xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2012-2013 Solarflare Communications Inc.
5  */
6 
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "tx_common.h"
10 #include "ef10_regs.h"
11 #include "io.h"
12 #include "mcdi.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
17 #include "nic.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
20 #include "selftest.h"
21 #include "ef10_sriov.h"
22 #include <linux/in.h>
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
27 
28 /* Hardware control for EF10 architecture including 'Huntington'. */
29 
30 #define EFX_EF10_DRVGEN_EV		7
31 enum {
32 	EFX_EF10_TEST = 1,
33 	EFX_EF10_REFILL,
34 };
35 
36 /* VLAN list entry */
37 struct efx_ef10_vlan {
38 	struct list_head list;
39 	u16 vid;
40 };
41 
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
44 
45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
46 {
47 	efx_dword_t reg;
48 
49 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
50 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
52 }
53 
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
56  * bar; PFs use BAR 0/1 for memory.
57  */
58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
59 {
60 	switch (efx->pci_dev->device) {
61 	case 0x0b03: /* SFC9250 PF */
62 		return 0;
63 	default:
64 		return 2;
65 	}
66 }
67 
68 /* All VFs use BAR 0/1 for memory */
69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
70 {
71 	return 0;
72 }
73 
74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
75 {
76 	int bar;
77 
78 	bar = efx->type->mem_bar(efx);
79 	return resource_size(&efx->pci_dev->resource[bar]);
80 }
81 
82 static bool efx_ef10_is_vf(struct efx_nic *efx)
83 {
84 	return efx->type->is_vf;
85 }
86 
87 #ifdef CONFIG_SFC_SRIOV
88 static int efx_ef10_get_vf_index(struct efx_nic *efx)
89 {
90 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
92 	size_t outlen;
93 	int rc;
94 
95 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 			  sizeof(outbuf), &outlen);
97 	if (rc)
98 		return rc;
99 	if (outlen < sizeof(outbuf))
100 		return -EIO;
101 
102 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
103 	return 0;
104 }
105 #endif
106 
107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
108 {
109 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
111 	size_t outlen;
112 	int rc;
113 
114 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
115 
116 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 			  outbuf, sizeof(outbuf), &outlen);
118 	if (rc)
119 		return rc;
120 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 		netif_err(efx, drv, efx->net_dev,
122 			  "unable to read datapath firmware capabilities\n");
123 		return -EIO;
124 	}
125 
126 	nic_data->datapath_caps =
127 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
128 
129 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 				GET_CAPABILITIES_V2_OUT_FLAGS2);
132 		nic_data->piobuf_size = MCDI_WORD(outbuf,
133 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
134 	} else {
135 		nic_data->datapath_caps2 = 0;
136 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
137 	}
138 
139 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
140 	 */
141 	nic_data->rx_dpcpu_fw_id =
142 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 	nic_data->tx_dpcpu_fw_id =
144 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
145 
146 	if (!(nic_data->datapath_caps &
147 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 		netif_err(efx, probe, efx->net_dev,
149 			  "current firmware does not support an RX prefix\n");
150 		return -ENODEV;
151 	}
152 
153 	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 		u8 vi_window_mode = MCDI_BYTE(outbuf,
155 				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
156 
157 		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
158 		if (rc)
159 			return rc;
160 	} else {
161 		/* keep default VI stride */
162 		netif_dbg(efx, probe, efx->net_dev,
163 			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
164 			  efx->vi_stride);
165 	}
166 
167 	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 		efx->num_mac_stats = MCDI_WORD(outbuf,
169 				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 		netif_dbg(efx, probe, efx->net_dev,
171 			  "firmware reports num_mac_stats = %u\n",
172 			  efx->num_mac_stats);
173 	} else {
174 		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 		netif_dbg(efx, probe, efx->net_dev,
176 			  "firmware did not report num_mac_stats, assuming %u\n",
177 			  efx->num_mac_stats);
178 	}
179 
180 	return 0;
181 }
182 
183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
184 {
185 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
188 	size_t outlen;
189 	int rc;
190 
191 	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 				outbuf, sizeof(outbuf), &outlen);
195 	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
196 		return;
197 
198 	nic_data->licensed_features = MCDI_QWORD(outbuf,
199 					 LICENSING_V3_OUT_LICENSED_FEATURES);
200 }
201 
202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
203 {
204 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
205 	int rc;
206 
207 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 			  outbuf, sizeof(outbuf), NULL);
209 	if (rc)
210 		return rc;
211 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 	return rc > 0 ? rc : -ERANGE;
213 }
214 
215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
216 {
217 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 	unsigned int implemented;
219 	unsigned int enabled;
220 	int rc;
221 
222 	nic_data->workaround_35388 = false;
223 	nic_data->workaround_61265 = false;
224 
225 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
226 
227 	if (rc == -ENOSYS) {
228 		/* Firmware without GET_WORKAROUNDS - not a problem. */
229 		rc = 0;
230 	} else if (rc == 0) {
231 		/* Bug61265 workaround is always enabled if implemented. */
232 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 			nic_data->workaround_61265 = true;
234 
235 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 			nic_data->workaround_35388 = true;
237 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 			/* Workaround is implemented but not enabled.
239 			 * Try to enable it.
240 			 */
241 			rc = efx_mcdi_set_workaround(efx,
242 						     MC_CMD_WORKAROUND_BUG35388,
243 						     true, NULL);
244 			if (rc == 0)
245 				nic_data->workaround_35388 = true;
246 			/* If we failed to set the workaround just carry on. */
247 			rc = 0;
248 		}
249 	}
250 
251 	netif_dbg(efx, probe, efx->net_dev,
252 		  "workaround for bug 35388 is %sabled\n",
253 		  nic_data->workaround_35388 ? "en" : "dis");
254 	netif_dbg(efx, probe, efx->net_dev,
255 		  "workaround for bug 61265 is %sabled\n",
256 		  nic_data->workaround_61265 ? "en" : "dis");
257 
258 	return rc;
259 }
260 
261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 					  const efx_dword_t *data)
263 {
264 	unsigned int max_count;
265 
266 	if (EFX_EF10_WORKAROUND_61265(efx)) {
267 		efx->timer_quantum_ns = MCDI_DWORD(data,
268 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 		efx->timer_max_ns = MCDI_DWORD(data,
270 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 		efx->timer_quantum_ns = MCDI_DWORD(data,
273 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 		max_count = MCDI_DWORD(data,
275 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
277 	} else {
278 		efx->timer_quantum_ns = MCDI_DWORD(data,
279 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 		max_count = MCDI_DWORD(data,
281 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
283 	}
284 
285 	netif_dbg(efx, probe, efx->net_dev,
286 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
287 		  efx->timer_quantum_ns, efx->timer_max_ns);
288 }
289 
290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
291 {
292 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
293 	int rc;
294 
295 	rc = efx_ef10_get_timer_workarounds(efx);
296 	if (rc)
297 		return rc;
298 
299 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 				outbuf, sizeof(outbuf), NULL);
301 
302 	if (rc == 0) {
303 		efx_ef10_process_timer_config(efx, outbuf);
304 	} else if (rc == -ENOSYS || rc == -EPERM) {
305 		/* Not available - fall back to Huntington defaults. */
306 		unsigned int quantum;
307 
308 		rc = efx_ef10_get_sysclk_freq(efx);
309 		if (rc < 0)
310 			return rc;
311 
312 		quantum = 1536000 / rc; /* 1536 cycles */
313 		efx->timer_quantum_ns = quantum;
314 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
315 		rc = 0;
316 	} else {
317 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
319 				       NULL, 0, rc);
320 	}
321 
322 	return rc;
323 }
324 
325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
326 {
327 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
328 	size_t outlen;
329 	int rc;
330 
331 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
332 
333 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 			  outbuf, sizeof(outbuf), &outlen);
335 	if (rc)
336 		return rc;
337 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
338 		return -EIO;
339 
340 	ether_addr_copy(mac_address,
341 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
342 	return 0;
343 }
344 
345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
346 {
347 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
349 	size_t outlen;
350 	int num_addrs, rc;
351 
352 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 		       EVB_PORT_ID_ASSIGNED);
354 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
356 
357 	if (rc)
358 		return rc;
359 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
360 		return -EIO;
361 
362 	num_addrs = MCDI_DWORD(outbuf,
363 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
364 
365 	WARN_ON(num_addrs != 1);
366 
367 	ether_addr_copy(mac_address,
368 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
369 
370 	return 0;
371 }
372 
373 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
374 					       struct device_attribute *attr,
375 					       char *buf)
376 {
377 	struct efx_nic *efx = dev_get_drvdata(dev);
378 
379 	return sprintf(buf, "%d\n",
380 		       ((efx->mcdi->fn_flags) &
381 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
382 		       ? 1 : 0);
383 }
384 
385 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
386 					  struct device_attribute *attr,
387 					  char *buf)
388 {
389 	struct efx_nic *efx = dev_get_drvdata(dev);
390 
391 	return sprintf(buf, "%d\n",
392 		       ((efx->mcdi->fn_flags) &
393 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
394 		       ? 1 : 0);
395 }
396 
397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
398 {
399 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 	struct efx_ef10_vlan *vlan;
401 
402 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
403 
404 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 		if (vlan->vid == vid)
406 			return vlan;
407 	}
408 
409 	return NULL;
410 }
411 
412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
413 {
414 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 	struct efx_ef10_vlan *vlan;
416 	int rc;
417 
418 	mutex_lock(&nic_data->vlan_lock);
419 
420 	vlan = efx_ef10_find_vlan(efx, vid);
421 	if (vlan) {
422 		/* We add VID 0 on init. 8021q adds it on module init
423 		 * for all interfaces with VLAN filtring feature.
424 		 */
425 		if (vid == 0)
426 			goto done_unlock;
427 		netif_warn(efx, drv, efx->net_dev,
428 			   "VLAN %u already added\n", vid);
429 		rc = -EALREADY;
430 		goto fail_exist;
431 	}
432 
433 	rc = -ENOMEM;
434 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
435 	if (!vlan)
436 		goto fail_alloc;
437 
438 	vlan->vid = vid;
439 
440 	list_add_tail(&vlan->list, &nic_data->vlan_list);
441 
442 	if (efx->filter_state) {
443 		mutex_lock(&efx->mac_lock);
444 		down_write(&efx->filter_sem);
445 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 		up_write(&efx->filter_sem);
447 		mutex_unlock(&efx->mac_lock);
448 		if (rc)
449 			goto fail_filter_add_vlan;
450 	}
451 
452 done_unlock:
453 	mutex_unlock(&nic_data->vlan_lock);
454 	return 0;
455 
456 fail_filter_add_vlan:
457 	list_del(&vlan->list);
458 	kfree(vlan);
459 fail_alloc:
460 fail_exist:
461 	mutex_unlock(&nic_data->vlan_lock);
462 	return rc;
463 }
464 
465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 				       struct efx_ef10_vlan *vlan)
467 {
468 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
469 
470 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
471 
472 	if (efx->filter_state) {
473 		down_write(&efx->filter_sem);
474 		efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 		up_write(&efx->filter_sem);
476 	}
477 
478 	list_del(&vlan->list);
479 	kfree(vlan);
480 }
481 
482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
483 {
484 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 	struct efx_ef10_vlan *vlan;
486 	int rc = 0;
487 
488 	/* 8021q removes VID 0 on module unload for all interfaces
489 	 * with VLAN filtering feature. We need to keep it to receive
490 	 * untagged traffic.
491 	 */
492 	if (vid == 0)
493 		return 0;
494 
495 	mutex_lock(&nic_data->vlan_lock);
496 
497 	vlan = efx_ef10_find_vlan(efx, vid);
498 	if (!vlan) {
499 		netif_err(efx, drv, efx->net_dev,
500 			  "VLAN %u to be deleted not found\n", vid);
501 		rc = -ENOENT;
502 	} else {
503 		efx_ef10_del_vlan_internal(efx, vlan);
504 	}
505 
506 	mutex_unlock(&nic_data->vlan_lock);
507 
508 	return rc;
509 }
510 
511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
512 {
513 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 	struct efx_ef10_vlan *vlan, *next_vlan;
515 
516 	mutex_lock(&nic_data->vlan_lock);
517 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 		efx_ef10_del_vlan_internal(efx, vlan);
519 	mutex_unlock(&nic_data->vlan_lock);
520 }
521 
522 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
523 		   NULL);
524 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
525 
526 static int efx_ef10_probe(struct efx_nic *efx)
527 {
528 	struct efx_ef10_nic_data *nic_data;
529 	int i, rc;
530 
531 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
532 	if (!nic_data)
533 		return -ENOMEM;
534 	efx->nic_data = nic_data;
535 
536 	/* we assume later that we can copy from this buffer in dwords */
537 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
538 
539 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
540 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
541 	if (rc)
542 		goto fail1;
543 
544 	/* Get the MC's warm boot count.  In case it's rebooting right
545 	 * now, be prepared to retry.
546 	 */
547 	i = 0;
548 	for (;;) {
549 		rc = efx_ef10_get_warm_boot_count(efx);
550 		if (rc >= 0)
551 			break;
552 		if (++i == 5)
553 			goto fail2;
554 		ssleep(1);
555 	}
556 	nic_data->warm_boot_count = rc;
557 
558 	/* In case we're recovering from a crash (kexec), we want to
559 	 * cancel any outstanding request by the previous user of this
560 	 * function.  We send a special message using the least
561 	 * significant bits of the 'high' (doorbell) register.
562 	 */
563 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
564 
565 	rc = efx_mcdi_init(efx);
566 	if (rc)
567 		goto fail2;
568 
569 	mutex_init(&nic_data->udp_tunnels_lock);
570 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
571 		nic_data->udp_tunnels[i].type =
572 			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
573 
574 	/* Reset (most) configuration for this function */
575 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
576 	if (rc)
577 		goto fail3;
578 
579 	/* Enable event logging */
580 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
581 	if (rc)
582 		goto fail3;
583 
584 	rc = device_create_file(&efx->pci_dev->dev,
585 				&dev_attr_link_control_flag);
586 	if (rc)
587 		goto fail3;
588 
589 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
590 	if (rc)
591 		goto fail4;
592 
593 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
594 	if (rc)
595 		goto fail5;
596 
597 	rc = efx_ef10_init_datapath_caps(efx);
598 	if (rc < 0)
599 		goto fail5;
600 
601 	efx_ef10_read_licensed_features(efx);
602 
603 	/* We can have one VI for each vi_stride-byte region.
604 	 * However, until we use TX option descriptors we need two TX queues
605 	 * per channel.
