1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2022 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30 
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS	1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34 
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36 
37 /*	MCDI
38  */
39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 	struct ef100_nic_data *nic_data = efx->nic_data;
42 
43 	if (dma_addr)
44 		*dma_addr = nic_data->mcdi_buf.dma_addr +
45 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
46 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48 
49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 	efx_dword_t reg;
52 
53 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54 
55 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 		efx->state = STATE_DISABLED;
58 		return -ENETDOWN;
59 	} else {
60 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 	}
63 }
64 
65 static void ef100_mcdi_request(struct efx_nic *efx,
66 			       const efx_dword_t *hdr, size_t hdr_len,
67 			       const efx_dword_t *sdu, size_t sdu_len)
68 {
69 	dma_addr_t dma_addr;
70 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71 
72 	memcpy(pdu, hdr, hdr_len);
73 	memcpy(pdu + hdr_len, sdu, sdu_len);
74 	wmb();
75 
76 	/* The hardware provides 'low' and 'high' (doorbell) registers
77 	 * for passing the 64-bit address of an MCDI request to
78 	 * firmware.  However the dwords are swapped by firmware.  The
79 	 * least significant bits of the doorbell are then 0 for all
80 	 * MCDI requests due to alignment.
81 	 */
82 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85 
86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 	const efx_dword_t hdr =
89 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90 
91 	rmb();
92 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94 
95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 				     efx_dword_t *outbuf, size_t offset,
97 				     size_t outlen)
98 {
99 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100 
101 	memcpy(outbuf, pdu + offset, outlen);
102 }
103 
104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 	struct ef100_nic_data *nic_data = efx->nic_data;
107 	int rc;
108 
109 	rc = ef100_get_warm_boot_count(efx);
110 	if (rc < 0) {
111 		/* The firmware is presumably in the process of
112 		 * rebooting.  However, we are supposed to report each
113 		 * reboot just once, so we must only do that once we
114 		 * can read and store the updated warm boot count.
115 		 */
116 		return 0;
117 	}
118 
119 	if (rc == nic_data->warm_boot_count)
120 		return 0;
121 
122 	nic_data->warm_boot_count = rc;
123 
124 	return -EIO;
125 }
126 
127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130 
131 /*	MCDI calls
132  */
133 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
134 {
135 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
136 	size_t outlen;
137 	int rc;
138 
139 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
140 
141 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
142 			  outbuf, sizeof(outbuf), &outlen);
143 	if (rc)
144 		return rc;
145 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
146 		return -EIO;
147 
148 	ether_addr_copy(mac_address,
149 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
150 	return 0;
151 }
152 
153 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
154 {
155 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
156 	struct ef100_nic_data *nic_data = efx->nic_data;
157 	u8 vi_window_mode;
158 	size_t outlen;
159 	int rc;
160 
161 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162 
163 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164 			  outbuf, sizeof(outbuf), &outlen);
165 	if (rc)
166 		return rc;
167 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 		netif_err(efx, drv, efx->net_dev,
169 			  "unable to read datapath firmware capabilities\n");
170 		return -EIO;
171 	}
172 
173 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
174 					     GET_CAPABILITIES_OUT_FLAGS1);
175 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
176 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
177 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
178 		nic_data->datapath_caps3 = 0;
179 	else
180 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
181 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
182 
183 	vi_window_mode = MCDI_BYTE(outbuf,
184 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
185 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
186 	if (rc)
187 		return rc;
188 
189 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
190 		struct net_device *net_dev = efx->net_dev;
191 		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
192 					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
193 					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
194 
195 		net_dev->features |= tso;
196 		net_dev->hw_features |= tso;
197 		net_dev->hw_enc_features |= tso;
198 		/* EF100 HW can only offload outer checksums if they are UDP,
199 		 * so for GRE_CSUM we have to use GSO_PARTIAL.
