xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision 5f32c314)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include <linux/in.h>
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
22 
23 /* Hardware control for EF10 architecture including 'Huntington'. */
24 
25 #define EFX_EF10_DRVGEN_EV		7
26 enum {
27 	EFX_EF10_TEST = 1,
28 	EFX_EF10_REFILL,
29 };
30 
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
33 
34 /* The filter table(s) are managed by firmware and we have write-only
35  * access.  When removing filters we must identify them to the
36  * firmware by a 64-bit handle, but this is too wide for Linux kernel
37  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
38  * be able to tell in advance whether a requested insertion will
39  * replace an existing filter.  Therefore we maintain a software hash
40  * table, which should be at least as large as the hardware hash
41  * table.
42  *
43  * Huntington has a single 8K filter table shared between all filter
44  * types and both ports.
45  */
46 #define HUNT_FILTER_TBL_ROWS 8192
47 
48 struct efx_ef10_filter_table {
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50 	enum efx_filter_match_flags rx_match_flags[
51 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52 	unsigned int rx_match_count;
53 
54 	struct {
55 		unsigned long spec;	/* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
57  * used to mark and sweep MAC filters for the device address lists.
58  */
59 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
61 #define EFX_EF10_FILTER_FLAGS		3UL
62 		u64 handle;		/* firmware handle */
63 	} *entry;
64 	wait_queue_head_t waitq;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX	32
67 #define EFX_EF10_FILTER_DEV_MC_MAX	256
68 	struct {
69 		u8 addr[ETH_ALEN];
70 		u16 id;
71 	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72 	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73 	int dev_uc_count;		/* negative for PROMISC */
74 	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
75 };
76 
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
79 
80 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83 
84 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85 {
86 	efx_dword_t reg;
87 
88 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
89 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91 }
92 
93 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94 {
95 	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96 }
97 
98 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99 {
100 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
102 	size_t outlen;
103 	int rc;
104 
105 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106 
107 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108 			  outbuf, sizeof(outbuf), &outlen);
109 	if (rc)
110 		return rc;
111 	if (outlen < sizeof(outbuf)) {
112 		netif_err(efx, drv, efx->net_dev,
113 			  "unable to read datapath firmware capabilities\n");
114 		return -EIO;
115 	}
116 
117 	nic_data->datapath_caps =
118 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119 
120 	if (!(nic_data->datapath_caps &
121 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122 		netif_err(efx, drv, efx->net_dev,
123 			  "current firmware does not support TSO\n");
124 		return -ENODEV;
125 	}
126 
127 	if (!(nic_data->datapath_caps &
128 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129 		netif_err(efx, probe, efx->net_dev,
130 			  "current firmware does not support an RX prefix\n");
131 		return -ENODEV;
132 	}
133 
134 	return 0;
135 }
136 
137 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138 {
139 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140 	int rc;
141 
142 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143 			  outbuf, sizeof(outbuf), NULL);
144 	if (rc)
145 		return rc;
146 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147 	return rc > 0 ? rc : -ERANGE;
148 }
149 
150 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151 {
152 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153 	size_t outlen;
154 	int rc;
155 
156 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157 
158 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159 			  outbuf, sizeof(outbuf), &outlen);
160 	if (rc)
161 		return rc;
162 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163 		return -EIO;
164 
165 	memcpy(mac_address,
166 	       MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
167 	return 0;
168 }
169 
170 static int efx_ef10_probe(struct efx_nic *efx)
171 {
172 	struct efx_ef10_nic_data *nic_data;
173 	int i, rc;
174 
175 	/* We can have one VI for each 8K region.  However we need
176 	 * multiple TX queues per channel.
177 	 */
178 	efx->max_channels =
179 		min_t(unsigned int,
180 		      EFX_MAX_CHANNELS,
181 		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182 		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183 	BUG_ON(efx->max_channels == 0);
184 
185 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
186 	if (!nic_data)
187 		return -ENOMEM;
188 	efx->nic_data = nic_data;
189 
190 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
191 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
192 	if (rc)
193 		goto fail1;
194 
195 	/* Get the MC's warm boot count.  In case it's rebooting right
196 	 * now, be prepared to retry.
197 	 */
198 	i = 0;
199 	for (;;) {
200 		rc = efx_ef10_get_warm_boot_count(efx);
201 		if (rc >= 0)
202 			break;
203 		if (++i == 5)
204 			goto fail2;
205 		ssleep(1);
206 	}
207 	nic_data->warm_boot_count = rc;
208 
209 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
210 
211 	/* In case we're recovering from a crash (kexec), we want to
212 	 * cancel any outstanding request by the previous user of this
213 	 * function.  We send a special message using the least
214 	 * significant bits of the 'high' (doorbell) register.