606 	 */
607 	efx->tx_queues_per_channel = 2;
608 	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
609 	if (!efx->max_vis) {
610 		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
611 		rc = -EIO;
612 		goto fail5;
613 	}
614 	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
615 				  efx->max_vis / efx->tx_queues_per_channel);
616 	efx->max_tx_channels = efx->max_channels;
617 	if (WARN_ON(efx->max_channels == 0)) {
618 		rc = -EIO;
619 		goto fail5;
620 	}
621 
622 	efx->rx_packet_len_offset =
623 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
624 
625 	if (nic_data->datapath_caps &
626 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
627 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
628 
629 	rc = efx_mcdi_port_get_number(efx);
630 	if (rc < 0)
631 		goto fail5;
632 	efx->port_num = rc;
633 
634 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
635 	if (rc)
636 		goto fail5;
637 
638 	rc = efx_ef10_get_timer_config(efx);
639 	if (rc < 0)
640 		goto fail5;
641 
642 	rc = efx_mcdi_mon_probe(efx);
643 	if (rc && rc != -EPERM)
644 		goto fail5;
645 
646 	efx_ptp_defer_probe_with_channel(efx);
647 
648 #ifdef CONFIG_SFC_SRIOV
649 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
650 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
651 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
652 
653 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
654 	} else
655 #endif
656 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
657 
658 	INIT_LIST_HEAD(&nic_data->vlan_list);
659 	mutex_init(&nic_data->vlan_lock);
660 
661 	/* Add unspecified VID to support VLAN filtering being disabled */
662 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
663 	if (rc)
664 		goto fail_add_vid_unspec;
665 
666 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
667 	 * traffic.  It is added automatically if 8021q module is loaded,
668 	 * but we can't rely on it since module may be not loaded.
669 	 */
670 	rc = efx_ef10_add_vlan(efx, 0);
671 	if (rc)
672 		goto fail_add_vid_0;
673 
674 	if (nic_data->datapath_caps &
675 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
676 	    efx->mcdi->fn_flags &
677 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
678 		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
679 
680 	return 0;
681 
682 fail_add_vid_0:
683 	efx_ef10_cleanup_vlans(efx);
684 fail_add_vid_unspec:
685 	mutex_destroy(&nic_data->vlan_lock);
686 	efx_ptp_remove(efx);
687 	efx_mcdi_mon_remove(efx);
688 fail5:
689 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
690 fail4:
691 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
692 fail3:
693 	efx_mcdi_detach(efx);
694 
695 	mutex_lock(&nic_data->udp_tunnels_lock);
696 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
697 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
698 	mutex_unlock(&nic_data->udp_tunnels_lock);
699 	mutex_destroy(&nic_data->udp_tunnels_lock);
700 
701 	efx_mcdi_fini(efx);
702 fail2:
703 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
704 fail1:
705 	kfree(nic_data);
706 	efx->nic_data = NULL;
707 	return rc;
708 }
709 
710 #ifdef EFX_USE_PIO
711 
712 static void efx_ef10_free_piobufs(struct efx_nic *efx)
713 {
714 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
715 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
716 	unsigned int i;
717 	int rc;
718 
719 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
720 
721 	for (i = 0; i < nic_data->n_piobufs; i++) {
722 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
723 			       nic_data->piobuf_handle[i]);
724 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
725 				  NULL, 0, NULL);
726 		WARN_ON(rc);
727 	}
728 
729 	nic_data->n_piobufs = 0;
730 }
731 
732 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
733 {
734 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
735 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
736 	unsigned int i;
737 	size_t outlen;
738 	int rc = 0;
739 
740 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
741 
742 	for (i = 0; i < n; i++) {
743 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
744 					outbuf, sizeof(outbuf), &outlen);
745 		if (rc) {
746 			/* Don't display the MC error if we didn't have space
747 			 * for a VF.
748 			 */
749 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
750 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
751 						       0, outbuf, outlen, rc);
752 			break;
753 		}
754 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
755 			rc = -EIO;
756 			break;
757 		}
758 		nic_data->piobuf_handle[i] =
759 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
760 		netif_dbg(efx, probe, efx->net_dev,
761 			  "allocated PIO buffer %u handle %x\n", i,
762 			  nic_data->piobuf_handle[i]);
763 	}
764 
765 	nic_data->n_piobufs = i;
766 	if (rc)
767 		efx_ef10_free_piobufs(efx);
768 	return rc;
769 }
770 
771 static int efx_ef10_link_piobufs(struct efx_nic *efx)
772 {
773 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
774 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
775 	struct efx_channel *channel;
776 	struct efx_tx_queue *tx_queue;
777 	unsigned int offset, index;
778 	int rc;
779 
780 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
781 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
782 
783 	/* Link a buffer to each VI in the write-combining mapping */
784 	for (index = 0; index < nic_data->n_piobufs; ++index) {
785 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
786 			       nic_data->piobuf_handle[index]);
787 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
788 			       nic_data->pio_write_vi_base + index);
789 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
790 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
791 				  NULL, 0, NULL);
792 		if (rc) {
793 			netif_err(efx, drv, efx->net_dev,
794 				  "failed to link VI %u to PIO buffer %u (%d)\n",
795 				  nic_data->pio_write_vi_base + index, index,
796 				  rc);
797 			goto fail;
798 		}
799 		netif_dbg(efx, probe, efx->net_dev,
800 			  "linked VI %u to PIO buffer %u\n",
801 			  nic_data->pio_write_vi_base + index, index);
802 	}
803 
804 	/* Link a buffer to each TX queue */
805 	efx_for_each_channel(channel, efx) {
806 		/* Extra channels, even those with TXQs (PTP), do not require
807 		 * PIO resources.
808 		 */
809 		if (!channel->type->want_pio ||
810 		    channel->channel >= efx->xdp_channel_offset)
811 			continue;
812 
813 		efx_for_each_channel_tx_queue(tx_queue, channel) {
814 			/* We assign the PIO buffers to queues in
815 			 * reverse order to allow for the following
816 			 * special case.
817 			 */
818 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
819 				   tx_queue->channel->channel - 1) *
820 				  efx_piobuf_size);
821 			index = offset / nic_data->piobuf_size;
822 			offset = offset % nic_data->piobuf_size;
823 
824 			/* When the host page size is 4K, the first
825 			 * host page in the WC mapping may be within
826 			 * the same VI page as the last TX queue.  We
827 			 * can only link one buffer to each VI.
828 			 */
829 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
830 				BUG_ON(index != 0);
831 				rc = 0;
832 			} else {
833 				MCDI_SET_DWORD(inbuf,
834 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
835 					       nic_data->piobuf_handle[index]);
836 				MCDI_SET_DWORD(inbuf,
837 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
838 					       tx_queue->queue);
839 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
840 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
841 						  NULL, 0, NULL);
842 			}
843 
844 			if (rc) {
845 				/* This is non-fatal; the TX path just
846 				 * won't use PIO for this queue
847 				 */
848 				netif_err(efx, drv, efx->net_dev,
849 					  "failed to link VI %u to PIO buffer %u (%d)\n",
850 					  tx_queue->queue, index, rc);
851 				tx_queue->piobuf = NULL;
852 			} else {
853 				tx_queue->piobuf =
854 					nic_data->pio_write_base +
855 					index * efx->vi_stride + offset;
856 				tx_queue->piobuf_offset = offset;
857 				netif_dbg(efx, probe, efx->net_dev,
858 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
859 					  tx_queue->queue, index,
860 					  tx_queue->piobuf_offset,
861 					  tx_queue->piobuf);
862 			}
863 		}
864 	}
865 
866 	return 0;
867 
868 fail:
869 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
870 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
871 	 */
872 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
873 	while (index--) {
874 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
875 			       nic_data->pio_write_vi_base + index);
876 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
877 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
878 			     NULL, 0, NULL);
879 	}
880 	return rc;
881 }
882 
883 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
884 {
885 	struct efx_channel *channel;
886 	struct efx_tx_queue *tx_queue;
887 
888 	/* All our existing PIO buffers went away */
889 	efx_for_each_channel(channel, efx)
890 		efx_for_each_channel_tx_queue(tx_queue, channel)
891 			tx_queue->piobuf = NULL;
892 }
893 
894 #else /* !EFX_USE_PIO */
895 
896 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
897 {
898 	return n == 0 ? 0 : -ENOBUFS;
899 }
900 
901 static int efx_ef10_link_piobufs(struct efx_nic *efx)
902 {
903 	return 0;
904 }
905 
906 static void efx_ef10_free_piobufs(struct efx_nic *efx)
907 {
908 }
909 
910 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
911 {
912 }
913 
914 #endif /* EFX_USE_PIO */
915 
916 static void efx_ef10_remove(struct efx_nic *efx)
917 {
918 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
919 	int rc;
920 
921 #ifdef CONFIG_SFC_SRIOV
922 	struct efx_ef10_nic_data *nic_data_pf;
923 	struct pci_dev *pci_dev_pf;
924 	struct efx_nic *efx_pf;
925 	struct ef10_vf *vf;
926 
927 	if (efx->pci_dev->is_virtfn) {
928 		pci_dev_pf = efx->pci_dev->physfn;
929 		if (pci_dev_pf) {
930 			efx_pf = pci_get_drvdata(pci_dev_pf);
931 			nic_data_pf = efx_pf->nic_data;
932 			vf = nic_data_pf->vf + nic_data->vf_index;
933 			vf->efx = NULL;
934 		} else
935 			netif_info(efx, drv, efx->net_dev,
936 				   "Could not get the PF id from VF\n");
937 	}
938 #endif
939 
940 	efx_ef10_cleanup_vlans(efx);
941 	mutex_destroy(&nic_data->vlan_lock);
942 
943 	efx_ptp_remove(efx);
944 
945 	efx_mcdi_mon_remove(efx);
946 
947 	efx_mcdi_rx_free_indir_table(efx);
948 
949 	if (nic_data->wc_membase)
950 		iounmap(nic_data->wc_membase);
951 
952 	rc = efx_mcdi_free_vis(efx);
953 	WARN_ON(rc != 0);
954 
955 	if (!nic_data->must_restore_piobufs)
956 		efx_ef10_free_piobufs(efx);
957 
958 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
959 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
960 
961 	efx_mcdi_detach(efx);
962 
963 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
964 	mutex_lock(&nic_data->udp_tunnels_lock);
965 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
966 	mutex_unlock(&nic_data->udp_tunnels_lock);
967 
968 	mutex_destroy(&nic_data->udp_tunnels_lock);
969 
970 	efx_mcdi_fini(efx);
971 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
972 	kfree(nic_data);
973 }
974 
975 static int efx_ef10_probe_pf(struct efx_nic *efx)
976 {
977 	return efx_ef10_probe(efx);
978 }
979 
980 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
981 			    u32 *port_flags, u32 *vadaptor_flags,
982 			    unsigned int *vlan_tags)
983 {
984 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
985 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
986 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
987 	size_t outlen;
988 	int rc;
989 
990 	if (nic_data->datapath_caps &
991 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
992 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
993 			       port_id);
994 
995 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
996 				  outbuf, sizeof(outbuf), &outlen);
997 		if (rc)
998 			return rc;
999 
1000 		if (outlen < sizeof(outbuf)) {
1001 			rc = -EIO;
1002 			return rc;
1003 		}
1004 	}
1005 
1006 	if (port_flags)
1007 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1008 	if (vadaptor_flags)
1009 		*vadaptor_flags =
1010 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1011 	if (vlan_tags)
1012 		*vlan_tags =
1013 			MCDI_DWORD(outbuf,
1014 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1015 
1016 	return 0;
1017 }
1018 
1019 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1020 {
1021 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1022 
1023 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1024 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1025 			    NULL, 0, NULL);
1026 }
1027 
1028 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1029 {
1030 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1031 
1032 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1033 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1034 			    NULL, 0, NULL);
1035 }
1036 
1037 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1038 			   unsigned int port_id, u8 *mac)
1039 {
1040 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1041 
1042 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1043 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1044 
1045 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1046 			    sizeof(inbuf), NULL, 0, NULL);
1047 }
1048 
1049 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1050 			   unsigned int port_id, u8 *mac)
1051 {
1052 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1053 
1054 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1055 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1056 
1057 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1058 			    sizeof(inbuf), NULL, 0, NULL);
1059 }
1060 
1061 #ifdef CONFIG_SFC_SRIOV
1062 static int efx_ef10_probe_vf(struct efx_nic *efx)
1063 {
1064 	int rc;
1065 	struct pci_dev *pci_dev_pf;
1066 
1067 	/* If the parent PF has no VF data structure, it doesn't know about this
1068 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1069 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1070 	 */
1071 	pci_dev_pf = efx->pci_dev->physfn;
1072 	if (pci_dev_pf) {
1073 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1074 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1075 
1076 		if (!nic_data_pf->vf) {
1077 			netif_info(efx, drv, efx->net_dev,
1078 				   "The VF cannot link to its parent PF; "
1079 				   "please destroy and re-create the VF\n");
1080 			return -EBUSY;
1081 		}
1082 	}
1083 
1084 	rc = efx_ef10_probe(efx);
1085 	if (rc)
1086 		return rc;
1087 
1088 	rc = efx_ef10_get_vf_index(efx);
1089 	if (rc)
1090 		goto fail;
1091 
1092 	if (efx->pci_dev->is_virtfn) {
1093 		if (efx->pci_dev->physfn) {
1094 			struct efx_nic *efx_pf =
1095 				pci_get_drvdata(efx->pci_dev->physfn);
1096 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1097 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1098 
1099 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1100 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1101 				efx->pci_dev;
1102 		} else
1103 			netif_info(efx, drv, efx->net_dev,
1104 				   "Could not get the PF id from VF\n");
1105 	}
1106 
1107 	return 0;
1108 
1109 fail:
1110 	efx_ef10_remove(efx);
1111 	return rc;
1112 }
1113 #else
1114 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1115 {
1116 	return 0;
1117 }
1118 #endif
1119 
1120 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1121 			      unsigned int min_vis, unsigned int max_vis)
1122 {
1123 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1124 
1125 	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1126 				  &nic_data->n_allocated_vis);
1127 }
1128 
1129 /* Note that the failure path of this function does not free
1130  * resources, as this will be done by efx_ef10_remove().
1131  */
1132 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1133 {
1134 	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1135 				     efx_separate_tx_channels ? 2 : 1);
1136 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1137 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1138 	unsigned int uc_mem_map_size, wc_mem_map_size;
1139 	void __iomem *membase;
1140 	int rc;
1141 
1142 	channel_vis = max(efx->n_channels,
1143 			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1144 			   efx->tx_queues_per_channel) +
1145 			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1146 	if (efx->max_vis && efx->max_vis < channel_vis) {
1147 		netif_dbg(efx, drv, efx->net_dev,
1148 			  "Reducing channel VIs from %u to %u\n",
1149 			  channel_vis, efx->max_vis);
1150 		channel_vis = efx->max_vis;
1151 	}
1152 
1153 #ifdef EFX_USE_PIO
1154 	/* Try to allocate PIO buffers if wanted and if the full
1155 	 * number of PIO buffers would be sufficient to allocate one
1156 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1157 	 * are only a small number of PIO buffers shared between all
1158 	 * functions of the controller.
