1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * Copyright 2019-2022 Xilinx Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation, incorporated herein by reference. 10 */ 11 12 #include "ef100_nic.h" 13 #include "efx_common.h" 14 #include "efx_channels.h" 15 #include "io.h" 16 #include "selftest.h" 17 #include "ef100_regs.h" 18 #include "mcdi.h" 19 #include "mcdi_pcol.h" 20 #include "mcdi_port_common.h" 21 #include "mcdi_functions.h" 22 #include "mcdi_filters.h" 23 #include "ef100_rx.h" 24 #include "ef100_tx.h" 25 #include "ef100_sriov.h" 26 #include "ef100_netdev.h" 27 #include "rx_common.h" 28 29 #define EF100_MAX_VIS 4096 30 #define EF100_NUM_MCDI_BUFFERS 1 31 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) 32 33 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) 34 35 /* MCDI 36 */ 37 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) 38 { 39 struct ef100_nic_data *nic_data = efx->nic_data; 40 41 if (dma_addr) 42 *dma_addr = nic_data->mcdi_buf.dma_addr + 43 bufid * ALIGN(MCDI_BUF_LEN, 256); 44 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); 45 } 46 47 static int ef100_get_warm_boot_count(struct efx_nic *efx) 48 { 49 efx_dword_t reg; 50 51 efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); 52 53 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { 54 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); 55 efx->state = STATE_DISABLED; 56 return -ENETDOWN; 57 } else { 58 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? 59 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; 60 } 61 } 62 63 static void ef100_mcdi_request(struct efx_nic *efx, 64 const efx_dword_t *hdr, size_t hdr_len, 65 const efx_dword_t *sdu, size_t sdu_len) 66 { 67 dma_addr_t dma_addr; 68 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); 69 70 memcpy(pdu, hdr, hdr_len); 71 memcpy(pdu + hdr_len, sdu, sdu_len); 72 wmb(); 73 74 /* The hardware provides 'low' and 'high' (doorbell) registers 75 * for passing the 64-bit address of an MCDI request to 76 * firmware. However the dwords are swapped by firmware. The 77 * least significant bits of the doorbell are then 0 for all 78 * MCDI requests due to alignment. 79 */ 80 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); 81 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 82 } 83 84 static bool ef100_mcdi_poll_response(struct efx_nic *efx) 85 { 86 const efx_dword_t hdr = 87 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); 88 89 rmb(); 90 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); 91 } 92 93 static void ef100_mcdi_read_response(struct efx_nic *efx, 94 efx_dword_t *outbuf, size_t offset, 95 size_t outlen) 96 { 97 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); 98 99 memcpy(outbuf, pdu + offset, outlen); 100 } 101 102 static int ef100_mcdi_poll_reboot(struct efx_nic *efx) 103 { 104 struct ef100_nic_data *nic_data = efx->nic_data; 105 int rc; 106 107 rc = ef100_get_warm_boot_count(efx); 108 if (rc < 0) { 109 /* The firmware is presumably in the process of 110 * rebooting. However, we are supposed to report each 111 * reboot just once, so we must only do that once we 112 * can read and store the updated warm boot count. 113 */ 114 return 0; 115 } 116 117 if (rc == nic_data->warm_boot_count) 118 return 0; 119 120 nic_data->warm_boot_count = rc; 121 122 return -EIO; 123 } 124 125 static void ef100_mcdi_reboot_detected(struct efx_nic *efx) 126 { 127 } 128 129 /* MCDI calls 130 */ 131 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address) 132 { 133 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); 134 size_t outlen; 135 int rc; 136 137 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); 138 139 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, 140 outbuf, sizeof(outbuf), &outlen); 141 if (rc) 142 return rc; 143 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) 144 return -EIO; 145 146 ether_addr_copy(mac_address, 147 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); 148 return 0; 149 } 150 151 int efx_ef100_init_datapath_caps(struct efx_nic *efx) 152 { 153 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); 154 struct ef100_nic_data *nic_data = efx->nic_data; 155 u8 vi_window_mode; 156 size_t outlen; 157 int rc; 158 159 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 160 161 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 162 outbuf, sizeof(outbuf), &outlen); 163 if (rc) 164 return rc; 165 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { 166 netif_err(efx, drv, efx->net_dev, 167 "unable to read datapath firmware capabilities\n"); 168 return -EIO; 169 } 170 171 nic_data->datapath_caps = MCDI_DWORD(outbuf, 172 GET_CAPABILITIES_OUT_FLAGS1); 173 nic_data->datapath_caps2 = MCDI_DWORD(outbuf, 174 GET_CAPABILITIES_V2_OUT_FLAGS2); 175 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) 176 nic_data->datapath_caps3 = 0; 177 else 178 nic_data->datapath_caps3 = MCDI_DWORD(outbuf, 179 GET_CAPABILITIES_V7_OUT_FLAGS3); 180 181 vi_window_mode = MCDI_BYTE(outbuf, 182 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); 183 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); 184 if (rc) 185 return rc; 186 187 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) { 188 struct net_device *net_dev = efx->net_dev; 189 netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL | 190 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 191 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM; 192 193 net_dev->features |= tso; 194 net_dev->hw_features |= tso; 195 net_dev->hw_enc_features |= tso; 196 /* EF100 HW can only offload outer checksums if they are UDP, 197 * so for GRE_CSUM we have to use GSO_PARTIAL. 