xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision de2bdb3d)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 
54 #define EFX_EF10_FILTER_DEV_UC_MAX	32
55 #define EFX_EF10_FILTER_DEV_MC_MAX	256
56 
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59 	struct list_head list;
60 	u16 vid;
61 };
62 
63 /* Per-VLAN filters information */
64 struct efx_ef10_filter_vlan {
65 	struct list_head list;
66 	u16 vid;
67 	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
68 	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
69 	u16 ucdef;
70 	u16 bcast;
71 	u16 mcdef;
72 };
73 
74 struct efx_ef10_dev_addr {
75 	u8 addr[ETH_ALEN];
76 };
77 
78 struct efx_ef10_filter_table {
79 /* The MCDI match masks supported by this fw & hw, in order of priority */
80 	u32 rx_match_mcdi_flags[
81 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
82 	unsigned int rx_match_count;
83 
84 	struct {
85 		unsigned long spec;	/* pointer to spec plus flag bits */
86 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
87  * used to mark and sweep MAC filters for the device address lists.
88  */
89 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
90 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
91 #define EFX_EF10_FILTER_FLAGS		3UL
92 		u64 handle;		/* firmware handle */
93 	} *entry;
94 	wait_queue_head_t waitq;
95 /* Shadow of net_device address lists, guarded by mac_lock */
96 	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
97 	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
98 	int dev_uc_count;
99 	int dev_mc_count;
100 	bool uc_promisc;
101 	bool mc_promisc;
102 /* Whether in multicast promiscuous mode when last changed */
103 	bool mc_promisc_last;
104 	bool vlan_filter;
105 	struct list_head vlan_list;
106 };
107 
108 /* An arbitrary search limit for the software hash table */
109 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
110 
111 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
112 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
113 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
114 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
115 					      struct efx_ef10_filter_vlan *vlan);
116 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
117 
118 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
119 {
120 	efx_dword_t reg;
121 
122 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
123 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
124 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
125 }
126 
127 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
128 {
129 	int bar;
130 
131 	bar = efx->type->mem_bar;
132 	return resource_size(&efx->pci_dev->resource[bar]);
133 }
134 
135 static bool efx_ef10_is_vf(struct efx_nic *efx)
136 {
137 	return efx->type->is_vf;
138 }
139 
140 static int efx_ef10_get_pf_index(struct efx_nic *efx)
141 {
142 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
143 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
144 	size_t outlen;
145 	int rc;
146 
147 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
148 			  sizeof(outbuf), &outlen);
149 	if (rc)
150 		return rc;
151 	if (outlen < sizeof(outbuf))
152 		return -EIO;
153 
154 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
155 	return 0;
156 }
157 
158 #ifdef CONFIG_SFC_SRIOV
159 static int efx_ef10_get_vf_index(struct efx_nic *efx)
160 {
161 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
162 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
163 	size_t outlen;
164 	int rc;
165 
166 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
167 			  sizeof(outbuf), &outlen);
168 	if (rc)
169 		return rc;
170 	if (outlen < sizeof(outbuf))
171 		return -EIO;
172 
173 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
174 	return 0;
175 }
176 #endif
177 
178 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
179 {
180 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
181 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
182 	size_t outlen;
183 	int rc;
184 
185 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
186 
187 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
188 			  outbuf, sizeof(outbuf), &outlen);
189 	if (rc)
190 		return rc;
191 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
192 		netif_err(efx, drv, efx->net_dev,
193 			  "unable to read datapath firmware capabilities\n");
194 		return -EIO;
195 	}
196 
197 	nic_data->datapath_caps =
198 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
199 
200 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
201 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
202 				GET_CAPABILITIES_V2_OUT_FLAGS2);
203 	else
204 		nic_data->datapath_caps2 = 0;
205 
206 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
207 	 */
208 	nic_data->rx_dpcpu_fw_id =
209 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
210 	nic_data->tx_dpcpu_fw_id =
211 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
212 
213 	if (!(nic_data->datapath_caps &
214 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
215 		netif_err(efx, probe, efx->net_dev,
216 			  "current firmware does not support an RX prefix\n");
217 		return -ENODEV;
218 	}
219 
220 	return 0;
221 }
222 
223 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
224 {
225 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
226 	int rc;
227 
228 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
229 			  outbuf, sizeof(outbuf), NULL);
230 	if (rc)
231 		return rc;
232 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
233 	return rc > 0 ? rc : -ERANGE;
234 }
235 
236 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
237 {
238 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
239 	unsigned int implemented;
240 	unsigned int enabled;
241 	int rc;
242 
243 	nic_data->workaround_35388 = false;
244 	nic_data->workaround_61265 = false;
245 
246 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
247 
248 	if (rc == -ENOSYS) {
249 		/* Firmware without GET_WORKAROUNDS - not a problem. */
250 		rc = 0;
251 	} else if (rc == 0) {
252 		/* Bug61265 workaround is always enabled if implemented. */
253 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
254 			nic_data->workaround_61265 = true;
255 
256 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
257 			nic_data->workaround_35388 = true;
258 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
259 			/* Workaround is implemented but not enabled.
260 			 * Try to enable it.
261 			 */
262 			rc = efx_mcdi_set_workaround(efx,
263 						     MC_CMD_WORKAROUND_BUG35388,
264 						     true, NULL);
265 			if (rc == 0)
266 				nic_data->workaround_35388 = true;
267 			/* If we failed to set the workaround just carry on. */
268 			rc = 0;
269 		}
270 	}
271 
272 	netif_dbg(efx, probe, efx->net_dev,
273 		  "workaround for bug 35388 is %sabled\n",
274 		  nic_data->workaround_35388 ? "en" : "dis");
275 	netif_dbg(efx, probe, efx->net_dev,
276 		  "workaround for bug 61265 is %sabled\n",
277 		  nic_data->workaround_61265 ? "en" : "dis");
278 
279 	return rc;
280 }
281 
282 static void efx_ef10_process_timer_config(struct efx_nic *efx,
283 					  const efx_dword_t *data)
284 {
285 	unsigned int max_count;
286 
287 	if (EFX_EF10_WORKAROUND_61265(efx)) {
288 		efx->timer_quantum_ns = MCDI_DWORD(data,
289 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
290 		efx->timer_max_ns = MCDI_DWORD(data,
291 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
292 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
293 		efx->timer_quantum_ns = MCDI_DWORD(data,
294 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
295 		max_count = MCDI_DWORD(data,
296 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
297 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
298 	} else {
299 		efx->timer_quantum_ns = MCDI_DWORD(data,
300 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
301 		max_count = MCDI_DWORD(data,
302 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
303 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
304 	}
305 
306 	netif_dbg(efx, probe, efx->net_dev,
307 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
308 		  efx->timer_quantum_ns, efx->timer_max_ns);
309 }
310 
311 static int efx_ef10_get_timer_config(struct efx_nic *efx)
312 {
313 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
314 	int rc;
315 
316 	rc = efx_ef10_get_timer_workarounds(efx);
317 	if (rc)
318 		return rc;
319 
320 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
321 				outbuf, sizeof(outbuf), NULL);
322 
323 	if (rc == 0) {
324 		efx_ef10_process_timer_config(efx, outbuf);
325 	} else if (rc == -ENOSYS || rc == -EPERM) {
326 		/* Not available - fall back to Huntington defaults. */
327 		unsigned int quantum;
328 
329 		rc = efx_ef10_get_sysclk_freq(efx);
330 		if (rc < 0)
331 			return rc;
332 
333 		quantum = 1536000 / rc; /* 1536 cycles */
334 		efx->timer_quantum_ns = quantum;
335 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
336 		rc = 0;
337 	} else {
338 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
339 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
340 				       NULL, 0, rc);
341 	}
342 
343 	return rc;
344 }
345 
346 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
347 {
348 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
349 	size_t outlen;
350 	int rc;
351 
352 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
353 
354 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
355 			  outbuf, sizeof(outbuf), &outlen);
356 	if (rc)
357 		return rc;
358 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
359 		return -EIO;
360 
361 	ether_addr_copy(mac_address,
362 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
363 	return 0;
364 }
365 
366 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
367 {
368 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
369 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
370 	size_t outlen;
371 	int num_addrs, rc;
372 
373 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
374 		       EVB_PORT_ID_ASSIGNED);
375 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
376 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
377 
378 	if (rc)
379 		return rc;
380 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
381 		return -EIO;
382 
383 	num_addrs = MCDI_DWORD(outbuf,
384 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
385 
386 	WARN_ON(num_addrs != 1);
387 
388 	ether_addr_copy(mac_address,
389 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
390 
391 	return 0;
392 }
393 
394 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
395 					       struct device_attribute *attr,
396 					       char *buf)
397 {
398 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
399 
400 	return sprintf(buf, "%d\n",
401 		       ((efx->mcdi->fn_flags) &
402 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
403 		       ? 1 : 0);
404 }
405 
406 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
407 					  struct device_attribute *attr,
408 					  char *buf)
409 {
410 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
411 
412 	return sprintf(buf, "%d\n",
413 		       ((efx->mcdi->fn_flags) &
414 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
415 		       ? 1 : 0);
416 }
417 
418 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
419 {
420 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
421 	struct efx_ef10_vlan *vlan;
422 
423 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
424 
425 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
426 		if (vlan->vid == vid)
427 			return vlan;
428 	}
429 
430 	return NULL;
431 }
432 
433 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
434 {
435 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
436 	struct efx_ef10_vlan *vlan;
437 	int rc;
438 
439 	mutex_lock(&nic_data->vlan_lock);
440 
441 	vlan = efx_ef10_find_vlan(efx, vid);
442 	if (vlan) {
443 		/* We add VID 0 on init. 8021q adds it on module init
444 		 * for all interfaces with VLAN filtring feature.
445 		 */
446 		if (vid == 0)
447 			goto done_unlock;
448 		netif_warn(efx, drv, efx->net_dev,
449 			   "VLAN %u already added\n", vid);
450 		rc = -EALREADY;
451 		goto fail_exist;
452 	}
453 
454 	rc = -ENOMEM;
455 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
456 	if (!vlan)
457 		goto fail_alloc;
458 
459 	vlan->vid = vid;
460 
461 	list_add_tail(&vlan->list, &nic_data->vlan_list);
462 
463 	if (efx->filter_state) {
464 		mutex_lock(&efx->mac_lock);
465 		down_write(&efx->filter_sem);
466 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
467 		up_write(&efx->filter_sem);
468 		mutex_unlock(&efx->mac_lock);
469 		if (rc)
470 			goto fail_filter_add_vlan;
471 	}
472 
473 done_unlock:
474 	mutex_unlock(&nic_data->vlan_lock);
475 	return 0;
476 
477 fail_filter_add_vlan:
478 	list_del(&vlan->list);
479 	kfree(vlan);
480 fail_alloc:
481 fail_exist:
482 	mutex_unlock(&nic_data->vlan_lock);
483 	return rc;
484 }
485 
486 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
487 				       struct efx_ef10_vlan *vlan)
488 {
489 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
490 
491 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
492 
493 	if (efx->filter_state) {
494 		down_write(&efx->filter_sem);
495 		efx_ef10_filter_del_vlan(efx, vlan->vid);
496 		up_write(&efx->filter_sem);
497 	}
498 
499 	list_del(&vlan->list);
500 	kfree(vlan);
501 }
502 
503 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
504 {
505 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
506 	struct efx_ef10_vlan *vlan;
507 	int rc = 0;
508 
509 	/* 8021q removes VID 0 on module unload for all interfaces
510 	 * with VLAN filtering feature. We need to keep it to receive
511 	 * untagged traffic.
512 	 */
513 	if (vid == 0)
514 		return 0;
515 
516 	mutex_lock(&nic_data->vlan_lock);
517 
518 	vlan = efx_ef10_find_vlan(efx, vid);
519 	if (!vlan) {
520 		netif_err(efx, drv, efx->net_dev,
521 			  "VLAN %u to be deleted not found\n", vid);
522 		rc = -ENOENT;
523 	} else {
524 		efx_ef10_del_vlan_internal(efx, vlan);
525 	}
526 
527 	mutex_unlock(&nic_data->vlan_lock);
528 
529 	return rc;
530 }
531 
532 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
533 {
534 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
535 	struct efx_ef10_vlan *vlan, *next_vlan;
536 
537 	mutex_lock(&nic_data->vlan_lock);
538 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
539 		efx_ef10_del_vlan_internal(efx, vlan);
540 	mutex_unlock(&nic_data->vlan_lock);
541 }
542 
543 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
544 		   NULL);
545 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
546 
547 static int efx_ef10_probe(struct efx_nic *efx)
548 {
549 	struct efx_ef10_nic_data *nic_data;
550 	struct net_device *net_dev = efx->net_dev;
551 	int i, rc;
552 
553 	/* We can have one VI for each 8K region.  However, until we
554 	 * use TX option descriptors we need two TX queues per channel.
555 	 */
556 	efx->max_channels = min_t(unsigned int,
557 				  EFX_MAX_CHANNELS,
558 				  efx_ef10_mem_map_size(efx) /
559 				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
560 	efx->max_tx_channels = efx->max_channels;
561 	if (WARN_ON(efx->max_channels == 0))
562 		return -EIO;
563 
564 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
565 	if (!nic_data)
566 		return -ENOMEM;
567 	efx->nic_data = nic_data;
568 
569 	/* we assume later that we can copy from this buffer in dwords */
570 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
571 
572 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
573 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
574 	if (rc)
575 		goto fail1;
576 
577 	/* Get the MC's warm boot count.  In case it's rebooting right
578 	 * now, be prepared to retry.
579 	 */
580 	i = 0;
581 	for (;;) {
582 		rc = efx_ef10_get_warm_boot_count(efx);
583 		if (rc >= 0)
584 			break;
585 		if (++i == 5)
586 			goto fail2;
587 		ssleep(1);
588 	}
589 	nic_data->warm_boot_count = rc;
590 
591 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
592 
593 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
594 
595 	/* In case we're recovering from a crash (kexec), we want to
596 	 * cancel any outstanding request by the previous user of this
597 	 * function.  We send a special message using the least
598 	 * significant bits of the 'high' (doorbell) register.
599 	 */
600 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
601 
602 	rc = efx_mcdi_init(efx);
603 	if (rc)
604 		goto fail2;
605 
606 	/* Reset (most) configuration for this function */
607 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
608 	if (rc)
609 		goto fail3;
610 
611 	/* Enable event logging */
612 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
613 	if (rc)
614 		goto fail3;
615 
616 	rc = device_create_file(&efx->pci_dev->dev,
617 				&dev_attr_link_control_flag);
618 	if (rc)
619 		goto fail3;
620 
621 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
622 	if (rc)
623 		goto fail4;
624 
625 	rc = efx_ef10_get_pf_index(efx);
626 	if (rc)
627 		goto fail5;
628 
629 	rc = efx_ef10_init_datapath_caps(efx);
630 	if (rc < 0)
631 		goto fail5;
632 
633 	efx->rx_packet_len_offset =
634 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
635 
636 	rc = efx_mcdi_port_get_number(efx);
637 	if (rc < 0)
638 		goto fail5;
639 	efx->port_num = rc;
640 	net_dev->dev_port = rc;
641 
642 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
643 	if (rc)
644 		goto fail5;
645 
646 	rc = efx_ef10_get_timer_config(efx);
647 	if (rc < 0)
648 		goto fail5;
649 
650 	rc = efx_mcdi_mon_probe(efx);
651 	if (rc && rc != -EPERM)
652 		goto fail5;
653 
654 	efx_ptp_probe(efx, NULL);
655 
656 #ifdef CONFIG_SFC_SRIOV
657 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
658 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
659 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
660 
661 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
662 	} else
663 #endif
664 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
665 
666 	INIT_LIST_HEAD(&nic_data->vlan_list);
667 	mutex_init(&nic_data->vlan_lock);
668 
669 	/* Add unspecified VID to support VLAN filtering being disabled */
670 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
671 	if (rc)
672 		goto fail_add_vid_unspec;
673 
674 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
675 	 * traffic.  It is added automatically if 8021q module is loaded,
676 	 * but we can't rely on it since module may be not loaded.
677 	 */
678 	rc = efx_ef10_add_vlan(efx, 0);
679 	if (rc)
680 		goto fail_add_vid_0;
681 
682 	return 0;
683 
684 fail_add_vid_0:
685 	efx_ef10_cleanup_vlans(efx);
686 fail_add_vid_unspec:
687 	mutex_destroy(&nic_data->vlan_lock);
688 	efx_ptp_remove(efx);
689 	efx_mcdi_mon_remove(efx);
690 fail5:
691 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
692 fail4:
693 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
694 fail3:
695 	efx_mcdi_fini(efx);
696 fail2:
697 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
698 fail1:
699 	kfree(nic_data);
700 	efx->nic_data = NULL;
701 	return rc;
702 }
703 
704 static int efx_ef10_free_vis(struct efx_nic *efx)
705 {
706 	MCDI_DECLARE_BUF_ERR(outbuf);
707 	size_t outlen;
708 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
709 				    outbuf, sizeof(outbuf), &outlen);
710 
711 	/* -EALREADY means nothing to free, so ignore */
712 	if (rc == -EALREADY)
713 		rc = 0;
714 	if (rc)
715 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
716 				       rc);
717 	return rc;
718 }
719 
720 #ifdef EFX_USE_PIO
721 
722 static void efx_ef10_free_piobufs(struct efx_nic *efx)
723 {
724 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
725 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
726 	unsigned int i;
727 	int rc;
728 
729 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
730 
731 	for (i = 0; i < nic_data->n_piobufs; i++) {
732 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
733 			       nic_data->piobuf_handle[i]);
734 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
735 				  NULL, 0, NULL);
736 		WARN_ON(rc);
737 	}
738 
739 	nic_data->n_piobufs = 0;
740 }
741 
742 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
743 {
744 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
745 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
746 	unsigned int i;
747 	size_t outlen;
748 	int rc = 0;
749 
750 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
751 
752 	for (i = 0; i < n; i++) {
753 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
754 					outbuf, sizeof(outbuf), &outlen);
755 		if (rc) {
756 			/* Don't display the MC error if we didn't have space
757 			 * for a VF.
758 			 */
759 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
760 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
761 						       0, outbuf, outlen, rc);
762 			break;
763 		}
764 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
765 			rc = -EIO;
766 			break;
767 		}
768 		nic_data->piobuf_handle[i] =
769 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
770 		netif_dbg(efx, probe, efx->net_dev,
771 			  "allocated PIO buffer %u handle %x\n", i,
772 			  nic_data->piobuf_handle[i]);
773 	}
774 
775 	nic_data->n_piobufs = i;
776 	if (rc)
777 		efx_ef10_free_piobufs(efx);
778 	return rc;
779 }
780 
781 static int efx_ef10_link_piobufs(struct efx_nic *efx)
782 {
783 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
784 	_MCDI_DECLARE_BUF(inbuf,
785 			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
786 			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
787 	struct efx_channel *channel;
788 	struct efx_tx_queue *tx_queue;
789 	unsigned int offset, index;
790 	int rc;
791 
792 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
793 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
794 
795 	memset(inbuf, 0, sizeof(inbuf));
796 
797 	/* Link a buffer to each VI in the write-combining mapping */
798 	for (index = 0; index < nic_data->n_piobufs; ++index) {
799 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
800 			       nic_data->piobuf_handle[index]);
801 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
802 			       nic_data->pio_write_vi_base + index);
803 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
804 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
805 				  NULL, 0, NULL);
806 		if (rc) {
807 			netif_err(efx, drv, efx->net_dev,
808 				  "failed to link VI %u to PIO buffer %u (%d)\n",
809 				  nic_data->pio_write_vi_base + index, index,
810 				  rc);
811 			goto fail;
812 		}
813 		netif_dbg(efx, probe, efx->net_dev,
814 			  "linked VI %u to PIO buffer %u\n",
815 			  nic_data->pio_write_vi_base + index, index);
816 	}
817 
818 	/* Link a buffer to each TX queue */
819 	efx_for_each_channel(channel, efx) {
820 		efx_for_each_channel_tx_queue(tx_queue, channel) {
821 			/* We assign the PIO buffers to queues in
822 			 * reverse order to allow for the following
823 			 * special case.