1159 	 */
1160 	if (efx_piobuf_size != 0 &&
1161 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1162 	    efx->n_tx_channels) {
1163 		unsigned int n_piobufs =
1164 			DIV_ROUND_UP(efx->n_tx_channels,
1165 				     nic_data->piobuf_size / efx_piobuf_size);
1166 
1167 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1168 		if (rc == -ENOSPC)
1169 			netif_dbg(efx, probe, efx->net_dev,
1170 				  "out of PIO buffers; cannot allocate more\n");
1171 		else if (rc == -EPERM)
1172 			netif_dbg(efx, probe, efx->net_dev,
1173 				  "not permitted to allocate PIO buffers\n");
1174 		else if (rc)
1175 			netif_err(efx, probe, efx->net_dev,
1176 				  "failed to allocate PIO buffers (%d)\n", rc);
1177 		else
1178 			netif_dbg(efx, probe, efx->net_dev,
1179 				  "allocated %u PIO buffers\n", n_piobufs);
1180 	}
1181 #else
1182 	nic_data->n_piobufs = 0;
1183 #endif
1184 
1185 	/* PIO buffers should be mapped with write-combining enabled,
1186 	 * and we want to make single UC and WC mappings rather than
1187 	 * several of each (in fact that's the only option if host
1188 	 * page size is >4K).  So we may allocate some extra VIs just
1189 	 * for writing PIO buffers through.
1190 	 *
1191 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1192 	 * first 4K of the next VI.  Then the WC mapping begins with
1193 	 * the remainder of this last VI.
1194 	 */
1195 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1196 				     ER_DZ_TX_PIOBUF);
1197 	if (nic_data->n_piobufs) {
1198 		/* pio_write_vi_base rounds down to give the number of complete
1199 		 * VIs inside the UC mapping.
1200 		 */
1201 		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1202 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1203 					       nic_data->n_piobufs) *
1204 					      efx->vi_stride) -
1205 				   uc_mem_map_size);
1206 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1207 	} else {
1208 		pio_write_vi_base = 0;
1209 		wc_mem_map_size = 0;
1210 		max_vis = channel_vis;
1211 	}
1212 
1213 	/* In case the last attached driver failed to free VIs, do it now */
1214 	rc = efx_mcdi_free_vis(efx);
1215 	if (rc != 0)
1216 		return rc;
1217 
1218 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1219 	if (rc != 0)
1220 		return rc;
1221 
1222 	if (nic_data->n_allocated_vis < channel_vis) {
1223 		netif_info(efx, drv, efx->net_dev,
1224 			   "Could not allocate enough VIs to satisfy RSS"
1225 			   " requirements. Performance may not be optimal.\n");
1226 		/* We didn't get the VIs to populate our channels.
1227 		 * We could keep what we got but then we'd have more
1228 		 * interrupts than we need.
1229 		 * Instead calculate new max_channels and restart
1230 		 */
1231 		efx->max_channels = nic_data->n_allocated_vis;
1232 		efx->max_tx_channels =
1233 			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1234 
1235 		efx_mcdi_free_vis(efx);
1236 		return -EAGAIN;
1237 	}
1238 
1239 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1240 	 * PIO buffers
1241 	 */
1242 	if (nic_data->n_piobufs &&
1243 	    nic_data->n_allocated_vis <
1244 	    pio_write_vi_base + nic_data->n_piobufs) {
1245 		netif_dbg(efx, probe, efx->net_dev,
1246 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1247 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1248 		efx_ef10_free_piobufs(efx);
1249 	}
1250 
1251 	/* Shrink the original UC mapping of the memory BAR */
1252 	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1253 	if (!membase) {
1254 		netif_err(efx, probe, efx->net_dev,
1255 			  "could not shrink memory BAR to %x\n",
1256 			  uc_mem_map_size);
1257 		return -ENOMEM;
1258 	}
1259 	iounmap(efx->membase);
1260 	efx->membase = membase;
1261 
1262 	/* Set up the WC mapping if needed */
1263 	if (wc_mem_map_size) {
1264 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1265 						  uc_mem_map_size,
1266 						  wc_mem_map_size);
1267 		if (!nic_data->wc_membase) {
1268 			netif_err(efx, probe, efx->net_dev,
1269 				  "could not allocate WC mapping of size %x\n",
1270 				  wc_mem_map_size);
1271 			return -ENOMEM;
1272 		}
1273 		nic_data->pio_write_vi_base = pio_write_vi_base;
1274 		nic_data->pio_write_base =
1275 			nic_data->wc_membase +
1276 			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1277 			 uc_mem_map_size);
1278 
1279 		rc = efx_ef10_link_piobufs(efx);
1280 		if (rc)
1281 			efx_ef10_free_piobufs(efx);
1282 	}
1283 
1284 	netif_dbg(efx, probe, efx->net_dev,
1285 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1286 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1287 		  nic_data->wc_membase, wc_mem_map_size);
1288 
1289 	return 0;
1290 }
1291 
1292 static void efx_ef10_fini_nic(struct efx_nic *efx)
1293 {
1294 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1295 
1296 	kfree(nic_data->mc_stats);
1297 	nic_data->mc_stats = NULL;
1298 }
1299 
1300 static int efx_ef10_init_nic(struct efx_nic *efx)
1301 {
1302 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1303 	int rc;
1304 
1305 	if (nic_data->must_check_datapath_caps) {
1306 		rc = efx_ef10_init_datapath_caps(efx);
1307 		if (rc)
1308 			return rc;
1309 		nic_data->must_check_datapath_caps = false;
1310 	}
1311 
1312 	if (efx->must_realloc_vis) {
1313 		/* We cannot let the number of VIs change now */
1314 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1315 					nic_data->n_allocated_vis);
1316 		if (rc)
1317 			return rc;
1318 		efx->must_realloc_vis = false;
1319 	}
1320 
1321 	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1322 				     GFP_KERNEL);
1323 	if (!nic_data->mc_stats)
1324 		return -ENOMEM;
1325 
1326 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1327 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1328 		if (rc == 0) {
1329 			rc = efx_ef10_link_piobufs(efx);
1330 			if (rc)
1331 				efx_ef10_free_piobufs(efx);
1332 		}
1333 
1334 		/* Log an error on failure, but this is non-fatal.
1335 		 * Permission errors are less important - we've presumably
1336 		 * had the PIO buffer licence removed.
1337 		 */
1338 		if (rc == -EPERM)
1339 			netif_dbg(efx, drv, efx->net_dev,
1340 				  "not permitted to restore PIO buffers\n");
1341 		else if (rc)
1342 			netif_err(efx, drv, efx->net_dev,
1343 				  "failed to restore PIO buffers (%d)\n", rc);
1344 		nic_data->must_restore_piobufs = false;
1345 	}
1346 
1347 	/* don't fail init if RSS setup doesn't work */
1348 	rc = efx->type->rx_push_rss_config(efx, false,
1349 					   efx->rss_context.rx_indir_table, NULL);
1350 
1351 	return 0;
1352 }
1353 
1354 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1355 {
1356 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1357 #ifdef CONFIG_SFC_SRIOV
1358 	unsigned int i;
1359 #endif
1360 
1361 	/* All our allocations have been reset */
1362 	efx->must_realloc_vis = true;
1363 	efx_mcdi_filter_table_reset_mc_allocations(efx);
1364 	nic_data->must_restore_piobufs = true;
1365 	efx_ef10_forget_old_piobufs(efx);
1366 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1367 
1368 	/* Driver-created vswitches and vports must be re-created */
1369 	nic_data->must_probe_vswitching = true;
1370 	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1371 #ifdef CONFIG_SFC_SRIOV
1372 	if (nic_data->vf)
1373 		for (i = 0; i < efx->vf_count; i++)
1374 			nic_data->vf[i].vport_id = 0;
1375 #endif
1376 }
1377 
1378 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1379 {
1380 	if (reason == RESET_TYPE_MC_FAILURE)
1381 		return RESET_TYPE_DATAPATH;
1382 
1383 	return efx_mcdi_map_reset_reason(reason);
1384 }
1385 
1386 static int efx_ef10_map_reset_flags(u32 *flags)
1387 {
1388 	enum {
1389 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1390 				   ETH_RESET_SHARED_SHIFT),
1391 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1392 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1393 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1394 				 ETH_RESET_SHARED_SHIFT)
1395 	};
1396 
1397 	/* We assume for now that our PCI function is permitted to
1398 	 * reset everything.
1399 	 */
1400 
1401 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1402 		*flags &= ~EF10_RESET_MC;
1403 		return RESET_TYPE_WORLD;
1404 	}
1405 
1406 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1407 		*flags &= ~EF10_RESET_PORT;
1408 		return RESET_TYPE_ALL;
1409 	}
1410 
1411 	/* no invisible reset implemented */
1412 
1413 	return -EINVAL;
1414 }
1415 
1416 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1417 {
1418 	int rc = efx_mcdi_reset(efx, reset_type);
1419 
1420 	/* Unprivileged functions return -EPERM, but need to return success
1421 	 * here so that the datapath is brought back up.
1422 	 */
1423 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1424 		rc = 0;
1425 
1426 	/* If it was a port reset, trigger reallocation of MC resources.
1427 	 * Note that on an MC reset nothing needs to be done now because we'll
1428 	 * detect the MC reset later and handle it then.
1429 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1430 	 * resources assigned to us, so we have to trigger reallocation now.
1431 	 */
1432 	if ((reset_type == RESET_TYPE_ALL ||
1433 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1434 		efx_ef10_table_reset_mc_allocations(efx);
1435 	return rc;
1436 }
1437 
1438 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1439 	[EF10_STAT_ ## ext_name] =				\
1440 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1441 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1442 	[EF10_STAT_ ## int_name] =				\
1443 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1444 #define EF10_OTHER_STAT(ext_name)				\
1445 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1446 
1447 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1448 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1449 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1450 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1451 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1452 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1453 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1454 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1455 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1456 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1457 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1458 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1459 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1460 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1461 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1462 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1463 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1464 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1465 	EF10_OTHER_STAT(port_rx_good_bytes),
1466 	EF10_OTHER_STAT(port_rx_bad_bytes),
1467 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1468 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1469 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1470 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1471 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1472 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1473 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1474 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1475 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1476 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1477 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1478 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1479 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1480 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1481 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1482 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1483 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1484 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1485 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1486 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1487 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1488 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1489 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1490 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1491 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1492 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1493 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1494 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1495 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1496 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1497 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1498 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1499 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1500 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1501 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1502 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1503 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1504 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1505 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1506 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1507 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1508 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1509 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1510 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1511 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1512 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1513 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1514 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1515 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1516 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1517 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1518 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1519 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1520 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1521 	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1522 	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1523 	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1524 	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1525 	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1526 	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1527 	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1528 	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1529 	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1530 	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1531 	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1532 	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1533 	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1534 	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1535 	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1536 	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1537 	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1538 	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1539 	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1540 	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1541 	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1542 	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1543 };
1544 
1545 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1546 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1547 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1548 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1549 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1550 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1551 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1552 			       (1ULL <<                                 \
1553 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1554 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1555 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1556 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1557 			       (1ULL << EF10_STAT_port_rx_good) |	\
1558 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1559 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1560 			       (1ULL << EF10_STAT_port_rx_control) |	\
1561 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1562 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1563 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1564 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1565 			       (1ULL << EF10_STAT_port_rx_64) |		\
1566 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1567 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1568 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1569 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1570 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1571 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1572 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1573 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1574 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1575 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1576 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1577 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1578 
1579 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1580  * For a 10G/40G switchable port we do not expose these because they might
1581  * not include all the packets they should.
1582  * On 8000 series NICs these statistics are always provided.
1583  */
1584 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1585 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1586 				 (1ULL << EF10_STAT_port_tx_64) |	\
1587 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1588 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1589 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1590 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1591 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1592 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1593 
1594 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1595  * switchable port we do expose these because the errors will otherwise
1596  * be silent.
1597  */
1598 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1599 				  (1ULL << EF10_STAT_port_rx_length_error))
1600 
1601 /* These statistics are only provided if the firmware supports the
1602  * capability PM_AND_RXDP_COUNTERS.
1603  */
1604 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1605 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1606 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1607 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1608 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1609 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1610 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1611 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1612 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1613 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1614 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1615 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1616 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1617 
1618 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1619  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1620  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1621  * These bits are in the second u64 of the raw mask.
1622  */
1623 #define EF10_FEC_STAT_MASK (						\
1624 	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1625 	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1626 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1627 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1628 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1629 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1630 
1631 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1632  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1633  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1634  * These bits are in the second u64 of the raw mask.
1635  */
1636 #define EF10_CTPIO_STAT_MASK (						\
1637 	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1638 	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1639 	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1640 	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1641 	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1642 	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1643 	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1644 	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1645 	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1646 	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1647 	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1648 	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1649 	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1650 	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1651 	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1652 	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1653 
1654 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1655 {
1656 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1657 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1658 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1659 
1660 	if (!(efx->mcdi->fn_flags &
1661 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1662 		return 0;
1663 
1664 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1665 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1666 		/* 8000 series have everything even at 40G */
1667 		if (nic_data->datapath_caps2 &
1668 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1669 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1670 	} else {
1671 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1672 	}
1673 
1674 	if (nic_data->datapath_caps &
1675 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1676 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1677 
1678 	return raw_mask;
1679 }
1680 
1681 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1682 {
1683 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1684 	u64 raw_mask[2];
1685 
1686 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1687 
1688 	/* Only show vadaptor stats when EVB capability is present */
1689 	if (nic_data->datapath_caps &
1690 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1691 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1692 		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1693 	} else {
1694 		raw_mask[1] = 0;
1695 	}
1696 	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1697 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1698 		raw_mask[1] |= EF10_FEC_STAT_MASK;
1699 
1700 	/* CTPIO stats appear in V3. Only show them on devices that actually
1701 	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1702 	 * and we may be reporting the stats for the underlying port.
