1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2022 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30 
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS	1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34 
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36 
37 /*	MCDI
38  */
39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 	struct ef100_nic_data *nic_data = efx->nic_data;
42 
43 	if (dma_addr)
44 		*dma_addr = nic_data->mcdi_buf.dma_addr +
45 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
46 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48 
49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 	efx_dword_t reg;
52 
53 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54 
55 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 		efx->state = STATE_DISABLED;
58 		return -ENETDOWN;
59 	} else {
60 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 	}
63 }
64 
65 static void ef100_mcdi_request(struct efx_nic *efx,
66 			       const efx_dword_t *hdr, size_t hdr_len,
67 			       const efx_dword_t *sdu, size_t sdu_len)
68 {
69 	dma_addr_t dma_addr;
70 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71 
72 	memcpy(pdu, hdr, hdr_len);
73 	memcpy(pdu + hdr_len, sdu, sdu_len);
74 	wmb();
75 
76 	/* The hardware provides 'low' and 'high' (doorbell) registers
77 	 * for passing the 64-bit address of an MCDI request to
78 	 * firmware.  However the dwords are swapped by firmware.  The
79 	 * least significant bits of the doorbell are then 0 for all
80 	 * MCDI requests due to alignment.
81 	 */
82 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85 
86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 	const efx_dword_t hdr =
89 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90 
91 	rmb();
92 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94 
95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 				     efx_dword_t *outbuf, size_t offset,
97 				     size_t outlen)
98 {
99 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100 
101 	memcpy(outbuf, pdu + offset, outlen);
102 }
103 
104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 	struct ef100_nic_data *nic_data = efx->nic_data;
107 	int rc;
108 
109 	rc = ef100_get_warm_boot_count(efx);
110 	if (rc < 0) {
111 		/* The firmware is presumably in the process of
112 		 * rebooting.  However, we are supposed to report each
113 		 * reboot just once, so we must only do that once we
114 		 * can read and store the updated warm boot count.
115 		 */
116 		return 0;
117 	}
118 
119 	if (rc == nic_data->warm_boot_count)
120 		return 0;
121 
122 	nic_data->warm_boot_count = rc;
123 
124 	return -EIO;
125 }
126 
127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130 
131 /*	MCDI calls
132  */
133 int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address,
134 			  int client_handle, bool empty_ok)
135 {
136 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1));
137 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_IN_LEN);
138 	size_t outlen;
139 	int rc;
140 
141 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
142 	MCDI_SET_DWORD(inbuf, GET_CLIENT_MAC_ADDRESSES_IN_CLIENT_HANDLE,
143 		       client_handle);
144 
145 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_MAC_ADDRESSES, inbuf,
146 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
147 	if (rc)
148 		return rc;
149 
150 	if (outlen >= MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)) {
151 		ether_addr_copy(mac_address,
152 				MCDI_PTR(outbuf, GET_CLIENT_MAC_ADDRESSES_OUT_MAC_ADDRS));
153 	} else if (empty_ok) {
154 		pci_warn(efx->pci_dev,
155 			 "No MAC address provisioned for client ID %#x.\n",
156 			 client_handle);
157 		eth_zero_addr(mac_address);
158 	} else {
159 		return -ENOENT;
160 	}
161 	return 0;
162 }
163 
164 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
165 {
166 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
167 	struct ef100_nic_data *nic_data = efx->nic_data;
168 	u8 vi_window_mode;
169 	size_t outlen;
170 	int rc;
171 
172 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
173 
174 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
175 			  outbuf, sizeof(outbuf), &outlen);
176 	if (rc)
177 		return rc;
178 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
179 		netif_err(efx, drv, efx->net_dev,
180 			  "unable to read datapath firmware capabilities\n");
181 		return -EIO;
182 	}
183 
184 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
185 					     GET_CAPABILITIES_OUT_FLAGS1);
186 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
187 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
188 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
189 		nic_data->datapath_caps3 = 0;
190 	else
191 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
192 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
193 
194 	vi_window_mode = MCDI_BYTE(outbuf,
195 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
196 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
197 	if (rc)
198 		return rc;
199 
200 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
201 		struct net_device *net_dev = efx->net_dev;
202 		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
203 					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
204 					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
205 
206 		net_dev->features |= tso;
207 		net_dev->hw_features |= tso;
208 		net_dev->hw_enc_features |= tso;
209 		/* EF100 HW can only offload outer checksums if they are UDP,
210 		 * so for GRE_CSUM we have to use GSO_PARTIAL.