824 			 */
825 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
826 				   tx_queue->channel->channel - 1) *
827 				  efx_piobuf_size);
828 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
829 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
830 
831 			/* When the host page size is 4K, the first
832 			 * host page in the WC mapping may be within
833 			 * the same VI page as the last TX queue.  We
834 			 * can only link one buffer to each VI.
835 			 */
836 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
837 				BUG_ON(index != 0);
838 				rc = 0;
839 			} else {
840 				MCDI_SET_DWORD(inbuf,
841 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
842 					       nic_data->piobuf_handle[index]);
843 				MCDI_SET_DWORD(inbuf,
844 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
845 					       tx_queue->queue);
846 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
847 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
848 						  NULL, 0, NULL);
849 			}
850 
851 			if (rc) {
852 				/* This is non-fatal; the TX path just
853 				 * won't use PIO for this queue
854 				 */
855 				netif_err(efx, drv, efx->net_dev,
856 					  "failed to link VI %u to PIO buffer %u (%d)\n",
857 					  tx_queue->queue, index, rc);
858 				tx_queue->piobuf = NULL;
859 			} else {
860 				tx_queue->piobuf =
861 					nic_data->pio_write_base +
862 					index * EFX_VI_PAGE_SIZE + offset;
863 				tx_queue->piobuf_offset = offset;
864 				netif_dbg(efx, probe, efx->net_dev,
865 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
866 					  tx_queue->queue, index,
867 					  tx_queue->piobuf_offset,
868 					  tx_queue->piobuf);
869 			}
870 		}
871 	}
872 
873 	return 0;
874 
875 fail:
876 	while (index--) {
877 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
878 			       nic_data->pio_write_vi_base + index);
879 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
880 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
881 			     NULL, 0, NULL);
882 	}
883 	return rc;
884 }
885 
886 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
887 {
888 	struct efx_channel *channel;
889 	struct efx_tx_queue *tx_queue;
890 
891 	/* All our existing PIO buffers went away */
892 	efx_for_each_channel(channel, efx)
893 		efx_for_each_channel_tx_queue(tx_queue, channel)
894 			tx_queue->piobuf = NULL;
895 }
896 
897 #else /* !EFX_USE_PIO */
898 
899 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
900 {
901 	return n == 0 ? 0 : -ENOBUFS;
902 }
903 
904 static int efx_ef10_link_piobufs(struct efx_nic *efx)
905 {
906 	return 0;
907 }
908 
909 static void efx_ef10_free_piobufs(struct efx_nic *efx)
910 {
911 }
912 
913 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
914 {
915 }
916 
917 #endif /* EFX_USE_PIO */
918 
919 static void efx_ef10_remove(struct efx_nic *efx)
920 {
921 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
922 	int rc;
923 
924 #ifdef CONFIG_SFC_SRIOV
925 	struct efx_ef10_nic_data *nic_data_pf;
926 	struct pci_dev *pci_dev_pf;
927 	struct efx_nic *efx_pf;
928 	struct ef10_vf *vf;
929 
930 	if (efx->pci_dev->is_virtfn) {
931 		pci_dev_pf = efx->pci_dev->physfn;
932 		if (pci_dev_pf) {
933 			efx_pf = pci_get_drvdata(pci_dev_pf);
934 			nic_data_pf = efx_pf->nic_data;
935 			vf = nic_data_pf->vf + nic_data->vf_index;
936 			vf->efx = NULL;
937 		} else
938 			netif_info(efx, drv, efx->net_dev,
939 				   "Could not get the PF id from VF\n");
940 	}
941 #endif
942 
943 	efx_ef10_cleanup_vlans(efx);
944 	mutex_destroy(&nic_data->vlan_lock);
945 
946 	efx_ptp_remove(efx);
947 
948 	efx_mcdi_mon_remove(efx);
949 
950 	efx_ef10_rx_free_indir_table(efx);
951 
952 	if (nic_data->wc_membase)
953 		iounmap(nic_data->wc_membase);
954 
955 	rc = efx_ef10_free_vis(efx);
956 	WARN_ON(rc != 0);
957 
958 	if (!nic_data->must_restore_piobufs)
959 		efx_ef10_free_piobufs(efx);
960 
961 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
962 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
963 
964 	efx_mcdi_fini(efx);
965 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
966 	kfree(nic_data);
967 }
968 
969 static int efx_ef10_probe_pf(struct efx_nic *efx)
970 {
971 	return efx_ef10_probe(efx);
972 }
973 
974 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
975 			    u32 *port_flags, u32 *vadaptor_flags,
976 			    unsigned int *vlan_tags)
977 {
978 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
979 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
980 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
981 	size_t outlen;
982 	int rc;
983 
984 	if (nic_data->datapath_caps &
985 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
986 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
987 			       port_id);
988 
989 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
990 				  outbuf, sizeof(outbuf), &outlen);
991 		if (rc)
992 			return rc;
993 
994 		if (outlen < sizeof(outbuf)) {
995 			rc = -EIO;
996 			return rc;
997 		}
998 	}
999 
1000 	if (port_flags)
1001 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1002 	if (vadaptor_flags)
1003 		*vadaptor_flags =
1004 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1005 	if (vlan_tags)
1006 		*vlan_tags =
1007 			MCDI_DWORD(outbuf,
1008 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1009 
1010 	return 0;
1011 }
1012 
1013 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1014 {
1015 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1016 
1017 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1018 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1019 			    NULL, 0, NULL);
1020 }
1021 
1022 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1023 {
1024 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1025 
1026 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1027 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1028 			    NULL, 0, NULL);
1029 }
1030 
1031 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1032 			   unsigned int port_id, u8 *mac)
1033 {
1034 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1035 
1036 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1037 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1038 
1039 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1040 			    sizeof(inbuf), NULL, 0, NULL);
1041 }
1042 
1043 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1044 			   unsigned int port_id, u8 *mac)
1045 {
1046 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1047 
1048 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1049 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1050 
1051 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1052 			    sizeof(inbuf), NULL, 0, NULL);
1053 }
1054 
1055 #ifdef CONFIG_SFC_SRIOV
1056 static int efx_ef10_probe_vf(struct efx_nic *efx)
1057 {
1058 	int rc;
1059 	struct pci_dev *pci_dev_pf;
1060 
1061 	/* If the parent PF has no VF data structure, it doesn't know about this
1062 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1063 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1064 	 */
1065 	pci_dev_pf = efx->pci_dev->physfn;
1066 	if (pci_dev_pf) {
1067 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1068 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1069 
1070 		if (!nic_data_pf->vf) {
1071 			netif_info(efx, drv, efx->net_dev,
1072 				   "The VF cannot link to its parent PF; "
1073 				   "please destroy and re-create the VF\n");
1074 			return -EBUSY;
1075 		}
1076 	}
1077 
1078 	rc = efx_ef10_probe(efx);
1079 	if (rc)
1080 		return rc;
1081 
1082 	rc = efx_ef10_get_vf_index(efx);
1083 	if (rc)
1084 		goto fail;
1085 
1086 	if (efx->pci_dev->is_virtfn) {
1087 		if (efx->pci_dev->physfn) {
1088 			struct efx_nic *efx_pf =
1089 				pci_get_drvdata(efx->pci_dev->physfn);
1090 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1091 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1092 
1093 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1094 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1095 				efx->pci_dev;
1096 		} else
1097 			netif_info(efx, drv, efx->net_dev,
1098 				   "Could not get the PF id from VF\n");
1099 	}
1100 
1101 	return 0;
1102 
1103 fail:
1104 	efx_ef10_remove(efx);
1105 	return rc;
1106 }
1107 #else
1108 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1109 {
1110 	return 0;
1111 }
1112 #endif
1113 
1114 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1115 			      unsigned int min_vis, unsigned int max_vis)
1116 {
1117 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1118 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1119 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1120 	size_t outlen;
1121 	int rc;
1122 
1123 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1124 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1125 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1126 			  outbuf, sizeof(outbuf), &outlen);
1127 	if (rc != 0)
1128 		return rc;
1129 
1130 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1131 		return -EIO;
1132 
1133 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1134 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1135 
1136 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1137 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1138 	return 0;
1139 }
1140 
1141 /* Note that the failure path of this function does not free
1142  * resources, as this will be done by efx_ef10_remove().
1143  */
1144 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1145 {
1146 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1147 	unsigned int uc_mem_map_size, wc_mem_map_size;
1148 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1149 				   efx_separate_tx_channels ? 2 : 1);
1150 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1151 	void __iomem *membase;
1152 	int rc;
1153 
1154 	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1155 
1156 #ifdef EFX_USE_PIO
1157 	/* Try to allocate PIO buffers if wanted and if the full
1158 	 * number of PIO buffers would be sufficient to allocate one
1159 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1160 	 * are only a small number of PIO buffers shared between all
1161 	 * functions of the controller.
1162 	 */
1163 	if (efx_piobuf_size != 0 &&
1164 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1165 	    efx->n_tx_channels) {
1166 		unsigned int n_piobufs =
1167 			DIV_ROUND_UP(efx->n_tx_channels,
1168 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
1169 
1170 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1171 		if (rc)
1172 			netif_err(efx, probe, efx->net_dev,
1173 				  "failed to allocate PIO buffers (%d)\n", rc);
1174 		else
1175 			netif_dbg(efx, probe, efx->net_dev,
1176 				  "allocated %u PIO buffers\n", n_piobufs);
1177 	}
1178 #else
1179 	nic_data->n_piobufs = 0;
1180 #endif
1181 
1182 	/* PIO buffers should be mapped with write-combining enabled,
1183 	 * and we want to make single UC and WC mappings rather than
1184 	 * several of each (in fact that's the only option if host
1185 	 * page size is >4K).  So we may allocate some extra VIs just
1186 	 * for writing PIO buffers through.
1187 	 *
1188 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1189 	 * first half of the next VI.  Then the WC mapping begins with
1190 	 * the second half of this last VI.
1191 	 */
1192 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1193 				     ER_DZ_TX_PIOBUF);
1194 	if (nic_data->n_piobufs) {
1195 		/* pio_write_vi_base rounds down to give the number of complete
1196 		 * VIs inside the UC mapping.
1197 		 */
1198 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1199 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1200 					       nic_data->n_piobufs) *
1201 					      EFX_VI_PAGE_SIZE) -
1202 				   uc_mem_map_size);
1203 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1204 	} else {
1205 		pio_write_vi_base = 0;
1206 		wc_mem_map_size = 0;
1207 		max_vis = channel_vis;
1208 	}
1209 
1210 	/* In case the last attached driver failed to free VIs, do it now */
1211 	rc = efx_ef10_free_vis(efx);
1212 	if (rc != 0)
1213 		return rc;
1214 
1215 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1216 	if (rc != 0)
1217 		return rc;
1218 
1219 	if (nic_data->n_allocated_vis < channel_vis) {
1220 		netif_info(efx, drv, efx->net_dev,
1221 			   "Could not allocate enough VIs to satisfy RSS"
1222 			   " requirements. Performance may not be optimal.\n");
1223 		/* We didn't get the VIs to populate our channels.
1224 		 * We could keep what we got but then we'd have more
1225 		 * interrupts than we need.
1226 		 * Instead calculate new max_channels and restart
1227 		 */
1228 		efx->max_channels = nic_data->n_allocated_vis;
1229 		efx->max_tx_channels =
1230 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1231 
1232 		efx_ef10_free_vis(efx);
1233 		return -EAGAIN;
1234 	}
1235 
1236 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1237 	 * PIO buffers
1238 	 */
1239 	if (nic_data->n_piobufs &&
1240 	    nic_data->n_allocated_vis <
1241 	    pio_write_vi_base + nic_data->n_piobufs) {
1242 		netif_dbg(efx, probe, efx->net_dev,
1243 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1244 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1245 		efx_ef10_free_piobufs(efx);
1246 	}
1247 
1248 	/* Shrink the original UC mapping of the memory BAR */
1249 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1250 	if (!membase) {
1251 		netif_err(efx, probe, efx->net_dev,
1252 			  "could not shrink memory BAR to %x\n",
1253 			  uc_mem_map_size);
1254 		return -ENOMEM;
1255 	}
1256 	iounmap(efx->membase);
1257 	efx->membase = membase;
1258 
1259 	/* Set up the WC mapping if needed */
1260 	if (wc_mem_map_size) {
1261 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1262 						  uc_mem_map_size,
1263 						  wc_mem_map_size);
1264 		if (!nic_data->wc_membase) {
1265 			netif_err(efx, probe, efx->net_dev,
1266 				  "could not allocate WC mapping of size %x\n",
1267 				  wc_mem_map_size);
1268 			return -ENOMEM;
1269 		}
1270 		nic_data->pio_write_vi_base = pio_write_vi_base;
1271 		nic_data->pio_write_base =
1272 			nic_data->wc_membase +
1273 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1274 			 uc_mem_map_size);
1275 
1276 		rc = efx_ef10_link_piobufs(efx);
1277 		if (rc)
1278 			efx_ef10_free_piobufs(efx);
1279 	}
1280 
1281 	netif_dbg(efx, probe, efx->net_dev,
1282 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1283 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1284 		  nic_data->wc_membase, wc_mem_map_size);
1285 
1286 	return 0;
1287 }
1288 
1289 static int efx_ef10_init_nic(struct efx_nic *efx)
1290 {
1291 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1292 	int rc;
1293 
1294 	if (nic_data->must_check_datapath_caps) {
1295 		rc = efx_ef10_init_datapath_caps(efx);
1296 		if (rc)
1297 			return rc;
1298 		nic_data->must_check_datapath_caps = false;
1299 	}
1300 
1301 	if (nic_data->must_realloc_vis) {
1302 		/* We cannot let the number of VIs change now */
1303 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1304 					nic_data->n_allocated_vis);
1305 		if (rc)
1306 			return rc;
1307 		nic_data->must_realloc_vis = false;
1308 	}
1309 
1310 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1311 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1312 		if (rc == 0) {
1313 			rc = efx_ef10_link_piobufs(efx);
1314 			if (rc)
1315 				efx_ef10_free_piobufs(efx);
1316 		}
1317 
1318 		/* Log an error on failure, but this is non-fatal */
1319 		if (rc)
1320 			netif_err(efx, drv, efx->net_dev,
1321 				  "failed to restore PIO buffers (%d)\n", rc);
1322 		nic_data->must_restore_piobufs = false;
1323 	}
1324 
1325 	/* don't fail init if RSS setup doesn't work */
1326 	efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1327 
1328 	return 0;
1329 }
1330 
1331 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1332 {
1333 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1334 #ifdef CONFIG_SFC_SRIOV
1335 	unsigned int i;
1336 #endif
1337 
1338 	/* All our allocations have been reset */
1339 	nic_data->must_realloc_vis = true;
1340 	nic_data->must_restore_filters = true;
1341 	nic_data->must_restore_piobufs = true;
1342 	efx_ef10_forget_old_piobufs(efx);
1343 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1344 
1345 	/* Driver-created vswitches and vports must be re-created */
1346 	nic_data->must_probe_vswitching = true;
1347 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1348 #ifdef CONFIG_SFC_SRIOV
1349 	if (nic_data->vf)
1350 		for (i = 0; i < efx->vf_count; i++)
1351 			nic_data->vf[i].vport_id = 0;
1352 #endif
1353 }
1354 
1355 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1356 {
1357 	if (reason == RESET_TYPE_MC_FAILURE)
1358 		return RESET_TYPE_DATAPATH;
1359 
1360 	return efx_mcdi_map_reset_reason(reason);
1361 }
1362 
1363 static int efx_ef10_map_reset_flags(u32 *flags)
1364 {
1365 	enum {
1366 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1367 				   ETH_RESET_SHARED_SHIFT),
1368 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1369 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1370 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1371 				 ETH_RESET_SHARED_SHIFT)
1372 	};
1373 
1374 	/* We assume for now that our PCI function is permitted to
1375 	 * reset everything.
1376 	 */
1377 
1378 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1379 		*flags &= ~EF10_RESET_MC;
1380 		return RESET_TYPE_WORLD;
1381 	}
1382 
1383 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1384 		*flags &= ~EF10_RESET_PORT;
1385 		return RESET_TYPE_ALL;
1386 	}
1387 
1388 	/* no invisible reset implemented */
1389 
1390 	return -EINVAL;
1391 }
1392 
1393 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1394 {
1395 	int rc = efx_mcdi_reset(efx, reset_type);
1396 
1397 	/* Unprivileged functions return -EPERM, but need to return success
1398 	 * here so that the datapath is brought back up.
1399 	 */
1400 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1401 		rc = 0;
1402 
1403 	/* If it was a port reset, trigger reallocation of MC resources.
1404 	 * Note that on an MC reset nothing needs to be done now because we'll
1405 	 * detect the MC reset later and handle it then.
1406 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1407 	 * resources assigned to us, so we have to trigger reallocation now.
1408 	 */
1409 	if ((reset_type == RESET_TYPE_ALL ||
1410 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1411 		efx_ef10_reset_mc_allocations(efx);
1412 	return rc;
1413 }
1414 
1415 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1416 	[EF10_STAT_ ## ext_name] =				\
1417 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1418 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1419 	[EF10_STAT_ ## int_name] =				\
1420 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1421 #define EF10_OTHER_STAT(ext_name)				\
1422 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1423 #define GENERIC_SW_STAT(ext_name)				\
1424 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1425 
1426 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1427 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1428 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1429 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1430 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1431 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1432 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1433 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1434 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1435 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1436 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1437 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1438 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1439 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1440 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1441 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1442 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1443 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1444 	EF10_OTHER_STAT(port_rx_good_bytes),
1445 	EF10_OTHER_STAT(port_rx_bad_bytes),
1446 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1447 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1448 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1449 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1450 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1451 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1452 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1453 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1454 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1455 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1456 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1457 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1458 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1459 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1460 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1461 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1462 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1463 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1464 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1465 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1466 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1467 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1468 	GENERIC_SW_STAT(rx_nodesc_trunc),
1469 	GENERIC_SW_STAT(rx_noskb_drops),
1470 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1471 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1472 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1473 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1474 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1475 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1476 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1477 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1478 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1479 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1480 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1481 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1482 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1483 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1484 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1485 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1486 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1487 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1488 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1489 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1490 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1491 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1492 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1493 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1494 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1495 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1496 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1497 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1498 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1499 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1500 };
1501 
1502 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1503 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1504 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1505 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1506 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1507 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1508 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1509 			       (1ULL <<                                 \
1510 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1511 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1512 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1513 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1514 			       (1ULL << EF10_STAT_port_rx_good) |	\
1515 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1516 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1517 			       (1ULL << EF10_STAT_port_rx_control) |	\
1518 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1519 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1520 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1521 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1522 			       (1ULL << EF10_STAT_port_rx_64) |		\
1523 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1524 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1525 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1526 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1527 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1528 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1529 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1530 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1531 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1532 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1533 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1534 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1535 
1536 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1537  * For a 10G/40G switchable port we do not expose these because they might
1538  * not include all the packets they should.
