xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision e2f1cf25)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 struct efx_ef10_filter_table {
53 /* The RX match field masks supported by this fw & hw, in order of priority */
54 	enum efx_filter_match_flags rx_match_flags[
55 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
56 	unsigned int rx_match_count;
57 
58 	struct {
59 		unsigned long spec;	/* pointer to spec plus flag bits */
60 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
61  * used to mark and sweep MAC filters for the device address lists.
62  */
63 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
64 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
65 #define EFX_EF10_FILTER_FLAGS		3UL
66 		u64 handle;		/* firmware handle */
67 	} *entry;
68 	wait_queue_head_t waitq;
69 /* Shadow of net_device address lists, guarded by mac_lock */
70 #define EFX_EF10_FILTER_DEV_UC_MAX	32
71 #define EFX_EF10_FILTER_DEV_MC_MAX	256
72 	struct {
73 		u8 addr[ETH_ALEN];
74 		u16 id;
75 	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
76 	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
77 	int dev_uc_count;		/* negative for PROMISC */
78 	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
79 };
80 
81 /* An arbitrary search limit for the software hash table */
82 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
83 
84 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
85 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
86 
87 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
88 {
89 	efx_dword_t reg;
90 
91 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
92 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
93 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
94 }
95 
96 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
97 {
98 	int bar;
99 
100 	bar = efx->type->mem_bar;
101 	return resource_size(&efx->pci_dev->resource[bar]);
102 }
103 
104 static bool efx_ef10_is_vf(struct efx_nic *efx)
105 {
106 	return efx->type->is_vf;
107 }
108 
109 static int efx_ef10_get_pf_index(struct efx_nic *efx)
110 {
111 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
112 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
113 	size_t outlen;
114 	int rc;
115 
116 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
117 			  sizeof(outbuf), &outlen);
118 	if (rc)
119 		return rc;
120 	if (outlen < sizeof(outbuf))
121 		return -EIO;
122 
123 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
124 	return 0;
125 }
126 
127 #ifdef CONFIG_SFC_SRIOV
128 static int efx_ef10_get_vf_index(struct efx_nic *efx)
129 {
130 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
131 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
132 	size_t outlen;
133 	int rc;
134 
135 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
136 			  sizeof(outbuf), &outlen);
137 	if (rc)
138 		return rc;
139 	if (outlen < sizeof(outbuf))
140 		return -EIO;
141 
142 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
143 	return 0;
144 }
145 #endif
146 
147 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
148 {
149 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
150 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
151 	size_t outlen;
152 	int rc;
153 
154 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
155 
156 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
157 			  outbuf, sizeof(outbuf), &outlen);
158 	if (rc)
159 		return rc;
160 	if (outlen < sizeof(outbuf)) {
161 		netif_err(efx, drv, efx->net_dev,
162 			  "unable to read datapath firmware capabilities\n");
163 		return -EIO;
164 	}
165 
166 	nic_data->datapath_caps =
167 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
168 
169 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
170 	 */
171 	nic_data->rx_dpcpu_fw_id =
172 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
173 	nic_data->tx_dpcpu_fw_id =
174 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
175 
176 	if (!(nic_data->datapath_caps &
177 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
178 		netif_err(efx, drv, efx->net_dev,
179 			  "current firmware does not support TSO\n");
180 		return -ENODEV;
181 	}
182 
183 	if (!(nic_data->datapath_caps &
184 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
185 		netif_err(efx, probe, efx->net_dev,
186 			  "current firmware does not support an RX prefix\n");
187 		return -ENODEV;
188 	}
189 
190 	return 0;
191 }
192 
193 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
194 {
195 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
196 	int rc;
197 
198 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
199 			  outbuf, sizeof(outbuf), NULL);
200 	if (rc)
201 		return rc;
202 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
203 	return rc > 0 ? rc : -ERANGE;
204 }
205 
206 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
207 {
208 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
209 	size_t outlen;
210 	int rc;
211 
212 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
213 
214 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
215 			  outbuf, sizeof(outbuf), &outlen);
216 	if (rc)
217 		return rc;
218 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
219 		return -EIO;
220 
221 	ether_addr_copy(mac_address,
222 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
223 	return 0;
224 }
225 
226 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
227 {
228 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
229 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
230 	size_t outlen;
231 	int num_addrs, rc;
232 
233 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
234 		       EVB_PORT_ID_ASSIGNED);
235 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
236 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
237 
238 	if (rc)
239 		return rc;
240 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
241 		return -EIO;
242 
243 	num_addrs = MCDI_DWORD(outbuf,
244 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
245 
246 	WARN_ON(num_addrs != 1);
247 
248 	ether_addr_copy(mac_address,
249 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
250 
251 	return 0;
252 }
253 
254 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
255 					       struct device_attribute *attr,
256 					       char *buf)
257 {
258 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
259 
260 	return sprintf(buf, "%d\n",
261 		       ((efx->mcdi->fn_flags) &
262 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
263 		       ? 1 : 0);
264 }
265 
266 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
271 
272 	return sprintf(buf, "%d\n",
273 		       ((efx->mcdi->fn_flags) &
274 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
275 		       ? 1 : 0);
276 }
277 
278 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
279 		   NULL);
280 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
281 
282 static int efx_ef10_probe(struct efx_nic *efx)
283 {
284 	struct efx_ef10_nic_data *nic_data;
285 	struct net_device *net_dev = efx->net_dev;
286 	int i, rc;
287 
288 	/* We can have one VI for each 8K region.  However, until we
289 	 * use TX option descriptors we need two TX queues per channel.
290 	 */
291 	efx->max_channels =
292 		min_t(unsigned int,
293 		      EFX_MAX_CHANNELS,
294 		      efx_ef10_mem_map_size(efx) /
295 		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
296 	if (WARN_ON(efx->max_channels == 0))
297 		return -EIO;
298 
299 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
300 	if (!nic_data)
301 		return -ENOMEM;
302 	efx->nic_data = nic_data;
303 
304 	/* we assume later that we can copy from this buffer in dwords */
305 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
306 
307 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
308 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
309 	if (rc)
310 		goto fail1;
311 
312 	/* Get the MC's warm boot count.  In case it's rebooting right
313 	 * now, be prepared to retry.
314 	 */
315 	i = 0;
316 	for (;;) {
317 		rc = efx_ef10_get_warm_boot_count(efx);
318 		if (rc >= 0)
319 			break;
320 		if (++i == 5)
321 			goto fail2;
322 		ssleep(1);
323 	}
324 	nic_data->warm_boot_count = rc;
325 
326 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
327 
328 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
329 
330 	/* In case we're recovering from a crash (kexec), we want to
331 	 * cancel any outstanding request by the previous user of this
332 	 * function.  We send a special message using the least
333 	 * significant bits of the 'high' (doorbell) register.
334 	 */
335 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
336 
337 	rc = efx_mcdi_init(efx);
338 	if (rc)
339 		goto fail2;
340 
341 	/* Reset (most) configuration for this function */
342 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
343 	if (rc)
344 		goto fail3;
345 
346 	/* Enable event logging */
347 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
348 	if (rc)
349 		goto fail3;
350 
351 	rc = device_create_file(&efx->pci_dev->dev,
352 				&dev_attr_link_control_flag);
353 	if (rc)
354 		goto fail3;
355 
356 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
357 	if (rc)
358 		goto fail4;
359 
360 	rc = efx_ef10_get_pf_index(efx);
361 	if (rc)
362 		goto fail5;
363 
364 	rc = efx_ef10_init_datapath_caps(efx);
365 	if (rc < 0)
366 		goto fail5;
367 
368 	efx->rx_packet_len_offset =
369 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
370 
371 	rc = efx_mcdi_port_get_number(efx);
372 	if (rc < 0)
373 		goto fail5;
374 	efx->port_num = rc;
375 	net_dev->dev_port = rc;
376 
377 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
378 	if (rc)
379 		goto fail5;
380 
381 	rc = efx_ef10_get_sysclk_freq(efx);
382 	if (rc < 0)
383 		goto fail5;
384 	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
385 
386 	/* Check whether firmware supports bug 35388 workaround.
387 	 * First try to enable it, then if we get EPERM, just
388 	 * ask if it's already enabled
389 	 */
390 	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
391 	if (rc == 0) {
392 		nic_data->workaround_35388 = true;
393 	} else if (rc == -EPERM) {
394 		unsigned int enabled;
395 
396 		rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
397 		if (rc)
398 			goto fail3;
399 		nic_data->workaround_35388 = enabled &
400 			MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
401 	} else if (rc != -ENOSYS && rc != -ENOENT) {
402 		goto fail5;
403 	}
404 	netif_dbg(efx, probe, efx->net_dev,
405 		  "workaround for bug 35388 is %sabled\n",
406 		  nic_data->workaround_35388 ? "en" : "dis");
407 
408 	rc = efx_mcdi_mon_probe(efx);
409 	if (rc && rc != -EPERM)
410 		goto fail5;
411 
412 	efx_ptp_probe(efx, NULL);
413 
414 #ifdef CONFIG_SFC_SRIOV
415 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
416 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
417 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
418 
419 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
420 	} else
421 #endif
422 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
423 
424 	return 0;
425 
426 fail5:
427 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
428 fail4:
429 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
430 fail3:
431 	efx_mcdi_fini(efx);
432 fail2:
433 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
434 fail1:
435 	kfree(nic_data);
436 	efx->nic_data = NULL;
437 	return rc;
438 }
439 
440 static int efx_ef10_free_vis(struct efx_nic *efx)
441 {
442 	MCDI_DECLARE_BUF_ERR(outbuf);
443 	size_t outlen;
444 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
445 				    outbuf, sizeof(outbuf), &outlen);
446 
447 	/* -EALREADY means nothing to free, so ignore */
448 	if (rc == -EALREADY)
449 		rc = 0;
450 	if (rc)
451 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
452 				       rc);
453 	return rc;
454 }
455 
456 #ifdef EFX_USE_PIO
457 
458 static void efx_ef10_free_piobufs(struct efx_nic *efx)
459 {
460 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
461 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
462 	unsigned int i;
463 	int rc;
464 
465 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
466 
467 	for (i = 0; i < nic_data->n_piobufs; i++) {
468 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
469 			       nic_data->piobuf_handle[i]);
470 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
471 				  NULL, 0, NULL);
472 		WARN_ON(rc);
473 	}
474 
475 	nic_data->n_piobufs = 0;
476 }
477 
478 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
479 {
480 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
481 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
482 	unsigned int i;
483 	size_t outlen;
484 	int rc = 0;
485 
486 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
487 
488 	for (i = 0; i < n; i++) {
489 		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
490 				  outbuf, sizeof(outbuf), &outlen);
491 		if (rc)
492 			break;
493 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
494 			rc = -EIO;
495 			break;
496 		}
497 		nic_data->piobuf_handle[i] =
498 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
499 		netif_dbg(efx, probe, efx->net_dev,
500 			  "allocated PIO buffer %u handle %x\n", i,
501 			  nic_data->piobuf_handle[i]);
502 	}
503 
504 	nic_data->n_piobufs = i;
505 	if (rc)
506 		efx_ef10_free_piobufs(efx);
507 	return rc;
508 }
509 
510 static int efx_ef10_link_piobufs(struct efx_nic *efx)
511 {
512 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
513 	_MCDI_DECLARE_BUF(inbuf,
514 			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
515 			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
516 	struct efx_channel *channel;
517 	struct efx_tx_queue *tx_queue;
518 	unsigned int offset, index;
519 	int rc;
520 
521 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
522 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
523 
524 	memset(inbuf, 0, sizeof(inbuf));
525 
526 	/* Link a buffer to each VI in the write-combining mapping */
527 	for (index = 0; index < nic_data->n_piobufs; ++index) {
528 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
529 			       nic_data->piobuf_handle[index]);
530 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
531 			       nic_data->pio_write_vi_base + index);
532 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
533 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
534 				  NULL, 0, NULL);
535 		if (rc) {
536 			netif_err(efx, drv, efx->net_dev,
537 				  "failed to link VI %u to PIO buffer %u (%d)\n",
538 				  nic_data->pio_write_vi_base + index, index,
539 				  rc);
540 			goto fail;
541 		}
542 		netif_dbg(efx, probe, efx->net_dev,
543 			  "linked VI %u to PIO buffer %u\n",
544 			  nic_data->pio_write_vi_base + index, index);
545 	}
546 
547 	/* Link a buffer to each TX queue */
548 	efx_for_each_channel(channel, efx) {
549 		efx_for_each_channel_tx_queue(tx_queue, channel) {
550 			/* We assign the PIO buffers to queues in
551 			 * reverse order to allow for the following
552 			 * special case.
553 			 */
554 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
555 				   tx_queue->channel->channel - 1) *
556 				  efx_piobuf_size);
557 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
558 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
559 
560 			/* When the host page size is 4K, the first
561 			 * host page in the WC mapping may be within
562 			 * the same VI page as the last TX queue.  We
563 			 * can only link one buffer to each VI.
564 			 */
565 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
566 				BUG_ON(index != 0);
567 				rc = 0;
568 			} else {
569 				MCDI_SET_DWORD(inbuf,
570 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
571 					       nic_data->piobuf_handle[index]);
572 				MCDI_SET_DWORD(inbuf,
573 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
574 					       tx_queue->queue);
575 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
576 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
577 						  NULL, 0, NULL);
578 			}
579 
580 			if (rc) {
581 				/* This is non-fatal; the TX path just
582 				 * won't use PIO for this queue
583 				 */
584 				netif_err(efx, drv, efx->net_dev,
585 					  "failed to link VI %u to PIO buffer %u (%d)\n",
586 					  tx_queue->queue, index, rc);
587 				tx_queue->piobuf = NULL;
588 			} else {
589 				tx_queue->piobuf =
590 					nic_data->pio_write_base +
591 					index * EFX_VI_PAGE_SIZE + offset;
592 				tx_queue->piobuf_offset = offset;
593 				netif_dbg(efx, probe, efx->net_dev,
594 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
595 					  tx_queue->queue, index,
596 					  tx_queue->piobuf_offset,
597 					  tx_queue->piobuf);
598 			}
599 		}
600 	}
601 
602 	return 0;
603 
604 fail:
605 	while (index--) {
606 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
607 			       nic_data->pio_write_vi_base + index);
608 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
609 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
610 			     NULL, 0, NULL);
611 	}
612 	return rc;
613 }
614 
615 #else /* !EFX_USE_PIO */
616 
617 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
618 {
619 	return n == 0 ? 0 : -ENOBUFS;
620 }
621 
622 static int efx_ef10_link_piobufs(struct efx_nic *efx)
623 {
624 	return 0;
625 }
626 
627 static void efx_ef10_free_piobufs(struct efx_nic *efx)
628 {
629 }
630 
631 #endif /* EFX_USE_PIO */
632 
633 static void efx_ef10_remove(struct efx_nic *efx)
634 {
635 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
636 	int rc;
637 
638 #ifdef CONFIG_SFC_SRIOV
639 	struct efx_ef10_nic_data *nic_data_pf;
640 	struct pci_dev *pci_dev_pf;
641 	struct efx_nic *efx_pf;
642 	struct ef10_vf *vf;
643 
644 	if (efx->pci_dev->is_virtfn) {
645 		pci_dev_pf = efx->pci_dev->physfn;
646 		if (pci_dev_pf) {
647 			efx_pf = pci_get_drvdata(pci_dev_pf);
648 			nic_data_pf = efx_pf->nic_data;
649 			vf = nic_data_pf->vf + nic_data->vf_index;
650 			vf->efx = NULL;
651 		} else
652 			netif_info(efx, drv, efx->net_dev,
653 				   "Could not get the PF id from VF\n");
654 	}
655 #endif
656 
657 	efx_ptp_remove(efx);
658 
659 	efx_mcdi_mon_remove(efx);
660 
661 	efx_ef10_rx_free_indir_table(efx);
662 
663 	if (nic_data->wc_membase)
664 		iounmap(nic_data->wc_membase);
665 
666 	rc = efx_ef10_free_vis(efx);
667 	WARN_ON(rc != 0);
668 
669 	if (!nic_data->must_restore_piobufs)
670 		efx_ef10_free_piobufs(efx);
671 
672 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
673 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
674 
675 	efx_mcdi_fini(efx);
676 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
677 	kfree(nic_data);
678 }
679 
680 static int efx_ef10_probe_pf(struct efx_nic *efx)
681 {
682 	return efx_ef10_probe(efx);
683 }
684 
685 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
686 {
687 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
688 
689 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
690 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
691 			    NULL, 0, NULL);
692 }
693 
694 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
695 {
696 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
697 
698 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
699 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
700 			    NULL, 0, NULL);
701 }
702 
703 int efx_ef10_vport_add_mac(struct efx_nic *efx,
704 			   unsigned int port_id, u8 *mac)
705 {
706 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
707 
708 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
709 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
710 
711 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
712 			    sizeof(inbuf), NULL, 0, NULL);
713 }
714 
715 int efx_ef10_vport_del_mac(struct efx_nic *efx,
716 			   unsigned int port_id, u8 *mac)
717 {
718 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
719 
720 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
721 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
722 
723 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
724 			    sizeof(inbuf), NULL, 0, NULL);
725 }
726 
727 #ifdef CONFIG_SFC_SRIOV
728 static int efx_ef10_probe_vf(struct efx_nic *efx)
729 {
730 	int rc;
731 	struct pci_dev *pci_dev_pf;
732 
733 	/* If the parent PF has no VF data structure, it doesn't know about this
734 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
735 	 * if the PF driver is unloaded while the VF is assigned to a guest.
