xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision c819e2cf)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include <linux/in.h>
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
22 
23 /* Hardware control for EF10 architecture including 'Huntington'. */
24 
25 #define EFX_EF10_DRVGEN_EV		7
26 enum {
27 	EFX_EF10_TEST = 1,
28 	EFX_EF10_REFILL,
29 };
30 
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
33 
34 /* The filter table(s) are managed by firmware and we have write-only
35  * access.  When removing filters we must identify them to the
36  * firmware by a 64-bit handle, but this is too wide for Linux kernel
37  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
38  * be able to tell in advance whether a requested insertion will
39  * replace an existing filter.  Therefore we maintain a software hash
40  * table, which should be at least as large as the hardware hash
41  * table.
42  *
43  * Huntington has a single 8K filter table shared between all filter
44  * types and both ports.
45  */
46 #define HUNT_FILTER_TBL_ROWS 8192
47 
48 struct efx_ef10_filter_table {
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50 	enum efx_filter_match_flags rx_match_flags[
51 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52 	unsigned int rx_match_count;
53 
54 	struct {
55 		unsigned long spec;	/* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
57  * used to mark and sweep MAC filters for the device address lists.
58  */
59 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
61 #define EFX_EF10_FILTER_FLAGS		3UL
62 		u64 handle;		/* firmware handle */
63 	} *entry;
64 	wait_queue_head_t waitq;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX	32
67 #define EFX_EF10_FILTER_DEV_MC_MAX	256
68 	struct {
69 		u8 addr[ETH_ALEN];
70 		u16 id;
71 	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72 	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73 	int dev_uc_count;		/* negative for PROMISC */
74 	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
75 };
76 
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
79 
80 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83 
84 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85 {
86 	efx_dword_t reg;
87 
88 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
89 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91 }
92 
93 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94 {
95 	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96 }
97 
98 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99 {
100 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
102 	size_t outlen;
103 	int rc;
104 
105 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106 
107 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108 			  outbuf, sizeof(outbuf), &outlen);
109 	if (rc)
110 		return rc;
111 	if (outlen < sizeof(outbuf)) {
112 		netif_err(efx, drv, efx->net_dev,
113 			  "unable to read datapath firmware capabilities\n");
114 		return -EIO;
115 	}
116 
117 	nic_data->datapath_caps =
118 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119 
120 	if (!(nic_data->datapath_caps &
121 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122 		netif_err(efx, drv, efx->net_dev,
123 			  "current firmware does not support TSO\n");
124 		return -ENODEV;
125 	}
126 
127 	if (!(nic_data->datapath_caps &
128 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129 		netif_err(efx, probe, efx->net_dev,
130 			  "current firmware does not support an RX prefix\n");
131 		return -ENODEV;
132 	}
133 
134 	return 0;
135 }
136 
137 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138 {
139 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140 	int rc;
141 
142 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143 			  outbuf, sizeof(outbuf), NULL);
144 	if (rc)
145 		return rc;
146 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147 	return rc > 0 ? rc : -ERANGE;
148 }
149 
150 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151 {
152 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153 	size_t outlen;
154 	int rc;
155 
156 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157 
158 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159 			  outbuf, sizeof(outbuf), &outlen);
160 	if (rc)
161 		return rc;
162 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163 		return -EIO;
164 
165 	ether_addr_copy(mac_address,
166 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167 	return 0;
168 }
169 
170 static int efx_ef10_probe(struct efx_nic *efx)
171 {
172 	struct efx_ef10_nic_data *nic_data;
173 	int i, rc;
174 
175 	/* We can have one VI for each 8K region.  However, until we
176 	 * use TX option descriptors we need two TX queues per channel.
177 	 */
178 	efx->max_channels =
179 		min_t(unsigned int,
180 		      EFX_MAX_CHANNELS,
181 		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182 		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183 	if (WARN_ON(efx->max_channels == 0))
184 		return -EIO;
185 
186 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
187 	if (!nic_data)
188 		return -ENOMEM;
189 	efx->nic_data = nic_data;
190 
191 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
192 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
193 	if (rc)
194 		goto fail1;
195 
196 	/* Get the MC's warm boot count.  In case it's rebooting right
197 	 * now, be prepared to retry.
198 	 */
199 	i = 0;
200 	for (;;) {
201 		rc = efx_ef10_get_warm_boot_count(efx);
202 		if (rc >= 0)
203 			break;
204 		if (++i == 5)
205 			goto fail2;
206 		ssleep(1);
207 	}
208 	nic_data->warm_boot_count = rc;
209 
210 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
211 
212 	/* In case we're recovering from a crash (kexec), we want to
213 	 * cancel any outstanding request by the previous user of this
214 	 * function.  We send a special message using the least
215 	 * significant bits of the 'high' (doorbell) register.
216 	 */
217 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
218 
219 	rc = efx_mcdi_init(efx);
220 	if (rc)
221 		goto fail2;
222 
223 	/* Reset (most) configuration for this function */
224 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
225 	if (rc)
226 		goto fail3;
227 
228 	/* Enable event logging */
229 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
230 	if (rc)
231 		goto fail3;
232 
233 	rc = efx_ef10_init_datapath_caps(efx);
234 	if (rc < 0)
235 		goto fail3;
236 
237 	efx->rx_packet_len_offset =
238 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
239 
240 	rc = efx_mcdi_port_get_number(efx);
241 	if (rc < 0)
242 		goto fail3;
243 	efx->port_num = rc;
244 
245 	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
246 	if (rc)
247 		goto fail3;
248 
249 	rc = efx_ef10_get_sysclk_freq(efx);
250 	if (rc < 0)
251 		goto fail3;
252 	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
253 
254 	/* Check whether firmware supports bug 35388 workaround */
255 	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
256 	if (rc == 0)
257 		nic_data->workaround_35388 = true;
258 	else if (rc != -ENOSYS && rc != -ENOENT)
259 		goto fail3;
260 	netif_dbg(efx, probe, efx->net_dev,
261 		  "workaround for bug 35388 is %sabled\n",
262 		  nic_data->workaround_35388 ? "en" : "dis");
263 
264 	rc = efx_mcdi_mon_probe(efx);
265 	if (rc)
266 		goto fail3;
267 
268 	efx_ptp_probe(efx, NULL);
269 
270 	return 0;
271 
272 fail3:
273 	efx_mcdi_fini(efx);
274 fail2:
275 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
276 fail1:
277 	kfree(nic_data);
278 	efx->nic_data = NULL;
279 	return rc;
280 }
281 
282 static int efx_ef10_free_vis(struct efx_nic *efx)
283 {
284 	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
285 	size_t outlen;
286 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
287 				    outbuf, sizeof(outbuf), &outlen);
288 
289 	/* -EALREADY means nothing to free, so ignore */
290 	if (rc == -EALREADY)
291 		rc = 0;
292 	if (rc)
293 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
294 				       rc);
295 	return rc;
296 }
297 
298 #ifdef EFX_USE_PIO
299 
300 static void efx_ef10_free_piobufs(struct efx_nic *efx)
301 {
302 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
303 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
304 	unsigned int i;
305 	int rc;
306 
307 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
308 
309 	for (i = 0; i < nic_data->n_piobufs; i++) {
310 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
311 			       nic_data->piobuf_handle[i]);
312 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
313 				  NULL, 0, NULL);
314 		WARN_ON(rc);
315 	}
316 
317 	nic_data->n_piobufs = 0;
318 }
319 
320 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
321 {
322 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
323 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
324 	unsigned int i;
325 	size_t outlen;
326 	int rc = 0;
327 
328 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
329 
330 	for (i = 0; i < n; i++) {
331 		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
332 				  outbuf, sizeof(outbuf), &outlen);
333 		if (rc)
334 			break;
335 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
336 			rc = -EIO;
337 			break;
338 		}
339 		nic_data->piobuf_handle[i] =
340 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
341 		netif_dbg(efx, probe, efx->net_dev,
342 			  "allocated PIO buffer %u handle %x\n", i,
343 			  nic_data->piobuf_handle[i]);
344 	}
345 
346 	nic_data->n_piobufs = i;
347 	if (rc)
348 		efx_ef10_free_piobufs(efx);
349 	return rc;
350 }
351 
352 static int efx_ef10_link_piobufs(struct efx_nic *efx)
353 {
354 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
355 	MCDI_DECLARE_BUF(inbuf,
356 			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
357 			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
358 	struct efx_channel *channel;
359 	struct efx_tx_queue *tx_queue;
360 	unsigned int offset, index;
361 	int rc;
362 
363 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
364 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
365 
366 	/* Link a buffer to each VI in the write-combining mapping */
367 	for (index = 0; index < nic_data->n_piobufs; ++index) {
368 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
369 			       nic_data->piobuf_handle[index]);
370 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
371 			       nic_data->pio_write_vi_base + index);
372 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
373 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
374 				  NULL, 0, NULL);
375 		if (rc) {
376 			netif_err(efx, drv, efx->net_dev,
377 				  "failed to link VI %u to PIO buffer %u (%d)\n",
378 				  nic_data->pio_write_vi_base + index, index,
379 				  rc);
380 			goto fail;
381 		}
382 		netif_dbg(efx, probe, efx->net_dev,
383 			  "linked VI %u to PIO buffer %u\n",
384 			  nic_data->pio_write_vi_base + index, index);
385 	}
386 
387 	/* Link a buffer to each TX queue */
388 	efx_for_each_channel(channel, efx) {
389 		efx_for_each_channel_tx_queue(tx_queue, channel) {
390 			/* We assign the PIO buffers to queues in
391 			 * reverse order to allow for the following
392 			 * special case.
393 			 */
394 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
395 				   tx_queue->channel->channel - 1) *
396 				  efx_piobuf_size);
397 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
398 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
399 
400 			/* When the host page size is 4K, the first
401 			 * host page in the WC mapping may be within
402 			 * the same VI page as the last TX queue.  We
403 			 * can only link one buffer to each VI.
404 			 */
405 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
406 				BUG_ON(index != 0);
407 				rc = 0;
408 			} else {
409 				MCDI_SET_DWORD(inbuf,
410 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
411 					       nic_data->piobuf_handle[index]);
412 				MCDI_SET_DWORD(inbuf,
413 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
414 					       tx_queue->queue);
415 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
416 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
417 						  NULL, 0, NULL);
418 			}
419 
420 			if (rc) {
421 				/* This is non-fatal; the TX path just
422 				 * won't use PIO for this queue
423 				 */
424 				netif_err(efx, drv, efx->net_dev,
425 					  "failed to link VI %u to PIO buffer %u (%d)\n",
426 					  tx_queue->queue, index, rc);
427 				tx_queue->piobuf = NULL;
428 			} else {
429 				tx_queue->piobuf =
430 					nic_data->pio_write_base +
431 					index * EFX_VI_PAGE_SIZE + offset;
432 				tx_queue->piobuf_offset = offset;
433 				netif_dbg(efx, probe, efx->net_dev,
434 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
435 					  tx_queue->queue, index,
436 					  tx_queue->piobuf_offset,
437 					  tx_queue->piobuf);
438 			}
439 		}
440 	}
441 
442 	return 0;
443 
444 fail:
445 	while (index--) {
446 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
447 			       nic_data->pio_write_vi_base + index);
448 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
449 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
450 			     NULL, 0, NULL);
451 	}
452 	return rc;
453 }
454 
455 #else /* !EFX_USE_PIO */
456 
457 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
458 {
459 	return n == 0 ? 0 : -ENOBUFS;
460 }
461 
462 static int efx_ef10_link_piobufs(struct efx_nic *efx)
463 {
464 	return 0;
465 }
466 
467 static void efx_ef10_free_piobufs(struct efx_nic *efx)
468 {
469 }
470 
471 #endif /* EFX_USE_PIO */
472 
473 static void efx_ef10_remove(struct efx_nic *efx)
474 {
475 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
476 	int rc;
477 
478 	efx_ptp_remove(efx);
479 
480 	efx_mcdi_mon_remove(efx);
481 
482 	efx_ef10_rx_free_indir_table(efx);
483 
484 	if (nic_data->wc_membase)
485 		iounmap(nic_data->wc_membase);
486 
487 	rc = efx_ef10_free_vis(efx);
488 	WARN_ON(rc != 0);
489 
490 	if (!nic_data->must_restore_piobufs)
491 		efx_ef10_free_piobufs(efx);
492 
493 	efx_mcdi_fini(efx);
494 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
495 	kfree(nic_data);
496 }
497 
498 static int efx_ef10_alloc_vis(struct efx_nic *efx,
499 			      unsigned int min_vis, unsigned int max_vis)
500 {
501 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
502 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
503 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
504 	size_t outlen;
505 	int rc;
506 
507 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
508 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
509 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
510 			  outbuf, sizeof(outbuf), &outlen);
511 	if (rc != 0)
512 		return rc;
513 
514 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
515 		return -EIO;
516 
517 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
518 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
519 
520 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
521 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
522 	return 0;
523 }
524 
525 /* Note that the failure path of this function does not free
526  * resources, as this will be done by efx_ef10_remove().