211 		 */
212 		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
213 	}
214 	efx->num_mac_stats = MCDI_WORD(outbuf,
215 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
216 	netif_dbg(efx, probe, efx->net_dev,
217 		  "firmware reports num_mac_stats = %u\n",
218 		  efx->num_mac_stats);
219 	return 0;
220 }
221 
222 /*	Event handling
223  */
224 static int ef100_ev_probe(struct efx_channel *channel)
225 {
226 	/* Allocate an extra descriptor for the QMDA status completion entry */
227 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
228 				    (channel->eventq_mask + 2) *
229 				    sizeof(efx_qword_t),
230 				    GFP_KERNEL);
231 }
232 
233 static int ef100_ev_init(struct efx_channel *channel)
234 {
235 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
236 
237 	/* initial phase is 0 */
238 	clear_bit(channel->channel, nic_data->evq_phases);
239 
240 	return efx_mcdi_ev_init(channel, false, false);
241 }
242 
243 static void ef100_ev_read_ack(struct efx_channel *channel)
244 {
245 	efx_dword_t evq_prime;
246 
247 	EFX_POPULATE_DWORD_2(evq_prime,
248 			     ERF_GZ_EVQ_ID, channel->channel,
249 			     ERF_GZ_IDX, channel->eventq_read_ptr &
250 					 channel->eventq_mask);
251 
252 	efx_writed(channel->efx, &evq_prime,
253 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
254 }
255 
256 static int ef100_ev_process(struct efx_channel *channel, int quota)
257 {
258 	struct efx_nic *efx = channel->efx;
259 	struct ef100_nic_data *nic_data;
260 	bool evq_phase, old_evq_phase;
261 	unsigned int read_ptr;
262 	efx_qword_t *p_event;
263 	int spent = 0;
264 	bool ev_phase;
265 	int ev_type;
266 
267 	if (unlikely(!channel->enabled))
268 		return 0;
269 
270 	nic_data = efx->nic_data;
271 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
272 	old_evq_phase = evq_phase;
273 	read_ptr = channel->eventq_read_ptr;
274 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
275 
276 	while (spent < quota) {
277 		p_event = efx_event(channel, read_ptr);
278 
279 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
280 		if (ev_phase != evq_phase)
281 			break;
282 
283 		netif_vdbg(efx, drv, efx->net_dev,
284 			   "processing event on %d " EFX_QWORD_FMT "\n",
285 			   channel->channel, EFX_QWORD_VAL(*p_event));
286 
287 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
288 
289 		switch (ev_type) {
290 		case ESE_GZ_EF100_EV_RX_PKTS:
291 			efx_ef100_ev_rx(channel, p_event);
292 			++spent;
293 			break;
294 		case ESE_GZ_EF100_EV_MCDI:
295 			efx_mcdi_process_event(channel, p_event);
296 			break;
297 		case ESE_GZ_EF100_EV_TX_COMPLETION:
298 			ef100_ev_tx(channel, p_event);
299 			break;
300 		case ESE_GZ_EF100_EV_DRIVER:
301 			netif_info(efx, drv, efx->net_dev,
302 				   "Driver initiated event " EFX_QWORD_FMT "\n",
303 				   EFX_QWORD_VAL(*p_event));
304 			break;
305 		default:
306 			netif_info(efx, drv, efx->net_dev,
307 				   "Unhandled event " EFX_QWORD_FMT "\n",
308 				   EFX_QWORD_VAL(*p_event));
309 		}
310 
311 		++read_ptr;
312 		if ((read_ptr & channel->eventq_mask) == 0)
313 			evq_phase = !evq_phase;
314 	}
315 
316 	channel->eventq_read_ptr = read_ptr;
317 	if (evq_phase != old_evq_phase)
318 		change_bit(channel->channel, nic_data->evq_phases);
319 
320 	return spent;
321 }
322 
323 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
324 {
325 	struct efx_msi_context *context = dev_id;
326 	struct efx_nic *efx = context->efx;
327 
328 	netif_vdbg(efx, intr, efx->net_dev,
329 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
330 
331 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
332 		/* Note test interrupts */
333 		if (context->index == efx->irq_level)
334 			efx->last_irq_cpu = raw_smp_processor_id();
335 
336 		/* Schedule processing of the channel */
337 		efx_schedule_channel_irq(efx->channel[context->index]);
338 	}
339 
340 	return IRQ_HANDLED;
341 }
342 
343 int ef100_phy_probe(struct efx_nic *efx)
344 {
345 	struct efx_mcdi_phy_data *phy_data;
346 	int rc;
347 
348 	/* Probe for the PHY */
349 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
350 	if (!efx->phy_data)
351 		return -ENOMEM;
352 
353 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
354 	if (rc)
355 		return rc;
356 
357 	/* Populate driver and ethtool settings */
358 	phy_data = efx->phy_data;
359 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
360 				efx->link_advertising);
361 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
362 						   false);
363 
364 	/* Default to Autonegotiated flow control if the PHY supports it */
365 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
366 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
367 		efx->wanted_fc |= EFX_FC_AUTO;
368 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
369 
370 	/* Push settings to the PHY. Failure is not fatal, the user can try to
371 	 * fix it using ethtool.
372 	 */
373 	rc = efx_mcdi_port_reconfigure(efx);
374 	if (rc && rc != -EPERM)
375 		netif_warn(efx, drv, efx->net_dev,
376 			   "could not initialise PHY settings\n");
377 
378 	return 0;
379 }
380 
381 int ef100_filter_table_probe(struct efx_nic *efx)
382 {
383 	return efx_mcdi_filter_table_probe(efx, true);
384 }
385 
386 static int ef100_filter_table_up(struct efx_nic *efx)
387 {
388 	int rc;
389 
390 	down_write(&efx->filter_sem);
391 	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
392 	if (rc)
393 		goto fail_unspec;
394 
395 	rc = efx_mcdi_filter_add_vlan(efx, 0);
396 	if (rc)
397 		goto fail_vlan0;
398 	/* Drop the lock: we've finished altering table existence, and
399 	 * filter insertion will need to take the lock for read.