736 	 */
737 	pci_dev_pf = efx->pci_dev->physfn;
738 	if (pci_dev_pf) {
739 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
740 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
741 
742 		if (!nic_data_pf->vf) {
743 			netif_info(efx, drv, efx->net_dev,
744 				   "The VF cannot link to its parent PF; "
745 				   "please destroy and re-create the VF\n");
746 			return -EBUSY;
747 		}
748 	}
749 
750 	rc = efx_ef10_probe(efx);
751 	if (rc)
752 		return rc;
753 
754 	rc = efx_ef10_get_vf_index(efx);
755 	if (rc)
756 		goto fail;
757 
758 	if (efx->pci_dev->is_virtfn) {
759 		if (efx->pci_dev->physfn) {
760 			struct efx_nic *efx_pf =
761 				pci_get_drvdata(efx->pci_dev->physfn);
762 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
763 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
764 
765 			nic_data_p->vf[nic_data->vf_index].efx = efx;
766 			nic_data_p->vf[nic_data->vf_index].pci_dev =
767 				efx->pci_dev;
768 		} else
769 			netif_info(efx, drv, efx->net_dev,
770 				   "Could not get the PF id from VF\n");
771 	}
772 
773 	return 0;
774 
775 fail:
776 	efx_ef10_remove(efx);
777 	return rc;
778 }
779 #else
780 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
781 {
782 	return 0;
783 }
784 #endif
785 
786 static int efx_ef10_alloc_vis(struct efx_nic *efx,
787 			      unsigned int min_vis, unsigned int max_vis)
788 {
789 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
790 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
791 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
792 	size_t outlen;
793 	int rc;
794 
795 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
796 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
797 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
798 			  outbuf, sizeof(outbuf), &outlen);
799 	if (rc != 0)
800 		return rc;
801 
802 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
803 		return -EIO;
804 
805 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
806 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
807 
808 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
809 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
810 	return 0;
811 }
812 
813 /* Note that the failure path of this function does not free
814  * resources, as this will be done by efx_ef10_remove().
815  */
816 static int efx_ef10_dimension_resources(struct efx_nic *efx)
817 {
818 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
819 	unsigned int uc_mem_map_size, wc_mem_map_size;
820 	unsigned int min_vis, pio_write_vi_base, max_vis;
821 	void __iomem *membase;
822 	int rc;
823 
824 	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
825 
826 #ifdef EFX_USE_PIO
827 	/* Try to allocate PIO buffers if wanted and if the full
828 	 * number of PIO buffers would be sufficient to allocate one
829 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
830 	 * are only a small number of PIO buffers shared between all
831 	 * functions of the controller.
832 	 */
833 	if (efx_piobuf_size != 0 &&
834 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
835 	    efx->n_tx_channels) {
836 		unsigned int n_piobufs =
837 			DIV_ROUND_UP(efx->n_tx_channels,
838 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
839 
840 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
841 		if (rc)
842 			netif_err(efx, probe, efx->net_dev,
843 				  "failed to allocate PIO buffers (%d)\n", rc);
844 		else
845 			netif_dbg(efx, probe, efx->net_dev,
846 				  "allocated %u PIO buffers\n", n_piobufs);
847 	}
848 #else
849 	nic_data->n_piobufs = 0;
850 #endif
851 
852 	/* PIO buffers should be mapped with write-combining enabled,
853 	 * and we want to make single UC and WC mappings rather than
854 	 * several of each (in fact that's the only option if host
855 	 * page size is >4K).  So we may allocate some extra VIs just
856 	 * for writing PIO buffers through.
857 	 *
858 	 * The UC mapping contains (min_vis - 1) complete VIs and the
859 	 * first half of the next VI.  Then the WC mapping begins with
860 	 * the second half of this last VI.
861 	 */
862 	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
863 				     ER_DZ_TX_PIOBUF);
864 	if (nic_data->n_piobufs) {
865 		/* pio_write_vi_base rounds down to give the number of complete
866 		 * VIs inside the UC mapping.
867 		 */
868 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
869 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
870 					       nic_data->n_piobufs) *
871 					      EFX_VI_PAGE_SIZE) -
872 				   uc_mem_map_size);
873 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
874 	} else {
875 		pio_write_vi_base = 0;
876 		wc_mem_map_size = 0;
877 		max_vis = min_vis;
878 	}
879 
880 	/* In case the last attached driver failed to free VIs, do it now */
881 	rc = efx_ef10_free_vis(efx);
882 	if (rc != 0)
883 		return rc;
884 
885 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
886 	if (rc != 0)
887 		return rc;
888 
889 	/* If we didn't get enough VIs to map all the PIO buffers, free the
890 	 * PIO buffers
891 	 */
892 	if (nic_data->n_piobufs &&
893 	    nic_data->n_allocated_vis <
894 	    pio_write_vi_base + nic_data->n_piobufs) {
895 		netif_dbg(efx, probe, efx->net_dev,
896 			  "%u VIs are not sufficient to map %u PIO buffers\n",
897 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
898 		efx_ef10_free_piobufs(efx);
899 	}
900 
901 	/* Shrink the original UC mapping of the memory BAR */
902 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
903 	if (!membase) {
904 		netif_err(efx, probe, efx->net_dev,
905 			  "could not shrink memory BAR to %x\n",
906 			  uc_mem_map_size);
907 		return -ENOMEM;
908 	}
909 	iounmap(efx->membase);
910 	efx->membase = membase;
911 
912 	/* Set up the WC mapping if needed */
913 	if (wc_mem_map_size) {
914 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
915 						  uc_mem_map_size,
916 						  wc_mem_map_size);
917 		if (!nic_data->wc_membase) {
918 			netif_err(efx, probe, efx->net_dev,
919 				  "could not allocate WC mapping of size %x\n",
920 				  wc_mem_map_size);
921 			return -ENOMEM;
922 		}
923 		nic_data->pio_write_vi_base = pio_write_vi_base;
924 		nic_data->pio_write_base =
925 			nic_data->wc_membase +
926 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
927 			 uc_mem_map_size);
928 
929 		rc = efx_ef10_link_piobufs(efx);
930 		if (rc)
931 			efx_ef10_free_piobufs(efx);
932 	}
933 
934 	netif_dbg(efx, probe, efx->net_dev,
935 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
936 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
937 		  nic_data->wc_membase, wc_mem_map_size);
938 
939 	return 0;
940 }
941 
942 static int efx_ef10_init_nic(struct efx_nic *efx)
943 {
944 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
945 	int rc;
946 
947 	if (nic_data->must_check_datapath_caps) {
948 		rc = efx_ef10_init_datapath_caps(efx);
949 		if (rc)
950 			return rc;
951 		nic_data->must_check_datapath_caps = false;
952 	}
953 
954 	if (nic_data->must_realloc_vis) {
955 		/* We cannot let the number of VIs change now */
956 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
957 					nic_data->n_allocated_vis);
958 		if (rc)
959 			return rc;
960 		nic_data->must_realloc_vis = false;
961 	}
962 
963 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
964 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
965 		if (rc == 0) {
966 			rc = efx_ef10_link_piobufs(efx);
967 			if (rc)
968 				efx_ef10_free_piobufs(efx);
969 		}
970 
971 		/* Log an error on failure, but this is non-fatal */
972 		if (rc)
973 			netif_err(efx, drv, efx->net_dev,
974 				  "failed to restore PIO buffers (%d)\n", rc);
975 		nic_data->must_restore_piobufs = false;
976 	}
977 
978 	/* don't fail init if RSS setup doesn't work */
979 	efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
980 
981 	return 0;
982 }
983 
984 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
985 {
986 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
987 
988 	/* All our allocations have been reset */
989 	nic_data->must_realloc_vis = true;
990 	nic_data->must_restore_filters = true;
991 	nic_data->must_restore_piobufs = true;
992 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
993 }
994 
995 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
996 {
997 	if (reason == RESET_TYPE_MC_FAILURE)
998 		return RESET_TYPE_DATAPATH;
999 
1000 	return efx_mcdi_map_reset_reason(reason);
1001 }
1002 
1003 static int efx_ef10_map_reset_flags(u32 *flags)
1004 {
1005 	enum {
1006 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1007 				   ETH_RESET_SHARED_SHIFT),
1008 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1009 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1010 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1011 				 ETH_RESET_SHARED_SHIFT)
1012 	};
1013 
1014 	/* We assume for now that our PCI function is permitted to
1015 	 * reset everything.
1016 	 */
1017 
1018 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1019 		*flags &= ~EF10_RESET_MC;
1020 		return RESET_TYPE_WORLD;
1021 	}
1022 
1023 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1024 		*flags &= ~EF10_RESET_PORT;
1025 		return RESET_TYPE_ALL;
1026 	}
1027 
1028 	/* no invisible reset implemented */
1029 
1030 	return -EINVAL;
1031 }
1032 
1033 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1034 {
1035 	int rc = efx_mcdi_reset(efx, reset_type);
1036 
1037 	/* If it was a port reset, trigger reallocation of MC resources.
1038 	 * Note that on an MC reset nothing needs to be done now because we'll
1039 	 * detect the MC reset later and handle it then.
1040 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1041 	 * resources assigned to us, so we have to trigger reallocation now.
1042 	 */
1043 	if ((reset_type == RESET_TYPE_ALL ||
1044 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1045 		efx_ef10_reset_mc_allocations(efx);
1046 	return rc;
1047 }
1048 
1049 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1050 	[EF10_STAT_ ## ext_name] =				\
1051 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1052 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1053 	[EF10_STAT_ ## int_name] =				\
1054 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1055 #define EF10_OTHER_STAT(ext_name)				\
1056 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1057 #define GENERIC_SW_STAT(ext_name)				\
1058 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1059 
1060 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1061 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1062 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1063 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1064 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1065 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1066 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1067 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1068 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1069 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1070 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1071 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1072 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1073 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1074 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1075 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1076 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1077 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1078 	EF10_OTHER_STAT(port_rx_good_bytes),
1079 	EF10_OTHER_STAT(port_rx_bad_bytes),
1080 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1081 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1082 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1083 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1084 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1085 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1086 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1087 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1088 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1089 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1090 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1091 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1092 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1093 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1094 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1095 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1096 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1097 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1098 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1099 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1100 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1101 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1102 	GENERIC_SW_STAT(rx_nodesc_trunc),
1103 	GENERIC_SW_STAT(rx_noskb_drops),
1104 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1105 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1106 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1107 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1108 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1109 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1110 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1111 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1112 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1113 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1114 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1115 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1116 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1117 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1118 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1119 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1120 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1121 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1122 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1123 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1124 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1125 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1126 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1127 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1128 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1129 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1130 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1131 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1132 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1133 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1134 };
1135 
1136 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1137 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1138 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1139 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1140 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1141 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1142 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1143 			       (1ULL <<                                 \
1144 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1145 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1146 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1147 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1148 			       (1ULL << EF10_STAT_port_rx_good) |	\
1149 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1150 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1151 			       (1ULL << EF10_STAT_port_rx_control) |	\
1152 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1153 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1154 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1155 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1156 			       (1ULL << EF10_STAT_port_rx_64) |		\
1157 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1158 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1159 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1160 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1161 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1162 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1163 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1164 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1165 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1166 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1167 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1168 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1169 
1170 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
1171  * switchable port we do not expose these because they might not
1172  * include all the packets they should.
1173  */
1174 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1175 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1176 				 (1ULL << EF10_STAT_port_tx_64) |	\
1177 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1178 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1179 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1180 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1181 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1182 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1183 
1184 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1185  * switchable port we do expose these because the errors will otherwise
1186  * be silent.
1187  */
1188 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1189 				  (1ULL << EF10_STAT_port_rx_length_error))
1190 
1191 /* These statistics are only provided if the firmware supports the
1192  * capability PM_AND_RXDP_COUNTERS.
