1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * Copyright 2019-2020 Xilinx Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation, incorporated herein by reference. 10 */ 11 12 #include "ef100_nic.h" 13 #include "efx_common.h" 14 #include "efx_channels.h" 15 #include "io.h" 16 #include "selftest.h" 17 #include "ef100_regs.h" 18 #include "mcdi.h" 19 #include "mcdi_pcol.h" 20 #include "mcdi_port_common.h" 21 #include "mcdi_functions.h" 22 #include "mcdi_filters.h" 23 #include "ef100_rx.h" 24 #include "ef100_tx.h" 25 #include "ef100_netdev.h" 26 27 #define EF100_MAX_VIS 4096 28 #define EF100_NUM_MCDI_BUFFERS 1 29 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) 30 31 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) 32 33 /* MCDI 34 */ 35 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) 36 { 37 struct ef100_nic_data *nic_data = efx->nic_data; 38 39 if (dma_addr) 40 *dma_addr = nic_data->mcdi_buf.dma_addr + 41 bufid * ALIGN(MCDI_BUF_LEN, 256); 42 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); 43 } 44 45 static int ef100_get_warm_boot_count(struct efx_nic *efx) 46 { 47 efx_dword_t reg; 48 49 efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); 50 51 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { 52 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); 53 efx->state = STATE_DISABLED; 54 return -ENETDOWN; 55 } else { 56 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? 57 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; 58 } 59 } 60 61 static void ef100_mcdi_request(struct efx_nic *efx, 62 const efx_dword_t *hdr, size_t hdr_len, 63 const efx_dword_t *sdu, size_t sdu_len) 64 { 65 dma_addr_t dma_addr; 66 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); 67 68 memcpy(pdu, hdr, hdr_len); 69 memcpy(pdu + hdr_len, sdu, sdu_len); 70 wmb(); 71 72 /* The hardware provides 'low' and 'high' (doorbell) registers 73 * for passing the 64-bit address of an MCDI request to 74 * firmware. However the dwords are swapped by firmware. The 75 * least significant bits of the doorbell are then 0 for all 76 * MCDI requests due to alignment. 77 */ 78 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); 79 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 80 } 81 82 static bool ef100_mcdi_poll_response(struct efx_nic *efx) 83 { 84 const efx_dword_t hdr = 85 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); 86 87 rmb(); 88 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); 89 } 90 91 static void ef100_mcdi_read_response(struct efx_nic *efx, 92 efx_dword_t *outbuf, size_t offset, 93 size_t outlen) 94 { 95 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); 96 97 memcpy(outbuf, pdu + offset, outlen); 98 } 99 100 static int ef100_mcdi_poll_reboot(struct efx_nic *efx) 101 { 102 struct ef100_nic_data *nic_data = efx->nic_data; 103 int rc; 104 105 rc = ef100_get_warm_boot_count(efx); 106 if (rc < 0) { 107 /* The firmware is presumably in the process of 108 * rebooting. However, we are supposed to report each 109 * reboot just once, so we must only do that once we 110 * can read and store the updated warm boot count. 111 */ 112 return 0; 113 } 114 115 if (rc == nic_data->warm_boot_count) 116 return 0; 117 118 nic_data->warm_boot_count = rc; 119 120 return -EIO; 121 } 122 123 static void ef100_mcdi_reboot_detected(struct efx_nic *efx) 124 { 125 } 126 127 /* MCDI calls 128 */ 129 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address) 130 { 131 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); 132 size_t outlen; 133 int rc; 134 135 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); 136 137 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, 138 outbuf, sizeof(outbuf), &outlen); 139 if (rc) 140 return rc; 141 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) 142 return -EIO; 143 144 ether_addr_copy(mac_address, 145 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); 146 return 0; 147 } 148 149 static int efx_ef100_init_datapath_caps(struct efx_nic *efx) 150 { 151 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); 152 struct ef100_nic_data *nic_data = efx->nic_data; 153 u8 vi_window_mode; 154 size_t outlen; 155 int rc; 156 157 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 158 159 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 160 outbuf, sizeof(outbuf), &outlen); 161 if (rc) 162 return rc; 163 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { 164 netif_err(efx, drv, efx->net_dev, 165 "unable to read datapath firmware capabilities\n"); 166 return -EIO; 167 } 168 169 nic_data->datapath_caps = MCDI_DWORD(outbuf, 170 GET_CAPABILITIES_OUT_FLAGS1); 171 nic_data->datapath_caps2 = MCDI_DWORD(outbuf, 172 GET_CAPABILITIES_V2_OUT_FLAGS2); 173 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) 174 nic_data->datapath_caps3 = 0; 175 else 176 nic_data->datapath_caps3 = MCDI_DWORD(outbuf, 177 GET_CAPABILITIES_V7_OUT_FLAGS3); 178 179 vi_window_mode = MCDI_BYTE(outbuf, 180 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); 181 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); 182 if (rc) 183 return rc; 184 185 