198 */ 199 net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 200 } 201 efx->num_mac_stats = MCDI_WORD(outbuf, 202 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); 203 netif_dbg(efx, probe, efx->net_dev, 204 "firmware reports num_mac_stats = %u\n", 205 efx->num_mac_stats); 206 return 0; 207 } 208 209 /* Event handling 210 */ 211 static int ef100_ev_probe(struct efx_channel *channel) 212 { 213 /* Allocate an extra descriptor for the QMDA status completion entry */ 214 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, 215 (channel->eventq_mask + 2) * 216 sizeof(efx_qword_t), 217 GFP_KERNEL); 218 } 219 220 static int ef100_ev_init(struct efx_channel *channel) 221 { 222 struct ef100_nic_data *nic_data = channel->efx->nic_data; 223 224 /* initial phase is 0 */ 225 clear_bit(channel->channel, nic_data->evq_phases); 226 227 return efx_mcdi_ev_init(channel, false, false); 228 } 229 230 static void ef100_ev_read_ack(struct efx_channel *channel) 231 { 232 efx_dword_t evq_prime; 233 234 EFX_POPULATE_DWORD_2(evq_prime, 235 ERF_GZ_EVQ_ID, channel->channel, 236 ERF_GZ_IDX, channel->eventq_read_ptr & 237 channel->eventq_mask); 238 239 efx_writed(channel->efx, &evq_prime, 240 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); 241 } 242 243 static int ef100_ev_process(struct efx_channel *channel, int quota) 244 { 245 struct efx_nic *efx = channel->efx; 246 struct ef100_nic_data *nic_data; 247 bool evq_phase, old_evq_phase; 248 unsigned int read_ptr; 249 efx_qword_t *p_event; 250 int spent = 0; 251 bool ev_phase; 252 int ev_type; 253 254 if (unlikely(!channel->enabled)) 255 return 0; 256 257 nic_data = efx->nic_data; 258 evq_phase = test_bit(channel->channel, nic_data->evq_phases); 259 old_evq_phase = evq_phase; 260 read_ptr = channel->eventq_read_ptr; 261 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); 262 263 while (spent < quota) { 264 p_event = efx_event(channel, read_ptr); 265 266 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); 267 if (ev_phase != evq_phase) 268 break; 269 270 netif_vdbg(efx, drv, efx->net_dev, 271 "processing event on %d " EFX_QWORD_FMT "\n", 272 channel->channel, EFX_QWORD_VAL(*p_event)); 273 274 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); 275 276 switch (ev_type) { 277 case ESE_GZ_EF100_EV_RX_PKTS: 278 efx_ef100_ev_rx(channel, p_event); 279 ++spent; 280 break; 281 case ESE_GZ_EF100_EV_MCDI: 282 efx_mcdi_process_event(channel, p_event); 283 break; 284 case ESE_GZ_EF100_EV_TX_COMPLETION: 285 ef100_ev_tx(channel, p_event); 286 break; 287 case ESE_GZ_EF100_EV_DRIVER: 288 netif_info(efx, drv, efx->net_dev, 289 "Driver initiated event " EFX_QWORD_FMT "\n", 290 EFX_QWORD_VAL(*p_event)); 291 break; 292 default: 293 netif_info(efx, drv, efx->net_dev, 294 "Unhandled event " EFX_QWORD_FMT "\n", 295 EFX_QWORD_VAL(*p_event)); 296 } 297 298 ++read_ptr; 299 if ((read_ptr & channel->eventq_mask) == 0) 300 evq_phase = !evq_phase; 301 } 302 303 channel->eventq_read_ptr = read_ptr; 304 if (evq_phase != old_evq_phase) 305 change_bit(channel->channel, nic_data->evq_phases); 306 307 return spent; 308 } 309 310 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) 311 { 312 struct efx_msi_context *context = dev_id; 313 struct efx_nic *efx = context->efx; 314 315 netif_vdbg(efx, intr, efx->net_dev, 316 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); 317 318 if (likely(READ_ONCE(efx->irq_soft_enabled))) { 319 /* Note test interrupts */ 320 if (context->index == efx->irq_level) 321 efx->last_irq_cpu = raw_smp_processor_id(); 322 323 /* Schedule processing of the channel */ 324 efx_schedule_channel_irq(efx->channel[context->index]); 325 } 326 327 return IRQ_HANDLED; 328 } 329 330 int ef100_phy_probe(struct efx_nic *efx) 331 { 332 struct efx_mcdi_phy_data *phy_data; 333 int rc; 334 335 /* Probe for the PHY */ 336 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); 337 if (!efx->phy_data) 338 return -ENOMEM; 339 340 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); 341 if (rc) 342 return rc; 343 344 /* Populate driver and ethtool settings */ 345 phy_data = efx->phy_data; 346 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, 347 efx->link_advertising); 348 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, 349 false); 350 351 /* Default to Autonegotiated flow control if the PHY supports it */ 352 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; 353 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) 354 efx->wanted_fc |= EFX_FC_AUTO; 355 efx_link_set_wanted_fc(efx, efx->wanted_fc); 356 357 /* Push settings to the PHY. Failure is not fatal, the user can try to 358 * fix it using ethtool. 