1193  */
1194 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1195 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1196 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1197 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1198 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1199 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1200 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1201 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1202 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1203 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1204 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1205 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1206 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1207 
1208 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1209 {
1210 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1211 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1212 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1213 
1214 	if (!(efx->mcdi->fn_flags &
1215 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1216 		return 0;
1217 
1218 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1219 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1220 	else
1221 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1222 
1223 	if (nic_data->datapath_caps &
1224 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1225 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1226 
1227 	return raw_mask;
1228 }
1229 
1230 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1231 {
1232 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1233 	u64 raw_mask[2];
1234 
1235 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1236 
1237 	/* Only show vadaptor stats when EVB capability is present */
1238 	if (nic_data->datapath_caps &
1239 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1240 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1241 		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1242 	} else {
1243 		raw_mask[1] = 0;
1244 	}
1245 
1246 #if BITS_PER_LONG == 64
1247 	mask[0] = raw_mask[0];
1248 	mask[1] = raw_mask[1];
1249 #else
1250 	mask[0] = raw_mask[0] & 0xffffffff;
1251 	mask[1] = raw_mask[0] >> 32;
1252 	mask[2] = raw_mask[1] & 0xffffffff;
1253 	mask[3] = raw_mask[1] >> 32;
1254 #endif
1255 }
1256 
1257 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1258 {
1259 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1260 
1261 	efx_ef10_get_stat_mask(efx, mask);
1262 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1263 				      mask, names);
1264 }
1265 
1266 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1267 					   struct rtnl_link_stats64 *core_stats)
1268 {
1269 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1270 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1271 	u64 *stats = nic_data->stats;
1272 	size_t stats_count = 0, index;
1273 
1274 	efx_ef10_get_stat_mask(efx, mask);
1275 
1276 	if (full_stats) {
1277 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1278 			if (efx_ef10_stat_desc[index].name) {
1279 				*full_stats++ = stats[index];
1280 				++stats_count;
1281 			}
1282 		}
1283 	}
1284 
1285 	if (core_stats) {
1286 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1287 					 stats[EF10_STAT_rx_multicast] +
1288 					 stats[EF10_STAT_rx_broadcast];
1289 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1290 					 stats[EF10_STAT_tx_multicast] +
1291 					 stats[EF10_STAT_tx_broadcast];
1292 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1293 				       stats[EF10_STAT_rx_multicast_bytes] +
1294 				       stats[EF10_STAT_rx_broadcast_bytes];
1295 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1296 				       stats[EF10_STAT_tx_multicast_bytes] +
1297 				       stats[EF10_STAT_tx_broadcast_bytes];
1298 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1299 					 stats[GENERIC_STAT_rx_noskb_drops];
1300 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1301 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1302 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1303 		core_stats->rx_errors = core_stats->rx_crc_errors;
1304 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1305 	}
1306 
1307 	return stats_count;
1308 }
1309 
1310 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1311 {
1312 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1313 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1314 	__le64 generation_start, generation_end;
1315 	u64 *stats = nic_data->stats;
1316 	__le64 *dma_stats;
1317 
1318 	efx_ef10_get_stat_mask(efx, mask);
1319 
1320 	dma_stats = efx->stats_buffer.addr;
1321 	nic_data = efx->nic_data;
1322 
1323 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1324 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1325 		return 0;
1326 	rmb();
1327 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1328 			     stats, efx->stats_buffer.addr, false);
1329 	rmb();
1330 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1331 	if (generation_end != generation_start)
1332 		return -EAGAIN;
1333 
1334 	/* Update derived statistics */
1335 	efx_nic_fix_nodesc_drop_stat(efx,
1336 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1337 	stats[EF10_STAT_port_rx_good_bytes] =
1338 		stats[EF10_STAT_port_rx_bytes] -
1339 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1340 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1341 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1342 	efx_update_sw_stats(efx, stats);
1343 	return 0;
1344 }
1345 
1346 
1347 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1348 				       struct rtnl_link_stats64 *core_stats)
1349 {
1350 	int retry;
1351 
1352 	/* If we're unlucky enough to read statistics during the DMA, wait
1353 	 * up to 10ms for it to finish (typically takes <500us)
1354 	 */
1355 	for (retry = 0; retry < 100; ++retry) {
1356 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1357 			break;
1358 		udelay(100);
1359 	}
1360 
1361 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1362 }
1363 
1364 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1365 {
1366 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1367 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1368 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1369 	__le64 generation_start, generation_end;
1370 	u64 *stats = nic_data->stats;
1371 	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1372 	struct efx_buffer stats_buf;
1373 	__le64 *dma_stats;
1374 	int rc;
1375 
1376 	spin_unlock_bh(&efx->stats_lock);
1377 
1378 	if (in_interrupt()) {
1379 		/* If in atomic context, cannot update stats.  Just update the
1380 		 * software stats and return so the caller can continue.
1381 		 */
1382 		spin_lock_bh(&efx->stats_lock);
1383 		efx_update_sw_stats(efx, stats);
1384 		return 0;
1385 	}
1386 
1387 	efx_ef10_get_stat_mask(efx, mask);
1388 
1389 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1390 	if (rc) {
1391 		spin_lock_bh(&efx->stats_lock);
1392 		return rc;
1393 	}
1394 
1395 	dma_stats = stats_buf.addr;
1396 	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1397 
1398 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1399 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1400 			      MAC_STATS_IN_DMA, 1);
1401 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1402 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1403 
1404 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1405 				NULL, 0, NULL);
1406 	spin_lock_bh(&efx->stats_lock);
1407 	if (rc) {
1408 		/* Expect ENOENT if DMA queues have not been set up */
1409 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1410 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1411 					       sizeof(inbuf), NULL, 0, rc);
1412 		goto out;
1413 	}
1414 
1415 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1416 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1417 		WARN_ON_ONCE(1);
1418 		goto out;
1419 	}
1420 	rmb();
1421 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1422 			     stats, stats_buf.addr, false);
1423 	rmb();
1424 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1425 	if (generation_end != generation_start) {
1426 		rc = -EAGAIN;
1427 		goto out;
1428 	}
1429 
1430 	efx_update_sw_stats(efx, stats);
1431 out:
1432 	efx_nic_free_buffer(efx, &stats_buf);
1433 	return rc;
1434 }
1435 
1436 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1437 				       struct rtnl_link_stats64 *core_stats)
1438 {
1439 	if (efx_ef10_try_update_nic_stats_vf(efx))
1440 		return 0;
1441 
1442 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1443 }
1444 
1445 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1446 {
1447 	struct efx_nic *efx = channel->efx;
1448 	unsigned int mode, value;
1449 	efx_dword_t timer_cmd;
1450 
1451 	if (channel->irq_moderation) {
1452 		mode = 3;
1453 		value = channel->irq_moderation - 1;
1454 	} else {
1455 		mode = 0;
1456 		value = 0;
1457 	}
1458 
1459 	if (EFX_EF10_WORKAROUND_35388(efx)) {
1460 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1461 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1462 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1463 				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1464 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1465 				channel->channel);
1466 	} else {
1467 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1468 				     ERF_DZ_TC_TIMER_VAL, value);
1469 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1470 				channel->channel);
1471 	}
1472 }
1473 
1474 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1475 				struct ethtool_wolinfo *wol) {}
1476 
1477 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1478 {
1479 	return -EOPNOTSUPP;
1480 }
1481 
1482 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1483 {
1484 	wol->supported = 0;
1485 	wol->wolopts = 0;
1486 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1487 }
1488 
1489 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1490 {
1491 	if (type != 0)
1492 		return -EINVAL;
1493 	return 0;
1494 }
1495 
1496 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1497 				  const efx_dword_t *hdr, size_t hdr_len,
1498 				  const efx_dword_t *sdu, size_t sdu_len)
1499 {
1500 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1501 	u8 *pdu = nic_data->mcdi_buf.addr;
1502 
1503 	memcpy(pdu, hdr, hdr_len);
1504 	memcpy(pdu + hdr_len, sdu, sdu_len);
1505 	wmb();
1506 
1507 	/* The hardware provides 'low' and 'high' (doorbell) registers
1508 	 * for passing the 64-bit address of an MCDI request to
1509 	 * firmware.  However the dwords are swapped by firmware.  The
1510 	 * least significant bits of the doorbell are then 0 for all
1511 	 * MCDI requests due to alignment.
1512 	 */
1513 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1514 		    ER_DZ_MC_DB_LWRD);
1515 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1516 		    ER_DZ_MC_DB_HWRD);
1517 }
1518 
1519 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1520 {
1521 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1522 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1523 
1524 	rmb();
1525 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1526 }
1527 
1528 static void
1529 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1530 			    size_t offset, size_t outlen)
1531 {
1532 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1533 	const u8 *pdu = nic_data->mcdi_buf.addr;
1534 
1535 	memcpy(outbuf, pdu + offset, outlen);
1536 }
1537 
1538 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1539 {
1540 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1541 	int rc;
1542 
1543 	rc = efx_ef10_get_warm_boot_count(efx);
1544 	if (rc < 0) {
1545 		/* The firmware is presumably in the process of
1546 		 * rebooting.  However, we are supposed to report each
1547 		 * reboot just once, so we must only do that once we
1548 		 * can read and store the updated warm boot count.
1549 		 */
1550 		return 0;
1551 	}
1552 
1553 	if (rc == nic_data->warm_boot_count)
1554 		return 0;
1555 
1556 	nic_data->warm_boot_count = rc;
1557 
1558 	/* All our allocations have been reset */
1559 	efx_ef10_reset_mc_allocations(efx);
1560 
1561 	/* Driver-created vswitches and vports must be re-created */
1562 	nic_data->must_probe_vswitching = true;
1563 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1564 
1565 	/* The datapath firmware might have been changed */
1566 	nic_data->must_check_datapath_caps = true;
1567 
1568 	/* MAC statistics have been cleared on the NIC; clear the local
1569 	 * statistic that we update with efx_update_diff_stat().
1570 	 */
1571 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1572 
1573 	return -EIO;
1574 }
1575 
1576 /* Handle an MSI interrupt
1577  *
1578  * Handle an MSI hardware interrupt.  This routine schedules event
1579  * queue processing.  No interrupt acknowledgement cycle is necessary.
1580  * Also, we never need to check that the interrupt is for us, since
1581  * MSI interrupts cannot be shared.
1582  */
1583 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1584 {
1585 	struct efx_msi_context *context = dev_id;
1586 	struct efx_nic *efx = context->efx;
1587 
1588 	netif_vdbg(efx, intr, efx->net_dev,
1589 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1590 
1591 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1592 		/* Note test interrupts */
1593 		if (context->index == efx->irq_level)
1594 			efx->last_irq_cpu = raw_smp_processor_id();
1595 
1596 		/* Schedule processing of the channel */
1597 		efx_schedule_channel_irq(efx->channel[context->index]);
1598 	}
1599 
1600 	return IRQ_HANDLED;
1601 }
1602 
1603 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1604 {
1605 	struct efx_nic *efx = dev_id;
1606 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1607 	struct efx_channel *channel;
1608 	efx_dword_t reg;
1609 	u32 queues;
1610 
1611 	/* Read the ISR which also ACKs the interrupts */
1612 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1613 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1614 
1615 	if (queues == 0)
1616 		return IRQ_NONE;
1617 
1618 	if (likely(soft_enabled)) {
1619 		/* Note test interrupts */
1620 		if (queues & (1U << efx->irq_level))
1621 			efx->last_irq_cpu = raw_smp_processor_id();
1622 
1623 		efx_for_each_channel(channel, efx) {
1624 			if (queues & 1)
1625 				efx_schedule_channel_irq(channel);
1626 			queues >>= 1;
1627 		}
1628 	}
1629 
1630 	netif_vdbg(efx, intr, efx->net_dev,
1631 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1632 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1633 
1634 	return IRQ_HANDLED;
1635 }
1636 
1637 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1638 {
1639 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1640 
1641 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1642 
1643 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1644 	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1645 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1646 }
1647 
1648 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1649 {
1650 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1651 				    (tx_queue->ptr_mask + 1) *
1652 				    sizeof(efx_qword_t),
1653 				    GFP_KERNEL);
1654 }
1655 
1656 /* This writes to the TX_DESC_WPTR and also pushes data */
1657 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1658 					 const efx_qword_t *txd)
1659 {
1660 	unsigned int write_ptr;
1661 	efx_oword_t reg;
1662 
1663 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1664 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1665 	reg.qword[0] = *txd;
1666 	efx_writeo_page(tx_queue->efx, &reg,
1667 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1668 }
1669 
1670 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1671 {
1672 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1673 						       EFX_BUF_SIZE));
1674 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1675 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1676 	struct efx_channel *channel = tx_queue->channel;
1677 	struct efx_nic *efx = tx_queue->efx;
1678 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679 	size_t inlen;
1680 	dma_addr_t dma_addr;
1681 	efx_qword_t *txd;
1682 	int rc;
1683 	int i;
1684 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1685 
1686 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1687 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1688 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1689 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1690 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1691 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1692 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1693 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1694 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1695 
1696 	dma_addr = tx_queue->txd.buf.dma_addr;
1697 
1698 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1699 		  tx_queue->queue, entries, (u64)dma_addr);
1700 
1701 	for (i = 0; i < entries; ++i) {
1702 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1703 		dma_addr += EFX_BUF_SIZE;
1704 	}
1705 
1706 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1707 
1708 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1709 			  NULL, 0, NULL);
1710 	if (rc)
1711 		goto fail;
1712 
1713 	/* A previous user of this TX queue might have set us up the
1714 	 * bomb by writing a descriptor to the TX push collector but
1715 	 * not the doorbell.  (Each collector belongs to a port, not a
1716 	 * queue or function, so cannot easily be reset.)  We must
1717 	 * attempt to push a no-op descriptor in its place.
1718 	 */
1719 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1720 	tx_queue->insert_count = 1;
1721 	txd = efx_tx_desc(tx_queue, 0);
1722 	EFX_POPULATE_QWORD_4(*txd,
1723 			     ESF_DZ_TX_DESC_IS_OPT, true,
1724 			     ESF_DZ_TX_OPTION_TYPE,
1725 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1726 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1727 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1728 	tx_queue->write_count = 1;
1729 	wmb();
1730 	efx_ef10_push_tx_desc(tx_queue, txd);
1731 
1732 	return;
1733 
1734 fail:
1735 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1736 		    tx_queue->queue);
1737 }
1738 
1739 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1740 {
1741 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1742 	MCDI_DECLARE_BUF_ERR(outbuf);
1743 	struct efx_nic *efx = tx_queue->efx;
1744 	size_t outlen;
1745 	int rc;
1746 
1747 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1748 		       tx_queue->queue);
1749 
1750 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1751 			  outbuf, sizeof(outbuf), &outlen);
1752 
1753 	if (rc && rc != -EALREADY)
1754 		goto fail;
1755 
1756 	return;
1757 
1758 fail:
1759 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1760 			       outbuf, outlen, rc);
1761 }
1762 
1763 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1764 {
1765 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1766 }
1767 
1768 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1769 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1770 {
1771 	unsigned int write_ptr;
1772 	efx_dword_t reg;
1773 
1774 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1775 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1776 	efx_writed_page(tx_queue->efx, &reg,
1777 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1778 }
1779 
1780 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1781 {
1782 	unsigned int old_write_count = tx_queue->write_count;
1783 	struct efx_tx_buffer *buffer;
1784 	unsigned int write_ptr;
1785 	efx_qword_t *txd;
1786 
1787 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1788 
1789 	do {
1790 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1791 		buffer = &tx_queue->buffer[write_ptr];
1792 		txd = efx_tx_desc(tx_queue, write_ptr);
1793 		++tx_queue->write_count;
1794 
1795 		/* Create TX descriptor ring entry */
1796 		if (buffer->flags & EFX_TX_BUF_OPTION) {
1797 			*txd = buffer->option;
1798 		} else {
1799 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1800 			EFX_POPULATE_QWORD_3(
1801 				*txd,
1802 				ESF_DZ_TX_KER_CONT,
1803 				buffer->flags & EFX_TX_BUF_CONT,
1804 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1805 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1806 		}
1807 	} while (tx_queue->write_count != tx_queue->insert_count);
1808 
1809 	wmb(); /* Ensure descriptors are written before they are fetched */
1810 
1811 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1812 		txd = efx_tx_desc(tx_queue,
1813 				  old_write_count & tx_queue->ptr_mask);
1814 		efx_ef10_push_tx_desc(tx_queue, txd);
1815 		++tx_queue->pushes;
1816 	} else {
1817 		efx_ef10_notify_tx_desc(tx_queue);
1818 	}
1819 }
1820 
1821 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1822 				      bool exclusive, unsigned *context_size)
1823 {
1824 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1825 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1826 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1827 	size_t outlen;
1828 	int rc;
1829 	u32 alloc_type = exclusive ?
1830 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1831 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1832 	unsigned rss_spread = exclusive ?
