 				     u8 flag, u32 offset)
422 {
423 	const struct ef100_nic_data *nic_data = efx->nic_data;
424 
425 	switch (offset) {
426 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
427 		return nic_data->datapath_caps & BIT_ULL(flag);
428 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
429 		return nic_data->datapath_caps2 & BIT_ULL(flag);
430 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
431 		return nic_data->datapath_caps3 & BIT_ULL(flag);
432 	default:
433 		return 0;
434 	}
435 }
436 
437 /*	NIC level access functions
438  */
439 const struct efx_nic_type ef100_pf_nic_type = {
440 	.revision = EFX_REV_EF100,
441 	.is_vf = false,
442 	.probe = ef100_probe_pf,
443 	.mcdi_max_ver = 2,
444 	.mcdi_request = ef100_mcdi_request,
445 	.mcdi_poll_response = ef100_mcdi_poll_response,
446 	.mcdi_read_response = ef100_mcdi_read_response,
447 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
448 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
449 	.irq_enable_master = efx_port_dummy_op_void,
450 	.irq_disable_non_ev = efx_port_dummy_op_void,
451 	.push_irq_moderation = efx_channel_dummy_op_void,
452 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
453 	.map_reset_reason = ef100_map_reset_reason,
454 	.map_reset_flags = ef100_map_reset_flags,
455 	.reset = ef100_reset,
456 
457 	.check_caps = ef100_check_caps,
458 
459 	.ev_probe = ef100_ev_probe,
460 	.ev_init = ef100_ev_init,
461 	.ev_fini = efx_mcdi_ev_fini,
462 	.ev_remove = efx_mcdi_ev_remove,
463 	.irq_handle_msi = ef100_msi_interrupt,
464 	.ev_process = ef100_ev_process,
465 	.ev_read_ack = ef100_ev_read_ack,
466 	.tx_probe = ef100_tx_probe,
467 	.tx_init = ef100_tx_init,
468 	.tx_write = ef100_tx_write,
469 	.tx_enqueue = ef100_enqueue_skb,
470 	.rx_probe = efx_mcdi_rx_probe,
471 	.rx_init = efx_mcdi_rx_init,
472 	.rx_remove = efx_mcdi_rx_remove,
473 	.rx_write = ef100_rx_write,
474 	.rx_packet = __ef100_rx_packet,
475 
476 	.get_phys_port_id = efx_ef100_get_phys_port_id,
477 
478 	.reconfigure_mac = ef100_reconfigure_mac,
479 
480 	/* Per-type bar/size configuration not used on ef100. Location of
481 	 * registers is defined by extended capabilities.
482 	 */
483 	.mem_bar = NULL,
484 	.mem_map_size = NULL,
485 
486 };
487 
488 /*	NIC probe and remove
489  */
490 static int ef100_probe_main(struct efx_nic *efx)
491 {
492 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
493 	struct net_device *net_dev = efx->net_dev;
494 	struct ef100_nic_data *nic_data;
495 	int i, rc;
496 
497 	if (WARN_ON(bar_size == 0))
498 		return -EIO;
499 
500 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
501 	if (!nic_data)
502 		return -ENOMEM;
503 	efx->nic_data = nic_data;
504 	nic_data->efx = efx;
505 	net_dev->features |= efx->type->offload_features;
506 	net_dev->hw_features |= efx->type->offload_features;
507 
508 	/* we assume later that we can copy from this buffer in dwords */
509 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
510 
511 	/* MCDI buffers must be 256 byte aligned. */
512 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
513 				  GFP_KERNEL);
514 	if (rc)
515 		goto fail;
516 
517 	/* Get the MC's warm boot count.  In case it's rebooting right
518 	 * now, be prepared to retry.
519 	 */
520 	i = 0;
521 	for (;;) {
522 		rc = ef100_get_warm_boot_count(efx);
523 		if (rc >= 0)
524 			break;
525 		if (++i == 5)
526 			goto fail;
527 		ssleep(1);
528 	}
529 	nic_data->warm_boot_count = rc;
530 
531 	/* In case we're recovering from a crash (kexec), we want to
532 	 * cancel any outstanding request by the previous user of this
533 	 * function.  We send a special message using the least
534 	 * significant bits of the 'high' (doorbell) register.
535 	 */
536 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
537 
538 	/* Post-IO section. */
539 
540 	rc = efx_mcdi_init(efx);
541 	if (!rc && efx->mcdi->fn_flags &
542 		   (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
543 		netif_info(efx, probe, efx->net_dev,
544 			   "No network port on this PCI function");
545 		rc = -ENODEV;
546 	}
547 	if (rc)
548 		goto fail;
549 	/* Reset (most) configuration for this function */
550 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
551 	if (rc)
552 		goto fail;
553 
554 	rc = efx_ef100_init_datapath_caps(efx);
555 	if (rc < 0)
556 		goto fail;
557 
558 	efx->max_vis = EF100_MAX_VIS;
559 
560 	rc = efx_mcdi_port_get_number(efx);
561 	if (rc < 0)
562 		goto fail;
563 	efx->port_num = rc;
564 
565 	rc = ef100_phy_probe(efx);
566 	if (rc)
567 		goto fail;
568 
569 	rc = efx_init_channels(efx);
570 	if (rc)
571 		goto fail;
572 
573 	rc = ef100_register_netdev(efx);
574 	if (rc)
575 		goto fail;
576 
577 	return 0;
578 fail:
579 	return rc;
580 }
581 
582 int ef100_probe_pf(struct efx_nic *efx)
583 {
584 	struct net_device *net_dev = efx->net_dev;
585 	struct ef100_nic_data *nic_data;
586 	int rc = ef100_probe_main(efx);
587 
588 	if (rc)
589 		goto fail;
590 
591 	nic_data = efx->nic_data;
592 	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
593 	if (rc)
594 		goto fail;
595 	/* Assign MAC address */
596 	memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
597 	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
598 
599 	return 0;
600 
601 fail:
602 	return rc;
603 }
604 
605 void ef100_remove(struct efx_nic *efx)
606 {
607 	struct ef100_nic_data *nic_data = efx->nic_data;
608 
609 	ef100_unregister_netdev(efx);
610 	efx_fini_channels(efx);
611 	kfree(efx->phy_data);
612 	efx->phy_data = NULL;
613 	efx_mcdi_detach(efx);
614 	efx_mcdi_fini(efx);
615 	if (nic_data)
616 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
617 	kfree(nic_data);
618 	efx->nic_data = NULL;
619 }
620