1539  * On 8000 series NICs these statistics are always provided.
1540  */
1541 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1542 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1543 				 (1ULL << EF10_STAT_port_tx_64) |	\
1544 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1545 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1546 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1547 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1548 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1549 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1550 
1551 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1552  * switchable port we do expose these because the errors will otherwise
1553  * be silent.
1554  */
1555 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1556 				  (1ULL << EF10_STAT_port_rx_length_error))
1557 
1558 /* These statistics are only provided if the firmware supports the
1559  * capability PM_AND_RXDP_COUNTERS.
1560  */
1561 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1562 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1563 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1564 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1565 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1566 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1567 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1568 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1569 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1570 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1571 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1572 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1573 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1574 
1575 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1576 {
1577 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1578 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1579 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1580 
1581 	if (!(efx->mcdi->fn_flags &
1582 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1583 		return 0;
1584 
1585 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1586 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1587 		/* 8000 series have everything even at 40G */
1588 		if (nic_data->datapath_caps2 &
1589 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1590 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1591 	} else {
1592 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1593 	}
1594 
1595 	if (nic_data->datapath_caps &
1596 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1597 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1598 
1599 	return raw_mask;
1600 }
1601 
1602 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1603 {
1604 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1605 	u64 raw_mask[2];
1606 
1607 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1608 
1609 	/* Only show vadaptor stats when EVB capability is present */
1610 	if (nic_data->datapath_caps &
1611 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1612 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1613 		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1614 	} else {
1615 		raw_mask[1] = 0;
1616 	}
1617 
1618 #if BITS_PER_LONG == 64
1619 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1620 	mask[0] = raw_mask[0];
1621 	mask[1] = raw_mask[1];
1622 #else
1623 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1624 	mask[0] = raw_mask[0] & 0xffffffff;
1625 	mask[1] = raw_mask[0] >> 32;
1626 	mask[2] = raw_mask[1] & 0xffffffff;
1627 #endif
1628 }
1629 
1630 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1631 {
1632 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1633 
1634 	efx_ef10_get_stat_mask(efx, mask);
1635 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1636 				      mask, names);
1637 }
1638 
1639 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1640 					   struct rtnl_link_stats64 *core_stats)
1641 {
1642 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1643 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1644 	u64 *stats = nic_data->stats;
1645 	size_t stats_count = 0, index;
1646 
1647 	efx_ef10_get_stat_mask(efx, mask);
1648 
1649 	if (full_stats) {
1650 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1651 			if (efx_ef10_stat_desc[index].name) {
1652 				*full_stats++ = stats[index];
1653 				++stats_count;
1654 			}
1655 		}
1656 	}
1657 
1658 	if (!core_stats)
1659 		return stats_count;
1660 
1661 	if (nic_data->datapath_caps &
1662 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1663 		/* Use vadaptor stats. */
1664 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1665 					 stats[EF10_STAT_rx_multicast] +
1666 					 stats[EF10_STAT_rx_broadcast];
1667 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1668 					 stats[EF10_STAT_tx_multicast] +
1669 					 stats[EF10_STAT_tx_broadcast];
1670 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1671 				       stats[EF10_STAT_rx_multicast_bytes] +
1672 				       stats[EF10_STAT_rx_broadcast_bytes];
1673 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1674 				       stats[EF10_STAT_tx_multicast_bytes] +
1675 				       stats[EF10_STAT_tx_broadcast_bytes];
1676 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1677 					 stats[GENERIC_STAT_rx_noskb_drops];
1678 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1679 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1680 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1681 		core_stats->rx_errors = core_stats->rx_crc_errors;
1682 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1683 	} else {
1684 		/* Use port stats. */
1685 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1686 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1687 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1688 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1689 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1690 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1691 					 stats[GENERIC_STAT_rx_noskb_drops];
1692 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1693 		core_stats->rx_length_errors =
1694 				stats[EF10_STAT_port_rx_gtjumbo] +
1695 				stats[EF10_STAT_port_rx_length_error];
1696 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1697 		core_stats->rx_frame_errors =
1698 				stats[EF10_STAT_port_rx_align_error];
1699 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1700 		core_stats->rx_errors = (core_stats->rx_length_errors +
1701 					 core_stats->rx_crc_errors +
1702 					 core_stats->rx_frame_errors);
1703 	}
1704 
1705 	return stats_count;
1706 }
1707 
1708 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1709 {
1710 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1711 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1712 	__le64 generation_start, generation_end;
1713 	u64 *stats = nic_data->stats;
1714 	__le64 *dma_stats;
1715 
1716 	efx_ef10_get_stat_mask(efx, mask);
1717 
1718 	dma_stats = efx->stats_buffer.addr;
1719 
1720 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1721 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1722 		return 0;
1723 	rmb();
1724 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1725 			     stats, efx->stats_buffer.addr, false);
1726 	rmb();
1727 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1728 	if (generation_end != generation_start)
1729 		return -EAGAIN;
1730 
1731 	/* Update derived statistics */
1732 	efx_nic_fix_nodesc_drop_stat(efx,
1733 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1734 	stats[EF10_STAT_port_rx_good_bytes] =
1735 		stats[EF10_STAT_port_rx_bytes] -
1736 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1737 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1738 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1739 	efx_update_sw_stats(efx, stats);
1740 	return 0;
1741 }
1742 
1743 
1744 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1745 				       struct rtnl_link_stats64 *core_stats)
1746 {
1747 	int retry;
1748 
1749 	/* If we're unlucky enough to read statistics during the DMA, wait
1750 	 * up to 10ms for it to finish (typically takes <500us)
1751 	 */
1752 	for (retry = 0; retry < 100; ++retry) {
1753 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1754 			break;
1755 		udelay(100);
1756 	}
1757 
1758 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1759 }
1760 
1761 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1762 {
1763 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1764 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1765 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1766 	__le64 generation_start, generation_end;
1767 	u64 *stats = nic_data->stats;
1768 	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1769 	struct efx_buffer stats_buf;
1770 	__le64 *dma_stats;
1771 	int rc;
1772 
1773 	spin_unlock_bh(&efx->stats_lock);
1774 
1775 	if (in_interrupt()) {
1776 		/* If in atomic context, cannot update stats.  Just update the
1777 		 * software stats and return so the caller can continue.
1778 		 */
1779 		spin_lock_bh(&efx->stats_lock);
1780 		efx_update_sw_stats(efx, stats);
1781 		return 0;
1782 	}
1783 
1784 	efx_ef10_get_stat_mask(efx, mask);
1785 
1786 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1787 	if (rc) {
1788 		spin_lock_bh(&efx->stats_lock);
1789 		return rc;
1790 	}
1791 
1792 	dma_stats = stats_buf.addr;
1793 	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1794 
1795 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1796 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1797 			      MAC_STATS_IN_DMA, 1);
1798 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1799 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1800 
1801 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1802 				NULL, 0, NULL);
1803 	spin_lock_bh(&efx->stats_lock);
1804 	if (rc) {
1805 		/* Expect ENOENT if DMA queues have not been set up */
1806 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1807 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1808 					       sizeof(inbuf), NULL, 0, rc);
1809 		goto out;
1810 	}
1811 
1812 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1813 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1814 		WARN_ON_ONCE(1);
1815 		goto out;
1816 	}
1817 	rmb();
1818 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1819 			     stats, stats_buf.addr, false);
1820 	rmb();
1821 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1822 	if (generation_end != generation_start) {
1823 		rc = -EAGAIN;
1824 		goto out;
1825 	}
1826 
1827 	efx_update_sw_stats(efx, stats);
1828 out:
1829 	efx_nic_free_buffer(efx, &stats_buf);
1830 	return rc;
1831 }
1832 
1833 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1834 				       struct rtnl_link_stats64 *core_stats)
1835 {
1836 	if (efx_ef10_try_update_nic_stats_vf(efx))
1837 		return 0;
1838 
1839 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1840 }
1841 
1842 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1843 {
1844 	struct efx_nic *efx = channel->efx;
1845 	unsigned int mode, usecs;
1846 	efx_dword_t timer_cmd;
1847 
1848 	if (channel->irq_moderation_us) {
1849 		mode = 3;
1850 		usecs = channel->irq_moderation_us;
1851 	} else {
1852 		mode = 0;
1853 		usecs = 0;
1854 	}
1855 
1856 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1857 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1858 		unsigned int ns = usecs * 1000;
1859 
1860 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1861 			       channel->channel);
1862 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1863 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1864 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1865 
1866 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1867 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1868 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1869 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1870 
1871 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1872 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1873 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1874 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1875 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1876 				channel->channel);
1877 	} else {
1878 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1879 
1880 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1881 				     ERF_DZ_TC_TIMER_VAL, ticks);
1882 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1883 				channel->channel);
1884 	}
1885 }
1886 
1887 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1888 				struct ethtool_wolinfo *wol) {}
1889 
1890 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1891 {
1892 	return -EOPNOTSUPP;
1893 }
1894 
1895 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1896 {
1897 	wol->supported = 0;
1898 	wol->wolopts = 0;
1899 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1900 }
1901 
1902 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1903 {
1904 	if (type != 0)
1905 		return -EINVAL;
1906 	return 0;
1907 }
1908 
1909 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1910 				  const efx_dword_t *hdr, size_t hdr_len,
1911 				  const efx_dword_t *sdu, size_t sdu_len)
1912 {
1913 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1914 	u8 *pdu = nic_data->mcdi_buf.addr;
1915 
1916 	memcpy(pdu, hdr, hdr_len);
1917 	memcpy(pdu + hdr_len, sdu, sdu_len);
1918 	wmb();
1919 
1920 	/* The hardware provides 'low' and 'high' (doorbell) registers
1921 	 * for passing the 64-bit address of an MCDI request to
1922 	 * firmware.  However the dwords are swapped by firmware.  The
1923 	 * least significant bits of the doorbell are then 0 for all
1924 	 * MCDI requests due to alignment.
1925 	 */
1926 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1927 		    ER_DZ_MC_DB_LWRD);
1928 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1929 		    ER_DZ_MC_DB_HWRD);
1930 }
1931 
1932 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1933 {
1934 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1935 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1936 
1937 	rmb();
1938 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1939 }
1940 
1941 static void
1942 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1943 			    size_t offset, size_t outlen)
1944 {
1945 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1946 	const u8 *pdu = nic_data->mcdi_buf.addr;
1947 
1948 	memcpy(outbuf, pdu + offset, outlen);
1949 }
1950 
1951 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1952 {
1953 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1954 
1955 	/* All our allocations have been reset */
1956 	efx_ef10_reset_mc_allocations(efx);
1957 
1958 	/* The datapath firmware might have been changed */
1959 	nic_data->must_check_datapath_caps = true;
1960 
1961 	/* MAC statistics have been cleared on the NIC; clear the local
1962 	 * statistic that we update with efx_update_diff_stat().
1963 	 */
1964 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1965 }
1966 
1967 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1968 {
1969 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1970 	int rc;
1971 
1972 	rc = efx_ef10_get_warm_boot_count(efx);
1973 	if (rc < 0) {
1974 		/* The firmware is presumably in the process of
1975 		 * rebooting.  However, we are supposed to report each
1976 		 * reboot just once, so we must only do that once we
1977 		 * can read and store the updated warm boot count.
1978 		 */
1979 		return 0;
1980 	}
1981 
1982 	if (rc == nic_data->warm_boot_count)
1983 		return 0;
1984 
1985 	nic_data->warm_boot_count = rc;
1986 	efx_ef10_mcdi_reboot_detected(efx);
1987 
1988 	return -EIO;
1989 }
1990 
1991 /* Handle an MSI interrupt
1992  *
1993  * Handle an MSI hardware interrupt.  This routine schedules event
1994  * queue processing.  No interrupt acknowledgement cycle is necessary.
1995  * Also, we never need to check that the interrupt is for us, since
1996  * MSI interrupts cannot be shared.
1997  */
1998 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1999 {
2000 	struct efx_msi_context *context = dev_id;
2001 	struct efx_nic *efx = context->efx;
2002 
2003 	netif_vdbg(efx, intr, efx->net_dev,
2004 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2005 
2006 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2007 		/* Note test interrupts */
2008 		if (context->index == efx->irq_level)
2009 			efx->last_irq_cpu = raw_smp_processor_id();
2010 
2011 		/* Schedule processing of the channel */
2012 		efx_schedule_channel_irq(efx->channel[context->index]);
2013 	}
2014 
2015 	return IRQ_HANDLED;
2016 }
2017 
2018 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2019 {
2020 	struct efx_nic *efx = dev_id;
2021 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2022 	struct efx_channel *channel;
2023 	efx_dword_t reg;
2024 	u32 queues;
2025 
2026 	/* Read the ISR which also ACKs the interrupts */
2027 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2028 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2029 
2030 	if (queues == 0)
2031 		return IRQ_NONE;
2032 
2033 	if (likely(soft_enabled)) {
2034 		/* Note test interrupts */
2035 		if (queues & (1U << efx->irq_level))
2036 			efx->last_irq_cpu = raw_smp_processor_id();
2037 
2038 		efx_for_each_channel(channel, efx) {
2039 			if (queues & 1)
2040 				efx_schedule_channel_irq(channel);
2041 			queues >>= 1;
2042 		}
2043 	}
2044 
2045 	netif_vdbg(efx, intr, efx->net_dev,
2046 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2047 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2048 
2049 	return IRQ_HANDLED;
2050 }
2051 
2052 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2053 {
2054 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2055 
2056 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2057 				    NULL) == 0)
2058 		return -ENOTSUPP;
2059 
2060 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2061 
2062 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2063 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2064 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2065 }
2066 
2067 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2068 {
2069 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2070 				    (tx_queue->ptr_mask + 1) *
2071 				    sizeof(efx_qword_t),
2072 				    GFP_KERNEL);
2073 }
2074 
2075 /* This writes to the TX_DESC_WPTR and also pushes data */
2076 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2077 					 const efx_qword_t *txd)
2078 {
2079 	unsigned int write_ptr;
2080 	efx_oword_t reg;
2081 
2082 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2083 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2084 	reg.qword[0] = *txd;
2085 	efx_writeo_page(tx_queue->efx, &reg,
2086 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2087 }
2088 
2089 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2090 {
2091 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2092 						       EFX_BUF_SIZE));
2093 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2094 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2095 	struct efx_channel *channel = tx_queue->channel;
2096 	struct efx_nic *efx = tx_queue->efx;
2097 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2098 	size_t inlen;
2099 	dma_addr_t dma_addr;
2100 	efx_qword_t *txd;
2101 	int rc;
2102 	int i;
2103 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2104 
2105 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2106 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2107 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2108 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2109 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
2110 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2111 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2112 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2113 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2114 
2115 	dma_addr = tx_queue->txd.buf.dma_addr;
2116 
2117 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2118 		  tx_queue->queue, entries, (u64)dma_addr);
2119 
2120 	for (i = 0; i < entries; ++i) {
2121 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2122 		dma_addr += EFX_BUF_SIZE;
2123 	}
2124 
2125 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2126 
2127 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2128 			  NULL, 0, NULL);
2129 	if (rc)
2130 		goto fail;
2131 
2132 	/* A previous user of this TX queue might have set us up the
2133 	 * bomb by writing a descriptor to the TX push collector but
2134 	 * not the doorbell.  (Each collector belongs to a port, not a
2135 	 * queue or function, so cannot easily be reset.)  We must
2136 	 * attempt to push a no-op descriptor in its place.
2137 	 */
2138 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2139 	tx_queue->insert_count = 1;
2140 	txd = efx_tx_desc(tx_queue, 0);
2141 	EFX_POPULATE_QWORD_4(*txd,
2142 			     ESF_DZ_TX_DESC_IS_OPT, true,
2143 			     ESF_DZ_TX_OPTION_TYPE,
2144 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2145 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2146 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2147 	tx_queue->write_count = 1;
2148 
2149 	if (nic_data->datapath_caps &
2150 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2151 		tx_queue->tso_version = 1;
2152 	}
2153 
2154 	wmb();
2155 	efx_ef10_push_tx_desc(tx_queue, txd);
2156 
2157 	return;
2158 
2159 fail:
2160 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2161 		    tx_queue->queue);
2162 }
2163 
2164 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2165 {
2166 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2167 	MCDI_DECLARE_BUF_ERR(outbuf);
2168 	struct efx_nic *efx = tx_queue->efx;
2169 	size_t outlen;
2170 	int rc;
2171 
2172 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2173 		       tx_queue->queue);
2174 
2175 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2176 			  outbuf, sizeof(outbuf), &outlen);
2177 
2178 	if (rc && rc != -EALREADY)
2179 		goto fail;
2180 
2181 	return;
2182 
2183 fail:
2184 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2185 			       outbuf, outlen, rc);
2186 }
2187 
2188 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2189 {
2190 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2191 }
2192 
2193 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2194 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2195 {
2196 	unsigned int write_ptr;
2197 	efx_dword_t reg;
2198 
2199 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2200 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2201 	efx_writed_page(tx_queue->efx, &reg,
2202 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2203 }
2204 
2205 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2206 {
2207 	unsigned int old_write_count = tx_queue->write_count;
2208 	struct efx_tx_buffer *buffer;
2209 	unsigned int write_ptr;
2210 	efx_qword_t *txd;
2211 
2212 	tx_queue->xmit_more_available = false;
2213 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2214 		return;
2215 
2216 	do {
2217 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2218 		buffer = &tx_queue->buffer[write_ptr];
2219 		txd = efx_tx_desc(tx_queue, write_ptr);
2220 		++tx_queue->write_count;
2221 
2222 		/* Create TX descriptor ring entry */
2223 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2224 			*txd = buffer->option;
2225 		} else {
2226 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2227 			EFX_POPULATE_QWORD_3(
2228 				*txd,
2229 				ESF_DZ_TX_KER_CONT,
2230 				buffer->flags & EFX_TX_BUF_CONT,
2231 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2232 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2233 		}
2234 	} while (tx_queue->write_count != tx_queue->insert_count);
2235 
2236 	wmb(); /* Ensure descriptors are written before they are fetched */
2237 
2238 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2239 		txd = efx_tx_desc(tx_queue,
2240 				  old_write_count & tx_queue->ptr_mask);
2241 		efx_ef10_push_tx_desc(tx_queue, txd);
2242 		++tx_queue->pushes;
2243 	} else {
2244 		efx_ef10_notify_tx_desc(tx_queue);
2245 	}
2246 }
2247 
2248 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2249 				      bool exclusive, unsigned *context_size)
2250 {
2251 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2252 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2253 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2254 	size_t outlen;
2255 	int rc;
2256 	u32 alloc_type = exclusive ?
2257 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2258 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2259 	unsigned rss_spread = exclusive ?