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) 186 efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6; 187 efx->num_mac_stats = MCDI_WORD(outbuf, 188 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); 189 netif_dbg(efx, probe, efx->net_dev, 190 "firmware reports num_mac_stats = %u\n", 191 efx->num_mac_stats); 192 return 0; 193 } 194 195 /* Event handling 196 */ 197 static int ef100_ev_probe(struct efx_channel *channel) 198 { 199 /* Allocate an extra descriptor for the QMDA status completion entry */ 200 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, 201 (channel->eventq_mask + 2) * 202 sizeof(efx_qword_t), 203 GFP_KERNEL); 204 } 205 206 static int ef100_ev_init(struct efx_channel *channel) 207 { 208 struct ef100_nic_data *nic_data = channel->efx->nic_data; 209 210 /* initial phase is 0 */ 211 clear_bit(channel->channel, nic_data->evq_phases); 212 213 return efx_mcdi_ev_init(channel, false, false); 214 } 215 216 static void ef100_ev_read_ack(struct efx_channel *channel) 217 { 218 efx_dword_t evq_prime; 219 220 EFX_POPULATE_DWORD_2(evq_prime, 221 ERF_GZ_EVQ_ID, channel->channel, 222 ERF_GZ_IDX, channel->eventq_read_ptr & 223 channel->eventq_mask); 224 225 efx_writed(channel->efx, &evq_prime, 226 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); 227 } 228 229 static int ef100_ev_process(struct efx_channel *channel, int quota) 230 { 231 struct efx_nic *efx = channel->efx; 232 struct ef100_nic_data *nic_data; 233 bool evq_phase, old_evq_phase; 234 unsigned int read_ptr; 235 efx_qword_t *p_event; 236 int spent = 0; 237 bool ev_phase; 238 int ev_type; 239 240 if (unlikely(!channel->enabled)) 241 return 0; 242 243 nic_data = efx->nic_data; 244 evq_phase = test_bit(channel->channel, nic_data->evq_phases); 245 old_evq_phase = evq_phase; 246 read_ptr = channel->eventq_read_ptr; 247 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); 248 249 while (spent < quota) { 250 p_event = efx_event(channel, read_ptr); 251 252 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); 253 if (ev_phase != evq_phase) 254 break; 255 256 netif_vdbg(efx, drv, efx->net_dev, 257 "processing event on %d " EFX_QWORD_FMT "\n", 258 channel->channel, EFX_QWORD_VAL(*p_event)); 259 260 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); 261 262 switch (ev_type) { 263 case ESE_GZ_EF100_EV_RX_PKTS: 264 efx_ef100_ev_rx(channel, p_event); 265 ++spent; 266 break; 267 case ESE_GZ_EF100_EV_MCDI: 268 efx_mcdi_process_event(channel, p_event); 269 break; 270 case ESE_GZ_EF100_EV_TX_COMPLETION: 271 ef100_ev_tx(channel, p_event); 272 break; 273 case ESE_GZ_EF100_EV_DRIVER: 274 netif_info(efx, drv, efx->net_dev, 275 "Driver initiated event " EFX_QWORD_FMT "\n", 276 EFX_QWORD_VAL(*p_event)); 277 break; 278 default: 279 netif_info(efx, drv, efx->net_dev, 280 "Unhandled event " EFX_QWORD_FMT "\n", 281 EFX_QWORD_VAL(*p_event)); 282 } 283 284 ++read_ptr; 285 if ((read_ptr & channel->eventq_mask) == 0) 286 evq_phase = !evq_phase; 287 } 288 289 channel->eventq_read_ptr = read_ptr; 290 if (evq_phase != old_evq_phase) 291 change_bit(channel->channel, nic_data->evq_phases); 292 293 return spent; 294 } 295 296 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) 297 { 298 struct efx_msi_context *context = dev_id; 299 struct efx_nic *efx = context->efx; 300 301 netif_vdbg(efx, intr, efx->net_dev, 302 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); 303 304 if (likely(READ_ONCE(efx->irq_soft_enabled))) { 305 /* Note test interrupts */ 306 if (context->index == efx->irq_level) 307 efx->last_irq_cpu = raw_smp_processor_id(); 308 309 /* Schedule processing of the channel */ 310 efx_schedule_channel_irq(efx->channel[context->index]); 311 } 312 313 return IRQ_HANDLED; 314 } 315 316 static int ef100_phy_probe(struct efx_nic *efx) 317 { 318 struct efx_mcdi_phy_data *phy_data; 319 int rc; 320 321 /* Probe for the PHY */ 322 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); 323 if (!efx->phy_data) 324 return -ENOMEM; 325 326 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); 327 if (rc) 328 return rc; 329 330 /* Populate driver and ethtool settings */ 331 phy_data = efx->phy_data; 332 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, 333 efx->link_advertising); 334 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, 335 false); 336 337 /* Default to Autonegotiated flow control if the PHY supports it */ 338 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; 339 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) 340 efx->wanted_fc |= EFX_FC_AUTO; 341 efx_link_set_wanted_fc(efx, efx->wanted_fc); 342 343 /* Push settings to the PHY. Failure is not fatal, the user can try to 344 * fix it using ethtool. 