1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * Copyright 2019-2022 Xilinx Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation, incorporated herein by reference. 10 */ 11 12 #include "ef100_nic.h" 13 #include "efx_common.h" 14 #include "efx_channels.h" 15 #include "io.h" 16 #include "selftest.h" 17 #include "ef100_regs.h" 18 #include "mcdi.h" 19 #include "mcdi_pcol.h" 20 #include "mcdi_port_common.h" 21 #include "mcdi_functions.h" 22 #include "mcdi_filters.h" 23 #include "ef100_rx.h" 24 #include "ef100_tx.h" 25 #include "ef100_sriov.h" 26 #include "ef100_netdev.h" 27 #include "tc.h" 28 #include "mae.h" 29 #include "rx_common.h" 30 31 #define EF100_MAX_VIS 4096 32 #define EF100_NUM_MCDI_BUFFERS 1 33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) 34 35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) 36 37 /* MCDI 38 */ 39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) 40 { 41 struct ef100_nic_data *nic_data = efx->nic_data; 42 43 if (dma_addr) 44 *dma_addr = nic_data->mcdi_buf.dma_addr + 45 bufid * ALIGN(MCDI_BUF_LEN, 256); 46 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); 47 } 48 49 static int ef100_get_warm_boot_count(struct efx_nic *efx) 50 { 51 efx_dword_t reg; 52 53 efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); 54 55 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { 56 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); 57 efx->state = STATE_DISABLED; 58 return -ENETDOWN; 59 } else { 60 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? 61 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; 62 } 63 } 64 65 static void ef100_mcdi_request(struct efx_nic *efx, 66 const efx_dword_t *hdr, size_t hdr_len, 67 const efx_dword_t *sdu, size_t sdu_len) 68 { 69 dma_addr_t dma_addr; 70 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); 71 72 memcpy(pdu, hdr, hdr_len); 73 memcpy(pdu + hdr_len, sdu, sdu_len); 74 wmb(); 75 76 /* The hardware provides 'low' and 'high' (doorbell) registers 77 * for passing the 64-bit address of an MCDI request to 78 * firmware. However the dwords are swapped by firmware. The 79 * least significant bits of the doorbell are then 0 for all 80 * MCDI requests due to alignment. 81 */ 82 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); 83 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 84 } 85 86 static bool ef100_mcdi_poll_response(struct efx_nic *efx) 87 { 88 const efx_dword_t hdr = 89 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); 90 91 rmb(); 92 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); 93 } 94 95 static void ef100_mcdi_read_response(struct efx_nic *efx, 96 efx_dword_t *outbuf, size_t offset, 97 size_t outlen) 98 { 99 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); 100 101 memcpy(outbuf, pdu + offset, outlen); 102 } 103 104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx) 105 { 106 struct ef100_nic_data *nic_data = efx->nic_data; 107 int rc; 108 109 rc = ef100_get_warm_boot_count(efx); 110 if (rc < 0) { 111 /* The firmware is presumably in the process of 112 * rebooting. However, we are supposed to report each 113 * reboot just once, so we must only do that once we 114 * can read and store the updated warm boot count. 115 */ 116 return 0; 117 } 118 119 if (rc == nic_data->warm_boot_count) 120 return 0; 121 122 nic_data->warm_boot_count = rc; 123 124 return -EIO; 125 } 126 127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx) 128 { 129 } 130 131 /* MCDI calls 132 */ 133 int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address, 134 int client_handle, bool empty_ok) 135 { 136 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)); 137 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_IN_LEN); 138 size_t outlen; 139 int rc; 140 141 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); 142 MCDI_SET_DWORD(inbuf, GET_CLIENT_MAC_ADDRESSES_IN_CLIENT_HANDLE, 143 client_handle); 144 145 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_MAC_ADDRESSES, inbuf, 146 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 147 if (rc) 148 return rc; 149 150 if (outlen >= MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)) { 151 ether_addr_copy(mac_address, 152 MCDI_PTR(outbuf, GET_CLIENT_MAC_ADDRESSES_OUT_MAC_ADDRS)); 153 } else if (empty_ok) { 154 pci_warn(efx->pci_dev, 155 "No MAC address provisioned for client ID %#x.\n", 156 client_handle); 157 eth_zero_addr(mac_address); 158 } else { 159 return -ENOENT; 160 } 161 return 0; 162 } 163 164 int efx_ef100_init_datapath_caps(struct efx_nic *efx) 165 { 166 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); 167 struct ef100_nic_data *nic_data = efx->nic_data; 168 u8 vi_window_mode; 169 size_t outlen; 170 int rc; 171 172 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 173 174 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 175 outbuf, sizeof(outbuf), &outlen); 176 if (rc) 177 return rc; 178 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { 179 netif_err(efx, drv, efx->net_dev, 180 "unable to read datapath firmware capabilities\n"); 181 return -EIO; 182 } 183 184 nic_data->datapath_caps = MCDI_DWORD(outbuf, 185 GET_CAPABILITIES_OUT_FLAGS1); 186 nic_data->datapath_caps2 = MCDI_DWORD(outbuf, 187 GET_CAPABILITIES_V2_OUT_FLAGS2); 188 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) 189 nic_data->datapath_caps3 = 0; 190 else 191 nic_data->datapath_caps3 = MCDI_DWORD(outbuf, 192 GET_CAPABILITIES_V7_OUT_FLAGS3); 193 194 vi_window_mode = MCDI_BYTE(outbuf, 195 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); 196 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); 197 if (rc) 198 return rc; 199 200 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) { 201 struct net_device *net_dev = efx->net_dev; 202 netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL | 203 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 204 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM; 205 206 net_dev->features |= tso; 207 net_dev->hw_features |= tso; 208 net_dev->hw_enc_features |= tso; 209 /* EF100 HW can only offload outer checksums if they are UDP, 210 * so for GRE_CSUM we have to use GSO_PARTIAL. 