2260 				efx->rss_spread :
2261 				min(rounddown_pow_of_two(efx->rss_spread),
2262 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2263 
2264 	if (!exclusive && rss_spread == 1) {
2265 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
2266 		if (context_size)
2267 			*context_size = 1;
2268 		return 0;
2269 	}
2270 
2271 	if (nic_data->datapath_caps &
2272 	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2273 		return -EOPNOTSUPP;
2274 
2275 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2276 		       nic_data->vport_id);
2277 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2278 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2279 
2280 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2281 		outbuf, sizeof(outbuf), &outlen);
2282 	if (rc != 0)
2283 		return rc;
2284 
2285 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2286 		return -EIO;
2287 
2288 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2289 
2290 	if (context_size)
2291 		*context_size = rss_spread;
2292 
2293 	return 0;
2294 }
2295 
2296 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2297 {
2298 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2299 	int rc;
2300 
2301 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2302 		       context);
2303 
2304 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2305 			    NULL, 0, NULL);
2306 	WARN_ON(rc != 0);
2307 }
2308 
2309 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2310 				       const u32 *rx_indir_table)
2311 {
2312 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2313 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2314 	int i, rc;
2315 
2316 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2317 		       context);
2318 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2319 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2320 
2321 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2322 		MCDI_PTR(tablebuf,
2323 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2324 				(u8) rx_indir_table[i];
2325 
2326 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2327 			  sizeof(tablebuf), NULL, 0, NULL);
2328 	if (rc != 0)
2329 		return rc;
2330 
2331 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2332 		       context);
2333 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2334 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2335 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2336 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
2337 			efx->rx_hash_key[i];
2338 
2339 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2340 			    sizeof(keybuf), NULL, 0, NULL);
2341 }
2342 
2343 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2344 {
2345 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2346 
2347 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2348 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2349 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2350 }
2351 
2352 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2353 					      unsigned *context_size)
2354 {
2355 	u32 new_rx_rss_context;
2356 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2357 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2358 					    false, context_size);
2359 
2360 	if (rc != 0)
2361 		return rc;
2362 
2363 	nic_data->rx_rss_context = new_rx_rss_context;
2364 	nic_data->rx_rss_context_exclusive = false;
2365 	efx_set_default_rx_indir_table(efx);
2366 	return 0;
2367 }
2368 
2369 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2370 						 const u32 *rx_indir_table)
2371 {
2372 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2373 	int rc;
2374 	u32 new_rx_rss_context;
2375 
2376 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2377 	    !nic_data->rx_rss_context_exclusive) {
2378 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2379 						true, NULL);
2380 		if (rc == -EOPNOTSUPP)
2381 			return rc;
2382 		else if (rc != 0)
2383 			goto fail1;
2384 	} else {
2385 		new_rx_rss_context = nic_data->rx_rss_context;
2386 	}
2387 
2388 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2389 					 rx_indir_table);
2390 	if (rc != 0)
2391 		goto fail2;
2392 
2393 	if (nic_data->rx_rss_context != new_rx_rss_context)
2394 		efx_ef10_rx_free_indir_table(efx);
2395 	nic_data->rx_rss_context = new_rx_rss_context;
2396 	nic_data->rx_rss_context_exclusive = true;
2397 	if (rx_indir_table != efx->rx_indir_table)
2398 		memcpy(efx->rx_indir_table, rx_indir_table,
2399 		       sizeof(efx->rx_indir_table));
2400 	return 0;
2401 
2402 fail2:
2403 	if (new_rx_rss_context != nic_data->rx_rss_context)
2404 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2405 fail1:
2406 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2407 	return rc;
2408 }
2409 
2410 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2411 					  const u32 *rx_indir_table)
2412 {
2413 	int rc;
2414 
2415 	if (efx->rss_spread == 1)
2416 		return 0;
2417 
2418 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2419 
2420 	if (rc == -ENOBUFS && !user) {
2421 		unsigned context_size;
2422 		bool mismatch = false;
2423 		size_t i;
2424 
2425 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2426 		     i++)
2427 			mismatch = rx_indir_table[i] !=
2428 				ethtool_rxfh_indir_default(i, efx->rss_spread);
2429 
2430 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2431 		if (rc == 0) {
2432 			if (context_size != efx->rss_spread)
2433 				netif_warn(efx, probe, efx->net_dev,
2434 					   "Could not allocate an exclusive RSS"
2435 					   " context; allocated a shared one of"
2436 					   " different size."
2437 					   " Wanted %u, got %u.\n",
2438 					   efx->rss_spread, context_size);
2439 			else if (mismatch)
2440 				netif_warn(efx, probe, efx->net_dev,
2441 					   "Could not allocate an exclusive RSS"
2442 					   " context; allocated a shared one but"
2443 					   " could not apply custom"
2444 					   " indirection.\n");
2445 			else
2446 				netif_info(efx, probe, efx->net_dev,
2447 					   "Could not allocate an exclusive RSS"
2448 					   " context; allocated a shared one.\n");
2449 		}
2450 	}
2451 	return rc;
2452 }
2453 
2454 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2455 					  const u32 *rx_indir_table
2456 					  __attribute__ ((unused)))
2457 {
2458 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2459 
2460 	if (user)
2461 		return -EOPNOTSUPP;
2462 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2463 		return 0;
2464 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2465 }
2466 
2467 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2468 {
2469 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2470 				    (rx_queue->ptr_mask + 1) *
2471 				    sizeof(efx_qword_t),
2472 				    GFP_KERNEL);
2473 }
2474 
2475 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2476 {
2477 	MCDI_DECLARE_BUF(inbuf,
2478 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2479 						EFX_BUF_SIZE));
2480 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2481 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2482 	struct efx_nic *efx = rx_queue->efx;
2483 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2484 	size_t inlen;
2485 	dma_addr_t dma_addr;
2486 	int rc;
2487 	int i;
2488 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2489 
2490 	rx_queue->scatter_n = 0;
2491 	rx_queue->scatter_len = 0;
2492 
2493 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2494 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2495 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2496 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2497 		       efx_rx_queue_index(rx_queue));
2498 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2499 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2500 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2501 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2502 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2503 
2504 	dma_addr = rx_queue->rxd.buf.dma_addr;
2505 
2506 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2507 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2508 
2509 	for (i = 0; i < entries; ++i) {
2510 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2511 		dma_addr += EFX_BUF_SIZE;
2512 	}
2513 
2514 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2515 
2516 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2517 			  NULL, 0, NULL);
2518 	if (rc)
2519 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2520 			    efx_rx_queue_index(rx_queue));
2521 }
2522 
2523 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2524 {
2525 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2526 	MCDI_DECLARE_BUF_ERR(outbuf);
2527 	struct efx_nic *efx = rx_queue->efx;
2528 	size_t outlen;
2529 	int rc;
2530 
2531 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2532 		       efx_rx_queue_index(rx_queue));
2533 
2534 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2535 			  outbuf, sizeof(outbuf), &outlen);
2536 
2537 	if (rc && rc != -EALREADY)
2538 		goto fail;
2539 
2540 	return;
2541 
2542 fail:
2543 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2544 			       outbuf, outlen, rc);
2545 }
2546 
2547 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2548 {
2549 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2550 }
2551 
2552 /* This creates an entry in the RX descriptor queue */
2553 static inline void
2554 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2555 {
2556 	struct efx_rx_buffer *rx_buf;
2557 	efx_qword_t *rxd;
2558 
2559 	rxd = efx_rx_desc(rx_queue, index);
2560 	rx_buf = efx_rx_buffer(rx_queue, index);
2561 	EFX_POPULATE_QWORD_2(*rxd,
2562 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2563 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2564 }
2565 
2566 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2567 {
2568 	struct efx_nic *efx = rx_queue->efx;
2569 	unsigned int write_count;
2570 	efx_dword_t reg;
2571 
2572 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2573 	write_count = rx_queue->added_count & ~7;
2574 	if (rx_queue->notified_count == write_count)
2575 		return;
2576 
2577 	do
2578 		efx_ef10_build_rx_desc(
2579 			rx_queue,
2580 			rx_queue->notified_count & rx_queue->ptr_mask);
2581 	while (++rx_queue->notified_count != write_count);
2582 
2583 	wmb();
2584 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2585 			     write_count & rx_queue->ptr_mask);
2586 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2587 			efx_rx_queue_index(rx_queue));
2588 }
2589 
2590 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2591 
2592 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2593 {
2594 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2595 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2596 	efx_qword_t event;
2597 
2598 	EFX_POPULATE_QWORD_2(event,
2599 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2600 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2601 
2602 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2603 
2604 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2605 	 * already swapped the data to little-endian order.
2606 	 */
2607 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2608 	       sizeof(efx_qword_t));
2609 
2610 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2611 			   inbuf, sizeof(inbuf), 0,
2612 			   efx_ef10_rx_defer_refill_complete, 0);
2613 }
2614 
2615 static void
2616 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2617 				  int rc, efx_dword_t *outbuf,
2618 				  size_t outlen_actual)
2619 {
2620 	/* nothing to do */
2621 }
2622 
2623 static int efx_ef10_ev_probe(struct efx_channel *channel)
2624 {
2625 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2626 				    (channel->eventq_mask + 1) *
2627 				    sizeof(efx_qword_t),
2628 				    GFP_KERNEL);
2629 }
2630 
2631 static void efx_ef10_ev_fini(struct efx_channel *channel)
2632 {
2633 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2634 	MCDI_DECLARE_BUF_ERR(outbuf);
2635 	struct efx_nic *efx = channel->efx;
2636 	size_t outlen;
2637 	int rc;
2638 
2639 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2640 
2641 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2642 			  outbuf, sizeof(outbuf), &outlen);
2643 
2644 	if (rc && rc != -EALREADY)
2645 		goto fail;
2646 
2647 	return;
2648 
2649 fail:
2650 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2651 			       outbuf, outlen, rc);
2652 }
2653 
2654 static int efx_ef10_ev_init(struct efx_channel *channel)
2655 {
2656 	MCDI_DECLARE_BUF(inbuf,
2657 			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2658 						   EFX_BUF_SIZE));
2659 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
2660 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2661 	struct efx_nic *efx = channel->efx;
2662 	struct efx_ef10_nic_data *nic_data;
2663 	size_t inlen, outlen;
2664 	unsigned int enabled, implemented;
2665 	dma_addr_t dma_addr;
2666 	int rc;
2667 	int i;
2668 
2669 	nic_data = efx->nic_data;
2670 
2671 	/* Fill event queue with all ones (i.e. empty events) */
2672 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2673 
2674 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2675 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2676 	/* INIT_EVQ expects index in vector table, not absolute */
2677 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2678 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2679 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2680 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2681 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2682 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2683 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2684 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2685 
2686 	if (nic_data->datapath_caps2 &
2687 	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
2688 		/* Use the new generic approach to specifying event queue
2689 		 * configuration, requesting lower latency or higher throughput.
2690 		 * The options that actually get used appear in the output.
2691 		 */
2692 		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
2693 				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
2694 				      INIT_EVQ_V2_IN_FLAG_TYPE,
2695 				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
2696 	} else {
2697 		bool cut_thru = !(nic_data->datapath_caps &
2698 			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2699 
2700 		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2701 				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2702 				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2703 				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2704 				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
2705 	}
2706 
2707 	dma_addr = channel->eventq.buf.dma_addr;
2708 	for (i = 0; i < entries; ++i) {
2709 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2710 		dma_addr += EFX_BUF_SIZE;
2711 	}
2712 
2713 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2714 
2715 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2716 			  outbuf, sizeof(outbuf), &outlen);
2717 
2718 	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
2719 		netif_dbg(efx, drv, efx->net_dev,
2720 			  "Channel %d using event queue flags %08x\n",
2721 			  channel->channel,
2722 			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
2723 
2724 	/* IRQ return is ignored */
2725 	if (channel->channel || rc)
2726 		return rc;
2727 
2728 	/* Successfully created event queue on channel 0 */
2729 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2730 	if (rc == -ENOSYS) {
2731 		/* GET_WORKAROUNDS was implemented before this workaround,
2732 		 * thus it must be unavailable in this firmware.
2733 		 */
2734 		nic_data->workaround_26807 = false;
2735 		rc = 0;
2736 	} else if (rc) {
2737 		goto fail;
2738 	} else {
2739 		nic_data->workaround_26807 =
2740 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2741 
2742 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2743 		    !nic_data->workaround_26807) {
2744 			unsigned int flags;
2745 
2746 			rc = efx_mcdi_set_workaround(efx,
2747 						     MC_CMD_WORKAROUND_BUG26807,
2748 						     true, &flags);
2749 
2750 			if (!rc) {
2751 				if (flags &
2752 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2753 					netif_info(efx, drv, efx->net_dev,
2754 						   "other functions on NIC have been reset\n");
2755 
2756 					/* With MCFW v4.6.x and earlier, the
2757 					 * boot count will have incremented,
2758 					 * so re-read the warm_boot_count
2759 					 * value now to ensure this function
2760 					 * doesn't think it has changed next
2761 					 * time it checks.
2762 					 */
2763 					rc = efx_ef10_get_warm_boot_count(efx);
2764 					if (rc >= 0) {
2765 						nic_data->warm_boot_count = rc;
2766 						rc = 0;
2767 					}
2768 				}
2769 				nic_data->workaround_26807 = true;
2770 			} else if (rc == -EPERM) {
2771 				rc = 0;
2772 			}
2773 		}
2774 	}
2775 
2776 	if (!rc)
2777 		return 0;
2778 
2779 fail:
2780 	efx_ef10_ev_fini(channel);
2781 	return rc;
2782 }
2783 
2784 static void efx_ef10_ev_remove(struct efx_channel *channel)
2785 {
2786 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2787 }
2788 
2789 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2790 					   unsigned int rx_queue_label)
2791 {
2792 	struct efx_nic *efx = rx_queue->efx;
2793 
2794 	netif_info(efx, hw, efx->net_dev,
2795 		   "rx event arrived on queue %d labeled as queue %u\n",
2796 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2797 
2798 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2799 }
2800 
2801 static void
2802 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2803 			     unsigned int actual, unsigned int expected)
2804 {
2805 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2806 	struct efx_nic *efx = rx_queue->efx;
2807 
2808 	netif_info(efx, hw, efx->net_dev,
2809 		   "dropped %d events (index=%d expected=%d)\n",
2810 		   dropped, actual, expected);
2811 
2812 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2813 }
2814 
2815 /* partially received RX was aborted. clean up. */
2816 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2817 {
2818 	unsigned int rx_desc_ptr;
2819 
2820 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2821 		  "scattered RX aborted (dropping %u buffers)\n",
2822 		  rx_queue->scatter_n);
2823 
2824 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2825 
2826 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2827 		      0, EFX_RX_PKT_DISCARD);
2828 
2829 	rx_queue->removed_count += rx_queue->scatter_n;
2830 	rx_queue->scatter_n = 0;
2831 	rx_queue->scatter_len = 0;
2832 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2833 }
2834 
2835 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2836 				    const efx_qword_t *event)
2837 {
2838 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2839 	unsigned int n_descs, n_packets, i;
2840 	struct efx_nic *efx = channel->efx;
2841 	struct efx_rx_queue *rx_queue;
2842 	bool rx_cont;
2843 	u16 flags = 0;
2844 
2845 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2846 		return 0;
2847 
2848 	/* Basic packet information */
2849 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2850 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2851 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2852 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2853 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2854 
2855 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2856 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2857 			    EFX_QWORD_FMT "\n",
2858 			    EFX_QWORD_VAL(*event));
2859 
2860 	rx_queue = efx_channel_get_rx_queue(channel);
2861 
2862 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2863 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2864 
2865 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2866 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2867 
2868 	if (n_descs != rx_queue->scatter_n + 1) {
2869 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2870 
2871 		/* detect rx abort */
2872 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2873 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2874 				netdev_WARN(efx->net_dev,
2875 					    "invalid RX abort: scatter_n=%u event="
2876 					    EFX_QWORD_FMT "\n",
2877 					    rx_queue->scatter_n,
2878 					    EFX_QWORD_VAL(*event));
2879 			efx_ef10_handle_rx_abort(rx_queue);
2880 			return 0;
2881 		}
2882 
2883 		/* Check that RX completion merging is valid, i.e.
2884 		 * the current firmware supports it and this is a
2885 		 * non-scattered packet.
2886 		 */
2887 		if (!(nic_data->datapath_caps &
2888 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2889 		    rx_queue->scatter_n != 0 || rx_cont) {
2890 			efx_ef10_handle_rx_bad_lbits(
2891 				rx_queue, next_ptr_lbits,
2892 				(rx_queue->removed_count +
2893 				 rx_queue->scatter_n + 1) &
2894 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2895 			return 0;
2896 		}
2897 
2898 		/* Merged completion for multiple non-scattered packets */
2899 		rx_queue->scatter_n = 1;
2900 		rx_queue->scatter_len = 0;
2901 		n_packets = n_descs;
2902 		++channel->n_rx_merge_events;
2903 		channel->n_rx_merge_packets += n_packets;
2904 		flags |= EFX_RX_PKT_PREFIX_LEN;
2905 	} else {
2906 		++rx_queue->scatter_n;
2907 		rx_queue->scatter_len += rx_bytes;
2908 		if (rx_cont)
2909 			return 0;
2910 		n_packets = 1;
2911 	}
2912 
2913 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2914 		flags |= EFX_RX_PKT_DISCARD;
2915 
2916 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2917 		channel->n_rx_ip_hdr_chksum_err += n_packets;
2918 	} else if (unlikely(EFX_QWORD_FIELD(*event,
2919 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2920 		channel->n_rx_tcp_udp_chksum_err += n_packets;
2921 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2922 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2923 		flags |= EFX_RX_PKT_CSUMMED;
2924 	}
2925 
2926 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2927 		flags |= EFX_RX_PKT_TCP;
2928 
2929 	channel->irq_mod_score += 2 * n_packets;
2930 
2931 	/* Handle received packet(s) */
2932 	for (i = 0; i < n_packets; i++) {
2933 		efx_rx_packet(rx_queue,
2934 			      rx_queue->removed_count & rx_queue->ptr_mask,
2935 			      rx_queue->scatter_n, rx_queue->scatter_len,
2936 			      flags);
2937 		rx_queue->removed_count += rx_queue->scatter_n;
2938 	}
2939 
2940 	rx_queue->scatter_n = 0;
2941 	rx_queue->scatter_len = 0;
2942 
2943 	return n_packets;
2944 }
2945 
2946 static int
2947 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2948 {
2949 	struct efx_nic *efx = channel->efx;
2950 	struct efx_tx_queue *tx_queue;
2951 	unsigned int tx_ev_desc_ptr;
2952 	unsigned int tx_ev_q_label;
2953 	int tx_descs = 0;
2954 
2955 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2956 		return 0;
2957 
2958 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2959 		return 0;
2960 
2961 	/* Transmit completion */
2962 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2963 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2964 	tx_queue = efx_channel_get_tx_queue(channel,
2965 					    tx_ev_q_label % EFX_TXQ_TYPES);
2966 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2967 		    tx_queue->ptr_mask);
2968 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2969 
2970 	return tx_descs;
2971 }
2972 
2973 static void
2974 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2975 {
2976 	struct efx_nic *efx = channel->efx;
2977 	int subcode;
2978 
2979 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2980 
2981 	switch (subcode) {
2982 	case ESE_DZ_DRV_TIMER_EV:
2983 	case ESE_DZ_DRV_WAKE_UP_EV:
2984 		break;
2985 	case ESE_DZ_DRV_START_UP_EV:
2986 		/* event queue init complete. ok. */
2987 		break;
2988 	default:
2989 		netif_err(efx, hw, efx->net_dev,
2990 			  "channel %d unknown driver event type %d"
2991 			  " (data " EFX_QWORD_FMT ")\n",
2992 			  channel->channel, subcode,
2993 			  EFX_QWORD_VAL(*event));
2994 
2995 	}
2996 }
2997 
2998 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2999 						   efx_qword_t *event)
3000 {
3001 	struct efx_nic *efx = channel->efx;
3002 	u32 subcode;
3003 
3004 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3005 
3006 	switch (subcode) {
3007 	case EFX_EF10_TEST:
3008 		channel->event_test_cpu = raw_smp_processor_id();
3009 		break;
3010 	case EFX_EF10_REFILL:
3011 		/* The queue must be empty, so we won't receive any rx
3012 		 * events, so efx_process_channel() won't refill the
3013 		 * queue. Refill it here
3014 		 */
3015 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3016 		break;
3017 	default:
3018 		netif_err(efx, hw, efx->net_dev,
3019 			  "channel %d unknown driver event type %u"
3020 			  " (data " EFX_QWORD_FMT ")\n",
3021 			  channel->channel, (unsigned) subcode,
3022 			  EFX_QWORD_VAL(*event));
3023 	}
3024 }
3025 
3026 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3027 {
3028 	struct efx_nic *efx = channel->efx;
3029 	efx_qword_t event, *p_event;
3030 	unsigned int read_ptr;
3031 	int ev_code;
3032 	int tx_descs = 0;
3033 	int spent = 0;
3034 
3035 	if (quota <= 0)
3036 		return spent;
3037 
3038 	read_ptr = channel->eventq_read_ptr;
3039 
3040 	for (;;) {
3041 		p_event = efx_event(channel, read_ptr);
3042 		event = *p_event;
3043 
3044 		if (!efx_event_present(&event))
3045 			break;
3046 
3047 		EFX_SET_QWORD(*p_event);
3048 
3049 		++read_ptr;
3050 
3051 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3052 
3053 		netif_vdbg(efx, drv, efx->net_dev,
3054 			   "processing event on %d " EFX_QWORD_FMT "\n",
3055 			   channel->channel, EFX_QWORD_VAL(event));
3056 
3057 		switch (ev_code) {
3058 		case ESE_DZ_EV_CODE_MCDI_EV:
3059 			efx_mcdi_process_event(channel, &event);
3060 			break;
3061 		case ESE_DZ_EV_CODE_RX_EV:
3062 			spent += efx_ef10_handle_rx_event(channel, &event);
3063 			if (spent >= quota) {
3064 				/* XXX can we split a merged event to
3065 				 * avoid going over-quota?