200 		 */
201 		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
202 	}
203 	efx->num_mac_stats = MCDI_WORD(outbuf,
204 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
205 	netif_dbg(efx, probe, efx->net_dev,
206 		  "firmware reports num_mac_stats = %u\n",
207 		  efx->num_mac_stats);
208 	return 0;
209 }
210 
211 /*	Event handling
212  */
213 static int ef100_ev_probe(struct efx_channel *channel)
214 {
215 	/* Allocate an extra descriptor for the QMDA status completion entry */
216 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
217 				    (channel->eventq_mask + 2) *
218 				    sizeof(efx_qword_t),
219 				    GFP_KERNEL);
220 }
221 
222 static int ef100_ev_init(struct efx_channel *channel)
223 {
224 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
225 
226 	/* initial phase is 0 */
227 	clear_bit(channel->channel, nic_data->evq_phases);
228 
229 	return efx_mcdi_ev_init(channel, false, false);
230 }
231 
232 static void ef100_ev_read_ack(struct efx_channel *channel)
233 {
234 	efx_dword_t evq_prime;
235 
236 	EFX_POPULATE_DWORD_2(evq_prime,
237 			     ERF_GZ_EVQ_ID, channel->channel,
238 			     ERF_GZ_IDX, channel->eventq_read_ptr &
239 					 channel->eventq_mask);
240 
241 	efx_writed(channel->efx, &evq_prime,
242 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
243 }
244 
245 static int ef100_ev_process(struct efx_channel *channel, int quota)
246 {
247 	struct efx_nic *efx = channel->efx;
248 	struct ef100_nic_data *nic_data;
249 	bool evq_phase, old_evq_phase;
250 	unsigned int read_ptr;
251 	efx_qword_t *p_event;
252 	int spent = 0;
253 	bool ev_phase;
254 	int ev_type;
255 
256 	if (unlikely(!channel->enabled))
257 		return 0;
258 
259 	nic_data = efx->nic_data;
260 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
261 	old_evq_phase = evq_phase;
262 	read_ptr = channel->eventq_read_ptr;
263 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
264 
265 	while (spent < quota) {
266 		p_event = efx_event(channel, read_ptr);
267 
268 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
269 		if (ev_phase != evq_phase)
270 			break;
271 
272 		netif_vdbg(efx, drv, efx->net_dev,
273 			   "processing event on %d " EFX_QWORD_FMT "\n",
274 			   channel->channel, EFX_QWORD_VAL(*p_event));
275 
276 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
277 
278 		switch (ev_type) {
279 		case ESE_GZ_EF100_EV_RX_PKTS:
280 			efx_ef100_ev_rx(channel, p_event);
281 			++spent;
282 			break;
283 		case ESE_GZ_EF100_EV_MCDI:
284 			efx_mcdi_process_event(channel, p_event);
285 			break;
286 		case ESE_GZ_EF100_EV_TX_COMPLETION:
287 			ef100_ev_tx(channel, p_event);
288 			break;
289 		case ESE_GZ_EF100_EV_DRIVER:
290 			netif_info(efx, drv, efx->net_dev,
291 				   "Driver initiated event " EFX_QWORD_FMT "\n",
292 				   EFX_QWORD_VAL(*p_event));
293 			break;
294 		default:
295 			netif_info(efx, drv, efx->net_dev,
296 				   "Unhandled event " EFX_QWORD_FMT "\n",
297 				   EFX_QWORD_VAL(*p_event));
298 		}
299 
300 		++read_ptr;
301 		if ((read_ptr & channel->eventq_mask) == 0)
302 			evq_phase = !evq_phase;
303 	}
304 
305 	channel->eventq_read_ptr = read_ptr;
306 	if (evq_phase != old_evq_phase)
307 		change_bit(channel->channel, nic_data->evq_phases);
308 
309 	return spent;
310 }
311 
312 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
313 {
314 	struct efx_msi_context *context = dev_id;
315 	struct efx_nic *efx = context->efx;
316 
317 	netif_vdbg(efx, intr, efx->net_dev,
318 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
319 
320 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
321 		/* Note test interrupts */
322 		if (context->index == efx->irq_level)
323 			efx->last_irq_cpu = raw_smp_processor_id();
324 
325 		/* Schedule processing of the channel */
326 		efx_schedule_channel_irq(efx->channel[context->index]);
327 	}
328 
329 	return IRQ_HANDLED;
330 }
331 
332 int ef100_phy_probe(struct efx_nic *efx)
333 {
334 	struct efx_mcdi_phy_data *phy_data;
335 	int rc;
336 
337 	/* Probe for the PHY */
338 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
339 	if (!efx->phy_data)
340 		return -ENOMEM;
341 
342 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
343 	if (rc)
344 		return rc;
345 
346 	/* Populate driver and ethtool settings */
347 	phy_data = efx->phy_data;
348 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
349 				efx->link_advertising);
350 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
351 						   false);
352 
353 	/* Default to Autonegotiated flow control if the PHY supports it */
354 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
355 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
356 		efx->wanted_fc |= EFX_FC_AUTO;
357 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
358 
359 	/* Push settings to the PHY. Failure is not fatal, the user can try to
360 	 * fix it using ethtool.
361 	 */
362 	rc = efx_mcdi_port_reconfigure(efx);
363 	if (rc && rc != -EPERM)
364 		netif_warn(efx, drv, efx->net_dev,
365 			   "could not initialise PHY settings\n");
366 
367 	return 0;
368 }
369 
370 int ef100_filter_table_probe(struct efx_nic *efx)
371 {
372 	return efx_mcdi_filter_table_probe(efx, true);
373 }
374 
375 static int ef100_filter_table_up(struct efx_nic *efx)
376 {
377 	int rc;
378 
379 	down_write(&efx->filter_sem);
380 	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
381 	if (rc)
382 		goto fail_unspec;
383 
384 	rc = efx_mcdi_filter_add_vlan(efx, 0);
385 	if (rc)
386 		goto fail_vlan0;
387 	/* Drop the lock: we've finished altering table existence, and
388 	 * filter insertion will need to take the lock for read.