215 	 */
216 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
217 
218 	rc = efx_mcdi_init(efx);
219 	if (rc)
220 		goto fail2;
221 
222 	/* Reset (most) configuration for this function */
223 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
224 	if (rc)
225 		goto fail3;
226 
227 	/* Enable event logging */
228 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
229 	if (rc)
230 		goto fail3;
231 
232 	rc = efx_ef10_init_datapath_caps(efx);
233 	if (rc < 0)
234 		goto fail3;
235 
236 	efx->rx_packet_len_offset =
237 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
238 
239 	rc = efx_mcdi_port_get_number(efx);
240 	if (rc < 0)
241 		goto fail3;
242 	efx->port_num = rc;
243 
244 	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
245 	if (rc)
246 		goto fail3;
247 
248 	rc = efx_ef10_get_sysclk_freq(efx);
249 	if (rc < 0)
250 		goto fail3;
251 	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
252 
253 	/* Check whether firmware supports bug 35388 workaround */
254 	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
255 	if (rc == 0)
256 		nic_data->workaround_35388 = true;
257 	else if (rc != -ENOSYS && rc != -ENOENT)
258 		goto fail3;
259 	netif_dbg(efx, probe, efx->net_dev,
260 		  "workaround for bug 35388 is %sabled\n",
261 		  nic_data->workaround_35388 ? "en" : "dis");
262 
263 	rc = efx_mcdi_mon_probe(efx);
264 	if (rc)
265 		goto fail3;
266 
267 	efx_ptp_probe(efx, NULL);
268 
269 	return 0;
270 
271 fail3:
272 	efx_mcdi_fini(efx);
273 fail2:
274 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
275 fail1:
276 	kfree(nic_data);
277 	efx->nic_data = NULL;
278 	return rc;
279 }
280 
281 static int efx_ef10_free_vis(struct efx_nic *efx)
282 {
283 	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
284 	size_t outlen;
285 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
286 				    outbuf, sizeof(outbuf), &outlen);
287 
288 	/* -EALREADY means nothing to free, so ignore */
289 	if (rc == -EALREADY)
290 		rc = 0;
291 	if (rc)
292 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
293 				       rc);
294 	return rc;
295 }
296 
297 #ifdef EFX_USE_PIO
298 
299 static void efx_ef10_free_piobufs(struct efx_nic *efx)
300 {
301 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
302 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
303 	unsigned int i;
304 	int rc;
305 
306 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
307 
308 	for (i = 0; i < nic_data->n_piobufs; i++) {
309 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
310 			       nic_data->piobuf_handle[i]);
311 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
312 				  NULL, 0, NULL);
313 		WARN_ON(rc);
314 	}
315 
316 	nic_data->n_piobufs = 0;
317 }
318 
319 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
320 {
321 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
322 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
323 	unsigned int i;
324 	size_t outlen;
325 	int rc = 0;
326 
327 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
328 
329 	for (i = 0; i < n; i++) {
330 		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
331 				  outbuf, sizeof(outbuf), &outlen);
332 		if (rc)
333 			break;
334 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
335 			rc = -EIO;
336 			break;
337 		}
338 		nic_data->piobuf_handle[i] =
339 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
340 		netif_dbg(efx, probe, efx->net_dev,
341 			  "allocated PIO buffer %u handle %x\n", i,
342 			  nic_data->piobuf_handle[i]);
343 	}
344 
345 	nic_data->n_piobufs = i;
346 	if (rc)
347 		efx_ef10_free_piobufs(efx);
348 	return rc;
349 }
350 
351 static int efx_ef10_link_piobufs(struct efx_nic *efx)
352 {
353 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
354 	MCDI_DECLARE_BUF(inbuf,
355 			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
356 			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
357 	struct efx_channel *channel;
358 	struct efx_tx_queue *tx_queue;
359 	unsigned int offset, index;
360 	int rc;
361 
362 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
363 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
364 
365 	/* Link a buffer to each VI in the write-combining mapping */
366 	for (index = 0; index < nic_data->n_piobufs; ++index) {
367 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
368 			       nic_data->piobuf_handle[index]);
369 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
370 			       nic_data->pio_write_vi_base + index);
371 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
372 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
373 				  NULL, 0, NULL);
374 		if (rc) {
375 			netif_err(efx, drv, efx->net_dev,
376 				  "failed to link VI %u to PIO buffer %u (%d)\n",
377 				  nic_data->pio_write_vi_base + index, index,
378 				  rc);
379 			goto fail;
380 		}
381 		netif_dbg(efx, probe, efx->net_dev,
382 			  "linked VI %u to PIO buffer %u\n",
383 			  nic_data->pio_write_vi_base + index, index);
384 	}
385 
386 	/* Link a buffer to each TX queue */
387 	efx_for_each_channel(channel, efx) {
388 		efx_for_each_channel_tx_queue(tx_queue, channel) {
389 			/* We assign the PIO buffers to queues in
390 			 * reverse order to allow for the following
391 			 * special case.
392 			 */
393 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
394 				   tx_queue->channel->channel - 1) *
395 				  efx_piobuf_size);
396 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
397 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
398 
399 			/* When the host page size is 4K, the first
400 			 * host page in the WC mapping may be within
401 			 * the same VI page as the last TX queue.  We
402 			 * can only link one buffer to each VI.
403 			 */
404 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
405 				BUG_ON(index != 0);
406 				rc = 0;
407 			} else {
408 				MCDI_SET_DWORD(inbuf,
409 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
410 					       nic_data->piobuf_handle[index]);
411 				MCDI_SET_DWORD(inbuf,
412 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
413 					       tx_queue->queue);
414 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
415 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
416 						  NULL, 0, NULL);
417 			}
418 
419 			if (rc) {
420 				/* This is non-fatal; the TX path just
421 				 * won't use PIO for this queue
422 				 */
423 				netif_err(efx, drv, efx->net_dev,
424 					  "failed to link VI %u to PIO buffer %u (%d)\n",
425 					  tx_queue->queue, index, rc);
426 				tx_queue->piobuf = NULL;
427 			} else {
428 				tx_queue->piobuf =
429 					nic_data->pio_write_base +
430 					index * EFX_VI_PAGE_SIZE + offset;
431 				tx_queue->piobuf_offset = offset;
432 				netif_dbg(efx, probe, efx->net_dev,
433 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
434 					  tx_queue->queue, index,
435 					  tx_queue->piobuf_offset,
436 					  tx_queue->piobuf);
437 			}
438 		}
439 	}
440 
441 	return 0;
442 
443 fail:
444 	while (index--) {
445 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
446 			       nic_data->pio_write_vi_base + index);
447 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
448 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
449 			     NULL, 0, NULL);
450 	}
451 	return rc;
452 }
453 
454 #else /* !EFX_USE_PIO */
455 
456 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
457 {
458 	return n == 0 ? 0 : -ENOBUFS;
459 }
460 
461 static int efx_ef10_link_piobufs(struct efx_nic *efx)
462 {
463 	return 0;
464 }
465 
466 static void efx_ef10_free_piobufs(struct efx_nic *efx)
467 {
468 }
469 
470 #endif /* EFX_USE_PIO */
471 
472 static void efx_ef10_remove(struct efx_nic *efx)
473 {
474 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
475 	int rc;
476 
477 	efx_ptp_remove(efx);
478 
479 	efx_mcdi_mon_remove(efx);
480 
481 	efx_ef10_rx_free_indir_table(efx);
482 
483 	if (nic_data->wc_membase)
484 		iounmap(nic_data->wc_membase);
485 
486 	rc = efx_ef10_free_vis(efx);
487 	WARN_ON(rc != 0);
488 
489 	if (!nic_data->must_restore_piobufs)
490 		efx_ef10_free_piobufs(efx);
491 
492 	efx_mcdi_fini(efx);
493 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
494 	kfree(nic_data);
495 }
496 
497 static int efx_ef10_alloc_vis(struct efx_nic *efx,
498 			      unsigned int min_vis, unsigned int max_vis)
499 {
500 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
501 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
502 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
503 	size_t outlen;
504 	int rc;
505 
506 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
507 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
508 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
509 			  outbuf, sizeof(outbuf), &outlen);
510 	if (rc != 0)
511 		return rc;
512 
513 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
514 		return -EIO;
515 
516 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
517 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
518 
519 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
520 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
521 	return 0;
522 }
523 
524 /* Note that the failure path of this function does not free
525  * resources, as this will be done by efx_ef10_remove().