345 */ 346 rc = efx_mcdi_port_reconfigure(efx); 347 if (rc && rc != -EPERM) 348 netif_warn(efx, drv, efx->net_dev, 349 "could not initialise PHY settings\n"); 350 351 return 0; 352 } 353 354 static int ef100_filter_table_probe(struct efx_nic *efx) 355 { 356 return efx_mcdi_filter_table_probe(efx, true); 357 } 358 359 static int ef100_filter_table_up(struct efx_nic *efx) 360 { 361 int rc; 362 363 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); 364 if (rc) { 365 efx_mcdi_filter_table_down(efx); 366 return rc; 367 } 368 369 rc = efx_mcdi_filter_add_vlan(efx, 0); 370 if (rc) { 371 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 372 efx_mcdi_filter_table_down(efx); 373 } 374 375 return rc; 376 } 377 378 static void ef100_filter_table_down(struct efx_nic *efx) 379 { 380 efx_mcdi_filter_del_vlan(efx, 0); 381 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 382 efx_mcdi_filter_table_down(efx); 383 } 384 385 /* Other 386 */ 387 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) 388 { 389 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 390 391 efx_mcdi_filter_sync_rx_mode(efx); 392 393 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) 394 return efx_mcdi_set_mtu(efx); 395 return efx_mcdi_set_mac(efx); 396 } 397 398 static enum reset_type ef100_map_reset_reason(enum reset_type reason) 399 { 400 if (reason == RESET_TYPE_TX_WATCHDOG) 401 return reason; 402 return RESET_TYPE_DISABLE; 403 } 404 405 static int ef100_map_reset_flags(u32 *flags) 406 { 407 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ 408 if ((*flags & EF100_RESET_PORT)) { 409 *flags &= ~EF100_RESET_PORT; 410 return RESET_TYPE_ALL; 411 } 412 if (*flags & ETH_RESET_MGMT) { 413 *flags &= ~ETH_RESET_MGMT; 414 return RESET_TYPE_DISABLE; 415 } 416 417 return -EINVAL; 418 } 419 420 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) 421 { 422 int rc; 423 424 dev_close(efx->net_dev); 425 426 if (reset_type == RESET_TYPE_TX_WATCHDOG) { 427 netif_device_attach(efx->net_dev); 428 __clear_bit(reset_type, &efx->reset_pending); 429 rc = dev_open(efx->net_dev, NULL); 430 } else if (reset_type == RESET_TYPE_ALL) { 431 /* A RESET_TYPE_ALL will cause filters to be removed, so we remove filters 432 * and reprobe after reset to avoid removing filters twice 433 */ 434 down_read(&efx->filter_sem); 435 ef100_filter_table_down(efx); 436 up_read(&efx->filter_sem); 437 rc = efx_mcdi_reset(efx, reset_type); 438 if (rc) 439 return rc; 440 441 netif_device_attach(efx->net_dev); 442 443 down_read(&efx->filter_sem); 444 rc = ef100_filter_table_up(efx); 445 up_read(&efx->filter_sem); 446 if (rc) 447 return rc; 448 449 rc = dev_open(efx->net_dev, NULL); 450 } else { 451 rc = 1; /* Leave the device closed */ 452 } 453 return rc; 454 } 455 456 static void ef100_common_stat_mask(unsigned long *mask) 457 { 458 __set_bit(EF100_STAT_port_rx_packets, mask); 459 __set_bit(EF100_STAT_port_tx_packets, mask); 460 __set_bit(EF100_STAT_port_rx_bytes, mask); 461 __set_bit(EF100_STAT_port_tx_bytes, mask); 462 __set_bit(EF100_STAT_port_rx_multicast, mask); 463 __set_bit(EF100_STAT_port_rx_bad, mask); 464 __set_bit(EF100_STAT_port_rx_align_error, mask); 465 __set_bit(EF100_STAT_port_rx_overflow, mask); 466 } 467 468 static void ef100_ethtool_stat_mask(unsigned long *mask) 469 { 470 __set_bit(EF100_STAT_port_tx_pause, mask); 471 __set_bit(EF100_STAT_port_tx_unicast, mask); 472 __set_bit(EF100_STAT_port_tx_multicast, mask); 473 __set_bit(EF100_STAT_port_tx_broadcast, mask); 474 __set_bit(EF100_STAT_port_tx_lt64, mask); 475 __set_bit(EF100_STAT_port_tx_64, mask); 476 __set_bit(EF100_STAT_port_tx_65_to_127, mask); 477 __set_bit(EF100_STAT_port_tx_128_to_255, mask); 478 __set_bit(EF100_STAT_port_tx_256_to_511, mask); 479 __set_bit(EF100_STAT_port_tx_512_to_1023, mask); 480 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); 481 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); 482 __set_bit(EF100_STAT_port_rx_good, mask); 483 __set_bit(EF100_STAT_port_rx_pause, mask); 484 __set_bit(EF100_STAT_port_rx_unicast, mask); 485 __set_bit(EF100_STAT_port_rx_broadcast, mask); 486 __set_bit(EF100_STAT_port_rx_lt64, mask); 487 __set_bit(EF100_STAT_port_rx_64, mask); 488 __set_bit(EF100_STAT_port_rx_65_to_127, mask); 489 __set_bit(EF100_STAT_port_rx_128_to_255, mask); 490 __set_bit(EF100_STAT_port_rx_256_to_511, mask); 491 __set_bit(EF100_STAT_port_rx_512_to_1023, mask); 492 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); 493 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); 494 __set_bit(EF100_STAT_port_rx_gtjumbo, mask); 495 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); 496 __set_bit(EF100_STAT_port_rx_length_error, mask); 497 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); 498 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); 499 __set_bit(GENERIC_STAT_rx_noskb_drops, mask); 500 } 501 502 #define EF100_DMA_STAT(ext_name, mcdi_name) \ 503 [EF100_STAT_ ## ext_name] = \ 504 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 505 506 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { 507 EF100_DMA_STAT(port_tx_bytes, TX_BYTES), 508 EF100_DMA_STAT(port_tx_packets, TX_PKTS), 509 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), 510 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), 511 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), 512 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), 513 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), 514 EF100_DMA_STAT(port_tx_64, TX_64_PKTS), 515 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), 