527  */
528 static int efx_ef10_dimension_resources(struct efx_nic *efx)
529 {
530 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
531 	unsigned int uc_mem_map_size, wc_mem_map_size;
532 	unsigned int min_vis, pio_write_vi_base, max_vis;
533 	void __iomem *membase;
534 	int rc;
535 
536 	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
537 
538 #ifdef EFX_USE_PIO
539 	/* Try to allocate PIO buffers if wanted and if the full
540 	 * number of PIO buffers would be sufficient to allocate one
541 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
542 	 * are only a small number of PIO buffers shared between all
543 	 * functions of the controller.
544 	 */
545 	if (efx_piobuf_size != 0 &&
546 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
547 	    efx->n_tx_channels) {
548 		unsigned int n_piobufs =
549 			DIV_ROUND_UP(efx->n_tx_channels,
550 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
551 
552 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
553 		if (rc)
554 			netif_err(efx, probe, efx->net_dev,
555 				  "failed to allocate PIO buffers (%d)\n", rc);
556 		else
557 			netif_dbg(efx, probe, efx->net_dev,
558 				  "allocated %u PIO buffers\n", n_piobufs);
559 	}
560 #else
561 	nic_data->n_piobufs = 0;
562 #endif
563 
564 	/* PIO buffers should be mapped with write-combining enabled,
565 	 * and we want to make single UC and WC mappings rather than
566 	 * several of each (in fact that's the only option if host
567 	 * page size is >4K).  So we may allocate some extra VIs just
568 	 * for writing PIO buffers through.
569 	 *
570 	 * The UC mapping contains (min_vis - 1) complete VIs and the
571 	 * first half of the next VI.  Then the WC mapping begins with
572 	 * the second half of this last VI.
573 	 */
574 	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
575 				     ER_DZ_TX_PIOBUF);
576 	if (nic_data->n_piobufs) {
577 		/* pio_write_vi_base rounds down to give the number of complete
578 		 * VIs inside the UC mapping.
579 		 */
580 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
581 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
582 					       nic_data->n_piobufs) *
583 					      EFX_VI_PAGE_SIZE) -
584 				   uc_mem_map_size);
585 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
586 	} else {
587 		pio_write_vi_base = 0;
588 		wc_mem_map_size = 0;
589 		max_vis = min_vis;
590 	}
591 
592 	/* In case the last attached driver failed to free VIs, do it now */
593 	rc = efx_ef10_free_vis(efx);
594 	if (rc != 0)
595 		return rc;
596 
597 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
598 	if (rc != 0)
599 		return rc;
600 
601 	/* If we didn't get enough VIs to map all the PIO buffers, free the
602 	 * PIO buffers
603 	 */
604 	if (nic_data->n_piobufs &&
605 	    nic_data->n_allocated_vis <
606 	    pio_write_vi_base + nic_data->n_piobufs) {
607 		netif_dbg(efx, probe, efx->net_dev,
608 			  "%u VIs are not sufficient to map %u PIO buffers\n",
609 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
610 		efx_ef10_free_piobufs(efx);
611 	}
612 
613 	/* Shrink the original UC mapping of the memory BAR */
614 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
615 	if (!membase) {
616 		netif_err(efx, probe, efx->net_dev,
617 			  "could not shrink memory BAR to %x\n",
618 			  uc_mem_map_size);
619 		return -ENOMEM;
620 	}
621 	iounmap(efx->membase);
622 	efx->membase = membase;
623 
624 	/* Set up the WC mapping if needed */
625 	if (wc_mem_map_size) {
626 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
627 						  uc_mem_map_size,
628 						  wc_mem_map_size);
629 		if (!nic_data->wc_membase) {
630 			netif_err(efx, probe, efx->net_dev,
631 				  "could not allocate WC mapping of size %x\n",
632 				  wc_mem_map_size);
633 			return -ENOMEM;
634 		}
635 		nic_data->pio_write_vi_base = pio_write_vi_base;
636 		nic_data->pio_write_base =
637 			nic_data->wc_membase +
638 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
639 			 uc_mem_map_size);
640 
641 		rc = efx_ef10_link_piobufs(efx);
642 		if (rc)
643 			efx_ef10_free_piobufs(efx);
644 	}
645 
646 	netif_dbg(efx, probe, efx->net_dev,
647 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
648 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
649 		  nic_data->wc_membase, wc_mem_map_size);
650 
651 	return 0;
652 }
653 
654 static int efx_ef10_init_nic(struct efx_nic *efx)
655 {
656 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
657 	int rc;
658 
659 	if (nic_data->must_check_datapath_caps) {
660 		rc = efx_ef10_init_datapath_caps(efx);
661 		if (rc)
662 			return rc;
663 		nic_data->must_check_datapath_caps = false;
664 	}
665 
666 	if (nic_data->must_realloc_vis) {
667 		/* We cannot let the number of VIs change now */
668 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
669 					nic_data->n_allocated_vis);
670 		if (rc)
671 			return rc;
672 		nic_data->must_realloc_vis = false;
673 	}
674 
675 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
676 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
677 		if (rc == 0) {
678 			rc = efx_ef10_link_piobufs(efx);
679 			if (rc)
680 				efx_ef10_free_piobufs(efx);
681 		}
682 
683 		/* Log an error on failure, but this is non-fatal */
684 		if (rc)
685 			netif_err(efx, drv, efx->net_dev,
686 				  "failed to restore PIO buffers (%d)\n", rc);
687 		nic_data->must_restore_piobufs = false;
688 	}
689 
690 	efx_ef10_rx_push_rss_config(efx);
691 	return 0;
692 }
693 
694 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
695 {
696 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
697 
698 	/* All our allocations have been reset */
699 	nic_data->must_realloc_vis = true;
700 	nic_data->must_restore_filters = true;
701 	nic_data->must_restore_piobufs = true;
702 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
703 }
704 
705 static int efx_ef10_map_reset_flags(u32 *flags)
706 {
707 	enum {
708 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
709 				   ETH_RESET_SHARED_SHIFT),
710 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
711 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
712 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
713 				 ETH_RESET_SHARED_SHIFT)
714 	};
715 
716 	/* We assume for now that our PCI function is permitted to
717 	 * reset everything.
718 	 */
719 
720 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
721 		*flags &= ~EF10_RESET_MC;
722 		return RESET_TYPE_WORLD;
723 	}
724 
725 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
726 		*flags &= ~EF10_RESET_PORT;
727 		return RESET_TYPE_ALL;
728 	}
729 
730 	/* no invisible reset implemented */
731 
732 	return -EINVAL;
733 }
734 
735 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
736 {
737 	int rc = efx_mcdi_reset(efx, reset_type);
738 
739 	/* If it was a port reset, trigger reallocation of MC resources.
740 	 * Note that on an MC reset nothing needs to be done now because we'll
741 	 * detect the MC reset later and handle it then.
742 	 * For an FLR, we never get an MC reset event, but the MC has reset all
743 	 * resources assigned to us, so we have to trigger reallocation now.
744 	 */
745 	if ((reset_type == RESET_TYPE_ALL ||
746 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
747 		efx_ef10_reset_mc_allocations(efx);
748 	return rc;
749 }
750 
751 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
752 	[EF10_STAT_ ## ext_name] =				\
753 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
754 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
755 	[EF10_STAT_ ## int_name] =				\
756 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
757 #define EF10_OTHER_STAT(ext_name)				\
758 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
759 #define GENERIC_SW_STAT(ext_name)				\
760 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
761 
762 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
763 	EF10_DMA_STAT(tx_bytes, TX_BYTES),
764 	EF10_DMA_STAT(tx_packets, TX_PKTS),
765 	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
766 	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
767 	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
768 	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
769 	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
770 	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
771 	EF10_DMA_STAT(tx_64, TX_64_PKTS),
772 	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
773 	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
774 	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
775 	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
776 	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
777 	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
778 	EF10_DMA_STAT(rx_bytes, RX_BYTES),
779 	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
780 	EF10_OTHER_STAT(rx_good_bytes),
781 	EF10_OTHER_STAT(rx_bad_bytes),
782 	EF10_DMA_STAT(rx_packets, RX_PKTS),
783 	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
784 	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
785 	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
786 	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
787 	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
788 	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
789 	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
790 	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
791 	EF10_DMA_STAT(rx_64, RX_64_PKTS),
792 	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
793 	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
794 	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
795 	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
796 	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
797 	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
798 	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
799 	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
800 	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
801 	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
802 	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
803 	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
804 	GENERIC_SW_STAT(rx_nodesc_trunc),
805 	GENERIC_SW_STAT(rx_noskb_drops),
806 	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
807 	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
808 	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
809 	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
810 	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
811 	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
812 	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
813 	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
814 	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
815 	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
816 	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
817 	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
818 };
819 
820 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
821 			       (1ULL << EF10_STAT_tx_packets) |		\
822 			       (1ULL << EF10_STAT_tx_pause) |		\
823 			       (1ULL << EF10_STAT_tx_unicast) |		\
824 			       (1ULL << EF10_STAT_tx_multicast) |	\
825 			       (1ULL << EF10_STAT_tx_broadcast) |	\
826 			       (1ULL << EF10_STAT_rx_bytes) |		\
827 			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
828 			       (1ULL << EF10_STAT_rx_good_bytes) |	\
829 			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
830 			       (1ULL << EF10_STAT_rx_packets) |		\
831 			       (1ULL << EF10_STAT_rx_good) |		\
832 			       (1ULL << EF10_STAT_rx_bad) |		\
833 			       (1ULL << EF10_STAT_rx_pause) |		\
834 			       (1ULL << EF10_STAT_rx_control) |		\
835 			       (1ULL << EF10_STAT_rx_unicast) |		\
836 			       (1ULL << EF10_STAT_rx_multicast) |	\
837 			       (1ULL << EF10_STAT_rx_broadcast) |	\
838 			       (1ULL << EF10_STAT_rx_lt64) |		\
839 			       (1ULL << EF10_STAT_rx_64) |		\
840 			       (1ULL << EF10_STAT_rx_65_to_127) |	\
841 			       (1ULL << EF10_STAT_rx_128_to_255) |	\
842 			       (1ULL << EF10_STAT_rx_256_to_511) |	\
843 			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
844 			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
845 			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
846 			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
847 			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
848 			       (1ULL << EF10_STAT_rx_overflow) |	\
849 			       (1ULL << EF10_STAT_rx_nodesc_drops) |	\
850 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
851 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
852 
853 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
854  * switchable port we do not expose these because they might not
855  * include all the packets they should.
856  */
857 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
858 				 (1ULL << EF10_STAT_tx_lt64) |		\
859 				 (1ULL << EF10_STAT_tx_64) |		\
860 				 (1ULL << EF10_STAT_tx_65_to_127) |	\
861 				 (1ULL << EF10_STAT_tx_128_to_255) |	\
862 				 (1ULL << EF10_STAT_tx_256_to_511) |	\
863 				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
864 				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
865 				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
866 
867 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
868  * switchable port we do expose these because the errors will otherwise
869  * be silent.
870  */
871 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
872 				  (1ULL << EF10_STAT_rx_length_error))
873 
874 /* These statistics are only provided if the firmware supports the
875  * capability PM_AND_RXDP_COUNTERS.
