xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 
54 #define EFX_EF10_FILTER_DEV_UC_MAX	32
55 #define EFX_EF10_FILTER_DEV_MC_MAX	256
56 
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59 	struct list_head list;
60 	u16 vid;
61 };
62 
63 enum efx_ef10_default_filters {
64 	EFX_EF10_BCAST,
65 	EFX_EF10_UCDEF,
66 	EFX_EF10_MCDEF,
67 	EFX_EF10_VXLAN4_UCDEF,
68 	EFX_EF10_VXLAN4_MCDEF,
69 	EFX_EF10_VXLAN6_UCDEF,
70 	EFX_EF10_VXLAN6_MCDEF,
71 	EFX_EF10_NVGRE4_UCDEF,
72 	EFX_EF10_NVGRE4_MCDEF,
73 	EFX_EF10_NVGRE6_UCDEF,
74 	EFX_EF10_NVGRE6_MCDEF,
75 	EFX_EF10_GENEVE4_UCDEF,
76 	EFX_EF10_GENEVE4_MCDEF,
77 	EFX_EF10_GENEVE6_UCDEF,
78 	EFX_EF10_GENEVE6_MCDEF,
79 
80 	EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82 
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85 	struct list_head list;
86 	u16 vid;
87 	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88 	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89 	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91 
92 struct efx_ef10_dev_addr {
93 	u8 addr[ETH_ALEN];
94 };
95 
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98 	u32 rx_match_mcdi_flags[
99 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100 	unsigned int rx_match_count;
101 
102 	struct {
103 		unsigned long spec;	/* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
109 #define EFX_EF10_FILTER_FLAGS		3UL
110 		u64 handle;		/* firmware handle */
111 	} *entry;
112 	wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114 	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115 	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116 	int dev_uc_count;
117 	int dev_mc_count;
118 	bool uc_promisc;
119 	bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121 	bool mc_promisc_last;
122 	bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
123 	bool vlan_filter;
124 	struct list_head vlan_list;
125 };
126 
127 /* An arbitrary search limit for the software hash table */
128 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
129 
130 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
131 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
132 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
133 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
134 					      struct efx_ef10_filter_vlan *vlan);
135 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
136 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
137 
138 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
139 {
140 	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
141 	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
142 }
143 
144 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
145 {
146 	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
147 }
148 
149 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
150 {
151 	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
152 }
153 
154 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
155 {
156 	efx_dword_t reg;
157 
158 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
159 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
160 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
161 }
162 
163 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
164 {
165 	int bar;
166 
167 	bar = efx->type->mem_bar;
168 	return resource_size(&efx->pci_dev->resource[bar]);
169 }
170 
171 static bool efx_ef10_is_vf(struct efx_nic *efx)
172 {
173 	return efx->type->is_vf;
174 }
175 
176 static int efx_ef10_get_pf_index(struct efx_nic *efx)
177 {
178 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
179 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
180 	size_t outlen;
181 	int rc;
182 
183 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
184 			  sizeof(outbuf), &outlen);
185 	if (rc)
186 		return rc;
187 	if (outlen < sizeof(outbuf))
188 		return -EIO;
189 
190 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
191 	return 0;
192 }
193 
194 #ifdef CONFIG_SFC_SRIOV
195 static int efx_ef10_get_vf_index(struct efx_nic *efx)
196 {
197 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
198 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
199 	size_t outlen;
200 	int rc;
201 
202 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
203 			  sizeof(outbuf), &outlen);
204 	if (rc)
205 		return rc;
206 	if (outlen < sizeof(outbuf))
207 		return -EIO;
208 
209 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
210 	return 0;
211 }
212 #endif
213 
214 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
215 {
216 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
217 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 	size_t outlen;
219 	int rc;
220 
221 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
222 
223 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
224 			  outbuf, sizeof(outbuf), &outlen);
225 	if (rc)
226 		return rc;
227 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
228 		netif_err(efx, drv, efx->net_dev,
229 			  "unable to read datapath firmware capabilities\n");
230 		return -EIO;
231 	}
232 
233 	nic_data->datapath_caps =
234 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
235 
236 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
237 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
238 				GET_CAPABILITIES_V2_OUT_FLAGS2);
239 		nic_data->piobuf_size = MCDI_WORD(outbuf,
240 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
241 	} else {
242 		nic_data->datapath_caps2 = 0;
243 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
244 	}
245 
246 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
247 	 */
248 	nic_data->rx_dpcpu_fw_id =
249 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
250 	nic_data->tx_dpcpu_fw_id =
251 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
252 
253 	if (!(nic_data->datapath_caps &
254 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
255 		netif_err(efx, probe, efx->net_dev,
256 			  "current firmware does not support an RX prefix\n");
257 		return -ENODEV;
258 	}
259 
260 	return 0;
261 }
262 
263 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
264 {
265 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
266 	int rc;
267 
268 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
269 			  outbuf, sizeof(outbuf), NULL);
270 	if (rc)
271 		return rc;
272 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
273 	return rc > 0 ? rc : -ERANGE;
274 }
275 
276 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
277 {
278 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
279 	unsigned int implemented;
280 	unsigned int enabled;
281 	int rc;
282 
283 	nic_data->workaround_35388 = false;
284 	nic_data->workaround_61265 = false;
285 
286 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
287 
288 	if (rc == -ENOSYS) {
289 		/* Firmware without GET_WORKAROUNDS - not a problem. */
290 		rc = 0;
291 	} else if (rc == 0) {
292 		/* Bug61265 workaround is always enabled if implemented. */
293 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
294 			nic_data->workaround_61265 = true;
295 
296 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
297 			nic_data->workaround_35388 = true;
298 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
299 			/* Workaround is implemented but not enabled.
300 			 * Try to enable it.
301 			 */
302 			rc = efx_mcdi_set_workaround(efx,
303 						     MC_CMD_WORKAROUND_BUG35388,
304 						     true, NULL);
305 			if (rc == 0)
306 				nic_data->workaround_35388 = true;
307 			/* If we failed to set the workaround just carry on. */
308 			rc = 0;
309 		}
310 	}
311 
312 	netif_dbg(efx, probe, efx->net_dev,
313 		  "workaround for bug 35388 is %sabled\n",
314 		  nic_data->workaround_35388 ? "en" : "dis");
315 	netif_dbg(efx, probe, efx->net_dev,
316 		  "workaround for bug 61265 is %sabled\n",
317 		  nic_data->workaround_61265 ? "en" : "dis");
318 
319 	return rc;
320 }
321 
322 static void efx_ef10_process_timer_config(struct efx_nic *efx,
323 					  const efx_dword_t *data)
324 {
325 	unsigned int max_count;
326 
327 	if (EFX_EF10_WORKAROUND_61265(efx)) {
328 		efx->timer_quantum_ns = MCDI_DWORD(data,
329 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
330 		efx->timer_max_ns = MCDI_DWORD(data,
331 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
332 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
333 		efx->timer_quantum_ns = MCDI_DWORD(data,
334 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
335 		max_count = MCDI_DWORD(data,
336 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
337 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
338 	} else {
339 		efx->timer_quantum_ns = MCDI_DWORD(data,
340 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
341 		max_count = MCDI_DWORD(data,
342 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
343 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
344 	}
345 
346 	netif_dbg(efx, probe, efx->net_dev,
347 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
348 		  efx->timer_quantum_ns, efx->timer_max_ns);
349 }
350 
351 static int efx_ef10_get_timer_config(struct efx_nic *efx)
352 {
353 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
354 	int rc;
355 
356 	rc = efx_ef10_get_timer_workarounds(efx);
357 	if (rc)
358 		return rc;
359 
360 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
361 				outbuf, sizeof(outbuf), NULL);
362 
363 	if (rc == 0) {
364 		efx_ef10_process_timer_config(efx, outbuf);
365 	} else if (rc == -ENOSYS || rc == -EPERM) {
366 		/* Not available - fall back to Huntington defaults. */
367 		unsigned int quantum;
368 
369 		rc = efx_ef10_get_sysclk_freq(efx);
370 		if (rc < 0)
371 			return rc;
372 
373 		quantum = 1536000 / rc; /* 1536 cycles */
374 		efx->timer_quantum_ns = quantum;
375 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
376 		rc = 0;
377 	} else {
378 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
379 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
380 				       NULL, 0, rc);
381 	}
382 
383 	return rc;
384 }
385 
386 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
387 {
388 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
389 	size_t outlen;
390 	int rc;
391 
392 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
393 
394 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
395 			  outbuf, sizeof(outbuf), &outlen);
396 	if (rc)
397 		return rc;
398 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
399 		return -EIO;
400 
401 	ether_addr_copy(mac_address,
402 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
403 	return 0;
404 }
405 
406 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
407 {
408 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
409 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
410 	size_t outlen;
411 	int num_addrs, rc;
412 
413 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
414 		       EVB_PORT_ID_ASSIGNED);
415 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
416 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
417 
418 	if (rc)
419 		return rc;
420 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
421 		return -EIO;
422 
423 	num_addrs = MCDI_DWORD(outbuf,
424 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
425 
426 	WARN_ON(num_addrs != 1);
427 
428 	ether_addr_copy(mac_address,
429 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
430 
431 	return 0;
432 }
433 
434 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
435 					       struct device_attribute *attr,
436 					       char *buf)
437 {
438 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
439 
440 	return sprintf(buf, "%d\n",
441 		       ((efx->mcdi->fn_flags) &
442 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
443 		       ? 1 : 0);
444 }
445 
446 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
447 					  struct device_attribute *attr,
448 					  char *buf)
449 {
450 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
451 
452 	return sprintf(buf, "%d\n",
453 		       ((efx->mcdi->fn_flags) &
454 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
455 		       ? 1 : 0);
456 }
457 
458 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
459 {
460 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
461 	struct efx_ef10_vlan *vlan;
462 
463 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
464 
465 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
466 		if (vlan->vid == vid)
467 			return vlan;
468 	}
469 
470 	return NULL;
471 }
472 
473 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
474 {
475 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
476 	struct efx_ef10_vlan *vlan;
477 	int rc;
478 
479 	mutex_lock(&nic_data->vlan_lock);
480 
481 	vlan = efx_ef10_find_vlan(efx, vid);
482 	if (vlan) {
483 		/* We add VID 0 on init. 8021q adds it on module init
484 		 * for all interfaces with VLAN filtring feature.
485 		 */
486 		if (vid == 0)
487 			goto done_unlock;
488 		netif_warn(efx, drv, efx->net_dev,
489 			   "VLAN %u already added\n", vid);
490 		rc = -EALREADY;
491 		goto fail_exist;
492 	}
493 
494 	rc = -ENOMEM;
495 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
496 	if (!vlan)
497 		goto fail_alloc;
498 
499 	vlan->vid = vid;
500 
501 	list_add_tail(&vlan->list, &nic_data->vlan_list);
502 
503 	if (efx->filter_state) {
504 		mutex_lock(&efx->mac_lock);
505 		down_write(&efx->filter_sem);
506 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
507 		up_write(&efx->filter_sem);
508 		mutex_unlock(&efx->mac_lock);
509 		if (rc)
510 			goto fail_filter_add_vlan;
511 	}
512 
513 done_unlock:
514 	mutex_unlock(&nic_data->vlan_lock);
515 	return 0;
516 
517 fail_filter_add_vlan:
518 	list_del(&vlan->list);
519 	kfree(vlan);
520 fail_alloc:
521 fail_exist:
522 	mutex_unlock(&nic_data->vlan_lock);
523 	return rc;
524 }
525 
526 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
527 				       struct efx_ef10_vlan *vlan)
528 {
529 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
530 
531 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
532 
533 	if (efx->filter_state) {
534 		down_write(&efx->filter_sem);
535 		efx_ef10_filter_del_vlan(efx, vlan->vid);
536 		up_write(&efx->filter_sem);
537 	}
538 
539 	list_del(&vlan->list);
540 	kfree(vlan);
541 }
542 
543 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
544 {
545 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
546 	struct efx_ef10_vlan *vlan;
547 	int rc = 0;
548 
549 	/* 8021q removes VID 0 on module unload for all interfaces
550 	 * with VLAN filtering feature. We need to keep it to receive
551 	 * untagged traffic.
552 	 */
553 	if (vid == 0)
554 		return 0;
555 
556 	mutex_lock(&nic_data->vlan_lock);
557 
558 	vlan = efx_ef10_find_vlan(efx, vid);
559 	if (!vlan) {
560 		netif_err(efx, drv, efx->net_dev,
561 			  "VLAN %u to be deleted not found\n", vid);
562 		rc = -ENOENT;
563 	} else {
564 		efx_ef10_del_vlan_internal(efx, vlan);
565 	}
566 
567 	mutex_unlock(&nic_data->vlan_lock);
568 
569 	return rc;
570 }
571 
572 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
573 {
574 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
575 	struct efx_ef10_vlan *vlan, *next_vlan;
576 
577 	mutex_lock(&nic_data->vlan_lock);
578 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
579 		efx_ef10_del_vlan_internal(efx, vlan);
580 	mutex_unlock(&nic_data->vlan_lock);
581 }
582 
583 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
584 		   NULL);
585 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
586 
587 static int efx_ef10_probe(struct efx_nic *efx)
588 {
589 	struct efx_ef10_nic_data *nic_data;
590 	int i, rc;
591 
592 	/* We can have one VI for each 8K region.  However, until we
593 	 * use TX option descriptors we need two TX queues per channel.
594 	 */
595 	efx->max_channels = min_t(unsigned int,
596 				  EFX_MAX_CHANNELS,
597 				  efx_ef10_mem_map_size(efx) /
598 				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
599 	efx->max_tx_channels = efx->max_channels;
600 	if (WARN_ON(efx->max_channels == 0))
601 		return -EIO;
602 
603 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
604 	if (!nic_data)
605 		return -ENOMEM;
606 	efx->nic_data = nic_data;
607 
608 	/* we assume later that we can copy from this buffer in dwords */
609 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
610 
611 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
612 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
613 	if (rc)
614 		goto fail1;
615 
616 	/* Get the MC's warm boot count.  In case it's rebooting right
617 	 * now, be prepared to retry.
618 	 */
619 	i = 0;
620 	for (;;) {
621 		rc = efx_ef10_get_warm_boot_count(efx);
622 		if (rc >= 0)
623 			break;
624 		if (++i == 5)
625 			goto fail2;
626 		ssleep(1);
627 	}
628 	nic_data->warm_boot_count = rc;
629 
630 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
631 
632 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
633 
634 	/* In case we're recovering from a crash (kexec), we want to
635 	 * cancel any outstanding request by the previous user of this
636 	 * function.  We send a special message using the least
637 	 * significant bits of the 'high' (doorbell) register.
638 	 */
639 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
640 
641 	rc = efx_mcdi_init(efx);
642 	if (rc)
643 		goto fail2;
644 
645 	mutex_init(&nic_data->udp_tunnels_lock);
646 
647 	/* Reset (most) configuration for this function */
648 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
649 	if (rc)
650 		goto fail3;
651 
652 	/* Enable event logging */
653 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
654 	if (rc)
655 		goto fail3;
656 
657 	rc = device_create_file(&efx->pci_dev->dev,
658 				&dev_attr_link_control_flag);
659 	if (rc)
660 		goto fail3;
661 
662 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
663 	if (rc)
664 		goto fail4;
665 
666 	rc = efx_ef10_get_pf_index(efx);
667 	if (rc)
668 		goto fail5;
669 
670 	rc = efx_ef10_init_datapath_caps(efx);
671 	if (rc < 0)
672 		goto fail5;
673 
674 	efx->rx_packet_len_offset =
675 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
676 
677 	if (nic_data->datapath_caps &
678 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
679 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
680 
681 	rc = efx_mcdi_port_get_number(efx);
682 	if (rc < 0)
683 		goto fail5;
684 	efx->port_num = rc;
685 
686 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
687 	if (rc)
688 		goto fail5;
689 
690 	rc = efx_ef10_get_timer_config(efx);
691 	if (rc < 0)
692 		goto fail5;
693 
694 	rc = efx_mcdi_mon_probe(efx);
695 	if (rc && rc != -EPERM)
696 		goto fail5;
697 
698 	efx_ptp_probe(efx, NULL);
699 
700 #ifdef CONFIG_SFC_SRIOV
701 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
702 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
703 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
704 
705 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
706 	} else
707 #endif
708 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
709 
710 	INIT_LIST_HEAD(&nic_data->vlan_list);
711 	mutex_init(&nic_data->vlan_lock);
712 
713 	/* Add unspecified VID to support VLAN filtering being disabled */
714 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
715 	if (rc)
716 		goto fail_add_vid_unspec;
717 
718 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
719 	 * traffic.  It is added automatically if 8021q module is loaded,
720 	 * but we can't rely on it since module may be not loaded.
721 	 */
722 	rc = efx_ef10_add_vlan(efx, 0);
723 	if (rc)
724 		goto fail_add_vid_0;
725 
726 	return 0;
727 
728 fail_add_vid_0:
729 	efx_ef10_cleanup_vlans(efx);
730 fail_add_vid_unspec:
731 	mutex_destroy(&nic_data->vlan_lock);
732 	efx_ptp_remove(efx);
733 	efx_mcdi_mon_remove(efx);
734 fail5:
735 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
736 fail4:
737 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
738 fail3:
739 	efx_mcdi_detach(efx);
740 
741 	mutex_lock(&nic_data->udp_tunnels_lock);
742 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
743 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
744 	mutex_unlock(&nic_data->udp_tunnels_lock);
745 	mutex_destroy(&nic_data->udp_tunnels_lock);
746 
747 	efx_mcdi_fini(efx);
748 fail2:
749 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
750 fail1:
751 	kfree(nic_data);
752 	efx->nic_data = NULL;
753 	return rc;
754 }
755 
756 static int efx_ef10_free_vis(struct efx_nic *efx)
757 {
758 	MCDI_DECLARE_BUF_ERR(outbuf);
759 	size_t outlen;
760 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
761 				    outbuf, sizeof(outbuf), &outlen);
762 
763 	/* -EALREADY means nothing to free, so ignore */
764 	if (rc == -EALREADY)
765 		rc = 0;
766 	if (rc)
767 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
768 				       rc);
769 	return rc;
770 }
771 
772 #ifdef EFX_USE_PIO
773 
774 static void efx_ef10_free_piobufs(struct efx_nic *efx)
775 {
776 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
777 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
778 	unsigned int i;
779 	int rc;
780 
781 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
782 
783 	for (i = 0; i < nic_data->n_piobufs; i++) {
784 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
785 			       nic_data->piobuf_handle[i]);
786 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
787 				  NULL, 0, NULL);
788 		WARN_ON(rc);
789 	}
790 
791 	nic_data->n_piobufs = 0;
792 }
793 
794 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
795 {
796 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
797 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
798 	unsigned int i;
799 	size_t outlen;
800 	int rc = 0;
801 
802 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
803 
804 	for (i = 0; i < n; i++) {
805 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
806 					outbuf, sizeof(outbuf), &outlen);
807 		if (rc) {
808 			/* Don't display the MC error if we didn't have space
809 			 * for a VF.
810 			 */
811 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
812 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
813 						       0, outbuf, outlen, rc);
814 			break;
815 		}
816 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
817 			rc = -EIO;
818 			break;
819 		}
820 		nic_data->piobuf_handle[i] =
821 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
822 		netif_dbg(efx, probe, efx->net_dev,
823 			  "allocated PIO buffer %u handle %x\n", i,
824 			  nic_data->piobuf_handle[i]);
825 	}
826 
827 	nic_data->n_piobufs = i;
828 	if (rc)
829 		efx_ef10_free_piobufs(efx);
830 	return rc;
831 }
832 
833 static int efx_ef10_link_piobufs(struct efx_nic *efx)
834 {
835 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
836 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
837 	struct efx_channel *channel;
838 	struct efx_tx_queue *tx_queue;
839 	unsigned int offset, index;
840 	int rc;
841 
842 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
843 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
844 
845 	/* Link a buffer to each VI in the write-combining mapping */
846 	for (index = 0; index < nic_data->n_piobufs; ++index) {
847 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
848 			       nic_data->piobuf_handle[index]);
849 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
850 			       nic_data->pio_write_vi_base + index);
851 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
852 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
853 				  NULL, 0, NULL);
854 		if (rc) {
855 			netif_err(efx, drv, efx->net_dev,
856 				  "failed to link VI %u to PIO buffer %u (%d)\n",
857 				  nic_data->pio_write_vi_base + index, index,
858 				  rc);
859 			goto fail;
860 		}
861 		netif_dbg(efx, probe, efx->net_dev,
862 			  "linked VI %u to PIO buffer %u\n",
863 			  nic_data->pio_write_vi_base + index, index);
864 	}
865 
866 	/* Link a buffer to each TX queue */
867 	efx_for_each_channel(channel, efx) {
868 		efx_for_each_channel_tx_queue(tx_queue, channel) {
869 			/* We assign the PIO buffers to queues in
870 			 * reverse order to allow for the following
871 			 * special case.
872 			 */
873 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
874 				   tx_queue->channel->channel - 1) *
875 				  efx_piobuf_size);
876 			index = offset / nic_data->piobuf_size;
877 			offset = offset % nic_data->piobuf_size;
878 
879 			/* When the host page size is 4K, the first
880 			 * host page in the WC mapping may be within
881 			 * the same VI page as the last TX queue.  We
882 			 * can only link one buffer to each VI.