1703 	 */
1704 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1705 	    (nic_data->datapath_caps2 &
1706 	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1707 		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1708 
1709 #if BITS_PER_LONG == 64
1710 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1711 	mask[0] = raw_mask[0];
1712 	mask[1] = raw_mask[1];
1713 #else
1714 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1715 	mask[0] = raw_mask[0] & 0xffffffff;
1716 	mask[1] = raw_mask[0] >> 32;
1717 	mask[2] = raw_mask[1] & 0xffffffff;
1718 #endif
1719 }
1720 
1721 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1722 {
1723 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1724 
1725 	efx_ef10_get_stat_mask(efx, mask);
1726 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1727 				      mask, names);
1728 }
1729 
1730 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1731 					   struct rtnl_link_stats64 *core_stats)
1732 {
1733 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1734 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1735 	u64 *stats = nic_data->stats;
1736 	size_t stats_count = 0, index;
1737 
1738 	efx_ef10_get_stat_mask(efx, mask);
1739 
1740 	if (full_stats) {
1741 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1742 			if (efx_ef10_stat_desc[index].name) {
1743 				*full_stats++ = stats[index];
1744 				++stats_count;
1745 			}
1746 		}
1747 	}
1748 
1749 	if (!core_stats)
1750 		return stats_count;
1751 
1752 	if (nic_data->datapath_caps &
1753 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1754 		/* Use vadaptor stats. */
1755 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1756 					 stats[EF10_STAT_rx_multicast] +
1757 					 stats[EF10_STAT_rx_broadcast];
1758 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1759 					 stats[EF10_STAT_tx_multicast] +
1760 					 stats[EF10_STAT_tx_broadcast];
1761 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1762 				       stats[EF10_STAT_rx_multicast_bytes] +
1763 				       stats[EF10_STAT_rx_broadcast_bytes];
1764 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1765 				       stats[EF10_STAT_tx_multicast_bytes] +
1766 				       stats[EF10_STAT_tx_broadcast_bytes];
1767 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1768 					 stats[GENERIC_STAT_rx_noskb_drops];
1769 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1770 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1771 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1772 		core_stats->rx_errors = core_stats->rx_crc_errors;
1773 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1774 	} else {
1775 		/* Use port stats. */
1776 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1777 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1778 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1779 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1780 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1781 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1782 					 stats[GENERIC_STAT_rx_noskb_drops];
1783 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1784 		core_stats->rx_length_errors =
1785 				stats[EF10_STAT_port_rx_gtjumbo] +
1786 				stats[EF10_STAT_port_rx_length_error];
1787 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1788 		core_stats->rx_frame_errors =
1789 				stats[EF10_STAT_port_rx_align_error];
1790 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1791 		core_stats->rx_errors = (core_stats->rx_length_errors +
1792 					 core_stats->rx_crc_errors +
1793 					 core_stats->rx_frame_errors);
1794 	}
1795 
1796 	return stats_count;
1797 }
1798 
1799 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1800 				       struct rtnl_link_stats64 *core_stats)
1801 {
1802 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1804 	u64 *stats = nic_data->stats;
1805 
1806 	efx_ef10_get_stat_mask(efx, mask);
1807 
1808 	efx_nic_copy_stats(efx, nic_data->mc_stats);
1809 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1810 			     mask, stats, nic_data->mc_stats, false);
1811 
1812 	/* Update derived statistics */
1813 	efx_nic_fix_nodesc_drop_stat(efx,
1814 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1815 	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1816 	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1817 	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1818 	 * Here we calculate port_rx_good_bytes.
1819 	 */
1820 	stats[EF10_STAT_port_rx_good_bytes] =
1821 		stats[EF10_STAT_port_rx_bytes] -
1822 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1823 
1824 	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1825 	 * MC Firmware are done such that we should not see an increase in
1826 	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1827 	 * does mean that the stat can decrease at times. Here we do not
1828 	 * update the stat unless it has increased or has gone to zero
1829 	 * (In the case of the NIC rebooting).
1830 	 * Please see Bug 33781 for a discussion of why things work this way.
1831 	 */
1832 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1833 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1834 	efx_update_sw_stats(efx, stats);
1835 
1836 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1837 }
1838 
1839 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1840 	__must_hold(&efx->stats_lock)
1841 {
1842 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1843 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1844 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1845 	__le64 generation_start, generation_end;
1846 	u64 *stats = nic_data->stats;
1847 	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1848 	struct efx_buffer stats_buf;
1849 	__le64 *dma_stats;
1850 	int rc;
1851 
1852 	spin_unlock_bh(&efx->stats_lock);
1853 
1854 	if (in_interrupt()) {
1855 		/* If in atomic context, cannot update stats.  Just update the
1856 		 * software stats and return so the caller can continue.
1857 		 */
1858 		spin_lock_bh(&efx->stats_lock);
1859 		efx_update_sw_stats(efx, stats);
1860 		return 0;
1861 	}
1862 
1863 	efx_ef10_get_stat_mask(efx, mask);
1864 
1865 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1866 	if (rc) {
1867 		spin_lock_bh(&efx->stats_lock);
1868 		return rc;
1869 	}
1870 
1871 	dma_stats = stats_buf.addr;
1872 	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1873 
1874 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1875 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1876 			      MAC_STATS_IN_DMA, 1);
1877 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1878 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1879 
1880 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1881 				NULL, 0, NULL);
1882 	spin_lock_bh(&efx->stats_lock);
1883 	if (rc) {
1884 		/* Expect ENOENT if DMA queues have not been set up */
1885 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1886 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1887 					       sizeof(inbuf), NULL, 0, rc);
1888 		goto out;
1889 	}
1890 
1891 	generation_end = dma_stats[efx->num_mac_stats - 1];
1892 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1893 		WARN_ON_ONCE(1);
1894 		goto out;
1895 	}
1896 	rmb();
1897 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1898 			     stats, stats_buf.addr, false);
1899 	rmb();
1900 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1901 	if (generation_end != generation_start) {
1902 		rc = -EAGAIN;
1903 		goto out;
1904 	}
1905 
1906 	efx_update_sw_stats(efx, stats);
1907 out:
1908 	efx_nic_free_buffer(efx, &stats_buf);
1909 	return rc;
1910 }
1911 
1912 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1913 				       struct rtnl_link_stats64 *core_stats)
1914 {
1915 	if (efx_ef10_try_update_nic_stats_vf(efx))
1916 		return 0;
1917 
1918 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1919 }
1920 
1921 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1922 {
1923 	struct efx_nic *efx = channel->efx;
1924 	unsigned int mode, usecs;
1925 	efx_dword_t timer_cmd;
1926 
1927 	if (channel->irq_moderation_us) {
1928 		mode = 3;
1929 		usecs = channel->irq_moderation_us;
1930 	} else {
1931 		mode = 0;
1932 		usecs = 0;
1933 	}
1934 
1935 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1936 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1937 		unsigned int ns = usecs * 1000;
1938 
1939 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1940 			       channel->channel);
1941 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1942 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1943 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1944 
1945 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1946 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1947 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1948 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1949 
1950 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1951 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1952 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1953 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1954 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1955 				channel->channel);
1956 	} else {
1957 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1958 
1959 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1960 				     ERF_DZ_TC_TIMER_VAL, ticks,
1961 				     ERF_FZ_TC_TMR_REL_VAL, ticks);
1962 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1963 				channel->channel);
1964 	}
1965 }
1966 
1967 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1968 				struct ethtool_wolinfo *wol) {}
1969 
1970 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1971 {
1972 	return -EOPNOTSUPP;
1973 }
1974 
1975 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1976 {
1977 	wol->supported = 0;
1978 	wol->wolopts = 0;
1979 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1980 }
1981 
1982 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1983 {
1984 	if (type != 0)
1985 		return -EINVAL;
1986 	return 0;
1987 }
1988 
1989 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1990 				  const efx_dword_t *hdr, size_t hdr_len,
1991 				  const efx_dword_t *sdu, size_t sdu_len)
1992 {
1993 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1994 	u8 *pdu = nic_data->mcdi_buf.addr;
1995 
1996 	memcpy(pdu, hdr, hdr_len);
1997 	memcpy(pdu + hdr_len, sdu, sdu_len);
1998 	wmb();
1999 
2000 	/* The hardware provides 'low' and 'high' (doorbell) registers
2001 	 * for passing the 64-bit address of an MCDI request to
2002 	 * firmware.  However the dwords are swapped by firmware.  The
2003 	 * least significant bits of the doorbell are then 0 for all
2004 	 * MCDI requests due to alignment.
2005 	 */
2006 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2007 		    ER_DZ_MC_DB_LWRD);
2008 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2009 		    ER_DZ_MC_DB_HWRD);
2010 }
2011 
2012 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2013 {
2014 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2016 
2017 	rmb();
2018 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2019 }
2020 
2021 static void
2022 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2023 			    size_t offset, size_t outlen)
2024 {
2025 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2026 	const u8 *pdu = nic_data->mcdi_buf.addr;
2027 
2028 	memcpy(outbuf, pdu + offset, outlen);
2029 }
2030 
2031 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2032 {
2033 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2034 
2035 	/* All our allocations have been reset */
2036 	efx_ef10_table_reset_mc_allocations(efx);
2037 
2038 	/* The datapath firmware might have been changed */
2039 	nic_data->must_check_datapath_caps = true;
2040 
2041 	/* MAC statistics have been cleared on the NIC; clear the local
2042 	 * statistic that we update with efx_update_diff_stat().
2043 	 */
2044 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2045 }
2046 
2047 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2048 {
2049 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2050 	int rc;
2051 
2052 	rc = efx_ef10_get_warm_boot_count(efx);
2053 	if (rc < 0) {
2054 		/* The firmware is presumably in the process of
2055 		 * rebooting.  However, we are supposed to report each
2056 		 * reboot just once, so we must only do that once we
2057 		 * can read and store the updated warm boot count.
2058 		 */
2059 		return 0;
2060 	}
2061 
2062 	if (rc == nic_data->warm_boot_count)
2063 		return 0;
2064 
2065 	nic_data->warm_boot_count = rc;
2066 	efx_ef10_mcdi_reboot_detected(efx);
2067 
2068 	return -EIO;
2069 }
2070 
2071 /* Handle an MSI interrupt
2072  *
2073  * Handle an MSI hardware interrupt.  This routine schedules event
2074  * queue processing.  No interrupt acknowledgement cycle is necessary.
2075  * Also, we never need to check that the interrupt is for us, since
2076  * MSI interrupts cannot be shared.
2077  */
2078 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2079 {
2080 	struct efx_msi_context *context = dev_id;
2081 	struct efx_nic *efx = context->efx;
2082 
2083 	netif_vdbg(efx, intr, efx->net_dev,
2084 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2085 
2086 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2087 		/* Note test interrupts */
2088 		if (context->index == efx->irq_level)
2089 			efx->last_irq_cpu = raw_smp_processor_id();
2090 
2091 		/* Schedule processing of the channel */
2092 		efx_schedule_channel_irq(efx->channel[context->index]);
2093 	}
2094 
2095 	return IRQ_HANDLED;
2096 }
2097 
2098 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2099 {
2100 	struct efx_nic *efx = dev_id;
2101 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2102 	struct efx_channel *channel;
2103 	efx_dword_t reg;
2104 	u32 queues;
2105 
2106 	/* Read the ISR which also ACKs the interrupts */
2107 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2108 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2109 
2110 	if (queues == 0)
2111 		return IRQ_NONE;
2112 
2113 	if (likely(soft_enabled)) {
2114 		/* Note test interrupts */
2115 		if (queues & (1U << efx->irq_level))
2116 			efx->last_irq_cpu = raw_smp_processor_id();
2117 
2118 		efx_for_each_channel(channel, efx) {
2119 			if (queues & 1)
2120 				efx_schedule_channel_irq(channel);
2121 			queues >>= 1;
2122 		}
2123 	}
2124 
2125 	netif_vdbg(efx, intr, efx->net_dev,
2126 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2127 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2128 
2129 	return IRQ_HANDLED;
2130 }
2131 
2132 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2133 {
2134 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2135 
2136 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2137 				    NULL) == 0)
2138 		return -ENOTSUPP;
2139 
2140 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2141 
2142 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2143 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2144 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2145 }
2146 
2147 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2148 {
2149 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2150 				    (tx_queue->ptr_mask + 1) *
2151 				    sizeof(efx_qword_t),
2152 				    GFP_KERNEL);
2153 }
2154 
2155 /* This writes to the TX_DESC_WPTR and also pushes data */
2156 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2157 					 const efx_qword_t *txd)
2158 {
2159 	unsigned int write_ptr;
2160 	efx_oword_t reg;
2161 
2162 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2163 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2164 	reg.qword[0] = *txd;
2165 	efx_writeo_page(tx_queue->efx, &reg,
2166 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2167 }
2168 
2169 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2170  */
2171 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2172 				struct sk_buff *skb,
2173 				bool *data_mapped)
2174 {
2175 	struct efx_tx_buffer *buffer;
2176 	struct tcphdr *tcp;
2177 	struct iphdr *ip;
2178 
2179 	u16 ipv4_id;
2180 	u32 seqnum;
2181 	u32 mss;
2182 
2183 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2184 
2185 	mss = skb_shinfo(skb)->gso_size;
2186 
2187 	if (unlikely(mss < 4)) {
2188 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2189 		return -EINVAL;
2190 	}
2191 
2192 	ip = ip_hdr(skb);
2193 	if (ip->version == 4) {
2194 		/* Modify IPv4 header if needed. */
2195 		ip->tot_len = 0;
2196 		ip->check = 0;
2197 		ipv4_id = ntohs(ip->id);
2198 	} else {
2199 		/* Modify IPv6 header if needed. */
2200 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2201 
2202 		ipv6->payload_len = 0;
2203 		ipv4_id = 0;
2204 	}
2205 
2206 	tcp = tcp_hdr(skb);
2207 	seqnum = ntohl(tcp->seq);
2208 
2209 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2210 
2211 	buffer->flags = EFX_TX_BUF_OPTION;
2212 	buffer->len = 0;
2213 	buffer->unmap_len = 0;
2214 	EFX_POPULATE_QWORD_5(buffer->option,
2215 			ESF_DZ_TX_DESC_IS_OPT, 1,
2216 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2217 			ESF_DZ_TX_TSO_OPTION_TYPE,
2218 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2219 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2220 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2221 			);
2222 	++tx_queue->insert_count;
2223 
2224 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2225 
2226 	buffer->flags = EFX_TX_BUF_OPTION;
2227 	buffer->len = 0;
2228 	buffer->unmap_len = 0;
2229 	EFX_POPULATE_QWORD_4(buffer->option,
2230 			ESF_DZ_TX_DESC_IS_OPT, 1,
2231 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2232 			ESF_DZ_TX_TSO_OPTION_TYPE,
2233 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2234 			ESF_DZ_TX_TSO_TCP_MSS, mss
2235 			);
2236 	++tx_queue->insert_count;
2237 
2238 	return 0;
2239 }
2240 
2241 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2242 {
2243 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2244 	u32 tso_versions = 0;
2245 
2246 	if (nic_data->datapath_caps &
2247 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2248 		tso_versions |= BIT(1);
2249 	if (nic_data->datapath_caps2 &
2250 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2251 		tso_versions |= BIT(2);
2252 	return tso_versions;
2253 }
2254 
2255 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2256 {
2257 	bool csum_offload = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
2258 	struct efx_channel *channel = tx_queue->channel;
2259 	struct efx_nic *efx = tx_queue->efx;
2260 	struct efx_ef10_nic_data *nic_data;
2261 	bool tso_v2 = false;
2262 	efx_qword_t *txd;
2263 	int rc;
2264 
2265 	nic_data = efx->nic_data;
2266 
2267 	/* Only attempt to enable TX timestamping if we have the license for it,
2268 	 * otherwise TXQ init will fail
2269 	 */
2270 	if (!(nic_data->licensed_features &
2271 	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2272 		tx_queue->timestamping = false;
2273 		/* Disable sync events on this channel. */
2274 		if (efx->type->ptp_set_ts_sync_events)
2275 			efx->type->ptp_set_ts_sync_events(efx, false, false);
2276 	}
2277 
2278 	/* TSOv2 is a limited resource that can only be configured on a limited
2279 	 * number of queues. TSO without checksum offload is not really a thing,
2280 	 * so we only enable it for those queues.