1833 				efx->rss_spread :
1834 				min(rounddown_pow_of_two(efx->rss_spread),
1835 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1836 
1837 	if (!exclusive && rss_spread == 1) {
1838 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
1839 		if (context_size)
1840 			*context_size = 1;
1841 		return 0;
1842 	}
1843 
1844 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1845 		       nic_data->vport_id);
1846 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1847 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1848 
1849 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1850 		outbuf, sizeof(outbuf), &outlen);
1851 	if (rc != 0)
1852 		return rc;
1853 
1854 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1855 		return -EIO;
1856 
1857 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1858 
1859 	if (context_size)
1860 		*context_size = rss_spread;
1861 
1862 	return 0;
1863 }
1864 
1865 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1866 {
1867 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1868 	int rc;
1869 
1870 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1871 		       context);
1872 
1873 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1874 			    NULL, 0, NULL);
1875 	WARN_ON(rc != 0);
1876 }
1877 
1878 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1879 				       const u32 *rx_indir_table)
1880 {
1881 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1882 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1883 	int i, rc;
1884 
1885 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1886 		       context);
1887 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1888 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1889 
1890 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1891 		MCDI_PTR(tablebuf,
1892 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1893 				(u8) rx_indir_table[i];
1894 
1895 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1896 			  sizeof(tablebuf), NULL, 0, NULL);
1897 	if (rc != 0)
1898 		return rc;
1899 
1900 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1901 		       context);
1902 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1903 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1904 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1905 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1906 			efx->rx_hash_key[i];
1907 
1908 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1909 			    sizeof(keybuf), NULL, 0, NULL);
1910 }
1911 
1912 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1913 {
1914 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1915 
1916 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1917 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1918 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1919 }
1920 
1921 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
1922 					      unsigned *context_size)
1923 {
1924 	u32 new_rx_rss_context;
1925 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1926 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1927 					    false, context_size);
1928 
1929 	if (rc != 0)
1930 		return rc;
1931 
1932 	nic_data->rx_rss_context = new_rx_rss_context;
1933 	nic_data->rx_rss_context_exclusive = false;
1934 	efx_set_default_rx_indir_table(efx);
1935 	return 0;
1936 }
1937 
1938 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
1939 						 const u32 *rx_indir_table)
1940 {
1941 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1942 	int rc;
1943 	u32 new_rx_rss_context;
1944 
1945 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
1946 	    !nic_data->rx_rss_context_exclusive) {
1947 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1948 						true, NULL);
1949 		if (rc == -EOPNOTSUPP)
1950 			return rc;
1951 		else if (rc != 0)
1952 			goto fail1;
1953 	} else {
1954 		new_rx_rss_context = nic_data->rx_rss_context;
1955 	}
1956 
1957 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
1958 					 rx_indir_table);
1959 	if (rc != 0)
1960 		goto fail2;
1961 
1962 	if (nic_data->rx_rss_context != new_rx_rss_context)
1963 		efx_ef10_rx_free_indir_table(efx);
1964 	nic_data->rx_rss_context = new_rx_rss_context;
1965 	nic_data->rx_rss_context_exclusive = true;
1966 	if (rx_indir_table != efx->rx_indir_table)
1967 		memcpy(efx->rx_indir_table, rx_indir_table,
1968 		       sizeof(efx->rx_indir_table));
1969 	return 0;
1970 
1971 fail2:
1972 	if (new_rx_rss_context != nic_data->rx_rss_context)
1973 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
1974 fail1:
1975 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1976 	return rc;
1977 }
1978 
1979 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
1980 					  const u32 *rx_indir_table)
1981 {
1982 	int rc;
1983 
1984 	if (efx->rss_spread == 1)
1985 		return 0;
1986 
1987 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
1988 
1989 	if (rc == -ENOBUFS && !user) {
1990 		unsigned context_size;
1991 		bool mismatch = false;
1992 		size_t i;
1993 
1994 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
1995 		     i++)
1996 			mismatch = rx_indir_table[i] !=
1997 				ethtool_rxfh_indir_default(i, efx->rss_spread);
1998 
1999 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2000 		if (rc == 0) {
2001 			if (context_size != efx->rss_spread)
2002 				netif_warn(efx, probe, efx->net_dev,
2003 					   "Could not allocate an exclusive RSS"
2004 					   " context; allocated a shared one of"
2005 					   " different size."
2006 					   " Wanted %u, got %u.\n",
2007 					   efx->rss_spread, context_size);
2008 			else if (mismatch)
2009 				netif_warn(efx, probe, efx->net_dev,
2010 					   "Could not allocate an exclusive RSS"
2011 					   " context; allocated a shared one but"
2012 					   " could not apply custom"
2013 					   " indirection.\n");
2014 			else
2015 				netif_info(efx, probe, efx->net_dev,
2016 					   "Could not allocate an exclusive RSS"
2017 					   " context; allocated a shared one.\n");
2018 		}
2019 	}
2020 	return rc;
2021 }
2022 
2023 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2024 					  const u32 *rx_indir_table
2025 					  __attribute__ ((unused)))
2026 {
2027 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2028 
2029 	if (user)
2030 		return -EOPNOTSUPP;
2031 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2032 		return 0;
2033 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2034 }
2035 
2036 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2037 {
2038 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2039 				    (rx_queue->ptr_mask + 1) *
2040 				    sizeof(efx_qword_t),
2041 				    GFP_KERNEL);
2042 }
2043 
2044 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2045 {
2046 	MCDI_DECLARE_BUF(inbuf,
2047 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2048 						EFX_BUF_SIZE));
2049 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2050 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2051 	struct efx_nic *efx = rx_queue->efx;
2052 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2053 	size_t inlen;
2054 	dma_addr_t dma_addr;
2055 	int rc;
2056 	int i;
2057 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2058 
2059 	rx_queue->scatter_n = 0;
2060 	rx_queue->scatter_len = 0;
2061 
2062 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2063 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2064 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2065 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2066 		       efx_rx_queue_index(rx_queue));
2067 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2068 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2069 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2070 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2071 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2072 
2073 	dma_addr = rx_queue->rxd.buf.dma_addr;
2074 
2075 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2076 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2077 
2078 	for (i = 0; i < entries; ++i) {
2079 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2080 		dma_addr += EFX_BUF_SIZE;
2081 	}
2082 
2083 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2084 
2085 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2086 			  NULL, 0, NULL);
2087 	if (rc)
2088 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2089 			    efx_rx_queue_index(rx_queue));
2090 }
2091 
2092 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2093 {
2094 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2095 	MCDI_DECLARE_BUF_ERR(outbuf);
2096 	struct efx_nic *efx = rx_queue->efx;
2097 	size_t outlen;
2098 	int rc;
2099 
2100 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2101 		       efx_rx_queue_index(rx_queue));
2102 
2103 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2104 			  outbuf, sizeof(outbuf), &outlen);
2105 
2106 	if (rc && rc != -EALREADY)
2107 		goto fail;
2108 
2109 	return;
2110 
2111 fail:
2112 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2113 			       outbuf, outlen, rc);
2114 }
2115 
2116 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2117 {
2118 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2119 }
2120 
2121 /* This creates an entry in the RX descriptor queue */
2122 static inline void
2123 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2124 {
2125 	struct efx_rx_buffer *rx_buf;
2126 	efx_qword_t *rxd;
2127 
2128 	rxd = efx_rx_desc(rx_queue, index);
2129 	rx_buf = efx_rx_buffer(rx_queue, index);
2130 	EFX_POPULATE_QWORD_2(*rxd,
2131 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2132 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2133 }
2134 
2135 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2136 {
2137 	struct efx_nic *efx = rx_queue->efx;
2138 	unsigned int write_count;
2139 	efx_dword_t reg;
2140 
2141 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2142 	write_count = rx_queue->added_count & ~7;
2143 	if (rx_queue->notified_count == write_count)
2144 		return;
2145 
2146 	do
2147 		efx_ef10_build_rx_desc(
2148 			rx_queue,
2149 			rx_queue->notified_count & rx_queue->ptr_mask);
2150 	while (++rx_queue->notified_count != write_count);
2151 
2152 	wmb();
2153 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2154 			     write_count & rx_queue->ptr_mask);
2155 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2156 			efx_rx_queue_index(rx_queue));
2157 }
2158 
2159 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2160 
2161 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2162 {
2163 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2164 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2165 	efx_qword_t event;
2166 
2167 	EFX_POPULATE_QWORD_2(event,
2168 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2169 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2170 
2171 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2172 
2173 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2174 	 * already swapped the data to little-endian order.
2175 	 */
2176 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2177 	       sizeof(efx_qword_t));
2178 
2179 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2180 			   inbuf, sizeof(inbuf), 0,
2181 			   efx_ef10_rx_defer_refill_complete, 0);
2182 }
2183 
2184 static void
2185 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2186 				  int rc, efx_dword_t *outbuf,
2187 				  size_t outlen_actual)
2188 {
2189 	/* nothing to do */
2190 }
2191 
2192 static int efx_ef10_ev_probe(struct efx_channel *channel)
2193 {
2194 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2195 				    (channel->eventq_mask + 1) *
2196 				    sizeof(efx_qword_t),
2197 				    GFP_KERNEL);
2198 }
2199 
2200 static int efx_ef10_ev_init(struct efx_channel *channel)
2201 {
2202 	MCDI_DECLARE_BUF(inbuf,
2203 			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2204 						EFX_BUF_SIZE));
2205 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2206 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2207 	struct efx_nic *efx = channel->efx;
2208 	struct efx_ef10_nic_data *nic_data;
2209 	bool supports_rx_merge;
2210 	size_t inlen, outlen;
2211 	dma_addr_t dma_addr;
2212 	int rc;
2213 	int i;
2214 
2215 	nic_data = efx->nic_data;
2216 	supports_rx_merge =
2217 		!!(nic_data->datapath_caps &
2218 		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2219 
2220 	/* Fill event queue with all ones (i.e. empty events) */
2221 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2222 
2223 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2224 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2225 	/* INIT_EVQ expects index in vector table, not absolute */
2226 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2227 	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2228 			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2229 			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2230 			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2231 			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2232 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2233 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2234 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2235 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2236 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2237 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2238 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2239 
2240 	dma_addr = channel->eventq.buf.dma_addr;
2241 	for (i = 0; i < entries; ++i) {
2242 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2243 		dma_addr += EFX_BUF_SIZE;
2244 	}
2245 
2246 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2247 
2248 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2249 			  outbuf, sizeof(outbuf), &outlen);
2250 	/* IRQ return is ignored */
2251 	return rc;
2252 }
2253 
2254 static void efx_ef10_ev_fini(struct efx_channel *channel)
2255 {
2256 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2257 	MCDI_DECLARE_BUF_ERR(outbuf);
2258 	struct efx_nic *efx = channel->efx;
2259 	size_t outlen;
2260 	int rc;
2261 
2262 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2263 
2264 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2265 			  outbuf, sizeof(outbuf), &outlen);
2266 
2267 	if (rc && rc != -EALREADY)
2268 		goto fail;
2269 
2270 	return;
2271 
2272 fail:
2273 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2274 			       outbuf, outlen, rc);
2275 }
2276 
2277 static void efx_ef10_ev_remove(struct efx_channel *channel)
2278 {
2279 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2280 }
2281 
2282 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2283 					   unsigned int rx_queue_label)
2284 {
2285 	struct efx_nic *efx = rx_queue->efx;
2286 
2287 	netif_info(efx, hw, efx->net_dev,
2288 		   "rx event arrived on queue %d labeled as queue %u\n",
2289 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2290 
2291 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2292 }
2293 
2294 static void
2295 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2296 			     unsigned int actual, unsigned int expected)
2297 {
2298 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2299 	struct efx_nic *efx = rx_queue->efx;
2300 
2301 	netif_info(efx, hw, efx->net_dev,
2302 		   "dropped %d events (index=%d expected=%d)\n",
2303 		   dropped, actual, expected);
2304 
2305 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2306 }
2307 
2308 /* partially received RX was aborted. clean up. */
2309 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2310 {
2311 	unsigned int rx_desc_ptr;
2312 
2313 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2314 		  "scattered RX aborted (dropping %u buffers)\n",
2315 		  rx_queue->scatter_n);
2316 
2317 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2318 
2319 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2320 		      0, EFX_RX_PKT_DISCARD);
2321 
2322 	rx_queue->removed_count += rx_queue->scatter_n;
2323 	rx_queue->scatter_n = 0;
2324 	rx_queue->scatter_len = 0;
2325 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2326 }
2327 
2328 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2329 				    const efx_qword_t *event)
2330 {
2331 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2332 	unsigned int n_descs, n_packets, i;
2333 	struct efx_nic *efx = channel->efx;
2334 	struct efx_rx_queue *rx_queue;
2335 	bool rx_cont;
2336 	u16 flags = 0;
2337 
2338 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2339 		return 0;
2340 
2341 	/* Basic packet information */
2342 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2343 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2344 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2345 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2346 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2347 
2348 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2349 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2350 			    EFX_QWORD_FMT "\n",
2351 			    EFX_QWORD_VAL(*event));
2352 
2353 	rx_queue = efx_channel_get_rx_queue(channel);
2354 
2355 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2356 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2357 
2358 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2359 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2360 
2361 	if (n_descs != rx_queue->scatter_n + 1) {
2362 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2363 
2364 		/* detect rx abort */
2365 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2366 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2367 				netdev_WARN(efx->net_dev,
2368 					    "invalid RX abort: scatter_n=%u event="
2369 					    EFX_QWORD_FMT "\n",
2370 					    rx_queue->scatter_n,
2371 					    EFX_QWORD_VAL(*event));
2372 			efx_ef10_handle_rx_abort(rx_queue);
2373 			return 0;
2374 		}
2375 
2376 		/* Check that RX completion merging is valid, i.e.
2377 		 * the current firmware supports it and this is a
2378 		 * non-scattered packet.