526  */
527 static int efx_ef10_dimension_resources(struct efx_nic *efx)
528 {
529 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
530 	unsigned int uc_mem_map_size, wc_mem_map_size;
531 	unsigned int min_vis, pio_write_vi_base, max_vis;
532 	void __iomem *membase;
533 	int rc;
534 
535 	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
536 
537 #ifdef EFX_USE_PIO
538 	/* Try to allocate PIO buffers if wanted and if the full
539 	 * number of PIO buffers would be sufficient to allocate one
540 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
541 	 * are only a small number of PIO buffers shared between all
542 	 * functions of the controller.
543 	 */
544 	if (efx_piobuf_size != 0 &&
545 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
546 	    efx->n_tx_channels) {
547 		unsigned int n_piobufs =
548 			DIV_ROUND_UP(efx->n_tx_channels,
549 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
550 
551 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
552 		if (rc)
553 			netif_err(efx, probe, efx->net_dev,
554 				  "failed to allocate PIO buffers (%d)\n", rc);
555 		else
556 			netif_dbg(efx, probe, efx->net_dev,
557 				  "allocated %u PIO buffers\n", n_piobufs);
558 	}
559 #else
560 	nic_data->n_piobufs = 0;
561 #endif
562 
563 	/* PIO buffers should be mapped with write-combining enabled,
564 	 * and we want to make single UC and WC mappings rather than
565 	 * several of each (in fact that's the only option if host
566 	 * page size is >4K).  So we may allocate some extra VIs just
567 	 * for writing PIO buffers through.
568 	 */
569 	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
570 				     ER_DZ_TX_PIOBUF);
571 	if (nic_data->n_piobufs) {
572 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
573 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
574 					       nic_data->n_piobufs) *
575 					      EFX_VI_PAGE_SIZE) -
576 				   uc_mem_map_size);
577 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
578 	} else {
579 		pio_write_vi_base = 0;
580 		wc_mem_map_size = 0;
581 		max_vis = min_vis;
582 	}
583 
584 	/* In case the last attached driver failed to free VIs, do it now */
585 	rc = efx_ef10_free_vis(efx);
586 	if (rc != 0)
587 		return rc;
588 
589 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
590 	if (rc != 0)
591 		return rc;
592 
593 	/* If we didn't get enough VIs to map all the PIO buffers, free the
594 	 * PIO buffers
595 	 */
596 	if (nic_data->n_piobufs &&
597 	    nic_data->n_allocated_vis <
598 	    pio_write_vi_base + nic_data->n_piobufs) {
599 		netif_dbg(efx, probe, efx->net_dev,
600 			  "%u VIs are not sufficient to map %u PIO buffers\n",
601 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
602 		efx_ef10_free_piobufs(efx);
603 	}
604 
605 	/* Shrink the original UC mapping of the memory BAR */
606 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
607 	if (!membase) {
608 		netif_err(efx, probe, efx->net_dev,
609 			  "could not shrink memory BAR to %x\n",
610 			  uc_mem_map_size);
611 		return -ENOMEM;
612 	}
613 	iounmap(efx->membase);
614 	efx->membase = membase;
615 
616 	/* Set up the WC mapping if needed */
617 	if (wc_mem_map_size) {
618 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
619 						  uc_mem_map_size,
620 						  wc_mem_map_size);
621 		if (!nic_data->wc_membase) {
622 			netif_err(efx, probe, efx->net_dev,
623 				  "could not allocate WC mapping of size %x\n",
624 				  wc_mem_map_size);
625 			return -ENOMEM;
626 		}
627 		nic_data->pio_write_vi_base = pio_write_vi_base;
628 		nic_data->pio_write_base =
629 			nic_data->wc_membase +
630 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
631 			 uc_mem_map_size);
632 
633 		rc = efx_ef10_link_piobufs(efx);
634 		if (rc)
635 			efx_ef10_free_piobufs(efx);
636 	}
637 
638 	netif_dbg(efx, probe, efx->net_dev,
639 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
640 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
641 		  nic_data->wc_membase, wc_mem_map_size);
642 
643 	return 0;
644 }
645 
646 static int efx_ef10_init_nic(struct efx_nic *efx)
647 {
648 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
649 	int rc;
650 
651 	if (nic_data->must_check_datapath_caps) {
652 		rc = efx_ef10_init_datapath_caps(efx);
653 		if (rc)
654 			return rc;
655 		nic_data->must_check_datapath_caps = false;
656 	}
657 
658 	if (nic_data->must_realloc_vis) {
659 		/* We cannot let the number of VIs change now */
660 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
661 					nic_data->n_allocated_vis);
662 		if (rc)
663 			return rc;
664 		nic_data->must_realloc_vis = false;
665 	}
666 
667 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
668 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
669 		if (rc == 0) {
670 			rc = efx_ef10_link_piobufs(efx);
671 			if (rc)
672 				efx_ef10_free_piobufs(efx);
673 		}
674 
675 		/* Log an error on failure, but this is non-fatal */
676 		if (rc)
677 			netif_err(efx, drv, efx->net_dev,
678 				  "failed to restore PIO buffers (%d)\n", rc);
679 		nic_data->must_restore_piobufs = false;
680 	}
681 
682 	efx_ef10_rx_push_rss_config(efx);
683 	return 0;
684 }
685 
686 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
687 {
688 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
689 
690 	/* All our allocations have been reset */
691 	nic_data->must_realloc_vis = true;
692 	nic_data->must_restore_filters = true;
693 	nic_data->must_restore_piobufs = true;
694 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
695 }
696 
697 static int efx_ef10_map_reset_flags(u32 *flags)
698 {
699 	enum {
700 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
701 				   ETH_RESET_SHARED_SHIFT),
702 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
703 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
704 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
705 				 ETH_RESET_SHARED_SHIFT)
706 	};
707 
708 	/* We assume for now that our PCI function is permitted to
709 	 * reset everything.