2281 	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2282 	 * for XDP tx.
2283 	 */
2284 	if (csum_offload && (nic_data->datapath_caps2 &
2285 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2286 	    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2287 		tso_v2 = true;
2288 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2289 				channel->channel);
2290 	}
2291 
2292 	rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2293 	if (rc)
2294 		goto fail;
2295 
2296 	/* A previous user of this TX queue might have set us up the
2297 	 * bomb by writing a descriptor to the TX push collector but
2298 	 * not the doorbell.  (Each collector belongs to a port, not a
2299 	 * queue or function, so cannot easily be reset.)  We must
2300 	 * attempt to push a no-op descriptor in its place.
2301 	 */
2302 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2303 	tx_queue->insert_count = 1;
2304 	txd = efx_tx_desc(tx_queue, 0);
2305 	EFX_POPULATE_QWORD_5(*txd,
2306 			     ESF_DZ_TX_DESC_IS_OPT, true,
2307 			     ESF_DZ_TX_OPTION_TYPE,
2308 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2309 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2310 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2311 			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2312 	tx_queue->write_count = 1;
2313 
2314 	if (tso_v2) {
2315 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2316 		tx_queue->tso_version = 2;
2317 	} else if (nic_data->datapath_caps &
2318 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2319 		tx_queue->tso_version = 1;
2320 	}
2321 
2322 	wmb();
2323 	efx_ef10_push_tx_desc(tx_queue, txd);
2324 
2325 	return;
2326 
2327 fail:
2328 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2329 		    tx_queue->queue);
2330 }
2331 
2332 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2333 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2334 {
2335 	unsigned int write_ptr;
2336 	efx_dword_t reg;
2337 
2338 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2339 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2340 	efx_writed_page(tx_queue->efx, &reg,
2341 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2342 }
2343 
2344 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2345 
2346 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2347 					  dma_addr_t dma_addr, unsigned int len)
2348 {
2349 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2350 		/* If we need to break across multiple descriptors we should
2351 		 * stop at a page boundary. This assumes the length limit is
2352 		 * greater than the page size.
2353 		 */
2354 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2355 
2356 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2357 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2358 	}
2359 
2360 	return len;
2361 }
2362 
2363 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2364 {
2365 	unsigned int old_write_count = tx_queue->write_count;
2366 	struct efx_tx_buffer *buffer;
2367 	unsigned int write_ptr;
2368 	efx_qword_t *txd;
2369 
2370 	tx_queue->xmit_more_available = false;
2371 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2372 		return;
2373 
2374 	do {
2375 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2376 		buffer = &tx_queue->buffer[write_ptr];
2377 		txd = efx_tx_desc(tx_queue, write_ptr);
2378 		++tx_queue->write_count;
2379 
2380 		/* Create TX descriptor ring entry */
2381 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2382 			*txd = buffer->option;
2383 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2384 				/* PIO descriptor */
2385 				tx_queue->packet_write_count = tx_queue->write_count;
2386 		} else {
2387 			tx_queue->packet_write_count = tx_queue->write_count;
2388 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2389 			EFX_POPULATE_QWORD_3(
2390 				*txd,
2391 				ESF_DZ_TX_KER_CONT,
2392 				buffer->flags & EFX_TX_BUF_CONT,
2393 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2394 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2395 		}
2396 	} while (tx_queue->write_count != tx_queue->insert_count);
2397 
2398 	wmb(); /* Ensure descriptors are written before they are fetched */
2399 
2400 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2401 		txd = efx_tx_desc(tx_queue,
2402 				  old_write_count & tx_queue->ptr_mask);
2403 		efx_ef10_push_tx_desc(tx_queue, txd);
2404 		++tx_queue->pushes;
2405 	} else {
2406 		efx_ef10_notify_tx_desc(tx_queue);
2407 	}
2408 }
2409 
2410 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2411 {
2412 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2413 	unsigned int enabled, implemented;
2414 	bool want_workaround_26807;
2415 	int rc;
2416 
2417 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2418 	if (rc == -ENOSYS) {
2419 		/* GET_WORKAROUNDS was implemented before this workaround,
2420 		 * thus it must be unavailable in this firmware.
2421 		 */
2422 		nic_data->workaround_26807 = false;
2423 		return 0;
2424 	}
2425 	if (rc)
2426 		return rc;
2427 	want_workaround_26807 =
2428 		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2429 	nic_data->workaround_26807 =
2430 		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2431 
2432 	if (want_workaround_26807 && !nic_data->workaround_26807) {
2433 		unsigned int flags;
2434 
2435 		rc = efx_mcdi_set_workaround(efx,
2436 					     MC_CMD_WORKAROUND_BUG26807,
2437 					     true, &flags);
2438 		if (!rc) {
2439 			if (flags &
2440 			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2441 				netif_info(efx, drv, efx->net_dev,
2442 					   "other functions on NIC have been reset\n");
2443 
2444 				/* With MCFW v4.6.x and earlier, the
2445 				 * boot count will have incremented,
2446 				 * so re-read the warm_boot_count
2447 				 * value now to ensure this function
2448 				 * doesn't think it has changed next
2449 				 * time it checks.
2450 				 */
2451 				rc = efx_ef10_get_warm_boot_count(efx);
2452 				if (rc >= 0) {
2453 					nic_data->warm_boot_count = rc;
2454 					rc = 0;
2455 				}
2456 			}
2457 			nic_data->workaround_26807 = true;
2458 		} else if (rc == -EPERM) {
2459 			rc = 0;
2460 		}
2461 	}
2462 	return rc;
2463 }
2464 
2465 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2466 {
2467 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2468 	int rc = efx_ef10_probe_multicast_chaining(efx);
2469 	struct efx_mcdi_filter_vlan *vlan;
2470 
2471 	if (rc)
2472 		return rc;
2473 	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2474 
2475 	if (rc)
2476 		return rc;
2477 
2478 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2479 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2480 		if (rc)
2481 			goto fail_add_vlan;
2482 	}
2483 	return 0;
2484 
2485 fail_add_vlan:
2486 	efx_mcdi_filter_table_remove(efx);
2487 	return rc;
2488 }
2489 
2490 /* This creates an entry in the RX descriptor queue */
2491 static inline void
2492 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2493 {
2494 	struct efx_rx_buffer *rx_buf;
2495 	efx_qword_t *rxd;
2496 
2497 	rxd = efx_rx_desc(rx_queue, index);
2498 	rx_buf = efx_rx_buffer(rx_queue, index);
2499 	EFX_POPULATE_QWORD_2(*rxd,
2500 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2501 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2502 }
2503 
2504 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2505 {
2506 	struct efx_nic *efx = rx_queue->efx;
2507 	unsigned int write_count;
2508 	efx_dword_t reg;
2509 
2510 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2511 	write_count = rx_queue->added_count & ~7;
2512 	if (rx_queue->notified_count == write_count)
2513 		return;
2514 
2515 	do
2516 		efx_ef10_build_rx_desc(
2517 			rx_queue,
2518 			rx_queue->notified_count & rx_queue->ptr_mask);
2519 	while (++rx_queue->notified_count != write_count);
2520 
2521 	wmb();
2522 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2523 			     write_count & rx_queue->ptr_mask);
2524 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2525 			efx_rx_queue_index(rx_queue));
2526 }
2527 
2528 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2529 
2530 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2531 {
2532 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2533 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2534 	efx_qword_t event;
2535 
2536 	EFX_POPULATE_QWORD_2(event,
2537 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2538 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2539 
2540 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2541 
2542 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2543 	 * already swapped the data to little-endian order.
2544 	 */
2545 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2546 	       sizeof(efx_qword_t));
2547 
2548 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2549 			   inbuf, sizeof(inbuf), 0,
2550 			   efx_ef10_rx_defer_refill_complete, 0);
2551 }
2552 
2553 static void
2554 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2555 				  int rc, efx_dword_t *outbuf,
2556 				  size_t outlen_actual)
2557 {
2558 	/* nothing to do */
2559 }
2560 
2561 static int efx_ef10_ev_init(struct efx_channel *channel)
2562 {
2563 	struct efx_nic *efx = channel->efx;
2564 	struct efx_ef10_nic_data *nic_data;
2565 	bool use_v2, cut_thru;
2566 
2567 	nic_data = efx->nic_data;
2568 	use_v2 = nic_data->datapath_caps2 &
2569 			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2570 	cut_thru = !(nic_data->datapath_caps &
2571 			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2572 	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2573 }
2574 
2575 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2576 					   unsigned int rx_queue_label)
2577 {
2578 	struct efx_nic *efx = rx_queue->efx;
2579 
2580 	netif_info(efx, hw, efx->net_dev,
2581 		   "rx event arrived on queue %d labeled as queue %u\n",
2582 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2583 
2584 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2585 }
2586 
2587 static void
2588 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2589 			     unsigned int actual, unsigned int expected)
2590 {
2591 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2592 	struct efx_nic *efx = rx_queue->efx;
2593 
2594 	netif_info(efx, hw, efx->net_dev,
2595 		   "dropped %d events (index=%d expected=%d)\n",
2596 		   dropped, actual, expected);
2597 
2598 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2599 }
2600 
2601 /* partially received RX was aborted. clean up. */
2602 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2603 {
2604 	unsigned int rx_desc_ptr;
2605 
2606 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2607 		  "scattered RX aborted (dropping %u buffers)\n",
2608 		  rx_queue->scatter_n);
2609 
2610 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2611 
2612 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2613 		      0, EFX_RX_PKT_DISCARD);
2614 
2615 	rx_queue->removed_count += rx_queue->scatter_n;
2616 	rx_queue->scatter_n = 0;
2617 	rx_queue->scatter_len = 0;
2618 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2619 }
2620 
2621 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2622 					   unsigned int n_packets,
2623 					   unsigned int rx_encap_hdr,
2624 					   unsigned int rx_l3_class,
2625 					   unsigned int rx_l4_class,
2626 					   const efx_qword_t *event)
2627 {
2628 	struct efx_nic *efx = channel->efx;
2629 	bool handled = false;
2630 
2631 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2632 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2633 			if (!efx->loopback_selftest)
2634 				channel->n_rx_eth_crc_err += n_packets;
2635 			return EFX_RX_PKT_DISCARD;
2636 		}
2637 		handled = true;
2638 	}
2639 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2640 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2641 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2642 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2643 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2644 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2645 			netdev_WARN(efx->net_dev,
2646 				    "invalid class for RX_IPCKSUM_ERR: event="
2647 				    EFX_QWORD_FMT "\n",
2648 				    EFX_QWORD_VAL(*event));
2649 		if (!efx->loopback_selftest)
2650 			*(rx_encap_hdr ?
2651 			  &channel->n_rx_outer_ip_hdr_chksum_err :
2652 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2653 		return 0;
2654 	}
2655 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2656 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2657 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2658 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2659 			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2660 			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2661 			netdev_WARN(efx->net_dev,
2662 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2663 				    EFX_QWORD_FMT "\n",
2664 				    EFX_QWORD_VAL(*event));
2665 		if (!efx->loopback_selftest)
2666 			*(rx_encap_hdr ?
2667 			  &channel->n_rx_outer_tcp_udp_chksum_err :
2668 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2669 		return 0;
2670 	}
2671 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2672 		if (unlikely(!rx_encap_hdr))
2673 			netdev_WARN(efx->net_dev,
2674 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2675 				    EFX_QWORD_FMT "\n",
2676 				    EFX_QWORD_VAL(*event));
2677 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2678 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2679 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2680 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2681 			netdev_WARN(efx->net_dev,
2682 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2683 				    EFX_QWORD_FMT "\n",
2684 				    EFX_QWORD_VAL(*event));
2685 		if (!efx->loopback_selftest)
2686 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2687 		return 0;
2688 	}
2689 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2690 		if (unlikely(!rx_encap_hdr))
2691 			netdev_WARN(efx->net_dev,
2692 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2693 				    EFX_QWORD_FMT "\n",
2694 				    EFX_QWORD_VAL(*event));
2695 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2696 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2697 				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2698 				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2699 			netdev_WARN(efx->net_dev,
2700 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2701 				    EFX_QWORD_FMT "\n",
2702 				    EFX_QWORD_VAL(*event));
2703 		if (!efx->loopback_selftest)
2704 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2705 		return 0;
2706 	}
2707 
2708 	WARN_ON(!handled); /* No error bits were recognised */
2709 	return 0;
2710 }
2711 
2712 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2713 				    const efx_qword_t *event)
2714 {
2715 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2716 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2717 	unsigned int n_descs, n_packets, i;
2718 	struct efx_nic *efx = channel->efx;
2719 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2720 	struct efx_rx_queue *rx_queue;
2721 	efx_qword_t errors;
2722 	bool rx_cont;
2723 	u16 flags = 0;
2724 
2725 	if (unlikely(READ_ONCE(efx->reset_pending)))
2726 		return 0;
2727 
2728 	/* Basic packet information */
2729 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2730 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2731 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2732 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2733 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2734 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2735 	rx_encap_hdr =
2736 		nic_data->datapath_caps &
2737 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2738 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2739 		ESE_EZ_ENCAP_HDR_NONE;
2740 
2741 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2742 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2743 			    EFX_QWORD_FMT "\n",
2744 			    EFX_QWORD_VAL(*event));
2745 
2746 	rx_queue = efx_channel_get_rx_queue(channel);
2747 
2748 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2749 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2750 
2751 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2752 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2753 
2754 	if (n_descs != rx_queue->scatter_n + 1) {
2755 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2756 
2757 		/* detect rx abort */
2758 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2759 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2760 				netdev_WARN(efx->net_dev,
2761 					    "invalid RX abort: scatter_n=%u event="
2762 					    EFX_QWORD_FMT "\n",
2763 					    rx_queue->scatter_n,
2764 					    EFX_QWORD_VAL(*event));
2765 			efx_ef10_handle_rx_abort(rx_queue);
2766 			return 0;
2767 		}
2768 
2769 		/* Check that RX completion merging is valid, i.e.