389 	 */
390 	up_write(&efx->filter_sem);
391 #ifdef CONFIG_SFC_SRIOV
392 	rc = efx_tc_insert_rep_filters(efx);
393 	/* Rep filter failure is nonfatal */
394 	if (rc)
395 		netif_warn(efx, drv, efx->net_dev,
396 			   "Failed to insert representor filters, rc %d\n",
397 			   rc);
398 #endif
399 	return 0;
400 
401 fail_vlan0:
402 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
403 fail_unspec:
404 	efx_mcdi_filter_table_down(efx);
405 	up_write(&efx->filter_sem);
406 	return rc;
407 }
408 
409 static void ef100_filter_table_down(struct efx_nic *efx)
410 {
411 #ifdef CONFIG_SFC_SRIOV
412 	efx_tc_remove_rep_filters(efx);
413 #endif
414 	down_write(&efx->filter_sem);
415 	efx_mcdi_filter_del_vlan(efx, 0);
416 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
417 	efx_mcdi_filter_table_down(efx);
418 	up_write(&efx->filter_sem);
419 }
420 
421 /*	Other
422  */
423 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
424 {
425 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
426 
427 	efx_mcdi_filter_sync_rx_mode(efx);
428 
429 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
430 		return efx_mcdi_set_mtu(efx);
431 	return efx_mcdi_set_mac(efx);
432 }
433 
434 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
435 {
436 	if (reason == RESET_TYPE_TX_WATCHDOG)
437 		return reason;
438 	return RESET_TYPE_DISABLE;
439 }
440 
441 static int ef100_map_reset_flags(u32 *flags)
442 {
443 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
444 	if ((*flags & EF100_RESET_PORT)) {
445 		*flags &= ~EF100_RESET_PORT;
446 		return RESET_TYPE_ALL;
447 	}
448 	if (*flags & ETH_RESET_MGMT) {
449 		*flags &= ~ETH_RESET_MGMT;
450 		return RESET_TYPE_DISABLE;
451 	}
452 
453 	return -EINVAL;
454 }
455 
456 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
457 {
458 	int rc;
459 
460 	dev_close(efx->net_dev);
461 
462 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
463 		netif_device_attach(efx->net_dev);
464 		__clear_bit(reset_type, &efx->reset_pending);
465 		rc = dev_open(efx->net_dev, NULL);
466 	} else if (reset_type == RESET_TYPE_ALL) {
467 		rc = efx_mcdi_reset(efx, reset_type);
468 		if (rc)
469 			return rc;
470 
471 		netif_device_attach(efx->net_dev);
472 
473 		rc = dev_open(efx->net_dev, NULL);
474 	} else {
475 		rc = 1;	/* Leave the device closed */
476 	}
477 	return rc;
478 }
479 
480 static void ef100_common_stat_mask(unsigned long *mask)
481 {
482 	__set_bit(EF100_STAT_port_rx_packets, mask);
483 	__set_bit(EF100_STAT_port_tx_packets, mask);
484 	__set_bit(EF100_STAT_port_rx_bytes, mask);
485 	__set_bit(EF100_STAT_port_tx_bytes, mask);
486 	__set_bit(EF100_STAT_port_rx_multicast, mask);
487 	__set_bit(EF100_STAT_port_rx_bad, mask);
488 	__set_bit(EF100_STAT_port_rx_align_error, mask);
489 	__set_bit(EF100_STAT_port_rx_overflow, mask);
490 }
491 
492 static void ef100_ethtool_stat_mask(unsigned long *mask)
493 {
494 	__set_bit(EF100_STAT_port_tx_pause, mask);
495 	__set_bit(EF100_STAT_port_tx_unicast, mask);
496 	__set_bit(EF100_STAT_port_tx_multicast, mask);
497 	__set_bit(EF100_STAT_port_tx_broadcast, mask);
498 	__set_bit(EF100_STAT_port_tx_lt64, mask);
499 	__set_bit(EF100_STAT_port_tx_64, mask);
500 	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
501 	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
502 	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
503 	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
504 	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
505 	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
506 	__set_bit(EF100_STAT_port_rx_good, mask);
507 	__set_bit(EF100_STAT_port_rx_pause, mask);
508 	__set_bit(EF100_STAT_port_rx_unicast, mask);
509 	__set_bit(EF100_STAT_port_rx_broadcast, mask);
510 	__set_bit(EF100_STAT_port_rx_lt64, mask);
511 	__set_bit(EF100_STAT_port_rx_64, mask);
512 	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
513 	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
514 	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
515 	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
516 	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
517 	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
518 	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
519 	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
520 	__set_bit(EF100_STAT_port_rx_length_error, mask);
521 	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
522 	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
523 	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
524 }
525 
526 #define EF100_DMA_STAT(ext_name, mcdi_name)			\
527 	[EF100_STAT_ ## ext_name] =				\
528 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
529 
530 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
531 	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
532 	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
533 	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
534 	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
535 	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
536 	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
537 	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
538 	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
539 	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
540 	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
541 	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
542 	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
543 	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
544 	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
545 	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
546 	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
547 	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
548 	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
549 	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
550 	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
551 	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
552 	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
553 	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
554 	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