3066 				 */
3067 				spent = quota;
3068 				goto out;
3069 			}
3070 			break;
3071 		case ESE_DZ_EV_CODE_TX_EV:
3072 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
3073 			if (tx_descs > efx->txq_entries) {
3074 				spent = quota;
3075 				goto out;
3076 			} else if (++spent == quota) {
3077 				goto out;
3078 			}
3079 			break;
3080 		case ESE_DZ_EV_CODE_DRIVER_EV:
3081 			efx_ef10_handle_driver_event(channel, &event);
3082 			if (++spent == quota)
3083 				goto out;
3084 			break;
3085 		case EFX_EF10_DRVGEN_EV:
3086 			efx_ef10_handle_driver_generated_event(channel, &event);
3087 			break;
3088 		default:
3089 			netif_err(efx, hw, efx->net_dev,
3090 				  "channel %d unknown event type %d"
3091 				  " (data " EFX_QWORD_FMT ")\n",
3092 				  channel->channel, ev_code,
3093 				  EFX_QWORD_VAL(event));
3094 		}
3095 	}
3096 
3097 out:
3098 	channel->eventq_read_ptr = read_ptr;
3099 	return spent;
3100 }
3101 
3102 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3103 {
3104 	struct efx_nic *efx = channel->efx;
3105 	efx_dword_t rptr;
3106 
3107 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3108 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3109 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3110 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3111 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3112 
3113 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3114 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3115 				     ERF_DD_EVQ_IND_RPTR,
3116 				     (channel->eventq_read_ptr &
3117 				      channel->eventq_mask) >>
3118 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3119 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3120 				channel->channel);
3121 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3122 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3123 				     ERF_DD_EVQ_IND_RPTR,
3124 				     channel->eventq_read_ptr &
3125 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3126 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3127 				channel->channel);
3128 	} else {
3129 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3130 				     channel->eventq_read_ptr &
3131 				     channel->eventq_mask);
3132 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3133 	}
3134 }
3135 
3136 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3137 {
3138 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3139 	struct efx_nic *efx = channel->efx;
3140 	efx_qword_t event;
3141 	int rc;
3142 
3143 	EFX_POPULATE_QWORD_2(event,
3144 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3145 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3146 
3147 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3148 
3149 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3150 	 * already swapped the data to little-endian order.
3151 	 */
3152 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3153 	       sizeof(efx_qword_t));
3154 
3155 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3156 			  NULL, 0, NULL);
3157 	if (rc != 0)
3158 		goto fail;
3159 
3160 	return;
3161 
3162 fail:
3163 	WARN_ON(true);
3164 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3165 }
3166 
3167 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3168 {
3169 	if (atomic_dec_and_test(&efx->active_queues))
3170 		wake_up(&efx->flush_wq);
3171 
3172 	WARN_ON(atomic_read(&efx->active_queues) < 0);
3173 }
3174 
3175 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3176 {
3177 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3178 	struct efx_channel *channel;
3179 	struct efx_tx_queue *tx_queue;
3180 	struct efx_rx_queue *rx_queue;
3181 	int pending;
3182 
3183 	/* If the MC has just rebooted, the TX/RX queues will have already been
3184 	 * torn down, but efx->active_queues needs to be set to zero.
3185 	 */
3186 	if (nic_data->must_realloc_vis) {
3187 		atomic_set(&efx->active_queues, 0);
3188 		return 0;
3189 	}
3190 
3191 	/* Do not attempt to write to the NIC during EEH recovery */
3192 	if (efx->state != STATE_RECOVERY) {
3193 		efx_for_each_channel(channel, efx) {
3194 			efx_for_each_channel_rx_queue(rx_queue, channel)
3195 				efx_ef10_rx_fini(rx_queue);
3196 			efx_for_each_channel_tx_queue(tx_queue, channel)
3197 				efx_ef10_tx_fini(tx_queue);
3198 		}
3199 
3200 		wait_event_timeout(efx->flush_wq,
3201 				   atomic_read(&efx->active_queues) == 0,
3202 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3203 		pending = atomic_read(&efx->active_queues);
3204 		if (pending) {
3205 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3206 				  pending);
3207 			return -ETIMEDOUT;
3208 		}
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3215 {
3216 	atomic_set(&efx->active_queues, 0);
3217 }
3218 
3219 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3220 				  const struct efx_filter_spec *right)
3221 {
3222 	if ((left->match_flags ^ right->match_flags) |
3223 	    ((left->flags ^ right->flags) &
3224 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3225 		return false;
3226 
3227 	return memcmp(&left->outer_vid, &right->outer_vid,
3228 		      sizeof(struct efx_filter_spec) -
3229 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3230 }
3231 
3232 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3233 {
3234 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3235 	return jhash2((const u32 *)&spec->outer_vid,
3236 		      (sizeof(struct efx_filter_spec) -
3237 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3238 		      0);
3239 	/* XXX should we randomise the initval? */
3240 }
3241 
3242 /* Decide whether a filter should be exclusive or else should allow
3243  * delivery to additional recipients.  Currently we decide that
3244  * filters for specific local unicast MAC and IP addresses are
3245  * exclusive.
3246  */
3247 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3248 {
3249 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3250 	    !is_multicast_ether_addr(spec->loc_mac))
3251 		return true;
3252 
3253 	if ((spec->match_flags &
3254 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3255 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3256 		if (spec->ether_type == htons(ETH_P_IP) &&
3257 		    !ipv4_is_multicast(spec->loc_host[0]))
3258 			return true;
3259 		if (spec->ether_type == htons(ETH_P_IPV6) &&
3260 		    ((const u8 *)spec->loc_host)[0] != 0xff)
3261 			return true;
3262 	}
3263 
3264 	return false;
3265 }
3266 
3267 static struct efx_filter_spec *
3268 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3269 			   unsigned int filter_idx)
3270 {
3271 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3272 					  ~EFX_EF10_FILTER_FLAGS);
3273 }
3274 
3275 static unsigned int
3276 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3277 			   unsigned int filter_idx)
3278 {
3279 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3280 }
3281 
3282 static void
3283 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3284 			  unsigned int filter_idx,
3285 			  const struct efx_filter_spec *spec,
3286 			  unsigned int flags)
3287 {
3288 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
3289 }
3290 
3291 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3292 				      const struct efx_filter_spec *spec,
3293 				      efx_dword_t *inbuf, u64 handle,
3294 				      bool replacing)
3295 {
3296 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3297 	u32 flags = spec->flags;
3298 
3299 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
3300 
3301 	/* Remove RSS flag if we don't have an RSS context. */
3302 	if (flags & EFX_FILTER_FLAG_RX_RSS &&
3303 	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3304 	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3305 		flags &= ~EFX_FILTER_FLAG_RX_RSS;
3306 
3307 	if (replacing) {
3308 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3309 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
3310 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3311 	} else {
3312 		u32 match_fields = 0;
3313 
3314 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3315 			       efx_ef10_filter_is_exclusive(spec) ?
3316 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
3317 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3318 
3319 		/* Convert match flags and values.  Unlike almost
3320 		 * everything else in MCDI, these fields are in
3321 		 * network byte order.
3322 		 */
3323 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3324 			match_fields |=
3325 				is_multicast_ether_addr(spec->loc_mac) ?
3326 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
3327 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3328 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
3329 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3330 			match_fields |=					     \
3331 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
3332 				mcdi_field ## _LBN;			     \
3333 			BUILD_BUG_ON(					     \
3334 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3335 				sizeof(spec->gen_field));		     \
3336 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
3337 			       &spec->gen_field, sizeof(spec->gen_field));   \
3338 		}
3339 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3340 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3341 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3342 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3343 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3344 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3345 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3346 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3347 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3348 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3349 #undef COPY_FIELD
3350 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3351 			       match_fields);
3352 	}
3353 
3354 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3355 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3356 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3357 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3358 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3359 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3360 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3361 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3362 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3363 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3364 		       0 : spec->dmaq_id);
3365 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3366 		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3367 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3368 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3369 	if (flags & EFX_FILTER_FLAG_RX_RSS)
3370 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3371 			       spec->rss_context !=
3372 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3373 			       spec->rss_context : nic_data->rx_rss_context);
3374 }
3375 
3376 static int efx_ef10_filter_push(struct efx_nic *efx,
3377 				const struct efx_filter_spec *spec,
3378 				u64 *handle, bool replacing)
3379 {
3380 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3381 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3382 	int rc;
3383 
3384 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3385 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3386 			  outbuf, sizeof(outbuf), NULL);
3387 	if (rc == 0)
3388 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3389 	if (rc == -ENOSPC)
3390 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3391 	return rc;
3392 }
3393 
3394 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3395 {
3396 	unsigned int match_flags = spec->match_flags;
3397 	u32 mcdi_flags = 0;
3398 
3399 	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3400 		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3401 		mcdi_flags |=
3402 			is_multicast_ether_addr(spec->loc_mac) ?
3403 			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
3404 			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
3405 	}
3406 
3407 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) {			\
3408 		unsigned int old_match_flags = match_flags;		\
3409 		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
3410 		if (match_flags != old_match_flags)			\
3411 			mcdi_flags |=					\
3412 				(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
3413 				 mcdi_field ## _LBN);			\
3414 	}
3415 	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
3416 	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
3417 	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
3418 	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
3419 	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
3420 	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
3421 	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
3422 	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
3423 	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
3424 	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
3425 #undef MAP_FILTER_TO_MCDI_FLAG
3426 
3427 	/* Did we map them all? */
3428 	WARN_ON_ONCE(match_flags);
3429 
3430 	return mcdi_flags;
3431 }
3432 
3433 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3434 			       const struct efx_filter_spec *spec)
3435 {
3436 	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3437 	unsigned int match_pri;
3438 
3439 	for (match_pri = 0;
3440 	     match_pri < table->rx_match_count;
3441 	     match_pri++)
3442 		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3443 			return match_pri;
3444 
3445 	return -EPROTONOSUPPORT;
3446 }
3447 
3448 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3449 				  struct efx_filter_spec *spec,
3450 				  bool replace_equal)
3451 {
3452 	struct efx_ef10_filter_table *table = efx->filter_state;
3453 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3454 	struct efx_filter_spec *saved_spec;
3455 	unsigned int match_pri, hash;
3456 	unsigned int priv_flags;
3457 	bool replacing = false;
3458 	int ins_index = -1;
3459 	DEFINE_WAIT(wait);
3460 	bool is_mc_recip;
3461 	s32 rc;
3462 
3463 	/* For now, only support RX filters */
3464 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3465 	    EFX_FILTER_FLAG_RX)
3466 		return -EINVAL;
3467 
3468 	rc = efx_ef10_filter_pri(table, spec);
3469 	if (rc < 0)
3470 		return rc;
3471 	match_pri = rc;
3472 
3473 	hash = efx_ef10_filter_hash(spec);
3474 	is_mc_recip = efx_filter_is_mc_recipient(spec);
3475 	if (is_mc_recip)
3476 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3477 
3478 	/* Find any existing filters with the same match tuple or
3479 	 * else a free slot to insert at.  If any of them are busy,
3480 	 * we have to wait and retry.
3481 	 */
3482 	for (;;) {
3483 		unsigned int depth = 1;
3484 		unsigned int i;
3485 
3486 		spin_lock_bh(&efx->filter_lock);
3487 
3488 		for (;;) {
3489 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3490 			saved_spec = efx_ef10_filter_entry_spec(table, i);
3491 
3492 			if (!saved_spec) {
3493 				if (ins_index < 0)
3494 					ins_index = i;
3495 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3496 				if (table->entry[i].spec &
3497 				    EFX_EF10_FILTER_FLAG_BUSY)
3498 					break;
3499 				if (spec->priority < saved_spec->priority &&
3500 				    spec->priority != EFX_FILTER_PRI_AUTO) {
3501 					rc = -EPERM;
3502 					goto out_unlock;
3503 				}
3504 				if (!is_mc_recip) {
3505 					/* This is the only one */
3506 					if (spec->priority ==
3507 					    saved_spec->priority &&
3508 					    !replace_equal) {
3509 						rc = -EEXIST;
3510 						goto out_unlock;
3511 					}
3512 					ins_index = i;
3513 					goto found;
3514 				} else if (spec->priority >
3515 					   saved_spec->priority ||
3516 					   (spec->priority ==
3517 					    saved_spec->priority &&
3518 					    replace_equal)) {
3519 					if (ins_index < 0)
3520 						ins_index = i;
3521 					else
3522 						__set_bit(depth, mc_rem_map);
3523 				}
3524 			}
3525 
3526 			/* Once we reach the maximum search depth, use
3527 			 * the first suitable slot or return -EBUSY if
3528 			 * there was none
3529 			 */
3530 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3531 				if (ins_index < 0) {
3532 					rc = -EBUSY;
3533 					goto out_unlock;
3534 				}
3535 				goto found;
3536 			}
3537 
3538 			++depth;
3539 		}
3540 
3541 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3542 		spin_unlock_bh(&efx->filter_lock);
3543 		schedule();
3544 	}
3545 
3546 found:
3547 	/* Create a software table entry if necessary, and mark it
3548 	 * busy.  We might yet fail to insert, but any attempt to
3549 	 * insert a conflicting filter while we're waiting for the
3550 	 * firmware must find the busy entry.
3551 	 */
3552 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3553 	if (saved_spec) {
3554 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
3555 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3556 			/* Just make sure it won't be removed */
3557 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3558 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3559 			table->entry[ins_index].spec &=
3560 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3561 			rc = ins_index;
3562 			goto out_unlock;
3563 		}
3564 		replacing = true;
3565 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3566 	} else {
3567 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3568 		if (!saved_spec) {
3569 			rc = -ENOMEM;
3570 			goto out_unlock;
3571 		}
3572 		*saved_spec = *spec;
3573 		priv_flags = 0;
3574 	}
3575 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3576 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3577 
3578 	/* Mark lower-priority multicast recipients busy prior to removal */
3579 	if (is_mc_recip) {
3580 		unsigned int depth, i;
3581 
3582 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3583 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3584 			if (test_bit(depth, mc_rem_map))
3585 				table->entry[i].spec |=
3586 					EFX_EF10_FILTER_FLAG_BUSY;
3587 		}
3588 	}
3589 
3590 	spin_unlock_bh(&efx->filter_lock);
3591 
3592 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3593 				  replacing);
3594 
3595 	/* Finalise the software table entry */
3596 	spin_lock_bh(&efx->filter_lock);
3597 	if (rc == 0) {
3598 		if (replacing) {
3599 			/* Update the fields that may differ */
3600 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3601 				saved_spec->flags |=
3602 					EFX_FILTER_FLAG_RX_OVER_AUTO;
3603 			saved_spec->priority = spec->priority;
3604 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3605 			saved_spec->flags |= spec->flags;
3606 			saved_spec->rss_context = spec->rss_context;
3607 			saved_spec->dmaq_id = spec->dmaq_id;
3608 		}
3609 	} else if (!replacing) {
3610 		kfree(saved_spec);
3611 		saved_spec = NULL;
3612 	}
3613 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3614 
3615 	/* Remove and finalise entries for lower-priority multicast
3616 	 * recipients
3617 	 */
3618 	if (is_mc_recip) {
3619 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3620 		unsigned int depth, i;
3621 
3622 		memset(inbuf, 0, sizeof(inbuf));
3623 
3624 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3625 			if (!test_bit(depth, mc_rem_map))
3626 				continue;
3627 
3628 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3629 			saved_spec = efx_ef10_filter_entry_spec(table, i);
3630 			priv_flags = efx_ef10_filter_entry_flags(table, i);
3631 
3632 			if (rc == 0) {
3633 				spin_unlock_bh(&efx->filter_lock);
3634 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3635 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3636 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3637 					       table->entry[i].handle);
3638 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3639 						  inbuf, sizeof(inbuf),
3640 						  NULL, 0, NULL);
3641 				spin_lock_bh(&efx->filter_lock);
3642 			}
3643 
3644 			if (rc == 0) {
3645 				kfree(saved_spec);
3646 				saved_spec = NULL;
3647 				priv_flags = 0;
3648 			} else {
3649 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3650 			}
3651 			efx_ef10_filter_set_entry(table, i, saved_spec,
3652 						  priv_flags);
3653 		}
3654 	}
3655 
3656 	/* If successful, return the inserted filter ID */
3657 	if (rc == 0)
3658 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3659 
3660 	wake_up_all(&table->waitq);
3661 out_unlock:
3662 	spin_unlock_bh(&efx->filter_lock);
3663 	finish_wait(&table->waitq, &wait);
3664 	return rc;
3665 }
3666 
3667 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3668 {
3669 	/* no need to do anything here on EF10 */
3670 }
3671 
3672 /* Remove a filter.
3673  * If !by_index, remove by ID
3674  * If by_index, remove by index
3675  * Filter ID may come from userland and must be range-checked.
3676  */
3677 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3678 					   unsigned int priority_mask,
3679 					   u32 filter_id, bool by_index)
3680 {
3681 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3682 	struct efx_ef10_filter_table *table = efx->filter_state;
3683 	MCDI_DECLARE_BUF(inbuf,
3684 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3685 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3686 	struct efx_filter_spec *spec;
3687 	DEFINE_WAIT(wait);
3688 	int rc;
3689 
3690 	/* Find the software table entry and mark it busy.  Don't
3691 	 * remove it yet; any attempt to update while we're waiting
3692 	 * for the firmware must find the busy entry.