211 */ 212 net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 213 } 214 efx->num_mac_stats = MCDI_WORD(outbuf, 215 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); 216 netif_dbg(efx, probe, efx->net_dev, 217 "firmware reports num_mac_stats = %u\n", 218 efx->num_mac_stats); 219 return 0; 220 } 221 222 /* Event handling 223 */ 224 static int ef100_ev_probe(struct efx_channel *channel) 225 { 226 /* Allocate an extra descriptor for the QMDA status completion entry */ 227 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, 228 (channel->eventq_mask + 2) * 229 sizeof(efx_qword_t), 230 GFP_KERNEL); 231 } 232 233 static int ef100_ev_init(struct efx_channel *channel) 234 { 235 struct ef100_nic_data *nic_data = channel->efx->nic_data; 236 237 /* initial phase is 0 */ 238 clear_bit(channel->channel, nic_data->evq_phases); 239 240 return efx_mcdi_ev_init(channel, false, false); 241 } 242 243 static void ef100_ev_read_ack(struct efx_channel *channel) 244 { 245 efx_dword_t evq_prime; 246 247 EFX_POPULATE_DWORD_2(evq_prime, 248 ERF_GZ_EVQ_ID, channel->channel, 249 ERF_GZ_IDX, channel->eventq_read_ptr & 250 channel->eventq_mask); 251 252 efx_writed(channel->efx, &evq_prime, 253 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); 254 } 255 256 #define EFX_NAPI_MAX_TX 512 257 258 static int ef100_ev_process(struct efx_channel *channel, int quota) 259 { 260 struct efx_nic *efx = channel->efx; 261 struct ef100_nic_data *nic_data; 262 bool evq_phase, old_evq_phase; 263 unsigned int read_ptr; 264 efx_qword_t *p_event; 265 int spent_tx = 0; 266 int spent = 0; 267 bool ev_phase; 268 int ev_type; 269 270 if (unlikely(!channel->enabled)) 271 return 0; 272 273 nic_data = efx->nic_data; 274 evq_phase = test_bit(channel->channel, nic_data->evq_phases); 275 old_evq_phase = evq_phase; 276 read_ptr = channel->eventq_read_ptr; 277 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); 278 279 while (spent < quota) { 280 p_event = efx_event(channel, read_ptr); 281 282 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); 283 if (ev_phase != evq_phase) 284 break; 285 286 netif_vdbg(efx, drv, efx->net_dev, 287 "processing event on %d " EFX_QWORD_FMT "\n", 288 channel->channel, EFX_QWORD_VAL(*p_event)); 289 290 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); 291 292 switch (ev_type) { 293 case ESE_GZ_EF100_EV_RX_PKTS: 294 efx_ef100_ev_rx(channel, p_event); 295 ++spent; 296 break; 297 case ESE_GZ_EF100_EV_MCDI: 298 efx_mcdi_process_event(channel, p_event); 299 break; 300 case ESE_GZ_EF100_EV_TX_COMPLETION: 301 spent_tx += ef100_ev_tx(channel, p_event); 302 if (spent_tx >= EFX_NAPI_MAX_TX) 303 spent = quota; 304 break; 305 case ESE_GZ_EF100_EV_DRIVER: 306 netif_info(efx, drv, efx->net_dev, 307 "Driver initiated event " EFX_QWORD_FMT "\n", 308 EFX_QWORD_VAL(*p_event)); 309 break; 310 default: 311 netif_info(efx, drv, efx->net_dev, 312 "Unhandled event " EFX_QWORD_FMT "\n", 313 EFX_QWORD_VAL(*p_event)); 314 } 315 316 ++read_ptr; 317 if ((read_ptr & channel->eventq_mask) == 0) 318 evq_phase = !evq_phase; 319 } 320 321 channel->eventq_read_ptr = read_ptr; 322 if (evq_phase != old_evq_phase) 323 change_bit(channel->channel, nic_data->evq_phases); 324 325 return spent; 326 } 327 328 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) 329 { 330 struct efx_msi_context *context = dev_id; 331 struct efx_nic *efx = context->efx; 332 333 netif_vdbg(efx, intr, efx->net_dev, 334 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); 335 336 if (likely(READ_ONCE(efx->irq_soft_enabled))) { 337 /* Note test interrupts */ 338 if (context->index == efx->irq_level) 339 efx->last_irq_cpu = raw_smp_processor_id(); 340 341 /* Schedule processing of the channel */ 342 efx_schedule_channel_irq(efx->channel[context->index]); 343 } 344 345 return IRQ_HANDLED; 346 } 347 348 int ef100_phy_probe(struct efx_nic *efx) 349 { 350 struct efx_mcdi_phy_data *phy_data; 351 int rc; 352 353 /* Probe for the PHY */ 354 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); 355 if (!efx->phy_data) 356 return -ENOMEM; 357 358 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); 359 if (rc) 360 return rc; 361 362 /* Populate driver and ethtool settings */ 363 phy_data = efx->phy_data; 364 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, 365 efx->link_advertising); 366 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, 367 false); 368 369 /* Default to Autonegotiated flow control if the PHY supports it */ 370 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; 371 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) 372 efx->wanted_fc |= EFX_FC_AUTO; 373 efx_link_set_wanted_fc(efx, efx->wanted_fc); 374 375 /* Push settings to the PHY. Failure is not fatal, the user can try to 376 * fix it using ethtool. 