710 	 */
711 
712 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
713 		*flags &= ~EF10_RESET_MC;
714 		return RESET_TYPE_WORLD;
715 	}
716 
717 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
718 		*flags &= ~EF10_RESET_PORT;
719 		return RESET_TYPE_ALL;
720 	}
721 
722 	/* no invisible reset implemented */
723 
724 	return -EINVAL;
725 }
726 
727 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
728 {
729 	int rc = efx_mcdi_reset(efx, reset_type);
730 
731 	/* If it was a port reset, trigger reallocation of MC resources.
732 	 * Note that on an MC reset nothing needs to be done now because we'll
733 	 * detect the MC reset later and handle it then.
734 	 */
735 	if (reset_type == RESET_TYPE_ALL && !rc)
736 		efx_ef10_reset_mc_allocations(efx);
737 	return rc;
738 }
739 
740 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
741 	[EF10_STAT_ ## ext_name] =				\
742 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
743 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
744 	[EF10_STAT_ ## int_name] =				\
745 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
746 #define EF10_OTHER_STAT(ext_name)				\
747 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
748 
749 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
750 	EF10_DMA_STAT(tx_bytes, TX_BYTES),
751 	EF10_DMA_STAT(tx_packets, TX_PKTS),
752 	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
753 	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
754 	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
755 	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
756 	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
757 	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
758 	EF10_DMA_STAT(tx_64, TX_64_PKTS),
759 	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
760 	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
761 	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
762 	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
763 	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
764 	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
765 	EF10_DMA_STAT(rx_bytes, RX_BYTES),
766 	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
767 	EF10_OTHER_STAT(rx_good_bytes),
768 	EF10_OTHER_STAT(rx_bad_bytes),
769 	EF10_DMA_STAT(rx_packets, RX_PKTS),
770 	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
771 	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
772 	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
773 	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
774 	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
775 	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
776 	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
777 	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
778 	EF10_DMA_STAT(rx_64, RX_64_PKTS),
779 	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
780 	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
781 	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
782 	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
783 	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
784 	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
785 	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
786 	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
787 	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
788 	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
789 	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
790 	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
791 	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
792 	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
793 	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
794 	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
795 	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
796 	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
797 	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
798 	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
799 	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
800 	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
801 	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
802 	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
803 };
804 
805 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
806 			       (1ULL << EF10_STAT_tx_packets) |		\
807 			       (1ULL << EF10_STAT_tx_pause) |		\
808 			       (1ULL << EF10_STAT_tx_unicast) |		\
809 			       (1ULL << EF10_STAT_tx_multicast) |	\
810 			       (1ULL << EF10_STAT_tx_broadcast) |	\
811 			       (1ULL << EF10_STAT_rx_bytes) |		\
812 			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
813 			       (1ULL << EF10_STAT_rx_good_bytes) |	\
814 			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
815 			       (1ULL << EF10_STAT_rx_packets) |		\
816 			       (1ULL << EF10_STAT_rx_good) |		\
817 			       (1ULL << EF10_STAT_rx_bad) |		\
818 			       (1ULL << EF10_STAT_rx_pause) |		\
819 			       (1ULL << EF10_STAT_rx_control) |		\
820 			       (1ULL << EF10_STAT_rx_unicast) |		\
821 			       (1ULL << EF10_STAT_rx_multicast) |	\
822 			       (1ULL << EF10_STAT_rx_broadcast) |	\
823 			       (1ULL << EF10_STAT_rx_lt64) |		\
824 			       (1ULL << EF10_STAT_rx_64) |		\
825 			       (1ULL << EF10_STAT_rx_65_to_127) |	\
826 			       (1ULL << EF10_STAT_rx_128_to_255) |	\
827 			       (1ULL << EF10_STAT_rx_256_to_511) |	\
828 			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
829 			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
830 			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
831 			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
832 			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
833 			       (1ULL << EF10_STAT_rx_overflow) |	\
834 			       (1ULL << EF10_STAT_rx_nodesc_drops))
835 
836 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
837  * switchable port we do not expose these because they might not
838  * include all the packets they should.
839  */
840 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
841 				 (1ULL << EF10_STAT_tx_lt64) |		\
842 				 (1ULL << EF10_STAT_tx_64) |		\
843 				 (1ULL << EF10_STAT_tx_65_to_127) |	\
844 				 (1ULL << EF10_STAT_tx_128_to_255) |	\
845 				 (1ULL << EF10_STAT_tx_256_to_511) |	\
846 				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
847 				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
848 				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
849 
850 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
851  * switchable port we do expose these because the errors will otherwise
852  * be silent.
853  */
854 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
855 				  (1ULL << EF10_STAT_rx_length_error))
856 
857 /* These statistics are only provided if the firmware supports the
858  * capability PM_AND_RXDP_COUNTERS.