400 	 */
401 	up_write(&efx->filter_sem);
402 	if (IS_ENABLED(CONFIG_SFC_SRIOV))
403 		rc = efx_tc_insert_rep_filters(efx);
404 
405 	/* Rep filter failure is nonfatal */
406 	if (rc)
407 		netif_warn(efx, drv, efx->net_dev,
408 			   "Failed to insert representor filters, rc %d\n",
409 			   rc);
410 	return 0;
411 
412 fail_vlan0:
413 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
414 fail_unspec:
415 	efx_mcdi_filter_table_down(efx);
416 	up_write(&efx->filter_sem);
417 	return rc;
418 }
419 
420 static void ef100_filter_table_down(struct efx_nic *efx)
421 {
422 	if (IS_ENABLED(CONFIG_SFC_SRIOV))
423 		efx_tc_remove_rep_filters(efx);
424 	down_write(&efx->filter_sem);
425 	efx_mcdi_filter_del_vlan(efx, 0);
426 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
427 	efx_mcdi_filter_table_down(efx);
428 	up_write(&efx->filter_sem);
429 }
430 
431 /*	Other
432  */
433 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
434 {
435 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
436 
437 	efx_mcdi_filter_sync_rx_mode(efx);
438 
439 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
440 		return efx_mcdi_set_mtu(efx);
441 	return efx_mcdi_set_mac(efx);
442 }
443 
444 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
445 {
446 	if (reason == RESET_TYPE_TX_WATCHDOG)
447 		return reason;
448 	return RESET_TYPE_DISABLE;
449 }
450 
451 static int ef100_map_reset_flags(u32 *flags)
452 {
453 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
454 	if ((*flags & EF100_RESET_PORT)) {
455 		*flags &= ~EF100_RESET_PORT;
456 		return RESET_TYPE_ALL;
457 	}
458 	if (*flags & ETH_RESET_MGMT) {
459 		*flags &= ~ETH_RESET_MGMT;
460 		return RESET_TYPE_DISABLE;
461 	}
462 
463 	return -EINVAL;
464 }
465 
466 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
467 {
468 	int rc;
469 
470 	dev_close(efx->net_dev);
471 
472 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
473 		netif_device_attach(efx->net_dev);
474 		__clear_bit(reset_type, &efx->reset_pending);
475 		rc = dev_open(efx->net_dev, NULL);
476 	} else if (reset_type == RESET_TYPE_ALL) {
477 		rc = efx_mcdi_reset(efx, reset_type);
478 		if (rc)
479 			return rc;
480 
481 		netif_device_attach(efx->net_dev);
482 
483 		rc = dev_open(efx->net_dev, NULL);
484 	} else {
485 		rc = 1;	/* Leave the device closed */
486 	}
487 	return rc;
488 }
489 
490 static void ef100_common_stat_mask(unsigned long *mask)
491 {
492 	__set_bit(EF100_STAT_port_rx_packets, mask);
493 	__set_bit(EF100_STAT_port_tx_packets, mask);
494 	__set_bit(EF100_STAT_port_rx_bytes, mask);
495 	__set_bit(EF100_STAT_port_tx_bytes, mask);
496 	__set_bit(EF100_STAT_port_rx_multicast, mask);
497 	__set_bit(EF100_STAT_port_rx_bad, mask);
498 	__set_bit(EF100_STAT_port_rx_align_error, mask);
499 	__set_bit(EF100_STAT_port_rx_overflow, mask);
500 }
501 
502 static void ef100_ethtool_stat_mask(unsigned long *mask)
503 {
504 	__set_bit(EF100_STAT_port_tx_pause, mask);
505 	__set_bit(EF100_STAT_port_tx_unicast, mask);
506 	__set_bit(EF100_STAT_port_tx_multicast, mask);
507 	__set_bit(EF100_STAT_port_tx_broadcast, mask);
508 	__set_bit(EF100_STAT_port_tx_lt64, mask);
509 	__set_bit(EF100_STAT_port_tx_64, mask);
510 	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
511 	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
512 	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
513 	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
514 	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
515 	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
516 	__set_bit(EF100_STAT_port_rx_good, mask);
517 	__set_bit(EF100_STAT_port_rx_pause, mask);
518 	__set_bit(EF100_STAT_port_rx_unicast, mask);
519 	__set_bit(EF100_STAT_port_rx_broadcast, mask);
520 	__set_bit(EF100_STAT_port_rx_lt64, mask);
521 	__set_bit(EF100_STAT_port_rx_64, mask);
522 	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
523 	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
524 	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
525 	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
526 	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
527 	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
528 	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
529 	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
530 	__set_bit(EF100_STAT_port_rx_length_error, mask);
531 	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
532 	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
533 	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
534 }
535 
536 #define EF100_DMA_STAT(ext_name, mcdi_name)			\
537 	[EF100_STAT_ ## ext_name] =				\
538 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
539 
540 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
541 	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
542 	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
543 	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
544 	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
545 	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
546 	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
547 	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
548 	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
549 	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
550 	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
551 	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
552 	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
553 	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
554 	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
555 	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
556 	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
557 	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
558 	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
559 	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
560 	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
561 	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
562 	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
563 	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
564 	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
565 	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
566 	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
567 	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
568 	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
569 	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
570 	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