377 */ 378 rc = efx_mcdi_port_reconfigure(efx); 379 if (rc && rc != -EPERM) 380 netif_warn(efx, drv, efx->net_dev, 381 "could not initialise PHY settings\n"); 382 383 return 0; 384 } 385 386 int ef100_filter_table_probe(struct efx_nic *efx) 387 { 388 return efx_mcdi_filter_table_probe(efx, true); 389 } 390 391 static int ef100_filter_table_up(struct efx_nic *efx) 392 { 393 int rc; 394 395 down_write(&efx->filter_sem); 396 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); 397 if (rc) 398 goto fail_unspec; 399 400 rc = efx_mcdi_filter_add_vlan(efx, 0); 401 if (rc) 402 goto fail_vlan0; 403 /* Drop the lock: we've finished altering table existence, and 404 * filter insertion will need to take the lock for read. 405 */ 406 up_write(&efx->filter_sem); 407 if (IS_ENABLED(CONFIG_SFC_SRIOV)) 408 rc = efx_tc_insert_rep_filters(efx); 409 410 /* Rep filter failure is nonfatal */ 411 if (rc) 412 netif_warn(efx, drv, efx->net_dev, 413 "Failed to insert representor filters, rc %d\n", 414 rc); 415 return 0; 416 417 fail_vlan0: 418 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 419 fail_unspec: 420 efx_mcdi_filter_table_down(efx); 421 up_write(&efx->filter_sem); 422 return rc; 423 } 424 425 static void ef100_filter_table_down(struct efx_nic *efx) 426 { 427 if (IS_ENABLED(CONFIG_SFC_SRIOV)) 428 efx_tc_remove_rep_filters(efx); 429 down_write(&efx->filter_sem); 430 efx_mcdi_filter_del_vlan(efx, 0); 431 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 432 efx_mcdi_filter_table_down(efx); 433 up_write(&efx->filter_sem); 434 } 435 436 /* Other 437 */ 438 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) 439 { 440 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 441 442 efx_mcdi_filter_sync_rx_mode(efx); 443 444 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) 445 return efx_mcdi_set_mtu(efx); 446 return efx_mcdi_set_mac(efx); 447 } 448 449 static enum reset_type ef100_map_reset_reason(enum reset_type reason) 450 { 451 if (reason == RESET_TYPE_TX_WATCHDOG) 452 return reason; 453 return RESET_TYPE_DISABLE; 454 } 455 456 static int ef100_map_reset_flags(u32 *flags) 457 { 458 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ 459 if ((*flags & EF100_RESET_PORT)) { 460 *flags &= ~EF100_RESET_PORT; 461 return RESET_TYPE_ALL; 462 } 463 if (*flags & ETH_RESET_MGMT) { 464 *flags &= ~ETH_RESET_MGMT; 465 return RESET_TYPE_DISABLE; 466 } 467 468 return -EINVAL; 469 } 470 471 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) 472 { 473 int rc; 474 475 dev_close(efx->net_dev); 476 477 if (reset_type == RESET_TYPE_TX_WATCHDOG) { 478 netif_device_attach(efx->net_dev); 479 __clear_bit(reset_type, &efx->reset_pending); 480 rc = dev_open(efx->net_dev, NULL); 481 } else if (reset_type == RESET_TYPE_ALL) { 482 rc = efx_mcdi_reset(efx, reset_type); 483 if (rc) 484 return rc; 485 486 netif_device_attach(efx->net_dev); 487 488 rc = dev_open(efx->net_dev, NULL); 489 } else { 490 rc = 1; /* Leave the device closed */ 491 } 492 return rc; 493 } 494 495 static void ef100_common_stat_mask(unsigned long *mask) 496 { 497 __set_bit(EF100_STAT_port_rx_packets, mask); 498 __set_bit(EF100_STAT_port_tx_packets, mask); 499 __set_bit(EF100_STAT_port_rx_bytes, mask); 500 __set_bit(EF100_STAT_port_tx_bytes, mask); 501 __set_bit(EF100_STAT_port_rx_multicast, mask); 502 __set_bit(EF100_STAT_port_rx_bad, mask); 503 __set_bit(EF100_STAT_port_rx_align_error, mask); 504 __set_bit(EF100_STAT_port_rx_overflow, mask); 505 } 506 507 static void ef100_ethtool_stat_mask(unsigned long *mask) 508 { 509 __set_bit(EF100_STAT_port_tx_pause, mask); 510 __set_bit(EF100_STAT_port_tx_unicast, mask); 511 __set_bit(EF100_STAT_port_tx_multicast, mask); 512 __set_bit(EF100_STAT_port_tx_broadcast, mask); 513 __set_bit(EF100_STAT_port_tx_lt64, mask); 514 __set_bit(EF100_STAT_port_tx_64, mask); 515 __set_bit(EF100_STAT_port_tx_65_to_127, mask); 516 __set_bit(EF100_STAT_port_tx_128_to_255, mask); 517 __set_bit(EF100_STAT_port_tx_256_to_511, mask); 518 __set_bit(EF100_STAT_port_tx_512_to_1023, mask); 519 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); 520 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); 521 __set_bit(EF100_STAT_port_rx_good, mask); 522 __set_bit(EF100_STAT_port_rx_pause, mask); 523 __set_bit(EF100_STAT_port_rx_unicast, mask); 524 __set_bit(EF100_STAT_port_rx_broadcast, mask); 525 __set_bit(EF100_STAT_port_rx_lt64, mask); 526 __set_bit(EF100_STAT_port_rx_64, mask); 527 __set_bit(EF100_STAT_port_rx_65_to_127, mask); 528 __set_bit(EF100_STAT_port_rx_128_to_255, mask); 529 __set_bit(EF100_STAT_port_rx_256_to_511, mask); 530 __set_bit(EF100_STAT_port_rx_512_to_1023, mask); 531 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); 532 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); 533 __set_bit(EF100_STAT_port_rx_gtjumbo, mask); 534 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); 535 __set_bit(EF100_STAT_port_rx_length_error, mask); 536 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); 537 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); 538 __set_bit(GENERIC_STAT_rx_noskb_drops, mask); 539 } 540 541 #define EF100_DMA_STAT(ext_name, mcdi_name) \ 542 [EF100_STAT_ ## ext_name] = \ 543 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 544 545 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { 546 EF100_DMA_STAT(port_tx_bytes, TX_BYTES), 547 EF100_DMA_STAT(port_tx_packets, TX_PKTS), 548 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), 549 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), 550 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), 551 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), 552 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), 553 EF100_DMA_STAT(port_tx_64, TX_64_PKTS), 554 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), 555 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), 556 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), 557 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), 558 