883 			 */
884 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
885 				BUG_ON(index != 0);
886 				rc = 0;
887 			} else {
888 				MCDI_SET_DWORD(inbuf,
889 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
890 					       nic_data->piobuf_handle[index]);
891 				MCDI_SET_DWORD(inbuf,
892 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
893 					       tx_queue->queue);
894 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
895 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
896 						  NULL, 0, NULL);
897 			}
898 
899 			if (rc) {
900 				/* This is non-fatal; the TX path just
901 				 * won't use PIO for this queue
902 				 */
903 				netif_err(efx, drv, efx->net_dev,
904 					  "failed to link VI %u to PIO buffer %u (%d)\n",
905 					  tx_queue->queue, index, rc);
906 				tx_queue->piobuf = NULL;
907 			} else {
908 				tx_queue->piobuf =
909 					nic_data->pio_write_base +
910 					index * EFX_VI_PAGE_SIZE + offset;
911 				tx_queue->piobuf_offset = offset;
912 				netif_dbg(efx, probe, efx->net_dev,
913 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
914 					  tx_queue->queue, index,
915 					  tx_queue->piobuf_offset,
916 					  tx_queue->piobuf);
917 			}
918 		}
919 	}
920 
921 	return 0;
922 
923 fail:
924 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
925 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
926 	 */
927 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
928 	while (index--) {
929 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
930 			       nic_data->pio_write_vi_base + index);
931 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
932 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
933 			     NULL, 0, NULL);
934 	}
935 	return rc;
936 }
937 
938 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
939 {
940 	struct efx_channel *channel;
941 	struct efx_tx_queue *tx_queue;
942 
943 	/* All our existing PIO buffers went away */
944 	efx_for_each_channel(channel, efx)
945 		efx_for_each_channel_tx_queue(tx_queue, channel)
946 			tx_queue->piobuf = NULL;
947 }
948 
949 #else /* !EFX_USE_PIO */
950 
951 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
952 {
953 	return n == 0 ? 0 : -ENOBUFS;
954 }
955 
956 static int efx_ef10_link_piobufs(struct efx_nic *efx)
957 {
958 	return 0;
959 }
960 
961 static void efx_ef10_free_piobufs(struct efx_nic *efx)
962 {
963 }
964 
965 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
966 {
967 }
968 
969 #endif /* EFX_USE_PIO */
970 
971 static void efx_ef10_remove(struct efx_nic *efx)
972 {
973 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
974 	int rc;
975 
976 #ifdef CONFIG_SFC_SRIOV
977 	struct efx_ef10_nic_data *nic_data_pf;
978 	struct pci_dev *pci_dev_pf;
979 	struct efx_nic *efx_pf;
980 	struct ef10_vf *vf;
981 
982 	if (efx->pci_dev->is_virtfn) {
983 		pci_dev_pf = efx->pci_dev->physfn;
984 		if (pci_dev_pf) {
985 			efx_pf = pci_get_drvdata(pci_dev_pf);
986 			nic_data_pf = efx_pf->nic_data;
987 			vf = nic_data_pf->vf + nic_data->vf_index;
988 			vf->efx = NULL;
989 		} else
990 			netif_info(efx, drv, efx->net_dev,
991 				   "Could not get the PF id from VF\n");
992 	}
993 #endif
994 
995 	efx_ef10_cleanup_vlans(efx);
996 	mutex_destroy(&nic_data->vlan_lock);
997 
998 	efx_ptp_remove(efx);
999 
1000 	efx_mcdi_mon_remove(efx);
1001 
1002 	efx_ef10_rx_free_indir_table(efx);
1003 
1004 	if (nic_data->wc_membase)
1005 		iounmap(nic_data->wc_membase);
1006 
1007 	rc = efx_ef10_free_vis(efx);
1008 	WARN_ON(rc != 0);
1009 
1010 	if (!nic_data->must_restore_piobufs)
1011 		efx_ef10_free_piobufs(efx);
1012 
1013 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1014 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1015 
1016 	efx_mcdi_detach(efx);
1017 
1018 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1019 	mutex_lock(&nic_data->udp_tunnels_lock);
1020 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
1021 	mutex_unlock(&nic_data->udp_tunnels_lock);
1022 
1023 	mutex_destroy(&nic_data->udp_tunnels_lock);
1024 
1025 	efx_mcdi_fini(efx);
1026 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1027 	kfree(nic_data);
1028 }
1029 
1030 static int efx_ef10_probe_pf(struct efx_nic *efx)
1031 {
1032 	return efx_ef10_probe(efx);
1033 }
1034 
1035 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1036 			    u32 *port_flags, u32 *vadaptor_flags,
1037 			    unsigned int *vlan_tags)
1038 {
1039 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1040 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1041 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1042 	size_t outlen;
1043 	int rc;
1044 
1045 	if (nic_data->datapath_caps &
1046 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1047 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1048 			       port_id);
1049 
1050 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1051 				  outbuf, sizeof(outbuf), &outlen);
1052 		if (rc)
1053 			return rc;
1054 
1055 		if (outlen < sizeof(outbuf)) {
1056 			rc = -EIO;
1057 			return rc;
1058 		}
1059 	}
1060 
1061 	if (port_flags)
1062 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1063 	if (vadaptor_flags)
1064 		*vadaptor_flags =
1065 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1066 	if (vlan_tags)
1067 		*vlan_tags =
1068 			MCDI_DWORD(outbuf,
1069 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1070 
1071 	return 0;
1072 }
1073 
1074 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1075 {
1076 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1077 
1078 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1079 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1080 			    NULL, 0, NULL);
1081 }
1082 
1083 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1084 {
1085 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1086 
1087 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1088 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1089 			    NULL, 0, NULL);
1090 }
1091 
1092 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1093 			   unsigned int port_id, u8 *mac)
1094 {
1095 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1096 
1097 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1098 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1099 
1100 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1101 			    sizeof(inbuf), NULL, 0, NULL);
1102 }
1103 
1104 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1105 			   unsigned int port_id, u8 *mac)
1106 {
1107 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1108 
1109 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1110 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1111 
1112 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1113 			    sizeof(inbuf), NULL, 0, NULL);
1114 }
1115 
1116 #ifdef CONFIG_SFC_SRIOV
1117 static int efx_ef10_probe_vf(struct efx_nic *efx)
1118 {
1119 	int rc;
1120 	struct pci_dev *pci_dev_pf;
1121 
1122 	/* If the parent PF has no VF data structure, it doesn't know about this
1123 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1124 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1125 	 */
1126 	pci_dev_pf = efx->pci_dev->physfn;
1127 	if (pci_dev_pf) {
1128 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1129 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1130 
1131 		if (!nic_data_pf->vf) {
1132 			netif_info(efx, drv, efx->net_dev,
1133 				   "The VF cannot link to its parent PF; "
1134 				   "please destroy and re-create the VF\n");
1135 			return -EBUSY;
1136 		}
1137 	}
1138 
1139 	rc = efx_ef10_probe(efx);
1140 	if (rc)
1141 		return rc;
1142 
1143 	rc = efx_ef10_get_vf_index(efx);
1144 	if (rc)
1145 		goto fail;
1146 
1147 	if (efx->pci_dev->is_virtfn) {
1148 		if (efx->pci_dev->physfn) {
1149 			struct efx_nic *efx_pf =
1150 				pci_get_drvdata(efx->pci_dev->physfn);
1151 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1152 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1153 
1154 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1155 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1156 				efx->pci_dev;
1157 		} else
1158 			netif_info(efx, drv, efx->net_dev,
1159 				   "Could not get the PF id from VF\n");
1160 	}
1161 
1162 	return 0;
1163 
1164 fail:
1165 	efx_ef10_remove(efx);
1166 	return rc;
1167 }
1168 #else
1169 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1170 {
1171 	return 0;
1172 }
1173 #endif
1174 
1175 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1176 			      unsigned int min_vis, unsigned int max_vis)
1177 {
1178 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1179 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1180 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1181 	size_t outlen;
1182 	int rc;
1183 
1184 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1185 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1186 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1187 			  outbuf, sizeof(outbuf), &outlen);
1188 	if (rc != 0)
1189 		return rc;
1190 
1191 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1192 		return -EIO;
1193 
1194 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1195 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1196 
1197 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1198 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1199 	return 0;
1200 }
1201 
1202 /* Note that the failure path of this function does not free
1203  * resources, as this will be done by efx_ef10_remove().
1204  */
1205 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1206 {
1207 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1208 	unsigned int uc_mem_map_size, wc_mem_map_size;
1209 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1210 				   efx_separate_tx_channels ? 2 : 1);
1211 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1212 	void __iomem *membase;
1213 	int rc;
1214 
1215 	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1216 
1217 #ifdef EFX_USE_PIO
1218 	/* Try to allocate PIO buffers if wanted and if the full
1219 	 * number of PIO buffers would be sufficient to allocate one
1220 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1221 	 * are only a small number of PIO buffers shared between all
1222 	 * functions of the controller.
1223 	 */
1224 	if (efx_piobuf_size != 0 &&
1225 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1226 	    efx->n_tx_channels) {
1227 		unsigned int n_piobufs =
1228 			DIV_ROUND_UP(efx->n_tx_channels,
1229 				     nic_data->piobuf_size / efx_piobuf_size);
1230 
1231 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1232 		if (rc == -ENOSPC)
1233 			netif_dbg(efx, probe, efx->net_dev,
1234 				  "out of PIO buffers; cannot allocate more\n");
1235 		else if (rc == -EPERM)
1236 			netif_dbg(efx, probe, efx->net_dev,
1237 				  "not permitted to allocate PIO buffers\n");
1238 		else if (rc)
1239 			netif_err(efx, probe, efx->net_dev,
1240 				  "failed to allocate PIO buffers (%d)\n", rc);
1241 		else
1242 			netif_dbg(efx, probe, efx->net_dev,
1243 				  "allocated %u PIO buffers\n", n_piobufs);
1244 	}
1245 #else
1246 	nic_data->n_piobufs = 0;
1247 #endif
1248 
1249 	/* PIO buffers should be mapped with write-combining enabled,
1250 	 * and we want to make single UC and WC mappings rather than
1251 	 * several of each (in fact that's the only option if host
1252 	 * page size is >4K).  So we may allocate some extra VIs just
1253 	 * for writing PIO buffers through.
1254 	 *
1255 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1256 	 * first half of the next VI.  Then the WC mapping begins with
1257 	 * the second half of this last VI.
1258 	 */
1259 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1260 				     ER_DZ_TX_PIOBUF);
1261 	if (nic_data->n_piobufs) {
1262 		/* pio_write_vi_base rounds down to give the number of complete
1263 		 * VIs inside the UC mapping.
1264 		 */
1265 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1266 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1267 					       nic_data->n_piobufs) *
1268 					      EFX_VI_PAGE_SIZE) -
1269 				   uc_mem_map_size);
1270 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1271 	} else {
1272 		pio_write_vi_base = 0;
1273 		wc_mem_map_size = 0;
1274 		max_vis = channel_vis;
1275 	}
1276 
1277 	/* In case the last attached driver failed to free VIs, do it now */
1278 	rc = efx_ef10_free_vis(efx);
1279 	if (rc != 0)
1280 		return rc;
1281 
1282 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1283 	if (rc != 0)
1284 		return rc;
1285 
1286 	if (nic_data->n_allocated_vis < channel_vis) {
1287 		netif_info(efx, drv, efx->net_dev,
1288 			   "Could not allocate enough VIs to satisfy RSS"
1289 			   " requirements. Performance may not be optimal.\n");
1290 		/* We didn't get the VIs to populate our channels.
1291 		 * We could keep what we got but then we'd have more
1292 		 * interrupts than we need.
1293 		 * Instead calculate new max_channels and restart
1294 		 */
1295 		efx->max_channels = nic_data->n_allocated_vis;
1296 		efx->max_tx_channels =
1297 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1298 
1299 		efx_ef10_free_vis(efx);
1300 		return -EAGAIN;
1301 	}
1302 
1303 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1304 	 * PIO buffers
1305 	 */
1306 	if (nic_data->n_piobufs &&
1307 	    nic_data->n_allocated_vis <
1308 	    pio_write_vi_base + nic_data->n_piobufs) {
1309 		netif_dbg(efx, probe, efx->net_dev,
1310 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1311 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1312 		efx_ef10_free_piobufs(efx);
1313 	}
1314 
1315 	/* Shrink the original UC mapping of the memory BAR */
1316 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1317 	if (!membase) {
1318 		netif_err(efx, probe, efx->net_dev,
1319 			  "could not shrink memory BAR to %x\n",
1320 			  uc_mem_map_size);
1321 		return -ENOMEM;
1322 	}
1323 	iounmap(efx->membase);
1324 	efx->membase = membase;
1325 
1326 	/* Set up the WC mapping if needed */
1327 	if (wc_mem_map_size) {
1328 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1329 						  uc_mem_map_size,
1330 						  wc_mem_map_size);
1331 		if (!nic_data->wc_membase) {
1332 			netif_err(efx, probe, efx->net_dev,
1333 				  "could not allocate WC mapping of size %x\n",
1334 				  wc_mem_map_size);
1335 			return -ENOMEM;
1336 		}
1337 		nic_data->pio_write_vi_base = pio_write_vi_base;
1338 		nic_data->pio_write_base =
1339 			nic_data->wc_membase +
1340 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1341 			 uc_mem_map_size);
1342 
1343 		rc = efx_ef10_link_piobufs(efx);
1344 		if (rc)
1345 			efx_ef10_free_piobufs(efx);
1346 	}
1347 
1348 	netif_dbg(efx, probe, efx->net_dev,
1349 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1350 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1351 		  nic_data->wc_membase, wc_mem_map_size);
1352 
1353 	return 0;
1354 }
1355 
1356 static int efx_ef10_init_nic(struct efx_nic *efx)
1357 {
1358 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1359 	int rc;
1360 
1361 	if (nic_data->must_check_datapath_caps) {
1362 		rc = efx_ef10_init_datapath_caps(efx);
1363 		if (rc)
1364 			return rc;
1365 		nic_data->must_check_datapath_caps = false;
1366 	}
1367 
1368 	if (nic_data->must_realloc_vis) {
1369 		/* We cannot let the number of VIs change now */
1370 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1371 					nic_data->n_allocated_vis);
1372 		if (rc)
1373 			return rc;
1374 		nic_data->must_realloc_vis = false;
1375 	}
1376 
1377 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1378 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1379 		if (rc == 0) {
1380 			rc = efx_ef10_link_piobufs(efx);
1381 			if (rc)
1382 				efx_ef10_free_piobufs(efx);
1383 		}
1384 
1385 		/* Log an error on failure, but this is non-fatal.
1386 		 * Permission errors are less important - we've presumably
1387 		 * had the PIO buffer licence removed.
1388 		 */
1389 		if (rc == -EPERM)
1390 			netif_dbg(efx, drv, efx->net_dev,
1391 				  "not permitted to restore PIO buffers\n");
1392 		else if (rc)
1393 			netif_err(efx, drv, efx->net_dev,
1394 				  "failed to restore PIO buffers (%d)\n", rc);
1395 		nic_data->must_restore_piobufs = false;
1396 	}
1397 
1398 	/* don't fail init if RSS setup doesn't work */
1399 	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1400 	efx->rss_active = (rc == 0);
1401 
1402 	return 0;
1403 }
1404 
1405 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1406 {
1407 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1408 #ifdef CONFIG_SFC_SRIOV
1409 	unsigned int i;
1410 #endif
1411 
1412 	/* All our allocations have been reset */
1413 	nic_data->must_realloc_vis = true;
1414 	nic_data->must_restore_filters = true;
1415 	nic_data->must_restore_piobufs = true;
1416 	efx_ef10_forget_old_piobufs(efx);
1417 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1418 
1419 	/* Driver-created vswitches and vports must be re-created */
1420 	nic_data->must_probe_vswitching = true;
1421 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1422 #ifdef CONFIG_SFC_SRIOV
1423 	if (nic_data->vf)
1424 		for (i = 0; i < efx->vf_count; i++)
1425 			nic_data->vf[i].vport_id = 0;
1426 #endif
1427 }
1428 
1429 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1430 {
1431 	if (reason == RESET_TYPE_MC_FAILURE)
1432 		return RESET_TYPE_DATAPATH;
1433 
1434 	return efx_mcdi_map_reset_reason(reason);
1435 }
1436 
1437 static int efx_ef10_map_reset_flags(u32 *flags)
1438 {
1439 	enum {
1440 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1441 				   ETH_RESET_SHARED_SHIFT),
1442 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1443 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1444 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1445 				 ETH_RESET_SHARED_SHIFT)
1446 	};
1447 
1448 	/* We assume for now that our PCI function is permitted to
1449 	 * reset everything.
1450 	 */
1451 
1452 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1453 		*flags &= ~EF10_RESET_MC;
1454 		return RESET_TYPE_WORLD;
1455 	}
1456 
1457 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1458 		*flags &= ~EF10_RESET_PORT;
1459 		return RESET_TYPE_ALL;
1460 	}
1461 
1462 	/* no invisible reset implemented */
1463 
1464 	return -EINVAL;
1465 }
1466 
1467 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1468 {
1469 	int rc = efx_mcdi_reset(efx, reset_type);
1470 
1471 	/* Unprivileged functions return -EPERM, but need to return success
1472 	 * here so that the datapath is brought back up.
1473 	 */
1474 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1475 		rc = 0;
1476 
1477 	/* If it was a port reset, trigger reallocation of MC resources.
1478 	 * Note that on an MC reset nothing needs to be done now because we'll
1479 	 * detect the MC reset later and handle it then.
1480 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1481 	 * resources assigned to us, so we have to trigger reallocation now.
1482 	 */
1483 	if ((reset_type == RESET_TYPE_ALL ||
1484 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1485 		efx_ef10_reset_mc_allocations(efx);
1486 	return rc;
1487 }
1488 
1489 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1490 	[EF10_STAT_ ## ext_name] =				\
1491 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1492 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1493 	[EF10_STAT_ ## int_name] =				\
1494 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1495 #define EF10_OTHER_STAT(ext_name)				\
1496 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1497 #define GENERIC_SW_STAT(ext_name)				\
1498 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1499 
1500 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1501 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1502 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1503 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1504 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1505 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1506 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1507 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1508 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1509 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1510 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1511 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1512 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1513 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1514 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1515 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1516 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1517 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1518 	EF10_OTHER_STAT(port_rx_good_bytes),
1519 	EF10_OTHER_STAT(port_rx_bad_bytes),
1520 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1521 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1522 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1523 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1524 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1525 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1526 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1527 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1528 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1529 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1530 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1531 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1532 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1533 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1534 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1535 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1536 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1537 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1538 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1539 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1540 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1541 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1542 	GENERIC_SW_STAT(rx_nodesc_trunc),
1543 	GENERIC_SW_STAT(rx_noskb_drops),
1544 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1545 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1546 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1547 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1548 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1549 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1550 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1551 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1552 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1553 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1554 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1555 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1556 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1557 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1558 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1559 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1560 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1561 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1562 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1563 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1564 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1565 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1566 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1567 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1568 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1569 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1570 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1571 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1572 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1573 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1574 };
1575 
1576 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1577 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1578 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1579 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1580 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1581 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1582 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1583 			       (1ULL <<                                 \
1584 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1585 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1586 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1587 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1588 			       (1ULL << EF10_STAT_port_rx_good) |	\
1589 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1590 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1591 			       (1ULL << EF10_STAT_port_rx_control) |	\
1592 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1593 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1594 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1595 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1596 			       (1ULL << EF10_STAT_port_rx_64) |		\
1597 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1598 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1599 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1600 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1601 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1602 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1603 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1604 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1605 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1606 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1607 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1608 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1609 
1610 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1611  * For a 10G/40G switchable port we do not expose these because they might
1612  * not include all the packets they should.
1613  * On 8000 series NICs these statistics are always provided.
1614  */
1615 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1616 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1617 				 (1ULL << EF10_STAT_port_tx_64) |	\
1618 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1619 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1620 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1621 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1622 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1623 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1624 
1625 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1626  * switchable port we do expose these because the errors will otherwise
1627  * be silent.
1628  */
1629 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1630 				  (1ULL << EF10_STAT_port_rx_length_error))
1631 
1632 /* These statistics are only provided if the firmware supports the
1633  * capability PM_AND_RXDP_COUNTERS.
1634  */
1635 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1636 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1637 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1638 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1639 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1640 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1641 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1642 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1643 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1644 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1645 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1646 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1647 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1648 
1649 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1650 {
1651 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1652 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1653 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1654 
1655 	if (!(efx->mcdi->fn_flags &
1656 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1657 		return 0;
1658 
1659 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1660 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1661 		/* 8000 series have everything even at 40G */
1662 		if (nic_data->datapath_caps2 &
1663 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1664 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1665 	} else {
1666 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1667 	}
1668 
1669 	if (nic_data->datapath_caps &
1670 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1671 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1672 
1673 	return raw_mask;
1674 }
1675 
1676 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1677 {
1678 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679 	u64 raw_mask[2];
1680 
1681 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1682 
1683 	/* Only show vadaptor stats when EVB capability is present */
1684 	if (nic_data->datapath_caps &
1685 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1686 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1687 		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1688 	} else {
1689 		raw_mask[1] = 0;
1690 	}
1691 
1692 #if BITS_PER_LONG == 64
1693 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1694 	mask[0] = raw_mask[0];
1695 	mask[1] = raw_mask[1];
1696 #else
1697 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1698 	mask[0] = raw_mask[0] & 0xffffffff;
1699 	mask[1] = raw_mask[0] >> 32;
1700 	mask[2] = raw_mask[1] & 0xffffffff;
1701 #endif
1702 }
1703 
1704 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1705 {
1706 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1707 
1708 	efx_ef10_get_stat_mask(efx, mask);
1709 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1710 				      mask, names);
1711 }
1712 
1713 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1714 					   struct rtnl_link_stats64 *core_stats)
1715 {
1716 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1717 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1718 	u64 *stats = nic_data->stats;
1719 	size_t stats_count = 0, index;
1720 
1721 	efx_ef10_get_stat_mask(efx, mask);
1722 
1723 	if (full_stats) {
1724 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1725 			if (efx_ef10_stat_desc[index].name) {
1726 				*full_stats++ = stats[index];
1727 				++stats_count;
1728 			}
1729 		}
1730 	}
1731 
1732 	if (!core_stats)
1733 		return stats_count;
1734 
1735 	if (nic_data->datapath_caps &
1736 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1737 		/* Use vadaptor stats. */
1738 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1739 					 stats[EF10_STAT_rx_multicast] +
1740 					 stats[EF10_STAT_rx_broadcast];
1741 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1742 					 stats[EF10_STAT_tx_multicast] +
1743 					 stats[EF10_STAT_tx_broadcast];
1744 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1745 				       stats[EF10_STAT_rx_multicast_bytes] +
1746 				       stats[EF10_STAT_rx_broadcast_bytes];
1747 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1748 				       stats[EF10_STAT_tx_multicast_bytes] +
1749 				       stats[EF10_STAT_tx_broadcast_bytes];
1750 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1751 					 stats[GENERIC_STAT_rx_noskb_drops];
1752 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1753 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1754 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1755 		core_stats->rx_errors = core_stats->rx_crc_errors;
1756 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1757 	} else {
1758 		/* Use port stats. */
1759 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1760 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1761 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1762 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1763 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1764 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1765 					 stats[GENERIC_STAT_rx_noskb_drops];
1766 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1767 		core_stats->rx_length_errors =
1768 				stats[EF10_STAT_port_rx_gtjumbo] +
1769 				stats[EF10_STAT_port_rx_length_error];
1770 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1771 		core_stats->rx_frame_errors =
1772 				stats[EF10_STAT_port_rx_align_error];
1773 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1774 		core_stats->rx_errors = (core_stats->rx_length_errors +
1775 					 core_stats->rx_crc_errors +
1776 					 core_stats->rx_frame_errors);
1777 	}
1778 
1779 	return stats_count;
1780 }
1781 
1782 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1783 {
1784 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1785 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1786 	__le64 generation_start, generation_end;
1787 	u64 *stats = nic_data->stats;
1788 	__le64 *dma_stats;
1789 
1790 	efx_ef10_get_stat_mask(efx, mask);
1791 
1792 	dma_stats = efx->stats_buffer.addr;
1793 
1794 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1795 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1796 		return 0;
1797 	rmb();
1798 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1799 			     stats, efx->stats_buffer.addr, false);
1800 	rmb();
1801 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1802 	if (generation_end != generation_start)
1803 		return -EAGAIN;
1804 
1805 	/* Update derived statistics */
1806 	efx_nic_fix_nodesc_drop_stat(efx,
1807 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1808 	stats[EF10_STAT_port_rx_good_bytes] =
1809 		stats[EF10_STAT_port_rx_bytes] -
1810 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1811 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1812 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1813 	efx_update_sw_stats(efx, stats);
1814 	return 0;
1815 }
1816 
1817 
1818 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1819 				       struct rtnl_link_stats64 *core_stats)
1820 {
1821 	int retry;
1822 
1823 	/* If we're unlucky enough to read statistics during the DMA, wait
1824 	 * up to 10ms for it to finish (typically takes <500us)
1825 	 */
1826 	for (retry = 0; retry < 100; ++retry) {
1827 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1828 			break;
1829 		udelay(100);
1830 	}
1831 
1832 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1833 }
1834 
1835 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1836 {
1837 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1838 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1840 	__le64 generation_start, generation_end;
1841 	u64 *stats = nic_data->stats;
1842 	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1843 	struct efx_buffer stats_buf;
1844 	__le64 *dma_stats;
1845 	int rc;
1846 
1847 	spin_unlock_bh(&efx->stats_lock);
1848 
1849 	if (in_interrupt()) {
1850 		/* If in atomic context, cannot update stats.  Just update the
1851 		 * software stats and return so the caller can continue.