571 	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
572 	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
573 	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
574 	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
575 	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
576 	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
577 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
578 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
579 };
580 
581 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
582 {
583 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
584 
585 	ef100_ethtool_stat_mask(mask);
586 	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
587 				      mask, names);
588 }
589 
590 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
591 					struct rtnl_link_stats64 *core_stats)
592 {
593 	struct ef100_nic_data *nic_data = efx->nic_data;
594 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
595 	size_t stats_count = 0, index;
596 	u64 *stats = nic_data->stats;
597 
598 	ef100_ethtool_stat_mask(mask);
599 
600 	if (full_stats) {
601 		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
602 			if (ef100_stat_desc[index].name) {
603 				*full_stats++ = stats[index];
604 				++stats_count;
605 			}
606 		}
607 	}
608 
609 	if (!core_stats)
610 		return stats_count;
611 
612 	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
613 	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
614 	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
615 	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
616 	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
617 				 stats[GENERIC_STAT_rx_nodesc_trunc] +
618 				 stats[GENERIC_STAT_rx_noskb_drops];
619 	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
620 	core_stats->rx_length_errors =
621 			stats[EF100_STAT_port_rx_gtjumbo] +
622 			stats[EF100_STAT_port_rx_length_error];
623 	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
624 	core_stats->rx_frame_errors =
625 			stats[EF100_STAT_port_rx_align_error];
626 	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
627 	core_stats->rx_errors = (core_stats->rx_length_errors +
628 				 core_stats->rx_crc_errors +
629 				 core_stats->rx_frame_errors);
630 
631 	return stats_count;
632 }
633 
634 static size_t ef100_update_stats(struct efx_nic *efx,
635 				 u64 *full_stats,
636 				 struct rtnl_link_stats64 *core_stats)
637 {
638 	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
639 	struct ef100_nic_data *nic_data = efx->nic_data;
640 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
641 	u64 *stats = nic_data->stats;
642 
643 	ef100_common_stat_mask(mask);
644 	ef100_ethtool_stat_mask(mask);
645 
646 	if (!mc_stats)
647 		return 0;
648 
649 	efx_nic_copy_stats(efx, mc_stats);
650 	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
651 			     stats, mc_stats, false);
652 
653 	kfree(mc_stats);
654 
655 	return ef100_update_stats_common(efx, full_stats, core_stats);
656 }
657 
658 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
659 				      struct netdev_phys_item_id *ppid)
660 {
661 	struct ef100_nic_data *nic_data = efx->nic_data;
662 
663 	if (!is_valid_ether_addr(nic_data->port_id))
664 		return -EOPNOTSUPP;
665 
666 	ppid->id_len = ETH_ALEN;
667 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
668 
669 	return 0;
670 }
671 
672 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
673 {
674 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
675 
676 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
677 
678 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
679 	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
680 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
681 }
682 
683 #define EFX_EF100_TEST 1
684 
685 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
686 {
687 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
688 	struct efx_nic *efx = channel->efx;
689 	efx_qword_t event;
690 	int rc;
691 
692 	EFX_POPULATE_QWORD_2(event,
693 			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
694 			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
695 
696 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
697 
698 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
699 	 * already swapped the data to little-endian order.
700 	 */
701 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
702 	       sizeof(efx_qword_t));
703 
704 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
705 			  NULL, 0, NULL);
706 	if (rc && (rc != -ENETDOWN))
707 		goto fail;
708 
709 	return;
710 
711 fail:
712 	WARN_ON(true);
713 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
714 }
715 
716 static unsigned int ef100_check_caps(const struct efx_nic *efx,
717 				     u8 flag, u32 offset)
718 {
719 	const struct ef100_nic_data *nic_data = efx->nic_data;
720 
721 	switch (offset) {
722 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
723 		return nic_data->datapath_caps & BIT_ULL(flag);
724 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
725 		return nic_data->datapath_caps2 & BIT_ULL(flag);
726 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
727 		return nic_data->datapath_caps3 & BIT_ULL(flag);
728 	default:
729 		return 0;
730 	}
731 }
732 
733 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
734 {
735 	/* Maximum link speed for Riverhead is 100G */
736 	return 10 * EFX_RECYCLE_RING_SIZE_10G;
737 }
738 
739 static int efx_ef100_get_base_mport(struct efx_nic *efx)
740 {
741 	struct ef100_nic_data *nic_data = efx->nic_data;
742 	u32 selector, id;
743 	int rc;
744 
745 	/* Construct mport selector for "physical network port" */
746 	efx_mae_mport_wire(efx, &selector);
747 	/* Look up actual mport ID */
748 	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
749 	if (rc)
750 		return rc;
751 	/* The ID should always fit in 16 bits, because that's how wide the
752 	 * corresponding fields in the RX prefix & TX override descriptor are
753 	 */
754 	if (id >> 16)
755 		netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
756 			   id);
757 	nic_data->base_mport = id;
758 	nic_data->have_mport = true;
759 
760 	/* Construct mport selector for "calling PF" */
761 	efx_mae_mport_uplink(efx, &selector);
762 	/* Look up actual mport ID */
763 	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
764 	if (rc)
765 		return rc;
766 	if (id >> 16)
767 		netif_warn(efx, probe, efx->net_dev, "Bad own m-port id %#x\n",
768 			   id);