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), 559 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), 560 EF100_DMA_STAT(port_rx_bytes, RX_BYTES), 561 EF100_DMA_STAT(port_rx_packets, RX_PKTS), 562 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), 563 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), 564 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), 565 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), 566 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), 567 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), 568 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), 569 EF100_DMA_STAT(port_rx_64, RX_64_PKTS), 570 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), 571 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), 572 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), 573 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), 574 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), 575 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), 576 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), 577 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), 578 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), 579 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), 580 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), 581 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), 582 EFX_GENERIC_SW_STAT(rx_nodesc_trunc), 583 EFX_GENERIC_SW_STAT(rx_noskb_drops), 584 }; 585 586 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) 587 { 588 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 589 590 ef100_ethtool_stat_mask(mask); 591 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, 592 mask, names); 593 } 594 595 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, 596 struct rtnl_link_stats64 *core_stats) 597 { 598 struct ef100_nic_data *nic_data = efx->nic_data; 599 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 600 size_t stats_count = 0, index; 601 u64 *stats = nic_data->stats; 602 603 ef100_ethtool_stat_mask(mask); 604 605 if (full_stats) { 606 for_each_set_bit(index, mask, EF100_STAT_COUNT) { 607 if (ef100_stat_desc[index].name) { 608 *full_stats++ = stats[index]; 609 ++stats_count; 610 } 611 } 612 } 613 614 if (!core_stats) 615 return stats_count; 616 617 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; 618 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; 619 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; 620 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; 621 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + 622 stats[GENERIC_STAT_rx_nodesc_trunc] + 623 stats[GENERIC_STAT_rx_noskb_drops]; 624 core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; 625 core_stats->rx_length_errors = 626 stats[EF100_STAT_port_rx_gtjumbo] + 627 stats[EF100_STAT_port_rx_length_error]; 628 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; 629 core_stats->rx_frame_errors = 630 stats[EF100_STAT_port_rx_align_error]; 631 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; 632 core_stats->rx_errors = (core_stats->rx_length_errors + 633 core_stats->rx_crc_errors + 634 core_stats->rx_frame_errors); 635 636 return stats_count; 637 } 638 639 static size_t ef100_update_stats(struct efx_nic *efx, 640 u64 *full_stats, 641 struct rtnl_link_stats64 *core_stats) 642 { 643 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); 644 struct ef100_nic_data *nic_data = efx->nic_data; 645 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 646 u64 *stats = nic_data->stats; 647 648 ef100_common_stat_mask(mask); 649 ef100_ethtool_stat_mask(mask); 650 651 if (!mc_stats) 652 return 0; 653 654 efx_nic_copy_stats(efx, mc_stats); 655 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, 656 stats, mc_stats, false); 657 658 kfree(mc_stats); 659 660 return ef100_update_stats_common(efx, full_stats, core_stats); 661 } 662 663 static int efx_ef100_get_phys_port_id(struct efx_nic *efx, 664 struct netdev_phys_item_id *ppid) 665 { 666 struct ef100_nic_data *nic_data = efx->nic_data; 667 668 if (!is_valid_ether_addr(nic_data->port_id)) 669 return -EOPNOTSUPP; 670 671 ppid->id_len = ETH_ALEN; 672 memcpy(ppid->id, nic_data->port_id, ppid->id_len); 673 674 return 0; 675 } 676 677 static int efx_ef100_irq_test_generate(struct efx_nic *efx) 678 { 679 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); 680 681 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); 682 683 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); 684 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, 685 inbuf, sizeof(inbuf), NULL, 0, NULL); 686 } 687 688 #define EFX_EF100_TEST 1 689 690 static void efx_ef100_ev_test_generate(struct efx_channel *channel) 691 { 692 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 693 struct efx_nic *efx = channel->efx; 694 efx_qword_t event; 695 int rc; 696 697 EFX_POPULATE_QWORD_2(event, 698 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, 699 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); 700 701 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 702 703 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 704 * already swapped the data to little-endian order. 