859  */
860 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
861 	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
862 	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
863 	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
864 	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
865 	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
866 	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
867 	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
868 	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
869 	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
870 	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
871 	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
872 	(1ULL << EF10_STAT_rx_dp_hlb_wait))
873 
874 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
875 {
876 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
877 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
878 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
879 
880 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
881 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
882 	else
883 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
884 
885 	if (nic_data->datapath_caps &
886 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
887 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
888 
889 	return raw_mask;
890 }
891 
892 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
893 {
894 	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
895 
896 #if BITS_PER_LONG == 64
897 	mask[0] = raw_mask;
898 #else
899 	mask[0] = raw_mask & 0xffffffff;
900 	mask[1] = raw_mask >> 32;
901 #endif
902 }
903 
904 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
905 {
906 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
907 
908 	efx_ef10_get_stat_mask(efx, mask);
909 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
910 				      mask, names);
911 }
912 
913 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
914 {
915 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
916 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
917 	__le64 generation_start, generation_end;
918 	u64 *stats = nic_data->stats;
919 	__le64 *dma_stats;
920 
921 	efx_ef10_get_stat_mask(efx, mask);
922 
923 	dma_stats = efx->stats_buffer.addr;
924 	nic_data = efx->nic_data;
925 
926 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
927 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
928 		return 0;
929 	rmb();
930 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
931 			     stats, efx->stats_buffer.addr, false);
932 	rmb();
933 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
934 	if (generation_end != generation_start)
935 		return -EAGAIN;
936 
937 	/* Update derived statistics */
938 	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
939 	stats[EF10_STAT_rx_good_bytes] =
940 		stats[EF10_STAT_rx_bytes] -
941 		stats[EF10_STAT_rx_bytes_minus_good_bytes];
942 	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
943 			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
944 
945 	return 0;
946 }
947 
948 
949 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
950 				    struct rtnl_link_stats64 *core_stats)
951 {
952 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
953 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
954 	u64 *stats = nic_data->stats;
955 	size_t stats_count = 0, index;
956 	int retry;
957 
958 	efx_ef10_get_stat_mask(efx, mask);
959 
960 	/* If we're unlucky enough to read statistics during the DMA, wait
961 	 * up to 10ms for it to finish (typically takes <500us)
962 	 */
963 	for (retry = 0; retry < 100; ++retry) {
964 		if (efx_ef10_try_update_nic_stats(efx) == 0)
965 			break;
966 		udelay(100);
967 	}
968 
969 	if (full_stats) {
970 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
971 			if (efx_ef10_stat_desc[index].name) {
972 				*full_stats++ = stats[index];
973 				++stats_count;
974 			}
975 		}
976 	}
977 
978 	if (core_stats) {
979 		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
980 		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
981 		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
982 		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
983 		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
984 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
985 		core_stats->rx_length_errors =
986 			stats[EF10_STAT_rx_gtjumbo] +
987 			stats[EF10_STAT_rx_length_error];
988 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
989 		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
990 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
991 		core_stats->rx_errors = (core_stats->rx_length_errors +
992 					 core_stats->rx_crc_errors +
993 					 core_stats->rx_frame_errors);
994 	}
995 
996 	return stats_count;
997 }
998 
999 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1000 {
1001 	struct efx_nic *efx = channel->efx;
1002 	unsigned int mode, value;
1003 	efx_dword_t timer_cmd;
1004 
1005 	if (channel->irq_moderation) {
1006 		mode = 3;
1007 		value = channel->irq_moderation - 1;
1008 	} else {
1009 		mode = 0;
1010 		value = 0;
1011 	}
1012 
1013 	if (EFX_EF10_WORKAROUND_35388(efx)) {
1014 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1015 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1016 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1017 				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1018 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1019 				channel->channel);
1020 	} else {
1021 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1022 				     ERF_DZ_TC_TIMER_VAL, value);
1023 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1024 				channel->channel);
1025 	}
1026 }
1027 
1028 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1029 {
1030 	wol->supported = 0;
1031 	wol->wolopts = 0;
1032 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1033 }
1034 
1035 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1036 {
1037 	if (type != 0)
1038 		return -EINVAL;
1039 	return 0;
1040 }
1041 
1042 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1043 				  const efx_dword_t *hdr, size_t hdr_len,
1044 				  const efx_dword_t *sdu, size_t sdu_len)
1045 {
1046 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1047 	u8 *pdu = nic_data->mcdi_buf.addr;
1048 
1049 	memcpy(pdu, hdr, hdr_len);
1050 	memcpy(pdu + hdr_len, sdu, sdu_len);
1051 	wmb();
1052 
1053 	/* The hardware provides 'low' and 'high' (doorbell) registers
1054 	 * for passing the 64-bit address of an MCDI request to
1055 	 * firmware.  However the dwords are swapped by firmware.  The
1056 	 * least significant bits of the doorbell are then 0 for all
1057 	 * MCDI requests due to alignment.
1058 	 */
1059 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1060 		    ER_DZ_MC_DB_LWRD);
1061 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1062 		    ER_DZ_MC_DB_HWRD);
1063 }
1064 
1065 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1066 {
1067 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1068 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1069 
1070 	rmb();
1071 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1072 }
1073 
1074 static void
1075 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1076 			    size_t offset, size_t outlen)
1077 {
1078 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1079 	const u8 *pdu = nic_data->mcdi_buf.addr;
1080 
1081 	memcpy(outbuf, pdu + offset, outlen);
1082 }
1083 
1084 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1085 {
1086 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1087 	int rc;
1088 
1089 	rc = efx_ef10_get_warm_boot_count(efx);
1090 	if (rc < 0) {
1091 		/* The firmware is presumably in the process of
1092 		 * rebooting.  However, we are supposed to report each
1093 		 * reboot just once, so we must only do that once we
1094 		 * can read and store the updated warm boot count.
1095 		 */
1096 		return 0;
1097 	}
1098 
1099 	if (rc == nic_data->warm_boot_count)
1100 		return 0;
1101 
1102 	nic_data->warm_boot_count = rc;
1103 
1104 	/* All our allocations have been reset */
1105 	efx_ef10_reset_mc_allocations(efx);
1106 
1107 	/* The datapath firmware might have been changed */
1108 	nic_data->must_check_datapath_caps = true;
1109 
1110 	/* MAC statistics have been cleared on the NIC; clear the local
1111 	 * statistic that we update with efx_update_diff_stat().
1112 	 */
1113 	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1114 
1115 	return -EIO;
1116 }
1117 
1118 /* Handle an MSI interrupt
1119  *
1120  * Handle an MSI hardware interrupt.  This routine schedules event
1121  * queue processing.  No interrupt acknowledgement cycle is necessary.
1122  * Also, we never need to check that the interrupt is for us, since
1123  * MSI interrupts cannot be shared.