2770 		 * the current firmware supports it and this is a
2771 		 * non-scattered packet.
2772 		 */
2773 		if (!(nic_data->datapath_caps &
2774 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2775 		    rx_queue->scatter_n != 0 || rx_cont) {
2776 			efx_ef10_handle_rx_bad_lbits(
2777 				rx_queue, next_ptr_lbits,
2778 				(rx_queue->removed_count +
2779 				 rx_queue->scatter_n + 1) &
2780 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2781 			return 0;
2782 		}
2783 
2784 		/* Merged completion for multiple non-scattered packets */
2785 		rx_queue->scatter_n = 1;
2786 		rx_queue->scatter_len = 0;
2787 		n_packets = n_descs;
2788 		++channel->n_rx_merge_events;
2789 		channel->n_rx_merge_packets += n_packets;
2790 		flags |= EFX_RX_PKT_PREFIX_LEN;
2791 	} else {
2792 		++rx_queue->scatter_n;
2793 		rx_queue->scatter_len += rx_bytes;
2794 		if (rx_cont)
2795 			return 0;
2796 		n_packets = 1;
2797 	}
2798 
2799 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2800 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2801 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2802 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2803 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2804 	EFX_AND_QWORD(errors, *event, errors);
2805 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2806 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2807 							 rx_encap_hdr,
2808 							 rx_l3_class, rx_l4_class,
2809 							 event);
2810 	} else {
2811 		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2812 			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2813 
2814 		switch (rx_encap_hdr) {
2815 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2816 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2817 			if (tcpudp)
2818 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2819 			break;
2820 		case ESE_EZ_ENCAP_HDR_GRE:
2821 		case ESE_EZ_ENCAP_HDR_NONE:
2822 			if (tcpudp)
2823 				flags |= EFX_RX_PKT_CSUMMED;
2824 			break;
2825 		default:
2826 			netdev_WARN(efx->net_dev,
2827 				    "unknown encapsulation type: event="
2828 				    EFX_QWORD_FMT "\n",
2829 				    EFX_QWORD_VAL(*event));
2830 		}
2831 	}
2832 
2833 	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2834 		flags |= EFX_RX_PKT_TCP;
2835 
2836 	channel->irq_mod_score += 2 * n_packets;
2837 
2838 	/* Handle received packet(s) */
2839 	for (i = 0; i < n_packets; i++) {
2840 		efx_rx_packet(rx_queue,
2841 			      rx_queue->removed_count & rx_queue->ptr_mask,
2842 			      rx_queue->scatter_n, rx_queue->scatter_len,
2843 			      flags);
2844 		rx_queue->removed_count += rx_queue->scatter_n;
2845 	}
2846 
2847 	rx_queue->scatter_n = 0;
2848 	rx_queue->scatter_len = 0;
2849 
2850 	return n_packets;
2851 }
2852 
2853 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2854 {
2855 	u32 tstamp;
2856 
2857 	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2858 	tstamp <<= 16;
2859 	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2860 
2861 	return tstamp;
2862 }
2863 
2864 static void
2865 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2866 {
2867 	struct efx_nic *efx = channel->efx;
2868 	struct efx_tx_queue *tx_queue;
2869 	unsigned int tx_ev_desc_ptr;
2870 	unsigned int tx_ev_q_label;
2871 	unsigned int tx_ev_type;
2872 	u64 ts_part;
2873 
2874 	if (unlikely(READ_ONCE(efx->reset_pending)))
2875 		return;
2876 
2877 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2878 		return;
2879 
2880 	/* Get the transmit queue */
2881 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2882 	tx_queue = efx_channel_get_tx_queue(channel,
2883 					    tx_ev_q_label % EFX_TXQ_TYPES);
2884 
2885 	if (!tx_queue->timestamping) {
2886 		/* Transmit completion */
2887 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2888 		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2889 		return;
2890 	}
2891 
2892 	/* Transmit timestamps are only available for 8XXX series. They result
2893 	 * in up to three events per packet. These occur in order, and are:
2894 	 *  - the normal completion event (may be omitted)
2895 	 *  - the low part of the timestamp
2896 	 *  - the high part of the timestamp
2897 	 *
2898 	 * It's possible for multiple completion events to appear before the
2899 	 * corresponding timestamps. So we can for example get:
2900 	 *  COMP N
2901 	 *  COMP N+1
2902 	 *  TS_LO N
2903 	 *  TS_HI N
2904 	 *  TS_LO N+1
2905 	 *  TS_HI N+1
2906 	 *
2907 	 * In addition it's also possible for the adjacent completions to be
2908 	 * merged, so we may not see COMP N above. As such, the completion
2909 	 * events are not very useful here.
2910 	 *
2911 	 * Each part of the timestamp is itself split across two 16 bit
2912 	 * fields in the event.
2913 	 */
2914 	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2915 
2916 	switch (tx_ev_type) {
2917 	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2918 		/* Ignore this event - see above. */
2919 		break;
2920 
2921 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2922 		ts_part = efx_ef10_extract_event_ts(event);
2923 		tx_queue->completed_timestamp_minor = ts_part;
2924 		break;
2925 
2926 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2927 		ts_part = efx_ef10_extract_event_ts(event);
2928 		tx_queue->completed_timestamp_major = ts_part;
2929 
2930 		efx_xmit_done_single(tx_queue);
2931 		break;
2932 
2933 	default:
2934 		netif_err(efx, hw, efx->net_dev,
2935 			  "channel %d unknown tx event type %d (data "
2936 			  EFX_QWORD_FMT ")\n",
2937 			  channel->channel, tx_ev_type,
2938 			  EFX_QWORD_VAL(*event));
2939 		break;
2940 	}
2941 }
2942 
2943 static void
2944 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2945 {
2946 	struct efx_nic *efx = channel->efx;
2947 	int subcode;
2948 
2949 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2950 
2951 	switch (subcode) {
2952 	case ESE_DZ_DRV_TIMER_EV:
2953 	case ESE_DZ_DRV_WAKE_UP_EV:
2954 		break;
2955 	case ESE_DZ_DRV_START_UP_EV:
2956 		/* event queue init complete. ok. */
2957 		break;
2958 	default:
2959 		netif_err(efx, hw, efx->net_dev,
2960 			  "channel %d unknown driver event type %d"
2961 			  " (data " EFX_QWORD_FMT ")\n",
2962 			  channel->channel, subcode,
2963 			  EFX_QWORD_VAL(*event));
2964 
2965 	}
2966 }
2967 
2968 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2969 						   efx_qword_t *event)
2970 {
2971 	struct efx_nic *efx = channel->efx;
2972 	u32 subcode;
2973 
2974 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2975 
2976 	switch (subcode) {
2977 	case EFX_EF10_TEST:
2978 		channel->event_test_cpu = raw_smp_processor_id();
2979 		break;
2980 	case EFX_EF10_REFILL:
2981 		/* The queue must be empty, so we won't receive any rx
2982 		 * events, so efx_process_channel() won't refill the
2983 		 * queue. Refill it here
2984 		 */
2985 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2986 		break;
2987 	default:
2988 		netif_err(efx, hw, efx->net_dev,
2989 			  "channel %d unknown driver event type %u"
2990 			  " (data " EFX_QWORD_FMT ")\n",
2991 			  channel->channel, (unsigned) subcode,
2992 			  EFX_QWORD_VAL(*event));
2993 	}
2994 }
2995 
2996 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2997 {
2998 	struct efx_nic *efx = channel->efx;
2999 	efx_qword_t event, *p_event;
3000 	unsigned int read_ptr;
3001 	int ev_code;
3002 	int spent = 0;
3003 
3004 	if (quota <= 0)
3005 		return spent;
3006 
3007 	read_ptr = channel->eventq_read_ptr;
3008 
3009 	for (;;) {
3010 		p_event = efx_event(channel, read_ptr);
3011 		event = *p_event;
3012 
3013 		if (!efx_event_present(&event))
3014 			break;
3015 
3016 		EFX_SET_QWORD(*p_event);
3017 
3018 		++read_ptr;
3019 
3020 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3021 
3022 		netif_vdbg(efx, drv, efx->net_dev,
3023 			   "processing event on %d " EFX_QWORD_FMT "\n",
3024 			   channel->channel, EFX_QWORD_VAL(event));
3025 
3026 		switch (ev_code) {
3027 		case ESE_DZ_EV_CODE_MCDI_EV:
3028 			efx_mcdi_process_event(channel, &event);
3029 			break;
3030 		case ESE_DZ_EV_CODE_RX_EV:
3031 			spent += efx_ef10_handle_rx_event(channel, &event);
3032 			if (spent >= quota) {
3033 				/* XXX can we split a merged event to
3034 				 * avoid going over-quota?
3035 				 */
3036 				spent = quota;
3037 				goto out;
3038 			}
3039 			break;
3040 		case ESE_DZ_EV_CODE_TX_EV:
3041 			efx_ef10_handle_tx_event(channel, &event);
3042 			break;
3043 		case ESE_DZ_EV_CODE_DRIVER_EV:
3044 			efx_ef10_handle_driver_event(channel, &event);
3045 			if (++spent == quota)
3046 				goto out;
3047 			break;
3048 		case EFX_EF10_DRVGEN_EV:
3049 			efx_ef10_handle_driver_generated_event(channel, &event);
3050 			break;
3051 		default:
3052 			netif_err(efx, hw, efx->net_dev,
3053 				  "channel %d unknown event type %d"
3054 				  " (data " EFX_QWORD_FMT ")\n",
3055 				  channel->channel, ev_code,
3056 				  EFX_QWORD_VAL(event));
3057 		}
3058 	}
3059 
3060 out:
3061 	channel->eventq_read_ptr = read_ptr;
3062 	return spent;
3063 }
3064 
3065 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3066 {
3067 	struct efx_nic *efx = channel->efx;
3068 	efx_dword_t rptr;
3069 
3070 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3071 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3072 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3073 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3074 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3075 
3076 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3077 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3078 				     ERF_DD_EVQ_IND_RPTR,
3079 				     (channel->eventq_read_ptr &
3080 				      channel->eventq_mask) >>
3081 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3082 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3083 				channel->channel);
3084 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3085 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3086 				     ERF_DD_EVQ_IND_RPTR,
3087 				     channel->eventq_read_ptr &
3088 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3089 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3090 				channel->channel);
3091 	} else {
3092 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3093 				     channel->eventq_read_ptr &
3094 				     channel->eventq_mask);
3095 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3096 	}
3097 }
3098 
3099 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3100 {
3101 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3102 	struct efx_nic *efx = channel->efx;
3103 	efx_qword_t event;
3104 	int rc;
3105 
3106 	EFX_POPULATE_QWORD_2(event,
3107 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3108 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3109 
3110 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3111 
3112 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3113 	 * already swapped the data to little-endian order.
3114 	 */
3115 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3116 	       sizeof(efx_qword_t));
3117 
3118 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3119 			  NULL, 0, NULL);
3120 	if (rc != 0)
3121 		goto fail;
3122 
3123 	return;
3124 
3125 fail:
3126 	WARN_ON(true);
3127 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3128 }
3129 
3130 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3131 {
3132 	atomic_set(&efx->active_queues, 0);
3133 }
3134 
3135 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3136 {
3137 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3138 	u8 mac_old[ETH_ALEN];
3139 	int rc, rc2;
3140 
3141 	/* Only reconfigure a PF-created vport */
3142 	if (is_zero_ether_addr(nic_data->vport_mac))
3143 		return 0;
3144 
3145 	efx_device_detach_sync(efx);
3146 	efx_net_stop(efx->net_dev);
3147 	down_write(&efx->filter_sem);
3148 	efx_mcdi_filter_table_remove(efx);
3149 	up_write(&efx->filter_sem);
3150 
3151 	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3152 	if (rc)
3153 		goto restore_filters;
3154 
3155 	ether_addr_copy(mac_old, nic_data->vport_mac);
3156 	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3157 				    nic_data->vport_mac);
3158 	if (rc)
3159 		goto restore_vadaptor;
3160 
3161 	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3162 				    efx->net_dev->dev_addr);
3163 	if (!rc) {
3164 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3165 	} else {
3166 		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3167 		if (rc2) {
3168 			/* Failed to add original MAC, so clear vport_mac */
3169 			eth_zero_addr(nic_data->vport_mac);
3170 			goto reset_nic;
3171 		}
3172 	}
3173 
3174 restore_vadaptor:
3175 	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3176 	if (rc2)
3177 		goto reset_nic;
3178 restore_filters:
3179 	down_write(&efx->filter_sem);
3180 	rc2 = efx_ef10_filter_table_probe(efx);
3181 	up_write(&efx->filter_sem);
3182 	if (rc2)
3183 		goto reset_nic;
3184 
3185 	rc2 = efx_net_open(efx->net_dev);
3186 	if (rc2)
3187 		goto reset_nic;
3188 
3189 	efx_device_attach_if_not_resetting(efx);
3190 
3191 	return rc;
3192 
3193 reset_nic:
3194 	netif_err(efx, drv, efx->net_dev,
3195 		  "Failed to restore when changing MAC address - scheduling reset\n");
3196 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3197 
3198 	return rc ? rc : rc2;
3199 }
3200 
3201 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3202 {
3203 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3204 	bool was_enabled = efx->port_enabled;
3205 	int rc;
3206 
3207 	efx_device_detach_sync(efx);
3208 	efx_net_stop(efx->net_dev);
3209 
3210 	mutex_lock(&efx->mac_lock);
3211 	down_write(&efx->filter_sem);
3212 	efx_mcdi_filter_table_remove(efx);
3213 
3214 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3215 			efx->net_dev->dev_addr);
3216 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3217 		       efx->vport_id);
3218 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3219 				sizeof(inbuf), NULL, 0, NULL);
3220 
3221 	efx_ef10_filter_table_probe(efx);
3222 	up_write(&efx->filter_sem);
3223 	mutex_unlock(&efx->mac_lock);
3224 
3225 	if (was_enabled)
3226 		efx_net_open(efx->net_dev);
3227 	efx_device_attach_if_not_resetting(efx);
3228 
3229 #ifdef CONFIG_SFC_SRIOV
3230 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3231 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3232 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3233 
3234 		if (rc == -EPERM) {
3235 			struct efx_nic *efx_pf;
3236 
3237 			/* Switch to PF and change MAC address on vport */
3238 			efx_pf = pci_get_drvdata(pci_dev_pf);
3239 
3240 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3241 						       nic_data->vf_index,
3242 						       efx->net_dev->dev_addr);
3243 		} else if (!rc) {
3244 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3245 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3246 			unsigned int i;
3247 
3248 			/* MAC address successfully changed by VF (with MAC
3249 			 * spoofing) so update the parent PF if possible.