705 */ 706 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 707 sizeof(efx_qword_t)); 708 709 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 710 NULL, 0, NULL); 711 if (rc && (rc != -ENETDOWN)) 712 goto fail; 713 714 return; 715 716 fail: 717 WARN_ON(true); 718 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 719 } 720 721 static unsigned int ef100_check_caps(const struct efx_nic *efx, 722 u8 flag, u32 offset) 723 { 724 const struct ef100_nic_data *nic_data = efx->nic_data; 725 726 switch (offset) { 727 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: 728 return nic_data->datapath_caps & BIT_ULL(flag); 729 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: 730 return nic_data->datapath_caps2 & BIT_ULL(flag); 731 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: 732 return nic_data->datapath_caps3 & BIT_ULL(flag); 733 default: 734 return 0; 735 } 736 } 737 738 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx) 739 { 740 /* Maximum link speed for Riverhead is 100G */ 741 return 10 * EFX_RECYCLE_RING_SIZE_10G; 742 } 743 744 static int efx_ef100_get_base_mport(struct efx_nic *efx) 745 { 746 struct ef100_nic_data *nic_data = efx->nic_data; 747 u32 selector, id; 748 int rc; 749 750 /* Construct mport selector for "physical network port" */ 751 efx_mae_mport_wire(efx, &selector); 752 /* Look up actual mport ID */ 753 rc = efx_mae_fw_lookup_mport(efx, selector, &id); 754 if (rc) 755 return rc; 756 /* The ID should always fit in 16 bits, because that's how wide the 757 * corresponding fields in the RX prefix & TX override descriptor are 758 */ 759 if (id >> 16) 760 netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n", 761 id); 762 nic_data->base_mport = id; 763 nic_data->have_mport = true; 764 765 /* Construct mport selector for "calling PF" */ 766 efx_mae_mport_uplink(efx, &selector); 767 /* Look up actual mport ID */ 768 rc = efx_mae_fw_lookup_mport(efx, selector, &id); 769 if (rc) 770 return rc; 771 if (id >> 16) 772 netif_warn(efx, probe, efx->net_dev, "Bad own m-port id %#x\n", 773 id); 774 nic_data->own_mport = id; 775 nic_data->have_own_mport = true; 776 777 return 0; 778 } 779 780 static int compare_versions(const char *a, const char *b) 781 { 782 int a_major, a_minor, a_point, a_patch; 783 int b_major, b_minor, b_point, b_patch; 784 int a_matched, b_matched; 785 786 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); 787 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); 788 789 if (a_matched == 4 && b_matched != 4) 790 return +1; 791 792 if (a_matched != 4 && b_matched == 4) 793 return -1; 794 795 if (a_matched != 4 && b_matched != 4) 796 return 0; 797 798 if (a_major != b_major) 799 return a_major - b_major; 800 801 if (a_minor != b_minor) 802 return a_minor - b_minor; 803 804 if (a_point != b_point) 805 return a_point - b_point; 806 807 return a_patch - b_patch; 808 } 809 810 enum ef100_tlv_state_machine { 811 EF100_TLV_TYPE, 812 EF100_TLV_TYPE_CONT, 813 EF100_TLV_LENGTH, 814 EF100_TLV_VALUE 815 }; 816 817 struct ef100_tlv_state { 818 enum ef100_tlv_state_machine state; 819 u64 value; 820 u32 value_offset; 821 u16 type; 822 u8 len; 823 }; 824 825 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) 826 { 827 switch (state->state) { 828 case EF100_TLV_TYPE: 829 state->type = byte & 0x7f; 830 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT 831 : EF100_TLV_LENGTH; 832 /* Clear ready to read in a new entry */ 833 state->value = 0; 834 state->value_offset = 0; 835 return 0; 836 case EF100_TLV_TYPE_CONT: 837 state->type |= byte << 7; 838 state->state = EF100_TLV_LENGTH; 839 return 0; 840 case EF100_TLV_LENGTH: 841 state->len = byte; 842 /* We only handle TLVs that fit in a u64 */ 843 if (state->len > sizeof(state->value)) 844 return -EOPNOTSUPP; 845 /* len may be zero, implying a value of zero */ 846 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; 847 return 0; 848 case EF100_TLV_VALUE: 849 state->value |= ((u64)byte) << (state->value_offset * 8); 850 state->value_offset++; 851 if (state->value_offset >= state->len) 852 state->state = EF100_TLV_TYPE; 853 return 0; 854 default: /* state machine error, can't happen */ 855 WARN_ON_ONCE(1); 856 return -EIO; 857 } 858 } 859 860 static int ef100_process_design_param(struct efx_nic *efx, 861 const struct ef100_tlv_state *reader) 862 { 863 struct ef100_nic_data *nic_data = efx->nic_data; 864 865 switch (reader->type) { 866 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ 867 return 0; 868 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: 869 /* Driver doesn't support timestamping yet, so we don't care */ 870 return 0; 871 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: 872 /* Driver doesn't support unsolicited-event credits yet, so 873 * we don't care 874 */ 875 return 0; 876 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: 877 /* Driver doesn't manage the NMMU (so we don't care) */ 878 return 0; 879 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: 880 /* Driver uses CHECKSUM_COMPLETE, so we don't care about 881 * protocol checksum validation 882 */ 883 return 0; 884 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: 885 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); 886 return 0; 887 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: 888 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ 889 if (!reader->value) { 890 netif_err(efx, probe, efx->net_dev, 891 "TSO_MAX_HDR_NUM_SEGS < 1\n"); 892 return -EOPNOTSUPP; 893 } 894 return 0; 895 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: 896 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: 897 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by 898 * EFX_MIN_DMAQ_SIZE, so we just need to check that 899 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. 