1852 		 */
1853 		spin_lock_bh(&efx->stats_lock);
1854 		efx_update_sw_stats(efx, stats);
1855 		return 0;
1856 	}
1857 
1858 	efx_ef10_get_stat_mask(efx, mask);
1859 
1860 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1861 	if (rc) {
1862 		spin_lock_bh(&efx->stats_lock);
1863 		return rc;
1864 	}
1865 
1866 	dma_stats = stats_buf.addr;
1867 	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1868 
1869 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1870 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1871 			      MAC_STATS_IN_DMA, 1);
1872 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1873 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1874 
1875 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1876 				NULL, 0, NULL);
1877 	spin_lock_bh(&efx->stats_lock);
1878 	if (rc) {
1879 		/* Expect ENOENT if DMA queues have not been set up */
1880 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1881 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1882 					       sizeof(inbuf), NULL, 0, rc);
1883 		goto out;
1884 	}
1885 
1886 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1887 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1888 		WARN_ON_ONCE(1);
1889 		goto out;
1890 	}
1891 	rmb();
1892 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1893 			     stats, stats_buf.addr, false);
1894 	rmb();
1895 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1896 	if (generation_end != generation_start) {
1897 		rc = -EAGAIN;
1898 		goto out;
1899 	}
1900 
1901 	efx_update_sw_stats(efx, stats);
1902 out:
1903 	efx_nic_free_buffer(efx, &stats_buf);
1904 	return rc;
1905 }
1906 
1907 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1908 				       struct rtnl_link_stats64 *core_stats)
1909 {
1910 	if (efx_ef10_try_update_nic_stats_vf(efx))
1911 		return 0;
1912 
1913 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1914 }
1915 
1916 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1917 {
1918 	struct efx_nic *efx = channel->efx;
1919 	unsigned int mode, usecs;
1920 	efx_dword_t timer_cmd;
1921 
1922 	if (channel->irq_moderation_us) {
1923 		mode = 3;
1924 		usecs = channel->irq_moderation_us;
1925 	} else {
1926 		mode = 0;
1927 		usecs = 0;
1928 	}
1929 
1930 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1931 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1932 		unsigned int ns = usecs * 1000;
1933 
1934 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1935 			       channel->channel);
1936 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1937 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1938 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1939 
1940 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1941 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1942 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1943 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1944 
1945 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1946 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1947 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1948 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1949 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1950 				channel->channel);
1951 	} else {
1952 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1953 
1954 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1955 				     ERF_DZ_TC_TIMER_VAL, ticks);
1956 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1957 				channel->channel);
1958 	}
1959 }
1960 
1961 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1962 				struct ethtool_wolinfo *wol) {}
1963 
1964 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1965 {
1966 	return -EOPNOTSUPP;
1967 }
1968 
1969 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1970 {
1971 	wol->supported = 0;
1972 	wol->wolopts = 0;
1973 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1974 }
1975 
1976 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1977 {
1978 	if (type != 0)
1979 		return -EINVAL;
1980 	return 0;
1981 }
1982 
1983 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1984 				  const efx_dword_t *hdr, size_t hdr_len,
1985 				  const efx_dword_t *sdu, size_t sdu_len)
1986 {
1987 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1988 	u8 *pdu = nic_data->mcdi_buf.addr;
1989 
1990 	memcpy(pdu, hdr, hdr_len);
1991 	memcpy(pdu + hdr_len, sdu, sdu_len);
1992 	wmb();
1993 
1994 	/* The hardware provides 'low' and 'high' (doorbell) registers
1995 	 * for passing the 64-bit address of an MCDI request to
1996 	 * firmware.  However the dwords are swapped by firmware.  The
1997 	 * least significant bits of the doorbell are then 0 for all
1998 	 * MCDI requests due to alignment.
1999 	 */
2000 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2001 		    ER_DZ_MC_DB_LWRD);
2002 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2003 		    ER_DZ_MC_DB_HWRD);
2004 }
2005 
2006 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2007 {
2008 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2009 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2010 
2011 	rmb();
2012 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2013 }
2014 
2015 static void
2016 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2017 			    size_t offset, size_t outlen)
2018 {
2019 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2020 	const u8 *pdu = nic_data->mcdi_buf.addr;
2021 
2022 	memcpy(outbuf, pdu + offset, outlen);
2023 }
2024 
2025 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2026 {
2027 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2028 
2029 	/* All our allocations have been reset */
2030 	efx_ef10_reset_mc_allocations(efx);
2031 
2032 	/* The datapath firmware might have been changed */
2033 	nic_data->must_check_datapath_caps = true;
2034 
2035 	/* MAC statistics have been cleared on the NIC; clear the local
2036 	 * statistic that we update with efx_update_diff_stat().
2037 	 */
2038 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2039 }
2040 
2041 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2042 {
2043 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2044 	int rc;
2045 
2046 	rc = efx_ef10_get_warm_boot_count(efx);
2047 	if (rc < 0) {
2048 		/* The firmware is presumably in the process of
2049 		 * rebooting.  However, we are supposed to report each
2050 		 * reboot just once, so we must only do that once we
2051 		 * can read and store the updated warm boot count.
2052 		 */
2053 		return 0;
2054 	}
2055 
2056 	if (rc == nic_data->warm_boot_count)
2057 		return 0;
2058 
2059 	nic_data->warm_boot_count = rc;
2060 	efx_ef10_mcdi_reboot_detected(efx);
2061 
2062 	return -EIO;
2063 }
2064 
2065 /* Handle an MSI interrupt
2066  *
2067  * Handle an MSI hardware interrupt.  This routine schedules event
2068  * queue processing.  No interrupt acknowledgement cycle is necessary.
2069  * Also, we never need to check that the interrupt is for us, since
2070  * MSI interrupts cannot be shared.
2071  */
2072 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2073 {
2074 	struct efx_msi_context *context = dev_id;
2075 	struct efx_nic *efx = context->efx;
2076 
2077 	netif_vdbg(efx, intr, efx->net_dev,
2078 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2079 
2080 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2081 		/* Note test interrupts */
2082 		if (context->index == efx->irq_level)
2083 			efx->last_irq_cpu = raw_smp_processor_id();
2084 
2085 		/* Schedule processing of the channel */
2086 		efx_schedule_channel_irq(efx->channel[context->index]);
2087 	}
2088 
2089 	return IRQ_HANDLED;
2090 }
2091 
2092 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2093 {
2094 	struct efx_nic *efx = dev_id;
2095 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2096 	struct efx_channel *channel;
2097 	efx_dword_t reg;
2098 	u32 queues;
2099 
2100 	/* Read the ISR which also ACKs the interrupts */
2101 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2102 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2103 
2104 	if (queues == 0)
2105 		return IRQ_NONE;
2106 
2107 	if (likely(soft_enabled)) {
2108 		/* Note test interrupts */
2109 		if (queues & (1U << efx->irq_level))
2110 			efx->last_irq_cpu = raw_smp_processor_id();
2111 
2112 		efx_for_each_channel(channel, efx) {
2113 			if (queues & 1)
2114 				efx_schedule_channel_irq(channel);
2115 			queues >>= 1;
2116 		}
2117 	}
2118 
2119 	netif_vdbg(efx, intr, efx->net_dev,
2120 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2121 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2122 
2123 	return IRQ_HANDLED;
2124 }
2125 
2126 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2127 {
2128 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2129 
2130 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2131 				    NULL) == 0)
2132 		return -ENOTSUPP;
2133 
2134 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2135 
2136 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2137 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2138 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2139 }
2140 
2141 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2142 {
2143 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2144 				    (tx_queue->ptr_mask + 1) *
2145 				    sizeof(efx_qword_t),
2146 				    GFP_KERNEL);
2147 }
2148 
2149 /* This writes to the TX_DESC_WPTR and also pushes data */
2150 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2151 					 const efx_qword_t *txd)
2152 {
2153 	unsigned int write_ptr;
2154 	efx_oword_t reg;
2155 
2156 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2157 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2158 	reg.qword[0] = *txd;
2159 	efx_writeo_page(tx_queue->efx, &reg,
2160 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2161 }
2162 
2163 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2164  */
2165 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2166 				struct sk_buff *skb,
2167 				bool *data_mapped)
2168 {
2169 	struct efx_tx_buffer *buffer;
2170 	struct tcphdr *tcp;
2171 	struct iphdr *ip;
2172 
2173 	u16 ipv4_id;
2174 	u32 seqnum;
2175 	u32 mss;
2176 
2177 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2178 
2179 	mss = skb_shinfo(skb)->gso_size;
2180 
2181 	if (unlikely(mss < 4)) {
2182 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2183 		return -EINVAL;
2184 	}
2185 
2186 	ip = ip_hdr(skb);
2187 	if (ip->version == 4) {
2188 		/* Modify IPv4 header if needed. */
2189 		ip->tot_len = 0;
2190 		ip->check = 0;
2191 		ipv4_id = ntohs(ip->id);
2192 	} else {
2193 		/* Modify IPv6 header if needed. */
2194 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2195 
2196 		ipv6->payload_len = 0;
2197 		ipv4_id = 0;
2198 	}
2199 
2200 	tcp = tcp_hdr(skb);
2201 	seqnum = ntohl(tcp->seq);
2202 
2203 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2204 
2205 	buffer->flags = EFX_TX_BUF_OPTION;
2206 	buffer->len = 0;
2207 	buffer->unmap_len = 0;
2208 	EFX_POPULATE_QWORD_5(buffer->option,
2209 			ESF_DZ_TX_DESC_IS_OPT, 1,
2210 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2211 			ESF_DZ_TX_TSO_OPTION_TYPE,
2212 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2213 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2214 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2215 			);
2216 	++tx_queue->insert_count;
2217 
2218 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2219 
2220 	buffer->flags = EFX_TX_BUF_OPTION;
2221 	buffer->len = 0;
2222 	buffer->unmap_len = 0;
2223 	EFX_POPULATE_QWORD_4(buffer->option,
2224 			ESF_DZ_TX_DESC_IS_OPT, 1,
2225 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2226 			ESF_DZ_TX_TSO_OPTION_TYPE,
2227 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2228 			ESF_DZ_TX_TSO_TCP_MSS, mss
2229 			);
2230 	++tx_queue->insert_count;
2231 
2232 	return 0;
2233 }
2234 
2235 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2236 {
2237 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2238 	u32 tso_versions = 0;
2239 
2240 	if (nic_data->datapath_caps &
2241 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2242 		tso_versions |= BIT(1);
2243 	if (nic_data->datapath_caps2 &
2244 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2245 		tso_versions |= BIT(2);
2246 	return tso_versions;
2247 }
2248 
2249 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2250 {
2251 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2252 						       EFX_BUF_SIZE));
2253 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2254 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2255 	struct efx_channel *channel = tx_queue->channel;
2256 	struct efx_nic *efx = tx_queue->efx;
2257 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2258 	bool tso_v2 = false;
2259 	size_t inlen;
2260 	dma_addr_t dma_addr;
2261 	efx_qword_t *txd;
2262 	int rc;
2263 	int i;
2264 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2265 
2266 	/* TSOv2 is a limited resource that can only be configured on a limited
2267 	 * number of queues. TSO without checksum offload is not really a thing,
2268 	 * so we only enable it for those queues.
2269 	 */
2270 	if (csum_offload && (nic_data->datapath_caps2 &
2271 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2272 		tso_v2 = true;
2273 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2274 				channel->channel);
2275 	}
2276 
2277 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2278 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2279 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2280 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2281 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2282 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2283 
2284 	dma_addr = tx_queue->txd.buf.dma_addr;
2285 
2286 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2287 		  tx_queue->queue, entries, (u64)dma_addr);
2288 
2289 	for (i = 0; i < entries; ++i) {
2290 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2291 		dma_addr += EFX_BUF_SIZE;
2292 	}
2293 
2294 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2295 
2296 	do {
2297 		MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2298 				/* This flag was removed from mcdi_pcol.h for
2299 				 * the non-_EXT version of INIT_TXQ.  However,
2300 				 * firmware still honours it.
2301 				 */
2302 				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2303 				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2304 				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2305 
2306 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2307 					NULL, 0, NULL);
2308 		if (rc == -ENOSPC && tso_v2) {
2309 			/* Retry without TSOv2 if we're short on contexts. */
2310 			tso_v2 = false;
2311 			netif_warn(efx, probe, efx->net_dev,
2312 				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2313 		} else if (rc) {
2314 			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2315 					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2316 					       NULL, 0, rc);
2317 			goto fail;
2318 		}
2319 	} while (rc);
2320 
2321 	/* A previous user of this TX queue might have set us up the
2322 	 * bomb by writing a descriptor to the TX push collector but
2323 	 * not the doorbell.  (Each collector belongs to a port, not a
2324 	 * queue or function, so cannot easily be reset.)  We must
2325 	 * attempt to push a no-op descriptor in its place.
2326 	 */
2327 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2328 	tx_queue->insert_count = 1;
2329 	txd = efx_tx_desc(tx_queue, 0);
2330 	EFX_POPULATE_QWORD_4(*txd,
2331 			     ESF_DZ_TX_DESC_IS_OPT, true,
2332 			     ESF_DZ_TX_OPTION_TYPE,
2333 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2334 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2335 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2336 	tx_queue->write_count = 1;
2337 
2338 	if (tso_v2) {
2339 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2340 		tx_queue->tso_version = 2;
2341 	} else if (nic_data->datapath_caps &
2342 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2343 		tx_queue->tso_version = 1;
2344 	}
2345 
2346 	wmb();
2347 	efx_ef10_push_tx_desc(tx_queue, txd);
2348 
2349 	return;
2350 
2351 fail:
2352 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2353 		    tx_queue->queue);
2354 }
2355 
2356 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2357 {
2358 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2359 	MCDI_DECLARE_BUF_ERR(outbuf);
2360 	struct efx_nic *efx = tx_queue->efx;
2361 	size_t outlen;
2362 	int rc;
2363 
2364 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2365 		       tx_queue->queue);
2366 
2367 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2368 			  outbuf, sizeof(outbuf), &outlen);
2369 
2370 	if (rc && rc != -EALREADY)
2371 		goto fail;
2372 
2373 	return;
2374 
2375 fail:
2376 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2377 			       outbuf, outlen, rc);
2378 }
2379 
2380 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2381 {
2382 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2383 }
2384 
2385 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2386 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2387 {
2388 	unsigned int write_ptr;
2389 	efx_dword_t reg;
2390 
2391 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2392 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2393 	efx_writed_page(tx_queue->efx, &reg,
2394 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2395 }
2396 
2397 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2398 
2399 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2400 					  dma_addr_t dma_addr, unsigned int len)
2401 {
2402 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2403 		/* If we need to break across multiple descriptors we should
2404 		 * stop at a page boundary. This assumes the length limit is
2405 		 * greater than the page size.
2406 		 */
2407 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2408 
2409 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2410 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2411 	}
2412 
2413 	return len;
2414 }
2415 
2416 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2417 {
2418 	unsigned int old_write_count = tx_queue->write_count;
2419 	struct efx_tx_buffer *buffer;
2420 	unsigned int write_ptr;
2421 	efx_qword_t *txd;
2422 
2423 	tx_queue->xmit_more_available = false;
2424 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2425 		return;
2426 
2427 	do {
2428 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2429 		buffer = &tx_queue->buffer[write_ptr];
2430 		txd = efx_tx_desc(tx_queue, write_ptr);
2431 		++tx_queue->write_count;
2432 
2433 		/* Create TX descriptor ring entry */
2434 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2435 			*txd = buffer->option;
2436 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2437 				/* PIO descriptor */
2438 				tx_queue->packet_write_count = tx_queue->write_count;
2439 		} else {
2440 			tx_queue->packet_write_count = tx_queue->write_count;
2441 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2442 			EFX_POPULATE_QWORD_3(
2443 				*txd,
2444 				ESF_DZ_TX_KER_CONT,
2445 				buffer->flags & EFX_TX_BUF_CONT,
2446 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2447 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2448 		}
2449 	} while (tx_queue->write_count != tx_queue->insert_count);
2450 
2451 	wmb(); /* Ensure descriptors are written before they are fetched */
2452 
2453 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2454 		txd = efx_tx_desc(tx_queue,
2455 				  old_write_count & tx_queue->ptr_mask);
2456 		efx_ef10_push_tx_desc(tx_queue, txd);
2457 		++tx_queue->pushes;
2458 	} else {
2459 		efx_ef10_notify_tx_desc(tx_queue);
2460 	}
2461 }
2462 
2463 #define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2464 				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2465 #define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2466 				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2467 #define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2468 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2469 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2470 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2471 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2472 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2473 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2474 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2475 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2476 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2477 
2478 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2479 {
2480 	/* Firmware had a bug (sfc bug 61952) where it would not actually
2481 	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2482 	 * This meant that it would always contain whatever was previously
2483 	 * in the MCDI buffer.  Fortunately, all firmware versions with
2484 	 * this bug have the same default flags value for a newly-allocated
2485 	 * RSS context, and the only time we want to get the flags is just
2486 	 * after allocating.  Moreover, the response has a 32-bit hole
2487 	 * where the context ID would be in the request, so we can use an
2488 	 * overlength buffer in the request and pre-fill the flags field
2489 	 * with what we believe the default to be.  Thus if the firmware
2490 	 * has the bug, it will leave our pre-filled value in the flags
2491 	 * field of the response, and we will get the right answer.
2492 	 *
2493 	 * However, this does mean that this function should NOT be used if
2494 	 * the RSS context flags might not be their defaults - it is ONLY
2495 	 * reliably correct for a newly-allocated RSS context.
2496 	 */
2497 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2498 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2499 	size_t outlen;
2500 	int rc;
2501 
2502 	/* Check we have a hole for the context ID */
2503 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2504 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2505 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2506 		       RSS_CONTEXT_FLAGS_DEFAULT);
2507 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2508 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2509 	if (rc == 0) {
2510 		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2511 			rc = -EIO;
2512 		else
2513 			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2514 	}
2515 	return rc;
2516 }
2517 
2518 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2519  * If we fail, we just leave the RSS context at its default hash settings,
2520  * which is safe but may slightly reduce performance.
2521  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2522  * just need to set the UDP ports flags (for both IP versions).
2523  */
2524 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2525 {
2526 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2527 	u32 flags;
2528 
2529 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2530 
2531 	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2532 		return;
2533 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2534 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2535 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2536 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2537 	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2538 			  NULL, 0, NULL))
2539 		/* Succeeded, so UDP 4-tuple is now enabled */
2540 		efx->rx_hash_udp_4tuple = true;
2541 }
2542 
2543 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2544 				      bool exclusive, unsigned *context_size)
2545 {
2546 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2547 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2548 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2549 	size_t outlen;
2550 	int rc;
2551 	u32 alloc_type = exclusive ?
2552 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2553 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2554 	unsigned rss_spread = exclusive ?
2555 				efx->rss_spread :
2556 				min(rounddown_pow_of_two(efx->rss_spread),
2557 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2558 
2559 	if (!exclusive && rss_spread == 1) {
2560 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
2561 		if (context_size)
2562 			*context_size = 1;
2563 		return 0;
2564 	}
2565 
2566 	if (nic_data->datapath_caps &
2567 	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2568 		return -EOPNOTSUPP;
2569 
2570 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2571 		       nic_data->vport_id);
2572 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2573 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2574 
2575 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2576 		outbuf, sizeof(outbuf), &outlen);
2577 	if (rc != 0)
2578 		return rc;
2579 
2580 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2581 		return -EIO;
2582 
2583 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2584 
2585 	if (context_size)
2586 		*context_size = rss_spread;
2587 
2588 	if (nic_data->datapath_caps &
2589 	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2590 		efx_ef10_set_rss_flags(efx, *context);
2591 
2592 	return 0;
2593 }
2594 
2595 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2596 {
2597 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2598 	int rc;
2599 
2600 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2601 		       context);
2602 
2603 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2604 			    NULL, 0, NULL);
2605 	WARN_ON(rc != 0);
2606 }
2607 
2608 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2609 				       const u32 *rx_indir_table, const u8 *key)
2610 {
2611 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2612 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2613 	int i, rc;
2614 
2615 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2616 		       context);
2617 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2618 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2619 
2620 	/* This iterates over the length of efx->rx_indir_table, but copies
2621 	 * bytes from rx_indir_table.  That's because the latter is a pointer
2622 	 * rather than an array, but should have the same length.
2623 	 * The efx->rx_hash_key loop below is similar.
2624 	 */
2625 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2626 		MCDI_PTR(tablebuf,
2627 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2628 				(u8) rx_indir_table[i];
2629 
2630 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2631 			  sizeof(tablebuf), NULL, 0, NULL);
2632 	if (rc != 0)
2633 		return rc;
2634 
2635 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2636 		       context);
2637 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2638 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2639 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2640 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2641 
2642 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2643 			    sizeof(keybuf), NULL, 0, NULL);
2644 }
2645 
2646 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2647 {
2648 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2649 
2650 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2651 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2652 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2653 }
2654 
2655 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2656 					      unsigned *context_size)
2657 {
2658 	u32 new_rx_rss_context;
2659 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2660 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2661 					    false, context_size);
2662 
2663 	if (rc != 0)
2664 		return rc;
2665 
2666 	nic_data->rx_rss_context = new_rx_rss_context;
2667 	nic_data->rx_rss_context_exclusive = false;
2668 	efx_set_default_rx_indir_table(efx);
2669 	return 0;
2670 }
2671 
2672 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2673 						 const u32 *rx_indir_table,
2674 						 const u8 *key)
2675 {
2676 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2677 	int rc;
2678 	u32 new_rx_rss_context;
2679 
2680 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2681 	    !nic_data->rx_rss_context_exclusive) {
2682 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2683 						true, NULL);
2684 		if (rc == -EOPNOTSUPP)
2685 			return rc;
2686 		else if (rc != 0)
2687 			goto fail1;
2688 	} else {
2689 		new_rx_rss_context = nic_data->rx_rss_context;
2690 	}
2691 
2692 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2693 					 rx_indir_table, key);
2694 	if (rc != 0)
2695 		goto fail2;
2696 
2697 	if (nic_data->rx_rss_context != new_rx_rss_context)
2698 		efx_ef10_rx_free_indir_table(efx);
2699 	nic_data->rx_rss_context = new_rx_rss_context;
2700 	nic_data->rx_rss_context_exclusive = true;
2701 	if (rx_indir_table != efx->rx_indir_table)
2702 		memcpy(efx->rx_indir_table, rx_indir_table,
2703 		       sizeof(efx->rx_indir_table));
2704 	if (key != efx->rx_hash_key)
2705 		memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2706 
2707 	return 0;
2708 
2709 fail2:
2710 	if (new_rx_rss_context != nic_data->rx_rss_context)
2711 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2712 fail1:
2713 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2714 	return rc;
2715 }
2716 
2717 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2718 {
2719 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2720 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2721 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2722 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2723 	size_t outlen;
2724 	int rc, i;
2725 
2726 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2727 		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2728 
2729 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2730 		return -ENOENT;
2731 
2732 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2733 		       nic_data->rx_rss_context);
2734 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2735 		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2736 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2737 			  tablebuf, sizeof(tablebuf), &outlen);
2738 	if (rc != 0)
2739 		return rc;
2740 
2741 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2742 		return -EIO;
2743 
2744 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2745 		efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2746 				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2747 
2748 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2749 		       nic_data->rx_rss_context);
2750 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2751 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2752 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2753 			  keybuf, sizeof(keybuf), &outlen);
2754 	if (rc != 0)
2755 		return rc;
2756 
2757 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2758 		return -EIO;
2759 
2760 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2761 		efx->rx_hash_key[i] = MCDI_PTR(
2762 				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2763 
2764 	return 0;
2765 }
2766 
2767 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2768 					  const u32 *rx_indir_table,
2769 					  const u8 *key)
2770 {
2771 	int rc;
2772 
2773 	if (efx->rss_spread == 1)
2774 		return 0;
2775 
2776 	if (!key)
2777 		key = efx->rx_hash_key;
2778 
2779 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2780 
2781 	if (rc == -ENOBUFS && !user) {
2782 		unsigned context_size;
2783 		bool mismatch = false;
2784 		size_t i;
2785 
2786 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2787 		     i++)
2788 			mismatch = rx_indir_table[i] !=
2789 				ethtool_rxfh_indir_default(i, efx->rss_spread);
2790 
2791 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2792 		if (rc == 0) {
2793 			if (context_size != efx->rss_spread)
2794 				netif_warn(efx, probe, efx->net_dev,
2795 					   "Could not allocate an exclusive RSS"
2796 					   " context; allocated a shared one of"
2797 					   " different size."