2379 		 */
2380 		if (!(nic_data->datapath_caps &
2381 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2382 		    rx_queue->scatter_n != 0 || rx_cont) {
2383 			efx_ef10_handle_rx_bad_lbits(
2384 				rx_queue, next_ptr_lbits,
2385 				(rx_queue->removed_count +
2386 				 rx_queue->scatter_n + 1) &
2387 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2388 			return 0;
2389 		}
2390 
2391 		/* Merged completion for multiple non-scattered packets */
2392 		rx_queue->scatter_n = 1;
2393 		rx_queue->scatter_len = 0;
2394 		n_packets = n_descs;
2395 		++channel->n_rx_merge_events;
2396 		channel->n_rx_merge_packets += n_packets;
2397 		flags |= EFX_RX_PKT_PREFIX_LEN;
2398 	} else {
2399 		++rx_queue->scatter_n;
2400 		rx_queue->scatter_len += rx_bytes;
2401 		if (rx_cont)
2402 			return 0;
2403 		n_packets = 1;
2404 	}
2405 
2406 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2407 		flags |= EFX_RX_PKT_DISCARD;
2408 
2409 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2410 		channel->n_rx_ip_hdr_chksum_err += n_packets;
2411 	} else if (unlikely(EFX_QWORD_FIELD(*event,
2412 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2413 		channel->n_rx_tcp_udp_chksum_err += n_packets;
2414 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2415 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2416 		flags |= EFX_RX_PKT_CSUMMED;
2417 	}
2418 
2419 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2420 		flags |= EFX_RX_PKT_TCP;
2421 
2422 	channel->irq_mod_score += 2 * n_packets;
2423 
2424 	/* Handle received packet(s) */
2425 	for (i = 0; i < n_packets; i++) {
2426 		efx_rx_packet(rx_queue,
2427 			      rx_queue->removed_count & rx_queue->ptr_mask,
2428 			      rx_queue->scatter_n, rx_queue->scatter_len,
2429 			      flags);
2430 		rx_queue->removed_count += rx_queue->scatter_n;
2431 	}
2432 
2433 	rx_queue->scatter_n = 0;
2434 	rx_queue->scatter_len = 0;
2435 
2436 	return n_packets;
2437 }
2438 
2439 static int
2440 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2441 {
2442 	struct efx_nic *efx = channel->efx;
2443 	struct efx_tx_queue *tx_queue;
2444 	unsigned int tx_ev_desc_ptr;
2445 	unsigned int tx_ev_q_label;
2446 	int tx_descs = 0;
2447 
2448 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2449 		return 0;
2450 
2451 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2452 		return 0;
2453 
2454 	/* Transmit completion */
2455 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2456 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2457 	tx_queue = efx_channel_get_tx_queue(channel,
2458 					    tx_ev_q_label % EFX_TXQ_TYPES);
2459 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2460 		    tx_queue->ptr_mask);
2461 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2462 
2463 	return tx_descs;
2464 }
2465 
2466 static void
2467 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2468 {
2469 	struct efx_nic *efx = channel->efx;
2470 	int subcode;
2471 
2472 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2473 
2474 	switch (subcode) {
2475 	case ESE_DZ_DRV_TIMER_EV:
2476 	case ESE_DZ_DRV_WAKE_UP_EV:
2477 		break;
2478 	case ESE_DZ_DRV_START_UP_EV:
2479 		/* event queue init complete. ok. */
2480 		break;
2481 	default:
2482 		netif_err(efx, hw, efx->net_dev,
2483 			  "channel %d unknown driver event type %d"
2484 			  " (data " EFX_QWORD_FMT ")\n",
2485 			  channel->channel, subcode,
2486 			  EFX_QWORD_VAL(*event));
2487 
2488 	}
2489 }
2490 
2491 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2492 						   efx_qword_t *event)
2493 {
2494 	struct efx_nic *efx = channel->efx;
2495 	u32 subcode;
2496 
2497 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2498 
2499 	switch (subcode) {
2500 	case EFX_EF10_TEST:
2501 		channel->event_test_cpu = raw_smp_processor_id();
2502 		break;
2503 	case EFX_EF10_REFILL:
2504 		/* The queue must be empty, so we won't receive any rx
2505 		 * events, so efx_process_channel() won't refill the
2506 		 * queue. Refill it here
2507 		 */
2508 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2509 		break;
2510 	default:
2511 		netif_err(efx, hw, efx->net_dev,
2512 			  "channel %d unknown driver event type %u"
2513 			  " (data " EFX_QWORD_FMT ")\n",
2514 			  channel->channel, (unsigned) subcode,
2515 			  EFX_QWORD_VAL(*event));
2516 	}
2517 }
2518 
2519 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2520 {
2521 	struct efx_nic *efx = channel->efx;
2522 	efx_qword_t event, *p_event;
2523 	unsigned int read_ptr;
2524 	int ev_code;
2525 	int tx_descs = 0;
2526 	int spent = 0;
2527 
2528 	if (quota <= 0)
2529 		return spent;
2530 
2531 	read_ptr = channel->eventq_read_ptr;
2532 
2533 	for (;;) {
2534 		p_event = efx_event(channel, read_ptr);
2535 		event = *p_event;
2536 
2537 		if (!efx_event_present(&event))
2538 			break;
2539 
2540 		EFX_SET_QWORD(*p_event);
2541 
2542 		++read_ptr;
2543 
2544 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2545 
2546 		netif_vdbg(efx, drv, efx->net_dev,
2547 			   "processing event on %d " EFX_QWORD_FMT "\n",
2548 			   channel->channel, EFX_QWORD_VAL(event));
2549 
2550 		switch (ev_code) {
2551 		case ESE_DZ_EV_CODE_MCDI_EV:
2552 			efx_mcdi_process_event(channel, &event);
2553 			break;
2554 		case ESE_DZ_EV_CODE_RX_EV:
2555 			spent += efx_ef10_handle_rx_event(channel, &event);
2556 			if (spent >= quota) {
2557 				/* XXX can we split a merged event to
2558 				 * avoid going over-quota?
2559 				 */
2560 				spent = quota;
2561 				goto out;
2562 			}
2563 			break;
2564 		case ESE_DZ_EV_CODE_TX_EV:
2565 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2566 			if (tx_descs > efx->txq_entries) {
2567 				spent = quota;
2568 				goto out;
2569 			} else if (++spent == quota) {
2570 				goto out;
2571 			}
2572 			break;
2573 		case ESE_DZ_EV_CODE_DRIVER_EV:
2574 			efx_ef10_handle_driver_event(channel, &event);
2575 			if (++spent == quota)
2576 				goto out;
2577 			break;
2578 		case EFX_EF10_DRVGEN_EV:
2579 			efx_ef10_handle_driver_generated_event(channel, &event);
2580 			break;
2581 		default:
2582 			netif_err(efx, hw, efx->net_dev,
2583 				  "channel %d unknown event type %d"
2584 				  " (data " EFX_QWORD_FMT ")\n",
2585 				  channel->channel, ev_code,
2586 				  EFX_QWORD_VAL(event));
2587 		}
2588 	}
2589 
2590 out:
2591 	channel->eventq_read_ptr = read_ptr;
2592 	return spent;
2593 }
2594 
2595 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2596 {
2597 	struct efx_nic *efx = channel->efx;
2598 	efx_dword_t rptr;
2599 
2600 	if (EFX_EF10_WORKAROUND_35388(efx)) {
2601 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2602 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2603 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2604 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2605 
2606 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2607 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2608 				     ERF_DD_EVQ_IND_RPTR,
2609 				     (channel->eventq_read_ptr &
2610 				      channel->eventq_mask) >>
2611 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2612 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2613 				channel->channel);
2614 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2615 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2616 				     ERF_DD_EVQ_IND_RPTR,
2617 				     channel->eventq_read_ptr &
2618 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2619 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2620 				channel->channel);
2621 	} else {
2622 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2623 				     channel->eventq_read_ptr &
2624 				     channel->eventq_mask);
2625 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2626 	}
2627 }
2628 
2629 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2630 {
2631 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2632 	struct efx_nic *efx = channel->efx;
2633 	efx_qword_t event;
2634 	int rc;
2635 
2636 	EFX_POPULATE_QWORD_2(event,
2637 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2638 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2639 
2640 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2641 
2642 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2643 	 * already swapped the data to little-endian order.
2644 	 */
2645 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2646 	       sizeof(efx_qword_t));
2647 
2648 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2649 			  NULL, 0, NULL);
2650 	if (rc != 0)
2651 		goto fail;
2652 
2653 	return;
2654 
2655 fail:
2656 	WARN_ON(true);
2657 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2658 }
2659 
2660 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2661 {
2662 	if (atomic_dec_and_test(&efx->active_queues))
2663 		wake_up(&efx->flush_wq);
2664 
2665 	WARN_ON(atomic_read(&efx->active_queues) < 0);
2666 }
2667 
2668 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2669 {
2670 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2671 	struct efx_channel *channel;
2672 	struct efx_tx_queue *tx_queue;
2673 	struct efx_rx_queue *rx_queue;
2674 	int pending;
2675 
2676 	/* If the MC has just rebooted, the TX/RX queues will have already been
2677 	 * torn down, but efx->active_queues needs to be set to zero.
2678 	 */
2679 	if (nic_data->must_realloc_vis) {
2680 		atomic_set(&efx->active_queues, 0);
2681 		return 0;
2682 	}
2683 
2684 	/* Do not attempt to write to the NIC during EEH recovery */
2685 	if (efx->state != STATE_RECOVERY) {
2686 		efx_for_each_channel(channel, efx) {
2687 			efx_for_each_channel_rx_queue(rx_queue, channel)
2688 				efx_ef10_rx_fini(rx_queue);
2689 			efx_for_each_channel_tx_queue(tx_queue, channel)
2690 				efx_ef10_tx_fini(tx_queue);
2691 		}
2692 
2693 		wait_event_timeout(efx->flush_wq,
2694 				   atomic_read(&efx->active_queues) == 0,
2695 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2696 		pending = atomic_read(&efx->active_queues);
2697 		if (pending) {
2698 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2699 				  pending);
2700 			return -ETIMEDOUT;
2701 		}
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2708 {
2709 	atomic_set(&efx->active_queues, 0);
2710 }
2711 
2712 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2713 				  const struct efx_filter_spec *right)
2714 {
2715 	if ((left->match_flags ^ right->match_flags) |
2716 	    ((left->flags ^ right->flags) &
2717 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2718 		return false;
2719 
2720 	return memcmp(&left->outer_vid, &right->outer_vid,
2721 		      sizeof(struct efx_filter_spec) -
2722 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2723 }
2724 
2725 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2726 {
2727 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2728 	return jhash2((const u32 *)&spec->outer_vid,
2729 		      (sizeof(struct efx_filter_spec) -
2730 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2731 		      0);
2732 	/* XXX should we randomise the initval? */
2733 }
2734 
2735 /* Decide whether a filter should be exclusive or else should allow
2736  * delivery to additional recipients.  Currently we decide that
2737  * filters for specific local unicast MAC and IP addresses are
2738  * exclusive.
2739  */
2740 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2741 {
2742 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2743 	    !is_multicast_ether_addr(spec->loc_mac))
2744 		return true;
2745 
2746 	if ((spec->match_flags &
2747 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2748 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2749 		if (spec->ether_type == htons(ETH_P_IP) &&
2750 		    !ipv4_is_multicast(spec->loc_host[0]))
2751 			return true;
2752 		if (spec->ether_type == htons(ETH_P_IPV6) &&
2753 		    ((const u8 *)spec->loc_host)[0] != 0xff)
2754 			return true;
2755 	}
2756 
2757 	return false;
2758 }
2759 
2760 static struct efx_filter_spec *
2761 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2762 			   unsigned int filter_idx)
2763 {
2764 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2765 					  ~EFX_EF10_FILTER_FLAGS);
2766 }
2767 
2768 static unsigned int
2769 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2770 			   unsigned int filter_idx)
2771 {
2772 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2773 }
2774 
2775 static void
2776 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2777 			  unsigned int filter_idx,
2778 			  const struct efx_filter_spec *spec,
2779 			  unsigned int flags)
2780 {
2781 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2782 }
2783 
2784 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2785 				      const struct efx_filter_spec *spec,
2786 				      efx_dword_t *inbuf, u64 handle,
2787 				      bool replacing)
2788 {
2789 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2790 
2791 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2792 
2793 	if (replacing) {
2794 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2795 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2796 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2797 	} else {
2798 		u32 match_fields = 0;
2799 
2800 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2801 			       efx_ef10_filter_is_exclusive(spec) ?
2802 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2803 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2804 
2805 		/* Convert match flags and values.  Unlike almost
2806 		 * everything else in MCDI, these fields are in
2807 		 * network byte order.
2808 		 */
2809 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2810 			match_fields |=
2811 				is_multicast_ether_addr(spec->loc_mac) ?
2812 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2813 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2814 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2815 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2816 			match_fields |=					     \
2817 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2818 				mcdi_field ## _LBN;			     \
2819 			BUILD_BUG_ON(					     \
2820 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2821 				sizeof(spec->gen_field));		     \
2822 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2823 			       &spec->gen_field, sizeof(spec->gen_field));   \
2824 		}
2825 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2826 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2827 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2828 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2829 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2830 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2831 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2832 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2833 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2834 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2835 #undef COPY_FIELD
2836 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2837 			       match_fields);
2838 	}
2839 
2840 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2841 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2842 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2843 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2844 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2845 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2846 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2847 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2848 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2849 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2850 		       0 : spec->dmaq_id);
2851 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2852 		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2853 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2854 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2855 	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2856 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2857 			       spec->rss_context !=
2858 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2859 			       spec->rss_context : nic_data->rx_rss_context);
2860 }
2861 
2862 static int efx_ef10_filter_push(struct efx_nic *efx,
2863 				const struct efx_filter_spec *spec,
2864 				u64 *handle, bool replacing)
2865 {
2866 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2867 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2868 	int rc;
2869 
2870 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2871 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2872 			  outbuf, sizeof(outbuf), NULL);
2873 	if (rc == 0)
2874 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2875 	if (rc == -ENOSPC)
2876 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2877 	return rc;
2878 }
2879 
2880 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2881 					enum efx_filter_match_flags match_flags)
2882 {
2883 	unsigned int match_pri;
2884 
2885 	for (match_pri = 0;
2886 	     match_pri < table->rx_match_count;
2887 	     match_pri++)
2888 		if (table->rx_match_flags[match_pri] == match_flags)
2889 			return match_pri;
2890 
2891 	return -EPROTONOSUPPORT;
2892 }
2893 
2894 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2895 				  struct efx_filter_spec *spec,
2896 				  bool replace_equal)
2897 {
2898 	struct efx_ef10_filter_table *table = efx->filter_state;
2899 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2900 	struct efx_filter_spec *saved_spec;
2901 	unsigned int match_pri, hash;
2902 	unsigned int priv_flags;
2903 	bool replacing = false;
2904 	int ins_index = -1;
2905 	DEFINE_WAIT(wait);
2906 	bool is_mc_recip;
2907 	s32 rc;
2908 
2909 	/* For now, only support RX filters */
2910 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2911 	    EFX_FILTER_FLAG_RX)
2912 		return -EINVAL;
2913 
2914 	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2915 	if (rc < 0)
2916 		return rc;
2917 	match_pri = rc;
2918 
2919 	hash = efx_ef10_filter_hash(spec);
2920 	is_mc_recip = efx_filter_is_mc_recipient(spec);
2921 	if (is_mc_recip)
2922 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2923 
2924 	/* Find any existing filters with the same match tuple or
2925 	 * else a free slot to insert at.  If any of them are busy,
2926 	 * we have to wait and retry.
2927 	 */
2928 	for (;;) {
2929 		unsigned int depth = 1;
2930 		unsigned int i;
2931 
2932 		spin_lock_bh(&efx->filter_lock);
2933 
2934 		for (;;) {
2935 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2936 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2937 
2938 			if (!saved_spec) {
2939 				if (ins_index < 0)
2940 					ins_index = i;
2941 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2942 				if (table->entry[i].spec &
2943 				    EFX_EF10_FILTER_FLAG_BUSY)
2944 					break;
2945 				if (spec->priority < saved_spec->priority &&
2946 				    spec->priority != EFX_FILTER_PRI_AUTO) {
2947 					rc = -EPERM;
2948 					goto out_unlock;
2949 				}
2950 				if (!is_mc_recip) {
2951 					/* This is the only one */
2952 					if (spec->priority ==
2953 					    saved_spec->priority &&
2954 					    !replace_equal) {
2955 						rc = -EEXIST;
2956 						goto out_unlock;
2957 					}
2958 					ins_index = i;
2959 					goto found;
2960 				} else if (spec->priority >
2961 					   saved_spec->priority ||
2962 					   (spec->priority ==
2963 					    saved_spec->priority &&
2964 					    replace_equal)) {
2965 					if (ins_index < 0)
2966 						ins_index = i;
2967 					else
2968 						__set_bit(depth, mc_rem_map);
2969 				}
2970 			}
2971 
2972 			/* Once we reach the maximum search depth, use
2973 			 * the first suitable slot or return -EBUSY if
2974 			 * there was none
2975 			 */
2976 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2977 				if (ins_index < 0) {
2978 					rc = -EBUSY;
2979 					goto out_unlock;
2980 				}
2981 				goto found;
2982 			}
2983 
2984 			++depth;
2985 		}
2986 
2987 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2988 		spin_unlock_bh(&efx->filter_lock);
2989 		schedule();
2990 	}
2991 
2992 found:
2993 	/* Create a software table entry if necessary, and mark it
2994 	 * busy.  We might yet fail to insert, but any attempt to
2995 	 * insert a conflicting filter while we're waiting for the
2996 	 * firmware must find the busy entry.