516 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), 517 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), 518 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), 519 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), 520 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), 521 EF100_DMA_STAT(port_rx_bytes, RX_BYTES), 522 EF100_DMA_STAT(port_rx_packets, RX_PKTS), 523 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), 524 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), 525 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), 526 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), 527 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), 528 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), 529 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), 530 EF100_DMA_STAT(port_rx_64, RX_64_PKTS), 531 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), 532 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), 533 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), 534 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), 535 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), 536 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), 537 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), 538 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), 539 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), 540 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), 541 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), 542 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), 543 EFX_GENERIC_SW_STAT(rx_nodesc_trunc), 544 EFX_GENERIC_SW_STAT(rx_noskb_drops), 545 }; 546 547 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) 548 { 549 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 550 551 ef100_ethtool_stat_mask(mask); 552 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, 553 mask, names); 554 } 555 556 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, 557 struct rtnl_link_stats64 *core_stats) 558 { 559 struct ef100_nic_data *nic_data = efx->nic_data; 560 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 561 size_t stats_count = 0, index; 562 u64 *stats = nic_data->stats; 563 564 ef100_ethtool_stat_mask(mask); 565 566 if (full_stats) { 567 for_each_set_bit(index, mask, EF100_STAT_COUNT) { 568 if (ef100_stat_desc[index].name) { 569 *full_stats++ = stats[index]; 570 ++stats_count; 571 } 572 } 573 } 574 575 if (!core_stats) 576 return stats_count; 577 578 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; 579 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; 580 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; 581 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; 582 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + 583 stats[GENERIC_STAT_rx_nodesc_trunc] + 584 stats[GENERIC_STAT_rx_noskb_drops]; 585 core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; 586 core_stats->rx_length_errors = 587 stats[EF100_STAT_port_rx_gtjumbo] + 588 stats[EF100_STAT_port_rx_length_error]; 589 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; 590 core_stats->rx_frame_errors = 591 stats[EF100_STAT_port_rx_align_error]; 592 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; 593 core_stats->rx_errors = (core_stats->rx_length_errors + 594 core_stats->rx_crc_errors + 595 core_stats->rx_frame_errors); 596 597 return stats_count; 598 } 599 600 static size_t ef100_update_stats(struct efx_nic *efx, 601 u64 *full_stats, 602 struct rtnl_link_stats64 *core_stats) 603 { 604 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); 605 struct ef100_nic_data *nic_data = efx->nic_data; 606 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 607 u64 *stats = nic_data->stats; 608 609 ef100_common_stat_mask(mask); 610 ef100_ethtool_stat_mask(mask); 611 612 efx_nic_copy_stats(efx, mc_stats); 613 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, 614 stats, mc_stats, false); 615 616 kfree(mc_stats); 617 618 return ef100_update_stats_common(efx, full_stats, core_stats); 619 } 620 621 static int efx_ef100_get_phys_port_id(struct efx_nic *efx, 622 struct netdev_phys_item_id *ppid) 623 { 624 struct ef100_nic_data *nic_data = efx->nic_data; 625 626 if (!is_valid_ether_addr(nic_data->port_id)) 627 return -EOPNOTSUPP; 628 629 ppid->id_len = ETH_ALEN; 630 memcpy(ppid->id, nic_data->port_id, ppid->id_len); 631 632 return 0; 633 } 634 635 static int efx_ef100_irq_test_generate(struct efx_nic *efx) 636 { 637 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); 638 639 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); 640 641 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); 642 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, 643 inbuf, sizeof(inbuf), NULL, 0, NULL); 644 } 645 646 #define EFX_EF100_TEST 1 647 648 static void efx_ef100_ev_test_generate(struct efx_channel *channel) 649 { 650 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 651 struct efx_nic *efx = channel->efx; 652 efx_qword_t event; 653 int rc; 654 655 EFX_POPULATE_QWORD_2(event, 656 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, 657 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); 658 659 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 660 661 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 662 * already swapped the data to little-endian order. 