3250 			 */
3251 			for (i = 0; i < efx_pf->vf_count; ++i) {
3252 				struct ef10_vf *vf = nic_data->vf + i;
3253 
3254 				if (vf->efx == efx) {
3255 					ether_addr_copy(vf->mac,
3256 							efx->net_dev->dev_addr);
3257 					return 0;
3258 				}
3259 			}
3260 		}
3261 	} else
3262 #endif
3263 	if (rc == -EPERM) {
3264 		netif_err(efx, drv, efx->net_dev,
3265 			  "Cannot change MAC address; use sfboot to enable"
3266 			  " mac-spoofing on this interface\n");
3267 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3268 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3269 		 * fall-back to the method of changing the MAC address on the
3270 		 * vport.  This only applies to PFs because such versions of
3271 		 * MCFW do not support VFs.
3272 		 */
3273 		rc = efx_ef10_vport_set_mac_address(efx);
3274 	} else if (rc) {
3275 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3276 				       sizeof(inbuf), NULL, 0, rc);
3277 	}
3278 
3279 	return rc;
3280 }
3281 
3282 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3283 {
3284 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3285 
3286 	efx_mcdi_filter_sync_rx_mode(efx);
3287 
3288 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3289 		return efx_mcdi_set_mtu(efx);
3290 	return efx_mcdi_set_mac(efx);
3291 }
3292 
3293 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3294 {
3295 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3296 
3297 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3298 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3299 			    NULL, 0, NULL);
3300 }
3301 
3302 /* MC BISTs follow a different poll mechanism to phy BISTs.
3303  * The BIST is done in the poll handler on the MC, and the MCDI command
3304  * will block until the BIST is done.
3305  */
3306 static int efx_ef10_poll_bist(struct efx_nic *efx)
3307 {
3308 	int rc;
3309 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3310 	size_t outlen;
3311 	u32 result;
3312 
3313 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3314 			   outbuf, sizeof(outbuf), &outlen);
3315 	if (rc != 0)
3316 		return rc;
3317 
3318 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3319 		return -EIO;
3320 
3321 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3322 	switch (result) {
3323 	case MC_CMD_POLL_BIST_PASSED:
3324 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3325 		return 0;
3326 	case MC_CMD_POLL_BIST_TIMEOUT:
3327 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3328 		return -EIO;
3329 	case MC_CMD_POLL_BIST_FAILED:
3330 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3331 		return -EIO;
3332 	default:
3333 		netif_err(efx, hw, efx->net_dev,
3334 			  "BIST returned unknown result %u", result);
3335 		return -EIO;
3336 	}
3337 }
3338 
3339 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3340 {
3341 	int rc;
3342 
3343 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3344 
3345 	rc = efx_ef10_start_bist(efx, bist_type);
3346 	if (rc != 0)
3347 		return rc;
3348 
3349 	return efx_ef10_poll_bist(efx);
3350 }
3351 
3352 static int
3353 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3354 {
3355 	int rc, rc2;
3356 
3357 	efx_reset_down(efx, RESET_TYPE_WORLD);
3358 
3359 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3360 			  NULL, 0, NULL, 0, NULL);
3361 	if (rc != 0)
3362 		goto out;
3363 
3364 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3365 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3366 
3367 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3368 
3369 out:
3370 	if (rc == -EPERM)
3371 		rc = 0;
3372 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3373 	return rc ? rc : rc2;
3374 }
3375 
3376 #ifdef CONFIG_SFC_MTD
3377 
3378 struct efx_ef10_nvram_type_info {
3379 	u16 type, type_mask;
3380 	u8 port;
3381 	const char *name;
3382 };
3383 
3384 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3385 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3386 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3387 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3388 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3389 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3390 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3391 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3392 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3393 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3394 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3395 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3396 	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3397 	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3398 	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3399 	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3400 	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3401 	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3402 	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3403 };
3404 #define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3405 
3406 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3407 					struct efx_mcdi_mtd_partition *part,
3408 					unsigned int type,
3409 					unsigned long *found)
3410 {
3411 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3412 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3413 	const struct efx_ef10_nvram_type_info *info;
3414 	size_t size, erase_size, outlen;
3415 	int type_idx = 0;
3416 	bool protected;
3417 	int rc;
3418 
3419 	for (type_idx = 0; ; type_idx++) {
3420 		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3421 			return -ENODEV;
3422 		info = efx_ef10_nvram_types + type_idx;
3423 		if ((type & ~info->type_mask) == info->type)
3424 			break;
3425 	}
3426 	if (info->port != efx_port_num(efx))
3427 		return -ENODEV;
3428 
3429 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3430 	if (rc)
3431 		return rc;
3432 	if (protected &&
3433 	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3434 	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3435 		/* Hide protected partitions that don't provide defaults. */
3436 		return -ENODEV;
3437 
3438 	if (protected)
3439 		/* Protected partitions are read only. */
3440 		erase_size = 0;
3441 
3442 	/* If we've already exposed a partition of this type, hide this
3443 	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3444 	 * so we can't act on the duplicate.
3445 	 */
3446 	if (__test_and_set_bit(type_idx, found))
3447 		return -EEXIST;
3448 
3449 	part->nvram_type = type;
3450 
3451 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3452 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3453 			  outbuf, sizeof(outbuf), &outlen);
3454 	if (rc)
3455 		return rc;
3456 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3457 		return -EIO;
3458 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3459 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3460 		part->fw_subtype = MCDI_DWORD(outbuf,
3461 					      NVRAM_METADATA_OUT_SUBTYPE);
3462 
3463 	part->common.dev_type_name = "EF10 NVRAM manager";
3464 	part->common.type_name = info->name;
3465 
3466 	part->common.mtd.type = MTD_NORFLASH;
3467 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3468 	part->common.mtd.size = size;
3469 	part->common.mtd.erasesize = erase_size;
3470 	/* sfc_status is read-only */
3471 	if (!erase_size)
3472 		part->common.mtd.flags |= MTD_NO_ERASE;
3473 
3474 	return 0;
3475 }
3476 
3477 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3478 {
3479 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3480 	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3481 	struct efx_mcdi_mtd_partition *parts;
3482 	size_t outlen, n_parts_total, i, n_parts;
3483 	unsigned int type;
3484 	int rc;
3485 
3486 	ASSERT_RTNL();
3487 
3488 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3489 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3490 			  outbuf, sizeof(outbuf), &outlen);
3491 	if (rc)
3492 		return rc;
3493 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3494 		return -EIO;
3495 
3496 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3497 	if (n_parts_total >
3498 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3499 		return -EIO;
3500 
3501 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3502 	if (!parts)
3503 		return -ENOMEM;
3504 
3505 	n_parts = 0;
3506 	for (i = 0; i < n_parts_total; i++) {
3507 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3508 					i);
3509 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3510 						  found);
3511 		if (rc == -EEXIST || rc == -ENODEV)
3512 			continue;
3513 		if (rc)
3514 			goto fail;
3515 		n_parts++;
3516 	}
3517 
3518 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3519 fail:
3520 	if (rc)
3521 		kfree(parts);
3522 	return rc;
3523 }
3524 
3525 #endif /* CONFIG_SFC_MTD */
3526 
3527 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3528 {
3529 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3530 }
3531 
3532 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3533 					    u32 host_time) {}
3534 
3535 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3536 					   bool temp)
3537 {
3538 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3539 	int rc;
3540 
3541 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3542 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3543 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3544 		return 0;
3545 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3546 
3547 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3548 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3549 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3550 		       channel->channel);
3551 
3552 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3553 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3554 
3555 	if (rc != 0)
3556 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3557 						    SYNC_EVENTS_DISABLED;
3558 
3559 	return rc;
3560 }
3561 
3562 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3563 					    bool temp)
3564 {
3565 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3566 	int rc;
3567 
3568 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3569 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3570 		return 0;
3571 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3572 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3573 		return 0;
3574 	}
3575 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3576 					    SYNC_EVENTS_DISABLED;
3577 
3578 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3579 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3580 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3581 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3582 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3583 		       channel->channel);
3584 
3585 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3586 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3587 
3588 	return rc;
3589 }
3590 
3591 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3592 					   bool temp)
3593 {
3594 	int (*set)(struct efx_channel *channel, bool temp);
3595 	struct efx_channel *channel;
3596 
3597 	set = en ?
3598 	      efx_ef10_rx_enable_timestamping :
3599 	      efx_ef10_rx_disable_timestamping;
3600 
3601 	channel = efx_ptp_channel(efx);
3602 	if (channel) {
3603 		int rc = set(channel, temp);
3604 		if (en && rc != 0) {
3605 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3606 			return rc;
3607 		}
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3614 					 struct hwtstamp_config *init)
3615 {
3616 	return -EOPNOTSUPP;
3617 }
3618 
3619 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3620 				      struct hwtstamp_config *init)
3621 {
3622 	int rc;
3623 
3624 	switch (init->rx_filter) {
3625 	case HWTSTAMP_FILTER_NONE:
3626 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3627 		/* if TX timestamping is still requested then leave PTP on */
3628 		return efx_ptp_change_mode(efx,
3629 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3630 	case HWTSTAMP_FILTER_ALL:
3631 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3632 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3633 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3634 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3635 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3636 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3637 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3638 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3639 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3640 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3641 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3642 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3643 	case HWTSTAMP_FILTER_NTP_ALL:
3644 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3645 		rc = efx_ptp_change_mode(efx, true, 0);
3646 		if (!rc)
3647 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3648 		if (rc)
3649 			efx_ptp_change_mode(efx, false, 0);
3650 		return rc;
3651 	default:
3652 		return -ERANGE;
3653 	}
3654 }
3655 
3656 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3657 				     struct netdev_phys_item_id *ppid)
3658 {
3659 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3660 
3661 	if (!is_valid_ether_addr(nic_data->port_id))
3662 		return -EOPNOTSUPP;
3663 
3664 	ppid->id_len = ETH_ALEN;
3665 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3666 
3667 	return 0;
3668 }
3669 
3670 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3671 {
3672 	if (proto != htons(ETH_P_8021Q))
3673 		return -EINVAL;
3674 
3675 	return efx_ef10_add_vlan(efx, vid);
3676 }
3677 
3678 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3679 {
3680 	if (proto != htons(ETH_P_8021Q))
3681 		return -EINVAL;
3682 
3683 	return efx_ef10_del_vlan(efx, vid);
3684 }
3685 
3686 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3687  * ports table, ensuring that any TSO descriptors that were made on a now-
3688  * removed tunnel port will be blown away and won't break things when we try
3689  * to transmit them using the new ports table.
3690  */
3691 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3692 {
3693 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3694 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3695 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3696 	bool will_reset = false;
3697 	size_t num_entries = 0;
3698 	size_t inlen, outlen;
3699 	size_t i;
3700 	int rc;
3701 	efx_dword_t flags_and_num_entries;
3702 
3703 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3704 
3705 	nic_data->udp_tunnels_dirty = false;
3706 
3707 	if (!(nic_data->datapath_caps &
3708 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3709 		efx_device_attach_if_not_resetting(efx);
3710 		return 0;
3711 	}
3712 
3713 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3714 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3715 
3716 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3717 		if (nic_data->udp_tunnels[i].type !=
3718 		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3719 			efx_dword_t entry;
3720 
3721 			EFX_POPULATE_DWORD_2(entry,
3722 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3723 					ntohs(nic_data->udp_tunnels[i].port),
3724 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3725 					nic_data->udp_tunnels[i].type);
3726 			*_MCDI_ARRAY_DWORD(inbuf,
3727 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3728 				num_entries++) = entry;
3729 		}
3730 	}
3731 
3732 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3733 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3734 		     EFX_WORD_1_LBN);
3735 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3736 		     EFX_WORD_1_WIDTH);
3737 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3738 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3739 				!!unloading,
3740 			     EFX_WORD_1, num_entries);
3741 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3742 		flags_and_num_entries;
3743 
3744 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3745 
3746 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3747 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3748 	if (rc == -EIO) {
3749 		/* Most likely the MC rebooted due to another function also
3750 		 * setting its tunnel port list. Mark the tunnel port list as
3751 		 * dirty, so it will be pushed upon coming up from the reboot.
3752 		 */
3753 		nic_data->udp_tunnels_dirty = true;
3754 		return 0;
3755 	}
3756 
3757 	if (rc) {
3758 		/* expected not available on unprivileged functions */
3759 		if (rc != -EPERM)
3760 			netif_warn(efx, drv, efx->net_dev,
3761 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3762 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3763 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3764 		netif_info(efx, drv, efx->net_dev,
3765 			   "Rebooting MC due to UDP tunnel port list change\n");
3766 		will_reset = true;
3767 		if (unloading)
3768 			/* Delay for the MC reset to complete. This will make
3769 			 * unloading other functions a bit smoother. This is a
3770 			 * race, but the other unload will work whichever way
3771 			 * it goes, this just avoids an unnecessary error
3772 			 * message.
3773 			 */
3774 			msleep(100);
3775 	}
3776 	if (!will_reset && !unloading) {
3777 		/* The caller will have detached, relying on the MC reset to
3778 		 * trigger a re-attach.  Since there won't be an MC reset, we
3779 		 * have to do the attach ourselves.
3780 		 */
3781 		efx_device_attach_if_not_resetting(efx);
3782 	}
3783 
3784 	return rc;
3785 }
3786 
3787 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3788 {
3789 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3790 	int rc = 0;
3791 
3792 	mutex_lock(&nic_data->udp_tunnels_lock);
3793 	if (nic_data->udp_tunnels_dirty) {
3794 		/* Make sure all TX are stopped while we modify the table, else
3795 		 * we might race against an efx_features_check().