359 */ 360 rc = efx_mcdi_port_reconfigure(efx); 361 if (rc && rc != -EPERM) 362 netif_warn(efx, drv, efx->net_dev, 363 "could not initialise PHY settings\n"); 364 365 return 0; 366 } 367 368 int ef100_filter_table_probe(struct efx_nic *efx) 369 { 370 return efx_mcdi_filter_table_probe(efx, true); 371 } 372 373 static int ef100_filter_table_up(struct efx_nic *efx) 374 { 375 int rc; 376 377 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC); 378 if (rc) { 379 efx_mcdi_filter_table_down(efx); 380 return rc; 381 } 382 383 rc = efx_mcdi_filter_add_vlan(efx, 0); 384 if (rc) { 385 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 386 efx_mcdi_filter_table_down(efx); 387 } 388 389 return rc; 390 } 391 392 static void ef100_filter_table_down(struct efx_nic *efx) 393 { 394 efx_mcdi_filter_del_vlan(efx, 0); 395 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC); 396 efx_mcdi_filter_table_down(efx); 397 } 398 399 /* Other 400 */ 401 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) 402 { 403 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 404 405 efx_mcdi_filter_sync_rx_mode(efx); 406 407 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) 408 return efx_mcdi_set_mtu(efx); 409 return efx_mcdi_set_mac(efx); 410 } 411 412 static enum reset_type ef100_map_reset_reason(enum reset_type reason) 413 { 414 if (reason == RESET_TYPE_TX_WATCHDOG) 415 return reason; 416 return RESET_TYPE_DISABLE; 417 } 418 419 static int ef100_map_reset_flags(u32 *flags) 420 { 421 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ 422 if ((*flags & EF100_RESET_PORT)) { 423 *flags &= ~EF100_RESET_PORT; 424 return RESET_TYPE_ALL; 425 } 426 if (*flags & ETH_RESET_MGMT) { 427 *flags &= ~ETH_RESET_MGMT; 428 return RESET_TYPE_DISABLE; 429 } 430 431 return -EINVAL; 432 } 433 434 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) 435 { 436 int rc; 437 438 dev_close(efx->net_dev); 439 440 if (reset_type == RESET_TYPE_TX_WATCHDOG) { 441 netif_device_attach(efx->net_dev); 442 __clear_bit(reset_type, &efx->reset_pending); 443 rc = dev_open(efx->net_dev, NULL); 444 } else if (reset_type == RESET_TYPE_ALL) { 445 rc = efx_mcdi_reset(efx, reset_type); 446 if (rc) 447 return rc; 448 449 netif_device_attach(efx->net_dev); 450 451 rc = dev_open(efx->net_dev, NULL); 452 } else { 453 rc = 1; /* Leave the device closed */ 454 } 455 return rc; 456 } 457 458 static void ef100_common_stat_mask(unsigned long *mask) 459 { 460 __set_bit(EF100_STAT_port_rx_packets, mask); 461 __set_bit(EF100_STAT_port_tx_packets, mask); 462 __set_bit(EF100_STAT_port_rx_bytes, mask); 463 __set_bit(EF100_STAT_port_tx_bytes, mask); 464 __set_bit(EF100_STAT_port_rx_multicast, mask); 465 __set_bit(EF100_STAT_port_rx_bad, mask); 466 __set_bit(EF100_STAT_port_rx_align_error, mask); 467 __set_bit(EF100_STAT_port_rx_overflow, mask); 468 } 469 470 static void ef100_ethtool_stat_mask(unsigned long *mask) 471 { 472 __set_bit(EF100_STAT_port_tx_pause, mask); 473 __set_bit(EF100_STAT_port_tx_unicast, mask); 474 __set_bit(EF100_STAT_port_tx_multicast, mask); 475 __set_bit(EF100_STAT_port_tx_broadcast, mask); 476 __set_bit(EF100_STAT_port_tx_lt64, mask); 477 __set_bit(EF100_STAT_port_tx_64, mask); 478 __set_bit(EF100_STAT_port_tx_65_to_127, mask); 479 __set_bit(EF100_STAT_port_tx_128_to_255, mask); 480 __set_bit(EF100_STAT_port_tx_256_to_511, mask); 481 __set_bit(EF100_STAT_port_tx_512_to_1023, mask); 482 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask); 483 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask); 484 __set_bit(EF100_STAT_port_rx_good, mask); 485 __set_bit(EF100_STAT_port_rx_pause, mask); 486 __set_bit(EF100_STAT_port_rx_unicast, mask); 487 __set_bit(EF100_STAT_port_rx_broadcast, mask); 488 __set_bit(EF100_STAT_port_rx_lt64, mask); 489 __set_bit(EF100_STAT_port_rx_64, mask); 490 __set_bit(EF100_STAT_port_rx_65_to_127, mask); 491 __set_bit(EF100_STAT_port_rx_128_to_255, mask); 492 __set_bit(EF100_STAT_port_rx_256_to_511, mask); 493 __set_bit(EF100_STAT_port_rx_512_to_1023, mask); 494 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask); 495 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask); 496 __set_bit(EF100_STAT_port_rx_gtjumbo, mask); 497 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask); 498 __set_bit(EF100_STAT_port_rx_length_error, mask); 499 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask); 500 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask); 501 __set_bit(GENERIC_STAT_rx_noskb_drops, mask); 502 } 503 504 #define EF100_DMA_STAT(ext_name, mcdi_name) \ 505 [EF100_STAT_ ## ext_name] = \ 506 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 507 508 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = { 509 EF100_DMA_STAT(port_tx_bytes, TX_BYTES), 510 EF100_DMA_STAT(port_tx_packets, TX_PKTS), 511 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), 512 