2798 					   " Wanted %u, got %u.\n",
2799 					   efx->rss_spread, context_size);
2800 			else if (mismatch)
2801 				netif_warn(efx, probe, efx->net_dev,
2802 					   "Could not allocate an exclusive RSS"
2803 					   " context; allocated a shared one but"
2804 					   " could not apply custom"
2805 					   " indirection.\n");
2806 			else
2807 				netif_info(efx, probe, efx->net_dev,
2808 					   "Could not allocate an exclusive RSS"
2809 					   " context; allocated a shared one.\n");
2810 		}
2811 	}
2812 	return rc;
2813 }
2814 
2815 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2816 					  const u32 *rx_indir_table
2817 					  __attribute__ ((unused)),
2818 					  const u8 *key
2819 					  __attribute__ ((unused)))
2820 {
2821 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2822 
2823 	if (user)
2824 		return -EOPNOTSUPP;
2825 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2826 		return 0;
2827 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2828 }
2829 
2830 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2831 {
2832 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2833 				    (rx_queue->ptr_mask + 1) *
2834 				    sizeof(efx_qword_t),
2835 				    GFP_KERNEL);
2836 }
2837 
2838 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2839 {
2840 	MCDI_DECLARE_BUF(inbuf,
2841 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2842 						EFX_BUF_SIZE));
2843 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2844 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2845 	struct efx_nic *efx = rx_queue->efx;
2846 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2847 	size_t inlen;
2848 	dma_addr_t dma_addr;
2849 	int rc;
2850 	int i;
2851 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2852 
2853 	rx_queue->scatter_n = 0;
2854 	rx_queue->scatter_len = 0;
2855 
2856 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2857 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2858 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2859 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2860 		       efx_rx_queue_index(rx_queue));
2861 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2862 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2863 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2864 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2865 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2866 
2867 	dma_addr = rx_queue->rxd.buf.dma_addr;
2868 
2869 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2870 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2871 
2872 	for (i = 0; i < entries; ++i) {
2873 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2874 		dma_addr += EFX_BUF_SIZE;
2875 	}
2876 
2877 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2878 
2879 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2880 			  NULL, 0, NULL);
2881 	if (rc)
2882 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2883 			    efx_rx_queue_index(rx_queue));
2884 }
2885 
2886 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2887 {
2888 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2889 	MCDI_DECLARE_BUF_ERR(outbuf);
2890 	struct efx_nic *efx = rx_queue->efx;
2891 	size_t outlen;
2892 	int rc;
2893 
2894 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2895 		       efx_rx_queue_index(rx_queue));
2896 
2897 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2898 			  outbuf, sizeof(outbuf), &outlen);
2899 
2900 	if (rc && rc != -EALREADY)
2901 		goto fail;
2902 
2903 	return;
2904 
2905 fail:
2906 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2907 			       outbuf, outlen, rc);
2908 }
2909 
2910 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2911 {
2912 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2913 }
2914 
2915 /* This creates an entry in the RX descriptor queue */
2916 static inline void
2917 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2918 {
2919 	struct efx_rx_buffer *rx_buf;
2920 	efx_qword_t *rxd;
2921 
2922 	rxd = efx_rx_desc(rx_queue, index);
2923 	rx_buf = efx_rx_buffer(rx_queue, index);
2924 	EFX_POPULATE_QWORD_2(*rxd,
2925 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2926 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2927 }
2928 
2929 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2930 {
2931 	struct efx_nic *efx = rx_queue->efx;
2932 	unsigned int write_count;
2933 	efx_dword_t reg;
2934 
2935 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2936 	write_count = rx_queue->added_count & ~7;
2937 	if (rx_queue->notified_count == write_count)
2938 		return;
2939 
2940 	do
2941 		efx_ef10_build_rx_desc(
2942 			rx_queue,
2943 			rx_queue->notified_count & rx_queue->ptr_mask);
2944 	while (++rx_queue->notified_count != write_count);
2945 
2946 	wmb();
2947 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2948 			     write_count & rx_queue->ptr_mask);
2949 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2950 			efx_rx_queue_index(rx_queue));
2951 }
2952 
2953 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2954 
2955 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2956 {
2957 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2958 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2959 	efx_qword_t event;
2960 
2961 	EFX_POPULATE_QWORD_2(event,
2962 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2963 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2964 
2965 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2966 
2967 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2968 	 * already swapped the data to little-endian order.
2969 	 */
2970 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2971 	       sizeof(efx_qword_t));
2972 
2973 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2974 			   inbuf, sizeof(inbuf), 0,
2975 			   efx_ef10_rx_defer_refill_complete, 0);
2976 }
2977 
2978 static void
2979 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2980 				  int rc, efx_dword_t *outbuf,
2981 				  size_t outlen_actual)
2982 {
2983 	/* nothing to do */
2984 }
2985 
2986 static int efx_ef10_ev_probe(struct efx_channel *channel)
2987 {
2988 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2989 				    (channel->eventq_mask + 1) *
2990 				    sizeof(efx_qword_t),
2991 				    GFP_KERNEL);
2992 }
2993 
2994 static void efx_ef10_ev_fini(struct efx_channel *channel)
2995 {
2996 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2997 	MCDI_DECLARE_BUF_ERR(outbuf);
2998 	struct efx_nic *efx = channel->efx;
2999 	size_t outlen;
3000 	int rc;
3001 
3002 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3003 
3004 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3005 			  outbuf, sizeof(outbuf), &outlen);
3006 
3007 	if (rc && rc != -EALREADY)
3008 		goto fail;
3009 
3010 	return;
3011 
3012 fail:
3013 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3014 			       outbuf, outlen, rc);
3015 }
3016 
3017 static int efx_ef10_ev_init(struct efx_channel *channel)
3018 {
3019 	MCDI_DECLARE_BUF(inbuf,
3020 			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3021 						   EFX_BUF_SIZE));
3022 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3023 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3024 	struct efx_nic *efx = channel->efx;
3025 	struct efx_ef10_nic_data *nic_data;
3026 	size_t inlen, outlen;
3027 	unsigned int enabled, implemented;
3028 	dma_addr_t dma_addr;
3029 	int rc;
3030 	int i;
3031 
3032 	nic_data = efx->nic_data;
3033 
3034 	/* Fill event queue with all ones (i.e. empty events) */
3035 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3036 
3037 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3038 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3039 	/* INIT_EVQ expects index in vector table, not absolute */
3040 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3041 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3042 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3043 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3044 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3045 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3046 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3047 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3048 
3049 	if (nic_data->datapath_caps2 &
3050 	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3051 		/* Use the new generic approach to specifying event queue
3052 		 * configuration, requesting lower latency or higher throughput.
3053 		 * The options that actually get used appear in the output.
3054 		 */
3055 		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3056 				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3057 				      INIT_EVQ_V2_IN_FLAG_TYPE,
3058 				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3059 	} else {
3060 		bool cut_thru = !(nic_data->datapath_caps &
3061 			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3062 
3063 		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3064 				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3065 				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3066 				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3067 				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3068 	}
3069 
3070 	dma_addr = channel->eventq.buf.dma_addr;
3071 	for (i = 0; i < entries; ++i) {
3072 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3073 		dma_addr += EFX_BUF_SIZE;
3074 	}
3075 
3076 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3077 
3078 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3079 			  outbuf, sizeof(outbuf), &outlen);
3080 
3081 	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3082 		netif_dbg(efx, drv, efx->net_dev,
3083 			  "Channel %d using event queue flags %08x\n",
3084 			  channel->channel,
3085 			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3086 
3087 	/* IRQ return is ignored */
3088 	if (channel->channel || rc)
3089 		return rc;
3090 
3091 	/* Successfully created event queue on channel 0 */
3092 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3093 	if (rc == -ENOSYS) {
3094 		/* GET_WORKAROUNDS was implemented before this workaround,
3095 		 * thus it must be unavailable in this firmware.
3096 		 */
3097 		nic_data->workaround_26807 = false;
3098 		rc = 0;
3099 	} else if (rc) {
3100 		goto fail;
3101 	} else {
3102 		nic_data->workaround_26807 =
3103 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3104 
3105 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3106 		    !nic_data->workaround_26807) {
3107 			unsigned int flags;
3108 
3109 			rc = efx_mcdi_set_workaround(efx,
3110 						     MC_CMD_WORKAROUND_BUG26807,
3111 						     true, &flags);
3112 
3113 			if (!rc) {
3114 				if (flags &
3115 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3116 					netif_info(efx, drv, efx->net_dev,
3117 						   "other functions on NIC have been reset\n");
3118 
3119 					/* With MCFW v4.6.x and earlier, the
3120 					 * boot count will have incremented,
3121 					 * so re-read the warm_boot_count
3122 					 * value now to ensure this function
3123 					 * doesn't think it has changed next
3124 					 * time it checks.
3125 					 */
3126 					rc = efx_ef10_get_warm_boot_count(efx);
3127 					if (rc >= 0) {
3128 						nic_data->warm_boot_count = rc;
3129 						rc = 0;
3130 					}
3131 				}
3132 				nic_data->workaround_26807 = true;
3133 			} else if (rc == -EPERM) {
3134 				rc = 0;
3135 			}
3136 		}
3137 	}
3138 
3139 	if (!rc)
3140 		return 0;
3141 
3142 fail:
3143 	efx_ef10_ev_fini(channel);
3144 	return rc;
3145 }
3146 
3147 static void efx_ef10_ev_remove(struct efx_channel *channel)
3148 {
3149 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3150 }
3151 
3152 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3153 					   unsigned int rx_queue_label)
3154 {
3155 	struct efx_nic *efx = rx_queue->efx;
3156 
3157 	netif_info(efx, hw, efx->net_dev,
3158 		   "rx event arrived on queue %d labeled as queue %u\n",
3159 		   efx_rx_queue_index(rx_queue), rx_queue_label);
3160 
3161 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3162 }
3163 
3164 static void
3165 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3166 			     unsigned int actual, unsigned int expected)
3167 {
3168 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3169 	struct efx_nic *efx = rx_queue->efx;
3170 
3171 	netif_info(efx, hw, efx->net_dev,
3172 		   "dropped %d events (index=%d expected=%d)\n",
3173 		   dropped, actual, expected);
3174 
3175 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3176 }
3177 
3178 /* partially received RX was aborted. clean up. */
3179 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3180 {
3181 	unsigned int rx_desc_ptr;
3182 
3183 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3184 		  "scattered RX aborted (dropping %u buffers)\n",
3185 		  rx_queue->scatter_n);
3186 
3187 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3188 
3189 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3190 		      0, EFX_RX_PKT_DISCARD);
3191 
3192 	rx_queue->removed_count += rx_queue->scatter_n;
3193 	rx_queue->scatter_n = 0;
3194 	rx_queue->scatter_len = 0;
3195 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3196 }
3197 
3198 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3199 					   unsigned int n_packets,
3200 					   unsigned int rx_encap_hdr,
3201 					   unsigned int rx_l3_class,
3202 					   unsigned int rx_l4_class,
3203 					   const efx_qword_t *event)
3204 {
3205 	struct efx_nic *efx = channel->efx;
3206 	bool handled = false;
3207 
3208 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3209 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3210 			if (!efx->loopback_selftest)
3211 				channel->n_rx_eth_crc_err += n_packets;
3212 			return EFX_RX_PKT_DISCARD;
3213 		}
3214 		handled = true;
3215 	}
3216 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3217 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3218 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3219 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3220 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3221 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3222 			netdev_WARN(efx->net_dev,
3223 				    "invalid class for RX_IPCKSUM_ERR: event="
3224 				    EFX_QWORD_FMT "\n",
3225 				    EFX_QWORD_VAL(*event));
3226 		if (!efx->loopback_selftest)
3227 			*(rx_encap_hdr ?
3228 			  &channel->n_rx_outer_ip_hdr_chksum_err :
3229 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3230 		return 0;
3231 	}
3232 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3233 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3234 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3235 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3236 			      (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3237 			       rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
3238 			netdev_WARN(efx->net_dev,
3239 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3240 				    EFX_QWORD_FMT "\n",
3241 				    EFX_QWORD_VAL(*event));
3242 		if (!efx->loopback_selftest)
3243 			*(rx_encap_hdr ?
3244 			  &channel->n_rx_outer_tcp_udp_chksum_err :
3245 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3246 		return 0;
3247 	}
3248 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3249 		if (unlikely(!rx_encap_hdr))
3250 			netdev_WARN(efx->net_dev,
3251 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3252 				    EFX_QWORD_FMT "\n",
3253 				    EFX_QWORD_VAL(*event));
3254 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3255 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3256 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3257 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3258 			netdev_WARN(efx->net_dev,
3259 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3260 				    EFX_QWORD_FMT "\n",
3261 				    EFX_QWORD_VAL(*event));
3262 		if (!efx->loopback_selftest)
3263 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3264 		return 0;
3265 	}
3266 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3267 		if (unlikely(!rx_encap_hdr))
3268 			netdev_WARN(efx->net_dev,
3269 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3270 				    EFX_QWORD_FMT "\n",
3271 				    EFX_QWORD_VAL(*event));
3272 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3273 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3274 				  (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3275 				   rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
3276 			netdev_WARN(efx->net_dev,
3277 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3278 				    EFX_QWORD_FMT "\n",
3279 				    EFX_QWORD_VAL(*event));
3280 		if (!efx->loopback_selftest)
3281 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3282 		return 0;
3283 	}
3284 
3285 	WARN_ON(!handled); /* No error bits were recognised */
3286 	return 0;
3287 }
3288 
3289 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3290 				    const efx_qword_t *event)
3291 {
3292 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3293 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3294 	unsigned int n_descs, n_packets, i;
3295 	struct efx_nic *efx = channel->efx;
3296 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3297 	struct efx_rx_queue *rx_queue;
3298 	efx_qword_t errors;
3299 	bool rx_cont;
3300 	u16 flags = 0;
3301 
3302 	if (unlikely(READ_ONCE(efx->reset_pending)))
3303 		return 0;
3304 
3305 	/* Basic packet information */
3306 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3307 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3308 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3309 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3310 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
3311 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3312 	rx_encap_hdr =
3313 		nic_data->datapath_caps &
3314 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3315 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3316 		ESE_EZ_ENCAP_HDR_NONE;
3317 
3318 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3319 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3320 			    EFX_QWORD_FMT "\n",
3321 			    EFX_QWORD_VAL(*event));
3322 
3323 	rx_queue = efx_channel_get_rx_queue(channel);
3324 
3325 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3326 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3327 
3328 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3329 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3330 
3331 	if (n_descs != rx_queue->scatter_n + 1) {
3332 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3333 
3334 		/* detect rx abort */
3335 		if (unlikely(n_descs == rx_queue->scatter_n)) {
3336 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3337 				netdev_WARN(efx->net_dev,
3338 					    "invalid RX abort: scatter_n=%u event="
3339 					    EFX_QWORD_FMT "\n",
3340 					    rx_queue->scatter_n,
3341 					    EFX_QWORD_VAL(*event));
3342 			efx_ef10_handle_rx_abort(rx_queue);
3343 			return 0;
3344 		}
3345 
3346 		/* Check that RX completion merging is valid, i.e.
3347 		 * the current firmware supports it and this is a
3348 		 * non-scattered packet.
3349 		 */
3350 		if (!(nic_data->datapath_caps &
3351 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3352 		    rx_queue->scatter_n != 0 || rx_cont) {
3353 			efx_ef10_handle_rx_bad_lbits(
3354 				rx_queue, next_ptr_lbits,
3355 				(rx_queue->removed_count +
3356 				 rx_queue->scatter_n + 1) &
3357 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3358 			return 0;
3359 		}
3360 
3361 		/* Merged completion for multiple non-scattered packets */
3362 		rx_queue->scatter_n = 1;
3363 		rx_queue->scatter_len = 0;
3364 		n_packets = n_descs;
3365 		++channel->n_rx_merge_events;
3366 		channel->n_rx_merge_packets += n_packets;
3367 		flags |= EFX_RX_PKT_PREFIX_LEN;
3368 	} else {
3369 		++rx_queue->scatter_n;
3370 		rx_queue->scatter_len += rx_bytes;
3371 		if (rx_cont)
3372 			return 0;
3373 		n_packets = 1;
3374 	}
3375 
3376 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3377 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
3378 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3379 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3380 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3381 	EFX_AND_QWORD(errors, *event, errors);
3382 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3383 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3384 							 rx_encap_hdr,
3385 							 rx_l3_class, rx_l4_class,
3386 							 event);
3387 	} else {
3388 		bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3389 			      rx_l4_class == ESE_DZ_L4_CLASS_UDP;
3390 
3391 		switch (rx_encap_hdr) {
3392 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3393 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3394 			if (tcpudp)
3395 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3396 			break;
3397 		case ESE_EZ_ENCAP_HDR_GRE:
3398 		case ESE_EZ_ENCAP_HDR_NONE:
3399 			if (tcpudp)
3400 				flags |= EFX_RX_PKT_CSUMMED;
3401 			break;
3402 		default:
3403 			netdev_WARN(efx->net_dev,
3404 				    "unknown encapsulation type: event="
3405 				    EFX_QWORD_FMT "\n",
3406 				    EFX_QWORD_VAL(*event));
3407 		}
3408 	}
3409 
3410 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3411 		flags |= EFX_RX_PKT_TCP;
3412 
3413 	channel->irq_mod_score += 2 * n_packets;
3414 
3415 	/* Handle received packet(s) */
3416 	for (i = 0; i < n_packets; i++) {
3417 		efx_rx_packet(rx_queue,
3418 			      rx_queue->removed_count & rx_queue->ptr_mask,
3419 			      rx_queue->scatter_n, rx_queue->scatter_len,
3420 			      flags);
3421 		rx_queue->removed_count += rx_queue->scatter_n;
3422 	}
3423 
3424 	rx_queue->scatter_n = 0;
3425 	rx_queue->scatter_len = 0;
3426 
3427 	return n_packets;
3428 }
3429 
3430 static int
3431 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3432 {
3433 	struct efx_nic *efx = channel->efx;
3434 	struct efx_tx_queue *tx_queue;
3435 	unsigned int tx_ev_desc_ptr;
3436 	unsigned int tx_ev_q_label;
3437 	int tx_descs = 0;
3438 
3439 	if (unlikely(READ_ONCE(efx->reset_pending)))
3440 		return 0;
3441 
3442 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3443 		return 0;
3444 
3445 	/* Transmit completion */
3446 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3447 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3448 	tx_queue = efx_channel_get_tx_queue(channel,
3449 					    tx_ev_q_label % EFX_TXQ_TYPES);
3450 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3451 		    tx_queue->ptr_mask);
3452 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3453 
3454 	return tx_descs;
3455 }
3456 
3457 static void
3458 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3459 {
3460 	struct efx_nic *efx = channel->efx;
3461 	int subcode;
3462 
3463 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3464 
3465 	switch (subcode) {
3466 	case ESE_DZ_DRV_TIMER_EV:
3467 	case ESE_DZ_DRV_WAKE_UP_EV:
3468 		break;
3469 	case ESE_DZ_DRV_START_UP_EV:
3470 		/* event queue init complete. ok. */
3471 		break;
3472 	default:
3473 		netif_err(efx, hw, efx->net_dev,
3474 			  "channel %d unknown driver event type %d"
3475 			  " (data " EFX_QWORD_FMT ")\n",
3476 			  channel->channel, subcode,
3477 			  EFX_QWORD_VAL(*event));
3478 
3479 	}
3480 }
3481 
3482 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3483 						   efx_qword_t *event)
3484 {
3485 	struct efx_nic *efx = channel->efx;
3486 	u32 subcode;
3487 
3488 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3489 
3490 	switch (subcode) {
3491 	case EFX_EF10_TEST:
3492 		channel->event_test_cpu = raw_smp_processor_id();
3493 		break;
3494 	case EFX_EF10_REFILL:
3495 		/* The queue must be empty, so we won't receive any rx
3496 		 * events, so efx_process_channel() won't refill the
3497 		 * queue. Refill it here
3498 		 */
3499 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3500 		break;
3501 	default:
3502 		netif_err(efx, hw, efx->net_dev,
3503 			  "channel %d unknown driver event type %u"
3504 			  " (data " EFX_QWORD_FMT ")\n",
3505 			  channel->channel, (unsigned) subcode,
3506 			  EFX_QWORD_VAL(*event));
3507 	}
3508 }
3509 
3510 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3511 {
3512 	struct efx_nic *efx = channel->efx;
3513 	efx_qword_t event, *p_event;
3514 	unsigned int read_ptr;
3515 	int ev_code;
3516 	int tx_descs = 0;
3517 	int spent = 0;
3518 
3519 	if (quota <= 0)
3520 		return spent;
3521 
3522 	read_ptr = channel->eventq_read_ptr;
3523 
3524 	for (;;) {
3525 		p_event = efx_event(channel, read_ptr);
3526 		event = *p_event;
3527 
3528 		if (!efx_event_present(&event))
3529 			break;
3530 
3531 		EFX_SET_QWORD(*p_event);
3532 
3533 		++read_ptr;
3534 
3535 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3536 
3537 		netif_vdbg(efx, drv, efx->net_dev,
3538 			   "processing event on %d " EFX_QWORD_FMT "\n",
3539 			   channel->channel, EFX_QWORD_VAL(event));
3540 
3541 		switch (ev_code) {
3542 		case ESE_DZ_EV_CODE_MCDI_EV:
3543 			efx_mcdi_process_event(channel, &event);
3544 			break;
3545 		case ESE_DZ_EV_CODE_RX_EV:
3546 			spent += efx_ef10_handle_rx_event(channel, &event);
3547 			if (spent >= quota) {
3548 				/* XXX can we split a merged event to
3549 				 * avoid going over-quota?