876  */
877 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
878 	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
879 	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
880 	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
881 	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
882 	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
883 	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
884 	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
885 	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
886 	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
887 	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
888 	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
889 	(1ULL << EF10_STAT_rx_dp_hlb_wait))
890 
891 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
892 {
893 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
894 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
895 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
896 
897 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
898 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
899 	else
900 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
901 
902 	if (nic_data->datapath_caps &
903 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
904 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
905 
906 	return raw_mask;
907 }
908 
909 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
910 {
911 	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
912 
913 #if BITS_PER_LONG == 64
914 	mask[0] = raw_mask;
915 #else
916 	mask[0] = raw_mask & 0xffffffff;
917 	mask[1] = raw_mask >> 32;
918 #endif
919 }
920 
921 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
922 {
923 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
924 
925 	efx_ef10_get_stat_mask(efx, mask);
926 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
927 				      mask, names);
928 }
929 
930 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
931 {
932 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
933 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
934 	__le64 generation_start, generation_end;
935 	u64 *stats = nic_data->stats;
936 	__le64 *dma_stats;
937 
938 	efx_ef10_get_stat_mask(efx, mask);
939 
940 	dma_stats = efx->stats_buffer.addr;
941 	nic_data = efx->nic_data;
942 
943 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
944 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
945 		return 0;
946 	rmb();
947 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
948 			     stats, efx->stats_buffer.addr, false);
949 	rmb();
950 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
951 	if (generation_end != generation_start)
952 		return -EAGAIN;
953 
954 	/* Update derived statistics */
955 	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
956 	stats[EF10_STAT_rx_good_bytes] =
957 		stats[EF10_STAT_rx_bytes] -
958 		stats[EF10_STAT_rx_bytes_minus_good_bytes];
959 	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
960 			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
961 	efx_update_sw_stats(efx, stats);
962 	return 0;
963 }
964 
965 
966 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
967 				    struct rtnl_link_stats64 *core_stats)
968 {
969 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
970 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
971 	u64 *stats = nic_data->stats;
972 	size_t stats_count = 0, index;
973 	int retry;
974 
975 	efx_ef10_get_stat_mask(efx, mask);
976 
977 	/* If we're unlucky enough to read statistics during the DMA, wait
978 	 * up to 10ms for it to finish (typically takes <500us)
979 	 */
980 	for (retry = 0; retry < 100; ++retry) {
981 		if (efx_ef10_try_update_nic_stats(efx) == 0)
982 			break;
983 		udelay(100);
984 	}
985 
986 	if (full_stats) {
987 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
988 			if (efx_ef10_stat_desc[index].name) {
989 				*full_stats++ = stats[index];
990 				++stats_count;
991 			}
992 		}
993 	}
994 
995 	if (core_stats) {
996 		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
997 		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
998 		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
999 		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
1000 		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops] +
1001 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1002 					 stats[GENERIC_STAT_rx_noskb_drops];
1003 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1004 		core_stats->rx_length_errors =
1005 			stats[EF10_STAT_rx_gtjumbo] +
1006 			stats[EF10_STAT_rx_length_error];
1007 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1008 		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1009 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1010 		core_stats->rx_errors = (core_stats->rx_length_errors +
1011 					 core_stats->rx_crc_errors +
1012 					 core_stats->rx_frame_errors);
1013 	}
1014 
1015 	return stats_count;
1016 }
1017 
1018 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1019 {
1020 	struct efx_nic *efx = channel->efx;
1021 	unsigned int mode, value;
1022 	efx_dword_t timer_cmd;
1023 
1024 	if (channel->irq_moderation) {
1025 		mode = 3;
1026 		value = channel->irq_moderation - 1;
1027 	} else {
1028 		mode = 0;
1029 		value = 0;
1030 	}
1031 
1032 	if (EFX_EF10_WORKAROUND_35388(efx)) {
1033 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1034 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1035 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1036 				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1037 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1038 				channel->channel);
1039 	} else {
1040 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1041 				     ERF_DZ_TC_TIMER_VAL, value);
1042 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1043 				channel->channel);
1044 	}
1045 }
1046 
1047 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1048 {
1049 	wol->supported = 0;
1050 	wol->wolopts = 0;
1051 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1052 }
1053 
1054 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1055 {
1056 	if (type != 0)
1057 		return -EINVAL;
1058 	return 0;
1059 }
1060 
1061 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1062 				  const efx_dword_t *hdr, size_t hdr_len,
1063 				  const efx_dword_t *sdu, size_t sdu_len)
1064 {
1065 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1066 	u8 *pdu = nic_data->mcdi_buf.addr;
1067 
1068 	memcpy(pdu, hdr, hdr_len);
1069 	memcpy(pdu + hdr_len, sdu, sdu_len);
1070 	wmb();
1071 
1072 	/* The hardware provides 'low' and 'high' (doorbell) registers
1073 	 * for passing the 64-bit address of an MCDI request to
1074 	 * firmware.  However the dwords are swapped by firmware.  The
1075 	 * least significant bits of the doorbell are then 0 for all
1076 	 * MCDI requests due to alignment.
1077 	 */
1078 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1079 		    ER_DZ_MC_DB_LWRD);
1080 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1081 		    ER_DZ_MC_DB_HWRD);
1082 }
1083 
1084 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1085 {
1086 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1087 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1088 
1089 	rmb();
1090 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1091 }
1092 
1093 static void
1094 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1095 			    size_t offset, size_t outlen)
1096 {
1097 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1098 	const u8 *pdu = nic_data->mcdi_buf.addr;
1099 
1100 	memcpy(outbuf, pdu + offset, outlen);
1101 }
1102 
1103 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1104 {
1105 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1106 	int rc;
1107 
1108 	rc = efx_ef10_get_warm_boot_count(efx);
1109 	if (rc < 0) {
1110 		/* The firmware is presumably in the process of
1111 		 * rebooting.  However, we are supposed to report each
1112 		 * reboot just once, so we must only do that once we
1113 		 * can read and store the updated warm boot count.
1114 		 */
1115 		return 0;
1116 	}
1117 
1118 	if (rc == nic_data->warm_boot_count)
1119 		return 0;
1120 
1121 	nic_data->warm_boot_count = rc;
1122 
1123 	/* All our allocations have been reset */
1124 	efx_ef10_reset_mc_allocations(efx);
1125 
1126 	/* The datapath firmware might have been changed */
1127 	nic_data->must_check_datapath_caps = true;
1128 
1129 	/* MAC statistics have been cleared on the NIC; clear the local
1130 	 * statistic that we update with efx_update_diff_stat().
1131 	 */
1132 	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1133 
1134 	return -EIO;
1135 }
1136 
1137 /* Handle an MSI interrupt
1138  *
1139  * Handle an MSI hardware interrupt.  This routine schedules event
1140  * queue processing.  No interrupt acknowledgement cycle is necessary.
1141  * Also, we never need to check that the interrupt is for us, since
1142  * MSI interrupts cannot be shared.
1143  */
1144 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1145 {
1146 	struct efx_msi_context *context = dev_id;
1147 	struct efx_nic *efx = context->efx;
1148 
1149 	netif_vdbg(efx, intr, efx->net_dev,
1150 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1151 
1152 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1153 		/* Note test interrupts */
1154 		if (context->index == efx->irq_level)
1155 			efx->last_irq_cpu = raw_smp_processor_id();
1156 
1157 		/* Schedule processing of the channel */
1158 		efx_schedule_channel_irq(efx->channel[context->index]);
1159 	}
1160 
1161 	return IRQ_HANDLED;
1162 }
1163 
1164 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1165 {
1166 	struct efx_nic *efx = dev_id;
1167 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1168 	struct efx_channel *channel;
1169 	efx_dword_t reg;
1170 	u32 queues;
1171 
1172 	/* Read the ISR which also ACKs the interrupts */
1173 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1174 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1175 
1176 	if (queues == 0)
1177 		return IRQ_NONE;
1178 
1179 	if (likely(soft_enabled)) {
1180 		/* Note test interrupts */
1181 		if (queues & (1U << efx->irq_level))
1182 			efx->last_irq_cpu = raw_smp_processor_id();
1183 
1184 		efx_for_each_channel(channel, efx) {
1185 			if (queues & 1)
1186 				efx_schedule_channel_irq(channel);
1187 			queues >>= 1;
1188 		}
1189 	}
1190 
1191 	netif_vdbg(efx, intr, efx->net_dev,
1192 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1193 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1194 
1195 	return IRQ_HANDLED;
1196 }
1197 
1198 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1199 {
1200 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1201 
1202 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1203 
1204 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1205 	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1206 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1207 }
1208 
1209 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1210 {
1211 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1212 				    (tx_queue->ptr_mask + 1) *
1213 				    sizeof(efx_qword_t),
1214 				    GFP_KERNEL);
1215 }
1216 
1217 /* This writes to the TX_DESC_WPTR and also pushes data */
1218 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1219 					 const efx_qword_t *txd)
1220 {
1221 	unsigned int write_ptr;
1222 	efx_oword_t reg;
1223 
1224 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1225 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1226 	reg.qword[0] = *txd;
1227 	efx_writeo_page(tx_queue->efx, &reg,
1228 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1229 }
1230 
1231 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1232 {
1233 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1234 						       EFX_BUF_SIZE));
1235 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1236 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1237 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1238 	struct efx_channel *channel = tx_queue->channel;
1239 	struct efx_nic *efx = tx_queue->efx;
1240 	size_t inlen, outlen;
1241 	dma_addr_t dma_addr;
1242 	efx_qword_t *txd;
1243 	int rc;
1244 	int i;
1245 
1246 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1247 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1248 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1249 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1250 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1251 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1252 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1253 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1254 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1255 
1256 	dma_addr = tx_queue->txd.buf.dma_addr;
1257 
1258 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1259 		  tx_queue->queue, entries, (u64)dma_addr);
1260 
1261 	for (i = 0; i < entries; ++i) {
1262 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1263 		dma_addr += EFX_BUF_SIZE;
1264 	}
1265 
1266 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1267 
1268 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1269 			  outbuf, sizeof(outbuf), &outlen);
1270 	if (rc)
1271 		goto fail;
1272 
1273 	/* A previous user of this TX queue might have set us up the
1274 	 * bomb by writing a descriptor to the TX push collector but
1275 	 * not the doorbell.  (Each collector belongs to a port, not a
1276 	 * queue or function, so cannot easily be reset.)  We must
1277 	 * attempt to push a no-op descriptor in its place.
1278 	 */
1279 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1280 	tx_queue->insert_count = 1;
1281 	txd = efx_tx_desc(tx_queue, 0);
1282 	EFX_POPULATE_QWORD_4(*txd,
1283 			     ESF_DZ_TX_DESC_IS_OPT, true,
1284 			     ESF_DZ_TX_OPTION_TYPE,
1285 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1286 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1287 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1288 	tx_queue->write_count = 1;
1289 	wmb();
1290 	efx_ef10_push_tx_desc(tx_queue, txd);
1291 
1292 	return;
1293 
1294 fail:
1295 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1296 		    tx_queue->queue);
1297 }
1298 
1299 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1300 {
1301 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1302 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1303 	struct efx_nic *efx = tx_queue->efx;
1304 	size_t outlen;
1305 	int rc;
1306 
1307 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1308 		       tx_queue->queue);
1309 
1310 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1311 			  outbuf, sizeof(outbuf), &outlen);
1312 
1313 	if (rc && rc != -EALREADY)
1314 		goto fail;
1315 
1316 	return;
1317 
1318 fail:
1319 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1320 			       outbuf, outlen, rc);
1321 }
1322 
1323 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1324 {
1325 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1326 }
1327 
1328 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1329 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1330 {
1331 	unsigned int write_ptr;
1332 	efx_dword_t reg;
1333 
1334 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1335 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1336 	efx_writed_page(tx_queue->efx, &reg,
1337 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1338 }
1339 
1340 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1341 {
1342 	unsigned int old_write_count = tx_queue->write_count;
1343 	struct efx_tx_buffer *buffer;
1344 	unsigned int write_ptr;
1345 	efx_qword_t *txd;
1346 
1347 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1348 
1349 	do {
1350 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1351 		buffer = &tx_queue->buffer[write_ptr];
1352 		txd = efx_tx_desc(tx_queue, write_ptr);
1353 		++tx_queue->write_count;
1354 
1355 		/* Create TX descriptor ring entry */
1356 		if (buffer->flags & EFX_TX_BUF_OPTION) {
1357 			*txd = buffer->option;
1358 		} else {
1359 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1360 			EFX_POPULATE_QWORD_3(
1361 				*txd,
1362 				ESF_DZ_TX_KER_CONT,
1363 				buffer->flags & EFX_TX_BUF_CONT,
1364 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1365 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1366 		}
1367 	} while (tx_queue->write_count != tx_queue->insert_count);
1368 
1369 	wmb(); /* Ensure descriptors are written before they are fetched */
1370 
1371 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1372 		txd = efx_tx_desc(tx_queue,
1373 				  old_write_count & tx_queue->ptr_mask);
1374 		efx_ef10_push_tx_desc(tx_queue, txd);
1375 		++tx_queue->pushes;
1376 	} else {
1377 		efx_ef10_notify_tx_desc(tx_queue);
1378 	}
1379 }
1380 
1381 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1382 {
1383 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1384 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1385 	size_t outlen;
1386 	int rc;
1387 
1388 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1389 		       EVB_PORT_ID_ASSIGNED);
1390 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1391 		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1392 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1393 		       EFX_MAX_CHANNELS);
1394 
1395 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1396 		outbuf, sizeof(outbuf), &outlen);
1397 	if (rc != 0)
1398 		return rc;
1399 
1400 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1401 		return -EIO;
1402 
1403 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1404 
1405 	return 0;
1406 }
1407 
1408 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1409 {
1410 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1411 	int rc;
1412 
1413 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1414 		       context);
1415 
1416 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1417 			    NULL, 0, NULL);
1418 	WARN_ON(rc != 0);
1419 }
1420 
1421 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1422 {
1423 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1424 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1425 	int i, rc;
1426 
1427 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1428 		       context);
1429 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1430 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1431 
1432 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1433 		MCDI_PTR(tablebuf,
1434 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1435 				(u8) efx->rx_indir_table[i];
1436 
1437 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1438 			  sizeof(tablebuf), NULL, 0, NULL);
1439 	if (rc != 0)
1440 		return rc;
1441 
1442 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1443 		       context);
1444 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1445 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1446 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1447 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1448 			efx->rx_hash_key[i];
1449 
1450 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1451 			    sizeof(keybuf), NULL, 0, NULL);
1452 }
1453 
1454 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1455 {
1456 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1457 
1458 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1459 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1460 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1461 }
1462 
1463 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1464 {
1465 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1466 	int rc;
1467 
1468 	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1469 
1470 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1471 		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1472 		if (rc != 0)
1473 			goto fail;
1474 	}
1475 
1476 	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1477 	if (rc != 0)
1478 		goto fail;
1479 
1480 	return;
1481 
1482 fail:
1483 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1484 }
1485 
1486 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1487 {
1488 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1489 				    (rx_queue->ptr_mask + 1) *
1490 				    sizeof(efx_qword_t),
1491 				    GFP_KERNEL);
1492 }
1493 
1494 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1495 {
1496 	MCDI_DECLARE_BUF(inbuf,
1497 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1498 						EFX_BUF_SIZE));
1499 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1500 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1501 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1502 	struct efx_nic *efx = rx_queue->efx;
1503 	size_t inlen, outlen;
1504 	dma_addr_t dma_addr;
1505 	int rc;
1506 	int i;
1507 
1508 	rx_queue->scatter_n = 0;
1509 	rx_queue->scatter_len = 0;
1510 
1511 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1512 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1513 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1514 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1515 		       efx_rx_queue_index(rx_queue));
1516 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1517 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1518 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1519 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1520 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1521 
1522 	dma_addr = rx_queue->rxd.buf.dma_addr;
1523 
1524 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1525 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1526 
1527 	for (i = 0; i < entries; ++i) {
1528 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1529 		dma_addr += EFX_BUF_SIZE;
1530 	}
1531 
1532 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1533 
1534 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1535 			  outbuf, sizeof(outbuf), &outlen);
1536 	if (rc)
1537 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1538 			    efx_rx_queue_index(rx_queue));
1539 }
1540 
1541 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1542 {
1543 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1544 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1545 	struct efx_nic *efx = rx_queue->efx;
1546 	size_t outlen;
1547 	int rc;
1548 
1549 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1550 		       efx_rx_queue_index(rx_queue));
1551 
1552 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1553 			  outbuf, sizeof(outbuf), &outlen);
1554 
1555 	if (rc && rc != -EALREADY)
1556 		goto fail;
1557 
1558 	return;
1559 
1560 fail:
1561 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1562 			       outbuf, outlen, rc);
1563 }
1564 
1565 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1566 {
1567 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1568 }
1569 
1570 /* This creates an entry in the RX descriptor queue */
1571 static inline void
1572 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1573 {
1574 	struct efx_rx_buffer *rx_buf;
1575 	efx_qword_t *rxd;
1576 
1577 	rxd = efx_rx_desc(rx_queue, index);
1578 	rx_buf = efx_rx_buffer(rx_queue, index);
1579 	EFX_POPULATE_QWORD_2(*rxd,
1580 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1581 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1582 }
1583 
1584 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1585 {
1586 	struct efx_nic *efx = rx_queue->efx;
1587 	unsigned int write_count;
1588 	efx_dword_t reg;
1589 
1590 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1591 	write_count = rx_queue->added_count & ~7;
1592 	if (rx_queue->notified_count == write_count)
1593 		return;
1594 
1595 	do
1596 		efx_ef10_build_rx_desc(
1597 			rx_queue,
1598 			rx_queue->notified_count & rx_queue->ptr_mask);
1599 	while (++rx_queue->notified_count != write_count);
1600 
1601 	wmb();
1602 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1603 			     write_count & rx_queue->ptr_mask);
1604 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1605 			efx_rx_queue_index(rx_queue));
1606 }
1607 
1608 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1609 
1610 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1611 {
1612 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1613 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1614 	efx_qword_t event;
1615 
1616 	EFX_POPULATE_QWORD_2(event,
1617 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1618 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1619 
1620 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1621 
1622 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1623 	 * already swapped the data to little-endian order.