769 	nic_data->own_mport = id;
770 	nic_data->have_own_mport = true;
771 
772 	return 0;
773 }
774 
775 static int compare_versions(const char *a, const char *b)
776 {
777 	int a_major, a_minor, a_point, a_patch;
778 	int b_major, b_minor, b_point, b_patch;
779 	int a_matched, b_matched;
780 
781 	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
782 	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
783 
784 	if (a_matched == 4 && b_matched != 4)
785 		return +1;
786 
787 	if (a_matched != 4 && b_matched == 4)
788 		return -1;
789 
790 	if (a_matched != 4 && b_matched != 4)
791 		return 0;
792 
793 	if (a_major != b_major)
794 		return a_major - b_major;
795 
796 	if (a_minor != b_minor)
797 		return a_minor - b_minor;
798 
799 	if (a_point != b_point)
800 		return a_point - b_point;
801 
802 	return a_patch - b_patch;
803 }
804 
805 enum ef100_tlv_state_machine {
806 	EF100_TLV_TYPE,
807 	EF100_TLV_TYPE_CONT,
808 	EF100_TLV_LENGTH,
809 	EF100_TLV_VALUE
810 };
811 
812 struct ef100_tlv_state {
813 	enum ef100_tlv_state_machine state;
814 	u64 value;
815 	u32 value_offset;
816 	u16 type;
817 	u8 len;
818 };
819 
820 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
821 {
822 	switch (state->state) {
823 	case EF100_TLV_TYPE:
824 		state->type = byte & 0x7f;
825 		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
826 					     : EF100_TLV_LENGTH;
827 		/* Clear ready to read in a new entry */
828 		state->value = 0;
829 		state->value_offset = 0;
830 		return 0;
831 	case EF100_TLV_TYPE_CONT:
832 		state->type |= byte << 7;
833 		state->state = EF100_TLV_LENGTH;
834 		return 0;
835 	case EF100_TLV_LENGTH:
836 		state->len = byte;
837 		/* We only handle TLVs that fit in a u64 */
838 		if (state->len > sizeof(state->value))
839 			return -EOPNOTSUPP;
840 		/* len may be zero, implying a value of zero */
841 		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
842 		return 0;
843 	case EF100_TLV_VALUE:
844 		state->value |= ((u64)byte) << (state->value_offset * 8);
845 		state->value_offset++;
846 		if (state->value_offset >= state->len)
847 			state->state = EF100_TLV_TYPE;
848 		return 0;
849 	default: /* state machine error, can't happen */
850 		WARN_ON_ONCE(1);
851 		return -EIO;
852 	}
853 }
854 
855 static int ef100_process_design_param(struct efx_nic *efx,
856 				      const struct ef100_tlv_state *reader)
857 {
858 	struct ef100_nic_data *nic_data = efx->nic_data;
859 
860 	switch (reader->type) {
861 	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
862 		return 0;
863 	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
864 		/* Driver doesn't support timestamping yet, so we don't care */
865 		return 0;
866 	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
867 		/* Driver doesn't support unsolicited-event credits yet, so
868 		 * we don't care
869 		 */
870 		return 0;
871 	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
872 		/* Driver doesn't manage the NMMU (so we don't care) */
873 		return 0;
874 	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
875 		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
876 		 * protocol checksum validation
877 		 */
878 		return 0;
879 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
880 		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
881 		return 0;
882 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
883 		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
884 		if (!reader->value) {
885 			netif_err(efx, probe, efx->net_dev,
886 				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
887 			return -EOPNOTSUPP;
888 		}
889 		return 0;
890 	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
891 	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
892 		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
893 		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
894 		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
895 		 * This is very unlikely to fail.
896 		 */
897 		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
898 		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
899 			netif_err(efx, probe, efx->net_dev,
900 				  "%s size granularity is %llu, can't guarantee safety\n",
901 				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
902 				  reader->value);
903 			return -EOPNOTSUPP;
904 		}
905 		return 0;
906 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
907 		nic_data->tso_max_payload_len = min_t(u64, reader->value,
908 						      GSO_LEGACY_MAX_SIZE);
909 		netif_set_tso_max_size(efx->net_dev,
910 				       nic_data->tso_max_payload_len);
911 		return 0;
912 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
913 		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
914 		netif_set_tso_max_segs(efx->net_dev,
915 				       nic_data->tso_max_payload_num_segs);
916 		return 0;
917 	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
918 		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
919 		return 0;
920 	case ESE_EF100_DP_GZ_COMPAT:
921 		if (reader->value) {
922 			netif_err(efx, probe, efx->net_dev,
923 				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
924 				  reader->value);
925 			return -EOPNOTSUPP;
926 		}
927 		return 0;
928 	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
929 		/* Driver doesn't use mem2mem transfers */
930 		return 0;
931 	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
932 		/* Driver doesn't currently use EVQ_TIMER */
933 		return 0;
934 	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
935 		/* Driver doesn't manage the NMMU (so we don't care) */
936 		return 0;
937 	case ESE_EF100_DP_GZ_VI_STRIDES:
938 		/* We never try to set the VI stride, and we don't rely on
939 		 * being able to find VIs past VI 0 until after we've learned
940 		 * the current stride from MC_CMD_GET_CAPABILITIES.
941 		 * So the value of this shouldn't matter.
942 		 */
943 		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
944 			netif_dbg(efx, probe, efx->net_dev,
945 				  "NIC has other than default VI_STRIDES (mask "
946 				  "%#llx), early probing might use wrong one\n",
947 				  reader->value);
948 		return 0;
949 	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
950 		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
951 		 * care whether it indicates runt or overlength for any given
952 		 * packet, so we don't care about this parameter.
953 		 */
954 		return 0;
955 	default:
956 		/* Host interface says "Drivers should ignore design parameters
957 		 * that they do not recognise."