663 */ 664 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 665 sizeof(efx_qword_t)); 666 667 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 668 NULL, 0, NULL); 669 if (rc && (rc != -ENETDOWN)) 670 goto fail; 671 672 return; 673 674 fail: 675 WARN_ON(true); 676 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 677 } 678 679 static unsigned int ef100_check_caps(const struct efx_nic *efx, 680 u8 flag, u32 offset) 681 { 682 const struct ef100_nic_data *nic_data = efx->nic_data; 683 684 switch (offset) { 685 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: 686 return nic_data->datapath_caps & BIT_ULL(flag); 687 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: 688 return nic_data->datapath_caps2 & BIT_ULL(flag); 689 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: 690 return nic_data->datapath_caps3 & BIT_ULL(flag); 691 default: 692 return 0; 693 } 694 } 695 696 /* NIC level access functions 697 */ 698 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \ 699 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | \ 700 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ 701 NETIF_F_TSO_MANGLEID | NETIF_F_HW_VLAN_CTAG_TX) 702 703 const struct efx_nic_type ef100_pf_nic_type = { 704 .revision = EFX_REV_EF100, 705 .is_vf = false, 706 .probe = ef100_probe_pf, 707 .offload_features = EF100_OFFLOAD_FEATURES, 708 .mcdi_max_ver = 2, 709 .mcdi_request = ef100_mcdi_request, 710 .mcdi_poll_response = ef100_mcdi_poll_response, 711 .mcdi_read_response = ef100_mcdi_read_response, 712 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 713 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 714 .irq_enable_master = efx_port_dummy_op_void, 715 .irq_test_generate = efx_ef100_irq_test_generate, 716 .irq_disable_non_ev = efx_port_dummy_op_void, 717 .push_irq_moderation = efx_channel_dummy_op_void, 718 .min_interrupt_mode = EFX_INT_MODE_MSIX, 719 .map_reset_reason = ef100_map_reset_reason, 720 .map_reset_flags = ef100_map_reset_flags, 721 .reset = ef100_reset, 722 723 .check_caps = ef100_check_caps, 724 725 .ev_probe = ef100_ev_probe, 726 .ev_init = ef100_ev_init, 727 .ev_fini = efx_mcdi_ev_fini, 728 .ev_remove = efx_mcdi_ev_remove, 729 .irq_handle_msi = ef100_msi_interrupt, 730 .ev_process = ef100_ev_process, 731 .ev_read_ack = ef100_ev_read_ack, 732 .ev_test_generate = efx_ef100_ev_test_generate, 733 .tx_probe = ef100_tx_probe, 734 .tx_init = ef100_tx_init, 735 .tx_write = ef100_tx_write, 736 .tx_enqueue = ef100_enqueue_skb, 737 .rx_probe = efx_mcdi_rx_probe, 738 .rx_init = efx_mcdi_rx_init, 739 .rx_remove = efx_mcdi_rx_remove, 740 .rx_write = ef100_rx_write, 741 .rx_packet = __ef100_rx_packet, 742 .fini_dmaq = efx_fini_dmaq, 743 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 744 .filter_table_probe = ef100_filter_table_up, 745 .filter_table_restore = efx_mcdi_filter_table_restore, 746 .filter_table_remove = ef100_filter_table_down, 747 .filter_insert = efx_mcdi_filter_insert, 748 .filter_remove_safe = efx_mcdi_filter_remove_safe, 749 .filter_get_safe = efx_mcdi_filter_get_safe, 750 .filter_clear_rx = efx_mcdi_filter_clear_rx, 751 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 752 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 753 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 754 #ifdef CONFIG_RFS_ACCEL 755 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 756 #endif 757 758 .get_phys_port_id = efx_ef100_get_phys_port_id, 759 760 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 761 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 762 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 763 .rx_hash_key_size = 40, 764 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 765 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 766 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, 767 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, 768 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 769 770 .reconfigure_mac = ef100_reconfigure_mac, 771 .test_nvram = efx_new_mcdi_nvram_test_all, 772 .describe_stats = ef100_describe_stats, 773 .start_stats = efx_mcdi_mac_start_stats, 774 .update_stats = ef100_update_stats, 775 .pull_stats = efx_mcdi_mac_pull_stats, 776 .stop_stats = efx_mcdi_mac_stop_stats, 777 778 /* Per-type bar/size configuration not used on ef100. Location of 779 * registers is defined by extended capabilities. 