1624 	 */
1625 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1626 	       sizeof(efx_qword_t));
1627 
1628 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1629 			   inbuf, sizeof(inbuf), 0,
1630 			   efx_ef10_rx_defer_refill_complete, 0);
1631 }
1632 
1633 static void
1634 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1635 				  int rc, efx_dword_t *outbuf,
1636 				  size_t outlen_actual)
1637 {
1638 	/* nothing to do */
1639 }
1640 
1641 static int efx_ef10_ev_probe(struct efx_channel *channel)
1642 {
1643 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1644 				    (channel->eventq_mask + 1) *
1645 				    sizeof(efx_qword_t),
1646 				    GFP_KERNEL);
1647 }
1648 
1649 static int efx_ef10_ev_init(struct efx_channel *channel)
1650 {
1651 	MCDI_DECLARE_BUF(inbuf,
1652 			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1653 						EFX_BUF_SIZE));
1654 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1655 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1656 	struct efx_nic *efx = channel->efx;
1657 	struct efx_ef10_nic_data *nic_data;
1658 	bool supports_rx_merge;
1659 	size_t inlen, outlen;
1660 	dma_addr_t dma_addr;
1661 	int rc;
1662 	int i;
1663 
1664 	nic_data = efx->nic_data;
1665 	supports_rx_merge =
1666 		!!(nic_data->datapath_caps &
1667 		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1668 
1669 	/* Fill event queue with all ones (i.e. empty events) */
1670 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1671 
1672 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1673 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1674 	/* INIT_EVQ expects index in vector table, not absolute */
1675 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1676 	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1677 			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1678 			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1679 			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1680 			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1681 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1682 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1683 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1684 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1685 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1686 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1687 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1688 
1689 	dma_addr = channel->eventq.buf.dma_addr;
1690 	for (i = 0; i < entries; ++i) {
1691 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1692 		dma_addr += EFX_BUF_SIZE;
1693 	}
1694 
1695 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1696 
1697 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1698 			  outbuf, sizeof(outbuf), &outlen);
1699 	/* IRQ return is ignored */
1700 	return rc;
1701 }
1702 
1703 static void efx_ef10_ev_fini(struct efx_channel *channel)
1704 {
1705 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1706 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1707 	struct efx_nic *efx = channel->efx;
1708 	size_t outlen;
1709 	int rc;
1710 
1711 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1712 
1713 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1714 			  outbuf, sizeof(outbuf), &outlen);
1715 
1716 	if (rc && rc != -EALREADY)
1717 		goto fail;
1718 
1719 	return;
1720 
1721 fail:
1722 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1723 			       outbuf, outlen, rc);
1724 }
1725 
1726 static void efx_ef10_ev_remove(struct efx_channel *channel)
1727 {
1728 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1729 }
1730 
1731 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1732 					   unsigned int rx_queue_label)
1733 {
1734 	struct efx_nic *efx = rx_queue->efx;
1735 
1736 	netif_info(efx, hw, efx->net_dev,
1737 		   "rx event arrived on queue %d labeled as queue %u\n",
1738 		   efx_rx_queue_index(rx_queue), rx_queue_label);
1739 
1740 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1741 }
1742 
1743 static void
1744 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1745 			     unsigned int actual, unsigned int expected)
1746 {
1747 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1748 	struct efx_nic *efx = rx_queue->efx;
1749 
1750 	netif_info(efx, hw, efx->net_dev,
1751 		   "dropped %d events (index=%d expected=%d)\n",
1752 		   dropped, actual, expected);
1753 
1754 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1755 }
1756 
1757 /* partially received RX was aborted. clean up. */
1758 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1759 {
1760 	unsigned int rx_desc_ptr;
1761 
1762 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1763 		  "scattered RX aborted (dropping %u buffers)\n",
1764 		  rx_queue->scatter_n);
1765 
1766 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1767 
1768 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1769 		      0, EFX_RX_PKT_DISCARD);
1770 
1771 	rx_queue->removed_count += rx_queue->scatter_n;
1772 	rx_queue->scatter_n = 0;
1773 	rx_queue->scatter_len = 0;
1774 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1775 }
1776 
1777 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1778 				    const efx_qword_t *event)
1779 {
1780 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1781 	unsigned int n_descs, n_packets, i;
1782 	struct efx_nic *efx = channel->efx;
1783 	struct efx_rx_queue *rx_queue;
1784 	bool rx_cont;
1785 	u16 flags = 0;
1786 
1787 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1788 		return 0;
1789 
1790 	/* Basic packet information */
1791 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1792 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1793 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1794 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1795 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1796 
1797 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1798 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1799 			    EFX_QWORD_FMT "\n",
1800 			    EFX_QWORD_VAL(*event));
1801 
1802 	rx_queue = efx_channel_get_rx_queue(channel);
1803 
1804 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1805 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1806 
1807 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1808 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1809 
1810 	if (n_descs != rx_queue->scatter_n + 1) {
1811 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1812 
1813 		/* detect rx abort */
1814 		if (unlikely(n_descs == rx_queue->scatter_n)) {
1815 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1816 				netdev_WARN(efx->net_dev,
1817 					    "invalid RX abort: scatter_n=%u event="
1818 					    EFX_QWORD_FMT "\n",
1819 					    rx_queue->scatter_n,
1820 					    EFX_QWORD_VAL(*event));
1821 			efx_ef10_handle_rx_abort(rx_queue);
1822 			return 0;
1823 		}
1824 
1825 		/* Check that RX completion merging is valid, i.e.
1826 		 * the current firmware supports it and this is a
1827 		 * non-scattered packet.
1828 		 */
1829 		if (!(nic_data->datapath_caps &
1830 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1831 		    rx_queue->scatter_n != 0 || rx_cont) {
1832 			efx_ef10_handle_rx_bad_lbits(
1833 				rx_queue, next_ptr_lbits,
1834 				(rx_queue->removed_count +
1835 				 rx_queue->scatter_n + 1) &
1836 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1837 			return 0;
1838 		}
1839 
1840 		/* Merged completion for multiple non-scattered packets */
1841 		rx_queue->scatter_n = 1;
1842 		rx_queue->scatter_len = 0;
1843 		n_packets = n_descs;
1844 		++channel->n_rx_merge_events;
1845 		channel->n_rx_merge_packets += n_packets;
1846 		flags |= EFX_RX_PKT_PREFIX_LEN;
1847 	} else {
1848 		++rx_queue->scatter_n;
1849 		rx_queue->scatter_len += rx_bytes;
1850 		if (rx_cont)
1851 			return 0;
1852 		n_packets = 1;
1853 	}
1854 
1855 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1856 		flags |= EFX_RX_PKT_DISCARD;
1857 
1858 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1859 		channel->n_rx_ip_hdr_chksum_err += n_packets;
1860 	} else if (unlikely(EFX_QWORD_FIELD(*event,
1861 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1862 		channel->n_rx_tcp_udp_chksum_err += n_packets;
1863 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1864 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1865 		flags |= EFX_RX_PKT_CSUMMED;
1866 	}
1867 
1868 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1869 		flags |= EFX_RX_PKT_TCP;
1870 
1871 	channel->irq_mod_score += 2 * n_packets;
1872 
1873 	/* Handle received packet(s) */
1874 	for (i = 0; i < n_packets; i++) {
1875 		efx_rx_packet(rx_queue,
1876 			      rx_queue->removed_count & rx_queue->ptr_mask,
1877 			      rx_queue->scatter_n, rx_queue->scatter_len,
1878 			      flags);
1879 		rx_queue->removed_count += rx_queue->scatter_n;
1880 	}
1881 
1882 	rx_queue->scatter_n = 0;
1883 	rx_queue->scatter_len = 0;
1884 
1885 	return n_packets;
1886 }
1887 
1888 static int
1889 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1890 {
1891 	struct efx_nic *efx = channel->efx;
1892 	struct efx_tx_queue *tx_queue;
1893 	unsigned int tx_ev_desc_ptr;
1894 	unsigned int tx_ev_q_label;
1895 	int tx_descs = 0;
1896 
1897 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1898 		return 0;
1899 
1900 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1901 		return 0;
1902 
1903 	/* Transmit completion */
1904 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1905 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1906 	tx_queue = efx_channel_get_tx_queue(channel,
1907 					    tx_ev_q_label % EFX_TXQ_TYPES);
1908 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1909 		    tx_queue->ptr_mask);
1910 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1911 
1912 	return tx_descs;
1913 }
1914 
1915 static void
1916 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1917 {
1918 	struct efx_nic *efx = channel->efx;
1919 	int subcode;
1920 
1921 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1922 
1923 	switch (subcode) {
1924 	case ESE_DZ_DRV_TIMER_EV:
1925 	case ESE_DZ_DRV_WAKE_UP_EV:
1926 		break;
1927 	case ESE_DZ_DRV_START_UP_EV:
1928 		/* event queue init complete. ok. */
1929 		break;
1930 	default:
1931 		netif_err(efx, hw, efx->net_dev,
1932 			  "channel %d unknown driver event type %d"
1933 			  " (data " EFX_QWORD_FMT ")\n",
1934 			  channel->channel, subcode,
1935 			  EFX_QWORD_VAL(*event));
1936 
1937 	}
1938 }
1939 
1940 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1941 						   efx_qword_t *event)
1942 {
1943 	struct efx_nic *efx = channel->efx;
1944 	u32 subcode;
1945 
1946 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1947 
1948 	switch (subcode) {
1949 	case EFX_EF10_TEST:
1950 		channel->event_test_cpu = raw_smp_processor_id();
1951 		break;
1952 	case EFX_EF10_REFILL:
1953 		/* The queue must be empty, so we won't receive any rx
1954 		 * events, so efx_process_channel() won't refill the
1955 		 * queue. Refill it here
1956 		 */
1957 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1958 		break;
1959 	default:
1960 		netif_err(efx, hw, efx->net_dev,
1961 			  "channel %d unknown driver event type %u"
1962 			  " (data " EFX_QWORD_FMT ")\n",
1963 			  channel->channel, (unsigned) subcode,
1964 			  EFX_QWORD_VAL(*event));
1965 	}
1966 }
1967 
1968 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1969 {
1970 	struct efx_nic *efx = channel->efx;
1971 	efx_qword_t event, *p_event;
1972 	unsigned int read_ptr;
1973 	int ev_code;
1974 	int tx_descs = 0;
1975 	int spent = 0;
1976 
1977 	if (quota <= 0)
1978 		return spent;
1979 
1980 	read_ptr = channel->eventq_read_ptr;
1981 
1982 	for (;;) {
1983 		p_event = efx_event(channel, read_ptr);
1984 		event = *p_event;
1985 
1986 		if (!efx_event_present(&event))
1987 			break;
1988 
1989 		EFX_SET_QWORD(*p_event);
1990 
1991 		++read_ptr;
1992 
1993 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1994 
1995 		netif_vdbg(efx, drv, efx->net_dev,
1996 			   "processing event on %d " EFX_QWORD_FMT "\n",
1997 			   channel->channel, EFX_QWORD_VAL(event));
1998 
1999 		switch (ev_code) {
2000 		case ESE_DZ_EV_CODE_MCDI_EV:
2001 			efx_mcdi_process_event(channel, &event);
2002 			break;
2003 		case ESE_DZ_EV_CODE_RX_EV:
2004 			spent += efx_ef10_handle_rx_event(channel, &event);
2005 			if (spent >= quota) {
2006 				/* XXX can we split a merged event to
2007 				 * avoid going over-quota?