3693 	 */
3694 	for (;;) {
3695 		spin_lock_bh(&efx->filter_lock);
3696 		if (!(table->entry[filter_idx].spec &
3697 		      EFX_EF10_FILTER_FLAG_BUSY))
3698 			break;
3699 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3700 		spin_unlock_bh(&efx->filter_lock);
3701 		schedule();
3702 	}
3703 
3704 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3705 	if (!spec ||
3706 	    (!by_index &&
3707 	     efx_ef10_filter_pri(table, spec) !=
3708 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
3709 		rc = -ENOENT;
3710 		goto out_unlock;
3711 	}
3712 
3713 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3714 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3715 		/* Just remove flags */
3716 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3717 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3718 		rc = 0;
3719 		goto out_unlock;
3720 	}
3721 
3722 	if (!(priority_mask & (1U << spec->priority))) {
3723 		rc = -ENOENT;
3724 		goto out_unlock;
3725 	}
3726 
3727 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3728 	spin_unlock_bh(&efx->filter_lock);
3729 
3730 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3731 		/* Reset to an automatic filter */
3732 
3733 		struct efx_filter_spec new_spec = *spec;
3734 
3735 		new_spec.priority = EFX_FILTER_PRI_AUTO;
3736 		new_spec.flags = (EFX_FILTER_FLAG_RX |
3737 				  (efx_rss_enabled(efx) ?
3738 				   EFX_FILTER_FLAG_RX_RSS : 0));
3739 		new_spec.dmaq_id = 0;
3740 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3741 		rc = efx_ef10_filter_push(efx, &new_spec,
3742 					  &table->entry[filter_idx].handle,
3743 					  true);
3744 
3745 		spin_lock_bh(&efx->filter_lock);
3746 		if (rc == 0)
3747 			*spec = new_spec;
3748 	} else {
3749 		/* Really remove the filter */
3750 
3751 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3752 			       efx_ef10_filter_is_exclusive(spec) ?
3753 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3754 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3755 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3756 			       table->entry[filter_idx].handle);
3757 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3758 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
3759 
3760 		spin_lock_bh(&efx->filter_lock);
3761 		if (rc == 0) {
3762 			kfree(spec);
3763 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3764 		}
3765 	}
3766 
3767 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3768 	wake_up_all(&table->waitq);
3769 out_unlock:
3770 	spin_unlock_bh(&efx->filter_lock);
3771 	finish_wait(&table->waitq, &wait);
3772 	return rc;
3773 }
3774 
3775 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3776 				       enum efx_filter_priority priority,
3777 				       u32 filter_id)
3778 {
3779 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
3780 					       filter_id, false);
3781 }
3782 
3783 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3784 {
3785 	return filter_id % HUNT_FILTER_TBL_ROWS;
3786 }
3787 
3788 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3789 					  enum efx_filter_priority priority,
3790 					  u32 filter_id)
3791 {
3792 	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
3793 		return;
3794 	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
3795 }
3796 
3797 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3798 				    enum efx_filter_priority priority,
3799 				    u32 filter_id, struct efx_filter_spec *spec)
3800 {
3801 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3802 	struct efx_ef10_filter_table *table = efx->filter_state;
3803 	const struct efx_filter_spec *saved_spec;
3804 	int rc;
3805 
3806 	spin_lock_bh(&efx->filter_lock);
3807 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3808 	if (saved_spec && saved_spec->priority == priority &&
3809 	    efx_ef10_filter_pri(table, saved_spec) ==
3810 	    filter_id / HUNT_FILTER_TBL_ROWS) {
3811 		*spec = *saved_spec;
3812 		rc = 0;
3813 	} else {
3814 		rc = -ENOENT;
3815 	}
3816 	spin_unlock_bh(&efx->filter_lock);
3817 	return rc;
3818 }
3819 
3820 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3821 				     enum efx_filter_priority priority)
3822 {
3823 	unsigned int priority_mask;
3824 	unsigned int i;
3825 	int rc;
3826 
3827 	priority_mask = (((1U << (priority + 1)) - 1) &
3828 			 ~(1U << EFX_FILTER_PRI_AUTO));
3829 
3830 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3831 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3832 						     i, true);
3833 		if (rc && rc != -ENOENT)
3834 			return rc;
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3841 					 enum efx_filter_priority priority)
3842 {
3843 	struct efx_ef10_filter_table *table = efx->filter_state;
3844 	unsigned int filter_idx;
3845 	s32 count = 0;
3846 
3847 	spin_lock_bh(&efx->filter_lock);
3848 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3849 		if (table->entry[filter_idx].spec &&
3850 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3851 		    priority)
3852 			++count;
3853 	}
3854 	spin_unlock_bh(&efx->filter_lock);
3855 	return count;
3856 }
3857 
3858 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3859 {
3860 	struct efx_ef10_filter_table *table = efx->filter_state;
3861 
3862 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3863 }
3864 
3865 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3866 				      enum efx_filter_priority priority,
3867 				      u32 *buf, u32 size)
3868 {
3869 	struct efx_ef10_filter_table *table = efx->filter_state;
3870 	struct efx_filter_spec *spec;
3871 	unsigned int filter_idx;
3872 	s32 count = 0;
3873 
3874 	spin_lock_bh(&efx->filter_lock);
3875 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3876 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3877 		if (spec && spec->priority == priority) {
3878 			if (count == size) {
3879 				count = -EMSGSIZE;
3880 				break;
3881 			}
3882 			buf[count++] = (efx_ef10_filter_pri(table, spec) *
3883 					HUNT_FILTER_TBL_ROWS +
3884 					filter_idx);
3885 		}
3886 	}
3887 	spin_unlock_bh(&efx->filter_lock);
3888 	return count;
3889 }
3890 
3891 #ifdef CONFIG_RFS_ACCEL
3892 
3893 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3894 
3895 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3896 				      struct efx_filter_spec *spec)
3897 {
3898 	struct efx_ef10_filter_table *table = efx->filter_state;
3899 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3900 	struct efx_filter_spec *saved_spec;
3901 	unsigned int hash, i, depth = 1;
3902 	bool replacing = false;
3903 	int ins_index = -1;
3904 	u64 cookie;
3905 	s32 rc;
3906 
3907 	/* Must be an RX filter without RSS and not for a multicast
3908 	 * destination address (RFS only works for connected sockets).
3909 	 * These restrictions allow us to pass only a tiny amount of
3910 	 * data through to the completion function.
3911 	 */
3912 	EFX_WARN_ON_PARANOID(spec->flags !=
3913 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3914 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3915 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3916 
3917 	hash = efx_ef10_filter_hash(spec);
3918 
3919 	spin_lock_bh(&efx->filter_lock);
3920 
3921 	/* Find any existing filter with the same match tuple or else
3922 	 * a free slot to insert at.  If an existing filter is busy,
3923 	 * we have to give up.
3924 	 */
3925 	for (;;) {
3926 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3927 		saved_spec = efx_ef10_filter_entry_spec(table, i);
3928 
3929 		if (!saved_spec) {
3930 			if (ins_index < 0)
3931 				ins_index = i;
3932 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3933 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3934 				rc = -EBUSY;
3935 				goto fail_unlock;
3936 			}
3937 			if (spec->priority < saved_spec->priority) {
3938 				rc = -EPERM;
3939 				goto fail_unlock;
3940 			}
3941 			ins_index = i;
3942 			break;
3943 		}
3944 
3945 		/* Once we reach the maximum search depth, use the
3946 		 * first suitable slot or return -EBUSY if there was
3947 		 * none
3948 		 */
3949 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3950 			if (ins_index < 0) {
3951 				rc = -EBUSY;
3952 				goto fail_unlock;
3953 			}
3954 			break;
3955 		}
3956 
3957 		++depth;
3958 	}
3959 
3960 	/* Create a software table entry if necessary, and mark it
3961 	 * busy.  We might yet fail to insert, but any attempt to
3962 	 * insert a conflicting filter while we're waiting for the
3963 	 * firmware must find the busy entry.
3964 	 */
3965 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3966 	if (saved_spec) {
3967 		replacing = true;
3968 	} else {
3969 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3970 		if (!saved_spec) {
3971 			rc = -ENOMEM;
3972 			goto fail_unlock;
3973 		}
3974 		*saved_spec = *spec;
3975 	}
3976 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3977 				  EFX_EF10_FILTER_FLAG_BUSY);
3978 
3979 	spin_unlock_bh(&efx->filter_lock);
3980 
3981 	/* Pack up the variables needed on completion */
3982 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3983 
3984 	efx_ef10_filter_push_prep(efx, spec, inbuf,
3985 				  table->entry[ins_index].handle, replacing);
3986 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3987 			   MC_CMD_FILTER_OP_OUT_LEN,
3988 			   efx_ef10_filter_rfs_insert_complete, cookie);
3989 
3990 	return ins_index;
3991 
3992 fail_unlock:
3993 	spin_unlock_bh(&efx->filter_lock);
3994 	return rc;
3995 }
3996 
3997 static void
3998 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3999 				    int rc, efx_dword_t *outbuf,
4000 				    size_t outlen_actual)
4001 {
4002 	struct efx_ef10_filter_table *table = efx->filter_state;
4003 	unsigned int ins_index, dmaq_id;
4004 	struct efx_filter_spec *spec;
4005 	bool replacing;
4006 
4007 	/* Unpack the cookie */
4008 	replacing = cookie >> 31;
4009 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4010 	dmaq_id = cookie & 0xffff;
4011 
4012 	spin_lock_bh(&efx->filter_lock);
4013 	spec = efx_ef10_filter_entry_spec(table, ins_index);
4014 	if (rc == 0) {
4015 		table->entry[ins_index].handle =
4016 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4017 		if (replacing)
4018 			spec->dmaq_id = dmaq_id;
4019 	} else if (!replacing) {
4020 		kfree(spec);
4021 		spec = NULL;
4022 	}
4023 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4024 	spin_unlock_bh(&efx->filter_lock);
4025 
4026 	wake_up_all(&table->waitq);
4027 }
4028 
4029 static void
4030 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4031 				    unsigned long filter_idx,
4032 				    int rc, efx_dword_t *outbuf,
4033 				    size_t outlen_actual);
4034 
4035 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4036 					   unsigned int filter_idx)
4037 {
4038 	struct efx_ef10_filter_table *table = efx->filter_state;
4039 	struct efx_filter_spec *spec =
4040 		efx_ef10_filter_entry_spec(table, filter_idx);
4041 	MCDI_DECLARE_BUF(inbuf,
4042 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4043 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4044 
4045 	if (!spec ||
4046 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4047 	    spec->priority != EFX_FILTER_PRI_HINT ||
4048 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4049 				 flow_id, filter_idx))
4050 		return false;
4051 
4052 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4053 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
4054 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4055 		       table->entry[filter_idx].handle);
4056 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4057 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
4058 		return false;
4059 
4060 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4061 	return true;
4062 }
4063 
4064 static void
4065 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4066 				    unsigned long filter_idx,
4067 				    int rc, efx_dword_t *outbuf,
4068 				    size_t outlen_actual)
4069 {
4070 	struct efx_ef10_filter_table *table = efx->filter_state;
4071 	struct efx_filter_spec *spec =
4072 		efx_ef10_filter_entry_spec(table, filter_idx);
4073 
4074 	spin_lock_bh(&efx->filter_lock);
4075 	if (rc == 0) {
4076 		kfree(spec);
4077 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4078 	}
4079 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4080 	wake_up_all(&table->waitq);
4081 	spin_unlock_bh(&efx->filter_lock);
4082 }
4083 
4084 #endif /* CONFIG_RFS_ACCEL */
4085 
4086 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
4087 {
4088 	int match_flags = 0;
4089 
4090 #define MAP_FLAG(gen_flag, mcdi_field) {				\
4091 		u32 old_mcdi_flags = mcdi_flags;			\
4092 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
4093 				mcdi_field ## _LBN);			\
4094 		if (mcdi_flags != old_mcdi_flags)			\
4095 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4096 	}
4097 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4098 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4099 	MAP_FLAG(REM_HOST, SRC_IP);
4100 	MAP_FLAG(LOC_HOST, DST_IP);
4101 	MAP_FLAG(REM_MAC, SRC_MAC);
4102 	MAP_FLAG(REM_PORT, SRC_PORT);
4103 	MAP_FLAG(LOC_MAC, DST_MAC);
4104 	MAP_FLAG(LOC_PORT, DST_PORT);
4105 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4106 	MAP_FLAG(INNER_VID, INNER_VLAN);
4107 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
4108 	MAP_FLAG(IP_PROTO, IP_PROTO);
4109 #undef MAP_FLAG
4110 
4111 	/* Did we map them all? */
4112 	if (mcdi_flags)
4113 		return -EINVAL;
4114 
4115 	return match_flags;
4116 }
4117 
4118 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4119 {
4120 	struct efx_ef10_filter_table *table = efx->filter_state;
4121 	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4122 
4123 	/* See comment in efx_ef10_filter_table_remove() */
4124 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4125 		return;
4126 
4127 	if (!table)
4128 		return;
4129 
4130 	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4131 		efx_ef10_filter_del_vlan_internal(efx, vlan);
4132 }
4133 
4134 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4135 					    enum efx_filter_match_flags match_flags)
4136 {
4137 	unsigned int match_pri;
4138 	int mf;
4139 
4140 	for (match_pri = 0;
4141 	     match_pri < table->rx_match_count;
4142 	     match_pri++) {
4143 		mf = efx_ef10_filter_match_flags_from_mcdi(
4144 				table->rx_match_mcdi_flags[match_pri]);
4145 		if (mf == match_flags)
4146 			return true;
4147 	}
4148 
4149 	return false;
4150 }
4151 
4152 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4153 {
4154 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4155 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4156 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4157 	struct net_device *net_dev = efx->net_dev;
4158 	unsigned int pd_match_pri, pd_match_count;
4159 	struct efx_ef10_filter_table *table;
4160 	struct efx_ef10_vlan *vlan;
4161 	size_t outlen;
4162 	int rc;
4163 
4164 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4165 		return -EINVAL;
4166 
4167 	if (efx->filter_state) /* already probed */
4168 		return 0;
4169 
4170 	table = kzalloc(sizeof(*table), GFP_KERNEL);
4171 	if (!table)
4172 		return -ENOMEM;
4173 
4174 	/* Find out which RX filter types are supported, and their priorities */
4175 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4176 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4177 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4178 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4179 			  &outlen);
4180 	if (rc)
4181 		goto fail;
4182 	pd_match_count = MCDI_VAR_ARRAY_LEN(
4183 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4184 	table->rx_match_count = 0;
4185 
4186 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4187 		u32 mcdi_flags =
4188 			MCDI_ARRAY_DWORD(
4189 				outbuf,
4190 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4191 				pd_match_pri);
4192 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
4193 		if (rc < 0) {
4194 			netif_dbg(efx, probe, efx->net_dev,
4195 				  "%s: fw flags %#x pri %u not supported in driver\n",
4196 				  __func__, mcdi_flags, pd_match_pri);
4197 		} else {
4198 			netif_dbg(efx, probe, efx->net_dev,
4199 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4200 				  __func__, mcdi_flags, pd_match_pri,
4201 				  rc, table->rx_match_count);
4202 			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4203 			table->rx_match_count++;
4204 		}
4205 	}
4206 
4207 	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4208 	    !(efx_ef10_filter_match_supported(table,
4209 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4210 	      efx_ef10_filter_match_supported(table,
4211 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4212 		netif_info(efx, probe, net_dev,
4213 			   "VLAN filters are not supported in this firmware variant\n");
4214 		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4215 		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4216 		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4217 	}
4218 
4219 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4220 	if (!table->entry) {
4221 		rc = -ENOMEM;
4222 		goto fail;
4223 	}
4224 
4225 	table->mc_promisc_last = false;
4226 	table->vlan_filter =
4227 		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4228 	INIT_LIST_HEAD(&table->vlan_list);
4229 
4230 	efx->filter_state = table;
4231 	init_waitqueue_head(&table->waitq);
4232 
4233 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4234 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4235 		if (rc)
4236 			goto fail_add_vlan;
4237 	}
4238 
4239 	return 0;
4240 
4241 fail_add_vlan:
4242 	efx_ef10_filter_cleanup_vlans(efx);
4243 	efx->filter_state = NULL;
4244 fail:
4245 	kfree(table);
4246 	return rc;
4247 }
4248 
4249 /* Caller must hold efx->filter_sem for read if race against
4250  * efx_ef10_filter_table_remove() is possible
4251  */
4252 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4253 {
4254 	struct efx_ef10_filter_table *table = efx->filter_state;
4255 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4256 	struct efx_filter_spec *spec;
4257 	unsigned int filter_idx;
4258 	bool failed = false;
4259 	int rc;
4260 
4261 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4262 
4263 	if (!nic_data->must_restore_filters)
4264 		return;
4265 
4266 	if (!table)
4267 		return;
4268 
4269 	spin_lock_bh(&efx->filter_lock);
4270 
4271 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4272 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4273 		if (!spec)
4274 			continue;
4275 
4276 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4277 		spin_unlock_bh(&efx->filter_lock);
4278 
4279 		rc = efx_ef10_filter_push(efx, spec,
4280 					  &table->entry[filter_idx].handle,
4281 					  false);
4282 		if (rc)
4283 			failed = true;
4284 
4285 		spin_lock_bh(&efx->filter_lock);
4286 		if (rc) {
4287 			kfree(spec);
4288 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4289 		} else {
4290 			table->entry[filter_idx].spec &=
4291 				~EFX_EF10_FILTER_FLAG_BUSY;
4292 		}
4293 	}
4294 
4295 	spin_unlock_bh(&efx->filter_lock);
4296 
4297 	if (failed)
4298 		netif_err(efx, hw, efx->net_dev,
4299 			  "unable to restore all filters\n");
4300 	else
4301 		nic_data->must_restore_filters = false;
4302 }
4303 
4304 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4305 {
4306 	struct efx_ef10_filter_table *table = efx->filter_state;
4307 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4308 	struct efx_filter_spec *spec;
4309 	unsigned int filter_idx;
4310 	int rc;
4311 
4312 	efx_ef10_filter_cleanup_vlans(efx);
4313 	efx->filter_state = NULL;
4314 	/* If we were called without locking, then it's not safe to free
4315 	 * the table as others might be using it.  So we just WARN, leak
4316 	 * the memory, and potentially get an inconsistent filter table
4317 	 * state.
4318 	 * This should never actually happen.
4319 	 */
4320 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4321 		return;
4322 
4323 	if (!table)
4324 		return;
4325 
4326 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4327 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4328 		if (!spec)
4329 			continue;
4330 
4331 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4332 			       efx_ef10_filter_is_exclusive(spec) ?
4333 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4334 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4335 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4336 			       table->entry[filter_idx].handle);
4337 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4338 					sizeof(inbuf), NULL, 0, NULL);
4339 		if (rc)
4340 			netif_info(efx, drv, efx->net_dev,
4341 				   "%s: filter %04x remove failed\n",
4342 				   __func__, filter_idx);
4343 		kfree(spec);
4344 	}
4345 
4346 	vfree(table->entry);
4347 	kfree(table);
4348 }
4349 
4350 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4351 {
4352 	struct efx_ef10_filter_table *table = efx->filter_state;
4353 	unsigned int filter_idx;
4354 
4355 	if (*id != EFX_EF10_FILTER_ID_INVALID) {
4356 		filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
4357 		if (!table->entry[filter_idx].spec)
4358 			netif_dbg(efx, drv, efx->net_dev,
4359 				  "marked null spec old %04x:%04x\n", *id,
4360 				  filter_idx);
4361 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4362 		*id = EFX_EF10_FILTER_ID_INVALID;
4363 	}
4364 }
4365 
4366 /* Mark old per-VLAN filters that may need to be removed */
4367 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
4368 					   struct efx_ef10_filter_vlan *vlan)
4369 {
4370 	struct efx_ef10_filter_table *table = efx->filter_state;
4371 	unsigned int i;
4372 
4373 	for (i = 0; i < table->dev_uc_count; i++)
4374 		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4375 	for (i = 0; i < table->dev_mc_count; i++)
4376 		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
4377 	efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
4378 	efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
4379 	efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4380 }
4381 
4382 /* Mark old filters that may need to be removed.