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), 513 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), 514 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), 515 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), 516 EF100_DMA_STAT(port_tx_64, TX_64_PKTS), 517 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), 518 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), 519 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), 520 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), 521 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), 522 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), 523 EF100_DMA_STAT(port_rx_bytes, RX_BYTES), 524 EF100_DMA_STAT(port_rx_packets, RX_PKTS), 525 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS), 526 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), 527 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), 528 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), 529 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), 530 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), 531 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), 532 EF100_DMA_STAT(port_rx_64, RX_64_PKTS), 533 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), 534 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), 535 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), 536 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), 537 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), 538 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), 539 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), 540 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), 541 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), 542 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), 543 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), 544 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), 545 EFX_GENERIC_SW_STAT(rx_nodesc_trunc), 546 EFX_GENERIC_SW_STAT(rx_noskb_drops), 547 }; 548 549 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names) 550 { 551 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 552 553 ef100_ethtool_stat_mask(mask); 554 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT, 555 mask, names); 556 } 557 558 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats, 559 struct rtnl_link_stats64 *core_stats) 560 { 561 struct ef100_nic_data *nic_data = efx->nic_data; 562 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 563 size_t stats_count = 0, index; 564 u64 *stats = nic_data->stats; 565 566 ef100_ethtool_stat_mask(mask); 567 568 if (full_stats) { 569 for_each_set_bit(index, mask, EF100_STAT_COUNT) { 570 if (ef100_stat_desc[index].name) { 571 *full_stats++ = stats[index]; 572 ++stats_count; 573 } 574 } 575 } 576 577 if (!core_stats) 578 return stats_count; 579 580 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets]; 581 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets]; 582 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes]; 583 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes]; 584 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] + 585 stats[GENERIC_STAT_rx_nodesc_trunc] + 586 stats[GENERIC_STAT_rx_noskb_drops]; 587 core_stats->multicast = stats[EF100_STAT_port_rx_multicast]; 588 core_stats->rx_length_errors = 589 stats[EF100_STAT_port_rx_gtjumbo] + 590 stats[EF100_STAT_port_rx_length_error]; 591 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad]; 592 core_stats->rx_frame_errors = 593 stats[EF100_STAT_port_rx_align_error]; 594 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow]; 595 core_stats->rx_errors = (core_stats->rx_length_errors + 596 core_stats->rx_crc_errors + 597 core_stats->rx_frame_errors); 598 599 return stats_count; 600 } 601 602 static size_t ef100_update_stats(struct efx_nic *efx, 603 u64 *full_stats, 604 struct rtnl_link_stats64 *core_stats) 605 { 606 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC); 607 struct ef100_nic_data *nic_data = efx->nic_data; 608 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {}; 609 u64 *stats = nic_data->stats; 610 611 ef100_common_stat_mask(mask); 612 ef100_ethtool_stat_mask(mask); 613 614 if (!mc_stats) 615 return 0; 616 617 efx_nic_copy_stats(efx, mc_stats); 618 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask, 619 stats, mc_stats, false); 620 621 kfree(mc_stats); 622 623 return ef100_update_stats_common(efx, full_stats, core_stats); 624 } 625 626 static int efx_ef100_get_phys_port_id(struct efx_nic *efx, 627 struct netdev_phys_item_id *ppid) 628 { 629 struct ef100_nic_data *nic_data = efx->nic_data; 630 631 if (!is_valid_ether_addr(nic_data->port_id)) 632 return -EOPNOTSUPP; 633 634 ppid->id_len = ETH_ALEN; 635 memcpy(ppid->id, nic_data->port_id, ppid->id_len); 636 637 return 0; 638 } 639 640 static int efx_ef100_irq_test_generate(struct efx_nic *efx) 641 { 642 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); 643 644 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); 645 646 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); 647 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT, 648 inbuf, sizeof(inbuf), NULL, 0, NULL); 649 } 650 651 #define EFX_EF100_TEST 1 652 653 static void efx_ef100_ev_test_generate(struct efx_channel *channel) 654 { 655 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 656 struct efx_nic *efx = channel->efx; 657 efx_qword_t event; 658 int rc; 659 660 EFX_POPULATE_QWORD_2(event, 661 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER, 662 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST); 663 664 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 665 666 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 667 * already swapped the data to little-endian order. 