780 */ 781 .mem_bar = NULL, 782 .mem_map_size = NULL, 783 784 }; 785 786 const struct efx_nic_type ef100_vf_nic_type = { 787 .revision = EFX_REV_EF100, 788 .is_vf = true, 789 .probe = ef100_probe_vf, 790 .offload_features = EF100_OFFLOAD_FEATURES, 791 .mcdi_max_ver = 2, 792 .mcdi_request = ef100_mcdi_request, 793 .mcdi_poll_response = ef100_mcdi_poll_response, 794 .mcdi_read_response = ef100_mcdi_read_response, 795 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 796 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 797 .irq_enable_master = efx_port_dummy_op_void, 798 .irq_test_generate = efx_ef100_irq_test_generate, 799 .irq_disable_non_ev = efx_port_dummy_op_void, 800 .push_irq_moderation = efx_channel_dummy_op_void, 801 .min_interrupt_mode = EFX_INT_MODE_MSIX, 802 .map_reset_reason = ef100_map_reset_reason, 803 .map_reset_flags = ef100_map_reset_flags, 804 .reset = ef100_reset, 805 .check_caps = ef100_check_caps, 806 .ev_probe = ef100_ev_probe, 807 .ev_init = ef100_ev_init, 808 .ev_fini = efx_mcdi_ev_fini, 809 .ev_remove = efx_mcdi_ev_remove, 810 .irq_handle_msi = ef100_msi_interrupt, 811 .ev_process = ef100_ev_process, 812 .ev_read_ack = ef100_ev_read_ack, 813 .ev_test_generate = efx_ef100_ev_test_generate, 814 .tx_probe = ef100_tx_probe, 815 .tx_init = ef100_tx_init, 816 .tx_write = ef100_tx_write, 817 .tx_enqueue = ef100_enqueue_skb, 818 .rx_probe = efx_mcdi_rx_probe, 819 .rx_init = efx_mcdi_rx_init, 820 .rx_remove = efx_mcdi_rx_remove, 821 .rx_write = ef100_rx_write, 822 .rx_packet = __ef100_rx_packet, 823 .fini_dmaq = efx_fini_dmaq, 824 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 825 .filter_table_probe = ef100_filter_table_up, 826 .filter_table_restore = efx_mcdi_filter_table_restore, 827 .filter_table_remove = ef100_filter_table_down, 828 .filter_insert = efx_mcdi_filter_insert, 829 .filter_remove_safe = efx_mcdi_filter_remove_safe, 830 .filter_get_safe = efx_mcdi_filter_get_safe, 831 .filter_clear_rx = efx_mcdi_filter_clear_rx, 832 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 833 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 834 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 835 #ifdef CONFIG_RFS_ACCEL 836 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 837 #endif 838 839 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 840 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 841 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 842 .rx_hash_key_size = 40, 843 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 844 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 845 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 846 847 .reconfigure_mac = ef100_reconfigure_mac, 848 .test_nvram = efx_new_mcdi_nvram_test_all, 849 .describe_stats = ef100_describe_stats, 850 .start_stats = efx_mcdi_mac_start_stats, 851 .update_stats = ef100_update_stats, 852 .pull_stats = efx_mcdi_mac_pull_stats, 853 .stop_stats = efx_mcdi_mac_stop_stats, 854 855 .mem_bar = NULL, 856 .mem_map_size = NULL, 857 858 }; 859 860 static int compare_versions(const char *a, const char *b) 861 { 862 int a_major, a_minor, a_point, a_patch; 863 int b_major, b_minor, b_point, b_patch; 864 int a_matched, b_matched; 865 866 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); 867 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); 868 869 if (a_matched == 4 && b_matched != 4) 870 return +1; 871 872 if (a_matched != 4 && b_matched == 4) 873 return -1; 874 875 if (a_matched != 4 && b_matched != 4) 876 return 0; 877 878 if (a_major != b_major) 879 return a_major - b_major; 880 881 if (a_minor != b_minor) 882 return a_minor - b_minor; 883 884 if (a_point != b_point) 885 return a_point - b_point; 886 887 return a_patch - b_patch; 888 } 889 890 enum ef100_tlv_state_machine { 891 EF100_TLV_TYPE, 892 EF100_TLV_TYPE_CONT, 893 EF100_TLV_LENGTH, 894 EF100_TLV_VALUE 895 }; 896 897 struct ef100_tlv_state { 898 enum ef100_tlv_state_machine state; 899 u64 value; 900 u32 value_offset; 901 u16 type; 902 u8 len; 903 }; 904 905 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) 906 { 907 switch (state->state) { 908 case EF100_TLV_TYPE: 909 state->type = byte & 0x7f; 910 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT 911 : EF100_TLV_LENGTH; 912 /* Clear ready to read in a new entry */ 913 state->value = 0; 914 state->value_offset = 0; 915 return 0; 916 case EF100_TLV_TYPE_CONT: 917 state->type |= byte << 7; 918 state->state = EF100_TLV_LENGTH; 919 return 0; 920 case EF100_TLV_LENGTH: 921 state->len = byte; 922 /* We only handle TLVs that fit in a u64 */ 923 if (state->len > sizeof(state->value)) 924 return -EOPNOTSUPP; 925 /* len may be zero, implying a value of zero */ 926 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; 927 return 0; 928 case EF100_TLV_VALUE: 929 state->value |= ((u64)byte) << (state->value_offset * 8); 930 state->value_offset++; 931 if (state->value_offset >= state->len) 932 state->state = EF100_TLV_TYPE; 933 return 0; 934 default: /* state machine error, can't happen */ 935 WARN_ON_ONCE(1); 936 return -EIO; 937 } 938 } 939 940 static int ef100_process_design_param(struct efx_nic *efx, 941 const struct ef100_tlv_state *reader) 942 { 943 struct ef100_nic_data *nic_data = efx->nic_data; 944 945 switch (reader->type) { 946 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ 947 return 0; 948 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: 949 /* Driver doesn't support timestamping yet, so we don't care */ 950 return 0; 951 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: 952 /* Driver doesn't support unsolicited-event credits