555 	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
556 	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
557 	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
558 	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
559 	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
560 	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
561 	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
562 	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
563 	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
564 	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
565 	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
566 	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
567 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
568 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
569 };
570 
571 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
572 {
573 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
574 
575 	ef100_ethtool_stat_mask(mask);
576 	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
577 				      mask, names);
578 }
579 
580 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
581 					struct rtnl_link_stats64 *core_stats)
582 {
583 	struct ef100_nic_data *nic_data = efx->nic_data;
584 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
585 	size_t stats_count = 0, index;
586 	u64 *stats = nic_data->stats;
587 
588 	ef100_ethtool_stat_mask(mask);
589 
590 	if (full_stats) {
591 		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
592 			if (ef100_stat_desc[index].name) {
593 				*full_stats++ = stats[index];
594 				++stats_count;
595 			}
596 		}
597 	}
598 
599 	if (!core_stats)
600 		return stats_count;
601 
602 	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
603 	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
604 	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
605 	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
606 	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
607 				 stats[GENERIC_STAT_rx_nodesc_trunc] +
608 				 stats[GENERIC_STAT_rx_noskb_drops];
609 	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
610 	core_stats->rx_length_errors =
611 			stats[EF100_STAT_port_rx_gtjumbo] +
612 			stats[EF100_STAT_port_rx_length_error];
613 	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
614 	core_stats->rx_frame_errors =
615 			stats[EF100_STAT_port_rx_align_error];
616 	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
617 	core_stats->rx_errors = (core_stats->rx_length_errors +
618 				 core_stats->rx_crc_errors +
619 				 core_stats->rx_frame_errors);
620 
621 	return stats_count;
622 }
623 
624 static size_t ef100_update_stats(struct efx_nic *efx,
625 				 u64 *full_stats,
626 				 struct rtnl_link_stats64 *core_stats)
627 {
628 	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
629 	struct ef100_nic_data *nic_data = efx->nic_data;
630 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
631 	u64 *stats = nic_data->stats;
632 
633 	ef100_common_stat_mask(mask);
634 	ef100_ethtool_stat_mask(mask);
635 
636 	if (!mc_stats)
637 		return 0;
638 
639 	efx_nic_copy_stats(efx, mc_stats);
640 	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
641 			     stats, mc_stats, false);
642 
643 	kfree(mc_stats);
644 
645 	return ef100_update_stats_common(efx, full_stats, core_stats);
646 }
647 
648 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
649 				      struct netdev_phys_item_id *ppid)
650 {
651 	struct ef100_nic_data *nic_data = efx->nic_data;
652 
653 	if (!is_valid_ether_addr(nic_data->port_id))
654 		return -EOPNOTSUPP;
655 
656 	ppid->id_len = ETH_ALEN;
657 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
658 
659 	return 0;
660 }
661 
662 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
663 {
664 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
665 
666 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
667 
668 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
669 	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
670 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
671 }
672 
673 #define EFX_EF100_TEST 1
674 
675 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
676 {
677 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
678 	struct efx_nic *efx = channel->efx;
679 	efx_qword_t event;
680 	int rc;
681 
682 	EFX_POPULATE_QWORD_2(event,
683 			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
684 			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
685 
686 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
687 
688 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
689 	 * already swapped the data to little-endian order.
690 	 */
691 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
692 	       sizeof(efx_qword_t));
693 
694 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
695 			  NULL, 0, NULL);
696 	if (rc && (rc != -ENETDOWN))
697 		goto fail;
698 
699 	return;
700 
701 fail:
702 	WARN_ON(true);
703 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
704 }
705 
706 static unsigned int ef100_check_caps(const struct efx_nic *efx,
707 				     u8 flag, u32 offset)
708 {
709 	const struct ef100_nic_data *nic_data = efx->nic_data;
710 
711 	switch (offset) {
712 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
713 		return nic_data->datapath_caps & BIT_ULL(flag);
714 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
715 		return nic_data->datapath_caps2 & BIT_ULL(flag);
716 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
717 		return nic_data->datapath_caps3 & BIT_ULL(flag);
718 	default:
719 		return 0;
720 	}
721 }
722 
723 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
724 {
725 	/* Maximum link speed for Riverhead is 100G */
726 	return 10 * EFX_RECYCLE_RING_SIZE_10G;
727 }
728 
729 #ifdef CONFIG_SFC_SRIOV
730 static int efx_ef100_get_base_mport(struct efx_nic *efx)
731 {
732 	struct ef100_nic_data *nic_data = efx->nic_data;
733 	u32 selector, id;
734 	int rc;
735 
736 	/* Construct mport selector for "physical network port" */
737 	efx_mae_mport_wire(efx, &selector);
738 	/* Look up actual mport ID */