900 * This is very unlikely to fail. 901 */ 902 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || 903 EFX_MIN_DMAQ_SIZE % (u32)reader->value) { 904 netif_err(efx, probe, efx->net_dev, 905 "%s size granularity is %llu, can't guarantee safety\n", 906 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", 907 reader->value); 908 return -EOPNOTSUPP; 909 } 910 return 0; 911 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: 912 nic_data->tso_max_payload_len = min_t(u64, reader->value, 913 GSO_LEGACY_MAX_SIZE); 914 netif_set_tso_max_size(efx->net_dev, 915 nic_data->tso_max_payload_len); 916 return 0; 917 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: 918 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); 919 netif_set_tso_max_segs(efx->net_dev, 920 nic_data->tso_max_payload_num_segs); 921 return 0; 922 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: 923 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); 924 return 0; 925 case ESE_EF100_DP_GZ_COMPAT: 926 if (reader->value) { 927 netif_err(efx, probe, efx->net_dev, 928 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", 929 reader->value); 930 return -EOPNOTSUPP; 931 } 932 return 0; 933 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: 934 /* Driver doesn't use mem2mem transfers */ 935 return 0; 936 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: 937 /* Driver doesn't currently use EVQ_TIMER */ 938 return 0; 939 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: 940 /* Driver doesn't manage the NMMU (so we don't care) */ 941 return 0; 942 case ESE_EF100_DP_GZ_VI_STRIDES: 943 /* We never try to set the VI stride, and we don't rely on 944 * being able to find VIs past VI 0 until after we've learned 945 * the current stride from MC_CMD_GET_CAPABILITIES. 946 * So the value of this shouldn't matter. 947 */ 948 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) 949 netif_dbg(efx, probe, efx->net_dev, 950 "NIC has other than default VI_STRIDES (mask " 951 "%#llx), early probing might use wrong one\n", 952 reader->value); 953 return 0; 954 case ESE_EF100_DP_GZ_RX_MAX_RUNT: 955 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't 956 * care whether it indicates runt or overlength for any given 957 * packet, so we don't care about this parameter. 958 */ 959 return 0; 960 default: 961 /* Host interface says "Drivers should ignore design parameters 962 * that they do not recognise." 963 */ 964 netif_dbg(efx, probe, efx->net_dev, 965 "Ignoring unrecognised design parameter %u\n", 966 reader->type); 967 return 0; 968 } 969 } 970 971 static int ef100_check_design_params(struct efx_nic *efx) 972 { 973 struct ef100_tlv_state reader = {}; 974 u32 total_len, offset = 0; 975 efx_dword_t reg; 976 int rc = 0, i; 977 u32 data; 978 979 efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); 980 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 981 pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len); 982 while (offset < total_len) { 983 efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); 984 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 985 for (i = 0; i < sizeof(data); i++) { 986 rc = ef100_tlv_feed(&reader, data); 987 /* Got a complete value? */ 988 if (!rc && reader.state == EF100_TLV_TYPE) 989 rc = ef100_process_design_param(efx, &reader); 990 if (rc) 991 goto out; 992 data >>= 8; 993 offset++; 994 } 995 } 996 /* Check we didn't end halfway through a TLV entry, which could either 997 * mean that the TLV stream is truncated or just that it's corrupted 998 * and our state machine is out of sync. 999 */ 1000 if (reader.state != EF100_TLV_TYPE) { 1001 if (reader.state == EF100_TLV_TYPE_CONT) 1002 netif_err(efx, probe, efx->net_dev, 1003 "truncated design parameter (incomplete type %u)\n", 1004 reader.type); 1005 else 1006 netif_err(efx, probe, efx->net_dev, 1007 "truncated design parameter %u\n", 1008 reader.type); 1009 rc = -EIO; 1010 } 1011 out: 1012 return rc; 1013 } 1014 1015 /* NIC probe and remove 1016 */ 1017 static int ef100_probe_main(struct efx_nic *efx) 1018 { 1019 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); 1020 struct ef100_nic_data *nic_data; 1021 char fw_version[32]; 1022 u32 priv_mask = 0; 1023 int i, rc; 1024 1025 if (WARN_ON(bar_size == 0)) 1026 return -EIO; 1027 1028 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); 1029 if (!nic_data) 1030 return -ENOMEM; 1031 efx->nic_data = nic_data; 1032 nic_data->efx = efx; 1033 efx->max_vis = EF100_MAX_VIS; 1034 1035 /* Populate design-parameter defaults */ 1036 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; 1037 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; 1038 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; 1039 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; 1040 1041 /* Read design parameters */ 1042 rc = ef100_check_design_params(efx); 1043 if (rc) { 1044 pci_err(efx->pci_dev, "Unsupported design parameters\n"); 1045 goto fail; 1046 } 1047 1048 /* we assume later that we can copy from this buffer in dwords */ 1049 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); 1050 1051 /* MCDI buffers must be 256 byte aligned. */ 1052 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, 1053 GFP_KERNEL); 1054 if (rc) 1055 goto fail; 1056 1057 /* Get the MC's warm boot count. In case it's rebooting right 1058 * now, be prepared to retry. 1059 */ 1060 i = 0; 1061 for (;;) { 1062 rc = ef100_get_warm_boot_count(efx); 1063 if (rc >= 0) 1064 break; 1065 if (++i == 5) 1066 goto fail; 1067 ssleep(1); 1068 } 1069 nic_data->warm_boot_count = rc; 1070 1071 /* In case we're recovering from a crash (kexec), we want to 1072 * cancel any outstanding request by the previous user of this 1073 * function. We send a special message using the least 1074 * significant bits of the 'high' (doorbell) register. 