2008 				 */
2009 				spent = quota;
2010 				goto out;
2011 			}
2012 			break;
2013 		case ESE_DZ_EV_CODE_TX_EV:
2014 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2015 			if (tx_descs > efx->txq_entries) {
2016 				spent = quota;
2017 				goto out;
2018 			} else if (++spent == quota) {
2019 				goto out;
2020 			}
2021 			break;
2022 		case ESE_DZ_EV_CODE_DRIVER_EV:
2023 			efx_ef10_handle_driver_event(channel, &event);
2024 			if (++spent == quota)
2025 				goto out;
2026 			break;
2027 		case EFX_EF10_DRVGEN_EV:
2028 			efx_ef10_handle_driver_generated_event(channel, &event);
2029 			break;
2030 		default:
2031 			netif_err(efx, hw, efx->net_dev,
2032 				  "channel %d unknown event type %d"
2033 				  " (data " EFX_QWORD_FMT ")\n",
2034 				  channel->channel, ev_code,
2035 				  EFX_QWORD_VAL(event));
2036 		}
2037 	}
2038 
2039 out:
2040 	channel->eventq_read_ptr = read_ptr;
2041 	return spent;
2042 }
2043 
2044 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2045 {
2046 	struct efx_nic *efx = channel->efx;
2047 	efx_dword_t rptr;
2048 
2049 	if (EFX_EF10_WORKAROUND_35388(efx)) {
2050 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2051 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2052 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2053 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2054 
2055 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2056 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2057 				     ERF_DD_EVQ_IND_RPTR,
2058 				     (channel->eventq_read_ptr &
2059 				      channel->eventq_mask) >>
2060 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2061 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2062 				channel->channel);
2063 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2064 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2065 				     ERF_DD_EVQ_IND_RPTR,
2066 				     channel->eventq_read_ptr &
2067 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2068 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2069 				channel->channel);
2070 	} else {
2071 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2072 				     channel->eventq_read_ptr &
2073 				     channel->eventq_mask);
2074 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2075 	}
2076 }
2077 
2078 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2079 {
2080 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2081 	struct efx_nic *efx = channel->efx;
2082 	efx_qword_t event;
2083 	int rc;
2084 
2085 	EFX_POPULATE_QWORD_2(event,
2086 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2087 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2088 
2089 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2090 
2091 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2092 	 * already swapped the data to little-endian order.
2093 	 */
2094 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2095 	       sizeof(efx_qword_t));
2096 
2097 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2098 			  NULL, 0, NULL);
2099 	if (rc != 0)
2100 		goto fail;
2101 
2102 	return;
2103 
2104 fail:
2105 	WARN_ON(true);
2106 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2107 }
2108 
2109 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2110 {
2111 	if (atomic_dec_and_test(&efx->active_queues))
2112 		wake_up(&efx->flush_wq);
2113 
2114 	WARN_ON(atomic_read(&efx->active_queues) < 0);
2115 }
2116 
2117 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2118 {
2119 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2120 	struct efx_channel *channel;
2121 	struct efx_tx_queue *tx_queue;
2122 	struct efx_rx_queue *rx_queue;
2123 	int pending;
2124 
2125 	/* If the MC has just rebooted, the TX/RX queues will have already been
2126 	 * torn down, but efx->active_queues needs to be set to zero.
2127 	 */
2128 	if (nic_data->must_realloc_vis) {
2129 		atomic_set(&efx->active_queues, 0);
2130 		return 0;
2131 	}
2132 
2133 	/* Do not attempt to write to the NIC during EEH recovery */
2134 	if (efx->state != STATE_RECOVERY) {
2135 		efx_for_each_channel(channel, efx) {
2136 			efx_for_each_channel_rx_queue(rx_queue, channel)
2137 				efx_ef10_rx_fini(rx_queue);
2138 			efx_for_each_channel_tx_queue(tx_queue, channel)
2139 				efx_ef10_tx_fini(tx_queue);
2140 		}
2141 
2142 		wait_event_timeout(efx->flush_wq,
2143 				   atomic_read(&efx->active_queues) == 0,
2144 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2145 		pending = atomic_read(&efx->active_queues);
2146 		if (pending) {
2147 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2148 				  pending);
2149 			return -ETIMEDOUT;
2150 		}
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2157 {
2158 	atomic_set(&efx->active_queues, 0);
2159 }
2160 
2161 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2162 				  const struct efx_filter_spec *right)
2163 {
2164 	if ((left->match_flags ^ right->match_flags) |
2165 	    ((left->flags ^ right->flags) &
2166 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2167 		return false;
2168 
2169 	return memcmp(&left->outer_vid, &right->outer_vid,
2170 		      sizeof(struct efx_filter_spec) -
2171 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2172 }
2173 
2174 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2175 {
2176 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2177 	return jhash2((const u32 *)&spec->outer_vid,
2178 		      (sizeof(struct efx_filter_spec) -
2179 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2180 		      0);
2181 	/* XXX should we randomise the initval? */
2182 }
2183 
2184 /* Decide whether a filter should be exclusive or else should allow
2185  * delivery to additional recipients.  Currently we decide that
2186  * filters for specific local unicast MAC and IP addresses are
2187  * exclusive.
2188  */
2189 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2190 {
2191 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2192 	    !is_multicast_ether_addr(spec->loc_mac))
2193 		return true;
2194 
2195 	if ((spec->match_flags &
2196 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2197 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2198 		if (spec->ether_type == htons(ETH_P_IP) &&
2199 		    !ipv4_is_multicast(spec->loc_host[0]))
2200 			return true;
2201 		if (spec->ether_type == htons(ETH_P_IPV6) &&
2202 		    ((const u8 *)spec->loc_host)[0] != 0xff)
2203 			return true;
2204 	}
2205 
2206 	return false;
2207 }
2208 
2209 static struct efx_filter_spec *
2210 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2211 			   unsigned int filter_idx)
2212 {
2213 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2214 					  ~EFX_EF10_FILTER_FLAGS);
2215 }
2216 
2217 static unsigned int
2218 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2219 			   unsigned int filter_idx)
2220 {
2221 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2222 }
2223 
2224 static void
2225 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2226 			  unsigned int filter_idx,
2227 			  const struct efx_filter_spec *spec,
2228 			  unsigned int flags)
2229 {
2230 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2231 }
2232 
2233 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2234 				      const struct efx_filter_spec *spec,
2235 				      efx_dword_t *inbuf, u64 handle,
2236 				      bool replacing)
2237 {
2238 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2239 
2240 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2241 
2242 	if (replacing) {
2243 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2244 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2245 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2246 	} else {
2247 		u32 match_fields = 0;
2248 
2249 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2250 			       efx_ef10_filter_is_exclusive(spec) ?
2251 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2252 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2253 
2254 		/* Convert match flags and values.  Unlike almost
2255 		 * everything else in MCDI, these fields are in
2256 		 * network byte order.
2257 		 */
2258 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2259 			match_fields |=
2260 				is_multicast_ether_addr(spec->loc_mac) ?
2261 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2262 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2263 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2264 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2265 			match_fields |=					     \
2266 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2267 				mcdi_field ## _LBN;			     \
2268 			BUILD_BUG_ON(					     \
2269 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2270 				sizeof(spec->gen_field));		     \
2271 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2272 			       &spec->gen_field, sizeof(spec->gen_field));   \
2273 		}
2274 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2275 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2276 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2277 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2278 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2279 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2280 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2281 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2282 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2283 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2284 #undef COPY_FIELD
2285 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2286 			       match_fields);
2287 	}
2288 
2289 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2290 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2291 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2292 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2293 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2294 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2295 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2296 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2297 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2298 		       0 : spec->dmaq_id);
2299 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2300 		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2301 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2302 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2303 	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2304 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2305 			       spec->rss_context !=
2306 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2307 			       spec->rss_context : nic_data->rx_rss_context);
2308 }
2309 
2310 static int efx_ef10_filter_push(struct efx_nic *efx,
2311 				const struct efx_filter_spec *spec,
2312 				u64 *handle, bool replacing)
2313 {
2314 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2315 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2316 	int rc;
2317 
2318 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2319 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2320 			  outbuf, sizeof(outbuf), NULL);
2321 	if (rc == 0)
2322 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2323 	if (rc == -ENOSPC)
2324 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2325 	return rc;
2326 }
2327 
2328 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2329 					enum efx_filter_match_flags match_flags)
2330 {
2331 	unsigned int match_pri;
2332 
2333 	for (match_pri = 0;
2334 	     match_pri < table->rx_match_count;
2335 	     match_pri++)
2336 		if (table->rx_match_flags[match_pri] == match_flags)
2337 			return match_pri;
2338 
2339 	return -EPROTONOSUPPORT;
2340 }
2341 
2342 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2343 				  struct efx_filter_spec *spec,
2344 				  bool replace_equal)
2345 {
2346 	struct efx_ef10_filter_table *table = efx->filter_state;
2347 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2348 	struct efx_filter_spec *saved_spec;
2349 	unsigned int match_pri, hash;
2350 	unsigned int priv_flags;
2351 	bool replacing = false;
2352 	int ins_index = -1;
2353 	DEFINE_WAIT(wait);
2354 	bool is_mc_recip;
2355 	s32 rc;
2356 
2357 	/* For now, only support RX filters */
2358 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2359 	    EFX_FILTER_FLAG_RX)
2360 		return -EINVAL;
2361 
2362 	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2363 	if (rc < 0)
2364 		return rc;
2365 	match_pri = rc;
2366 
2367 	hash = efx_ef10_filter_hash(spec);
2368 	is_mc_recip = efx_filter_is_mc_recipient(spec);
2369 	if (is_mc_recip)
2370 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2371 
2372 	/* Find any existing filters with the same match tuple or
2373 	 * else a free slot to insert at.  If any of them are busy,
2374 	 * we have to wait and retry.