958 		 */
959 		netif_dbg(efx, probe, efx->net_dev,
960 			  "Ignoring unrecognised design parameter %u\n",
961 			  reader->type);
962 		return 0;
963 	}
964 }
965 
966 static int ef100_check_design_params(struct efx_nic *efx)
967 {
968 	struct ef100_tlv_state reader = {};
969 	u32 total_len, offset = 0;
970 	efx_dword_t reg;
971 	int rc = 0, i;
972 	u32 data;
973 
974 	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
975 	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
976 	pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
977 	while (offset < total_len) {
978 		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
979 		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
980 		for (i = 0; i < sizeof(data); i++) {
981 			rc = ef100_tlv_feed(&reader, data);
982 			/* Got a complete value? */
983 			if (!rc && reader.state == EF100_TLV_TYPE)
984 				rc = ef100_process_design_param(efx, &reader);
985 			if (rc)
986 				goto out;
987 			data >>= 8;
988 			offset++;
989 		}
990 	}
991 	/* Check we didn't end halfway through a TLV entry, which could either
992 	 * mean that the TLV stream is truncated or just that it's corrupted
993 	 * and our state machine is out of sync.
994 	 */
995 	if (reader.state != EF100_TLV_TYPE) {
996 		if (reader.state == EF100_TLV_TYPE_CONT)
997 			netif_err(efx, probe, efx->net_dev,
998 				  "truncated design parameter (incomplete type %u)\n",
999 				  reader.type);
1000 		else
1001 			netif_err(efx, probe, efx->net_dev,
1002 				  "truncated design parameter %u\n",
1003 				  reader.type);
1004 		rc = -EIO;
1005 	}
1006 out:
1007 	return rc;
1008 }
1009 
1010 /*	NIC probe and remove
1011  */
1012 static int ef100_probe_main(struct efx_nic *efx)
1013 {
1014 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1015 	struct ef100_nic_data *nic_data;
1016 	char fw_version[32];
1017 	u32 priv_mask = 0;
1018 	int i, rc;
1019 
1020 	if (WARN_ON(bar_size == 0))
1021 		return -EIO;
1022 
1023 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1024 	if (!nic_data)
1025 		return -ENOMEM;
1026 	efx->nic_data = nic_data;
1027 	nic_data->efx = efx;
1028 	efx->max_vis = EF100_MAX_VIS;
1029 
1030 	/* Populate design-parameter defaults */
1031 	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1032 	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1033 	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1034 	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1035 
1036 	/* Read design parameters */
1037 	rc = ef100_check_design_params(efx);
1038 	if (rc) {
1039 		pci_err(efx->pci_dev, "Unsupported design parameters\n");
1040 		goto fail;
1041 	}
1042 
1043 	/* we assume later that we can copy from this buffer in dwords */
1044 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1045 
1046 	/* MCDI buffers must be 256 byte aligned. */
1047 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1048 				  GFP_KERNEL);
1049 	if (rc)
1050 		goto fail;
1051 
1052 	/* Get the MC's warm boot count.  In case it's rebooting right
1053 	 * now, be prepared to retry.
1054 	 */
1055 	i = 0;
1056 	for (;;) {
1057 		rc = ef100_get_warm_boot_count(efx);
1058 		if (rc >= 0)
1059 			break;
1060 		if (++i == 5)
1061 			goto fail;
1062 		ssleep(1);
1063 	}
1064 	nic_data->warm_boot_count = rc;
1065 
1066 	/* In case we're recovering from a crash (kexec), we want to
1067 	 * cancel any outstanding request by the previous user of this
1068 	 * function.  We send a special message using the least
1069 	 * significant bits of the 'high' (doorbell) register.
1070 	 */
1071 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1072 
1073 	/* Post-IO section. */
1074 
1075 	rc = efx_mcdi_init(efx);
1076 	if (rc)
1077 		goto fail;
1078 	/* Reset (most) configuration for this function */
1079 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1080 	if (rc)
1081 		goto fail;
1082 	/* Enable event logging */
1083 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1084 	if (rc)
1085 		goto fail;
1086 
1087 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1088 	if (rc)
1089 		goto fail;
1090 
1091 	rc = efx_mcdi_port_get_number(efx);
1092 	if (rc < 0)
1093 		goto fail;
1094 	efx->port_num = rc;
1095 
1096 	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1097 	pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1098 
1099 	rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1100 	if (rc) /* non-fatal, and priv_mask will still be 0 */
1101 		pci_info(efx->pci_dev,
1102 			 "Failed to get privilege mask from FW, rc %d\n", rc);
1103 	nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1104 
1105 	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1106 		pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1107 		rc = -EINVAL;
1108 		goto fail;
1109 	}
1110 
1111 	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1112 		pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1113 		rc = -EINVAL;
1114 		goto fail;
1115 	}
1116 
1117 	return 0;
1118 fail:
1119 	return rc;
1120 }
1121 
1122 /* MCDI commands are related to the same device issuing them. This function
1123  * allows to do an MCDI command on behalf of another device, mainly PFs setting
1124  * things for VFs.