3550 				 */
3551 				spent = quota;
3552 				goto out;
3553 			}
3554 			break;
3555 		case ESE_DZ_EV_CODE_TX_EV:
3556 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
3557 			if (tx_descs > efx->txq_entries) {
3558 				spent = quota;
3559 				goto out;
3560 			} else if (++spent == quota) {
3561 				goto out;
3562 			}
3563 			break;
3564 		case ESE_DZ_EV_CODE_DRIVER_EV:
3565 			efx_ef10_handle_driver_event(channel, &event);
3566 			if (++spent == quota)
3567 				goto out;
3568 			break;
3569 		case EFX_EF10_DRVGEN_EV:
3570 			efx_ef10_handle_driver_generated_event(channel, &event);
3571 			break;
3572 		default:
3573 			netif_err(efx, hw, efx->net_dev,
3574 				  "channel %d unknown event type %d"
3575 				  " (data " EFX_QWORD_FMT ")\n",
3576 				  channel->channel, ev_code,
3577 				  EFX_QWORD_VAL(event));
3578 		}
3579 	}
3580 
3581 out:
3582 	channel->eventq_read_ptr = read_ptr;
3583 	return spent;
3584 }
3585 
3586 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3587 {
3588 	struct efx_nic *efx = channel->efx;
3589 	efx_dword_t rptr;
3590 
3591 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3592 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3593 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3594 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3595 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3596 
3597 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3598 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3599 				     ERF_DD_EVQ_IND_RPTR,
3600 				     (channel->eventq_read_ptr &
3601 				      channel->eventq_mask) >>
3602 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3603 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3604 				channel->channel);
3605 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3606 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3607 				     ERF_DD_EVQ_IND_RPTR,
3608 				     channel->eventq_read_ptr &
3609 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3610 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3611 				channel->channel);
3612 	} else {
3613 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3614 				     channel->eventq_read_ptr &
3615 				     channel->eventq_mask);
3616 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3617 	}
3618 }
3619 
3620 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3621 {
3622 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3623 	struct efx_nic *efx = channel->efx;
3624 	efx_qword_t event;
3625 	int rc;
3626 
3627 	EFX_POPULATE_QWORD_2(event,
3628 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3629 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3630 
3631 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3632 
3633 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3634 	 * already swapped the data to little-endian order.
3635 	 */
3636 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3637 	       sizeof(efx_qword_t));
3638 
3639 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3640 			  NULL, 0, NULL);
3641 	if (rc != 0)
3642 		goto fail;
3643 
3644 	return;
3645 
3646 fail:
3647 	WARN_ON(true);
3648 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3649 }
3650 
3651 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3652 {
3653 	if (atomic_dec_and_test(&efx->active_queues))
3654 		wake_up(&efx->flush_wq);
3655 
3656 	WARN_ON(atomic_read(&efx->active_queues) < 0);
3657 }
3658 
3659 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3660 {
3661 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3662 	struct efx_channel *channel;
3663 	struct efx_tx_queue *tx_queue;
3664 	struct efx_rx_queue *rx_queue;
3665 	int pending;
3666 
3667 	/* If the MC has just rebooted, the TX/RX queues will have already been
3668 	 * torn down, but efx->active_queues needs to be set to zero.
3669 	 */
3670 	if (nic_data->must_realloc_vis) {
3671 		atomic_set(&efx->active_queues, 0);
3672 		return 0;
3673 	}
3674 
3675 	/* Do not attempt to write to the NIC during EEH recovery */
3676 	if (efx->state != STATE_RECOVERY) {
3677 		efx_for_each_channel(channel, efx) {
3678 			efx_for_each_channel_rx_queue(rx_queue, channel)
3679 				efx_ef10_rx_fini(rx_queue);
3680 			efx_for_each_channel_tx_queue(tx_queue, channel)
3681 				efx_ef10_tx_fini(tx_queue);
3682 		}
3683 
3684 		wait_event_timeout(efx->flush_wq,
3685 				   atomic_read(&efx->active_queues) == 0,
3686 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3687 		pending = atomic_read(&efx->active_queues);
3688 		if (pending) {
3689 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3690 				  pending);
3691 			return -ETIMEDOUT;
3692 		}
3693 	}
3694 
3695 	return 0;
3696 }
3697 
3698 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3699 {
3700 	atomic_set(&efx->active_queues, 0);
3701 }
3702 
3703 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3704 				  const struct efx_filter_spec *right)
3705 {
3706 	if ((left->match_flags ^ right->match_flags) |
3707 	    ((left->flags ^ right->flags) &
3708 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3709 		return false;
3710 
3711 	return memcmp(&left->outer_vid, &right->outer_vid,
3712 		      sizeof(struct efx_filter_spec) -
3713 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3714 }
3715 
3716 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3717 {
3718 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3719 	return jhash2((const u32 *)&spec->outer_vid,
3720 		      (sizeof(struct efx_filter_spec) -
3721 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3722 		      0);
3723 	/* XXX should we randomise the initval? */
3724 }
3725 
3726 /* Decide whether a filter should be exclusive or else should allow
3727  * delivery to additional recipients.  Currently we decide that
3728  * filters for specific local unicast MAC and IP addresses are
3729  * exclusive.
3730  */
3731 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3732 {
3733 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3734 	    !is_multicast_ether_addr(spec->loc_mac))
3735 		return true;
3736 
3737 	if ((spec->match_flags &
3738 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3739 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3740 		if (spec->ether_type == htons(ETH_P_IP) &&
3741 		    !ipv4_is_multicast(spec->loc_host[0]))
3742 			return true;
3743 		if (spec->ether_type == htons(ETH_P_IPV6) &&
3744 		    ((const u8 *)spec->loc_host)[0] != 0xff)
3745 			return true;
3746 	}
3747 
3748 	return false;
3749 }
3750 
3751 static struct efx_filter_spec *
3752 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3753 			   unsigned int filter_idx)
3754 {
3755 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3756 					  ~EFX_EF10_FILTER_FLAGS);
3757 }
3758 
3759 static unsigned int
3760 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3761 			   unsigned int filter_idx)
3762 {
3763 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3764 }
3765 
3766 static void
3767 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3768 			  unsigned int filter_idx,
3769 			  const struct efx_filter_spec *spec,
3770 			  unsigned int flags)
3771 {
3772 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
3773 }
3774 
3775 static void
3776 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
3777 					   const struct efx_filter_spec *spec,
3778 					   efx_dword_t *inbuf)
3779 {
3780 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3781 	u32 match_fields = 0, uc_match, mc_match;
3782 
3783 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3784 		       efx_ef10_filter_is_exclusive(spec) ?
3785 		       MC_CMD_FILTER_OP_IN_OP_INSERT :
3786 		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3787 
3788 	/* Convert match flags and values.  Unlike almost
3789 	 * everything else in MCDI, these fields are in
3790 	 * network byte order.
3791 	 */
3792 #define COPY_VALUE(value, mcdi_field)					     \
3793 	do {							     \
3794 		match_fields |=					     \
3795 			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
3796 			mcdi_field ## _LBN;			     \
3797 		BUILD_BUG_ON(					     \
3798 			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3799 			sizeof(value));				     \
3800 		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
3801 		       &value, sizeof(value));			     \
3802 	} while (0)
3803 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
3804 	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3805 		COPY_VALUE(spec->gen_field, mcdi_field);	     \
3806 	}
3807 	/* Handle encap filters first.  They will always be mismatch
3808 	 * (unknown UC or MC) filters
3809 	 */
3810 	if (encap_type) {
3811 		/* ether_type and outer_ip_proto need to be variables
3812 		 * because COPY_VALUE wants to memcpy them
3813 		 */
3814 		__be16 ether_type =
3815 			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
3816 			      ETH_P_IPV6 : ETH_P_IP);
3817 		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
3818 		u8 outer_ip_proto;
3819 
3820 		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
3821 		case EFX_ENCAP_TYPE_VXLAN:
3822 			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
3823 			/* fallthrough */
3824 		case EFX_ENCAP_TYPE_GENEVE:
3825 			COPY_VALUE(ether_type, ETHER_TYPE);
3826 			outer_ip_proto = IPPROTO_UDP;
3827 			COPY_VALUE(outer_ip_proto, IP_PROTO);
3828 			/* We always need to set the type field, even
3829 			 * though we're not matching on the TNI.
3830 			 */
3831 			MCDI_POPULATE_DWORD_1(inbuf,
3832 				FILTER_OP_EXT_IN_VNI_OR_VSID,
3833 				FILTER_OP_EXT_IN_VNI_TYPE,
3834 				vni_type);
3835 			break;
3836 		case EFX_ENCAP_TYPE_NVGRE:
3837 			COPY_VALUE(ether_type, ETHER_TYPE);
3838 			outer_ip_proto = IPPROTO_GRE;
3839 			COPY_VALUE(outer_ip_proto, IP_PROTO);
3840 			break;
3841 		default:
3842 			WARN_ON(1);
3843 		}
3844 
3845 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3846 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3847 	} else {
3848 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3849 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3850 	}
3851 
3852 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3853 		match_fields |=
3854 			is_multicast_ether_addr(spec->loc_mac) ?
3855 			1 << mc_match :
3856 			1 << uc_match;
3857 	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3858 	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3859 	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3860 	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3861 	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3862 	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3863 	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3864 	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3865 	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3866 	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3867 #undef COPY_FIELD
3868 #undef COPY_VALUE
3869 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3870 		       match_fields);
3871 }
3872 
3873 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3874 				      const struct efx_filter_spec *spec,
3875 				      efx_dword_t *inbuf, u64 handle,
3876 				      bool replacing)
3877 {
3878 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3879 	u32 flags = spec->flags;
3880 
3881 	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3882 
3883 	/* Remove RSS flag if we don't have an RSS context. */
3884 	if (flags & EFX_FILTER_FLAG_RX_RSS &&
3885 	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3886 	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3887 		flags &= ~EFX_FILTER_FLAG_RX_RSS;
3888 
3889 	if (replacing) {
3890 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3891 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
3892 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3893 	} else {
3894 		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3895 	}
3896 
3897 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3898 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3899 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3900 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3901 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3902 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3903 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3904 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3905 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3906 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3907 		       0 : spec->dmaq_id);
3908 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3909 		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3910 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3911 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3912 	if (flags & EFX_FILTER_FLAG_RX_RSS)
3913 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3914 			       spec->rss_context !=
3915 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3916 			       spec->rss_context : nic_data->rx_rss_context);
3917 }
3918 
3919 static int efx_ef10_filter_push(struct efx_nic *efx,
3920 				const struct efx_filter_spec *spec,
3921 				u64 *handle, bool replacing)
3922 {
3923 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
3924 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3925 	int rc;
3926 
3927 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3928 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3929 			  outbuf, sizeof(outbuf), NULL);
3930 	if (rc == 0)
3931 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3932 	if (rc == -ENOSPC)
3933 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3934 	return rc;
3935 }
3936 
3937 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3938 {
3939 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3940 	unsigned int match_flags = spec->match_flags;
3941 	unsigned int uc_match, mc_match;
3942 	u32 mcdi_flags = 0;
3943 
3944 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
3945 		unsigned int  old_match_flags = match_flags;		\
3946 		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
3947 		if (match_flags != old_match_flags)			\
3948 			mcdi_flags |=					\
3949 				(1 << ((encap) ?			\
3950 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
3951 				       mcdi_field ## _LBN :		\
3952 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
3953 				       mcdi_field ## _LBN));		\
3954 	}
3955 	/* inner or outer based on encap type */
3956 	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
3957 	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
3958 	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
3959 	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
3960 	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
3961 	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
3962 	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
3963 	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
3964 	/* always outer */
3965 	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
3966 	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
3967 #undef MAP_FILTER_TO_MCDI_FLAG
3968 
3969 	/* special handling for encap type, and mismatch */
3970 	if (encap_type) {
3971 		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
3972 		mcdi_flags |=
3973 			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
3974 		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
3975 
3976 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3977 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3978 	} else {
3979 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3980 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3981 	}
3982 
3983 	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3984 		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3985 		mcdi_flags |=
3986 			is_multicast_ether_addr(spec->loc_mac) ?
3987 			1 << mc_match :
3988 			1 << uc_match;
3989 	}
3990 
3991 	/* Did we map them all? */
3992 	WARN_ON_ONCE(match_flags);
3993 
3994 	return mcdi_flags;
3995 }
3996 
3997 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3998 			       const struct efx_filter_spec *spec)
3999 {
4000 	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4001 	unsigned int match_pri;
4002 
4003 	for (match_pri = 0;
4004 	     match_pri < table->rx_match_count;
4005 	     match_pri++)
4006 		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4007 			return match_pri;
4008 
4009 	return -EPROTONOSUPPORT;
4010 }
4011 
4012 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4013 				  struct efx_filter_spec *spec,
4014 				  bool replace_equal)
4015 {
4016 	struct efx_ef10_filter_table *table = efx->filter_state;
4017 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4018 	struct efx_filter_spec *saved_spec;
4019 	unsigned int match_pri, hash;
4020 	unsigned int priv_flags;
4021 	bool replacing = false;
4022 	int ins_index = -1;
4023 	DEFINE_WAIT(wait);
4024 	bool is_mc_recip;
4025 	s32 rc;
4026 
4027 	/* For now, only support RX filters */
4028 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4029 	    EFX_FILTER_FLAG_RX)
4030 		return -EINVAL;
4031 
4032 	rc = efx_ef10_filter_pri(table, spec);
4033 	if (rc < 0)
4034 		return rc;
4035 	match_pri = rc;
4036 
4037 	hash = efx_ef10_filter_hash(spec);
4038 	is_mc_recip = efx_filter_is_mc_recipient(spec);
4039 	if (is_mc_recip)
4040 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4041 
4042 	/* Find any existing filters with the same match tuple or
4043 	 * else a free slot to insert at.  If any of them are busy,
4044 	 * we have to wait and retry.
4045 	 */
4046 	for (;;) {
4047 		unsigned int depth = 1;
4048 		unsigned int i;
4049 
4050 		spin_lock_bh(&efx->filter_lock);
4051 
4052 		for (;;) {
4053 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4054 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4055 
4056 			if (!saved_spec) {
4057 				if (ins_index < 0)
4058 					ins_index = i;
4059 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4060 				if (table->entry[i].spec &
4061 				    EFX_EF10_FILTER_FLAG_BUSY)
4062 					break;
4063 				if (spec->priority < saved_spec->priority &&
4064 				    spec->priority != EFX_FILTER_PRI_AUTO) {
4065 					rc = -EPERM;
4066 					goto out_unlock;
4067 				}
4068 				if (!is_mc_recip) {
4069 					/* This is the only one */
4070 					if (spec->priority ==
4071 					    saved_spec->priority &&
4072 					    !replace_equal) {
4073 						rc = -EEXIST;
4074 						goto out_unlock;
4075 					}
4076 					ins_index = i;
4077 					goto found;
4078 				} else if (spec->priority >
4079 					   saved_spec->priority ||
4080 					   (spec->priority ==
4081 					    saved_spec->priority &&
4082 					    replace_equal)) {
4083 					if (ins_index < 0)
4084 						ins_index = i;
4085 					else
4086 						__set_bit(depth, mc_rem_map);
4087 				}
4088 			}
4089 
4090 			/* Once we reach the maximum search depth, use
4091 			 * the first suitable slot or return -EBUSY if
4092 			 * there was none
4093 			 */
4094 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4095 				if (ins_index < 0) {
4096 					rc = -EBUSY;
4097 					goto out_unlock;
4098 				}
4099 				goto found;
4100 			}
4101 
4102 			++depth;
4103 		}
4104 
4105 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4106 		spin_unlock_bh(&efx->filter_lock);
4107 		schedule();
4108 	}
4109 
4110 found:
4111 	/* Create a software table entry if necessary, and mark it
4112 	 * busy.  We might yet fail to insert, but any attempt to
4113 	 * insert a conflicting filter while we're waiting for the
4114 	 * firmware must find the busy entry.
4115 	 */
4116 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4117 	if (saved_spec) {
4118 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
4119 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4120 			/* Just make sure it won't be removed */
4121 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4122 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4123 			table->entry[ins_index].spec &=
4124 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4125 			rc = ins_index;
4126 			goto out_unlock;
4127 		}
4128 		replacing = true;
4129 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4130 	} else {
4131 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4132 		if (!saved_spec) {
4133 			rc = -ENOMEM;
4134 			goto out_unlock;
4135 		}
4136 		*saved_spec = *spec;
4137 		priv_flags = 0;
4138 	}
4139 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4140 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4141 
4142 	/* Mark lower-priority multicast recipients busy prior to removal */
4143 	if (is_mc_recip) {
4144 		unsigned int depth, i;
4145 
4146 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4147 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4148 			if (test_bit(depth, mc_rem_map))
4149 				table->entry[i].spec |=
4150 					EFX_EF10_FILTER_FLAG_BUSY;
4151 		}
4152 	}
4153 
4154 	spin_unlock_bh(&efx->filter_lock);
4155 
4156 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4157 				  replacing);
4158 
4159 	/* Finalise the software table entry */
4160 	spin_lock_bh(&efx->filter_lock);
4161 	if (rc == 0) {
4162 		if (replacing) {
4163 			/* Update the fields that may differ */
4164 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4165 				saved_spec->flags |=
4166 					EFX_FILTER_FLAG_RX_OVER_AUTO;
4167 			saved_spec->priority = spec->priority;
4168 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4169 			saved_spec->flags |= spec->flags;
4170 			saved_spec->rss_context = spec->rss_context;
4171 			saved_spec->dmaq_id = spec->dmaq_id;
4172 		}
4173 	} else if (!replacing) {
4174 		kfree(saved_spec);
4175 		saved_spec = NULL;
4176 	}
4177 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4178 
4179 	/* Remove and finalise entries for lower-priority multicast
4180 	 * recipients
4181 	 */
4182 	if (is_mc_recip) {
4183 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4184 		unsigned int depth, i;
4185 
4186 		memset(inbuf, 0, sizeof(inbuf));
4187 
4188 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4189 			if (!test_bit(depth, mc_rem_map))
4190 				continue;
4191 
4192 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4193 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4194 			priv_flags = efx_ef10_filter_entry_flags(table, i);
4195 
4196 			if (rc == 0) {
4197 				spin_unlock_bh(&efx->filter_lock);
4198 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4199 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4200 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4201 					       table->entry[i].handle);
4202 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4203 						  inbuf, sizeof(inbuf),
4204 						  NULL, 0, NULL);
4205 				spin_lock_bh(&efx->filter_lock);
4206 			}
4207 
4208 			if (rc == 0) {
4209 				kfree(saved_spec);
4210 				saved_spec = NULL;
4211 				priv_flags = 0;
4212 			} else {
4213 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4214 			}
4215 			efx_ef10_filter_set_entry(table, i, saved_spec,
4216 						  priv_flags);
4217 		}
4218 	}
4219 
4220 	/* If successful, return the inserted filter ID */
4221 	if (rc == 0)
4222 		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4223 
4224 	wake_up_all(&table->waitq);
4225 out_unlock:
4226 	spin_unlock_bh(&efx->filter_lock);
4227 	finish_wait(&table->waitq, &wait);
4228 	return rc;
4229 }
4230 
4231 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4232 {
4233 	/* no need to do anything here on EF10 */
4234 }
4235 
4236 /* Remove a filter.
4237  * If !by_index, remove by ID
4238  * If by_index, remove by index
4239  * Filter ID may come from userland and must be range-checked.
4240  */
4241 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4242 					   unsigned int priority_mask,
4243 					   u32 filter_id, bool by_index)
4244 {
4245 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4246 	struct efx_ef10_filter_table *table = efx->filter_state;
4247 	MCDI_DECLARE_BUF(inbuf,
4248 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4249 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4250 	struct efx_filter_spec *spec;
4251 	DEFINE_WAIT(wait);
4252 	int rc;
4253 
4254 	/* Find the software table entry and mark it busy.  Don't
4255 	 * remove it yet; any attempt to update while we're waiting
4256 	 * for the firmware must find the busy entry.
4257 	 */
4258 	for (;;) {
4259 		spin_lock_bh(&efx->filter_lock);
4260 		if (!(table->entry[filter_idx].spec &
4261 		      EFX_EF10_FILTER_FLAG_BUSY))
4262 			break;
4263 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4264 		spin_unlock_bh(&efx->filter_lock);
4265 		schedule();
4266 	}
4267 
4268 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4269 	if (!spec ||
4270 	    (!by_index &&
4271 	     efx_ef10_filter_pri(table, spec) !=
4272 	     efx_ef10_filter_get_unsafe_pri(filter_id))) {
4273 		rc = -ENOENT;
4274 		goto out_unlock;
4275 	}
4276 
4277 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4278 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4279 		/* Just remove flags */
4280 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4281 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4282 		rc = 0;
4283 		goto out_unlock;
4284 	}
4285 
4286 	if (!(priority_mask & (1U << spec->priority))) {
4287 		rc = -ENOENT;
4288 		goto out_unlock;
4289 	}
4290 
4291 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4292 	spin_unlock_bh(&efx->filter_lock);
4293 
4294 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4295 		/* Reset to an automatic filter */
4296 
4297 		struct efx_filter_spec new_spec = *spec;
4298 
4299 		new_spec.priority = EFX_FILTER_PRI_AUTO;
4300 		new_spec.flags = (EFX_FILTER_FLAG_RX |
4301 				  (efx_rss_enabled(efx) ?
4302 				   EFX_FILTER_FLAG_RX_RSS : 0));
4303 		new_spec.dmaq_id = 0;
4304 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4305 		rc = efx_ef10_filter_push(efx, &new_spec,
4306 					  &table->entry[filter_idx].handle,
4307 					  true);
4308 
4309 		spin_lock_bh(&efx->filter_lock);
4310 		if (rc == 0)
4311 			*spec = new_spec;
4312 	} else {
4313 		/* Really remove the filter */
4314 
4315 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4316 			       efx_ef10_filter_is_exclusive(spec) ?