yet, so 953 * we don't care 954 */ 955 return 0; 956 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: 957 /* Driver doesn't manage the NMMU (so we don't care) */ 958 return 0; 959 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: 960 /* Driver uses CHECKSUM_COMPLETE, so we don't care about 961 * protocol checksum validation 962 */ 963 return 0; 964 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: 965 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); 966 return 0; 967 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: 968 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ 969 if (!reader->value) { 970 netif_err(efx, probe, efx->net_dev, 971 "TSO_MAX_HDR_NUM_SEGS < 1\n"); 972 return -EOPNOTSUPP; 973 } 974 return 0; 975 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: 976 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: 977 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by 978 * EFX_MIN_DMAQ_SIZE, so we just need to check that 979 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. 980 * This is very unlikely to fail. 981 */ 982 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || 983 EFX_MIN_DMAQ_SIZE % (u32)reader->value) { 984 netif_err(efx, probe, efx->net_dev, 985 "%s size granularity is %llu, can't guarantee safety\n", 986 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", 987 reader->value); 988 return -EOPNOTSUPP; 989 } 990 return 0; 991 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: 992 nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE); 993 efx->net_dev->gso_max_size = nic_data->tso_max_payload_len; 994 return 0; 995 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: 996 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); 997 efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs; 998 return 0; 999 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: 1000 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); 1001 return 0; 1002 case ESE_EF100_DP_GZ_COMPAT: 1003 if (reader->value) { 1004 netif_err(efx, probe, efx->net_dev, 1005 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", 1006 reader->value); 1007 return -EOPNOTSUPP; 1008 } 1009 return 0; 1010 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: 1011 /* Driver doesn't use mem2mem transfers */ 1012 return 0; 1013 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: 1014 /* Driver doesn't currently use EVQ_TIMER */ 1015 return 0; 1016 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: 1017 /* Driver doesn't manage the NMMU (so we don't care) */ 1018 return 0; 1019 case ESE_EF100_DP_GZ_VI_STRIDES: 1020 /* We never try to set the VI stride, and we don't rely on 1021 * being able to find VIs past VI 0 until after we've learned 1022 * the current stride from MC_CMD_GET_CAPABILITIES. 1023 * So the value of this shouldn't matter. 1024 */ 1025 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) 1026 netif_dbg(efx, probe, efx->net_dev, 1027 "NIC has other than default VI_STRIDES (mask " 1028 "%#llx), early probing might use wrong one\n", 1029 reader->value); 1030 return 0; 1031 case ESE_EF100_DP_GZ_RX_MAX_RUNT: 1032 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't 1033 * care whether it indicates runt or overlength for any given 1034 * packet, so we don't care about this parameter. 1035 */ 1036 return 0; 1037 default: 1038 /* Host interface says "Drivers should ignore design parameters 1039 * that they do not recognise." 1040 */ 1041 netif_dbg(efx, probe, efx->net_dev, 1042 "Ignoring unrecognised design parameter %u\n", 1043 reader->type); 1044 return 0; 1045 } 1046 } 1047 1048 static int ef100_check_design_params(struct efx_nic *efx) 1049 { 1050 struct ef100_tlv_state reader = {}; 1051 u32 total_len, offset = 0; 1052 efx_dword_t reg; 1053 int rc = 0, i; 1054 u32 data; 1055 1056 efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); 1057 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 1058 netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n", 1059 total_len); 1060 while (offset < total_len) { 1061 efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); 1062 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 1063 for (i = 0; i < sizeof(data); i++) { 1064 rc = ef100_tlv_feed(&reader, data); 1065 /* Got a complete value? */ 1066 if (!rc && reader.state == EF100_TLV_TYPE) 1067 rc = ef100_process_design_param(efx, &reader); 1068 if (rc) 1069 goto out; 1070 data >>= 8; 1071 offset++; 1072 } 1073 } 1074 /* Check we didn't end halfway through a TLV entry, which could either 1075 * mean that the TLV stream is truncated or just that it's corrupted 1076 * and our state machine is out of sync. 1077 */ 1078 if (reader.state != EF100_TLV_TYPE) { 1079 if (reader.state == EF100_TLV_TYPE_CONT) 1080 netif_err(efx, probe, efx->net_dev, 1081 "truncated design parameter (incomplete type %u)\n", 1082 reader.type); 1083 else 1084 netif_err(efx, probe, efx->net_dev, 1085 "truncated design parameter %u\n", 1086 reader.type); 1087 rc = -EIO; 1088 } 1089 out: 1090 return rc; 1091 } 1092 1093 /* NIC probe and remove 1094 */ 1095 static int ef100_probe_main(struct