1075 */ 1076 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 1077 1078 /* Post-IO section. */ 1079 1080 rc = efx_mcdi_init(efx); 1081 if (rc) 1082 goto fail; 1083 /* Reset (most) configuration for this function */ 1084 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); 1085 if (rc) 1086 goto fail; 1087 /* Enable event logging */ 1088 rc = efx_mcdi_log_ctrl(efx, true, false, 0); 1089 if (rc) 1090 goto fail; 1091 1092 rc = efx_get_pf_index(efx, &nic_data->pf_index); 1093 if (rc) 1094 goto fail; 1095 1096 rc = efx_mcdi_port_get_number(efx); 1097 if (rc < 0) 1098 goto fail; 1099 efx->port_num = rc; 1100 1101 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); 1102 pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version); 1103 1104 rc = efx_mcdi_get_privilege_mask(efx, &priv_mask); 1105 if (rc) /* non-fatal, and priv_mask will still be 0 */ 1106 pci_info(efx->pci_dev, 1107 "Failed to get privilege mask from FW, rc %d\n", rc); 1108 nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE); 1109 1110 if (compare_versions(fw_version, "1.1.0.1000") < 0) { 1111 pci_info(efx->pci_dev, "Firmware uses old event descriptors\n"); 1112 rc = -EINVAL; 1113 goto fail; 1114 } 1115 1116 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { 1117 pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n"); 1118 rc = -EINVAL; 1119 goto fail; 1120 } 1121 1122 return 0; 1123 fail: 1124 return rc; 1125 } 1126 1127 /* MCDI commands are related to the same device issuing them. This function 1128 * allows to do an MCDI command on behalf of another device, mainly PFs setting 1129 * things for VFs. 1130 */ 1131 int efx_ef100_lookup_client_id(struct efx_nic *efx, efx_qword_t pciefn, u32 *id) 1132 { 1133 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_HANDLE_OUT_LEN); 1134 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_HANDLE_IN_LEN); 1135 u64 pciefn_flat = le64_to_cpu(pciefn.u64[0]); 1136 size_t outlen; 1137 int rc; 1138 1139 MCDI_SET_DWORD(inbuf, GET_CLIENT_HANDLE_IN_TYPE, 1140 MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC); 1141 MCDI_SET_QWORD(inbuf, GET_CLIENT_HANDLE_IN_FUNC, 1142 pciefn_flat); 1143 1144 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_HANDLE, inbuf, sizeof(inbuf), 1145 outbuf, sizeof(outbuf), &outlen); 1146 if (rc) 1147 return rc; 1148 if (outlen < sizeof(outbuf)) 1149 return -EIO; 1150 *id = MCDI_DWORD(outbuf, GET_CLIENT_HANDLE_OUT_HANDLE); 1151 return 0; 1152 } 1153 1154 int ef100_probe_netdev_pf(struct efx_nic *efx) 1155 { 1156 struct ef100_nic_data *nic_data = efx->nic_data; 1157 struct net_device *net_dev = efx->net_dev; 1158 int rc; 1159 1160 if (!IS_ENABLED(CONFIG_SFC_SRIOV) || !nic_data->grp_mae) 1161 return 0; 1162 1163 rc = efx_init_struct_tc(efx); 1164 if (rc) 1165 return rc; 1166 1167 rc = efx_ef100_get_base_mport(efx); 1168 if (rc) { 1169 netif_warn(efx, probe, net_dev, 1170 "Failed to probe base mport rc %d; representors will not function\n", 1171 rc); 1172 } 1173 1174 rc = efx_init_mae(efx); 1175 if (rc) 1176 netif_warn(efx, probe, net_dev, 1177 "Failed to init MAE rc %d; representors will not function\n", 1178 rc); 1179 else 1180 efx_ef100_init_reps(efx); 1181 1182 rc = efx_init_tc(efx); 1183 if (rc) { 1184 /* Either we don't have an MAE at all (i.e. legacy v-switching), 1185 * or we do but we failed to probe it. In the latter case, we 1186 * may not have set up default rules, in which case we won't be 1187 * able to pass any traffic. However, we don't fail the probe, 1188 * because the user might need to use the netdevice to apply 1189 * configuration changes to fix whatever's wrong with the MAE. 1190 */ 1191 netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n", 1192 rc); 1193 } else { 1194 net_dev->features |= NETIF_F_HW_TC; 1195 efx->fixed_features |= NETIF_F_HW_TC; 1196 } 1197 return rc; 1198 } 1199 1200 int ef100_probe_vf(struct efx_nic *efx) 1201 { 1202 return ef100_probe_main(efx); 1203 } 1204 1205 void ef100_remove(struct efx_nic *efx) 1206 { 1207 struct ef100_nic_data *nic_data = efx->nic_data; 1208 1209 if (IS_ENABLED(CONFIG_SFC_SRIOV) && efx->mae) { 1210 efx_ef100_fini_reps(efx); 1211 efx_fini_mae(efx); 1212 } 1213 1214 efx_mcdi_detach(efx); 1215 efx_mcdi_fini(efx); 1216 if (nic_data) 1217 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 1218 kfree(nic_data); 1219 efx->nic_data = NULL; 1220 } 1221 1222 /* NIC level access functions 1223 */ 1224 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \ 1225 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \ 1226 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ 1227 NETIF_F_HW_VLAN_CTAG_TX) 1228 1229 const struct efx_nic_type ef100_pf_nic_type = { 1230 .revision = EFX_REV_EF100, 1231 .is_vf = false, 1232 .probe = ef100_probe_main, 1233 .offload_features = EF100_OFFLOAD_FEATURES, 1234 .mcdi_max_ver = 2, 1235 .mcdi_request = ef100_mcdi_request, 1236 .mcdi_poll_response = ef100_mcdi_poll_response, 1237 .mcdi_read_response = ef100_mcdi_read_response, 1238 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 1239 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 1240 .irq_enable_master = efx_port_dummy_op_void, 1241 .irq_test_generate = efx_ef100_irq_test_generate, 1242 .irq_disable_non_ev = efx_port_dummy_op_void, 1243 .push_irq_moderation = efx_channel_dummy_op_void, 1244 .min_interrupt_mode = EFX_INT_MODE_MSIX, 1245 .map_reset_reason = ef100_map_reset_reason, 1246 .map_reset_flags = ef100_map_reset_flags, 1247 .reset = ef100_reset, 1248 1249 .check_caps = ef100_check_caps, 1250 1251 .ev_probe = ef100_ev_probe, 1252 .ev_init = ef100_ev_init, 1253 .ev_fini = efx_mcdi_ev_fini, 1254 .ev_remove = efx_mcdi_ev_remove, 1255 .irq_handle_msi = ef100_msi_interrupt, 1256 .ev_process = ef100_ev_process, 