3796 		 */
3797 		efx_device_detach_sync(efx);
3798 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3799 	}
3800 	mutex_unlock(&nic_data->udp_tunnels_lock);
3801 	return rc;
3802 }
3803 
3804 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3805 				     unsigned int table, unsigned int entry,
3806 				     struct udp_tunnel_info *ti)
3807 {
3808 	struct efx_nic *efx = netdev_priv(dev);
3809 	struct efx_ef10_nic_data *nic_data;
3810 	int efx_tunnel_type, rc;
3811 
3812 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3813 		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3814 	else
3815 		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3816 
3817 	nic_data = efx->nic_data;
3818 	if (!(nic_data->datapath_caps &
3819 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3820 		return -EOPNOTSUPP;
3821 
3822 	mutex_lock(&nic_data->udp_tunnels_lock);
3823 	/* Make sure all TX are stopped while we add to the table, else we
3824 	 * might race against an efx_features_check().
3825 	 */
3826 	efx_device_detach_sync(efx);
3827 	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3828 	nic_data->udp_tunnels[entry].port = ti->port;
3829 	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3830 	mutex_unlock(&nic_data->udp_tunnels_lock);
3831 
3832 	return rc;
3833 }
3834 
3835 /* Called under the TX lock with the TX queue running, hence no-one can be
3836  * in the middle of updating the UDP tunnels table.  However, they could
3837  * have tried and failed the MCDI, in which case they'll have set the dirty
3838  * flag before dropping their locks.
3839  */
3840 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3841 {
3842 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3843 	size_t i;
3844 
3845 	if (!(nic_data->datapath_caps &
3846 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3847 		return false;
3848 
3849 	if (nic_data->udp_tunnels_dirty)
3850 		/* SW table may not match HW state, so just assume we can't
3851 		 * use any UDP tunnel offloads.
3852 		 */
3853 		return false;
3854 
3855 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3856 		if (nic_data->udp_tunnels[i].type !=
3857 		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3858 		    nic_data->udp_tunnels[i].port == port)
3859 			return true;
3860 
3861 	return false;
3862 }
3863 
3864 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3865 				       unsigned int table, unsigned int entry,
3866 				       struct udp_tunnel_info *ti)
3867 {
3868 	struct efx_nic *efx = netdev_priv(dev);
3869 	struct efx_ef10_nic_data *nic_data;
3870 	int rc;
3871 
3872 	nic_data = efx->nic_data;
3873 
3874 	mutex_lock(&nic_data->udp_tunnels_lock);
3875 	/* Make sure all TX are stopped while we remove from the table, else we
3876 	 * might race against an efx_features_check().
3877 	 */
3878 	efx_device_detach_sync(efx);
3879 	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3880 	nic_data->udp_tunnels[entry].port = 0;
3881 	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3882 	mutex_unlock(&nic_data->udp_tunnels_lock);
3883 
3884 	return rc;
3885 }
3886 
3887 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3888 	.set_port	= efx_ef10_udp_tnl_set_port,
3889 	.unset_port	= efx_ef10_udp_tnl_unset_port,
3890 	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3891 	.tables         = {
3892 		{
3893 			.n_entries = 16,
3894 			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3895 					UDP_TUNNEL_TYPE_GENEVE,
3896 		},
3897 	},
3898 };
3899 
3900 /* EF10 may have multiple datapath firmware variants within a
3901  * single version.  Report which variants are running.
3902  */
3903 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3904 					      size_t len)
3905 {
3906 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3907 
3908 	return scnprintf(buf, len, " rx%x tx%x",
3909 			 nic_data->rx_dpcpu_fw_id,
3910 			 nic_data->tx_dpcpu_fw_id);
3911 }
3912 
3913 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3914 				    u8 flag,
3915 				    u32 offset)
3916 {
3917 	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3918 
3919 	switch (offset) {
3920 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3921 		return nic_data->datapath_caps & BIT_ULL(flag);
3922 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3923 		return nic_data->datapath_caps2 & BIT_ULL(flag);
3924 	default:
3925 		return 0;
3926 	}
3927 }
3928 
3929 #define EF10_OFFLOAD_FEATURES		\
3930 	(NETIF_F_IP_CSUM |		\
3931 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
3932 	 NETIF_F_IPV6_CSUM |		\
3933 	 NETIF_F_RXHASH |		\
3934 	 NETIF_F_NTUPLE)
3935 
3936 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3937 	.is_vf = true,
3938 	.mem_bar = efx_ef10_vf_mem_bar,
3939 	.mem_map_size = efx_ef10_mem_map_size,
3940 	.probe = efx_ef10_probe_vf,
3941 	.remove = efx_ef10_remove,
3942 	.dimension_resources = efx_ef10_dimension_resources,
3943 	.init = efx_ef10_init_nic,
3944 	.fini = efx_ef10_fini_nic,
3945 	.map_reset_reason = efx_ef10_map_reset_reason,
3946 	.map_reset_flags = efx_ef10_map_reset_flags,
3947 	.reset = efx_ef10_reset,
3948 	.probe_port = efx_mcdi_port_probe,
3949 	.remove_port = efx_mcdi_port_remove,
3950 	.fini_dmaq = efx_fini_dmaq,
3951 	.prepare_flr = efx_ef10_prepare_flr,
3952 	.finish_flr = efx_port_dummy_op_void,
3953 	.describe_stats = efx_ef10_describe_stats,
3954 	.update_stats = efx_ef10_update_stats_vf,
3955 	.start_stats = efx_port_dummy_op_void,
3956 	.pull_stats = efx_port_dummy_op_void,
3957 	.stop_stats = efx_port_dummy_op_void,
3958 	.set_id_led = efx_mcdi_set_id_led,
3959 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3960 	.reconfigure_mac = efx_ef10_mac_reconfigure,
3961 	.check_mac_fault = efx_mcdi_mac_check_fault,
3962 	.reconfigure_port = efx_mcdi_port_reconfigure,
3963 	.get_wol = efx_ef10_get_wol_vf,
3964 	.set_wol = efx_ef10_set_wol_vf,
3965 	.resume_wol = efx_port_dummy_op_void,
3966 	.mcdi_request = efx_ef10_mcdi_request,
3967 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3968 	.mcdi_read_response = efx_ef10_mcdi_read_response,
3969 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3970 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
3971 	.irq_enable_master = efx_port_dummy_op_void,
3972 	.irq_test_generate = efx_ef10_irq_test_generate,
3973 	.irq_disable_non_ev = efx_port_dummy_op_void,
3974 	.irq_handle_msi = efx_ef10_msi_interrupt,
3975 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3976 	.tx_probe = efx_ef10_tx_probe,
3977 	.tx_init = efx_ef10_tx_init,
3978 	.tx_remove = efx_mcdi_tx_remove,
3979 	.tx_write = efx_ef10_tx_write,
3980 	.tx_limit_len = efx_ef10_tx_limit_len,
3981 	.tx_enqueue = __efx_enqueue_skb,
3982 	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
3983 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
3984 	.rx_probe = efx_mcdi_rx_probe,
3985 	.rx_init = efx_mcdi_rx_init,
3986 	.rx_remove = efx_mcdi_rx_remove,
3987 	.rx_write = efx_ef10_rx_write,
3988 	.rx_defer_refill = efx_ef10_rx_defer_refill,
3989 	.rx_packet = __efx_rx_packet,
3990 	.ev_probe = efx_mcdi_ev_probe,
3991 	.ev_init = efx_ef10_ev_init,
3992 	.ev_fini = efx_mcdi_ev_fini,
3993 	.ev_remove = efx_mcdi_ev_remove,
3994 	.ev_process = efx_ef10_ev_process,
3995 	.ev_read_ack = efx_ef10_ev_read_ack,
3996 	.ev_test_generate = efx_ef10_ev_test_generate,
3997 	.filter_table_probe = efx_ef10_filter_table_probe,
3998 	.filter_table_restore = efx_mcdi_filter_table_restore,
3999 	.filter_table_remove = efx_mcdi_filter_table_remove,
4000 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4001 	.filter_insert = efx_mcdi_filter_insert,
4002 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4003 	.filter_get_safe = efx_mcdi_filter_get_safe,
4004 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4005 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4006 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4007 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4008 #ifdef CONFIG_RFS_ACCEL
4009 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4010 #endif
4011 #ifdef CONFIG_SFC_MTD
4012 	.mtd_probe = efx_port_dummy_op_int,
4013 #endif
4014 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4015 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4016 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4017 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4018 #ifdef CONFIG_SFC_SRIOV
4019 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4020 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4021 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4022 #endif
4023 	.get_mac_address = efx_ef10_get_mac_address_vf,
4024 	.set_mac_address = efx_ef10_set_mac_address,
4025 
4026 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4027 	.revision = EFX_REV_HUNT_A0,
4028 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4029 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4030 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4031 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4032 	.can_rx_scatter = true,
4033 	.always_rx_scatter = true,
4034 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4035 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4036 	.offload_features = EF10_OFFLOAD_FEATURES,
4037 	.mcdi_max_ver = 2,
4038 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4039 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4040 			    1 << HWTSTAMP_FILTER_ALL,
4041 	.rx_hash_key_size = 40,
4042 	.check_caps = ef10_check_caps,
4043 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4044 	.sensor_event = efx_mcdi_sensor_event,
4045 };
4046 
4047 const struct efx_nic_type efx_hunt_a0_nic_type = {
4048 	.is_vf = false,
4049 	.mem_bar = efx_ef10_pf_mem_bar,
4050 	.mem_map_size = efx_ef10_mem_map_size,
4051 	.probe = efx_ef10_probe_pf,
4052 	.remove = efx_ef10_remove,
4053 	.dimension_resources = efx_ef10_dimension_resources,
4054 	.init = efx_ef10_init_nic,
4055 	.fini = efx_ef10_fini_nic,
4056 	.map_reset_reason = efx_ef10_map_reset_reason,
4057 	.map_reset_flags = efx_ef10_map_reset_flags,
4058 	.reset = efx_ef10_reset,
4059 	.probe_port = efx_mcdi_port_probe,
4060 	.remove_port = efx_mcdi_port_remove,
4061 	.fini_dmaq = efx_fini_dmaq,
4062 	.prepare_flr = efx_ef10_prepare_flr,
4063 	.finish_flr = efx_port_dummy_op_void,
4064 	.describe_stats = efx_ef10_describe_stats,
4065 	.update_stats = efx_ef10_update_stats_pf,
4066 	.start_stats = efx_mcdi_mac_start_stats,
4067 	.pull_stats = efx_mcdi_mac_pull_stats,
4068 	.stop_stats = efx_mcdi_mac_stop_stats,
4069 	.set_id_led = efx_mcdi_set_id_led,
4070 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4071 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4072 	.check_mac_fault = efx_mcdi_mac_check_fault,
4073 	.reconfigure_port = efx_mcdi_port_reconfigure,
4074 	.get_wol = efx_ef10_get_wol,
4075 	.set_wol = efx_ef10_set_wol,
4076 	.resume_wol = efx_port_dummy_op_void,
4077 	.test_chip = efx_ef10_test_chip,
4078 	.test_nvram = efx_mcdi_nvram_test_all,
4079 	.mcdi_request = efx_ef10_mcdi_request,
4080 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4081 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4082 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4083 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4084 	.irq_enable_master = efx_port_dummy_op_void,
4085 	.irq_test_generate = efx_ef10_irq_test_generate,
4086 	.irq_disable_non_ev = efx_port_dummy_op_void,
4087 	.irq_handle_msi = efx_ef10_msi_interrupt,
4088 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4089 	.tx_probe = efx_ef10_tx_probe,
4090 	.tx_init = efx_ef10_tx_init,
4091 	.tx_remove = efx_mcdi_tx_remove,
4092 	.tx_write = efx_ef10_tx_write,
4093 	.tx_limit_len = efx_ef10_tx_limit_len,
4094 	.tx_enqueue = __efx_enqueue_skb,
4095 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4096 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4097 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4098 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4099 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4100 	.rx_probe = efx_mcdi_rx_probe,
4101 	.rx_init = efx_mcdi_rx_init,
4102 	.rx_remove = efx_mcdi_rx_remove,
4103 	.rx_write = efx_ef10_rx_write,
4104 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4105 	.rx_packet = __efx_rx_packet,
4106 	.ev_probe = efx_mcdi_ev_probe,
4107 	.ev_init = efx_ef10_ev_init,
4108 	.ev_fini = efx_mcdi_ev_fini,
4109 	.ev_remove = efx_mcdi_ev_remove,
4110 	.ev_process = efx_ef10_ev_process,
4111 	.ev_read_ack = efx_ef10_ev_read_ack,
4112 	.ev_test_generate = efx_ef10_ev_test_generate,
4113 	.filter_table_probe = efx_ef10_filter_table_probe,
4114 	.filter_table_restore = efx_mcdi_filter_table_restore,
4115 	.filter_table_remove = efx_mcdi_filter_table_remove,
4116 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4117 	.filter_insert = efx_mcdi_filter_insert,
4118 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4119 	.filter_get_safe = efx_mcdi_filter_get_safe,
4120 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4121 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4122 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4123 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4124 #ifdef CONFIG_RFS_ACCEL
4125 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4126 #endif
4127 #ifdef CONFIG_SFC_MTD
4128 	.mtd_probe = efx_ef10_mtd_probe,
4129 	.mtd_rename = efx_mcdi_mtd_rename,
4130 	.mtd_read = efx_mcdi_mtd_read,
4131 	.mtd_erase = efx_mcdi_mtd_erase,
4132 	.mtd_write = efx_mcdi_mtd_write,
4133 	.mtd_sync = efx_mcdi_mtd_sync,
4134 #endif
4135 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4136 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4137 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4138 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4141 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4142 #ifdef CONFIG_SFC_SRIOV
4143 	.sriov_configure = efx_ef10_sriov_configure,
4144 	.sriov_init = efx_ef10_sriov_init,
4145 	.sriov_fini = efx_ef10_sriov_fini,
4146 	.sriov_wanted = efx_ef10_sriov_wanted,
4147 	.sriov_reset = efx_ef10_sriov_reset,
4148 	.sriov_flr = efx_ef10_sriov_flr,
4149 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4150 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4151 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4152 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4153 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4154 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4155 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4156 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4157 #endif
4158 	.get_mac_address = efx_ef10_get_mac_address_pf,
4159 	.set_mac_address = efx_ef10_set_mac_address,
4160 	.tso_versions = efx_ef10_tso_versions,
4161 
4162 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4163 	.revision = EFX_REV_HUNT_A0,
4164 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4165 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4166 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4167 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4168 	.can_rx_scatter = true,
4169 	.always_rx_scatter = true,
4170 	.option_descriptors = true,
4171 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4172 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4173 	.offload_features = EF10_OFFLOAD_FEATURES,
4174 	.mcdi_max_ver = 2,
4175 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4176 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4177 			    1 << HWTSTAMP_FILTER_ALL,
4178 	.rx_hash_key_size = 40,
4179 	.check_caps = ef10_check_caps,
4180 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4181 	.sensor_event = efx_mcdi_sensor_event,
4182 };
4183