efx_nic *efx) 1096 { 1097 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); 1098 struct net_device *net_dev = efx->net_dev; 1099 struct ef100_nic_data *nic_data; 1100 char fw_version[32]; 1101 int i, rc; 1102 1103 if (WARN_ON(bar_size == 0)) 1104 return -EIO; 1105 1106 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); 1107 if (!nic_data) 1108 return -ENOMEM; 1109 efx->nic_data = nic_data; 1110 nic_data->efx = efx; 1111 net_dev->features |= efx->type->offload_features; 1112 net_dev->hw_features |= efx->type->offload_features; 1113 1114 /* Populate design-parameter defaults */ 1115 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; 1116 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; 1117 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; 1118 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; 1119 net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT; 1120 /* Read design parameters */ 1121 rc = ef100_check_design_params(efx); 1122 if (rc) { 1123 netif_err(efx, probe, efx->net_dev, 1124 "Unsupported design parameters\n"); 1125 goto fail; 1126 } 1127 1128 /* we assume later that we can copy from this buffer in dwords */ 1129 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); 1130 1131 /* MCDI buffers must be 256 byte aligned. */ 1132 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, 1133 GFP_KERNEL); 1134 if (rc) 1135 goto fail; 1136 1137 /* Get the MC's warm boot count. In case it's rebooting right 1138 * now, be prepared to retry. 1139 */ 1140 i = 0; 1141 for (;;) { 1142 rc = ef100_get_warm_boot_count(efx); 1143 if (rc >= 0) 1144 break; 1145 if (++i == 5) 1146 goto fail; 1147 ssleep(1); 1148 } 1149 nic_data->warm_boot_count = rc; 1150 1151 /* In case we're recovering from a crash (kexec), we want to 1152 * cancel any outstanding request by the previous user of this 1153 * function. We send a special message using the least 1154 * significant bits of the 'high' (doorbell) register. 1155 */ 1156 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 1157 1158 /* Post-IO section. */ 1159 1160 rc = efx_mcdi_init(efx); 1161 if (!rc && efx->mcdi->fn_flags & 1162 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) { 1163 netif_info(efx, probe, efx->net_dev, 1164 "No network port on this PCI function"); 1165 rc = -ENODEV; 1166 } 1167 if (rc) 1168 goto fail; 1169 /* Reset (most) configuration for this function */ 1170 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); 1171 if (rc) 1172 goto fail; 1173 1174 rc = efx_get_pf_index(efx, &nic_data->pf_index); 1175 if (rc) 1176 goto fail; 1177 1178 rc = efx_ef100_init_datapath_caps(efx); 1179 if (rc < 0) 1180 goto fail; 1181 1182 efx->max_vis = EF100_MAX_VIS; 1183 1184 rc = efx_mcdi_port_get_number(efx); 1185 if (rc < 0) 1186 goto fail; 1187 efx->port_num = rc; 1188 1189 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); 1190 netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version); 1191 1192 if (compare_versions(fw_version, "1.1.0.1000") < 0) { 1193 netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n"); 1194 rc = -EINVAL; 1195 goto fail; 1196 } 1197 1198 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { 1199 netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n"); 1200 rc = -EINVAL; 1201 goto fail; 1202 } 1203 1204 rc = ef100_phy_probe(efx); 1205 if (rc) 1206 goto fail; 1207 1208 rc = efx_init_channels(efx); 1209 if (rc) 1210 goto fail; 1211 1212 down_write(&efx->filter_sem); 1213 rc = ef100_filter_table_probe(efx); 1214 up_write(&efx->filter_sem); 1215 if (rc) 1216 goto fail; 1217 1218 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 1219 sizeof(efx->rss_context.rx_hash_key)); 1220 1221 /* Don't fail init if RSS setup doesn't work. */ 1222 efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels); 1223 1224 rc = ef100_register_netdev(efx); 1225 if (rc) 1226 goto fail; 1227 1228 return 0; 1229 fail: 1230 return rc; 1231 } 1232 1233 int ef100_probe_pf(struct efx_nic *efx) 1234 { 1235 struct net_device *net_dev = efx->net_dev; 1236 struct ef100_nic_data *nic_data; 1237 int rc = ef100_probe_main(efx); 1238 1239 if (rc) 1240 goto fail; 1241 1242 nic_data = efx->nic_data; 1243 rc = ef100_get_mac_address(efx, net_dev->perm_addr); 1244 if (rc) 1245 goto fail; 1246 /* Assign MAC address */ 1247 memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN); 1248 memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN); 1249 1250 return 0; 1251 1252 fail: 1253 return rc; 1254 } 1255 1256 int ef100_probe_vf(struct efx_nic *efx) 1257 { 1258 return ef100_probe_main(efx); 1259 } 1260 1261 void ef100_remove(struct efx_nic *efx) 1262 { 1263 struct ef100_nic_data *nic_data = efx->nic_data; 1264 1265 ef100_unregister_netdev(efx); 1266 1267 down_write(&efx->filter_sem); 1268 efx_mcdi_filter_table_remove(efx); 1269 up_write(&efx->filter_sem); 1270 efx_fini_channels(efx); 1271 kfree(efx->phy_data); 1272 efx->phy_data = NULL; 1273 efx_mcdi_detach(efx); 1274 efx_mcdi_fini(efx); 1275 if (nic_data) 1276 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 1277 kfree(nic_data); 1278 efx->nic_data = NULL; 1279 } 1280