4383  * Caller must hold efx->filter_sem for read if race against
4384  * efx_ef10_filter_table_remove() is possible
4385  */
4386 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
4387 {
4388 	struct efx_ef10_filter_table *table = efx->filter_state;
4389 	struct efx_ef10_filter_vlan *vlan;
4390 
4391 	spin_lock_bh(&efx->filter_lock);
4392 	list_for_each_entry(vlan, &table->vlan_list, list)
4393 		_efx_ef10_filter_vlan_mark_old(efx, vlan);
4394 	spin_unlock_bh(&efx->filter_lock);
4395 }
4396 
4397 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4398 {
4399 	struct efx_ef10_filter_table *table = efx->filter_state;
4400 	struct net_device *net_dev = efx->net_dev;
4401 	struct netdev_hw_addr *uc;
4402 	int addr_count;
4403 	unsigned int i;
4404 
4405 	addr_count = netdev_uc_count(net_dev);
4406 	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4407 	table->dev_uc_count = 1 + addr_count;
4408 	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
4409 	i = 1;
4410 	netdev_for_each_uc_addr(uc, net_dev) {
4411 		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4412 			table->uc_promisc = true;
4413 			break;
4414 		}
4415 		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
4416 		i++;
4417 	}
4418 }
4419 
4420 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4421 {
4422 	struct efx_ef10_filter_table *table = efx->filter_state;
4423 	struct net_device *net_dev = efx->net_dev;
4424 	struct netdev_hw_addr *mc;
4425 	unsigned int i, addr_count;
4426 
4427 	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4428 
4429 	addr_count = netdev_mc_count(net_dev);
4430 	i = 0;
4431 	netdev_for_each_mc_addr(mc, net_dev) {
4432 		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4433 			table->mc_promisc = true;
4434 			break;
4435 		}
4436 		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
4437 		i++;
4438 	}
4439 
4440 	table->dev_mc_count = i;
4441 }
4442 
4443 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4444 					    struct efx_ef10_filter_vlan *vlan,
4445 					    bool multicast, bool rollback)
4446 {
4447 	struct efx_ef10_filter_table *table = efx->filter_state;
4448 	struct efx_ef10_dev_addr *addr_list;
4449 	enum efx_filter_flags filter_flags;
4450 	struct efx_filter_spec spec;
4451 	u8 baddr[ETH_ALEN];
4452 	unsigned int i, j;
4453 	int addr_count;
4454 	u16 *ids;
4455 	int rc;
4456 
4457 	if (multicast) {
4458 		addr_list = table->dev_mc_list;
4459 		addr_count = table->dev_mc_count;
4460 		ids = vlan->mc;
4461 	} else {
4462 		addr_list = table->dev_uc_list;
4463 		addr_count = table->dev_uc_count;
4464 		ids = vlan->uc;
4465 	}
4466 
4467 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4468 
4469 	/* Insert/renew filters */
4470 	for (i = 0; i < addr_count; i++) {
4471 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4472 		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4473 		rc = efx_ef10_filter_insert(efx, &spec, true);
4474 		if (rc < 0) {
4475 			if (rollback) {
4476 				netif_info(efx, drv, efx->net_dev,
4477 					   "efx_ef10_filter_insert failed rc=%d\n",
4478 					   rc);
4479 				/* Fall back to promiscuous */
4480 				for (j = 0; j < i; j++) {
4481 					efx_ef10_filter_remove_unsafe(
4482 						efx, EFX_FILTER_PRI_AUTO,
4483 						ids[j]);
4484 					ids[j] = EFX_EF10_FILTER_ID_INVALID;
4485 				}
4486 				return rc;
4487 			} else {
4488 				/* mark as not inserted, and carry on */
4489 				rc = EFX_EF10_FILTER_ID_INVALID;
4490 			}
4491 		}
4492 		ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4493 	}
4494 
4495 	if (multicast && rollback) {
4496 		/* Also need an Ethernet broadcast filter */
4497 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4498 		eth_broadcast_addr(baddr);
4499 		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4500 		rc = efx_ef10_filter_insert(efx, &spec, true);
4501 		if (rc < 0) {
4502 			netif_warn(efx, drv, efx->net_dev,
4503 				   "Broadcast filter insert failed rc=%d\n", rc);
4504 			/* Fall back to promiscuous */
4505 			for (j = 0; j < i; j++) {
4506 				efx_ef10_filter_remove_unsafe(
4507 					efx, EFX_FILTER_PRI_AUTO,
4508 					ids[j]);
4509 				ids[j] = EFX_EF10_FILTER_ID_INVALID;
4510 			}
4511 			return rc;
4512 		} else {
4513 			EFX_WARN_ON_PARANOID(vlan->bcast !=
4514 					     EFX_EF10_FILTER_ID_INVALID);
4515 			vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4516 		}
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
4523 				      struct efx_ef10_filter_vlan *vlan,
4524 				      bool multicast, bool rollback)
4525 {
4526 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4527 	enum efx_filter_flags filter_flags;
4528 	struct efx_filter_spec spec;
4529 	u8 baddr[ETH_ALEN];
4530 	int rc;
4531 
4532 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4533 
4534 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4535 
4536 	if (multicast)
4537 		efx_filter_set_mc_def(&spec);
4538 	else
4539 		efx_filter_set_uc_def(&spec);
4540 
4541 	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
4542 		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
4543 
4544 	rc = efx_ef10_filter_insert(efx, &spec, true);
4545 	if (rc < 0) {
4546 		netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4547 			     efx->net_dev,
4548 			     "%scast mismatch filter insert failed rc=%d\n",
4549 			     multicast ? "Multi" : "Uni", rc);
4550 	} else if (multicast) {
4551 		EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
4552 		vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4553 		if (!nic_data->workaround_26807) {
4554 			/* Also need an Ethernet broadcast filter */
4555 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4556 					   filter_flags, 0);
4557 			eth_broadcast_addr(baddr);
4558 			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4559 			rc = efx_ef10_filter_insert(efx, &spec, true);
4560 			if (rc < 0) {
4561 				netif_warn(efx, drv, efx->net_dev,
4562 					   "Broadcast filter insert failed rc=%d\n",
4563 					   rc);
4564 				if (rollback) {
4565 					/* Roll back the mc_def filter */
4566 					efx_ef10_filter_remove_unsafe(
4567 							efx, EFX_FILTER_PRI_AUTO,
4568 							vlan->mcdef);
4569 					vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4570 					return rc;
4571 				}
4572 			} else {
4573 				EFX_WARN_ON_PARANOID(vlan->bcast !=
4574 						     EFX_EF10_FILTER_ID_INVALID);
4575 				vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4576 			}
4577 		}
4578 		rc = 0;
4579 	} else {
4580 		EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
4581 		vlan->ucdef = rc;
4582 		rc = 0;
4583 	}
4584 	return rc;
4585 }
4586 
4587 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4588  * flag or removes these filters, we don't need to hold the filter_lock while
4589  * scanning for these filters.
4590  */
4591 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4592 {
4593 	struct efx_ef10_filter_table *table = efx->filter_state;
4594 	int remove_failed = 0;
4595 	int remove_noent = 0;
4596 	int rc;
4597 	int i;
4598 
4599 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4600 		if (ACCESS_ONCE(table->entry[i].spec) &
4601 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4602 			rc = efx_ef10_filter_remove_internal(efx,
4603 					1U << EFX_FILTER_PRI_AUTO, i, true);
4604 			if (rc == -ENOENT)
4605 				remove_noent++;
4606 			else if (rc)
4607 				remove_failed++;
4608 		}
4609 	}
4610 
4611 	if (remove_failed)
4612 		netif_info(efx, drv, efx->net_dev,
4613 			   "%s: failed to remove %d filters\n",
4614 			   __func__, remove_failed);
4615 	if (remove_noent)
4616 		netif_info(efx, drv, efx->net_dev,
4617 			   "%s: failed to remove %d non-existent filters\n",
4618 			   __func__, remove_noent);
4619 }
4620 
4621 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4622 {
4623 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4624 	u8 mac_old[ETH_ALEN];
4625 	int rc, rc2;
4626 
4627 	/* Only reconfigure a PF-created vport */
4628 	if (is_zero_ether_addr(nic_data->vport_mac))
4629 		return 0;
4630 
4631 	efx_device_detach_sync(efx);
4632 	efx_net_stop(efx->net_dev);
4633 	down_write(&efx->filter_sem);
4634 	efx_ef10_filter_table_remove(efx);
4635 	up_write(&efx->filter_sem);
4636 
4637 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4638 	if (rc)
4639 		goto restore_filters;
4640 
4641 	ether_addr_copy(mac_old, nic_data->vport_mac);
4642 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4643 				    nic_data->vport_mac);
4644 	if (rc)
4645 		goto restore_vadaptor;
4646 
4647 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4648 				    efx->net_dev->dev_addr);
4649 	if (!rc) {
4650 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4651 	} else {
4652 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4653 		if (rc2) {
4654 			/* Failed to add original MAC, so clear vport_mac */
4655 			eth_zero_addr(nic_data->vport_mac);
4656 			goto reset_nic;
4657 		}
4658 	}
4659 
4660 restore_vadaptor:
4661 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4662 	if (rc2)
4663 		goto reset_nic;
4664 restore_filters:
4665 	down_write(&efx->filter_sem);
4666 	rc2 = efx_ef10_filter_table_probe(efx);
4667 	up_write(&efx->filter_sem);
4668 	if (rc2)
4669 		goto reset_nic;
4670 
4671 	rc2 = efx_net_open(efx->net_dev);
4672 	if (rc2)
4673 		goto reset_nic;
4674 
4675 	netif_device_attach(efx->net_dev);
4676 
4677 	return rc;
4678 
4679 reset_nic:
4680 	netif_err(efx, drv, efx->net_dev,
4681 		  "Failed to restore when changing MAC address - scheduling reset\n");
4682 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4683 
4684 	return rc ? rc : rc2;
4685 }
4686 
4687 /* Caller must hold efx->filter_sem for read if race against
4688  * efx_ef10_filter_table_remove() is possible
4689  */
4690 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
4691 					      struct efx_ef10_filter_vlan *vlan)
4692 {
4693 	struct efx_ef10_filter_table *table = efx->filter_state;
4694 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4695 
4696 	/* Do not install unspecified VID if VLAN filtering is enabled.
4697 	 * Do not install all specified VIDs if VLAN filtering is disabled.
4698 	 */
4699 	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
4700 		return;
4701 
4702 	/* Insert/renew unicast filters */
4703 	if (table->uc_promisc) {
4704 		efx_ef10_filter_insert_def(efx, vlan, false, false);
4705 		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
4706 	} else {
4707 		/* If any of the filters failed to insert, fall back to
4708 		 * promiscuous mode - add in the uc_def filter.  But keep
4709 		 * our individual unicast filters.
4710 		 */
4711 		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
4712 			efx_ef10_filter_insert_def(efx, vlan, false, false);
4713 	}
4714 
4715 	/* Insert/renew multicast filters */
4716 	/* If changing promiscuous state with cascaded multicast filters, remove
4717 	 * old filters first, so that packets are dropped rather than duplicated
4718 	 */
4719 	if (nic_data->workaround_26807 &&
4720 	    table->mc_promisc_last != table->mc_promisc)
4721 		efx_ef10_filter_remove_old(efx);
4722 	if (table->mc_promisc) {
4723 		if (nic_data->workaround_26807) {
4724 			/* If we failed to insert promiscuous filters, rollback
4725 			 * and fall back to individual multicast filters
4726 			 */
4727 			if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
4728 				/* Changing promisc state, so remove old filters */
4729 				efx_ef10_filter_remove_old(efx);
4730 				efx_ef10_filter_insert_addr_list(efx, vlan,
4731 								 true, false);
4732 			}
4733 		} else {
4734 			/* If we failed to insert promiscuous filters, don't
4735 			 * rollback.  Regardless, also insert the mc_list
4736 			 */
4737 			efx_ef10_filter_insert_def(efx, vlan, true, false);
4738 			efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
4739 		}
4740 	} else {
4741 		/* If any filters failed to insert, rollback and fall back to
4742 		 * promiscuous mode - mc_def filter and maybe broadcast.  If
4743 		 * that fails, roll back again and insert as many of our
4744 		 * individual multicast filters as we can.
4745 		 */
4746 		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
4747 			/* Changing promisc state, so remove old filters */
4748 			if (nic_data->workaround_26807)
4749 				efx_ef10_filter_remove_old(efx);
4750 			if (efx_ef10_filter_insert_def(efx, vlan, true, true))
4751 				efx_ef10_filter_insert_addr_list(efx, vlan,
4752 								 true, false);
4753 		}
4754 	}
4755 }
4756 
4757 /* Caller must hold efx->filter_sem for read if race against
4758  * efx_ef10_filter_table_remove() is possible
4759  */
4760 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4761 {
4762 	struct efx_ef10_filter_table *table = efx->filter_state;
4763 	struct net_device *net_dev = efx->net_dev;
4764 	struct efx_ef10_filter_vlan *vlan;
4765 	bool vlan_filter;
4766 
4767 	if (!efx_dev_registered(efx))
4768 		return;
4769 
4770 	if (!table)
4771 		return;
4772 
4773 	efx_ef10_filter_mark_old(efx);
4774 
4775 	/* Copy/convert the address lists; add the primary station
4776 	 * address and broadcast address
4777 	 */
4778 	netif_addr_lock_bh(net_dev);
4779 	efx_ef10_filter_uc_addr_list(efx);
4780 	efx_ef10_filter_mc_addr_list(efx);
4781 	netif_addr_unlock_bh(net_dev);
4782 
4783 	/* If VLAN filtering changes, all old filters are finally removed.
4784 	 * Do it in advance to avoid conflicts for unicast untagged and
4785 	 * VLAN 0 tagged filters.
4786 	 */
4787 	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4788 	if (table->vlan_filter != vlan_filter) {
4789 		table->vlan_filter = vlan_filter;
4790 		efx_ef10_filter_remove_old(efx);
4791 	}
4792 
4793 	list_for_each_entry(vlan, &table->vlan_list, list)
4794 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4795 
4796 	efx_ef10_filter_remove_old(efx);
4797 	table->mc_promisc_last = table->mc_promisc;
4798 }
4799 
4800 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
4801 {
4802 	struct efx_ef10_filter_table *table = efx->filter_state;
4803 	struct efx_ef10_filter_vlan *vlan;
4804 
4805 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4806 
4807 	list_for_each_entry(vlan, &table->vlan_list, list) {
4808 		if (vlan->vid == vid)
4809 			return vlan;
4810 	}
4811 
4812 	return NULL;
4813 }
4814 
4815 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
4816 {
4817 	struct efx_ef10_filter_table *table = efx->filter_state;
4818 	struct efx_ef10_filter_vlan *vlan;
4819 	unsigned int i;
4820 
4821 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4822 		return -EINVAL;
4823 
4824 	vlan = efx_ef10_filter_find_vlan(efx, vid);
4825 	if (WARN_ON(vlan)) {
4826 		netif_err(efx, drv, efx->net_dev,
4827 			  "VLAN %u already added\n", vid);
4828 		return -EALREADY;
4829 	}
4830 
4831 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
4832 	if (!vlan)
4833 		return -ENOMEM;
4834 
4835 	vlan->vid = vid;
4836 
4837 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4838 		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
4839 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4840 		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
4841 	vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
4842 	vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
4843 	vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4844 
4845 	list_add_tail(&vlan->list, &table->vlan_list);
4846 
4847 	if (efx_dev_registered(efx))
4848 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4849 
4850 	return 0;
4851 }
4852 
4853 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
4854 					      struct efx_ef10_filter_vlan *vlan)
4855 {
4856 	unsigned int i;
4857 
4858 	/* See comment in efx_ef10_filter_table_remove() */
4859 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4860 		return;
4861 
4862 	list_del(&vlan->list);
4863 
4864 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4865 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4866 					      vlan->uc[i]);
4867 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4868 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4869 					      vlan->mc[i]);
4870 	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
4871 	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
4872 	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
4873 
4874 	kfree(vlan);
4875 }
4876 
4877 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
4878 {
4879 	struct efx_ef10_filter_vlan *vlan;
4880 
4881 	/* See comment in efx_ef10_filter_table_remove() */
4882 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4883 		return;
4884 
4885 	vlan = efx_ef10_filter_find_vlan(efx, vid);
4886 	if (!vlan) {
4887 		netif_err(efx, drv, efx->net_dev,
4888 			  "VLAN %u not found in filter state\n", vid);
4889 		return;
4890 	}
4891 
4892 	efx_ef10_filter_del_vlan_internal(efx, vlan);
4893 }
4894 
4895 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4896 {
4897 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4898 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4899 	bool was_enabled = efx->port_enabled;
4900 	int rc;
4901 
4902 	efx_device_detach_sync(efx);
4903 	efx_net_stop(efx->net_dev);
4904 
4905 	mutex_lock(&efx->mac_lock);
4906 	down_write(&efx->filter_sem);
4907 	efx_ef10_filter_table_remove(efx);
4908 
4909 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4910 			efx->net_dev->dev_addr);
4911 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4912 		       nic_data->vport_id);
4913 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4914 				sizeof(inbuf), NULL, 0, NULL);
4915 
4916 	efx_ef10_filter_table_probe(efx);
4917 	up_write(&efx->filter_sem);
4918 	mutex_unlock(&efx->mac_lock);
4919 
4920 	if (was_enabled)
4921 		efx_net_open(efx->net_dev);
4922 	netif_device_attach(efx->net_dev);
4923 
4924 #ifdef CONFIG_SFC_SRIOV
4925 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4926 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4927 
4928 		if (rc == -EPERM) {
4929 			struct efx_nic *efx_pf;
4930 
4931 			/* Switch to PF and change MAC address on vport */
4932 			efx_pf = pci_get_drvdata(pci_dev_pf);
4933 
4934 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4935 						       nic_data->vf_index,
4936 						       efx->net_dev->dev_addr);
4937 		} else if (!rc) {
4938 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4939 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4940 			unsigned int i;
4941 
4942 			/* MAC address successfully changed by VF (with MAC
4943 			 * spoofing) so update the parent PF if possible.
4944 			 */
4945 			for (i = 0; i < efx_pf->vf_count; ++i) {
4946 				struct ef10_vf *vf = nic_data->vf + i;
4947 
4948 				if (vf->efx == efx) {
4949 					ether_addr_copy(vf->mac,
4950 							efx->net_dev->dev_addr);
4951 					return 0;
4952 				}
4953 			}
4954 		}
4955 	} else
4956 #endif
4957 	if (rc == -EPERM) {
4958 		netif_err(efx, drv, efx->net_dev,
4959 			  "Cannot change MAC address; use sfboot to enable"
4960 			  " mac-spoofing on this interface\n");
4961 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4962 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4963 		 * fall-back to the method of changing the MAC address on the
4964 		 * vport.  This only applies to PFs because such versions of
4965 		 * MCFW do not support VFs.