1125  */
1126 int efx_ef100_lookup_client_id(struct efx_nic *efx, efx_qword_t pciefn, u32 *id)
1127 {
1128 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_HANDLE_OUT_LEN);
1129 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_HANDLE_IN_LEN);
1130 	u64 pciefn_flat = le64_to_cpu(pciefn.u64[0]);
1131 	size_t outlen;
1132 	int rc;
1133 
1134 	MCDI_SET_DWORD(inbuf, GET_CLIENT_HANDLE_IN_TYPE,
1135 		       MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC);
1136 	MCDI_SET_QWORD(inbuf, GET_CLIENT_HANDLE_IN_FUNC,
1137 		       pciefn_flat);
1138 
1139 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_HANDLE, inbuf, sizeof(inbuf),
1140 			  outbuf, sizeof(outbuf), &outlen);
1141 	if (rc)
1142 		return rc;
1143 	if (outlen < sizeof(outbuf))
1144 		return -EIO;
1145 	*id = MCDI_DWORD(outbuf, GET_CLIENT_HANDLE_OUT_HANDLE);
1146 	return 0;
1147 }
1148 
1149 int ef100_probe_netdev_pf(struct efx_nic *efx)
1150 {
1151 	struct ef100_nic_data *nic_data = efx->nic_data;
1152 	struct net_device *net_dev = efx->net_dev;
1153 	int rc;
1154 
1155 	if (!IS_ENABLED(CONFIG_SFC_SRIOV) || !nic_data->grp_mae)
1156 		return 0;
1157 
1158 	rc = efx_init_struct_tc(efx);
1159 	if (rc)
1160 		return rc;
1161 
1162 	rc = efx_ef100_get_base_mport(efx);
1163 	if (rc) {
1164 		netif_warn(efx, probe, net_dev,
1165 			   "Failed to probe base mport rc %d; representors will not function\n",
1166 			   rc);
1167 	}
1168 
1169 	rc = efx_init_mae(efx);
1170 	if (rc)
1171 		netif_warn(efx, probe, net_dev,
1172 			   "Failed to init MAE rc %d; representors will not function\n",
1173 			   rc);
1174 	else
1175 		efx_ef100_init_reps(efx);
1176 
1177 	rc = efx_init_tc(efx);
1178 	if (rc) {
1179 		/* Either we don't have an MAE at all (i.e. legacy v-switching),
1180 		 * or we do but we failed to probe it.  In the latter case, we
1181 		 * may not have set up default rules, in which case we won't be
1182 		 * able to pass any traffic.  However, we don't fail the probe,
1183 		 * because the user might need to use the netdevice to apply
1184 		 * configuration changes to fix whatever's wrong with the MAE.
1185 		 */
1186 		netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1187 			   rc);
1188 	} else {
1189 		net_dev->features |= NETIF_F_HW_TC;
1190 		efx->fixed_features |= NETIF_F_HW_TC;
1191 	}
1192 	return rc;
1193 }
1194 
1195 int ef100_probe_vf(struct efx_nic *efx)
1196 {
1197 	return ef100_probe_main(efx);
1198 }
1199 
1200 void ef100_remove(struct efx_nic *efx)
1201 {
1202 	struct ef100_nic_data *nic_data = efx->nic_data;
1203 
1204 	if (IS_ENABLED(CONFIG_SFC_SRIOV) && efx->mae) {
1205 		efx_ef100_fini_reps(efx);
1206 		efx_fini_mae(efx);
1207 	}
1208 
1209 	efx_mcdi_detach(efx);
1210 	efx_mcdi_fini(efx);
1211 	if (nic_data)
1212 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1213 	kfree(nic_data);
1214 	efx->nic_data = NULL;
1215 }
1216 
1217 /*	NIC level access functions
1218  */
1219 #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
1220 	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1221 	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1222 	NETIF_F_HW_VLAN_CTAG_TX)
1223 
1224 const struct efx_nic_type ef100_pf_nic_type = {
1225 	.revision = EFX_REV_EF100,
1226 	.is_vf = false,
1227 	.probe = ef100_probe_main,
1228 	.offload_features = EF100_OFFLOAD_FEATURES,
1229 	.mcdi_max_ver = 2,
1230 	.mcdi_request = ef100_mcdi_request,
1231 	.mcdi_poll_response = ef100_mcdi_poll_response,
1232 	.mcdi_read_response = ef100_mcdi_read_response,
1233 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1234 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1235 	.irq_enable_master = efx_port_dummy_op_void,
1236 	.irq_test_generate = efx_ef100_irq_test_generate,
1237 	.irq_disable_non_ev = efx_port_dummy_op_void,
1238 	.push_irq_moderation = efx_channel_dummy_op_void,
1239 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1240 	.map_reset_reason = ef100_map_reset_reason,
1241 	.map_reset_flags = ef100_map_reset_flags,
1242 	.reset = ef100_reset,
1243 
1244 	.check_caps = ef100_check_caps,
1245 
1246 	.ev_probe = ef100_ev_probe,
1247 	.ev_init = ef100_ev_init,
1248 	.ev_fini = efx_mcdi_ev_fini,
1249 	.ev_remove = efx_mcdi_ev_remove,
1250 	.irq_handle_msi = ef100_msi_interrupt,
1251 	.ev_process = ef100_ev_process,
1252 	.ev_read_ack = ef100_ev_read_ack,
1253 	.ev_test_generate = efx_ef100_ev_test_generate,
1254 	.tx_probe = ef100_tx_probe,
1255 	.tx_init = ef100_tx_init,
1256 	.tx_write = ef100_tx_write,
1257 	.tx_enqueue = ef100_enqueue_skb,
1258 	.rx_probe = efx_mcdi_rx_probe,
1259 	.rx_init = efx_mcdi_rx_init,
1260 	.rx_remove = efx_mcdi_rx_remove,
1261 	.rx_write = ef100_rx_write,
1262 	.rx_packet = __ef100_rx_packet,
1263 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1264 	.fini_dmaq = efx_fini_dmaq,
1265 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1266 	.filter_table_probe = ef100_filter_table_up,
1267 	.filter_table_restore = efx_mcdi_filter_table_restore,
1268 	.filter_table_remove = ef100_filter_table_down,