668 */ 669 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 670 sizeof(efx_qword_t)); 671 672 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 673 NULL, 0, NULL); 674 if (rc && (rc != -ENETDOWN)) 675 goto fail; 676 677 return; 678 679 fail: 680 WARN_ON(true); 681 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 682 } 683 684 static unsigned int ef100_check_caps(const struct efx_nic *efx, 685 u8 flag, u32 offset) 686 { 687 const struct ef100_nic_data *nic_data = efx->nic_data; 688 689 switch (offset) { 690 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: 691 return nic_data->datapath_caps & BIT_ULL(flag); 692 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: 693 return nic_data->datapath_caps2 & BIT_ULL(flag); 694 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: 695 return nic_data->datapath_caps3 & BIT_ULL(flag); 696 default: 697 return 0; 698 } 699 } 700 701 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx) 702 { 703 /* Maximum link speed for Riverhead is 100G */ 704 return 10 * EFX_RECYCLE_RING_SIZE_10G; 705 } 706 707 static int compare_versions(const char *a, const char *b) 708 { 709 int a_major, a_minor, a_point, a_patch; 710 int b_major, b_minor, b_point, b_patch; 711 int a_matched, b_matched; 712 713 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch); 714 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch); 715 716 if (a_matched == 4 && b_matched != 4) 717 return +1; 718 719 if (a_matched != 4 && b_matched == 4) 720 return -1; 721 722 if (a_matched != 4 && b_matched != 4) 723 return 0; 724 725 if (a_major != b_major) 726 return a_major - b_major; 727 728 if (a_minor != b_minor) 729 return a_minor - b_minor; 730 731 if (a_point != b_point) 732 return a_point - b_point; 733 734 return a_patch - b_patch; 735 } 736 737 enum ef100_tlv_state_machine { 738 EF100_TLV_TYPE, 739 EF100_TLV_TYPE_CONT, 740 EF100_TLV_LENGTH, 741 EF100_TLV_VALUE 742 }; 743 744 struct ef100_tlv_state { 745 enum ef100_tlv_state_machine state; 746 u64 value; 747 u32 value_offset; 748 u16 type; 749 u8 len; 750 }; 751 752 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte) 753 { 754 switch (state->state) { 755 case EF100_TLV_TYPE: 756 state->type = byte & 0x7f; 757 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT 758 : EF100_TLV_LENGTH; 759 /* Clear ready to read in a new entry */ 760 state->value = 0; 761 state->value_offset = 0; 762 return 0; 763 case EF100_TLV_TYPE_CONT: 764 state->type |= byte << 7; 765 state->state = EF100_TLV_LENGTH; 766 return 0; 767 case EF100_TLV_LENGTH: 768 state->len = byte; 769 /* We only handle TLVs that fit in a u64 */ 770 if (state->len > sizeof(state->value)) 771 return -EOPNOTSUPP; 772 /* len may be zero, implying a value of zero */ 773 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE; 774 return 0; 775 case EF100_TLV_VALUE: 776 state->value |= ((u64)byte) << (state->value_offset * 8); 777 state->value_offset++; 778 if (state->value_offset >= state->len) 779 state->state = EF100_TLV_TYPE; 780 return 0; 781 default: /* state machine error, can't happen */ 782 WARN_ON_ONCE(1); 783 return -EIO; 784 } 785 } 786 787 static int ef100_process_design_param(struct efx_nic *efx, 788 const struct ef100_tlv_state *reader) 789 { 790 struct ef100_nic_data *nic_data = efx->nic_data; 791 792 switch (reader->type) { 793 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */ 794 return 0; 795 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS: 796 /* Driver doesn't support timestamping yet, so we don't care */ 797 return 0; 798 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS: 799 /* Driver doesn't support unsolicited-event credits yet, so 800 * we don't care 801 */ 802 return 0; 803 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE: 804 /* Driver doesn't manage the NMMU (so we don't care) */ 805 return 0; 806 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS: 807 /* Driver uses CHECKSUM_COMPLETE, so we don't care about 808 * protocol checksum validation 809 */ 810 return 0; 811 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN: 812 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff); 813 return 0; 814 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS: 815 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */ 816 if (!reader->value) { 817 netif_err(efx, probe, efx->net_dev, 