2375 	 */
2376 	for (;;) {
2377 		unsigned int depth = 1;
2378 		unsigned int i;
2379 
2380 		spin_lock_bh(&efx->filter_lock);
2381 
2382 		for (;;) {
2383 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2384 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2385 
2386 			if (!saved_spec) {
2387 				if (ins_index < 0)
2388 					ins_index = i;
2389 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2390 				if (table->entry[i].spec &
2391 				    EFX_EF10_FILTER_FLAG_BUSY)
2392 					break;
2393 				if (spec->priority < saved_spec->priority &&
2394 				    spec->priority != EFX_FILTER_PRI_AUTO) {
2395 					rc = -EPERM;
2396 					goto out_unlock;
2397 				}
2398 				if (!is_mc_recip) {
2399 					/* This is the only one */
2400 					if (spec->priority ==
2401 					    saved_spec->priority &&
2402 					    !replace_equal) {
2403 						rc = -EEXIST;
2404 						goto out_unlock;
2405 					}
2406 					ins_index = i;
2407 					goto found;
2408 				} else if (spec->priority >
2409 					   saved_spec->priority ||
2410 					   (spec->priority ==
2411 					    saved_spec->priority &&
2412 					    replace_equal)) {
2413 					if (ins_index < 0)
2414 						ins_index = i;
2415 					else
2416 						__set_bit(depth, mc_rem_map);
2417 				}
2418 			}
2419 
2420 			/* Once we reach the maximum search depth, use
2421 			 * the first suitable slot or return -EBUSY if
2422 			 * there was none
2423 			 */
2424 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2425 				if (ins_index < 0) {
2426 					rc = -EBUSY;
2427 					goto out_unlock;
2428 				}
2429 				goto found;
2430 			}
2431 
2432 			++depth;
2433 		}
2434 
2435 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2436 		spin_unlock_bh(&efx->filter_lock);
2437 		schedule();
2438 	}
2439 
2440 found:
2441 	/* Create a software table entry if necessary, and mark it
2442 	 * busy.  We might yet fail to insert, but any attempt to
2443 	 * insert a conflicting filter while we're waiting for the
2444 	 * firmware must find the busy entry.
2445 	 */
2446 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2447 	if (saved_spec) {
2448 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2449 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2450 			/* Just make sure it won't be removed */
2451 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2452 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2453 			table->entry[ins_index].spec &=
2454 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2455 			rc = ins_index;
2456 			goto out_unlock;
2457 		}
2458 		replacing = true;
2459 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2460 	} else {
2461 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2462 		if (!saved_spec) {
2463 			rc = -ENOMEM;
2464 			goto out_unlock;
2465 		}
2466 		*saved_spec = *spec;
2467 		priv_flags = 0;
2468 	}
2469 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2470 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2471 
2472 	/* Mark lower-priority multicast recipients busy prior to removal */
2473 	if (is_mc_recip) {
2474 		unsigned int depth, i;
2475 
2476 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2477 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2478 			if (test_bit(depth, mc_rem_map))
2479 				table->entry[i].spec |=
2480 					EFX_EF10_FILTER_FLAG_BUSY;
2481 		}
2482 	}
2483 
2484 	spin_unlock_bh(&efx->filter_lock);
2485 
2486 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2487 				  replacing);
2488 
2489 	/* Finalise the software table entry */
2490 	spin_lock_bh(&efx->filter_lock);
2491 	if (rc == 0) {
2492 		if (replacing) {
2493 			/* Update the fields that may differ */
2494 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2495 				saved_spec->flags |=
2496 					EFX_FILTER_FLAG_RX_OVER_AUTO;
2497 			saved_spec->priority = spec->priority;
2498 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2499 			saved_spec->flags |= spec->flags;
2500 			saved_spec->rss_context = spec->rss_context;
2501 			saved_spec->dmaq_id = spec->dmaq_id;
2502 		}
2503 	} else if (!replacing) {
2504 		kfree(saved_spec);
2505 		saved_spec = NULL;
2506 	}
2507 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2508 
2509 	/* Remove and finalise entries for lower-priority multicast
2510 	 * recipients
2511 	 */
2512 	if (is_mc_recip) {
2513 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2514 		unsigned int depth, i;
2515 
2516 		memset(inbuf, 0, sizeof(inbuf));
2517 
2518 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2519 			if (!test_bit(depth, mc_rem_map))
2520 				continue;
2521 
2522 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2523 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2524 			priv_flags = efx_ef10_filter_entry_flags(table, i);
2525 
2526 			if (rc == 0) {
2527 				spin_unlock_bh(&efx->filter_lock);
2528 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2529 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2530 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2531 					       table->entry[i].handle);
2532 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2533 						  inbuf, sizeof(inbuf),
2534 						  NULL, 0, NULL);
2535 				spin_lock_bh(&efx->filter_lock);
2536 			}
2537 
2538 			if (rc == 0) {
2539 				kfree(saved_spec);
2540 				saved_spec = NULL;
2541 				priv_flags = 0;
2542 			} else {
2543 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2544 			}
2545 			efx_ef10_filter_set_entry(table, i, saved_spec,
2546 						  priv_flags);
2547 		}
2548 	}
2549 
2550 	/* If successful, return the inserted filter ID */
2551 	if (rc == 0)
2552 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2553 
2554 	wake_up_all(&table->waitq);
2555 out_unlock:
2556 	spin_unlock_bh(&efx->filter_lock);
2557 	finish_wait(&table->waitq, &wait);
2558 	return rc;
2559 }
2560 
2561 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2562 {
2563 	/* no need to do anything here on EF10 */
2564 }
2565 
2566 /* Remove a filter.
2567  * If !by_index, remove by ID
2568  * If by_index, remove by index
2569  * Filter ID may come from userland and must be range-checked.
2570  */
2571 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2572 					   unsigned int priority_mask,
2573 					   u32 filter_id, bool by_index)
2574 {
2575 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2576 	struct efx_ef10_filter_table *table = efx->filter_state;
2577 	MCDI_DECLARE_BUF(inbuf,
2578 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2579 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2580 	struct efx_filter_spec *spec;
2581 	DEFINE_WAIT(wait);
2582 	int rc;
2583 
2584 	/* Find the software table entry and mark it busy.  Don't
2585 	 * remove it yet; any attempt to update while we're waiting
2586 	 * for the firmware must find the busy entry.
2587 	 */
2588 	for (;;) {
2589 		spin_lock_bh(&efx->filter_lock);
2590 		if (!(table->entry[filter_idx].spec &
2591 		      EFX_EF10_FILTER_FLAG_BUSY))
2592 			break;
2593 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2594 		spin_unlock_bh(&efx->filter_lock);
2595 		schedule();
2596 	}
2597 
2598 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2599 	if (!spec ||
2600 	    (!by_index &&
2601 	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2602 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2603 		rc = -ENOENT;
2604 		goto out_unlock;
2605 	}
2606 
2607 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2608 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2609 		/* Just remove flags */
2610 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2611 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2612 		rc = 0;
2613 		goto out_unlock;
2614 	}
2615 
2616 	if (!(priority_mask & (1U << spec->priority))) {
2617 		rc = -ENOENT;
2618 		goto out_unlock;
2619 	}
2620 
2621 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2622 	spin_unlock_bh(&efx->filter_lock);
2623 
2624 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2625 		/* Reset to an automatic filter */
2626 
2627 		struct efx_filter_spec new_spec = *spec;
2628 
2629 		new_spec.priority = EFX_FILTER_PRI_AUTO;
2630 		new_spec.flags = (EFX_FILTER_FLAG_RX |
2631 				  EFX_FILTER_FLAG_RX_RSS);
2632 		new_spec.dmaq_id = 0;
2633 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2634 		rc = efx_ef10_filter_push(efx, &new_spec,
2635 					  &table->entry[filter_idx].handle,
2636 					  true);
2637 
2638 		spin_lock_bh(&efx->filter_lock);
2639 		if (rc == 0)
2640 			*spec = new_spec;
2641 	} else {
2642 		/* Really remove the filter */
2643 
2644 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2645 			       efx_ef10_filter_is_exclusive(spec) ?
2646 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2647 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2648 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2649 			       table->entry[filter_idx].handle);
2650 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2651 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2652 
2653 		spin_lock_bh(&efx->filter_lock);
2654 		if (rc == 0) {
2655 			kfree(spec);
2656 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2657 		}
2658 	}
2659 
2660 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2661 	wake_up_all(&table->waitq);
2662 out_unlock:
2663 	spin_unlock_bh(&efx->filter_lock);
2664 	finish_wait(&table->waitq, &wait);
2665 	return rc;
2666 }
2667 
2668 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2669 				       enum efx_filter_priority priority,
2670 				       u32 filter_id)
2671 {
2672 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2673 					       filter_id, false);
2674 }
2675 
2676 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2677 				    enum efx_filter_priority priority,
2678 				    u32 filter_id, struct efx_filter_spec *spec)
2679 {
2680 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2681 	struct efx_ef10_filter_table *table = efx->filter_state;
2682 	const struct efx_filter_spec *saved_spec;
2683 	int rc;
2684 
2685 	spin_lock_bh(&efx->filter_lock);
2686 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2687 	if (saved_spec && saved_spec->priority == priority &&
2688 	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2689 	    filter_id / HUNT_FILTER_TBL_ROWS) {
2690 		*spec = *saved_spec;
2691 		rc = 0;
2692 	} else {
2693 		rc = -ENOENT;
2694 	}
2695 	spin_unlock_bh(&efx->filter_lock);
2696 	return rc;
2697 }
2698 
2699 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2700 				     enum efx_filter_priority priority)
2701 {
2702 	unsigned int priority_mask;
2703 	unsigned int i;
2704 	int rc;
2705 
2706 	priority_mask = (((1U << (priority + 1)) - 1) &
2707 			 ~(1U << EFX_FILTER_PRI_AUTO));
2708 
2709 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2710 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2711 						     i, true);
2712 		if (rc && rc != -ENOENT)
2713 			return rc;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2720 					 enum efx_filter_priority priority)
2721 {
2722 	struct efx_ef10_filter_table *table = efx->filter_state;
2723 	unsigned int filter_idx;
2724 	s32 count = 0;
2725 
2726 	spin_lock_bh(&efx->filter_lock);
2727 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2728 		if (table->entry[filter_idx].spec &&
2729 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2730 		    priority)
2731 			++count;
2732 	}
2733 	spin_unlock_bh(&efx->filter_lock);
2734 	return count;
2735 }
2736 
2737 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2738 {
2739 	struct efx_ef10_filter_table *table = efx->filter_state;
2740 
2741 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2742 }
2743 
2744 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2745 				      enum efx_filter_priority priority,
2746 				      u32 *buf, u32 size)
2747 {
2748 	struct efx_ef10_filter_table *table = efx->filter_state;
2749 	struct efx_filter_spec *spec;
2750 	unsigned int filter_idx;
2751 	s32 count = 0;
2752 
2753 	spin_lock_bh(&efx->filter_lock);
2754 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2755 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2756 		if (spec && spec->priority == priority) {
2757 			if (count == size) {
2758 				count = -EMSGSIZE;
2759 				break;
2760 			}
2761 			buf[count++] = (efx_ef10_filter_rx_match_pri(
2762 						table, spec->match_flags) *
2763 					HUNT_FILTER_TBL_ROWS +
2764 					filter_idx);
2765 		}
2766 	}
2767 	spin_unlock_bh(&efx->filter_lock);
2768 	return count;
2769 }
2770 
2771 #ifdef CONFIG_RFS_ACCEL
2772 
2773 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2774 
2775 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2776 				      struct efx_filter_spec *spec)
2777 {
2778 	struct efx_ef10_filter_table *table = efx->filter_state;
2779 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2780 	struct efx_filter_spec *saved_spec;
2781 	unsigned int hash, i, depth = 1;
2782 	bool replacing = false;
2783 	int ins_index = -1;
2784 	u64 cookie;
2785 	s32 rc;
2786 
2787 	/* Must be an RX filter without RSS and not for a multicast
2788 	 * destination address (RFS only works for connected sockets).
2789 	 * These restrictions allow us to pass only a tiny amount of
2790 	 * data through to the completion function.
2791 	 */
2792 	EFX_WARN_ON_PARANOID(spec->flags !=
2793 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2794 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2795 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2796 
2797 	hash = efx_ef10_filter_hash(spec);
2798 
2799 	spin_lock_bh(&efx->filter_lock);
2800 
2801 	/* Find any existing filter with the same match tuple or else
2802 	 * a free slot to insert at.  If an existing filter is busy,
2803 	 * we have to give up.
2804 	 */
2805 	for (;;) {
2806 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2807 		saved_spec = efx_ef10_filter_entry_spec(table, i);
2808 
2809 		if (!saved_spec) {
2810 			if (ins_index < 0)
2811 				ins_index = i;
2812 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2813 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2814 				rc = -EBUSY;
2815 				goto fail_unlock;
2816 			}
2817 			if (spec->priority < saved_spec->priority) {
2818 				rc = -EPERM;
2819 				goto fail_unlock;
2820 			}
2821 			ins_index = i;
2822 			break;
2823 		}
2824 
2825 		/* Once we reach the maximum search depth, use the
2826 		 * first suitable slot or return -EBUSY if there was
2827 		 * none
2828 		 */
2829 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2830 			if (ins_index < 0) {
2831 				rc = -EBUSY;
2832 				goto fail_unlock;
2833 			}
2834 			break;
2835 		}
2836 
2837 		++depth;
2838 	}
2839 
2840 	/* Create a software table entry if necessary, and mark it
2841 	 * busy.  We might yet fail to insert, but any attempt to
2842 	 * insert a conflicting filter while we're waiting for the
2843 	 * firmware must find the busy entry.