4317 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4318 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4319 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4320 			       table->entry[filter_idx].handle);
4321 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4322 					inbuf, sizeof(inbuf), NULL, 0, NULL);
4323 
4324 		spin_lock_bh(&efx->filter_lock);
4325 		if ((rc == 0) || (rc == -ENOENT)) {
4326 			/* Filter removed OK or didn't actually exist */
4327 			kfree(spec);
4328 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4329 		} else {
4330 			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4331 					       MC_CMD_FILTER_OP_EXT_IN_LEN,
4332 					       NULL, 0, rc);
4333 		}
4334 	}
4335 
4336 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4337 	wake_up_all(&table->waitq);
4338 out_unlock:
4339 	spin_unlock_bh(&efx->filter_lock);
4340 	finish_wait(&table->waitq, &wait);
4341 	return rc;
4342 }
4343 
4344 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4345 				       enum efx_filter_priority priority,
4346 				       u32 filter_id)
4347 {
4348 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
4349 					       filter_id, false);
4350 }
4351 
4352 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4353 					  enum efx_filter_priority priority,
4354 					  u32 filter_id)
4355 {
4356 	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4357 		return;
4358 	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4359 }
4360 
4361 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4362 				    enum efx_filter_priority priority,
4363 				    u32 filter_id, struct efx_filter_spec *spec)
4364 {
4365 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4366 	struct efx_ef10_filter_table *table = efx->filter_state;
4367 	const struct efx_filter_spec *saved_spec;
4368 	int rc;
4369 
4370 	spin_lock_bh(&efx->filter_lock);
4371 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4372 	if (saved_spec && saved_spec->priority == priority &&
4373 	    efx_ef10_filter_pri(table, saved_spec) ==
4374 	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4375 		*spec = *saved_spec;
4376 		rc = 0;
4377 	} else {
4378 		rc = -ENOENT;
4379 	}
4380 	spin_unlock_bh(&efx->filter_lock);
4381 	return rc;
4382 }
4383 
4384 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4385 				     enum efx_filter_priority priority)
4386 {
4387 	unsigned int priority_mask;
4388 	unsigned int i;
4389 	int rc;
4390 
4391 	priority_mask = (((1U << (priority + 1)) - 1) &
4392 			 ~(1U << EFX_FILTER_PRI_AUTO));
4393 
4394 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4395 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4396 						     i, true);
4397 		if (rc && rc != -ENOENT)
4398 			return rc;
4399 	}
4400 
4401 	return 0;
4402 }
4403 
4404 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4405 					 enum efx_filter_priority priority)
4406 {
4407 	struct efx_ef10_filter_table *table = efx->filter_state;
4408 	unsigned int filter_idx;
4409 	s32 count = 0;
4410 
4411 	spin_lock_bh(&efx->filter_lock);
4412 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4413 		if (table->entry[filter_idx].spec &&
4414 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4415 		    priority)
4416 			++count;
4417 	}
4418 	spin_unlock_bh(&efx->filter_lock);
4419 	return count;
4420 }
4421 
4422 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4423 {
4424 	struct efx_ef10_filter_table *table = efx->filter_state;
4425 
4426 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4427 }
4428 
4429 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4430 				      enum efx_filter_priority priority,
4431 				      u32 *buf, u32 size)
4432 {
4433 	struct efx_ef10_filter_table *table = efx->filter_state;
4434 	struct efx_filter_spec *spec;
4435 	unsigned int filter_idx;
4436 	s32 count = 0;
4437 
4438 	spin_lock_bh(&efx->filter_lock);
4439 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4440 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4441 		if (spec && spec->priority == priority) {
4442 			if (count == size) {
4443 				count = -EMSGSIZE;
4444 				break;
4445 			}
4446 			buf[count++] =
4447 				efx_ef10_make_filter_id(
4448 					efx_ef10_filter_pri(table, spec),
4449 					filter_idx);
4450 		}
4451 	}
4452 	spin_unlock_bh(&efx->filter_lock);
4453 	return count;
4454 }
4455 
4456 #ifdef CONFIG_RFS_ACCEL
4457 
4458 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4459 
4460 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4461 				      struct efx_filter_spec *spec)
4462 {
4463 	struct efx_ef10_filter_table *table = efx->filter_state;
4464 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4465 	struct efx_filter_spec *saved_spec;
4466 	unsigned int hash, i, depth = 1;
4467 	bool replacing = false;
4468 	int ins_index = -1;
4469 	u64 cookie;
4470 	s32 rc;
4471 
4472 	/* Must be an RX filter without RSS and not for a multicast
4473 	 * destination address (RFS only works for connected sockets).
4474 	 * These restrictions allow us to pass only a tiny amount of
4475 	 * data through to the completion function.
4476 	 */
4477 	EFX_WARN_ON_PARANOID(spec->flags !=
4478 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4479 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4480 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4481 
4482 	hash = efx_ef10_filter_hash(spec);
4483 
4484 	spin_lock_bh(&efx->filter_lock);
4485 
4486 	/* Find any existing filter with the same match tuple or else
4487 	 * a free slot to insert at.  If an existing filter is busy,
4488 	 * we have to give up.
4489 	 */
4490 	for (;;) {
4491 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4492 		saved_spec = efx_ef10_filter_entry_spec(table, i);
4493 
4494 		if (!saved_spec) {
4495 			if (ins_index < 0)
4496 				ins_index = i;
4497 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4498 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4499 				rc = -EBUSY;
4500 				goto fail_unlock;
4501 			}
4502 			if (spec->priority < saved_spec->priority) {
4503 				rc = -EPERM;
4504 				goto fail_unlock;
4505 			}
4506 			ins_index = i;
4507 			break;
4508 		}
4509 
4510 		/* Once we reach the maximum search depth, use the
4511 		 * first suitable slot or return -EBUSY if there was
4512 		 * none
4513 		 */
4514 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4515 			if (ins_index < 0) {
4516 				rc = -EBUSY;
4517 				goto fail_unlock;
4518 			}
4519 			break;
4520 		}
4521 
4522 		++depth;
4523 	}
4524 
4525 	/* Create a software table entry if necessary, and mark it
4526 	 * busy.  We might yet fail to insert, but any attempt to
4527 	 * insert a conflicting filter while we're waiting for the
4528 	 * firmware must find the busy entry.
4529 	 */
4530 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4531 	if (saved_spec) {
4532 		replacing = true;
4533 	} else {
4534 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4535 		if (!saved_spec) {
4536 			rc = -ENOMEM;
4537 			goto fail_unlock;
4538 		}
4539 		*saved_spec = *spec;
4540 	}
4541 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4542 				  EFX_EF10_FILTER_FLAG_BUSY);
4543 
4544 	spin_unlock_bh(&efx->filter_lock);
4545 
4546 	/* Pack up the variables needed on completion */
4547 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4548 
4549 	efx_ef10_filter_push_prep(efx, spec, inbuf,
4550 				  table->entry[ins_index].handle, replacing);
4551 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4552 			   MC_CMD_FILTER_OP_OUT_LEN,
4553 			   efx_ef10_filter_rfs_insert_complete, cookie);
4554 
4555 	return ins_index;
4556 
4557 fail_unlock:
4558 	spin_unlock_bh(&efx->filter_lock);
4559 	return rc;
4560 }
4561 
4562 static void
4563 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4564 				    int rc, efx_dword_t *outbuf,
4565 				    size_t outlen_actual)
4566 {
4567 	struct efx_ef10_filter_table *table = efx->filter_state;
4568 	unsigned int ins_index, dmaq_id;
4569 	struct efx_filter_spec *spec;
4570 	bool replacing;
4571 
4572 	/* Unpack the cookie */
4573 	replacing = cookie >> 31;
4574 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4575 	dmaq_id = cookie & 0xffff;
4576 
4577 	spin_lock_bh(&efx->filter_lock);
4578 	spec = efx_ef10_filter_entry_spec(table, ins_index);
4579 	if (rc == 0) {
4580 		table->entry[ins_index].handle =
4581 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4582 		if (replacing)
4583 			spec->dmaq_id = dmaq_id;
4584 	} else if (!replacing) {
4585 		kfree(spec);
4586 		spec = NULL;
4587 	}
4588 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4589 	spin_unlock_bh(&efx->filter_lock);
4590 
4591 	wake_up_all(&table->waitq);
4592 }
4593 
4594 static void
4595 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4596 				    unsigned long filter_idx,
4597 				    int rc, efx_dword_t *outbuf,
4598 				    size_t outlen_actual);
4599 
4600 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4601 					   unsigned int filter_idx)
4602 {
4603 	struct efx_ef10_filter_table *table = efx->filter_state;
4604 	struct efx_filter_spec *spec =
4605 		efx_ef10_filter_entry_spec(table, filter_idx);
4606 	MCDI_DECLARE_BUF(inbuf,
4607 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4608 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4609 
4610 	if (!spec ||
4611 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4612 	    spec->priority != EFX_FILTER_PRI_HINT ||
4613 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4614 				 flow_id, filter_idx))
4615 		return false;
4616 
4617 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4618 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
4619 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4620 		       table->entry[filter_idx].handle);
4621 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4622 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
4623 		return false;
4624 
4625 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4626 	return true;
4627 }
4628 
4629 static void
4630 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4631 				    unsigned long filter_idx,
4632 				    int rc, efx_dword_t *outbuf,
4633 				    size_t outlen_actual)
4634 {
4635 	struct efx_ef10_filter_table *table = efx->filter_state;
4636 	struct efx_filter_spec *spec =
4637 		efx_ef10_filter_entry_spec(table, filter_idx);
4638 
4639 	spin_lock_bh(&efx->filter_lock);
4640 	if (rc == 0) {
4641 		kfree(spec);
4642 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4643 	}
4644 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4645 	wake_up_all(&table->waitq);
4646 	spin_unlock_bh(&efx->filter_lock);
4647 }
4648 
4649 #endif /* CONFIG_RFS_ACCEL */
4650 
4651 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4652 {
4653 	int match_flags = 0;
4654 
4655 #define MAP_FLAG(gen_flag, mcdi_field) do {				\
4656 		u32 old_mcdi_flags = mcdi_flags;			\
4657 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
4658 				     mcdi_field ## _LBN);		\
4659 		if (mcdi_flags != old_mcdi_flags)			\
4660 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4661 	} while (0)
4662 
4663 	if (encap) {
4664 		/* encap filters must specify encap type */
4665 		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4666 		/* and imply ethertype and ip proto */
4667 		mcdi_flags &=
4668 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4669 		mcdi_flags &=
4670 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4671 		/* VLAN tags refer to the outer packet */
4672 		MAP_FLAG(INNER_VID, INNER_VLAN);
4673 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4674 		/* everything else refers to the inner packet */
4675 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4676 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4677 		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4678 		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4679 		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4680 		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4681 		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4682 		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4683 		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4684 		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4685 	} else {
4686 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4687 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4688 		MAP_FLAG(REM_HOST, SRC_IP);
4689 		MAP_FLAG(LOC_HOST, DST_IP);
4690 		MAP_FLAG(REM_MAC, SRC_MAC);
4691 		MAP_FLAG(REM_PORT, SRC_PORT);
4692 		MAP_FLAG(LOC_MAC, DST_MAC);
4693 		MAP_FLAG(LOC_PORT, DST_PORT);
4694 		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4695 		MAP_FLAG(INNER_VID, INNER_VLAN);
4696 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4697 		MAP_FLAG(IP_PROTO, IP_PROTO);
4698 	}
4699 #undef MAP_FLAG
4700 
4701 	/* Did we map them all? */
4702 	if (mcdi_flags)
4703 		return -EINVAL;
4704 
4705 	return match_flags;
4706 }
4707 
4708 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4709 {
4710 	struct efx_ef10_filter_table *table = efx->filter_state;
4711 	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4712 
4713 	/* See comment in efx_ef10_filter_table_remove() */
4714 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4715 		return;
4716 
4717 	if (!table)
4718 		return;
4719 
4720 	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4721 		efx_ef10_filter_del_vlan_internal(efx, vlan);
4722 }
4723 
4724 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4725 					    bool encap,
4726 					    enum efx_filter_match_flags match_flags)
4727 {
4728 	unsigned int match_pri;
4729 	int mf;
4730 
4731 	for (match_pri = 0;
4732 	     match_pri < table->rx_match_count;
4733 	     match_pri++) {
4734 		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4735 				table->rx_match_mcdi_flags[match_pri]);
4736 		if (mf == match_flags)
4737 			return true;
4738 	}
4739 
4740 	return false;
4741 }
4742 
4743 static int
4744 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4745 				    struct efx_ef10_filter_table *table,
4746 				    bool encap)
4747 {
4748 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4749 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4750 	unsigned int pd_match_pri, pd_match_count;
4751 	size_t outlen;
4752 	int rc;
4753 
4754 	/* Find out which RX filter types are supported, and their priorities */
4755 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4756 		       encap ?
4757 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4758 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4759 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4760 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4761 			  &outlen);
4762 	if (rc)
4763 		return rc;
4764 
4765 	pd_match_count = MCDI_VAR_ARRAY_LEN(
4766 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4767 
4768 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4769 		u32 mcdi_flags =
4770 			MCDI_ARRAY_DWORD(
4771 				outbuf,
4772 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4773 				pd_match_pri);
4774 		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4775 		if (rc < 0) {
4776 			netif_dbg(efx, probe, efx->net_dev,
4777 				  "%s: fw flags %#x pri %u not supported in driver\n",
4778 				  __func__, mcdi_flags, pd_match_pri);
4779 		} else {
4780 			netif_dbg(efx, probe, efx->net_dev,
4781 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4782 				  __func__, mcdi_flags, pd_match_pri,
4783 				  rc, table->rx_match_count);
4784 			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4785 			table->rx_match_count++;
4786 		}
4787 	}
4788 
4789 	return 0;
4790 }
4791 
4792 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4793 {
4794 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4795 	struct net_device *net_dev = efx->net_dev;
4796 	struct efx_ef10_filter_table *table;
4797 	struct efx_ef10_vlan *vlan;
4798 	int rc;
4799 
4800 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4801 		return -EINVAL;
4802 
4803 	if (efx->filter_state) /* already probed */
4804 		return 0;
4805 
4806 	table = kzalloc(sizeof(*table), GFP_KERNEL);
4807 	if (!table)
4808 		return -ENOMEM;
4809 
4810 	table->rx_match_count = 0;
4811 	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4812 	if (rc)
4813 		goto fail;
4814 	if (nic_data->datapath_caps &
4815 		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4816 		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4817 	if (rc)
4818 		goto fail;
4819 	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4820 	    !(efx_ef10_filter_match_supported(table, false,
4821 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4822 	      efx_ef10_filter_match_supported(table, false,
4823 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4824 		netif_info(efx, probe, net_dev,
4825 			   "VLAN filters are not supported in this firmware variant\n");
4826 		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4827 		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4828 		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4829 	}
4830 
4831 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4832 	if (!table->entry) {
4833 		rc = -ENOMEM;
4834 		goto fail;
4835 	}
4836 
4837 	table->mc_promisc_last = false;
4838 	table->vlan_filter =
4839 		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4840 	INIT_LIST_HEAD(&table->vlan_list);
4841 
4842 	efx->filter_state = table;
4843 	init_waitqueue_head(&table->waitq);
4844 
4845 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4846 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4847 		if (rc)
4848 			goto fail_add_vlan;
4849 	}
4850 
4851 	return 0;
4852 
4853 fail_add_vlan:
4854 	efx_ef10_filter_cleanup_vlans(efx);
4855 	efx->filter_state = NULL;
4856 fail:
4857 	kfree(table);
4858 	return rc;
4859 }
4860 
4861 /* Caller must hold efx->filter_sem for read if race against
4862  * efx_ef10_filter_table_remove() is possible
4863  */
4864 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4865 {
4866 	struct efx_ef10_filter_table *table = efx->filter_state;
4867 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4868 	unsigned int invalid_filters = 0, failed = 0;
4869 	struct efx_ef10_filter_vlan *vlan;
4870 	struct efx_filter_spec *spec;
4871 	unsigned int filter_idx;
4872 	u32 mcdi_flags;
4873 	int match_pri;
4874 	int rc, i;
4875 
4876 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4877 
4878 	if (!nic_data->must_restore_filters)
4879 		return;
4880 
4881 	if (!table)
4882 		return;
4883 
4884 	spin_lock_bh(&efx->filter_lock);
4885 
4886 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4887 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4888 		if (!spec)
4889 			continue;
4890 
4891 		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4892 		match_pri = 0;
4893 		while (match_pri < table->rx_match_count &&
4894 		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
4895 			++match_pri;
4896 		if (match_pri >= table->rx_match_count) {
4897 			invalid_filters++;
4898 			goto not_restored;
4899 		}
4900 		if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4901 		    spec->rss_context != nic_data->rx_rss_context)
4902 			netif_warn(efx, drv, efx->net_dev,
4903 				   "Warning: unable to restore a filter with specific RSS context.\n");
4904 
4905 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4906 		spin_unlock_bh(&efx->filter_lock);
4907 
4908 		rc = efx_ef10_filter_push(efx, spec,
4909 					  &table->entry[filter_idx].handle,
4910 					  false);
4911 		if (rc)
4912 			failed++;
4913 		spin_lock_bh(&efx->filter_lock);
4914 
4915 		if (rc) {
4916 not_restored:
4917 			list_for_each_entry(vlan, &table->vlan_list, list)
4918 				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
4919 					if (vlan->default_filters[i] == filter_idx)
4920 						vlan->default_filters[i] =
4921 							EFX_EF10_FILTER_ID_INVALID;
4922 
4923 			kfree(spec);
4924 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4925 		} else {
4926 			table->entry[filter_idx].spec &=
4927 				~EFX_EF10_FILTER_FLAG_BUSY;
4928 		}
4929 	}
4930 
4931 	spin_unlock_bh(&efx->filter_lock);
4932 
4933 	/* This can happen validly if the MC's capabilities have changed, so
4934 	 * is not an error.
4935 	 */
4936 	if (invalid_filters)
4937 		netif_dbg(efx, drv, efx->net_dev,
4938 			  "Did not restore %u filters that are now unsupported.\n",
4939 			  invalid_filters);
4940 
4941 	if (failed)
4942 		netif_err(efx, hw, efx->net_dev,
4943 			  "unable to restore %u filters\n", failed);
4944 	else
4945 		nic_data->must_restore_filters = false;
4946 }
4947 
4948 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4949 {
4950 	struct efx_ef10_filter_table *table = efx->filter_state;
4951 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4952 	struct efx_filter_spec *spec;
4953 	unsigned int filter_idx;
4954 	int rc;
4955 
4956 	efx_ef10_filter_cleanup_vlans(efx);
4957 	efx->filter_state = NULL;
4958 	/* If we were called without locking, then it's not safe to free
4959 	 * the table as others might be using it.  So we just WARN, leak
4960 	 * the memory, and potentially get an inconsistent filter table
4961 	 * state.
4962 	 * This should never actually happen.
4963 	 */
4964 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4965 		return;
4966 
4967 	if (!table)
4968 		return;
4969 
4970 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4971 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4972 		if (!spec)
4973 			continue;
4974 
4975 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4976 			       efx_ef10_filter_is_exclusive(spec) ?
4977 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4978 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4979 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4980 			       table->entry[filter_idx].handle);
4981 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4982 					sizeof(inbuf), NULL, 0, NULL);
4983 		if (rc)
4984 			netif_info(efx, drv, efx->net_dev,
4985 				   "%s: filter %04x remove failed\n",
4986 				   __func__, filter_idx);
4987 		kfree(spec);
4988 	}
4989 
4990 	vfree(table->entry);
4991 	kfree(table);
4992 }
4993 
4994 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4995 {
4996 	struct efx_ef10_filter_table *table = efx->filter_state;
4997 	unsigned int filter_idx;
4998 
4999 	if (*id != EFX_EF10_FILTER_ID_INVALID) {
5000 		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5001 		if (!table->entry[filter_idx].spec)
5002 			netif_dbg(efx, drv, efx->net_dev,
5003 				  "marked null spec old %04x:%04x\n", *id,
5004 				  filter_idx);
5005 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5006 		*id = EFX_EF10_FILTER_ID_INVALID;
5007 	}
5008 }
5009 
5010 /* Mark old per-VLAN filters that may need to be removed */
5011 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5012 					   struct efx_ef10_filter_vlan *vlan)
5013 {
5014 	struct efx_ef10_filter_table *table = efx->filter_state;
5015 	unsigned int i;
5016 
5017 	for (i = 0; i < table->dev_uc_count; i++)
5018 		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5019 	for (i = 0; i < table->dev_mc_count; i++)
5020 		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5021 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5022 		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5023 }
5024 
5025 /* Mark old filters that may need to be removed.
5026  * Caller must hold efx->filter_sem for read if race against
5027  * efx_ef10_filter_table_remove() is possible
5028  */
5029 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5030 {
5031 	struct efx_ef10_filter_table *table = efx->filter_state;
5032 	struct efx_ef10_filter_vlan *vlan;
5033 
5034 	spin_lock_bh(&efx->filter_lock);
5035 	list_for_each_entry(vlan, &table->vlan_list, list)
5036 		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5037 	spin_unlock_bh(&efx->filter_lock);
5038 }
5039 
5040 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5041 {
5042 	struct efx_ef10_filter_table *table = efx->filter_state;
5043 	struct net_device *net_dev = efx->net_dev;
5044 	struct netdev_hw_addr *uc;
5045 	unsigned int i;
5046 
5047 	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5048 	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5049 	i = 1;
5050 	netdev_for_each_uc_addr(uc, net_dev) {
5051 		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5052 			table->uc_promisc = true;
5053 			break;
5054 		}
5055 		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5056 		i++;
5057 	}
5058 
5059 	table->dev_uc_count = i;
5060 }
5061 
5062 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5063 {
5064 	struct efx_ef10_filter_table *table = efx->filter_state;
5065 	struct net_device *net_dev = efx->net_dev;
5066 	struct netdev_hw_addr *mc;
5067 	unsigned int i;
5068 
5069 	table->mc_overflow = false;
5070 	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5071 
5072 	i = 0;
5073 	netdev_for_each_mc_addr(mc, net_dev) {
5074 		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5075 			table->mc_promisc = true;
5076 			table->mc_overflow = true;
5077 			break;
5078 		}
5079 		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5080 		i++;
5081 	}
5082 
5083 	table->dev_mc_count = i;
5084 }
5085 
5086 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5087 					    struct efx_ef10_filter_vlan *vlan,
5088 					    bool multicast, bool rollback)
5089 {
5090 	struct efx_ef10_filter_table *table = efx->filter_state;
5091 	struct efx_ef10_dev_addr *addr_list;
5092 	enum efx_filter_flags filter_flags;
5093 	struct efx_filter_spec spec;
5094 	u8 baddr[ETH_ALEN];
5095 	unsigned int i, j;
5096 	int addr_count;
5097 	u16 *ids;
5098 	int rc;
5099 
5100 	if (multicast) {
5101 		addr_list = table->dev_mc_list;
5102 		addr_count = table->dev_mc_count;
5103 		ids = vlan->mc;
5104 	} else {
5105 		addr_list = table->dev_uc_list;
5106 		addr_count = table->dev_uc_count;
5107 		ids = vlan->uc;
5108 	}
5109 
5110 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5111 
5112 	/* Insert/renew filters */
5113 	for (i = 0; i < addr_count; i++) {
5114 		EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5115 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5116 		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5117 		rc = efx_ef10_filter_insert(efx, &spec, true);
5118 		if (rc < 0) {
5119 			if (rollback) {
5120 				netif_info(efx, drv, efx->net_dev,
5121 					   "efx_ef10_filter_insert failed rc=%d\n",
5122 					   rc);
5123 				/* Fall back to promiscuous */
5124 				for (j = 0; j < i; j++) {
5125 					efx_ef10_filter_remove_unsafe(
5126 						efx, EFX_FILTER_PRI_AUTO,
5127 						ids[j]);
5128 					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5129 				}
5130 				return rc;
5131 			} else {
5132 				/* keep invalid ID, and carry on */
5133 			}
5134 		} else {
5135 			ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5136 		}
5137 	}
5138 
5139 	if (multicast && rollback) {
5140 		/* Also need an Ethernet broadcast filter */
5141 		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5142 				     EFX_EF10_FILTER_ID_INVALID);
5143 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5144 		eth_broadcast_addr(baddr);
5145 		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5146 		rc = efx_ef10_filter_insert(efx, &spec, true);
5147 		if (rc < 0) {
5148 			netif_warn(efx, drv, efx->net_dev,
5149 				   "Broadcast filter insert failed rc=%d\n", rc);
5150 			/* Fall back to promiscuous */
5151 			for (j = 0; j < i; j++) {
5152 				efx_ef10_filter_remove_unsafe(
5153 					efx, EFX_FILTER_PRI_AUTO,
5154 					ids[j]);
5155 				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5156 			}
5157 			return rc;
5158 		} else {
5159 			vlan->default_filters[EFX_EF10_BCAST] =
5160 				efx_ef10_filter_get_unsafe_id(rc);
5161 		}
5162 	}
5163 
5164 	return 0;
5165 }
5166 
5167 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5168 				      struct efx_ef10_filter_vlan *vlan,
5169 				      enum efx_encap_type encap_type,
5170 				      bool multicast, bool rollback)
5171 {
5172 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5173 	enum efx_filter_flags filter_flags;
5174 	struct efx_filter_spec spec;
5175 	u8 baddr[ETH_ALEN];
5176 	int rc;
5177 	u16 *id;
5178 
5179 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5180 
5181 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5182 
5183 	if (multicast)
5184 		efx_filter_set_mc_def(&spec);
5185 	else
5186 		efx_filter_set_uc_def(&spec);
5187 
5188 	if (encap_type) {
5189 		if (nic_data->datapath_caps &
5190 		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5191 			efx_filter_set_encap_type(&spec, encap_type);
5192 		else
5193 			/* don't insert encap filters on non-supporting
5194 			 * platforms. ID will be left as INVALID.