739 	rc = efx_mae_lookup_mport(efx, selector, &id);
740 	if (rc)
741 		return rc;
742 	/* The ID should always fit in 16 bits, because that's how wide the
743 	 * corresponding fields in the RX prefix & TX override descriptor are
744 	 */
745 	if (id >> 16)
746 		netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
747 			   id);
748 	nic_data->base_mport = id;
749 	nic_data->have_mport = true;
750 	return 0;
751 }
752 #endif
753 
754 static int compare_versions(const char *a, const char *b)
755 {
756 	int a_major, a_minor, a_point, a_patch;
757 	int b_major, b_minor, b_point, b_patch;
758 	int a_matched, b_matched;
759 
760 	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
761 	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
762 
763 	if (a_matched == 4 && b_matched != 4)
764 		return +1;
765 
766 	if (a_matched != 4 && b_matched == 4)
767 		return -1;
768 
769 	if (a_matched != 4 && b_matched != 4)
770 		return 0;
771 
772 	if (a_major != b_major)
773 		return a_major - b_major;
774 
775 	if (a_minor != b_minor)
776 		return a_minor - b_minor;
777 
778 	if (a_point != b_point)
779 		return a_point - b_point;
780 
781 	return a_patch - b_patch;
782 }
783 
784 enum ef100_tlv_state_machine {
785 	EF100_TLV_TYPE,
786 	EF100_TLV_TYPE_CONT,
787 	EF100_TLV_LENGTH,
788 	EF100_TLV_VALUE
789 };
790 
791 struct ef100_tlv_state {
792 	enum ef100_tlv_state_machine state;
793 	u64 value;
794 	u32 value_offset;
795 	u16 type;
796 	u8 len;
797 };
798 
799 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
800 {
801 	switch (state->state) {
802 	case EF100_TLV_TYPE:
803 		state->type = byte & 0x7f;
804 		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
805 					     : EF100_TLV_LENGTH;
806 		/* Clear ready to read in a new entry */
807 		state->value = 0;
808 		state->value_offset = 0;
809 		return 0;
810 	case EF100_TLV_TYPE_CONT:
811 		state->type |= byte << 7;
812 		state->state = EF100_TLV_LENGTH;
813 		return 0;
814 	case EF100_TLV_LENGTH:
815 		state->len = byte;
816 		/* We only handle TLVs that fit in a u64 */
817 		if (state->len > sizeof(state->value))
818 			return -EOPNOTSUPP;
819 		/* len may be zero, implying a value of zero */
820 		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
821 		return 0;
822 	case EF100_TLV_VALUE:
823 		state->value |= ((u64)byte) << (state->value_offset * 8);
824 		state->value_offset++;
825 		if (state->value_offset >= state->len)
826 			state->state = EF100_TLV_TYPE;
827 		return 0;
828 	default: /* state machine error, can't happen */
829 		WARN_ON_ONCE(1);
830 		return -EIO;
831 	}
832 }
833 
834 static int ef100_process_design_param(struct efx_nic *efx,
835 				      const struct ef100_tlv_state *reader)
836 {
837 	struct ef100_nic_data *nic_data = efx->nic_data;
838 
839 	switch (reader->type) {
840 	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
841 		return 0;
842 	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
843 		/* Driver doesn't support timestamping yet, so we don't care */
844 		return 0;
845 	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
846 		/* Driver doesn't support unsolicited-event credits yet, so
847 		 * we don't care
848 		 */
849 		return 0;
850 	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
851 		/* Driver doesn't manage the NMMU (so we don't care) */
852 		return 0;
853 	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
854 		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
855 		 * protocol checksum validation
856 		 */
857 		return 0;
858 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
859 		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
860 		return 0;
861 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
862 		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
863 		if (!reader->value) {
864 			netif_err(efx, probe, efx->net_dev,
865 				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
866 			return -EOPNOTSUPP;
867 		}
868 		return 0;
869 	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
870 	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
871 		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
872 		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
873 		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
874 		 * This is very unlikely to fail.
875 		 */
876 		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
877 		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
878 			netif_err(efx, probe, efx->net_dev,
879 				  "%s size granularity is %llu, can't guarantee safety\n",
880 				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
881 				  reader->value);
882 			return -EOPNOTSUPP;
883 		}
884 		return 0;
885 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
886 		nic_data->tso_max_payload_len = min_t(u64, reader->value,
887 						      GSO_LEGACY_MAX_SIZE);
888 		netif_set_tso_max_size(efx->net_dev,
889 				       nic_data->tso_max_payload_len);
890 		return 0;
891 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
892 		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
893 		netif_set_tso_max_segs(efx->net_dev,
894 				       nic_data->tso_max_payload_num_segs);
895 		return 0;
896 	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
897 		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
898 		return 0;
899 	case ESE_EF100_DP_GZ_COMPAT:
900 		if (reader->value) {
901 			netif_err(efx, probe, efx->net_dev,
902 				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
903 				  reader->value);
904 			return -EOPNOTSUPP;
905 		}
906 		return 0;
907 	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
908 		/* Driver doesn't use mem2mem transfers */
909 		return 0;
910 	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
911 		/* Driver doesn't currently use EVQ_TIMER */
912 		return 0;
913 	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
914 		/* Driver doesn't manage the NMMU (so we don't care) */
915 		return 0;
916 	case ESE_EF100_DP_GZ_VI_STRIDES:
917 		/* We never try to set the VI stride, and we don't rely on
918 		 * being able to find VIs past VI 0 until after we've learned
919 		 * the current stride from MC_CMD_GET_CAPABILITIES.