818 "TSO_MAX_HDR_NUM_SEGS < 1\n"); 819 return -EOPNOTSUPP; 820 } 821 return 0; 822 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY: 823 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY: 824 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by 825 * EFX_MIN_DMAQ_SIZE, so we just need to check that 826 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY. 827 * This is very unlikely to fail. 828 */ 829 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE || 830 EFX_MIN_DMAQ_SIZE % (u32)reader->value) { 831 netif_err(efx, probe, efx->net_dev, 832 "%s size granularity is %llu, can't guarantee safety\n", 833 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ", 834 reader->value); 835 return -EOPNOTSUPP; 836 } 837 return 0; 838 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN: 839 nic_data->tso_max_payload_len = min_t(u64, reader->value, 840 GSO_LEGACY_MAX_SIZE); 841 netif_set_tso_max_size(efx->net_dev, 842 nic_data->tso_max_payload_len); 843 return 0; 844 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS: 845 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff); 846 netif_set_tso_max_segs(efx->net_dev, 847 nic_data->tso_max_payload_num_segs); 848 return 0; 849 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES: 850 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff); 851 return 0; 852 case ESE_EF100_DP_GZ_COMPAT: 853 if (reader->value) { 854 netif_err(efx, probe, efx->net_dev, 855 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n", 856 reader->value); 857 return -EOPNOTSUPP; 858 } 859 return 0; 860 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN: 861 /* Driver doesn't use mem2mem transfers */ 862 return 0; 863 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS: 864 /* Driver doesn't currently use EVQ_TIMER */ 865 return 0; 866 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES: 867 /* Driver doesn't manage the NMMU (so we don't care) */ 868 return 0; 869 case ESE_EF100_DP_GZ_VI_STRIDES: 870 /* We never try to set the VI stride, and we don't rely on 871 * being able to find VIs past VI 0 until after we've learned 872 * the current stride from MC_CMD_GET_CAPABILITIES. 873 * So the value of this shouldn't matter. 874 */ 875 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT) 876 netif_dbg(efx, probe, efx->net_dev, 877 "NIC has other than default VI_STRIDES (mask " 878 "%#llx), early probing might use wrong one\n", 879 reader->value); 880 return 0; 881 case ESE_EF100_DP_GZ_RX_MAX_RUNT: 882 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't 883 * care whether it indicates runt or overlength for any given 884 * packet, so we don't care about this parameter. 885 */ 886 return 0; 887 default: 888 /* Host interface says "Drivers should ignore design parameters 889 * that they do not recognise." 890 */ 891 netif_dbg(efx, probe, efx->net_dev, 892 "Ignoring unrecognised design parameter %u\n", 893 reader->type); 894 return 0; 895 } 896 } 897 898 static int ef100_check_design_params(struct efx_nic *efx) 899 { 900 struct ef100_tlv_state reader = {}; 901 u32 total_len, offset = 0; 902 efx_dword_t reg; 903 int rc = 0, i; 904 u32 data; 905 906 efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN); 907 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 908 pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len); 909 while (offset < total_len) { 910 efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset); 911 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0); 912 for (i = 0; i < sizeof(data); i++) { 913 rc = ef100_tlv_feed(&reader, data); 914 /* Got a complete value? */ 915 if (!rc && reader.state == EF100_TLV_TYPE) 916 rc = ef100_process_design_param(efx, &reader); 917 if (rc) 918 goto out; 919 data >>= 8; 920 offset++; 921 } 922 } 923 /* Check we didn't end halfway through a TLV entry, which could either 924 * mean that the TLV stream is truncated or just that it's corrupted 925 * and our state machine is out of sync. 926 */ 927 if (reader.state != EF100_TLV_TYPE) { 928 if (reader.state == EF100_TLV_TYPE_CONT) 929 netif_err(efx, probe, efx->net_dev, 930 "truncated design parameter (incomplete type %u)\n", 931 reader.type); 932 else 933 netif_err(efx, probe, efx->net_dev, 934 "truncated design parameter %u\n", 935 reader.type); 936 rc = -EIO; 937 } 938 out: 939 return rc; 940 } 941 942 /* NIC probe and remove 943 */ 944 static int ef100_probe_main(struct efx_nic *efx) 945 { 946 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); 947 struct ef100_nic_data *nic_data; 948 char fw_version[32]; 949 int i, rc; 950 951 if (WARN_ON(bar_size == 0)) 952 return -EIO; 953 954 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); 955 if (!nic_data) 956 return -ENOMEM; 957 efx->nic_data = nic_data; 958 nic_data->efx = efx; 959 efx->max_vis = EF100_MAX_VIS; 960 961 /* Populate design-parameter defaults */ 962 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT; 963 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT; 964 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT; 965 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT; 966 967 /* Read design parameters */ 968 rc = ef100_check_design_params(efx); 969 if (rc) { 970 pci_err(efx->pci_dev, "Unsupported design parameters\n"); 971 goto fail; 972 } 973 974 /* we assume later that we can copy from this buffer in dwords */ 975 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); 976 977 /* MCDI buffers must be 256 byte aligned. */ 978 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, 979 GFP_KERNEL); 980 if (rc) 981 goto fail; 982 983 /* Get the MC's warm boot count. In case it's rebooting right 984 * now, be prepared to retry. 