1269 	.filter_insert = efx_mcdi_filter_insert,
1270 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1271 	.filter_get_safe = efx_mcdi_filter_get_safe,
1272 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1273 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1274 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1275 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1276 #ifdef CONFIG_RFS_ACCEL
1277 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1278 #endif
1279 
1280 	.get_phys_port_id = efx_ef100_get_phys_port_id,
1281 
1282 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1283 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1284 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1285 	.rx_hash_key_size = 40,
1286 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1287 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1288 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1289 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1290 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1291 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1292 
1293 	.reconfigure_mac = ef100_reconfigure_mac,
1294 	.reconfigure_port = efx_mcdi_port_reconfigure,
1295 	.test_nvram = efx_new_mcdi_nvram_test_all,
1296 	.describe_stats = ef100_describe_stats,
1297 	.start_stats = efx_mcdi_mac_start_stats,
1298 	.update_stats = ef100_update_stats,
1299 	.pull_stats = efx_mcdi_mac_pull_stats,
1300 	.stop_stats = efx_mcdi_mac_stop_stats,
1301 	.sriov_configure = IS_ENABLED(CONFIG_SFC_SRIOV) ?
1302 		efx_ef100_sriov_configure : NULL,
1303 
1304 	/* Per-type bar/size configuration not used on ef100. Location of
1305 	 * registers is defined by extended capabilities.
1306 	 */
1307 	.mem_bar = NULL,
1308 	.mem_map_size = NULL,
1309 
1310 };
1311 
1312 const struct efx_nic_type ef100_vf_nic_type = {
1313 	.revision = EFX_REV_EF100,
1314 	.is_vf = true,
1315 	.probe = ef100_probe_vf,
1316 	.offload_features = EF100_OFFLOAD_FEATURES,
1317 	.mcdi_max_ver = 2,
1318 	.mcdi_request = ef100_mcdi_request,
1319 	.mcdi_poll_response = ef100_mcdi_poll_response,
1320 	.mcdi_read_response = ef100_mcdi_read_response,
1321 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1322 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1323 	.irq_enable_master = efx_port_dummy_op_void,
1324 	.irq_test_generate = efx_ef100_irq_test_generate,
1325 	.irq_disable_non_ev = efx_port_dummy_op_void,
1326 	.push_irq_moderation = efx_channel_dummy_op_void,
1327 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1328 	.map_reset_reason = ef100_map_reset_reason,
1329 	.map_reset_flags = ef100_map_reset_flags,
1330 	.reset = ef100_reset,
1331 	.check_caps = ef100_check_caps,
1332 	.ev_probe = ef100_ev_probe,
1333 	.ev_init = ef100_ev_init,
1334 	.ev_fini = efx_mcdi_ev_fini,
1335 	.ev_remove = efx_mcdi_ev_remove,
1336 	.irq_handle_msi = ef100_msi_interrupt,
1337 	.ev_process = ef100_ev_process,
1338 	.ev_read_ack = ef100_ev_read_ack,
1339 	.ev_test_generate = efx_ef100_ev_test_generate,
1340 	.tx_probe = ef100_tx_probe,
1341 	.tx_init = ef100_tx_init,
1342 	.tx_write = ef100_tx_write,
1343 	.tx_enqueue = ef100_enqueue_skb,
1344 	.rx_probe = efx_mcdi_rx_probe,
1345 	.rx_init = efx_mcdi_rx_init,
1346 	.rx_remove = efx_mcdi_rx_remove,
1347 	.rx_write = ef100_rx_write,
1348 	.rx_packet = __ef100_rx_packet,
1349 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1350 	.fini_dmaq = efx_fini_dmaq,
1351 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1352 	.filter_table_probe = ef100_filter_table_up,
1353 	.filter_table_restore = efx_mcdi_filter_table_restore,
1354 	.filter_table_remove = ef100_filter_table_down,
1355 	.filter_insert = efx_mcdi_filter_insert,
1356 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1357 	.filter_get_safe = efx_mcdi_filter_get_safe,
1358 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1359 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1360 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1361 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1362 #ifdef CONFIG_RFS_ACCEL
1363 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1364 #endif
1365 
1366 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1367 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1368 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1369 	.rx_hash_key_size = 40,
1370 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1371 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1372 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1373 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1374 
1375 	.reconfigure_mac = ef100_reconfigure_mac,
1376 	.test_nvram = efx_new_mcdi_nvram_test_all,
1377 	.describe_stats = ef100_describe_stats,
1378 	.start_stats = efx_mcdi_mac_start_stats,
1379 	.update_stats = ef100_update_stats,
1380 	.pull_stats = efx_mcdi_mac_pull_stats,
1381 	.stop_stats = efx_mcdi_mac_stop_stats,
1382 
1383 	.mem_bar = NULL,
1384 	.mem_map_size = NULL,
1385 
1386 };
1387