920 		 * So the value of this shouldn't matter.
921 		 */
922 		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
923 			netif_dbg(efx, probe, efx->net_dev,
924 				  "NIC has other than default VI_STRIDES (mask "
925 				  "%#llx), early probing might use wrong one\n",
926 				  reader->value);
927 		return 0;
928 	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
929 		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
930 		 * care whether it indicates runt or overlength for any given
931 		 * packet, so we don't care about this parameter.
932 		 */
933 		return 0;
934 	default:
935 		/* Host interface says "Drivers should ignore design parameters
936 		 * that they do not recognise."
937 		 */
938 		netif_dbg(efx, probe, efx->net_dev,
939 			  "Ignoring unrecognised design parameter %u\n",
940 			  reader->type);
941 		return 0;
942 	}
943 }
944 
945 static int ef100_check_design_params(struct efx_nic *efx)
946 {
947 	struct ef100_tlv_state reader = {};
948 	u32 total_len, offset = 0;
949 	efx_dword_t reg;
950 	int rc = 0, i;
951 	u32 data;
952 
953 	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
954 	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
955 	pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
956 	while (offset < total_len) {
957 		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
958 		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
959 		for (i = 0; i < sizeof(data); i++) {
960 			rc = ef100_tlv_feed(&reader, data);
961 			/* Got a complete value? */
962 			if (!rc && reader.state == EF100_TLV_TYPE)
963 				rc = ef100_process_design_param(efx, &reader);
964 			if (rc)
965 				goto out;
966 			data >>= 8;
967 			offset++;
968 		}
969 	}
970 	/* Check we didn't end halfway through a TLV entry, which could either
971 	 * mean that the TLV stream is truncated or just that it's corrupted
972 	 * and our state machine is out of sync.
973 	 */
974 	if (reader.state != EF100_TLV_TYPE) {
975 		if (reader.state == EF100_TLV_TYPE_CONT)
976 			netif_err(efx, probe, efx->net_dev,
977 				  "truncated design parameter (incomplete type %u)\n",
978 				  reader.type);
979 		else
980 			netif_err(efx, probe, efx->net_dev,
981 				  "truncated design parameter %u\n",
982 				  reader.type);
983 		rc = -EIO;
984 	}
985 out:
986 	return rc;
987 }
988 
989 /*	NIC probe and remove
990  */
991 static int ef100_probe_main(struct efx_nic *efx)
992 {
993 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
994 	struct ef100_nic_data *nic_data;
995 	char fw_version[32];
996 	u32 priv_mask = 0;
997 	int i, rc;
998 
999 	if (WARN_ON(bar_size == 0))
1000 		return -EIO;
1001 
1002 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1003 	if (!nic_data)
1004 		return -ENOMEM;
1005 	efx->nic_data = nic_data;
1006 	nic_data->efx = efx;
1007 	efx->max_vis = EF100_MAX_VIS;
1008 
1009 	/* Populate design-parameter defaults */
1010 	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1011 	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1012 	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1013 	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1014 
1015 	/* Read design parameters */
1016 	rc = ef100_check_design_params(efx);
1017 	if (rc) {
1018 		pci_err(efx->pci_dev, "Unsupported design parameters\n");
1019 		goto fail;
1020 	}
1021 
1022 	/* we assume later that we can copy from this buffer in dwords */
1023 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1024 
1025 	/* MCDI buffers must be 256 byte aligned. */
1026 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1027 				  GFP_KERNEL);
1028 	if (rc)
1029 		goto fail;
1030 
1031 	/* Get the MC's warm boot count.  In case it's rebooting right
1032 	 * now, be prepared to retry.
1033 	 */
1034 	i = 0;
1035 	for (;;) {
1036 		rc = ef100_get_warm_boot_count(efx);
1037 		if (rc >= 0)
1038 			break;
1039 		if (++i == 5)
1040 			goto fail;
1041 		ssleep(1);
1042 	}
1043 	nic_data->warm_boot_count = rc;
1044 
1045 	/* In case we're recovering from a crash (kexec), we want to
1046 	 * cancel any outstanding request by the previous user of this
1047 	 * function.  We send a special message using the least
1048 	 * significant bits of the 'high' (doorbell) register.