1124  */
1125 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1126 {
1127 	struct efx_msi_context *context = dev_id;
1128 	struct efx_nic *efx = context->efx;
1129 
1130 	netif_vdbg(efx, intr, efx->net_dev,
1131 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1132 
1133 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1134 		/* Note test interrupts */
1135 		if (context->index == efx->irq_level)
1136 			efx->last_irq_cpu = raw_smp_processor_id();
1137 
1138 		/* Schedule processing of the channel */
1139 		efx_schedule_channel_irq(efx->channel[context->index]);
1140 	}
1141 
1142 	return IRQ_HANDLED;
1143 }
1144 
1145 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1146 {
1147 	struct efx_nic *efx = dev_id;
1148 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1149 	struct efx_channel *channel;
1150 	efx_dword_t reg;
1151 	u32 queues;
1152 
1153 	/* Read the ISR which also ACKs the interrupts */
1154 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1155 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1156 
1157 	if (queues == 0)
1158 		return IRQ_NONE;
1159 
1160 	if (likely(soft_enabled)) {
1161 		/* Note test interrupts */
1162 		if (queues & (1U << efx->irq_level))
1163 			efx->last_irq_cpu = raw_smp_processor_id();
1164 
1165 		efx_for_each_channel(channel, efx) {
1166 			if (queues & 1)
1167 				efx_schedule_channel_irq(channel);
1168 			queues >>= 1;
1169 		}
1170 	}
1171 
1172 	netif_vdbg(efx, intr, efx->net_dev,
1173 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1174 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1175 
1176 	return IRQ_HANDLED;
1177 }
1178 
1179 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1180 {
1181 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1182 
1183 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1184 
1185 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1186 	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1187 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1188 }
1189 
1190 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1191 {
1192 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1193 				    (tx_queue->ptr_mask + 1) *
1194 				    sizeof(efx_qword_t),
1195 				    GFP_KERNEL);
1196 }
1197 
1198 /* This writes to the TX_DESC_WPTR and also pushes data */
1199 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1200 					 const efx_qword_t *txd)
1201 {
1202 	unsigned int write_ptr;
1203 	efx_oword_t reg;
1204 
1205 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1206 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1207 	reg.qword[0] = *txd;
1208 	efx_writeo_page(tx_queue->efx, &reg,
1209 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1210 }
1211 
1212 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1213 {
1214 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1215 						       EFX_BUF_SIZE));
1216 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1217 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1218 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1219 	struct efx_channel *channel = tx_queue->channel;
1220 	struct efx_nic *efx = tx_queue->efx;
1221 	size_t inlen, outlen;
1222 	dma_addr_t dma_addr;
1223 	efx_qword_t *txd;
1224 	int rc;
1225 	int i;
1226 
1227 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1228 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1229 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1230 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1231 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1232 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1233 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1234 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1235 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1236 
1237 	dma_addr = tx_queue->txd.buf.dma_addr;
1238 
1239 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1240 		  tx_queue->queue, entries, (u64)dma_addr);
1241 
1242 	for (i = 0; i < entries; ++i) {
1243 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1244 		dma_addr += EFX_BUF_SIZE;
1245 	}
1246 
1247 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1248 
1249 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1250 			  outbuf, sizeof(outbuf), &outlen);
1251 	if (rc)
1252 		goto fail;
1253 
1254 	/* A previous user of this TX queue might have set us up the
1255 	 * bomb by writing a descriptor to the TX push collector but
1256 	 * not the doorbell.  (Each collector belongs to a port, not a
1257 	 * queue or function, so cannot easily be reset.)  We must
1258 	 * attempt to push a no-op descriptor in its place.
1259 	 */
1260 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1261 	tx_queue->insert_count = 1;
1262 	txd = efx_tx_desc(tx_queue, 0);
1263 	EFX_POPULATE_QWORD_4(*txd,
1264 			     ESF_DZ_TX_DESC_IS_OPT, true,
1265 			     ESF_DZ_TX_OPTION_TYPE,
1266 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1267 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1268 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1269 	tx_queue->write_count = 1;
1270 	wmb();
1271 	efx_ef10_push_tx_desc(tx_queue, txd);
1272 
1273 	return;
1274 
1275 fail:
1276 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1277 		    tx_queue->queue);
1278 }
1279 
1280 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1281 {
1282 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1283 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1284 	struct efx_nic *efx = tx_queue->efx;
1285 	size_t outlen;
1286 	int rc;
1287 
1288 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1289 		       tx_queue->queue);
1290 
1291 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1292 			  outbuf, sizeof(outbuf), &outlen);
1293 
1294 	if (rc && rc != -EALREADY)
1295 		goto fail;
1296 
1297 	return;
1298 
1299 fail:
1300 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1301 			       outbuf, outlen, rc);
1302 }
1303 
1304 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1305 {
1306 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1307 }
1308 
1309 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1310 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1311 {
1312 	unsigned int write_ptr;
1313 	efx_dword_t reg;
1314 
1315 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1316 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1317 	efx_writed_page(tx_queue->efx, &reg,
1318 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1319 }
1320 
1321 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1322 {
1323 	unsigned int old_write_count = tx_queue->write_count;
1324 	struct efx_tx_buffer *buffer;
1325 	unsigned int write_ptr;
1326 	efx_qword_t *txd;
1327 
1328 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1329 
1330 	do {
1331 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1332 		buffer = &tx_queue->buffer[write_ptr];
1333 		txd = efx_tx_desc(tx_queue, write_ptr);
1334 		++tx_queue->write_count;
1335 
1336 		/* Create TX descriptor ring entry */
1337 		if (buffer->flags & EFX_TX_BUF_OPTION) {
1338 			*txd = buffer->option;
1339 		} else {
1340 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1341 			EFX_POPULATE_QWORD_3(
1342 				*txd,
1343 				ESF_DZ_TX_KER_CONT,
1344 				buffer->flags & EFX_TX_BUF_CONT,
1345 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1346 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1347 		}
1348 	} while (tx_queue->write_count != tx_queue->insert_count);
1349 
1350 	wmb(); /* Ensure descriptors are written before they are fetched */
1351 
1352 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1353 		txd = efx_tx_desc(tx_queue,
1354 				  old_write_count & tx_queue->ptr_mask);
1355 		efx_ef10_push_tx_desc(tx_queue, txd);
1356 		++tx_queue->pushes;
1357 	} else {
1358 		efx_ef10_notify_tx_desc(tx_queue);
1359 	}
1360 }
1361 