2844 	 */
2845 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2846 	if (saved_spec) {
2847 		replacing = true;
2848 	} else {
2849 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2850 		if (!saved_spec) {
2851 			rc = -ENOMEM;
2852 			goto fail_unlock;
2853 		}
2854 		*saved_spec = *spec;
2855 	}
2856 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2857 				  EFX_EF10_FILTER_FLAG_BUSY);
2858 
2859 	spin_unlock_bh(&efx->filter_lock);
2860 
2861 	/* Pack up the variables needed on completion */
2862 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2863 
2864 	efx_ef10_filter_push_prep(efx, spec, inbuf,
2865 				  table->entry[ins_index].handle, replacing);
2866 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2867 			   MC_CMD_FILTER_OP_OUT_LEN,
2868 			   efx_ef10_filter_rfs_insert_complete, cookie);
2869 
2870 	return ins_index;
2871 
2872 fail_unlock:
2873 	spin_unlock_bh(&efx->filter_lock);
2874 	return rc;
2875 }
2876 
2877 static void
2878 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2879 				    int rc, efx_dword_t *outbuf,
2880 				    size_t outlen_actual)
2881 {
2882 	struct efx_ef10_filter_table *table = efx->filter_state;
2883 	unsigned int ins_index, dmaq_id;
2884 	struct efx_filter_spec *spec;
2885 	bool replacing;
2886 
2887 	/* Unpack the cookie */
2888 	replacing = cookie >> 31;
2889 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2890 	dmaq_id = cookie & 0xffff;
2891 
2892 	spin_lock_bh(&efx->filter_lock);
2893 	spec = efx_ef10_filter_entry_spec(table, ins_index);
2894 	if (rc == 0) {
2895 		table->entry[ins_index].handle =
2896 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2897 		if (replacing)
2898 			spec->dmaq_id = dmaq_id;
2899 	} else if (!replacing) {
2900 		kfree(spec);
2901 		spec = NULL;
2902 	}
2903 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2904 	spin_unlock_bh(&efx->filter_lock);
2905 
2906 	wake_up_all(&table->waitq);
2907 }
2908 
2909 static void
2910 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2911 				    unsigned long filter_idx,
2912 				    int rc, efx_dword_t *outbuf,
2913 				    size_t outlen_actual);
2914 
2915 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2916 					   unsigned int filter_idx)
2917 {
2918 	struct efx_ef10_filter_table *table = efx->filter_state;
2919 	struct efx_filter_spec *spec =
2920 		efx_ef10_filter_entry_spec(table, filter_idx);
2921 	MCDI_DECLARE_BUF(inbuf,
2922 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2923 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2924 
2925 	if (!spec ||
2926 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2927 	    spec->priority != EFX_FILTER_PRI_HINT ||
2928 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2929 				 flow_id, filter_idx))
2930 		return false;
2931 
2932 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2933 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2934 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2935 		       table->entry[filter_idx].handle);
2936 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2937 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2938 		return false;
2939 
2940 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2941 	return true;
2942 }
2943 
2944 static void
2945 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2946 				    unsigned long filter_idx,
2947 				    int rc, efx_dword_t *outbuf,
2948 				    size_t outlen_actual)
2949 {
2950 	struct efx_ef10_filter_table *table = efx->filter_state;
2951 	struct efx_filter_spec *spec =
2952 		efx_ef10_filter_entry_spec(table, filter_idx);
2953 
2954 	spin_lock_bh(&efx->filter_lock);
2955 	if (rc == 0) {
2956 		kfree(spec);
2957 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2958 	}
2959 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2960 	wake_up_all(&table->waitq);
2961 	spin_unlock_bh(&efx->filter_lock);
2962 }
2963 
2964 #endif /* CONFIG_RFS_ACCEL */
2965 
2966 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2967 {
2968 	int match_flags = 0;
2969 
2970 #define MAP_FLAG(gen_flag, mcdi_field) {				\
2971 		u32 old_mcdi_flags = mcdi_flags;			\
2972 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2973 				mcdi_field ## _LBN);			\
2974 		if (mcdi_flags != old_mcdi_flags)			\
2975 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2976 	}
2977 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2978 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2979 	MAP_FLAG(REM_HOST, SRC_IP);
2980 	MAP_FLAG(LOC_HOST, DST_IP);
2981 	MAP_FLAG(REM_MAC, SRC_MAC);
2982 	MAP_FLAG(REM_PORT, SRC_PORT);
2983 	MAP_FLAG(LOC_MAC, DST_MAC);
2984 	MAP_FLAG(LOC_PORT, DST_PORT);
2985 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2986 	MAP_FLAG(INNER_VID, INNER_VLAN);
2987 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2988 	MAP_FLAG(IP_PROTO, IP_PROTO);
2989 #undef MAP_FLAG
2990 
2991 	/* Did we map them all? */
2992 	if (mcdi_flags)
2993 		return -EINVAL;
2994 
2995 	return match_flags;
2996 }
2997 
2998 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2999 {
3000 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3001 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3002 	unsigned int pd_match_pri, pd_match_count;
3003 	struct efx_ef10_filter_table *table;
3004 	size_t outlen;
3005 	int rc;
3006 
3007 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3008 	if (!table)
3009 		return -ENOMEM;
3010 
3011 	/* Find out which RX filter types are supported, and their priorities */
3012 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3013 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3014 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3015 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3016 			  &outlen);
3017 	if (rc)
3018 		goto fail;
3019 	pd_match_count = MCDI_VAR_ARRAY_LEN(
3020 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3021 	table->rx_match_count = 0;
3022 
3023 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3024 		u32 mcdi_flags =
3025 			MCDI_ARRAY_DWORD(
3026 				outbuf,
3027 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3028 				pd_match_pri);
3029 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3030 		if (rc < 0) {
3031 			netif_dbg(efx, probe, efx->net_dev,
3032 				  "%s: fw flags %#x pri %u not supported in driver\n",
3033 				  __func__, mcdi_flags, pd_match_pri);
3034 		} else {
3035 			netif_dbg(efx, probe, efx->net_dev,
3036 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3037 				  __func__, mcdi_flags, pd_match_pri,
3038 				  rc, table->rx_match_count);
3039 			table->rx_match_flags[table->rx_match_count++] = rc;
3040 		}
3041 	}
3042 
3043 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3044 	if (!table->entry) {
3045 		rc = -ENOMEM;
3046 		goto fail;
3047 	}
3048 
3049 	efx->filter_state = table;
3050 	init_waitqueue_head(&table->waitq);
3051 	return 0;
3052 
3053 fail:
3054 	kfree(table);
3055 	return rc;
3056 }
3057 
3058 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3059 {
3060 	struct efx_ef10_filter_table *table = efx->filter_state;
3061 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3062 	struct efx_filter_spec *spec;
3063 	unsigned int filter_idx;
3064 	bool failed = false;
3065 	int rc;
3066 
3067 	if (!nic_data->must_restore_filters)
3068 		return;
3069 
3070 	spin_lock_bh(&efx->filter_lock);
3071 
3072 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3073 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3074 		if (!spec)
3075 			continue;
3076 
3077 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3078 		spin_unlock_bh(&efx->filter_lock);
3079 
3080 		rc = efx_ef10_filter_push(efx, spec,
3081 					  &table->entry[filter_idx].handle,
3082 					  false);
3083 		if (rc)
3084 			failed = true;
3085 
3086 		spin_lock_bh(&efx->filter_lock);
3087 		if (rc) {
3088 			kfree(spec);
3089 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3090 		} else {
3091 			table->entry[filter_idx].spec &=
3092 				~EFX_EF10_FILTER_FLAG_BUSY;
3093 		}
3094 	}
3095 
3096 	spin_unlock_bh(&efx->filter_lock);
3097 
3098 	if (failed)
3099 		netif_err(efx, hw, efx->net_dev,
3100 			  "unable to restore all filters\n");
3101 	else
3102 		nic_data->must_restore_filters = false;
3103 }
3104 
3105 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3106 {
3107 	struct efx_ef10_filter_table *table = efx->filter_state;
3108 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3109 	struct efx_filter_spec *spec;
3110 	unsigned int filter_idx;
3111 	int rc;
3112 
3113 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3114 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3115 		if (!spec)
3116 			continue;
3117 
3118 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3119 			       efx_ef10_filter_is_exclusive(spec) ?
3120 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3121 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3122 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3123 			       table->entry[filter_idx].handle);
3124 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3125 				  NULL, 0, NULL);
3126 		if (rc)
3127 			netdev_WARN(efx->net_dev,
3128 				    "filter_idx=%#x handle=%#llx\n",
3129 				    filter_idx,
3130 				    table->entry[filter_idx].handle);
3131 		kfree(spec);
3132 	}
3133 
3134 	vfree(table->entry);
3135 	kfree(table);
3136 }
3137 
3138 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3139 {
3140 	struct efx_ef10_filter_table *table = efx->filter_state;
3141 	struct net_device *net_dev = efx->net_dev;
3142 	struct efx_filter_spec spec;
3143 	bool remove_failed = false;
3144 	struct netdev_hw_addr *uc;
3145 	struct netdev_hw_addr *mc;
3146 	unsigned int filter_idx;
3147 	int i, n, rc;
3148 
3149 	if (!efx_dev_registered(efx))
3150 		return;
3151 
3152 	/* Mark old filters that may need to be removed */
3153 	spin_lock_bh(&efx->filter_lock);
3154 	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3155 	for (i = 0; i < n; i++) {
3156 		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3157 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3158 	}
3159 	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3160 	for (i = 0; i < n; i++) {
3161 		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3162 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3163 	}
3164 	spin_unlock_bh(&efx->filter_lock);
3165 
3166 	/* Copy/convert the address lists; add the primary station
3167 	 * address and broadcast address
3168 	 */
3169 	netif_addr_lock_bh(net_dev);
3170 	if (net_dev->flags & IFF_PROMISC ||
3171 	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3172 		table->dev_uc_count = -1;
3173 	} else {
3174 		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3175 		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3176 		i = 1;
3177 		netdev_for_each_uc_addr(uc, net_dev) {
3178 			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3179 			i++;
3180 		}
3181 	}
3182 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3183 	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3184 		table->dev_mc_count = -1;
3185 	} else {
3186 		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3187 		eth_broadcast_addr(table->dev_mc_list[0].addr);
3188 		i = 1;
3189 		netdev_for_each_mc_addr(mc, net_dev) {
3190 			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3191 			i++;
3192 		}
3193 	}
3194 	netif_addr_unlock_bh(net_dev);
3195 
3196 	/* Insert/renew unicast filters */
3197 	if (table->dev_uc_count >= 0) {
3198 		for (i = 0; i < table->dev_uc_count; i++) {
3199 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3200 					   EFX_FILTER_FLAG_RX_RSS,
3201 					   0);
3202 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3203 						 table->dev_uc_list[i].addr);
3204 			rc = efx_ef10_filter_insert(efx, &spec, true);
3205 			if (rc < 0) {
3206 				/* Fall back to unicast-promisc */
3207 				while (i--)
3208 					efx_ef10_filter_remove_safe(
3209 						efx, EFX_FILTER_PRI_AUTO,
3210 						table->dev_uc_list[i].id);
3211 				table->dev_uc_count = -1;
3212 				break;
3213 			}
3214 			table->dev_uc_list[i].id = rc;
3215 		}
3216 	}
3217 	if (table->dev_uc_count < 0) {
3218 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3219 				   EFX_FILTER_FLAG_RX_RSS,
3220 				   0);
3221 		efx_filter_set_uc_def(&spec);
3222 		rc = efx_ef10_filter_insert(efx, &spec, true);
3223 		if (rc < 0) {
3224 			WARN_ON(1);
3225 			table->dev_uc_count = 0;
3226 		} else {
3227 			table->dev_uc_list[0].id = rc;
3228 		}
3229 	}
3230 
3231 	/* Insert/renew multicast filters */
3232 	if (table->dev_mc_count >= 0) {
3233 		for (i = 0; i < table->dev_mc_count; i++) {
3234 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3235 					   EFX_FILTER_FLAG_RX_RSS,
3236 					   0);
3237 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3238 						 table->dev_mc_list[i].addr);
3239 			rc = efx_ef10_filter_insert(efx, &spec, true);
3240 			if (rc < 0) {
3241 				/* Fall back to multicast-promisc */
3242 				while (i--)
3243 					efx_ef10_filter_remove_safe(
3244 						efx, EFX_FILTER_PRI_AUTO,
3245 						table->dev_mc_list[i].id);
3246 				table->dev_mc_count = -1;
3247 				break;
3248 			}
3249 			table->dev_mc_list[i].id = rc;
3250 		}
3251 	}
3252 	if (table->dev_mc_count < 0) {
3253 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3254 				   EFX_FILTER_FLAG_RX_RSS,
3255 				   0);
3256 		efx_filter_set_mc_def(&spec);
3257 		rc = efx_ef10_filter_insert(efx, &spec, true);
3258 		if (rc < 0) {
3259 			WARN_ON(1);
3260 			table->dev_mc_count = 0;
3261 		} else {
3262 			table->dev_mc_list[0].id = rc;
3263 		}
3264 	}
3265 
3266 	/* Remove filters that weren't renewed.  Since nothing else
3267 	 * changes the AUTO_OLD flag or removes these filters, we
3268 	 * don't need to hold the filter_lock while scanning for
3269 	 * these filters.