1257 .ev_read_ack = ef100_ev_read_ack, 1258 .ev_test_generate = efx_ef100_ev_test_generate, 1259 .tx_probe = ef100_tx_probe, 1260 .tx_init = ef100_tx_init, 1261 .tx_write = ef100_tx_write, 1262 .tx_enqueue = ef100_enqueue_skb, 1263 .rx_probe = efx_mcdi_rx_probe, 1264 .rx_init = efx_mcdi_rx_init, 1265 .rx_remove = efx_mcdi_rx_remove, 1266 .rx_write = ef100_rx_write, 1267 .rx_packet = __ef100_rx_packet, 1268 .rx_buf_hash_valid = ef100_rx_buf_hash_valid, 1269 .fini_dmaq = efx_fini_dmaq, 1270 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 1271 .filter_table_probe = ef100_filter_table_up, 1272 .filter_table_restore = efx_mcdi_filter_table_restore, 1273 .filter_table_remove = ef100_filter_table_down, 1274 .filter_insert = efx_mcdi_filter_insert, 1275 .filter_remove_safe = efx_mcdi_filter_remove_safe, 1276 .filter_get_safe = efx_mcdi_filter_get_safe, 1277 .filter_clear_rx = efx_mcdi_filter_clear_rx, 1278 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 1279 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 1280 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 1281 #ifdef CONFIG_RFS_ACCEL 1282 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 1283 #endif 1284 1285 .get_phys_port_id = efx_ef100_get_phys_port_id, 1286 1287 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 1288 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 1289 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 1290 .rx_hash_key_size = 40, 1291 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 1292 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 1293 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, 1294 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, 1295 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 1296 .rx_recycle_ring_size = efx_ef100_recycle_ring_size, 1297 1298 .reconfigure_mac = ef100_reconfigure_mac, 1299 .reconfigure_port = efx_mcdi_port_reconfigure, 1300 .test_nvram = efx_new_mcdi_nvram_test_all, 1301 .describe_stats = ef100_describe_stats, 1302 .start_stats = efx_mcdi_mac_start_stats, 1303 .update_stats = ef100_update_stats, 1304 .pull_stats = efx_mcdi_mac_pull_stats, 1305 .stop_stats = efx_mcdi_mac_stop_stats, 1306 .sriov_configure = IS_ENABLED(CONFIG_SFC_SRIOV) ? 1307 efx_ef100_sriov_configure : NULL, 1308 1309 /* Per-type bar/size configuration not used on ef100. Location of 1310 * registers is defined by extended capabilities. 1311 */ 1312 .mem_bar = NULL, 1313 .mem_map_size = NULL, 1314 1315 }; 1316 1317 const struct efx_nic_type ef100_vf_nic_type = { 1318 .revision = EFX_REV_EF100, 1319 .is_vf = true, 1320 .probe = ef100_probe_vf, 1321 .offload_features = EF100_OFFLOAD_FEATURES, 1322 .mcdi_max_ver = 2, 1323 .mcdi_request = ef100_mcdi_request, 1324 .mcdi_poll_response = ef100_mcdi_poll_response, 1325 .mcdi_read_response = ef100_mcdi_read_response, 1326 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 1327 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 1328 .irq_enable_master = efx_port_dummy_op_void, 1329 .irq_test_generate = efx_ef100_irq_test_generate, 1330 .irq_disable_non_ev = efx_port_dummy_op_void, 1331 .push_irq_moderation = efx_channel_dummy_op_void, 1332 .min_interrupt_mode = EFX_INT_MODE_MSIX, 1333 .map_reset_reason = ef100_map_reset_reason, 1334 .map_reset_flags = ef100_map_reset_flags, 1335 .reset = ef100_reset, 1336 .check_caps = ef100_check_caps, 1337 .ev_probe = ef100_ev_probe, 1338 .ev_init = ef100_ev_init, 1339 .ev_fini = efx_mcdi_ev_fini, 1340 .ev_remove = efx_mcdi_ev_remove, 1341 .irq_handle_msi = ef100_msi_interrupt, 1342 .ev_process = ef100_ev_process, 1343 .ev_read_ack = ef100_ev_read_ack, 1344 .ev_test_generate = efx_ef100_ev_test_generate, 1345 .tx_probe = ef100_tx_probe, 1346 .tx_init = ef100_tx_init, 1347 .tx_write = ef100_tx_write, 1348 .tx_enqueue = ef100_enqueue_skb, 1349 .rx_probe = efx_mcdi_rx_probe, 1350 .rx_init = efx_mcdi_rx_init, 1351 .rx_remove = efx_mcdi_rx_remove, 1352 .rx_write = ef100_rx_write, 1353 .rx_packet = __ef100_rx_packet, 1354 .rx_buf_hash_valid = ef100_rx_buf_hash_valid, 1355 .fini_dmaq = efx_fini_dmaq, 1356 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 1357 .filter_table_probe = ef100_filter_table_up, 1358 .filter_table_restore = efx_mcdi_filter_table_restore, 1359 .filter_table_remove = ef100_filter_table_down, 1360 .filter_insert = efx_mcdi_filter_insert, 1361 .filter_remove_safe = efx_mcdi_filter_remove_safe, 1362 .filter_get_safe = efx_mcdi_filter_get_safe, 1363 .filter_clear_rx = efx_mcdi_filter_clear_rx, 1364 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 1365 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 1366 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 1367 #ifdef CONFIG_RFS_ACCEL 1368 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 1369 #endif 1370 1371 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 1372 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 1373 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 1374 .rx_hash_key_size = 40, 1375 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 1376 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 1377 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 1378 .rx_recycle_ring_size = efx_ef100_recycle_ring_size, 1379 1380 .reconfigure_mac = ef100_reconfigure_mac, 1381 .test_nvram = efx_new_mcdi_nvram_test_all, 1382 .describe_stats = ef100_describe_stats, 1383 .start_stats = efx_mcdi_mac_start_stats, 1384 .update_stats = ef100_update_stats, 1385 .pull_stats = efx_mcdi_mac_pull_stats, 1386 .stop_stats = efx_mcdi_mac_stop_stats, 1387 1388 .mem_bar = NULL, 1389 .mem_map_size = NULL, 1390 1391 }; 1392