1362 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1363 {
1364 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1365 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1366 	size_t outlen;
1367 	int rc;
1368 
1369 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1370 		       EVB_PORT_ID_ASSIGNED);
1371 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1372 		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1373 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1374 		       EFX_MAX_CHANNELS);
1375 
1376 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1377 		outbuf, sizeof(outbuf), &outlen);
1378 	if (rc != 0)
1379 		return rc;
1380 
1381 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1382 		return -EIO;
1383 
1384 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1385 
1386 	return 0;
1387 }
1388 
1389 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1390 {
1391 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1392 	int rc;
1393 
1394 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1395 		       context);
1396 
1397 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1398 			    NULL, 0, NULL);
1399 	WARN_ON(rc != 0);
1400 }
1401 
1402 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1403 {
1404 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1405 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1406 	int i, rc;
1407 
1408 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1409 		       context);
1410 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1411 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1412 
1413 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1414 		MCDI_PTR(tablebuf,
1415 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1416 				(u8) efx->rx_indir_table[i];
1417 
1418 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1419 			  sizeof(tablebuf), NULL, 0, NULL);
1420 	if (rc != 0)
1421 		return rc;
1422 
1423 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1424 		       context);
1425 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1426 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1427 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1428 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1429 			efx->rx_hash_key[i];
1430 
1431 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1432 			    sizeof(keybuf), NULL, 0, NULL);
1433 }
1434 
1435 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1436 {
1437 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1438 
1439 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1440 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1441 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1442 }
1443 
1444 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1445 {
1446 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1447 	int rc;
1448 
1449 	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1450 
1451 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1452 		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1453 		if (rc != 0)
1454 			goto fail;
1455 	}
1456 
1457 	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1458 	if (rc != 0)
1459 		goto fail;
1460 
1461 	return;
1462 
1463 fail:
1464 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1465 }
1466 
1467 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1468 {
1469 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1470 				    (rx_queue->ptr_mask + 1) *
1471 				    sizeof(efx_qword_t),
1472 				    GFP_KERNEL);
1473 }
1474 
1475 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1476 {
1477 	MCDI_DECLARE_BUF(inbuf,
1478 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1479 						EFX_BUF_SIZE));
1480 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1481 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1482 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1483 	struct efx_nic *efx = rx_queue->efx;
1484 	size_t inlen, outlen;
1485 	dma_addr_t dma_addr;
1486 	int rc;
1487 	int i;
1488 
1489 	rx_queue->scatter_n = 0;
1490 	rx_queue->scatter_len = 0;
1491 
1492 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1493 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1494 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1495 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1496 		       efx_rx_queue_index(rx_queue));
1497 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1498 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1499 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1500 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1501 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1502 
1503 	dma_addr = rx_queue->rxd.buf.dma_addr;
1504 
1505 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1506 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1507 
1508 	for (i = 0; i < entries; ++i) {
1509 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1510 		dma_addr += EFX_BUF_SIZE;
1511 	}
1512 
1513 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1514 
1515 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1516 			  outbuf, sizeof(outbuf), &outlen);
1517 	if (rc)
1518 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1519 			    efx_rx_queue_index(rx_queue));
1520 }
1521 
1522 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1523 {
1524 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1525 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1526 	struct efx_nic *efx = rx_queue->efx;
1527 	size_t outlen;
1528 	int rc;
1529 
1530 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1531 		       efx_rx_queue_index(rx_queue));
1532 
1533 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1534 			  outbuf, sizeof(outbuf), &outlen);
1535 
1536 	if (rc && rc != -EALREADY)
1537 		goto fail;
1538 
1539 	return;
1540 
1541 fail:
1542 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1543 			       outbuf, outlen, rc);
1544 }
1545 
1546 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1547 {
1548 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1549 }
1550 
1551 /* This creates an entry in the RX descriptor queue */
1552 static inline void
1553 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1554 {
1555 	struct efx_rx_buffer *rx_buf;
1556 	efx_qword_t *rxd;
1557 
1558 	rxd = efx_rx_desc(rx_queue, index);
1559 	rx_buf = efx_rx_buffer(rx_queue, index);
1560 	EFX_POPULATE_QWORD_2(*rxd,
1561 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1562 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1563 }
1564 
1565 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1566 {
1567 	struct efx_nic *efx = rx_queue->efx;
1568 	unsigned int write_count;
1569 	efx_dword_t reg;
1570 
1571 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1572 	write_count = rx_queue->added_count & ~7;
1573 	if (rx_queue->notified_count == write_count)
1574 		return;
1575 
1576 	do
1577 		efx_ef10_build_rx_desc(
1578 			rx_queue,
1579 			rx_queue->notified_count & rx_queue->ptr_mask);
1580 	while (++rx_queue->notified_count != write_count);
1581 
1582 	wmb();
1583 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1584 			     write_count & rx_queue->ptr_mask);
1585 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1586 			efx_rx_queue_index(rx_queue));
1587 }
1588 
1589 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1590 
1591 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1592 {
1593 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1594 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1595 	efx_qword_t event;
1596 
1597 	EFX_POPULATE_QWORD_2(event,
1598 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1599 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1600 
1601 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1602 
1603 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1604 	 * already swapped the data to little-endian order.