5195 			 */
5196 			return 0;
5197 	}
5198 
5199 	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5200 		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5201 
5202 	rc = efx_ef10_filter_insert(efx, &spec, true);
5203 	if (rc < 0) {
5204 		const char *um = multicast ? "Multicast" : "Unicast";
5205 		const char *encap_name = "";
5206 		const char *encap_ipv = "";
5207 
5208 		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5209 		    EFX_ENCAP_TYPE_VXLAN)
5210 			encap_name = "VXLAN ";
5211 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5212 			 EFX_ENCAP_TYPE_NVGRE)
5213 			encap_name = "NVGRE ";
5214 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5215 			 EFX_ENCAP_TYPE_GENEVE)
5216 			encap_name = "GENEVE ";
5217 		if (encap_type & EFX_ENCAP_FLAG_IPV6)
5218 			encap_ipv = "IPv6 ";
5219 		else if (encap_type)
5220 			encap_ipv = "IPv4 ";
5221 
5222 		/* unprivileged functions can't insert mismatch filters
5223 		 * for encapsulated or unicast traffic, so downgrade
5224 		 * those warnings to debug.
5225 		 */
5226 		netif_cond_dbg(efx, drv, efx->net_dev,
5227 			       rc == -EPERM && (encap_type || !multicast), warn,
5228 			       "%s%s%s mismatch filter insert failed rc=%d\n",
5229 			       encap_name, encap_ipv, um, rc);
5230 	} else if (multicast) {
5231 		/* mapping from encap types to default filter IDs (multicast) */
5232 		static enum efx_ef10_default_filters map[] = {
5233 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5234 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5235 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5236 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5237 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5238 				EFX_EF10_VXLAN6_MCDEF,
5239 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5240 				EFX_EF10_NVGRE6_MCDEF,
5241 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5242 				EFX_EF10_GENEVE6_MCDEF,
5243 		};
5244 
5245 		/* quick bounds check (BCAST result impossible) */
5246 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5247 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5248 			WARN_ON(1);
5249 			return -EINVAL;
5250 		}
5251 		/* then follow map */
5252 		id = &vlan->default_filters[map[encap_type]];
5253 
5254 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5255 		*id = efx_ef10_filter_get_unsafe_id(rc);
5256 		if (!nic_data->workaround_26807 && !encap_type) {
5257 			/* Also need an Ethernet broadcast filter */
5258 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5259 					   filter_flags, 0);
5260 			eth_broadcast_addr(baddr);
5261 			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5262 			rc = efx_ef10_filter_insert(efx, &spec, true);
5263 			if (rc < 0) {
5264 				netif_warn(efx, drv, efx->net_dev,
5265 					   "Broadcast filter insert failed rc=%d\n",
5266 					   rc);
5267 				if (rollback) {
5268 					/* Roll back the mc_def filter */
5269 					efx_ef10_filter_remove_unsafe(
5270 							efx, EFX_FILTER_PRI_AUTO,
5271 							*id);
5272 					*id = EFX_EF10_FILTER_ID_INVALID;
5273 					return rc;
5274 				}
5275 			} else {
5276 				EFX_WARN_ON_PARANOID(
5277 					vlan->default_filters[EFX_EF10_BCAST] !=
5278 					EFX_EF10_FILTER_ID_INVALID);
5279 				vlan->default_filters[EFX_EF10_BCAST] =
5280 					efx_ef10_filter_get_unsafe_id(rc);
5281 			}
5282 		}
5283 		rc = 0;
5284 	} else {
5285 		/* mapping from encap types to default filter IDs (unicast) */
5286 		static enum efx_ef10_default_filters map[] = {
5287 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5288 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5289 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5290 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5291 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5292 				EFX_EF10_VXLAN6_UCDEF,
5293 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5294 				EFX_EF10_NVGRE6_UCDEF,
5295 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5296 				EFX_EF10_GENEVE6_UCDEF,
5297 		};
5298 
5299 		/* quick bounds check (BCAST result impossible) */
5300 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5301 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5302 			WARN_ON(1);
5303 			return -EINVAL;
5304 		}
5305 		/* then follow map */
5306 		id = &vlan->default_filters[map[encap_type]];
5307 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5308 		*id = rc;
5309 		rc = 0;
5310 	}
5311 	return rc;
5312 }
5313 
5314 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5315  * flag or removes these filters, we don't need to hold the filter_lock while
5316  * scanning for these filters.
5317  */
5318 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5319 {
5320 	struct efx_ef10_filter_table *table = efx->filter_state;
5321 	int remove_failed = 0;
5322 	int remove_noent = 0;
5323 	int rc;
5324 	int i;
5325 
5326 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5327 		if (READ_ONCE(table->entry[i].spec) &
5328 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5329 			rc = efx_ef10_filter_remove_internal(efx,
5330 					1U << EFX_FILTER_PRI_AUTO, i, true);
5331 			if (rc == -ENOENT)
5332 				remove_noent++;
5333 			else if (rc)
5334 				remove_failed++;
5335 		}
5336 	}
5337 
5338 	if (remove_failed)
5339 		netif_info(efx, drv, efx->net_dev,
5340 			   "%s: failed to remove %d filters\n",
5341 			   __func__, remove_failed);
5342 	if (remove_noent)
5343 		netif_info(efx, drv, efx->net_dev,
5344 			   "%s: failed to remove %d non-existent filters\n",
5345 			   __func__, remove_noent);
5346 }
5347 
5348 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5349 {
5350 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5351 	u8 mac_old[ETH_ALEN];
5352 	int rc, rc2;
5353 
5354 	/* Only reconfigure a PF-created vport */
5355 	if (is_zero_ether_addr(nic_data->vport_mac))
5356 		return 0;
5357 
5358 	efx_device_detach_sync(efx);
5359 	efx_net_stop(efx->net_dev);
5360 	down_write(&efx->filter_sem);
5361 	efx_ef10_filter_table_remove(efx);
5362 	up_write(&efx->filter_sem);
5363 
5364 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5365 	if (rc)
5366 		goto restore_filters;
5367 
5368 	ether_addr_copy(mac_old, nic_data->vport_mac);
5369 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5370 				    nic_data->vport_mac);
5371 	if (rc)
5372 		goto restore_vadaptor;
5373 
5374 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5375 				    efx->net_dev->dev_addr);
5376 	if (!rc) {
5377 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5378 	} else {
5379 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5380 		if (rc2) {
5381 			/* Failed to add original MAC, so clear vport_mac */
5382 			eth_zero_addr(nic_data->vport_mac);
5383 			goto reset_nic;
5384 		}
5385 	}
5386 
5387 restore_vadaptor:
5388 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5389 	if (rc2)
5390 		goto reset_nic;
5391 restore_filters:
5392 	down_write(&efx->filter_sem);
5393 	rc2 = efx_ef10_filter_table_probe(efx);
5394 	up_write(&efx->filter_sem);
5395 	if (rc2)
5396 		goto reset_nic;
5397 
5398 	rc2 = efx_net_open(efx->net_dev);
5399 	if (rc2)
5400 		goto reset_nic;
5401 
5402 	efx_device_attach_if_not_resetting(efx);
5403 
5404 	return rc;
5405 
5406 reset_nic:
5407 	netif_err(efx, drv, efx->net_dev,
5408 		  "Failed to restore when changing MAC address - scheduling reset\n");
5409 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5410 
5411 	return rc ? rc : rc2;
5412 }
5413 
5414 /* Caller must hold efx->filter_sem for read if race against
5415  * efx_ef10_filter_table_remove() is possible
5416  */
5417 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5418 					      struct efx_ef10_filter_vlan *vlan)
5419 {
5420 	struct efx_ef10_filter_table *table = efx->filter_state;
5421 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5422 
5423 	/* Do not install unspecified VID if VLAN filtering is enabled.
5424 	 * Do not install all specified VIDs if VLAN filtering is disabled.
5425 	 */
5426 	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5427 		return;
5428 
5429 	/* Insert/renew unicast filters */
5430 	if (table->uc_promisc) {
5431 		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5432 					   false, false);
5433 		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5434 	} else {
5435 		/* If any of the filters failed to insert, fall back to
5436 		 * promiscuous mode - add in the uc_def filter.  But keep
5437 		 * our individual unicast filters.
5438 		 */
5439 		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5440 			efx_ef10_filter_insert_def(efx, vlan,
5441 						   EFX_ENCAP_TYPE_NONE,
5442 						   false, false);
5443 	}
5444 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5445 				   false, false);
5446 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5447 					      EFX_ENCAP_FLAG_IPV6,
5448 				   false, false);
5449 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5450 				   false, false);
5451 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5452 					      EFX_ENCAP_FLAG_IPV6,
5453 				   false, false);
5454 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5455 				   false, false);
5456 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5457 					      EFX_ENCAP_FLAG_IPV6,
5458 				   false, false);
5459 
5460 	/* Insert/renew multicast filters */
5461 	/* If changing promiscuous state with cascaded multicast filters, remove
5462 	 * old filters first, so that packets are dropped rather than duplicated
5463 	 */
5464 	if (nic_data->workaround_26807 &&
5465 	    table->mc_promisc_last != table->mc_promisc)
5466 		efx_ef10_filter_remove_old(efx);
5467 	if (table->mc_promisc) {
5468 		if (nic_data->workaround_26807) {
5469 			/* If we failed to insert promiscuous filters, rollback
5470 			 * and fall back to individual multicast filters
5471 			 */
5472 			if (efx_ef10_filter_insert_def(efx, vlan,
5473 						       EFX_ENCAP_TYPE_NONE,
5474 						       true, true)) {
5475 				/* Changing promisc state, so remove old filters */
5476 				efx_ef10_filter_remove_old(efx);
5477 				efx_ef10_filter_insert_addr_list(efx, vlan,
5478 								 true, false);
5479 			}
5480 		} else {
5481 			/* If we failed to insert promiscuous filters, don't
5482 			 * rollback.  Regardless, also insert the mc_list,
5483 			 * unless it's incomplete due to overflow
5484 			 */
5485 			efx_ef10_filter_insert_def(efx, vlan,
5486 						   EFX_ENCAP_TYPE_NONE,
5487 						   true, false);
5488 			if (!table->mc_overflow)
5489 				efx_ef10_filter_insert_addr_list(efx, vlan,
5490 								 true, false);
5491 		}
5492 	} else {
5493 		/* If any filters failed to insert, rollback and fall back to
5494 		 * promiscuous mode - mc_def filter and maybe broadcast.  If
5495 		 * that fails, roll back again and insert as many of our
5496 		 * individual multicast filters as we can.
5497 		 */
5498 		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5499 			/* Changing promisc state, so remove old filters */
5500 			if (nic_data->workaround_26807)
5501 				efx_ef10_filter_remove_old(efx);
5502 			if (efx_ef10_filter_insert_def(efx, vlan,
5503 						       EFX_ENCAP_TYPE_NONE,
5504 						       true, true))
5505 				efx_ef10_filter_insert_addr_list(efx, vlan,
5506 								 true, false);
5507 		}
5508 	}
5509 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5510 				   true, false);
5511 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5512 					      EFX_ENCAP_FLAG_IPV6,
5513 				   true, false);
5514 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5515 				   true, false);
5516 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5517 					      EFX_ENCAP_FLAG_IPV6,
5518 				   true, false);
5519 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5520 				   true, false);
5521 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5522 					      EFX_ENCAP_FLAG_IPV6,
5523 				   true, false);
5524 }
5525 
5526 /* Caller must hold efx->filter_sem for read if race against
5527  * efx_ef10_filter_table_remove() is possible
5528  */
5529 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5530 {
5531 	struct efx_ef10_filter_table *table = efx->filter_state;
5532 	struct net_device *net_dev = efx->net_dev;
5533 	struct efx_ef10_filter_vlan *vlan;
5534 	bool vlan_filter;
5535 
5536 	if (!efx_dev_registered(efx))
5537 		return;
5538 
5539 	if (!table)
5540 		return;
5541 
5542 	efx_ef10_filter_mark_old(efx);
5543 
5544 	/* Copy/convert the address lists; add the primary station
5545 	 * address and broadcast address
5546 	 */
5547 	netif_addr_lock_bh(net_dev);
5548 	efx_ef10_filter_uc_addr_list(efx);
5549 	efx_ef10_filter_mc_addr_list(efx);
5550 	netif_addr_unlock_bh(net_dev);
5551 
5552 	/* If VLAN filtering changes, all old filters are finally removed.
5553 	 * Do it in advance to avoid conflicts for unicast untagged and
5554 	 * VLAN 0 tagged filters.
5555 	 */
5556 	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5557 	if (table->vlan_filter != vlan_filter) {
5558 		table->vlan_filter = vlan_filter;
5559 		efx_ef10_filter_remove_old(efx);
5560 	}
5561 
5562 	list_for_each_entry(vlan, &table->vlan_list, list)
5563 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5564 
5565 	efx_ef10_filter_remove_old(efx);
5566 	table->mc_promisc_last = table->mc_promisc;
5567 }
5568 
5569 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5570 {
5571 	struct efx_ef10_filter_table *table = efx->filter_state;
5572 	struct efx_ef10_filter_vlan *vlan;
5573 
5574 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5575 
5576 	list_for_each_entry(vlan, &table->vlan_list, list) {
5577 		if (vlan->vid == vid)
5578 			return vlan;
5579 	}
5580 
5581 	return NULL;
5582 }
5583 
5584 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5585 {
5586 	struct efx_ef10_filter_table *table = efx->filter_state;
5587 	struct efx_ef10_filter_vlan *vlan;
5588 	unsigned int i;
5589 
5590 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5591 		return -EINVAL;
5592 
5593 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5594 	if (WARN_ON(vlan)) {
5595 		netif_err(efx, drv, efx->net_dev,
5596 			  "VLAN %u already added\n", vid);
5597 		return -EALREADY;
5598 	}
5599 
5600 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5601 	if (!vlan)
5602 		return -ENOMEM;
5603 
5604 	vlan->vid = vid;
5605 
5606 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5607 		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5608 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5609 		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5610 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5611 		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5612 
5613 	list_add_tail(&vlan->list, &table->vlan_list);
5614 
5615 	if (efx_dev_registered(efx))
5616 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5617 
5618 	return 0;
5619 }
5620 
5621 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5622 					      struct efx_ef10_filter_vlan *vlan)
5623 {
5624 	unsigned int i;
5625 
5626 	/* See comment in efx_ef10_filter_table_remove() */
5627 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5628 		return;
5629 
5630 	list_del(&vlan->list);
5631 
5632 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5633 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5634 					      vlan->uc[i]);
5635 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5636 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5637 					      vlan->mc[i]);
5638 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5639 		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5640 			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5641 						      vlan->default_filters[i]);
5642 
5643 	kfree(vlan);
5644 }
5645 
5646 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5647 {
5648 	struct efx_ef10_filter_vlan *vlan;
5649 
5650 	/* See comment in efx_ef10_filter_table_remove() */
5651 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5652 		return;
5653 
5654 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5655 	if (!vlan) {
5656 		netif_err(efx, drv, efx->net_dev,
5657 			  "VLAN %u not found in filter state\n", vid);
5658 		return;
5659 	}
5660 
5661 	efx_ef10_filter_del_vlan_internal(efx, vlan);
5662 }
5663 
5664 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5665 {
5666 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5667 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5668 	bool was_enabled = efx->port_enabled;
5669 	int rc;
5670 
5671 	efx_device_detach_sync(efx);
5672 	efx_net_stop(efx->net_dev);
5673 
5674 	mutex_lock(&efx->mac_lock);
5675 	down_write(&efx->filter_sem);
5676 	efx_ef10_filter_table_remove(efx);
5677 
5678 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5679 			efx->net_dev->dev_addr);
5680 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5681 		       nic_data->vport_id);
5682 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5683 				sizeof(inbuf), NULL, 0, NULL);
5684 
5685 	efx_ef10_filter_table_probe(efx);
5686 	up_write(&efx->filter_sem);
5687 	mutex_unlock(&efx->mac_lock);
5688 
5689 	if (was_enabled)
5690 		efx_net_open(efx->net_dev);
5691 	efx_device_attach_if_not_resetting(efx);
5692 
5693 #ifdef CONFIG_SFC_SRIOV
5694 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5695 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5696 
5697 		if (rc == -EPERM) {
5698 			struct efx_nic *efx_pf;
5699 
5700 			/* Switch to PF and change MAC address on vport */
5701 			efx_pf = pci_get_drvdata(pci_dev_pf);
5702 
5703 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5704 						       nic_data->vf_index,
5705 						       efx->net_dev->dev_addr);
5706 		} else if (!rc) {
5707 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5708 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5709 			unsigned int i;
5710 
5711 			/* MAC address successfully changed by VF (with MAC
5712 			 * spoofing) so update the parent PF if possible.
5713 			 */
5714 			for (i = 0; i < efx_pf->vf_count; ++i) {
5715 				struct ef10_vf *vf = nic_data->vf + i;
5716 
5717 				if (vf->efx == efx) {
5718 					ether_addr_copy(vf->mac,
5719 							efx->net_dev->dev_addr);
5720 					return 0;
5721 				}
5722 			}
5723 		}
5724 	} else
5725 #endif
5726 	if (rc == -EPERM) {
5727 		netif_err(efx, drv, efx->net_dev,
5728 			  "Cannot change MAC address; use sfboot to enable"
5729 			  " mac-spoofing on this interface\n");
5730 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5731 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5732 		 * fall-back to the method of changing the MAC address on the
5733 		 * vport.  This only applies to PFs because such versions of
5734 		 * MCFW do not support VFs.
5735 		 */
5736 		rc = efx_ef10_vport_set_mac_address(efx);
5737 	} else if (rc) {
5738 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5739 				       sizeof(inbuf), NULL, 0, rc);
5740 	}
5741 
5742 	return rc;
5743 }
5744 
5745 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5746 {
5747 	efx_ef10_filter_sync_rx_mode(efx);
5748 
5749 	return efx_mcdi_set_mac(efx);
5750 }
5751 
5752 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5753 {
5754 	efx_ef10_filter_sync_rx_mode(efx);
5755 
5756 	return 0;
5757 }
5758 
5759 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5760 {
5761 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5762 
5763 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5764 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5765 			    NULL, 0, NULL);
5766 }
5767 
5768 /* MC BISTs follow a different poll mechanism to phy BISTs.
5769  * The BIST is done in the poll handler on the MC, and the MCDI command
5770  * will block until the BIST is done.
5771  */
5772 static int efx_ef10_poll_bist(struct efx_nic *efx)
5773 {
5774 	int rc;
5775 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5776 	size_t outlen;
5777 	u32 result;
5778 
5779 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5780 			   outbuf, sizeof(outbuf), &outlen);
5781 	if (rc != 0)
5782 		return rc;
5783 
5784 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5785 		return -EIO;
5786 
5787 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5788 	switch (result) {
5789 	case MC_CMD_POLL_BIST_PASSED:
5790 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5791 		return 0;
5792 	case MC_CMD_POLL_BIST_TIMEOUT:
5793 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5794 		return -EIO;
5795 	case MC_CMD_POLL_BIST_FAILED:
5796 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5797 		return -EIO;
5798 	default:
5799 		netif_err(efx, hw, efx->net_dev,
5800 			  "BIST returned unknown result %u", result);
5801 		return -EIO;
5802 	}
5803 }
5804 
5805 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5806 {
5807 	int rc;
5808 
5809 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5810 
5811 	rc = efx_ef10_start_bist(efx, bist_type);
5812 	if (rc != 0)
5813 		return rc;
5814 
5815 	return efx_ef10_poll_bist(efx);
5816 }
5817 
5818 static int
5819 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5820 {
5821 	int rc, rc2;
5822 
5823 	efx_reset_down(efx, RESET_TYPE_WORLD);
5824 
5825 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5826 			  NULL, 0, NULL, 0, NULL);
5827 	if (rc != 0)
5828 		goto out;
5829 
5830 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5831 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5832 
5833 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5834 
5835 out:
5836 	if (rc == -EPERM)
5837 		rc = 0;
5838 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5839 	return rc ? rc : rc2;
5840 }
5841 
5842 #ifdef CONFIG_SFC_MTD
5843 
5844 struct efx_ef10_nvram_type_info {
5845 	u16 type, type_mask;
5846 	u8 port;
5847 	const char *name;
5848 };
5849 
5850 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5851 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
5852 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5853 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
5854 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
5855 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
5856 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5857 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5858 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5859 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5860 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5861 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
5862 };
5863 
5864 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5865 					struct efx_mcdi_mtd_partition *part,
5866 					unsigned int type)
5867 {
5868 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5869 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5870 	const struct efx_ef10_nvram_type_info *info;
5871 	size_t size, erase_size, outlen;
5872 	bool protected;
5873 	int rc;
5874 
5875 	for (info = efx_ef10_nvram_types; ; info++) {
5876 		if (info ==
5877 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5878 			return -ENODEV;
5879 		if ((type & ~info->type_mask) == info->type)
5880 			break;
5881 	}
5882 	if (info->port != efx_port_num(efx))
5883 		return -ENODEV;
5884 
5885 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5886 	if (rc)
5887 		return rc;
5888 	if (protected)
5889 		return -ENODEV; /* hide it */
5890 
5891 	part->nvram_type = type;
5892 
5893 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5894 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5895 			  outbuf, sizeof(outbuf), &outlen);
5896 	if (rc)
5897 		return rc;
5898 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5899 		return -EIO;
5900 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5901 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5902 		part->fw_subtype = MCDI_DWORD(outbuf,
5903 					      NVRAM_METADATA_OUT_SUBTYPE);
5904 
5905 	part->common.dev_type_name = "EF10 NVRAM manager";
5906 	part->common.type_name = info->name;
5907 
5908 	part->common.mtd.type = MTD_NORFLASH;
5909 	part->common.mtd.flags = MTD_CAP_NORFLASH;
5910 	part->common.mtd.size = size;
5911 	part->common.mtd.erasesize = erase_size;
5912 
5913 	return 0;
5914 }
5915 
5916 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5917 {
5918 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5919 	struct efx_mcdi_mtd_partition *parts;
5920 	size_t outlen, n_parts_total, i, n_parts;
5921 	unsigned int type;
5922 	int rc;
5923 
5924 	ASSERT_RTNL();
5925 
5926 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5927 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5928 			  outbuf, sizeof(outbuf), &outlen);
5929 	if (rc)
5930 		return rc;
5931 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5932 		return -EIO;
5933 
5934 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5935 	if (n_parts_total >
5936 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5937 		return -EIO;
5938 
5939 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5940 	if (!parts)
5941 		return -ENOMEM;
5942 
5943 	n_parts = 0;
5944 	for (i = 0; i < n_parts_total; i++) {
5945 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5946 					i);
5947 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5948 		if (rc == 0)
5949 			n_parts++;
5950 		else if (rc != -ENODEV)
5951 			goto fail;
5952 	}
5953 
5954 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5955 fail:
5956 	if (rc)
5957 		kfree(parts);
5958 	return rc;
5959 }
5960 
5961 #endif /* CONFIG_SFC_MTD */
5962 
5963 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5964 {
5965 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5966 }
5967 
5968 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5969 					    u32 host_time) {}
5970 
5971 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5972 					   bool temp)
5973 {
5974 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5975 	int rc;
5976 
5977 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5978 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
5979 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5980 		return 0;
5981 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5982 
5983 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5984 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5985 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5986 		       channel->channel);
5987 
5988 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5989 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5990 
5991 	if (rc != 0)
5992 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5993 						    SYNC_EVENTS_DISABLED;
5994 
5995 	return rc;
5996 }
5997 
5998 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5999 					    bool temp)
6000 {
6001 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6002 	int rc;
6003 
6004 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6005 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6006 		return 0;
6007 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6008 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
6009 		return 0;
6010 	}
6011 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6012 					    SYNC_EVENTS_DISABLED;
6013 
6014 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6015 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6016 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6017 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6018 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6019 		       channel->channel);
6020 
6021 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6022 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6023 
6024 	return rc;
6025 }
6026 
6027 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6028 					   bool temp)
6029 {
6030 	int (*set)(struct efx_channel *channel, bool temp);
6031 	struct efx_channel *channel;
6032 
6033 	set = en ?