2997 	 */
2998 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2999 	if (saved_spec) {
3000 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
3001 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3002 			/* Just make sure it won't be removed */
3003 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3004 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3005 			table->entry[ins_index].spec &=
3006 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3007 			rc = ins_index;
3008 			goto out_unlock;
3009 		}
3010 		replacing = true;
3011 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3012 	} else {
3013 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3014 		if (!saved_spec) {
3015 			rc = -ENOMEM;
3016 			goto out_unlock;
3017 		}
3018 		*saved_spec = *spec;
3019 		priv_flags = 0;
3020 	}
3021 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3022 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3023 
3024 	/* Mark lower-priority multicast recipients busy prior to removal */
3025 	if (is_mc_recip) {
3026 		unsigned int depth, i;
3027 
3028 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3029 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3030 			if (test_bit(depth, mc_rem_map))
3031 				table->entry[i].spec |=
3032 					EFX_EF10_FILTER_FLAG_BUSY;
3033 		}
3034 	}
3035 
3036 	spin_unlock_bh(&efx->filter_lock);
3037 
3038 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3039 				  replacing);
3040 
3041 	/* Finalise the software table entry */
3042 	spin_lock_bh(&efx->filter_lock);
3043 	if (rc == 0) {
3044 		if (replacing) {
3045 			/* Update the fields that may differ */
3046 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3047 				saved_spec->flags |=
3048 					EFX_FILTER_FLAG_RX_OVER_AUTO;
3049 			saved_spec->priority = spec->priority;
3050 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3051 			saved_spec->flags |= spec->flags;
3052 			saved_spec->rss_context = spec->rss_context;
3053 			saved_spec->dmaq_id = spec->dmaq_id;
3054 		}
3055 	} else if (!replacing) {
3056 		kfree(saved_spec);
3057 		saved_spec = NULL;
3058 	}
3059 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3060 
3061 	/* Remove and finalise entries for lower-priority multicast
3062 	 * recipients
3063 	 */
3064 	if (is_mc_recip) {
3065 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3066 		unsigned int depth, i;
3067 
3068 		memset(inbuf, 0, sizeof(inbuf));
3069 
3070 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3071 			if (!test_bit(depth, mc_rem_map))
3072 				continue;
3073 
3074 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3075 			saved_spec = efx_ef10_filter_entry_spec(table, i);
3076 			priv_flags = efx_ef10_filter_entry_flags(table, i);
3077 
3078 			if (rc == 0) {
3079 				spin_unlock_bh(&efx->filter_lock);
3080 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3081 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3082 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3083 					       table->entry[i].handle);
3084 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3085 						  inbuf, sizeof(inbuf),
3086 						  NULL, 0, NULL);
3087 				spin_lock_bh(&efx->filter_lock);
3088 			}
3089 
3090 			if (rc == 0) {
3091 				kfree(saved_spec);
3092 				saved_spec = NULL;
3093 				priv_flags = 0;
3094 			} else {
3095 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3096 			}
3097 			efx_ef10_filter_set_entry(table, i, saved_spec,
3098 						  priv_flags);
3099 		}
3100 	}
3101 
3102 	/* If successful, return the inserted filter ID */
3103 	if (rc == 0)
3104 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3105 
3106 	wake_up_all(&table->waitq);
3107 out_unlock:
3108 	spin_unlock_bh(&efx->filter_lock);
3109 	finish_wait(&table->waitq, &wait);
3110 	return rc;
3111 }
3112 
3113 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3114 {
3115 	/* no need to do anything here on EF10 */
3116 }
3117 
3118 /* Remove a filter.
3119  * If !by_index, remove by ID
3120  * If by_index, remove by index
3121  * Filter ID may come from userland and must be range-checked.
3122  */
3123 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3124 					   unsigned int priority_mask,
3125 					   u32 filter_id, bool by_index)
3126 {
3127 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3128 	struct efx_ef10_filter_table *table = efx->filter_state;
3129 	MCDI_DECLARE_BUF(inbuf,
3130 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3131 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3132 	struct efx_filter_spec *spec;
3133 	DEFINE_WAIT(wait);
3134 	int rc;
3135 
3136 	/* Find the software table entry and mark it busy.  Don't
3137 	 * remove it yet; any attempt to update while we're waiting
3138 	 * for the firmware must find the busy entry.
3139 	 */
3140 	for (;;) {
3141 		spin_lock_bh(&efx->filter_lock);
3142 		if (!(table->entry[filter_idx].spec &
3143 		      EFX_EF10_FILTER_FLAG_BUSY))
3144 			break;
3145 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3146 		spin_unlock_bh(&efx->filter_lock);
3147 		schedule();
3148 	}
3149 
3150 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3151 	if (!spec ||
3152 	    (!by_index &&
3153 	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3154 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
3155 		rc = -ENOENT;
3156 		goto out_unlock;
3157 	}
3158 
3159 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3160 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3161 		/* Just remove flags */
3162 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3163 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3164 		rc = 0;
3165 		goto out_unlock;
3166 	}
3167 
3168 	if (!(priority_mask & (1U << spec->priority))) {
3169 		rc = -ENOENT;
3170 		goto out_unlock;
3171 	}
3172 
3173 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3174 	spin_unlock_bh(&efx->filter_lock);
3175 
3176 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3177 		/* Reset to an automatic filter */
3178 
3179 		struct efx_filter_spec new_spec = *spec;
3180 
3181 		new_spec.priority = EFX_FILTER_PRI_AUTO;
3182 		new_spec.flags = (EFX_FILTER_FLAG_RX |
3183 				  EFX_FILTER_FLAG_RX_RSS);
3184 		new_spec.dmaq_id = 0;
3185 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3186 		rc = efx_ef10_filter_push(efx, &new_spec,
3187 					  &table->entry[filter_idx].handle,
3188 					  true);
3189 
3190 		spin_lock_bh(&efx->filter_lock);
3191 		if (rc == 0)
3192 			*spec = new_spec;
3193 	} else {
3194 		/* Really remove the filter */
3195 
3196 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3197 			       efx_ef10_filter_is_exclusive(spec) ?
3198 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3199 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3200 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3201 			       table->entry[filter_idx].handle);
3202 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3203 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
3204 
3205 		spin_lock_bh(&efx->filter_lock);
3206 		if (rc == 0) {
3207 			kfree(spec);
3208 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3209 		}
3210 	}
3211 
3212 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3213 	wake_up_all(&table->waitq);
3214 out_unlock:
3215 	spin_unlock_bh(&efx->filter_lock);
3216 	finish_wait(&table->waitq, &wait);
3217 	return rc;
3218 }
3219 
3220 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3221 				       enum efx_filter_priority priority,
3222 				       u32 filter_id)
3223 {
3224 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3225 					       filter_id, false);
3226 }
3227 
3228 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3229 				    enum efx_filter_priority priority,
3230 				    u32 filter_id, struct efx_filter_spec *spec)
3231 {
3232 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3233 	struct efx_ef10_filter_table *table = efx->filter_state;
3234 	const struct efx_filter_spec *saved_spec;
3235 	int rc;
3236 
3237 	spin_lock_bh(&efx->filter_lock);
3238 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3239 	if (saved_spec && saved_spec->priority == priority &&
3240 	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3241 	    filter_id / HUNT_FILTER_TBL_ROWS) {
3242 		*spec = *saved_spec;
3243 		rc = 0;
3244 	} else {
3245 		rc = -ENOENT;
3246 	}
3247 	spin_unlock_bh(&efx->filter_lock);
3248 	return rc;
3249 }
3250 
3251 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3252 				     enum efx_filter_priority priority)
3253 {
3254 	unsigned int priority_mask;
3255 	unsigned int i;
3256 	int rc;
3257 
3258 	priority_mask = (((1U << (priority + 1)) - 1) &
3259 			 ~(1U << EFX_FILTER_PRI_AUTO));
3260 
3261 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3262 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3263 						     i, true);
3264 		if (rc && rc != -ENOENT)
3265 			return rc;
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3272 					 enum efx_filter_priority priority)
3273 {
3274 	struct efx_ef10_filter_table *table = efx->filter_state;
3275 	unsigned int filter_idx;
3276 	s32 count = 0;
3277 
3278 	spin_lock_bh(&efx->filter_lock);
3279 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3280 		if (table->entry[filter_idx].spec &&
3281 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3282 		    priority)
3283 			++count;
3284 	}
3285 	spin_unlock_bh(&efx->filter_lock);
3286 	return count;
3287 }
3288 
3289 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3290 {
3291 	struct efx_ef10_filter_table *table = efx->filter_state;
3292 
3293 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3294 }
3295 
3296 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3297 				      enum efx_filter_priority priority,
3298 				      u32 *buf, u32 size)
3299 {
3300 	struct efx_ef10_filter_table *table = efx->filter_state;
3301 	struct efx_filter_spec *spec;
3302 	unsigned int filter_idx;
3303 	s32 count = 0;
3304 
3305 	spin_lock_bh(&efx->filter_lock);
3306 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3307 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3308 		if (spec && spec->priority == priority) {
3309 			if (count == size) {
3310 				count = -EMSGSIZE;
3311 				break;
3312 			}
3313 			buf[count++] = (efx_ef10_filter_rx_match_pri(
3314 						table, spec->match_flags) *
3315 					HUNT_FILTER_TBL_ROWS +
3316 					filter_idx);
3317 		}
3318 	}
3319 	spin_unlock_bh(&efx->filter_lock);
3320 	return count;
3321 }
3322 
3323 #ifdef CONFIG_RFS_ACCEL
3324 
3325 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3326 
3327 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3328 				      struct efx_filter_spec *spec)
3329 {
3330 	struct efx_ef10_filter_table *table = efx->filter_state;
3331 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3332 	struct efx_filter_spec *saved_spec;
3333 	unsigned int hash, i, depth = 1;
3334 	bool replacing = false;
3335 	int ins_index = -1;
3336 	u64 cookie;
3337 	s32 rc;
3338 
3339 	/* Must be an RX filter without RSS and not for a multicast
3340 	 * destination address (RFS only works for connected sockets).
3341 	 * These restrictions allow us to pass only a tiny amount of
3342 	 * data through to the completion function.
3343 	 */
3344 	EFX_WARN_ON_PARANOID(spec->flags !=
3345 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3346 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3347 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3348 
3349 	hash = efx_ef10_filter_hash(spec);
3350 
3351 	spin_lock_bh(&efx->filter_lock);
3352 
3353 	/* Find any existing filter with the same match tuple or else
3354 	 * a free slot to insert at.  If an existing filter is busy,
3355 	 * we have to give up.
3356 	 */
3357 	for (;;) {
3358 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3359 		saved_spec = efx_ef10_filter_entry_spec(table, i);
3360 
3361 		if (!saved_spec) {
3362 			if (ins_index < 0)
3363 				ins_index = i;
3364 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3365 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3366 				rc = -EBUSY;
3367 				goto fail_unlock;
3368 			}
3369 			if (spec->priority < saved_spec->priority) {
3370 				rc = -EPERM;
3371 				goto fail_unlock;
3372 			}
3373 			ins_index = i;
3374 			break;
3375 		}
3376 
3377 		/* Once we reach the maximum search depth, use the
3378 		 * first suitable slot or return -EBUSY if there was
3379 		 * none
3380 		 */
3381 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3382 			if (ins_index < 0) {
3383 				rc = -EBUSY;
3384 				goto fail_unlock;
3385 			}
3386 			break;
3387 		}
3388 
3389 		++depth;
3390 	}
3391 
3392 	/* Create a software table entry if necessary, and mark it
3393 	 * busy.  We might yet fail to insert, but any attempt to
3394 	 * insert a conflicting filter while we're waiting for the
3395 	 * firmware must find the busy entry.
3396 	 */
3397 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3398 	if (saved_spec) {
3399 		replacing = true;
3400 	} else {
3401 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3402 		if (!saved_spec) {
3403 			rc = -ENOMEM;
3404 			goto fail_unlock;
3405 		}
3406 		*saved_spec = *spec;
3407 	}
3408 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3409 				  EFX_EF10_FILTER_FLAG_BUSY);
3410 
3411 	spin_unlock_bh(&efx->filter_lock);
3412 
3413 	/* Pack up the variables needed on completion */
3414 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3415 
3416 	efx_ef10_filter_push_prep(efx, spec, inbuf,
3417 				  table->entry[ins_index].handle, replacing);
3418 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3419 			   MC_CMD_FILTER_OP_OUT_LEN,
3420 			   efx_ef10_filter_rfs_insert_complete, cookie);
3421 
3422 	return ins_index;
3423 
3424 fail_unlock:
3425 	spin_unlock_bh(&efx->filter_lock);
3426 	return rc;
3427 }
3428 
3429 static void
3430 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3431 				    int rc, efx_dword_t *outbuf,
3432 				    size_t outlen_actual)
3433 {
3434 	struct efx_ef10_filter_table *table = efx->filter_state;
3435 	unsigned int ins_index, dmaq_id;
3436 	struct efx_filter_spec *spec;
3437 	bool replacing;
3438 
3439 	/* Unpack the cookie */
3440 	replacing = cookie >> 31;
3441 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3442 	dmaq_id = cookie & 0xffff;
3443 
3444 	spin_lock_bh(&efx->filter_lock);
3445 	spec = efx_ef10_filter_entry_spec(table, ins_index);
3446 	if (rc == 0) {
3447 		table->entry[ins_index].handle =
3448 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3449 		if (replacing)
3450 			spec->dmaq_id = dmaq_id;
3451 	} else if (!replacing) {
3452 		kfree(spec);
3453 		spec = NULL;
3454 	}
3455 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3456 	spin_unlock_bh(&efx->filter_lock);
3457 
3458 	wake_up_all(&table->waitq);
3459 }
3460 
3461 static void
3462 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3463 				    unsigned long filter_idx,
3464 				    int rc, efx_dword_t *outbuf,
3465 				    size_t outlen_actual);
3466 
3467 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3468 					   unsigned int filter_idx)
3469 {
3470 	struct efx_ef10_filter_table *table = efx->filter_state;
3471 	struct efx_filter_spec *spec =
3472 		efx_ef10_filter_entry_spec(table, filter_idx);
3473 	MCDI_DECLARE_BUF(inbuf,
3474 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3475 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3476 
3477 	if (!spec ||
3478 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3479 	    spec->priority != EFX_FILTER_PRI_HINT ||
3480 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3481 				 flow_id, filter_idx))
3482 		return false;
3483 
3484 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3485 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
3486 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3487 		       table->entry[filter_idx].handle);
3488 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3489 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
3490 		return false;
3491 
3492 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3493 	return true;
3494 }
3495 
3496 static void
3497 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3498 				    unsigned long filter_idx,
3499 				    int rc, efx_dword_t *outbuf,
3500 				    size_t outlen_actual)
3501 {
3502 	struct efx_ef10_filter_table *table = efx->filter_state;
3503 	struct efx_filter_spec *spec =
3504 		efx_ef10_filter_entry_spec(table, filter_idx);
3505 
3506 	spin_lock_bh(&efx->filter_lock);
3507 	if (rc == 0) {
3508 		kfree(spec);
3509 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3510 	}
3511 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3512 	wake_up_all(&table->waitq);
3513 	spin_unlock_bh(&efx->filter_lock);
3514 }
3515 
3516 #endif /* CONFIG_RFS_ACCEL */
3517 
3518 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3519 {
3520 	int match_flags = 0;
3521 
3522 #define MAP_FLAG(gen_flag, mcdi_field) {				\
3523 		u32 old_mcdi_flags = mcdi_flags;			\
3524 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
3525 				mcdi_field ## _LBN);			\
3526 		if (mcdi_flags != old_mcdi_flags)			\
3527 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
3528 	}
3529 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3530 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3531 	MAP_FLAG(REM_HOST, SRC_IP);
3532 	MAP_FLAG(LOC_HOST, DST_IP);
3533 	MAP_FLAG(REM_MAC, SRC_MAC);
3534 	MAP_FLAG(REM_PORT, SRC_PORT);
3535 	MAP_FLAG(LOC_MAC, DST_MAC);
3536 	MAP_FLAG(LOC_PORT, DST_PORT);
3537 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3538 	MAP_FLAG(INNER_VID, INNER_VLAN);
3539 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
3540 	MAP_FLAG(IP_PROTO, IP_PROTO);
3541 #undef MAP_FLAG
3542 
3543 	/* Did we map them all? */
3544 	if (mcdi_flags)
3545 		return -EINVAL;
3546 
3547 	return match_flags;
3548 }
3549 
3550 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3551 {
3552 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3553 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3554 	unsigned int pd_match_pri, pd_match_count;
3555 	struct efx_ef10_filter_table *table;
3556 	size_t outlen;
3557 	int rc;
3558 
3559 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3560 	if (!table)
3561 		return -ENOMEM;
3562 
3563 	/* Find out which RX filter types are supported, and their priorities */
3564 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3565 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3566 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3567 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3568 			  &outlen);
3569 	if (rc)
3570 		goto fail;
3571 	pd_match_count = MCDI_VAR_ARRAY_LEN(
3572 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3573 	table->rx_match_count = 0;
3574 
3575 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3576 		u32 mcdi_flags =
3577 			MCDI_ARRAY_DWORD(
3578 				outbuf,
3579 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3580 				pd_match_pri);
3581 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3582 		if (rc < 0) {
3583 			netif_dbg(efx, probe, efx->net_dev,
3584 				  "%s: fw flags %#x pri %u not supported in driver\n",
3585 				  __func__, mcdi_flags, pd_match_pri);
3586 		} else {
3587 			netif_dbg(efx, probe, efx->net_dev,
3588 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3589 				  __func__, mcdi_flags, pd_match_pri,
3590 				  rc, table->rx_match_count);
3591 			table->rx_match_flags[table->rx_match_count++] = rc;
3592 		}
3593 	}
3594 
3595 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3596 	if (!table->entry) {
3597 		rc = -ENOMEM;
3598 		goto fail;
3599 	}
3600 
3601 	efx->filter_state = table;
3602 	init_waitqueue_head(&table->waitq);
3603 	return 0;
3604 
3605 fail:
3606 	kfree(table);
3607 	return rc;
3608 }
3609 
3610 /* Caller must hold efx->filter_sem for read if race against
3611  * efx_ef10_filter_table_remove() is possible
3612  */
3613 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3614 {
3615 	struct efx_ef10_filter_table *table = efx->filter_state;
3616 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3617 	struct efx_filter_spec *spec;
3618 	unsigned int filter_idx;
3619 	bool failed = false;
3620 	int rc;
3621 
3622 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3623 
3624 	if (!nic_data->must_restore_filters)
3625 		return;
3626 
3627 	if (!table)
3628 		return;
3629 
3630 	spin_lock_bh(&efx->filter_lock);
3631 
3632 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3633 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3634 		if (!spec)
3635 			continue;
3636 
3637 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3638 		spin_unlock_bh(&efx->filter_lock);
3639 
3640 		rc = efx_ef10_filter_push(efx, spec,
3641 					  &table->entry[filter_idx].handle,
3642 					  false);
3643 		if (rc)
3644 			failed = true;
3645 
3646 		spin_lock_bh(&efx->filter_lock);
3647 		if (rc) {
3648 			kfree(spec);
3649 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3650 		} else {
3651 			table->entry[filter_idx].spec &=
3652 				~EFX_EF10_FILTER_FLAG_BUSY;
3653 		}
3654 	}
3655 
3656 	spin_unlock_bh(&efx->filter_lock);
3657 
3658 	if (failed)
3659 		netif_err(efx, hw, efx->net_dev,
3660 			  "unable to restore all filters\n");
3661 	else
3662 		nic_data->must_restore_filters = false;
3663 }
3664 
3665 /* Caller must hold efx->filter_sem for write */
3666 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3667 {
3668 	struct efx_ef10_filter_table *table = efx->filter_state;
3669 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3670 	struct efx_filter_spec *spec;
3671 	unsigned int filter_idx;
3672 	int rc;
3673 
3674 	efx->filter_state = NULL;
3675 	if (!table)
3676 		return;
3677 
3678 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3679 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3680 		if (!spec)
3681 			continue;
3682 
3683 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3684 			       efx_ef10_filter_is_exclusive(spec) ?