1049 	 */
1050 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1051 
1052 	/* Post-IO section. */
1053 
1054 	rc = efx_mcdi_init(efx);
1055 	if (rc)
1056 		goto fail;
1057 	/* Reset (most) configuration for this function */
1058 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1059 	if (rc)
1060 		goto fail;
1061 	/* Enable event logging */
1062 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1063 	if (rc)
1064 		goto fail;
1065 
1066 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1067 	if (rc)
1068 		goto fail;
1069 
1070 	rc = efx_mcdi_port_get_number(efx);
1071 	if (rc < 0)
1072 		goto fail;
1073 	efx->port_num = rc;
1074 
1075 	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1076 	pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1077 
1078 	rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1079 	if (rc) /* non-fatal, and priv_mask will still be 0 */
1080 		pci_info(efx->pci_dev,
1081 			 "Failed to get privilege mask from FW, rc %d\n", rc);
1082 	nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1083 
1084 	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1085 		pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1086 		rc = -EINVAL;
1087 		goto fail;
1088 	}
1089 
1090 	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1091 		pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1092 		rc = -EINVAL;
1093 		goto fail;
1094 	}
1095 
1096 	return 0;
1097 fail:
1098 	return rc;
1099 }
1100 
1101 int ef100_probe_netdev_pf(struct efx_nic *efx)
1102 {
1103 	struct ef100_nic_data *nic_data = efx->nic_data;
1104 	struct net_device *net_dev = efx->net_dev;
1105 	int rc;
1106 
1107 	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1108 	if (rc)
1109 		goto fail;
1110 	/* Assign MAC address */
1111 	eth_hw_addr_set(net_dev, net_dev->perm_addr);
1112 	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
1113 
1114 	if (!nic_data->grp_mae)
1115 		return 0;
1116 
1117 #ifdef CONFIG_SFC_SRIOV
1118 	rc = efx_init_struct_tc(efx);
1119 	if (rc)
1120 		return rc;
1121 
1122 	rc = efx_ef100_get_base_mport(efx);
1123 	if (rc) {
1124 		netif_warn(efx, probe, net_dev,
1125 			   "Failed to probe base mport rc %d; representors will not function\n",
1126 			   rc);
1127 	}
1128 
1129 	rc = efx_init_tc(efx);
1130 	if (rc) {
1131 		/* Either we don't have an MAE at all (i.e. legacy v-switching),
1132 		 * or we do but we failed to probe it.  In the latter case, we
1133 		 * may not have set up default rules, in which case we won't be
1134 		 * able to pass any traffic.  However, we don't fail the probe,
1135 		 * because the user might need to use the netdevice to apply
1136 		 * configuration changes to fix whatever's wrong with the MAE.
1137 		 */
1138 		netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1139 			   rc);
1140 	}
1141 #endif
1142 	return 0;
1143 
1144 fail:
1145 	return rc;
1146 }
1147 
1148 int ef100_probe_vf(struct efx_nic *efx)
1149 {
1150 	return ef100_probe_main(efx);
1151 }
1152 
1153 void ef100_remove(struct efx_nic *efx)
1154 {
1155 	struct ef100_nic_data *nic_data = efx->nic_data;
1156 
1157 	efx_mcdi_detach(efx);
1158 	efx_mcdi_fini(efx);
1159 	if (nic_data)
1160 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1161 	kfree(nic_data);
1162 	efx->nic_data = NULL;
1163 }
1164 
1165 /*	NIC level access functions
1166  */
1167 #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
1168 	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1169 	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1170 	NETIF_F_HW_VLAN_CTAG_TX)
1171 
1172 const struct efx_nic_type ef100_pf_nic_type = {
1173 	.revision = EFX_REV_EF100,
1174 	.is_vf = false,
1175 	.probe = ef100_probe_main,
1176 	.offload_features = EF100_OFFLOAD_FEATURES,
1177 	.mcdi_max_ver = 2,
1178 	.mcdi_request = ef100_mcdi_request,
1179 	.mcdi_poll_response = ef100_mcdi_poll_response,
1180 	.mcdi_read_response = ef100_mcdi_read_response,
1181 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1182 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1183 	.irq_enable_master = efx_port_dummy_op_void,
1184 	.irq_test_generate = efx_ef100_irq_test_generate,
1185 	.irq_disable_non_ev = efx_port_dummy_op_void,
1186 	.push_irq_moderation = efx_channel_dummy_op_void,
1187 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1188 	.map_reset_reason = ef100_map_reset_reason,
1189 	.map_reset_flags = ef100_map_reset_flags,
1190 	.reset = ef100_reset,
1191 
1192 	.check_caps = ef100_check_caps,
1193 
1194 	.ev_probe = ef100_ev_probe,
1195 	.ev_init = ef100_ev_init,
1196 	.ev_fini = efx_mcdi_ev_fini,
1197 	.ev_remove = efx_mcdi_ev_remove,
1198 	.irq_handle_msi = ef100_msi_interrupt,
1199 	.ev_process = ef100_ev_process,
1200 	.ev_read_ack = ef100_ev_read_ack,
1201 	.ev_test_generate = efx_ef100_ev_test_generate,
1202 	.tx_probe = ef100_tx_probe,
1203 	.tx_init = ef100_tx_init,
1204 	.tx_write = ef100_tx_write,
1205 	.tx_enqueue = ef100_enqueue_skb,
1206 	.rx_probe = efx_mcdi_rx_probe,
1207 	.rx_init = efx_mcdi_rx_init,
1208 	.rx_remove = efx_mcdi_rx_remove,
1209 	.rx_write = ef100_rx_write,
1210 	.rx_packet = __ef100_rx_packet,
1211 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1212 	.fini_dmaq = efx_fini_dmaq,