3270 	 */
3271 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3272 		if (ACCESS_ONCE(table->entry[i].spec) &
3273 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3274 			if (efx_ef10_filter_remove_internal(
3275 				    efx, 1U << EFX_FILTER_PRI_AUTO,
3276 				    i, true) < 0)
3277 				remove_failed = true;
3278 		}
3279 	}
3280 	WARN_ON(remove_failed);
3281 }
3282 
3283 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3284 {
3285 	efx_ef10_filter_sync_rx_mode(efx);
3286 
3287 	return efx_mcdi_set_mac(efx);
3288 }
3289 
3290 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3291 {
3292 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3293 
3294 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3295 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3296 			    NULL, 0, NULL);
3297 }
3298 
3299 /* MC BISTs follow a different poll mechanism to phy BISTs.
3300  * The BIST is done in the poll handler on the MC, and the MCDI command
3301  * will block until the BIST is done.
3302  */
3303 static int efx_ef10_poll_bist(struct efx_nic *efx)
3304 {
3305 	int rc;
3306 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3307 	size_t outlen;
3308 	u32 result;
3309 
3310 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3311 			   outbuf, sizeof(outbuf), &outlen);
3312 	if (rc != 0)
3313 		return rc;
3314 
3315 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3316 		return -EIO;
3317 
3318 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3319 	switch (result) {
3320 	case MC_CMD_POLL_BIST_PASSED:
3321 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3322 		return 0;
3323 	case MC_CMD_POLL_BIST_TIMEOUT:
3324 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3325 		return -EIO;
3326 	case MC_CMD_POLL_BIST_FAILED:
3327 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3328 		return -EIO;
3329 	default:
3330 		netif_err(efx, hw, efx->net_dev,
3331 			  "BIST returned unknown result %u", result);
3332 		return -EIO;
3333 	}
3334 }
3335 
3336 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3337 {
3338 	int rc;
3339 
3340 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3341 
3342 	rc = efx_ef10_start_bist(efx, bist_type);
3343 	if (rc != 0)
3344 		return rc;
3345 
3346 	return efx_ef10_poll_bist(efx);
3347 }
3348 
3349 static int
3350 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3351 {
3352 	int rc, rc2;
3353 
3354 	efx_reset_down(efx, RESET_TYPE_WORLD);
3355 
3356 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3357 			  NULL, 0, NULL, 0, NULL);
3358 	if (rc != 0)
3359 		goto out;
3360 
3361 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3362 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3363 
3364 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3365 
3366 out:
3367 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3368 	return rc ? rc : rc2;
3369 }
3370 
3371 #ifdef CONFIG_SFC_MTD
3372 
3373 struct efx_ef10_nvram_type_info {
3374 	u16 type, type_mask;
3375 	u8 port;
3376 	const char *name;
3377 };
3378 
3379 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3380 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3381 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3382 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3383 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3384 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3385 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3386 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3387 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3388 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3389 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3390 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3391 };
3392 
3393 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3394 					struct efx_mcdi_mtd_partition *part,
3395 					unsigned int type)
3396 {
3397 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3398 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3399 	const struct efx_ef10_nvram_type_info *info;
3400 	size_t size, erase_size, outlen;
3401 	bool protected;
3402 	int rc;
3403 
3404 	for (info = efx_ef10_nvram_types; ; info++) {
3405 		if (info ==
3406 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3407 			return -ENODEV;
3408 		if ((type & ~info->type_mask) == info->type)
3409 			break;
3410 	}
3411 	if (info->port != efx_port_num(efx))
3412 		return -ENODEV;
3413 
3414 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3415 	if (rc)
3416 		return rc;
3417 	if (protected)
3418 		return -ENODEV; /* hide it */
3419 
3420 	part->nvram_type = type;
3421 
3422 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3423 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3424 			  outbuf, sizeof(outbuf), &outlen);
3425 	if (rc)
3426 		return rc;
3427 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3428 		return -EIO;
3429 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3430 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3431 		part->fw_subtype = MCDI_DWORD(outbuf,
3432 					      NVRAM_METADATA_OUT_SUBTYPE);
3433 
3434 	part->common.dev_type_name = "EF10 NVRAM manager";
3435 	part->common.type_name = info->name;
3436 
3437 	part->common.mtd.type = MTD_NORFLASH;
3438 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3439 	part->common.mtd.size = size;
3440 	part->common.mtd.erasesize = erase_size;
3441 
3442 	return 0;
3443 }
3444 
3445 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3446 {
3447 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3448 	struct efx_mcdi_mtd_partition *parts;
3449 	size_t outlen, n_parts_total, i, n_parts;
3450 	unsigned int type;
3451 	int rc;
3452 
3453 	ASSERT_RTNL();
3454 
3455 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3456 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3457 			  outbuf, sizeof(outbuf), &outlen);
3458 	if (rc)
3459 		return rc;
3460 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3461 		return -EIO;
3462 
3463 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3464 	if (n_parts_total >
3465 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3466 		return -EIO;
3467 
3468 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3469 	if (!parts)
3470 		return -ENOMEM;
3471 
3472 	n_parts = 0;
3473 	for (i = 0; i < n_parts_total; i++) {
3474 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3475 					i);
3476 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3477 		if (rc == 0)
3478 			n_parts++;
3479 		else if (rc != -ENODEV)
3480 			goto fail;
3481 	}
3482 
3483 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3484 fail:
3485 	if (rc)
3486 		kfree(parts);
3487 	return rc;
3488 }
3489 
3490 #endif /* CONFIG_SFC_MTD */
3491 
3492 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3493 {
3494 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3495 }
3496 
3497 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3498 					   bool temp)
3499 {
3500 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3501 	int rc;
3502 
3503 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3504 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3505 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3506 		return 0;
3507 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3508 
3509 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3510 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3511 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3512 		       channel->channel);
3513 
3514 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3515 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3516 
3517 	if (rc != 0)
3518 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3519 						    SYNC_EVENTS_DISABLED;
3520 
3521 	return rc;
3522 }
3523 
3524 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3525 					    bool temp)
3526 {
3527 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3528 	int rc;
3529 
3530 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3531 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3532 		return 0;
3533 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3534 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3535 		return 0;
3536 	}
3537 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3538 					    SYNC_EVENTS_DISABLED;
3539 
3540 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3541 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3542 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3543 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3544 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3545 		       channel->channel);
3546 
3547 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3548 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3549 
3550 	return rc;
3551 }
3552 
3553 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3554 					   bool temp)
3555 {
3556 	int (*set)(struct efx_channel *channel, bool temp);
3557 	struct efx_channel *channel;
3558 
3559 	set = en ?
3560 	      efx_ef10_rx_enable_timestamping :
3561 	      efx_ef10_rx_disable_timestamping;
3562 
3563 	efx_for_each_channel(channel, efx) {
3564 		int rc = set(channel, temp);
3565 		if (en && rc != 0) {
3566 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3567 			return rc;
3568 		}
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3575 				      struct hwtstamp_config *init)
3576 {
3577 	int rc;
3578 
3579 	switch (init->rx_filter) {
3580 	case HWTSTAMP_FILTER_NONE:
3581 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3582 		/* if TX timestamping is still requested then leave PTP on */
3583 		return efx_ptp_change_mode(efx,
3584 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3585 	case HWTSTAMP_FILTER_ALL:
3586 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3587 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3588 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3589 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3590 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3591 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3592 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3593 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3594 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3595 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3596 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3597 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3598 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3599 		rc = efx_ptp_change_mode(efx, true, 0);
3600 		if (!rc)
3601 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3602 		if (rc)
3603 			efx_ptp_change_mode(efx, false, 0);
3604 		return rc;
3605 	default:
3606 		return -ERANGE;
3607 	}
3608 }
3609 
3610 const struct efx_nic_type efx_hunt_a0_nic_type = {
3611 	.mem_map_size = efx_ef10_mem_map_size,
3612 	.probe = efx_ef10_probe,
3613 	.remove = efx_ef10_remove,
3614 	.dimension_resources = efx_ef10_dimension_resources,
3615 	.init = efx_ef10_init_nic,
3616 	.fini = efx_port_dummy_op_void,
3617 	.map_reset_reason = efx_mcdi_map_reset_reason,
3618 	.map_reset_flags = efx_ef10_map_reset_flags,
3619 	.reset = efx_ef10_reset,
3620 	.probe_port = efx_mcdi_port_probe,
3621 	.remove_port = efx_mcdi_port_remove,
3622 	.fini_dmaq = efx_ef10_fini_dmaq,
3623 	.prepare_flr = efx_ef10_prepare_flr,
3624 	.finish_flr = efx_port_dummy_op_void,
3625 	.describe_stats = efx_ef10_describe_stats,
3626 	.update_stats = efx_ef10_update_stats,
3627 	.start_stats = efx_mcdi_mac_start_stats,
3628 	.pull_stats = efx_mcdi_mac_pull_stats,
3629 	.stop_stats = efx_mcdi_mac_stop_stats,
3630 	.set_id_led = efx_mcdi_set_id_led,
3631 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3632 	.reconfigure_mac = efx_ef10_mac_reconfigure,
3633 	.check_mac_fault = efx_mcdi_mac_check_fault,
3634 	.reconfigure_port = efx_mcdi_port_reconfigure,
3635 	.get_wol = efx_ef10_get_wol,
3636 	.set_wol = efx_ef10_set_wol,
3637 	.resume_wol = efx_port_dummy_op_void,
3638 	.test_chip = efx_ef10_test_chip,
3639 	.test_nvram = efx_mcdi_nvram_test_all,
3640 	.mcdi_request = efx_ef10_mcdi_request,
3641 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3642 	.mcdi_read_response = efx_ef10_mcdi_read_response,
3643 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3644 	.irq_enable_master = efx_port_dummy_op_void,
3645 	.irq_test_generate = efx_ef10_irq_test_generate,
3646 	.irq_disable_non_ev = efx_port_dummy_op_void,
3647 	.irq_handle_msi = efx_ef10_msi_interrupt,
3648 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3649 	.tx_probe = efx_ef10_tx_probe,
3650 	.tx_init = efx_ef10_tx_init,
3651 	.tx_remove = efx_ef10_tx_remove,
3652 	.tx_write = efx_ef10_tx_write,
3653 	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3654 	.rx_probe = efx_ef10_rx_probe,
3655 	.rx_init = efx_ef10_rx_init,
3656 	.rx_remove = efx_ef10_rx_remove,
3657 	.rx_write = efx_ef10_rx_write,
3658 	.rx_defer_refill = efx_ef10_rx_defer_refill,
3659 	.ev_probe = efx_ef10_ev_probe,
3660 	.ev_init = efx_ef10_ev_init,
3661 	.ev_fini = efx_ef10_ev_fini,
3662 	.ev_remove = efx_ef10_ev_remove,
3663 	.ev_process = efx_ef10_ev_process,
3664 	.ev_read_ack = efx_ef10_ev_read_ack,
3665 	.ev_test_generate = efx_ef10_ev_test_generate,
3666 	.filter_table_probe = efx_ef10_filter_table_probe,
3667 	.filter_table_restore = efx_ef10_filter_table_restore,
3668 	.filter_table_remove = efx_ef10_filter_table_remove,
3669 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3670 	.filter_insert = efx_ef10_filter_insert,
3671 	.filter_remove_safe = efx_ef10_filter_remove_safe,
3672 	.filter_get_safe = efx_ef10_filter_get_safe,
3673 	.filter_clear_rx = efx_ef10_filter_clear_rx,
3674 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3675 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3676 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3677 #ifdef CONFIG_RFS_ACCEL
3678 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3679 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3680 #endif
3681 #ifdef CONFIG_SFC_MTD
3682 	.mtd_probe = efx_ef10_mtd_probe,
3683 	.mtd_rename = efx_mcdi_mtd_rename,
3684 	.mtd_read = efx_mcdi_mtd_read,
3685 	.mtd_erase = efx_mcdi_mtd_erase,
3686 	.mtd_write = efx_mcdi_mtd_write,
3687 	.mtd_sync = efx_mcdi_mtd_sync,
3688 #endif
3689 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3690 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3691 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3692 	.sriov_init = efx_ef10_sriov_init,
3693 	.sriov_fini = efx_ef10_sriov_fini,
3694 	.sriov_mac_address_changed = efx_ef10_sriov_mac_address_changed,
3695 	.sriov_wanted = efx_ef10_sriov_wanted,
3696 	.sriov_reset = efx_ef10_sriov_reset,
3697 
3698 	.revision = EFX_REV_HUNT_A0,
3699 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3700 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3701 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3702 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3703 	.can_rx_scatter = true,
3704 	.always_rx_scatter = true,
3705 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3706 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3707 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3708 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3709 	.mcdi_max_ver = 2,
3710 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3711 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3712 			    1 << HWTSTAMP_FILTER_ALL,
3713 };
3714