4966 		 */
4967 		rc = efx_ef10_vport_set_mac_address(efx);
4968 	} else {
4969 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4970 				       sizeof(inbuf), NULL, 0, rc);
4971 	}
4972 
4973 	return rc;
4974 }
4975 
4976 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4977 {
4978 	efx_ef10_filter_sync_rx_mode(efx);
4979 
4980 	return efx_mcdi_set_mac(efx);
4981 }
4982 
4983 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4984 {
4985 	efx_ef10_filter_sync_rx_mode(efx);
4986 
4987 	return 0;
4988 }
4989 
4990 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4991 {
4992 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4993 
4994 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4995 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4996 			    NULL, 0, NULL);
4997 }
4998 
4999 /* MC BISTs follow a different poll mechanism to phy BISTs.
5000  * The BIST is done in the poll handler on the MC, and the MCDI command
5001  * will block until the BIST is done.
5002  */
5003 static int efx_ef10_poll_bist(struct efx_nic *efx)
5004 {
5005 	int rc;
5006 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5007 	size_t outlen;
5008 	u32 result;
5009 
5010 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5011 			   outbuf, sizeof(outbuf), &outlen);
5012 	if (rc != 0)
5013 		return rc;
5014 
5015 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5016 		return -EIO;
5017 
5018 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5019 	switch (result) {
5020 	case MC_CMD_POLL_BIST_PASSED:
5021 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5022 		return 0;
5023 	case MC_CMD_POLL_BIST_TIMEOUT:
5024 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5025 		return -EIO;
5026 	case MC_CMD_POLL_BIST_FAILED:
5027 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5028 		return -EIO;
5029 	default:
5030 		netif_err(efx, hw, efx->net_dev,
5031 			  "BIST returned unknown result %u", result);
5032 		return -EIO;
5033 	}
5034 }
5035 
5036 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5037 {
5038 	int rc;
5039 
5040 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5041 
5042 	rc = efx_ef10_start_bist(efx, bist_type);
5043 	if (rc != 0)
5044 		return rc;
5045 
5046 	return efx_ef10_poll_bist(efx);
5047 }
5048 
5049 static int
5050 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5051 {
5052 	int rc, rc2;
5053 
5054 	efx_reset_down(efx, RESET_TYPE_WORLD);
5055 
5056 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5057 			  NULL, 0, NULL, 0, NULL);
5058 	if (rc != 0)
5059 		goto out;
5060 
5061 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5062 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5063 
5064 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5065 
5066 out:
5067 	if (rc == -EPERM)
5068 		rc = 0;
5069 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5070 	return rc ? rc : rc2;
5071 }
5072 
5073 #ifdef CONFIG_SFC_MTD
5074 
5075 struct efx_ef10_nvram_type_info {
5076 	u16 type, type_mask;
5077 	u8 port;
5078 	const char *name;
5079 };
5080 
5081 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5082 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
5083 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5084 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
5085 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
5086 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
5087 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5088 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5089 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5090 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5091 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5092 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
5093 };
5094 
5095 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5096 					struct efx_mcdi_mtd_partition *part,
5097 					unsigned int type)
5098 {
5099 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5100 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5101 	const struct efx_ef10_nvram_type_info *info;
5102 	size_t size, erase_size, outlen;
5103 	bool protected;
5104 	int rc;
5105 
5106 	for (info = efx_ef10_nvram_types; ; info++) {
5107 		if (info ==
5108 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5109 			return -ENODEV;
5110 		if ((type & ~info->type_mask) == info->type)
5111 			break;
5112 	}
5113 	if (info->port != efx_port_num(efx))
5114 		return -ENODEV;
5115 
5116 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5117 	if (rc)
5118 		return rc;
5119 	if (protected)
5120 		return -ENODEV; /* hide it */
5121 
5122 	part->nvram_type = type;
5123 
5124 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5125 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5126 			  outbuf, sizeof(outbuf), &outlen);
5127 	if (rc)
5128 		return rc;
5129 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5130 		return -EIO;
5131 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5132 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5133 		part->fw_subtype = MCDI_DWORD(outbuf,
5134 					      NVRAM_METADATA_OUT_SUBTYPE);
5135 
5136 	part->common.dev_type_name = "EF10 NVRAM manager";
5137 	part->common.type_name = info->name;
5138 
5139 	part->common.mtd.type = MTD_NORFLASH;
5140 	part->common.mtd.flags = MTD_CAP_NORFLASH;
5141 	part->common.mtd.size = size;
5142 	part->common.mtd.erasesize = erase_size;
5143 
5144 	return 0;
5145 }
5146 
5147 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5148 {
5149 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5150 	struct efx_mcdi_mtd_partition *parts;
5151 	size_t outlen, n_parts_total, i, n_parts;
5152 	unsigned int type;
5153 	int rc;
5154 
5155 	ASSERT_RTNL();
5156 
5157 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5158 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5159 			  outbuf, sizeof(outbuf), &outlen);
5160 	if (rc)
5161 		return rc;
5162 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5163 		return -EIO;
5164 
5165 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5166 	if (n_parts_total >
5167 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5168 		return -EIO;
5169 
5170 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5171 	if (!parts)
5172 		return -ENOMEM;
5173 
5174 	n_parts = 0;
5175 	for (i = 0; i < n_parts_total; i++) {
5176 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5177 					i);
5178 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5179 		if (rc == 0)
5180 			n_parts++;
5181 		else if (rc != -ENODEV)
5182 			goto fail;
5183 	}
5184 
5185 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5186 fail:
5187 	if (rc)
5188 		kfree(parts);
5189 	return rc;
5190 }
5191 
5192 #endif /* CONFIG_SFC_MTD */
5193 
5194 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5195 {
5196 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5197 }
5198 
5199 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5200 					    u32 host_time) {}
5201 
5202 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5203 					   bool temp)
5204 {
5205 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5206 	int rc;
5207 
5208 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5209 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
5210 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5211 		return 0;
5212 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5213 
5214 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5215 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5216 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5217 		       channel->channel);
5218 
5219 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5220 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5221 
5222 	if (rc != 0)
5223 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5224 						    SYNC_EVENTS_DISABLED;
5225 
5226 	return rc;
5227 }
5228 
5229 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5230 					    bool temp)
5231 {
5232 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5233 	int rc;
5234 
5235 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5236 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5237 		return 0;
5238 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5239 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
5240 		return 0;
5241 	}
5242 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5243 					    SYNC_EVENTS_DISABLED;
5244 
5245 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
5246 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5247 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
5248 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
5249 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
5250 		       channel->channel);
5251 
5252 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5253 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5254 
5255 	return rc;
5256 }
5257 
5258 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
5259 					   bool temp)
5260 {
5261 	int (*set)(struct efx_channel *channel, bool temp);
5262 	struct efx_channel *channel;
5263 
5264 	set = en ?
5265 	      efx_ef10_rx_enable_timestamping :
5266 	      efx_ef10_rx_disable_timestamping;
5267 
5268 	efx_for_each_channel(channel, efx) {
5269 		int rc = set(channel, temp);
5270 		if (en && rc != 0) {
5271 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
5272 			return rc;
5273 		}
5274 	}
5275 
5276 	return 0;
5277 }
5278 
5279 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
5280 					 struct hwtstamp_config *init)
5281 {
5282 	return -EOPNOTSUPP;
5283 }
5284 
5285 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
5286 				      struct hwtstamp_config *init)
5287 {
5288 	int rc;
5289 
5290 	switch (init->rx_filter) {
5291 	case HWTSTAMP_FILTER_NONE:
5292 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
5293 		/* if TX timestamping is still requested then leave PTP on */
5294 		return efx_ptp_change_mode(efx,
5295 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
5296 	case HWTSTAMP_FILTER_ALL:
5297 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5298 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5299 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5300 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5301 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5302 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5303 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5304 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5305 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5306 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
5307 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5308 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5309 		init->rx_filter = HWTSTAMP_FILTER_ALL;
5310 		rc = efx_ptp_change_mode(efx, true, 0);
5311 		if (!rc)
5312 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
5313 		if (rc)
5314 			efx_ptp_change_mode(efx, false, 0);
5315 		return rc;
5316 	default:
5317 		return -ERANGE;
5318 	}
5319 }
5320 
5321 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5322 {
5323 	if (proto != htons(ETH_P_8021Q))
5324 		return -EINVAL;
5325 
5326 	return efx_ef10_add_vlan(efx, vid);
5327 }
5328 
5329 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5330 {
5331 	if (proto != htons(ETH_P_8021Q))
5332 		return -EINVAL;
5333 
5334 	return efx_ef10_del_vlan(efx, vid);
5335 }
5336 
5337 #define EF10_OFFLOAD_FEATURES		\
5338 	(NETIF_F_IP_CSUM |		\
5339 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
5340 	 NETIF_F_IPV6_CSUM |		\
5341 	 NETIF_F_RXHASH |		\
5342 	 NETIF_F_NTUPLE)
5343 
5344 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5345 	.is_vf = true,
5346 	.mem_bar = EFX_MEM_VF_BAR,
5347 	.mem_map_size = efx_ef10_mem_map_size,
5348 	.probe = efx_ef10_probe_vf,
5349 	.remove = efx_ef10_remove,
5350 	.dimension_resources = efx_ef10_dimension_resources,
5351 	.init = efx_ef10_init_nic,
5352 	.fini = efx_port_dummy_op_void,
5353 	.map_reset_reason = efx_ef10_map_reset_reason,
5354 	.map_reset_flags = efx_ef10_map_reset_flags,
5355 	.reset = efx_ef10_reset,
5356 	.probe_port = efx_mcdi_port_probe,
5357 	.remove_port = efx_mcdi_port_remove,
5358 	.fini_dmaq = efx_ef10_fini_dmaq,
5359 	.prepare_flr = efx_ef10_prepare_flr,
5360 	.finish_flr = efx_port_dummy_op_void,
5361 	.describe_stats = efx_ef10_describe_stats,
5362 	.update_stats = efx_ef10_update_stats_vf,
5363 	.start_stats = efx_port_dummy_op_void,
5364 	.pull_stats = efx_port_dummy_op_void,
5365 	.stop_stats = efx_port_dummy_op_void,
5366 	.set_id_led = efx_mcdi_set_id_led,
5367 	.push_irq_moderation = efx_ef10_push_irq_moderation,
5368 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5369 	.check_mac_fault = efx_mcdi_mac_check_fault,
5370 	.reconfigure_port = efx_mcdi_port_reconfigure,
5371 	.get_wol = efx_ef10_get_wol_vf,
5372 	.set_wol = efx_ef10_set_wol_vf,
5373 	.resume_wol = efx_port_dummy_op_void,
5374 	.mcdi_request = efx_ef10_mcdi_request,
5375 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
5376 	.mcdi_read_response = efx_ef10_mcdi_read_response,
5377 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5378 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5379 	.irq_enable_master = efx_port_dummy_op_void,
5380 	.irq_test_generate = efx_ef10_irq_test_generate,
5381 	.irq_disable_non_ev = efx_port_dummy_op_void,
5382 	.irq_handle_msi = efx_ef10_msi_interrupt,
5383 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
5384 	.tx_probe = efx_ef10_tx_probe,
5385 	.tx_init = efx_ef10_tx_init,
5386 	.tx_remove = efx_ef10_tx_remove,
5387 	.tx_write = efx_ef10_tx_write,
5388 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5389 	.rx_probe = efx_ef10_rx_probe,
5390 	.rx_init = efx_ef10_rx_init,
5391 	.rx_remove = efx_ef10_rx_remove,
5392 	.rx_write = efx_ef10_rx_write,
5393 	.rx_defer_refill = efx_ef10_rx_defer_refill,
5394 	.ev_probe = efx_ef10_ev_probe,
5395 	.ev_init = efx_ef10_ev_init,
5396 	.ev_fini = efx_ef10_ev_fini,
5397 	.ev_remove = efx_ef10_ev_remove,
5398 	.ev_process = efx_ef10_ev_process,
5399 	.ev_read_ack = efx_ef10_ev_read_ack,
5400 	.ev_test_generate = efx_ef10_ev_test_generate,
5401 	.filter_table_probe = efx_ef10_filter_table_probe,
5402 	.filter_table_restore = efx_ef10_filter_table_restore,
5403 	.filter_table_remove = efx_ef10_filter_table_remove,
5404 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5405 	.filter_insert = efx_ef10_filter_insert,
5406 	.filter_remove_safe = efx_ef10_filter_remove_safe,
5407 	.filter_get_safe = efx_ef10_filter_get_safe,
5408 	.filter_clear_rx = efx_ef10_filter_clear_rx,
5409 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
5410 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5411 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5412 #ifdef CONFIG_RFS_ACCEL
5413 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
5414 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5415 #endif
5416 #ifdef CONFIG_SFC_MTD
5417 	.mtd_probe = efx_port_dummy_op_int,
5418 #endif
5419 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
5420 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5421 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5422 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5423 #ifdef CONFIG_SFC_SRIOV
5424 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
5425 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
5426 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
5427 	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
5428 #endif
5429 	.get_mac_address = efx_ef10_get_mac_address_vf,
5430 	.set_mac_address = efx_ef10_set_mac_address,
5431 
5432 	.revision = EFX_REV_HUNT_A0,
5433 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5434 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5435 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5436 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5437 	.can_rx_scatter = true,
5438 	.always_rx_scatter = true,
5439 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
5440 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5441 	.offload_features = EF10_OFFLOAD_FEATURES,
5442 	.mcdi_max_ver = 2,
5443 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5444 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5445 			    1 << HWTSTAMP_FILTER_ALL,
5446 };
5447 
5448 const struct efx_nic_type efx_hunt_a0_nic_type = {
5449 	.is_vf = false,
5450 	.mem_bar = EFX_MEM_BAR,
5451 	.mem_map_size = efx_ef10_mem_map_size,
5452 	.probe = efx_ef10_probe_pf,
5453 	.remove = efx_ef10_remove,
5454 	.dimension_resources = efx_ef10_dimension_resources,
5455 	.init = efx_ef10_init_nic,
5456 	.fini = efx_port_dummy_op_void,
5457 	.map_reset_reason = efx_ef10_map_reset_reason,
5458 	.map_reset_flags = efx_ef10_map_reset_flags,
5459 	.reset = efx_ef10_reset,
5460 	.probe_port = efx_mcdi_port_probe,
5461 	.remove_port = efx_mcdi_port_remove,
5462 	.fini_dmaq = efx_ef10_fini_dmaq,
5463 	.prepare_flr = efx_ef10_prepare_flr,
5464 	.finish_flr = efx_port_dummy_op_void,
5465 	.describe_stats = efx_ef10_describe_stats,
5466 	.update_stats = efx_ef10_update_stats_pf,
5467 	.start_stats = efx_mcdi_mac_start_stats,
5468 	.pull_stats = efx_mcdi_mac_pull_stats,
5469 	.stop_stats = efx_mcdi_mac_stop_stats,
5470 	.set_id_led = efx_mcdi_set_id_led,
5471 	.push_irq_moderation = efx_ef10_push_irq_moderation,
5472 	.reconfigure_mac = efx_ef10_mac_reconfigure,
5473 	.check_mac_fault = efx_mcdi_mac_check_fault,
5474 	.reconfigure_port = efx_mcdi_port_reconfigure,
5475 	.get_wol = efx_ef10_get_wol,
5476 	.set_wol = efx_ef10_set_wol,
5477 	.resume_wol = efx_port_dummy_op_void,
5478 	.test_chip = efx_ef10_test_chip,
5479 	.test_nvram = efx_mcdi_nvram_test_all,
5480 	.mcdi_request = efx_ef10_mcdi_request,
5481 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
5482 	.mcdi_read_response = efx_ef10_mcdi_read_response,
5483 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5484 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5485 	.irq_enable_master = efx_port_dummy_op_void,
5486 	.irq_test_generate = efx_ef10_irq_test_generate,
5487 	.irq_disable_non_ev = efx_port_dummy_op_void,
5488 	.irq_handle_msi = efx_ef10_msi_interrupt,
5489 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
5490 	.tx_probe = efx_ef10_tx_probe,
5491 	.tx_init = efx_ef10_tx_init,
5492 	.tx_remove = efx_ef10_tx_remove,
5493 	.tx_write = efx_ef10_tx_write,
5494 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5495 	.rx_probe = efx_ef10_rx_probe,
5496 	.rx_init = efx_ef10_rx_init,
5497 	.rx_remove = efx_ef10_rx_remove,
5498 	.rx_write = efx_ef10_rx_write,
5499 	.rx_defer_refill = efx_ef10_rx_defer_refill,
5500 	.ev_probe = efx_ef10_ev_probe,
5501 	.ev_init = efx_ef10_ev_init,
5502 	.ev_fini = efx_ef10_ev_fini,
5503 	.ev_remove = efx_ef10_ev_remove,
5504 	.ev_process = efx_ef10_ev_process,
5505 	.ev_read_ack = efx_ef10_ev_read_ack,
5506 	.ev_test_generate = efx_ef10_ev_test_generate,
5507 	.filter_table_probe = efx_ef10_filter_table_probe,
5508 	.filter_table_restore = efx_ef10_filter_table_restore,
5509 	.filter_table_remove = efx_ef10_filter_table_remove,
5510 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5511 	.filter_insert = efx_ef10_filter_insert,
5512 	.filter_remove_safe = efx_ef10_filter_remove_safe,
5513 	.filter_get_safe = efx_ef10_filter_get_safe,
5514 	.filter_clear_rx = efx_ef10_filter_clear_rx,
5515 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
5516 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5517 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5518 #ifdef CONFIG_RFS_ACCEL
5519 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
5520 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5521 #endif
5522 #ifdef CONFIG_SFC_MTD
5523 	.mtd_probe = efx_ef10_mtd_probe,
5524 	.mtd_rename = efx_mcdi_mtd_rename,
5525 	.mtd_read = efx_mcdi_mtd_read,
5526 	.mtd_erase = efx_mcdi_mtd_erase,
5527 	.mtd_write = efx_mcdi_mtd_write,
5528 	.mtd_sync = efx_mcdi_mtd_sync,
5529 #endif
5530 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
5531 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
5532 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5533 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5534 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5535 #ifdef CONFIG_SFC_SRIOV
5536 	.sriov_configure = efx_ef10_sriov_configure,
5537 	.sriov_init = efx_ef10_sriov_init,
5538 	.sriov_fini = efx_ef10_sriov_fini,
5539 	.sriov_wanted = efx_ef10_sriov_wanted,
5540 	.sriov_reset = efx_ef10_sriov_reset,
5541 	.sriov_flr = efx_ef10_sriov_flr,
5542 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
5543 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
5544 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
5545 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5546 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5547 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
5548 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
5549 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
5550 #endif
5551 	.get_mac_address = efx_ef10_get_mac_address_pf,
5552 	.set_mac_address = efx_ef10_set_mac_address,
5553 
5554 	.revision = EFX_REV_HUNT_A0,
5555 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5556 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5557 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5558 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5559 	.can_rx_scatter = true,
5560 	.always_rx_scatter = true,
5561 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
5562 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5563 	.offload_features = EF10_OFFLOAD_FEATURES,
5564 	.mcdi_max_ver = 2,
5565 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5566 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5567 			    1 << HWTSTAMP_FILTER_ALL,
5568 };
5569