6034 	      efx_ef10_rx_enable_timestamping :
6035 	      efx_ef10_rx_disable_timestamping;
6036 
6037 	efx_for_each_channel(channel, efx) {
6038 		int rc = set(channel, temp);
6039 		if (en && rc != 0) {
6040 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6041 			return rc;
6042 		}
6043 	}
6044 
6045 	return 0;
6046 }
6047 
6048 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6049 					 struct hwtstamp_config *init)
6050 {
6051 	return -EOPNOTSUPP;
6052 }
6053 
6054 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6055 				      struct hwtstamp_config *init)
6056 {
6057 	int rc;
6058 
6059 	switch (init->rx_filter) {
6060 	case HWTSTAMP_FILTER_NONE:
6061 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6062 		/* if TX timestamping is still requested then leave PTP on */
6063 		return efx_ptp_change_mode(efx,
6064 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
6065 	case HWTSTAMP_FILTER_ALL:
6066 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6067 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6068 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6069 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6070 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6071 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6072 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6073 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6074 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6075 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6076 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6077 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6078 	case HWTSTAMP_FILTER_NTP_ALL:
6079 		init->rx_filter = HWTSTAMP_FILTER_ALL;
6080 		rc = efx_ptp_change_mode(efx, true, 0);
6081 		if (!rc)
6082 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6083 		if (rc)
6084 			efx_ptp_change_mode(efx, false, 0);
6085 		return rc;
6086 	default:
6087 		return -ERANGE;
6088 	}
6089 }
6090 
6091 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6092 				     struct netdev_phys_item_id *ppid)
6093 {
6094 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6095 
6096 	if (!is_valid_ether_addr(nic_data->port_id))
6097 		return -EOPNOTSUPP;
6098 
6099 	ppid->id_len = ETH_ALEN;
6100 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6101 
6102 	return 0;
6103 }
6104 
6105 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6106 {
6107 	if (proto != htons(ETH_P_8021Q))
6108 		return -EINVAL;
6109 
6110 	return efx_ef10_add_vlan(efx, vid);
6111 }
6112 
6113 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6114 {
6115 	if (proto != htons(ETH_P_8021Q))
6116 		return -EINVAL;
6117 
6118 	return efx_ef10_del_vlan(efx, vid);
6119 }
6120 
6121 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6122  * ports table, ensuring that any TSO descriptors that were made on a now-
6123  * removed tunnel port will be blown away and won't break things when we try
6124  * to transmit them using the new ports table.
6125  */
6126 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6127 {
6128 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6129 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6130 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6131 	bool will_reset = false;
6132 	size_t num_entries = 0;
6133 	size_t inlen, outlen;
6134 	size_t i;
6135 	int rc;
6136 	efx_dword_t flags_and_num_entries;
6137 
6138 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6139 
6140 	nic_data->udp_tunnels_dirty = false;
6141 
6142 	if (!(nic_data->datapath_caps &
6143 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6144 		efx_device_attach_if_not_resetting(efx);
6145 		return 0;
6146 	}
6147 
6148 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6149 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6150 
6151 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6152 		if (nic_data->udp_tunnels[i].count &&
6153 		    nic_data->udp_tunnels[i].port) {
6154 			efx_dword_t entry;
6155 
6156 			EFX_POPULATE_DWORD_2(entry,
6157 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6158 					ntohs(nic_data->udp_tunnels[i].port),
6159 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6160 					nic_data->udp_tunnels[i].type);
6161 			*_MCDI_ARRAY_DWORD(inbuf,
6162 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6163 				num_entries++) = entry;
6164 		}
6165 	}
6166 
6167 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6168 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6169 		     EFX_WORD_1_LBN);
6170 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6171 		     EFX_WORD_1_WIDTH);
6172 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
6173 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6174 				!!unloading,
6175 			     EFX_WORD_1, num_entries);
6176 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6177 		flags_and_num_entries;
6178 
6179 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6180 
6181 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6182 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6183 	if (rc == -EIO) {
6184 		/* Most likely the MC rebooted due to another function also
6185 		 * setting its tunnel port list. Mark the tunnel port list as
6186 		 * dirty, so it will be pushed upon coming up from the reboot.
6187 		 */
6188 		nic_data->udp_tunnels_dirty = true;
6189 		return 0;
6190 	}
6191 
6192 	if (rc) {
6193 		/* expected not available on unprivileged functions */
6194 		if (rc != -EPERM)
6195 			netif_warn(efx, drv, efx->net_dev,
6196 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6197 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6198 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6199 		netif_info(efx, drv, efx->net_dev,
6200 			   "Rebooting MC due to UDP tunnel port list change\n");
6201 		will_reset = true;
6202 		if (unloading)
6203 			/* Delay for the MC reset to complete. This will make
6204 			 * unloading other functions a bit smoother. This is a
6205 			 * race, but the other unload will work whichever way
6206 			 * it goes, this just avoids an unnecessary error
6207 			 * message.
6208 			 */
6209 			msleep(100);
6210 	}
6211 	if (!will_reset && !unloading) {
6212 		/* The caller will have detached, relying on the MC reset to
6213 		 * trigger a re-attach.  Since there won't be an MC reset, we
6214 		 * have to do the attach ourselves.
6215 		 */
6216 		efx_device_attach_if_not_resetting(efx);
6217 	}
6218 
6219 	return rc;
6220 }
6221 
6222 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6223 {
6224 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6225 	int rc = 0;
6226 
6227 	mutex_lock(&nic_data->udp_tunnels_lock);
6228 	if (nic_data->udp_tunnels_dirty) {
6229 		/* Make sure all TX are stopped while we modify the table, else
6230 		 * we might race against an efx_features_check().
6231 		 */
6232 		efx_device_detach_sync(efx);
6233 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
6234 	}
6235 	mutex_unlock(&nic_data->udp_tunnels_lock);
6236 	return rc;
6237 }
6238 
6239 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6240 							     __be16 port)
6241 {
6242 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6243 	size_t i;
6244 
6245 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6246 		if (!nic_data->udp_tunnels[i].count)
6247 			continue;
6248 		if (nic_data->udp_tunnels[i].port == port)
6249 			return &nic_data->udp_tunnels[i];
6250 	}
6251 	return NULL;
6252 }
6253 
6254 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6255 				     struct efx_udp_tunnel tnl)
6256 {
6257 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6258 	struct efx_udp_tunnel *match;
6259 	char typebuf[8];
6260 	size_t i;
6261 	int rc;
6262 
6263 	if (!(nic_data->datapath_caps &
6264 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6265 		return 0;
6266 
6267 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6268 	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6269 		  typebuf, ntohs(tnl.port));
6270 
6271 	mutex_lock(&nic_data->udp_tunnels_lock);
6272 	/* Make sure all TX are stopped while we add to the table, else we
6273 	 * might race against an efx_features_check().
6274 	 */
6275 	efx_device_detach_sync(efx);
6276 
6277 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6278 	if (match != NULL) {
6279 		if (match->type == tnl.type) {
6280 			netif_dbg(efx, drv, efx->net_dev,
6281 				  "Referencing existing tunnel entry\n");
6282 			match->count++;
6283 			/* No need to cause an MCDI update */
6284 			rc = 0;
6285 			goto unlock_out;
6286 		}
6287 		efx_get_udp_tunnel_type_name(match->type,
6288 					     typebuf, sizeof(typebuf));
6289 		netif_dbg(efx, drv, efx->net_dev,
6290 			  "UDP port %d is already in use by %s\n",
6291 			  ntohs(tnl.port), typebuf);
6292 		rc = -EEXIST;
6293 		goto unlock_out;
6294 	}
6295 
6296 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6297 		if (!nic_data->udp_tunnels[i].count) {
6298 			nic_data->udp_tunnels[i] = tnl;
6299 			nic_data->udp_tunnels[i].count = 1;
6300 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6301 			goto unlock_out;
6302 		}
6303 
6304 	netif_dbg(efx, drv, efx->net_dev,
6305 		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6306 		  typebuf, ntohs(tnl.port));
6307 
6308 	rc = -ENOMEM;
6309 
6310 unlock_out:
6311 	mutex_unlock(&nic_data->udp_tunnels_lock);
6312 	return rc;
6313 }
6314 
6315 /* Called under the TX lock with the TX queue running, hence no-one can be
6316  * in the middle of updating the UDP tunnels table.  However, they could
6317  * have tried and failed the MCDI, in which case they'll have set the dirty
6318  * flag before dropping their locks.
6319  */
6320 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6321 {
6322 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6323 
6324 	if (!(nic_data->datapath_caps &
6325 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6326 		return false;
6327 
6328 	if (nic_data->udp_tunnels_dirty)
6329 		/* SW table may not match HW state, so just assume we can't
6330 		 * use any UDP tunnel offloads.
6331 		 */
6332 		return false;
6333 
6334 	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6335 }
6336 
6337 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6338 				     struct efx_udp_tunnel tnl)
6339 {
6340 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6341 	struct efx_udp_tunnel *match;
6342 	char typebuf[8];
6343 	int rc;
6344 
6345 	if (!(nic_data->datapath_caps &
6346 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6347 		return 0;
6348 
6349 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6350 	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6351 		  typebuf, ntohs(tnl.port));
6352 
6353 	mutex_lock(&nic_data->udp_tunnels_lock);
6354 	/* Make sure all TX are stopped while we remove from the table, else we
6355 	 * might race against an efx_features_check().
6356 	 */
6357 	efx_device_detach_sync(efx);
6358 
6359 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6360 	if (match != NULL) {
6361 		if (match->type == tnl.type) {
6362 			if (--match->count) {
6363 				/* Port is still in use, so nothing to do */
6364 				netif_dbg(efx, drv, efx->net_dev,
6365 					  "UDP tunnel port %d remains active\n",
6366 					  ntohs(tnl.port));
6367 				rc = 0;
6368 				goto out_unlock;
6369 			}
6370 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6371 			goto out_unlock;
6372 		}
6373 		efx_get_udp_tunnel_type_name(match->type,
6374 					     typebuf, sizeof(typebuf));
6375 		netif_warn(efx, drv, efx->net_dev,
6376 			   "UDP port %d is actually in use by %s, not removing\n",
6377 			   ntohs(tnl.port), typebuf);
6378 	}
6379 	rc = -ENOENT;
6380 
6381 out_unlock:
6382 	mutex_unlock(&nic_data->udp_tunnels_lock);
6383 	return rc;
6384 }
6385 
6386 #define EF10_OFFLOAD_FEATURES		\
6387 	(NETIF_F_IP_CSUM |		\
6388 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6389 	 NETIF_F_IPV6_CSUM |		\
6390 	 NETIF_F_RXHASH |		\
6391 	 NETIF_F_NTUPLE)
6392 
6393 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6394 	.is_vf = true,
6395 	.mem_bar = EFX_MEM_VF_BAR,
6396 	.mem_map_size = efx_ef10_mem_map_size,
6397 	.probe = efx_ef10_probe_vf,
6398 	.remove = efx_ef10_remove,
6399 	.dimension_resources = efx_ef10_dimension_resources,
6400 	.init = efx_ef10_init_nic,
6401 	.fini = efx_port_dummy_op_void,
6402 	.map_reset_reason = efx_ef10_map_reset_reason,
6403 	.map_reset_flags = efx_ef10_map_reset_flags,
6404 	.reset = efx_ef10_reset,
6405 	.probe_port = efx_mcdi_port_probe,
6406 	.remove_port = efx_mcdi_port_remove,
6407 	.fini_dmaq = efx_ef10_fini_dmaq,
6408 	.prepare_flr = efx_ef10_prepare_flr,
6409 	.finish_flr = efx_port_dummy_op_void,
6410 	.describe_stats = efx_ef10_describe_stats,
6411 	.update_stats = efx_ef10_update_stats_vf,
6412 	.start_stats = efx_port_dummy_op_void,
6413 	.pull_stats = efx_port_dummy_op_void,
6414 	.stop_stats = efx_port_dummy_op_void,
6415 	.set_id_led = efx_mcdi_set_id_led,
6416 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6417 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6418 	.check_mac_fault = efx_mcdi_mac_check_fault,
6419 	.reconfigure_port = efx_mcdi_port_reconfigure,
6420 	.get_wol = efx_ef10_get_wol_vf,
6421 	.set_wol = efx_ef10_set_wol_vf,
6422 	.resume_wol = efx_port_dummy_op_void,
6423 	.mcdi_request = efx_ef10_mcdi_request,
6424 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6425 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6426 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6427 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6428 	.irq_enable_master = efx_port_dummy_op_void,
6429 	.irq_test_generate = efx_ef10_irq_test_generate,
6430 	.irq_disable_non_ev = efx_port_dummy_op_void,
6431 	.irq_handle_msi = efx_ef10_msi_interrupt,
6432 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6433 	.tx_probe = efx_ef10_tx_probe,
6434 	.tx_init = efx_ef10_tx_init,
6435 	.tx_remove = efx_ef10_tx_remove,
6436 	.tx_write = efx_ef10_tx_write,
6437 	.tx_limit_len = efx_ef10_tx_limit_len,
6438 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6439 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6440 	.rx_probe = efx_ef10_rx_probe,
6441 	.rx_init = efx_ef10_rx_init,
6442 	.rx_remove = efx_ef10_rx_remove,
6443 	.rx_write = efx_ef10_rx_write,
6444 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6445 	.ev_probe = efx_ef10_ev_probe,
6446 	.ev_init = efx_ef10_ev_init,
6447 	.ev_fini = efx_ef10_ev_fini,
6448 	.ev_remove = efx_ef10_ev_remove,
6449 	.ev_process = efx_ef10_ev_process,
6450 	.ev_read_ack = efx_ef10_ev_read_ack,
6451 	.ev_test_generate = efx_ef10_ev_test_generate,
6452 	.filter_table_probe = efx_ef10_filter_table_probe,
6453 	.filter_table_restore = efx_ef10_filter_table_restore,
6454 	.filter_table_remove = efx_ef10_filter_table_remove,
6455 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6456 	.filter_insert = efx_ef10_filter_insert,
6457 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6458 	.filter_get_safe = efx_ef10_filter_get_safe,
6459 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6460 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6461 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6462 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6463 #ifdef CONFIG_RFS_ACCEL
6464 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6465 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6466 #endif
6467 #ifdef CONFIG_SFC_MTD
6468 	.mtd_probe = efx_port_dummy_op_int,
6469 #endif
6470 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6471 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6472 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6473 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6474 #ifdef CONFIG_SFC_SRIOV
6475 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
6476 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
6477 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6478 #endif
6479 	.get_mac_address = efx_ef10_get_mac_address_vf,
6480 	.set_mac_address = efx_ef10_set_mac_address,
6481 
6482 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6483 	.revision = EFX_REV_HUNT_A0,
6484 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6485 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6486 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6487 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6488 	.can_rx_scatter = true,
6489 	.always_rx_scatter = true,
6490 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6491 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6492 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6493 	.offload_features = EF10_OFFLOAD_FEATURES,
6494 	.mcdi_max_ver = 2,
6495 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6496 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6497 			    1 << HWTSTAMP_FILTER_ALL,
6498 	.rx_hash_key_size = 40,
6499 };
6500 
6501 const struct efx_nic_type efx_hunt_a0_nic_type = {
6502 	.is_vf = false,
6503 	.mem_bar = EFX_MEM_BAR,
6504 	.mem_map_size = efx_ef10_mem_map_size,
6505 	.probe = efx_ef10_probe_pf,
6506 	.remove = efx_ef10_remove,
6507 	.dimension_resources = efx_ef10_dimension_resources,
6508 	.init = efx_ef10_init_nic,
6509 	.fini = efx_port_dummy_op_void,
6510 	.map_reset_reason = efx_ef10_map_reset_reason,
6511 	.map_reset_flags = efx_ef10_map_reset_flags,
6512 	.reset = efx_ef10_reset,
6513 	.probe_port = efx_mcdi_port_probe,
6514 	.remove_port = efx_mcdi_port_remove,
6515 	.fini_dmaq = efx_ef10_fini_dmaq,
6516 	.prepare_flr = efx_ef10_prepare_flr,
6517 	.finish_flr = efx_port_dummy_op_void,
6518 	.describe_stats = efx_ef10_describe_stats,
6519 	.update_stats = efx_ef10_update_stats_pf,
6520 	.start_stats = efx_mcdi_mac_start_stats,
6521 	.pull_stats = efx_mcdi_mac_pull_stats,
6522 	.stop_stats = efx_mcdi_mac_stop_stats,
6523 	.set_id_led = efx_mcdi_set_id_led,
6524 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6525 	.reconfigure_mac = efx_ef10_mac_reconfigure,
6526 	.check_mac_fault = efx_mcdi_mac_check_fault,
6527 	.reconfigure_port = efx_mcdi_port_reconfigure,
6528 	.get_wol = efx_ef10_get_wol,
6529 	.set_wol = efx_ef10_set_wol,
6530 	.resume_wol = efx_port_dummy_op_void,
6531 	.test_chip = efx_ef10_test_chip,
6532 	.test_nvram = efx_mcdi_nvram_test_all,
6533 	.mcdi_request = efx_ef10_mcdi_request,
6534 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6535 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6536 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6537 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6538 	.irq_enable_master = efx_port_dummy_op_void,
6539 	.irq_test_generate = efx_ef10_irq_test_generate,
6540 	.irq_disable_non_ev = efx_port_dummy_op_void,
6541 	.irq_handle_msi = efx_ef10_msi_interrupt,
6542 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6543 	.tx_probe = efx_ef10_tx_probe,
6544 	.tx_init = efx_ef10_tx_init,
6545 	.tx_remove = efx_ef10_tx_remove,
6546 	.tx_write = efx_ef10_tx_write,
6547 	.tx_limit_len = efx_ef10_tx_limit_len,
6548 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6549 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6550 	.rx_probe = efx_ef10_rx_probe,
6551 	.rx_init = efx_ef10_rx_init,
6552 	.rx_remove = efx_ef10_rx_remove,
6553 	.rx_write = efx_ef10_rx_write,
6554 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6555 	.ev_probe = efx_ef10_ev_probe,
6556 	.ev_init = efx_ef10_ev_init,
6557 	.ev_fini = efx_ef10_ev_fini,
6558 	.ev_remove = efx_ef10_ev_remove,
6559 	.ev_process = efx_ef10_ev_process,
6560 	.ev_read_ack = efx_ef10_ev_read_ack,
6561 	.ev_test_generate = efx_ef10_ev_test_generate,
6562 	.filter_table_probe = efx_ef10_filter_table_probe,
6563 	.filter_table_restore = efx_ef10_filter_table_restore,
6564 	.filter_table_remove = efx_ef10_filter_table_remove,
6565 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6566 	.filter_insert = efx_ef10_filter_insert,
6567 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6568 	.filter_get_safe = efx_ef10_filter_get_safe,
6569 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6570 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6571 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6572 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6573 #ifdef CONFIG_RFS_ACCEL
6574 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6575 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6576 #endif
6577 #ifdef CONFIG_SFC_MTD
6578 	.mtd_probe = efx_ef10_mtd_probe,
6579 	.mtd_rename = efx_mcdi_mtd_rename,
6580 	.mtd_read = efx_mcdi_mtd_read,
6581 	.mtd_erase = efx_mcdi_mtd_erase,
6582 	.mtd_write = efx_mcdi_mtd_write,
6583 	.mtd_sync = efx_mcdi_mtd_sync,
6584 #endif
6585 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6586 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6587 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6588 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6589 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6590 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6591 	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6592 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6593 	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6594 #ifdef CONFIG_SFC_SRIOV
6595 	.sriov_configure = efx_ef10_sriov_configure,
6596 	.sriov_init = efx_ef10_sriov_init,
6597 	.sriov_fini = efx_ef10_sriov_fini,
6598 	.sriov_wanted = efx_ef10_sriov_wanted,
6599 	.sriov_reset = efx_ef10_sriov_reset,
6600 	.sriov_flr = efx_ef10_sriov_flr,
6601 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6602 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6603 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6604 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6605 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6606 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
6607 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
6608 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6609 #endif
6610 	.get_mac_address = efx_ef10_get_mac_address_pf,
6611 	.set_mac_address = efx_ef10_set_mac_address,
6612 	.tso_versions = efx_ef10_tso_versions,
6613 
6614 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6615 	.revision = EFX_REV_HUNT_A0,
6616 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6617 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6618 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6619 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6620 	.can_rx_scatter = true,
6621 	.always_rx_scatter = true,
6622 	.option_descriptors = true,
6623 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6624 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6625 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6626 	.offload_features = EF10_OFFLOAD_FEATURES,
6627 	.mcdi_max_ver = 2,
6628 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6629 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6630 			    1 << HWTSTAMP_FILTER_ALL,
6631 	.rx_hash_key_size = 40,
6632 };
6633