985 */ 986 i = 0; 987 for (;;) { 988 rc = ef100_get_warm_boot_count(efx); 989 if (rc >= 0) 990 break; 991 if (++i == 5) 992 goto fail; 993 ssleep(1); 994 } 995 nic_data->warm_boot_count = rc; 996 997 /* In case we're recovering from a crash (kexec), we want to 998 * cancel any outstanding request by the previous user of this 999 * function. We send a special message using the least 1000 * significant bits of the 'high' (doorbell) register. 1001 */ 1002 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); 1003 1004 /* Post-IO section. */ 1005 1006 rc = efx_mcdi_init(efx); 1007 if (rc) 1008 goto fail; 1009 /* Reset (most) configuration for this function */ 1010 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); 1011 if (rc) 1012 goto fail; 1013 /* Enable event logging */ 1014 rc = efx_mcdi_log_ctrl(efx, true, false, 0); 1015 if (rc) 1016 goto fail; 1017 1018 rc = efx_get_pf_index(efx, &nic_data->pf_index); 1019 if (rc) 1020 goto fail; 1021 1022 rc = efx_mcdi_port_get_number(efx); 1023 if (rc < 0) 1024 goto fail; 1025 efx->port_num = rc; 1026 1027 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version)); 1028 pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version); 1029 1030 if (compare_versions(fw_version, "1.1.0.1000") < 0) { 1031 pci_info(efx->pci_dev, "Firmware uses old event descriptors\n"); 1032 rc = -EINVAL; 1033 goto fail; 1034 } 1035 1036 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) { 1037 pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n"); 1038 rc = -EINVAL; 1039 goto fail; 1040 } 1041 1042 return 0; 1043 fail: 1044 return rc; 1045 } 1046 1047 int ef100_probe_netdev_pf(struct efx_nic *efx) 1048 { 1049 struct ef100_nic_data *nic_data = efx->nic_data; 1050 struct net_device *net_dev = efx->net_dev; 1051 int rc; 1052 1053 rc = ef100_get_mac_address(efx, net_dev->perm_addr); 1054 if (rc) 1055 goto fail; 1056 /* Assign MAC address */ 1057 eth_hw_addr_set(net_dev, net_dev->perm_addr); 1058 memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN); 1059 1060 return 0; 1061 1062 fail: 1063 return rc; 1064 } 1065 1066 int ef100_probe_vf(struct efx_nic *efx) 1067 { 1068 return ef100_probe_main(efx); 1069 } 1070 1071 void ef100_remove(struct efx_nic *efx) 1072 { 1073 struct ef100_nic_data *nic_data = efx->nic_data; 1074 1075 efx_mcdi_detach(efx); 1076 efx_mcdi_fini(efx); 1077 if (nic_data) 1078 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 1079 kfree(nic_data); 1080 efx->nic_data = NULL; 1081 } 1082 1083 /* NIC level access functions 1084 */ 1085 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \ 1086 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \ 1087 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \ 1088 NETIF_F_HW_VLAN_CTAG_TX) 1089 1090 const struct efx_nic_type ef100_pf_nic_type = { 1091 .revision = EFX_REV_EF100, 1092 .is_vf = false, 1093 .probe = ef100_probe_main, 1094 .offload_features = EF100_OFFLOAD_FEATURES, 1095 .mcdi_max_ver = 2, 1096 .mcdi_request = ef100_mcdi_request, 1097 .mcdi_poll_response = ef100_mcdi_poll_response, 1098 .mcdi_read_response = ef100_mcdi_read_response, 1099 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 1100 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 1101 .irq_enable_master = efx_port_dummy_op_void, 1102 .irq_test_generate = efx_ef100_irq_test_generate, 1103 .irq_disable_non_ev = efx_port_dummy_op_void, 1104 .push_irq_moderation = efx_channel_dummy_op_void, 1105 .min_interrupt_mode = EFX_INT_MODE_MSIX, 1106 .map_reset_reason = ef100_map_reset_reason, 1107 .map_reset_flags = ef100_map_reset_flags, 1108 .reset = ef100_reset, 1109 1110 .check_caps = ef100_check_caps, 1111 1112 .ev_probe = ef100_ev_probe, 1113 .ev_init = ef100_ev_init, 1114 .ev_fini = efx_mcdi_ev_fini, 1115 .ev_remove = efx_mcdi_ev_remove, 1116 .irq_handle_msi = ef100_msi_interrupt, 1117 .ev_process = ef100_ev_process, 1118 .ev_read_ack = ef100_ev_read_ack, 1119 .ev_test_generate = efx_ef100_ev_test_generate, 1120 .tx_probe = ef100_tx_probe, 1121 .tx_init = ef100_tx_init, 1122 .tx_write = ef100_tx_write, 1123 .tx_enqueue = ef100_enqueue_skb, 1124 .rx_probe = efx_mcdi_rx_probe, 1125 .rx_init = efx_mcdi_rx_init, 1126 .rx_remove = efx_mcdi_rx_remove, 1127 .rx_write = ef100_rx_write, 1128 .rx_packet = __ef100_rx_packet, 1129 .rx_buf_hash_valid = ef100_rx_buf_hash_valid, 1130 .fini_dmaq = efx_fini_dmaq, 1131 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 1132 .filter_table_probe = ef100_filter_table_up, 1133 .filter_table_restore = efx_mcdi_filter_table_restore, 1134 .filter_table_remove = ef100_filter_table_down, 1135 .filter_insert = efx_mcdi_filter_insert, 1136 .filter_remove_safe = efx_mcdi_filter_remove_safe, 1137 .filter_get_safe = efx_mcdi_filter_get_safe, 1138 .filter_clear_rx = efx_mcdi_filter_clear_rx, 1139 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 1140 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 1141 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 1142 #ifdef CONFIG_RFS_ACCEL 1143 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 1144 #endif 1145 1146 .get_phys_port_id = efx_ef100_get_phys_port_id, 1147 1148 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 1149 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 1150 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 1151 .rx_hash_key_size = 40, 1152 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 1153 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 1154 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, 1155 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, 1156 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 1157 .rx_recycle_ring_size = efx_ef100_recycle_ring_size, 1158 1159 .reconfigure_mac = ef100_reconfigure_mac, 1160 .reconfigure_port = efx_mcdi_port_reconfigure, 1161 .test_nvram = efx_new_mcdi_nvram_test_all, 1162 .describe_stats = ef100_describe_stats, 1163 .start_stats = efx_mcdi_mac_start_stats, 1164 .update_stats = ef100_update_stats, 1165 .pull_stats = efx_mcdi_mac_pull_stats, 1166 .stop_stats = efx_mcdi_mac_stop_stats, 1167 #ifdef CONFIG_SFC_SRIOV 1168 .sriov_configure = efx_ef100_sriov_configure, 1169 #endif 1170 1171 /* Per-type bar/size configuration not used on ef100. Location of 1172 * registers is defined by extended capabilities. 1173 */ 1174 .mem_bar = NULL, 1175 .mem_map_size = NULL, 1176 1177 }; 1178 1179 const struct efx_nic_type ef100_vf_nic_type = { 1180 .revision = EFX_REV_EF100, 1181 .is_vf = true, 1182 .probe = ef100_probe_vf, 1183 .offload_features = EF100_OFFLOAD_FEATURES, 1184 .mcdi_max_ver = 2, 1185 .mcdi_request = ef100_mcdi_request, 1186 .mcdi_poll_response = ef100_mcdi_poll_response, 1187 .mcdi_read_response = ef100_mcdi_read_response, 1188 .mcdi_poll_reboot = ef100_mcdi_poll_reboot, 1189 .mcdi_reboot_detected = ef100_mcdi_reboot_detected, 1190 .irq_enable_master = efx_port_dummy_op_void, 1191 .irq_test_generate = efx_ef100_irq_test_generate, 1192 .irq_disable_non_ev = efx_port_dummy_op_void, 1193 .push_irq_moderation = efx_channel_dummy_op_void, 1194 .min_interrupt_mode = EFX_INT_MODE_MSIX, 1195 .map_reset_reason = ef100_map_reset_reason, 1196 .map_reset_flags = ef100_map_reset_flags, 1197 .reset = ef100_reset, 1198 .check_caps = ef100_check_caps, 1199 .ev_probe = ef100_ev_probe, 1200 .ev_init = ef100_ev_init, 1201 .ev_fini = efx_mcdi_ev_fini, 1202 .ev_remove = efx_mcdi_ev_remove, 1203 .irq_handle_msi = ef100_msi_interrupt, 1204 .ev_process = ef100_ev_process, 1205 .ev_read_ack = ef100_ev_read_ack, 1206 .ev_test_generate = efx_ef100_ev_test_generate, 1207 .tx_probe = ef100_tx_probe, 1208 .tx_init = ef100_tx_init, 1209 .tx_write = ef100_tx_write, 1210 .tx_enqueue = ef100_enqueue_skb, 1211 .rx_probe = efx_mcdi_rx_probe, 1212 .rx_init = efx_mcdi_rx_init, 1213 .rx_remove = efx_mcdi_rx_remove, 1214 .rx_write = ef100_rx_write, 1215 .rx_packet = __ef100_rx_packet, 1216 .rx_buf_hash_valid = ef100_rx_buf_hash_valid, 1217 .fini_dmaq = efx_fini_dmaq, 1218 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 1219 .filter_table_probe = ef100_filter_table_up, 1220 .filter_table_restore = efx_mcdi_filter_table_restore, 1221 .filter_table_remove = ef100_filter_table_down, 1222 .filter_insert = efx_mcdi_filter_insert, 1223 .filter_remove_safe = efx_mcdi_filter_remove_safe, 1224 .filter_get_safe = efx_mcdi_filter_get_safe, 1225 .filter_clear_rx = efx_mcdi_filter_clear_rx, 1226 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 1227 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 1228 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 1229 #ifdef CONFIG_RFS_ACCEL 1230 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 1231 #endif 1232 1233 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN, 1234 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8, 1235 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8, 1236 .rx_hash_key_size = 40, 1237 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 1238 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 1239 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 1240 .rx_recycle_ring_size = efx_ef100_recycle_ring_size, 1241 1242 .reconfigure_mac = ef100_reconfigure_mac, 1243 .test_nvram = efx_new_mcdi_nvram_test_all, 1244 .describe_stats = ef100_describe_stats, 1245 .start_stats = efx_mcdi_mac_start_stats, 1246 .update_stats = ef100_update_stats, 1247 .pull_stats = efx_mcdi_mac_pull_stats, 1248 .stop_stats = efx_mcdi_mac_stop_stats, 1249 1250 .mem_bar = NULL, 1251 .mem_map_size = NULL, 1252 1253 }; 1254