3685 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3686 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3687 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3688 			       table->entry[filter_idx].handle);
3689 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3690 				  NULL, 0, NULL);
3691 		if (rc)
3692 			netdev_WARN(efx->net_dev,
3693 				    "filter_idx=%#x handle=%#llx\n",
3694 				    filter_idx,
3695 				    table->entry[filter_idx].handle);
3696 		kfree(spec);
3697 	}
3698 
3699 	vfree(table->entry);
3700 	kfree(table);
3701 }
3702 
3703 /* Caller must hold efx->filter_sem for read if race against
3704  * efx_ef10_filter_table_remove() is possible
3705  */
3706 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3707 {
3708 	struct efx_ef10_filter_table *table = efx->filter_state;
3709 	struct net_device *net_dev = efx->net_dev;
3710 	struct efx_filter_spec spec;
3711 	bool remove_failed = false;
3712 	struct netdev_hw_addr *uc;
3713 	struct netdev_hw_addr *mc;
3714 	unsigned int filter_idx;
3715 	int i, n, rc;
3716 
3717 	if (!efx_dev_registered(efx))
3718 		return;
3719 
3720 	if (!table)
3721 		return;
3722 
3723 	/* Mark old filters that may need to be removed */
3724 	spin_lock_bh(&efx->filter_lock);
3725 	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3726 	for (i = 0; i < n; i++) {
3727 		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3728 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3729 	}
3730 	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3731 	for (i = 0; i < n; i++) {
3732 		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3733 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3734 	}
3735 	spin_unlock_bh(&efx->filter_lock);
3736 
3737 	/* Copy/convert the address lists; add the primary station
3738 	 * address and broadcast address
3739 	 */
3740 	netif_addr_lock_bh(net_dev);
3741 	if (net_dev->flags & IFF_PROMISC ||
3742 	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3743 		table->dev_uc_count = -1;
3744 	} else {
3745 		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3746 		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3747 		i = 1;
3748 		netdev_for_each_uc_addr(uc, net_dev) {
3749 			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3750 			i++;
3751 		}
3752 	}
3753 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3754 	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3755 		table->dev_mc_count = -1;
3756 	} else {
3757 		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3758 		eth_broadcast_addr(table->dev_mc_list[0].addr);
3759 		i = 1;
3760 		netdev_for_each_mc_addr(mc, net_dev) {
3761 			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3762 			i++;
3763 		}
3764 	}
3765 	netif_addr_unlock_bh(net_dev);
3766 
3767 	/* Insert/renew unicast filters */
3768 	if (table->dev_uc_count >= 0) {
3769 		for (i = 0; i < table->dev_uc_count; i++) {
3770 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3771 					   EFX_FILTER_FLAG_RX_RSS,
3772 					   0);
3773 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3774 						 table->dev_uc_list[i].addr);
3775 			rc = efx_ef10_filter_insert(efx, &spec, true);
3776 			if (rc < 0) {
3777 				/* Fall back to unicast-promisc */
3778 				while (i--)
3779 					efx_ef10_filter_remove_safe(
3780 						efx, EFX_FILTER_PRI_AUTO,
3781 						table->dev_uc_list[i].id);
3782 				table->dev_uc_count = -1;
3783 				break;
3784 			}
3785 			table->dev_uc_list[i].id = rc;
3786 		}
3787 	}
3788 	if (table->dev_uc_count < 0) {
3789 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3790 				   EFX_FILTER_FLAG_RX_RSS,
3791 				   0);
3792 		efx_filter_set_uc_def(&spec);
3793 		rc = efx_ef10_filter_insert(efx, &spec, true);
3794 		if (rc < 0) {
3795 			WARN_ON(1);
3796 			table->dev_uc_count = 0;
3797 		} else {
3798 			table->dev_uc_list[0].id = rc;
3799 		}
3800 	}
3801 
3802 	/* Insert/renew multicast filters */
3803 	if (table->dev_mc_count >= 0) {
3804 		for (i = 0; i < table->dev_mc_count; i++) {
3805 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3806 					   EFX_FILTER_FLAG_RX_RSS,
3807 					   0);
3808 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3809 						 table->dev_mc_list[i].addr);
3810 			rc = efx_ef10_filter_insert(efx, &spec, true);
3811 			if (rc < 0) {
3812 				/* Fall back to multicast-promisc */
3813 				while (i--)
3814 					efx_ef10_filter_remove_safe(
3815 						efx, EFX_FILTER_PRI_AUTO,
3816 						table->dev_mc_list[i].id);
3817 				table->dev_mc_count = -1;
3818 				break;
3819 			}
3820 			table->dev_mc_list[i].id = rc;
3821 		}
3822 	}
3823 	if (table->dev_mc_count < 0) {
3824 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3825 				   EFX_FILTER_FLAG_RX_RSS,
3826 				   0);
3827 		efx_filter_set_mc_def(&spec);
3828 		rc = efx_ef10_filter_insert(efx, &spec, true);
3829 		if (rc < 0) {
3830 			WARN_ON(1);
3831 			table->dev_mc_count = 0;
3832 		} else {
3833 			table->dev_mc_list[0].id = rc;
3834 		}
3835 	}
3836 
3837 	/* Remove filters that weren't renewed.  Since nothing else
3838 	 * changes the AUTO_OLD flag or removes these filters, we
3839 	 * don't need to hold the filter_lock while scanning for
3840 	 * these filters.
3841 	 */
3842 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3843 		if (ACCESS_ONCE(table->entry[i].spec) &
3844 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3845 			if (efx_ef10_filter_remove_internal(
3846 				    efx, 1U << EFX_FILTER_PRI_AUTO,
3847 				    i, true) < 0)
3848 				remove_failed = true;
3849 		}
3850 	}
3851 	WARN_ON(remove_failed);
3852 }
3853 
3854 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3855 {
3856 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3857 	u8 mac_old[ETH_ALEN];
3858 	int rc, rc2;
3859 
3860 	/* Only reconfigure a PF-created vport */
3861 	if (is_zero_ether_addr(nic_data->vport_mac))
3862 		return 0;
3863 
3864 	efx_device_detach_sync(efx);
3865 	efx_net_stop(efx->net_dev);
3866 	down_write(&efx->filter_sem);
3867 	efx_ef10_filter_table_remove(efx);
3868 	up_write(&efx->filter_sem);
3869 
3870 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
3871 	if (rc)
3872 		goto restore_filters;
3873 
3874 	ether_addr_copy(mac_old, nic_data->vport_mac);
3875 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
3876 				    nic_data->vport_mac);
3877 	if (rc)
3878 		goto restore_vadaptor;
3879 
3880 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
3881 				    efx->net_dev->dev_addr);
3882 	if (!rc) {
3883 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3884 	} else {
3885 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
3886 		if (rc2) {
3887 			/* Failed to add original MAC, so clear vport_mac */
3888 			eth_zero_addr(nic_data->vport_mac);
3889 			goto reset_nic;
3890 		}
3891 	}
3892 
3893 restore_vadaptor:
3894 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
3895 	if (rc2)
3896 		goto reset_nic;
3897 restore_filters:
3898 	down_write(&efx->filter_sem);
3899 	rc2 = efx_ef10_filter_table_probe(efx);
3900 	up_write(&efx->filter_sem);
3901 	if (rc2)
3902 		goto reset_nic;
3903 
3904 	rc2 = efx_net_open(efx->net_dev);
3905 	if (rc2)
3906 		goto reset_nic;
3907 
3908 	netif_device_attach(efx->net_dev);
3909 
3910 	return rc;
3911 
3912 reset_nic:
3913 	netif_err(efx, drv, efx->net_dev,
3914 		  "Failed to restore when changing MAC address - scheduling reset\n");
3915 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3916 
3917 	return rc ? rc : rc2;
3918 }
3919 
3920 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3921 {
3922 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3923 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3924 	bool was_enabled = efx->port_enabled;
3925 	int rc;
3926 
3927 	efx_device_detach_sync(efx);
3928 	efx_net_stop(efx->net_dev);
3929 	down_write(&efx->filter_sem);
3930 	efx_ef10_filter_table_remove(efx);
3931 
3932 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3933 			efx->net_dev->dev_addr);
3934 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3935 		       nic_data->vport_id);
3936 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3937 				sizeof(inbuf), NULL, 0, NULL);
3938 
3939 	efx_ef10_filter_table_probe(efx);
3940 	up_write(&efx->filter_sem);
3941 	if (was_enabled)
3942 		efx_net_open(efx->net_dev);
3943 	netif_device_attach(efx->net_dev);
3944 
3945 #ifdef CONFIG_SFC_SRIOV
3946 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3947 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3948 
3949 		if (rc == -EPERM) {
3950 			struct efx_nic *efx_pf;
3951 
3952 			/* Switch to PF and change MAC address on vport */
3953 			efx_pf = pci_get_drvdata(pci_dev_pf);
3954 
3955 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3956 						       nic_data->vf_index,
3957 						       efx->net_dev->dev_addr);
3958 		} else if (!rc) {
3959 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3960 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3961 			unsigned int i;
3962 
3963 			/* MAC address successfully changed by VF (with MAC
3964 			 * spoofing) so update the parent PF if possible.
3965 			 */
3966 			for (i = 0; i < efx_pf->vf_count; ++i) {
3967 				struct ef10_vf *vf = nic_data->vf + i;
3968 
3969 				if (vf->efx == efx) {
3970 					ether_addr_copy(vf->mac,
3971 							efx->net_dev->dev_addr);
3972 					return 0;
3973 				}
3974 			}
3975 		}
3976 	} else
3977 #endif
3978 	if (rc == -EPERM) {
3979 		netif_err(efx, drv, efx->net_dev,
3980 			  "Cannot change MAC address; use sfboot to enable"
3981 			  " mac-spoofing on this interface\n");
3982 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3983 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3984 		 * fall-back to the method of changing the MAC address on the
3985 		 * vport.  This only applies to PFs because such versions of
3986 		 * MCFW do not support VFs.
3987 		 */
3988 		rc = efx_ef10_vport_set_mac_address(efx);
3989 	} else {
3990 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3991 				       sizeof(inbuf), NULL, 0, rc);
3992 	}
3993 
3994 	return rc;
3995 }
3996 
3997 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3998 {
3999 	efx_ef10_filter_sync_rx_mode(efx);
4000 
4001 	return efx_mcdi_set_mac(efx);
4002 }
4003 
4004 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4005 {
4006 	efx_ef10_filter_sync_rx_mode(efx);
4007 
4008 	return 0;
4009 }
4010 
4011 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4012 {
4013 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4014 
4015 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4016 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4017 			    NULL, 0, NULL);
4018 }
4019 
4020 /* MC BISTs follow a different poll mechanism to phy BISTs.
4021  * The BIST is done in the poll handler on the MC, and the MCDI command
4022  * will block until the BIST is done.