1213 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1214 	.filter_table_probe = ef100_filter_table_up,
1215 	.filter_table_restore = efx_mcdi_filter_table_restore,
1216 	.filter_table_remove = ef100_filter_table_down,
1217 	.filter_insert = efx_mcdi_filter_insert,
1218 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1219 	.filter_get_safe = efx_mcdi_filter_get_safe,
1220 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1221 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1222 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1223 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1224 #ifdef CONFIG_RFS_ACCEL
1225 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1226 #endif
1227 
1228 	.get_phys_port_id = efx_ef100_get_phys_port_id,
1229 
1230 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1231 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1232 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1233 	.rx_hash_key_size = 40,
1234 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1235 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1236 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1237 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1238 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1239 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1240 
1241 	.reconfigure_mac = ef100_reconfigure_mac,
1242 	.reconfigure_port = efx_mcdi_port_reconfigure,
1243 	.test_nvram = efx_new_mcdi_nvram_test_all,
1244 	.describe_stats = ef100_describe_stats,
1245 	.start_stats = efx_mcdi_mac_start_stats,
1246 	.update_stats = ef100_update_stats,
1247 	.pull_stats = efx_mcdi_mac_pull_stats,
1248 	.stop_stats = efx_mcdi_mac_stop_stats,
1249 #ifdef CONFIG_SFC_SRIOV
1250 	.sriov_configure = efx_ef100_sriov_configure,
1251 #endif
1252 
1253 	/* Per-type bar/size configuration not used on ef100. Location of
1254 	 * registers is defined by extended capabilities.
1255 	 */
1256 	.mem_bar = NULL,
1257 	.mem_map_size = NULL,
1258 
1259 };
1260 
1261 const struct efx_nic_type ef100_vf_nic_type = {
1262 	.revision = EFX_REV_EF100,
1263 	.is_vf = true,
1264 	.probe = ef100_probe_vf,
1265 	.offload_features = EF100_OFFLOAD_FEATURES,
1266 	.mcdi_max_ver = 2,
1267 	.mcdi_request = ef100_mcdi_request,
1268 	.mcdi_poll_response = ef100_mcdi_poll_response,
1269 	.mcdi_read_response = ef100_mcdi_read_response,
1270 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1271 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1272 	.irq_enable_master = efx_port_dummy_op_void,
1273 	.irq_test_generate = efx_ef100_irq_test_generate,
1274 	.irq_disable_non_ev = efx_port_dummy_op_void,
1275 	.push_irq_moderation = efx_channel_dummy_op_void,
1276 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1277 	.map_reset_reason = ef100_map_reset_reason,
1278 	.map_reset_flags = ef100_map_reset_flags,
1279 	.reset = ef100_reset,
1280 	.check_caps = ef100_check_caps,
1281 	.ev_probe = ef100_ev_probe,
1282 	.ev_init = ef100_ev_init,
1283 	.ev_fini = efx_mcdi_ev_fini,
1284 	.ev_remove = efx_mcdi_ev_remove,
1285 	.irq_handle_msi = ef100_msi_interrupt,
1286 	.ev_process = ef100_ev_process,
1287 	.ev_read_ack = ef100_ev_read_ack,
1288 	.ev_test_generate = efx_ef100_ev_test_generate,
1289 	.tx_probe = ef100_tx_probe,
1290 	.tx_init = ef100_tx_init,
1291 	.tx_write = ef100_tx_write,
1292 	.tx_enqueue = ef100_enqueue_skb,
1293 	.rx_probe = efx_mcdi_rx_probe,
1294 	.rx_init = efx_mcdi_rx_init,
1295 	.rx_remove = efx_mcdi_rx_remove,
1296 	.rx_write = ef100_rx_write,
1297 	.rx_packet = __ef100_rx_packet,
1298 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1299 	.fini_dmaq = efx_fini_dmaq,
1300 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1301 	.filter_table_probe = ef100_filter_table_up,
1302 	.filter_table_restore = efx_mcdi_filter_table_restore,
1303 	.filter_table_remove = ef100_filter_table_down,
1304 	.filter_insert = efx_mcdi_filter_insert,
1305 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1306 	.filter_get_safe = efx_mcdi_filter_get_safe,
1307 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1308 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1309 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1310 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1311 #ifdef CONFIG_RFS_ACCEL
1312 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1313 #endif
1314 
1315 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1316 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1317 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1318 	.rx_hash_key_size = 40,
1319 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1320 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1321 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1322 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1323 
1324 	.reconfigure_mac = ef100_reconfigure_mac,
1325 	.test_nvram = efx_new_mcdi_nvram_test_all,
1326 	.describe_stats = ef100_describe_stats,
1327 	.start_stats = efx_mcdi_mac_start_stats,
1328 	.update_stats = ef100_update_stats,
1329 	.pull_stats = efx_mcdi_mac_pull_stats,
1330 	.stop_stats = efx_mcdi_mac_stop_stats,
1331 
1332 	.mem_bar = NULL,
1333 	.mem_map_size = NULL,
1334 
1335 };
1336