4023  */
4024 static int efx_ef10_poll_bist(struct efx_nic *efx)
4025 {
4026 	int rc;
4027 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4028 	size_t outlen;
4029 	u32 result;
4030 
4031 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4032 			   outbuf, sizeof(outbuf), &outlen);
4033 	if (rc != 0)
4034 		return rc;
4035 
4036 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4037 		return -EIO;
4038 
4039 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4040 	switch (result) {
4041 	case MC_CMD_POLL_BIST_PASSED:
4042 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4043 		return 0;
4044 	case MC_CMD_POLL_BIST_TIMEOUT:
4045 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4046 		return -EIO;
4047 	case MC_CMD_POLL_BIST_FAILED:
4048 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4049 		return -EIO;
4050 	default:
4051 		netif_err(efx, hw, efx->net_dev,
4052 			  "BIST returned unknown result %u", result);
4053 		return -EIO;
4054 	}
4055 }
4056 
4057 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4058 {
4059 	int rc;
4060 
4061 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4062 
4063 	rc = efx_ef10_start_bist(efx, bist_type);
4064 	if (rc != 0)
4065 		return rc;
4066 
4067 	return efx_ef10_poll_bist(efx);
4068 }
4069 
4070 static int
4071 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4072 {
4073 	int rc, rc2;
4074 
4075 	efx_reset_down(efx, RESET_TYPE_WORLD);
4076 
4077 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4078 			  NULL, 0, NULL, 0, NULL);
4079 	if (rc != 0)
4080 		goto out;
4081 
4082 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4083 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4084 
4085 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4086 
4087 out:
4088 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4089 	return rc ? rc : rc2;
4090 }
4091 
4092 #ifdef CONFIG_SFC_MTD
4093 
4094 struct efx_ef10_nvram_type_info {
4095 	u16 type, type_mask;
4096 	u8 port;
4097 	const char *name;
4098 };
4099 
4100 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4101 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
4102 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
4103 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
4104 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
4105 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
4106 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
4107 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
4108 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
4109 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
4110 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
4111 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
4112 };
4113 
4114 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4115 					struct efx_mcdi_mtd_partition *part,
4116 					unsigned int type)
4117 {
4118 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4119 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4120 	const struct efx_ef10_nvram_type_info *info;
4121 	size_t size, erase_size, outlen;
4122 	bool protected;
4123 	int rc;
4124 
4125 	for (info = efx_ef10_nvram_types; ; info++) {
4126 		if (info ==
4127 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4128 			return -ENODEV;
4129 		if ((type & ~info->type_mask) == info->type)
4130 			break;
4131 	}
4132 	if (info->port != efx_port_num(efx))
4133 		return -ENODEV;
4134 
4135 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4136 	if (rc)
4137 		return rc;
4138 	if (protected)
4139 		return -ENODEV; /* hide it */
4140 
4141 	part->nvram_type = type;
4142 
4143 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4144 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4145 			  outbuf, sizeof(outbuf), &outlen);
4146 	if (rc)
4147 		return rc;
4148 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4149 		return -EIO;
4150 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4151 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4152 		part->fw_subtype = MCDI_DWORD(outbuf,
4153 					      NVRAM_METADATA_OUT_SUBTYPE);
4154 
4155 	part->common.dev_type_name = "EF10 NVRAM manager";
4156 	part->common.type_name = info->name;
4157 
4158 	part->common.mtd.type = MTD_NORFLASH;
4159 	part->common.mtd.flags = MTD_CAP_NORFLASH;
4160 	part->common.mtd.size = size;
4161 	part->common.mtd.erasesize = erase_size;
4162 
4163 	return 0;
4164 }
4165 
4166 static int efx_ef10_mtd_probe(struct efx_nic *efx)
4167 {
4168 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4169 	struct efx_mcdi_mtd_partition *parts;
4170 	size_t outlen, n_parts_total, i, n_parts;
4171 	unsigned int type;
4172 	int rc;
4173 
4174 	ASSERT_RTNL();
4175 
4176 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4177 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4178 			  outbuf, sizeof(outbuf), &outlen);
4179 	if (rc)
4180 		return rc;
4181 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4182 		return -EIO;
4183 
4184 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4185 	if (n_parts_total >
4186 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4187 		return -EIO;
4188 
4189 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4190 	if (!parts)
4191 		return -ENOMEM;
4192 
4193 	n_parts = 0;
4194 	for (i = 0; i < n_parts_total; i++) {
4195 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4196 					i);
4197 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4198 		if (rc == 0)
4199 			n_parts++;
4200 		else if (rc != -ENODEV)
4201 			goto fail;
4202 	}
4203 
4204 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4205 fail:
4206 	if (rc)
4207 		kfree(parts);
4208 	return rc;
4209 }
4210 
4211 #endif /* CONFIG_SFC_MTD */
4212 
4213 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4214 {
4215 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4216 }
4217 
4218 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4219 					    u32 host_time) {}
4220 
4221 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4222 					   bool temp)
4223 {
4224 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4225 	int rc;
4226 
4227 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4228 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
4229 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4230 		return 0;
4231 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4232 
4233 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4234 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4235 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4236 		       channel->channel);
4237 
4238 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4239 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4240 
4241 	if (rc != 0)
4242 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4243 						    SYNC_EVENTS_DISABLED;
4244 
4245 	return rc;
4246 }
4247 
4248 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4249 					    bool temp)
4250 {
4251 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4252 	int rc;
4253 
4254 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4255 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4256 		return 0;
4257 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4258 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
4259 		return 0;
4260 	}
4261 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4262 					    SYNC_EVENTS_DISABLED;
4263 
4264 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4265 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4266 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4267 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4268 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4269 		       channel->channel);
4270 
4271 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4272 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
4273 
4274 	return rc;
4275 }
4276 
4277 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4278 					   bool temp)
4279 {
4280 	int (*set)(struct efx_channel *channel, bool temp);
4281 	struct efx_channel *channel;
4282 
4283 	set = en ?
4284 	      efx_ef10_rx_enable_timestamping :
4285 	      efx_ef10_rx_disable_timestamping;
4286 
4287 	efx_for_each_channel(channel, efx) {
4288 		int rc = set(channel, temp);
4289 		if (en && rc != 0) {
4290 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4291 			return rc;
4292 		}
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4299 					 struct hwtstamp_config *init)
4300 {
4301 	return -EOPNOTSUPP;
4302 }
4303 
4304 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4305 				      struct hwtstamp_config *init)
4306 {
4307 	int rc;
4308 
4309 	switch (init->rx_filter) {
4310 	case HWTSTAMP_FILTER_NONE:
4311 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4312 		/* if TX timestamping is still requested then leave PTP on */
4313 		return efx_ptp_change_mode(efx,
4314 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
4315 	case HWTSTAMP_FILTER_ALL:
4316 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4317 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4318 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4319 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4320 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4321 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4322 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4323 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4324 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4325 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4326 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4327 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4328 		init->rx_filter = HWTSTAMP_FILTER_ALL;
4329 		rc = efx_ptp_change_mode(efx, true, 0);
4330 		if (!rc)
4331 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4332 		if (rc)
4333 			efx_ptp_change_mode(efx, false, 0);
4334 		return rc;
4335 	default:
4336 		return -ERANGE;
4337 	}
4338 }
4339 
4340 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4341 	.is_vf = true,
4342 	.mem_bar = EFX_MEM_VF_BAR,
4343 	.mem_map_size = efx_ef10_mem_map_size,
4344 	.probe = efx_ef10_probe_vf,
4345 	.remove = efx_ef10_remove,
4346 	.dimension_resources = efx_ef10_dimension_resources,
4347 	.init = efx_ef10_init_nic,
4348 	.fini = efx_port_dummy_op_void,
4349 	.map_reset_reason = efx_ef10_map_reset_reason,
4350 	.map_reset_flags = efx_ef10_map_reset_flags,
4351 	.reset = efx_ef10_reset,
4352 	.probe_port = efx_mcdi_port_probe,
4353 	.remove_port = efx_mcdi_port_remove,
4354 	.fini_dmaq = efx_ef10_fini_dmaq,
4355 	.prepare_flr = efx_ef10_prepare_flr,
4356 	.finish_flr = efx_port_dummy_op_void,
4357 	.describe_stats = efx_ef10_describe_stats,
4358 	.update_stats = efx_ef10_update_stats_vf,
4359 	.start_stats = efx_port_dummy_op_void,
4360 	.pull_stats = efx_port_dummy_op_void,
4361 	.stop_stats = efx_port_dummy_op_void,
4362 	.set_id_led = efx_mcdi_set_id_led,
4363 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4364 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4365 	.check_mac_fault = efx_mcdi_mac_check_fault,
4366 	.reconfigure_port = efx_mcdi_port_reconfigure,
4367 	.get_wol = efx_ef10_get_wol_vf,
4368 	.set_wol = efx_ef10_set_wol_vf,
4369 	.resume_wol = efx_port_dummy_op_void,
4370 	.mcdi_request = efx_ef10_mcdi_request,
4371 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4372 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4373 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4374 	.irq_enable_master = efx_port_dummy_op_void,
4375 	.irq_test_generate = efx_ef10_irq_test_generate,
4376 	.irq_disable_non_ev = efx_port_dummy_op_void,
4377 	.irq_handle_msi = efx_ef10_msi_interrupt,
4378 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4379 	.tx_probe = efx_ef10_tx_probe,
4380 	.tx_init = efx_ef10_tx_init,
4381 	.tx_remove = efx_ef10_tx_remove,
4382 	.tx_write = efx_ef10_tx_write,
4383 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4384 	.rx_probe = efx_ef10_rx_probe,
4385 	.rx_init = efx_ef10_rx_init,
4386 	.rx_remove = efx_ef10_rx_remove,
4387 	.rx_write = efx_ef10_rx_write,
4388 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4389 	.ev_probe = efx_ef10_ev_probe,
4390 	.ev_init = efx_ef10_ev_init,
4391 	.ev_fini = efx_ef10_ev_fini,
4392 	.ev_remove = efx_ef10_ev_remove,
4393 	.ev_process = efx_ef10_ev_process,
4394 	.ev_read_ack = efx_ef10_ev_read_ack,
4395 	.ev_test_generate = efx_ef10_ev_test_generate,
4396 	.filter_table_probe = efx_ef10_filter_table_probe,
4397 	.filter_table_restore = efx_ef10_filter_table_restore,
4398 	.filter_table_remove = efx_ef10_filter_table_remove,
4399 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4400 	.filter_insert = efx_ef10_filter_insert,
4401 	.filter_remove_safe = efx_ef10_filter_remove_safe,
4402 	.filter_get_safe = efx_ef10_filter_get_safe,
4403 	.filter_clear_rx = efx_ef10_filter_clear_rx,
4404 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4405 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4406 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4407 #ifdef CONFIG_RFS_ACCEL
4408 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4409 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4410 #endif
4411 #ifdef CONFIG_SFC_MTD
4412 	.mtd_probe = efx_port_dummy_op_int,
4413 #endif
4414 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4415 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4416 #ifdef CONFIG_SFC_SRIOV
4417 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4418 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4419 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4420 	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4421 #endif
4422 	.get_mac_address = efx_ef10_get_mac_address_vf,
4423 	.set_mac_address = efx_ef10_set_mac_address,
4424 
4425 	.revision = EFX_REV_HUNT_A0,
4426 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4427 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4428 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4429 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4430 	.can_rx_scatter = true,
4431 	.always_rx_scatter = true,
4432 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4433 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4434 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4435 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4436 	.mcdi_max_ver = 2,
4437 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4438 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4439 			    1 << HWTSTAMP_FILTER_ALL,
4440 };
4441 
4442 const struct efx_nic_type efx_hunt_a0_nic_type = {
4443 	.is_vf = false,
4444 	.mem_bar = EFX_MEM_BAR,
4445 	.mem_map_size = efx_ef10_mem_map_size,
4446 	.probe = efx_ef10_probe_pf,
4447 	.remove = efx_ef10_remove,
4448 	.dimension_resources = efx_ef10_dimension_resources,
4449 	.init = efx_ef10_init_nic,
4450 	.fini = efx_port_dummy_op_void,
4451 	.map_reset_reason = efx_ef10_map_reset_reason,
4452 	.map_reset_flags = efx_ef10_map_reset_flags,
4453 	.reset = efx_ef10_reset,
4454 	.probe_port = efx_mcdi_port_probe,
4455 	.remove_port = efx_mcdi_port_remove,
4456 	.fini_dmaq = efx_ef10_fini_dmaq,
4457 	.prepare_flr = efx_ef10_prepare_flr,
4458 	.finish_flr = efx_port_dummy_op_void,
4459 	.describe_stats = efx_ef10_describe_stats,
4460 	.update_stats = efx_ef10_update_stats_pf,
4461 	.start_stats = efx_mcdi_mac_start_stats,
4462 	.pull_stats = efx_mcdi_mac_pull_stats,
4463 	.stop_stats = efx_mcdi_mac_stop_stats,
4464 	.set_id_led = efx_mcdi_set_id_led,
4465 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4466 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4467 	.check_mac_fault = efx_mcdi_mac_check_fault,
4468 	.reconfigure_port = efx_mcdi_port_reconfigure,
4469 	.get_wol = efx_ef10_get_wol,
4470 	.set_wol = efx_ef10_set_wol,
4471 	.resume_wol = efx_port_dummy_op_void,
4472 	.test_chip = efx_ef10_test_chip,
4473 	.test_nvram = efx_mcdi_nvram_test_all,
4474 	.mcdi_request = efx_ef10_mcdi_request,
4475 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4476 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4477 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4478 	.irq_enable_master = efx_port_dummy_op_void,
4479 	.irq_test_generate = efx_ef10_irq_test_generate,
4480 	.irq_disable_non_ev = efx_port_dummy_op_void,
4481 	.irq_handle_msi = efx_ef10_msi_interrupt,
4482 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4483 	.tx_probe = efx_ef10_tx_probe,
4484 	.tx_init = efx_ef10_tx_init,
4485 	.tx_remove = efx_ef10_tx_remove,
4486 	.tx_write = efx_ef10_tx_write,
4487 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4488 	.rx_probe = efx_ef10_rx_probe,
4489 	.rx_init = efx_ef10_rx_init,
4490 	.rx_remove = efx_ef10_rx_remove,
4491 	.rx_write = efx_ef10_rx_write,
4492 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4493 	.ev_probe = efx_ef10_ev_probe,
4494 	.ev_init = efx_ef10_ev_init,
4495 	.ev_fini = efx_ef10_ev_fini,
4496 	.ev_remove = efx_ef10_ev_remove,
4497 	.ev_process = efx_ef10_ev_process,
4498 	.ev_read_ack = efx_ef10_ev_read_ack,
4499 	.ev_test_generate = efx_ef10_ev_test_generate,
4500 	.filter_table_probe = efx_ef10_filter_table_probe,
4501 	.filter_table_restore = efx_ef10_filter_table_restore,
4502 	.filter_table_remove = efx_ef10_filter_table_remove,
4503 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4504 	.filter_insert = efx_ef10_filter_insert,
4505 	.filter_remove_safe = efx_ef10_filter_remove_safe,
4506 	.filter_get_safe = efx_ef10_filter_get_safe,
4507 	.filter_clear_rx = efx_ef10_filter_clear_rx,
4508 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
4509 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4510 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4511 #ifdef CONFIG_RFS_ACCEL
4512 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
4513 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4514 #endif
4515 #ifdef CONFIG_SFC_MTD
4516 	.mtd_probe = efx_ef10_mtd_probe,
4517 	.mtd_rename = efx_mcdi_mtd_rename,
4518 	.mtd_read = efx_mcdi_mtd_read,
4519 	.mtd_erase = efx_mcdi_mtd_erase,
4520 	.mtd_write = efx_mcdi_mtd_write,
4521 	.mtd_sync = efx_mcdi_mtd_sync,
4522 #endif
4523 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4524 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4525 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4526 #ifdef CONFIG_SFC_SRIOV
4527 	.sriov_configure = efx_ef10_sriov_configure,
4528 	.sriov_init = efx_ef10_sriov_init,
4529 	.sriov_fini = efx_ef10_sriov_fini,
4530 	.sriov_wanted = efx_ef10_sriov_wanted,
4531 	.sriov_reset = efx_ef10_sriov_reset,
4532 	.sriov_flr = efx_ef10_sriov_flr,
4533 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4534 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4535 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4536 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4537 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4538 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4539 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4540 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4541 #endif
4542 	.get_mac_address = efx_ef10_get_mac_address_pf,
4543 	.set_mac_address = efx_ef10_set_mac_address,
4544 
4545 	.revision = EFX_REV_HUNT_A0,
4546 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4547 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4548 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4549 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4550 	.can_rx_scatter = true,
4551 	.always_rx_scatter = true,
4552 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4553 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4554 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4555 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
4556 	.mcdi_max_ver = 2,
4557 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4558 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4559 			    1 << HWTSTAMP_FILTER_ALL,
4560 };
4561