1605 	 */
1606 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1607 	       sizeof(efx_qword_t));
1608 
1609 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1610 			   inbuf, sizeof(inbuf), 0,
1611 			   efx_ef10_rx_defer_refill_complete, 0);
1612 }
1613 
1614 static void
1615 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1616 				  int rc, efx_dword_t *outbuf,
1617 				  size_t outlen_actual)
1618 {
1619 	/* nothing to do */
1620 }
1621 
1622 static int efx_ef10_ev_probe(struct efx_channel *channel)
1623 {
1624 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1625 				    (channel->eventq_mask + 1) *
1626 				    sizeof(efx_qword_t),
1627 				    GFP_KERNEL);
1628 }
1629 
1630 static int efx_ef10_ev_init(struct efx_channel *channel)
1631 {
1632 	MCDI_DECLARE_BUF(inbuf,
1633 			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1634 						EFX_BUF_SIZE));
1635 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1636 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1637 	struct efx_nic *efx = channel->efx;
1638 	struct efx_ef10_nic_data *nic_data;
1639 	bool supports_rx_merge;
1640 	size_t inlen, outlen;
1641 	dma_addr_t dma_addr;
1642 	int rc;
1643 	int i;
1644 
1645 	nic_data = efx->nic_data;
1646 	supports_rx_merge =
1647 		!!(nic_data->datapath_caps &
1648 		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1649 
1650 	/* Fill event queue with all ones (i.e. empty events) */
1651 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1652 
1653 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1654 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1655 	/* INIT_EVQ expects index in vector table, not absolute */
1656 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1657 	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1658 			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1659 			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1660 			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1661 			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1662 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1663 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1664 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1665 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1666 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1667 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1668 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1669 
1670 	dma_addr = channel->eventq.buf.dma_addr;
1671 	for (i = 0; i < entries; ++i) {
1672 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1673 		dma_addr += EFX_BUF_SIZE;
1674 	}
1675 
1676 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1677 
1678 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1679 			  outbuf, sizeof(outbuf), &outlen);
1680 	/* IRQ return is ignored */
1681 	return rc;
1682 }
1683 
1684 static void efx_ef10_ev_fini(struct efx_channel *channel)
1685 {
1686 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1687 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1688 	struct efx_nic *efx = channel->efx;
1689 	size_t outlen;
1690 	int rc;
1691 
1692 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1693 
1694 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1695 			  outbuf, sizeof(outbuf), &outlen);
1696 
1697 	if (rc && rc != -EALREADY)
1698 		goto fail;
1699 
1700 	return;
1701 
1702 fail:
1703 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1704 			       outbuf, outlen, rc);
1705 }
1706 
1707 static void efx_ef10_ev_remove(struct efx_channel *channel)
1708 {
1709 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1710 }
1711 
1712 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1713 					   unsigned int rx_queue_label)
1714 {
1715 	struct efx_nic *efx = rx_queue->efx;
1716 
1717 	netif_info(efx, hw, efx->net_dev,
1718 		   "rx event arrived on queue %d labeled as queue %u\n",
1719 		   efx_rx_queue_index(rx_queue), rx_queue_label);
1720 
1721 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1722 }
1723 
1724 static void
1725 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1726 			     unsigned int actual, unsigned int expected)
1727 {
1728 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1729 	struct efx_nic *efx = rx_queue->efx;
1730 
1731 	netif_info(efx, hw, efx->net_dev,
1732 		   "dropped %d events (index=%d expected=%d)\n",
1733 		   dropped, actual, expected);
1734 
1735 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1736 }
1737 
1738 /* partially received RX was aborted. clean up. */
1739 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1740 {
1741 	unsigned int rx_desc_ptr;
1742 
1743 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1744 		  "scattered RX aborted (dropping %u buffers)\n",
1745 		  rx_queue->scatter_n);
1746 
1747 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1748 
1749 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1750 		      0, EFX_RX_PKT_DISCARD);
1751 
1752 	rx_queue->removed_count += rx_queue->scatter_n;
1753 	rx_queue->scatter_n = 0;
1754 	rx_queue->scatter_len = 0;
1755 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1756 }
1757 
1758 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1759 				    const efx_qword_t *event)
1760 {
1761 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1762 	unsigned int n_descs, n_packets, i;
1763 	struct efx_nic *efx = channel->efx;
1764 	struct efx_rx_queue *rx_queue;
1765 	bool rx_cont;
1766 	u16 flags = 0;
1767 
1768 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1769 		return 0;
1770 
1771 	/* Basic packet information */
1772 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1773 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1774 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1775 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1776 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1777 
1778 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1779 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1780 			    EFX_QWORD_FMT "\n",
1781 			    EFX_QWORD_VAL(*event));
1782 
1783 	rx_queue = efx_channel_get_rx_queue(channel);
1784 
1785 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1786 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1787 
1788 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1789 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1790 
1791 	if (n_descs != rx_queue->scatter_n + 1) {
1792 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1793 
1794 		/* detect rx abort */
1795 		if (unlikely(n_descs == rx_queue->scatter_n)) {
1796 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1797 				netdev_WARN(efx->net_dev,
1798 					    "invalid RX abort: scatter_n=%u event="
1799 					    EFX_QWORD_FMT "\n",
1800 					    rx_queue->scatter_n,
1801 					    EFX_QWORD_VAL(*event));
1802 			efx_ef10_handle_rx_abort(rx_queue);
1803 			return 0;
1804 		}
1805 
1806 		/* Check that RX completion merging is valid, i.e.
1807 		 * the current firmware supports it and this is a
1808 		 * non-scattered packet.
1809 		 */
1810 		if (!(nic_data->datapath_caps &
1811 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1812 		    rx_queue->scatter_n != 0 || rx_cont) {
1813 			efx_ef10_handle_rx_bad_lbits(
1814 				rx_queue, next_ptr_lbits,
1815 				(rx_queue->removed_count +
1816 				 rx_queue->scatter_n + 1) &
1817 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1818 			return 0;
1819 		}
1820 
1821 		/* Merged completion for multiple non-scattered packets */
1822 		rx_queue->scatter_n = 1;
1823 		rx_queue->scatter_len = 0;
1824 		n_packets = n_descs;
1825 		++channel->n_rx_merge_events;
1826 		channel->n_rx_merge_packets += n_packets;
1827 		flags |= EFX_RX_PKT_PREFIX_LEN;
1828 	} else {
1829 		++rx_queue->scatter_n;
1830 		rx_queue->scatter_len += rx_bytes;
1831 		if (rx_cont)
1832 			return 0;
1833 		n_packets = 1;
1834 	}
1835 
1836 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1837 		flags |= EFX_RX_PKT_DISCARD;
1838 
1839 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1840 		channel->n_rx_ip_hdr_chksum_err += n_packets;
1841 	} else if (unlikely(EFX_QWORD_FIELD(*event,
1842 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1843 		channel->n_rx_tcp_udp_chksum_err += n_packets;
1844 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1845 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1846 		flags |= EFX_RX_PKT_CSUMMED;
1847 	}
1848 
1849 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1850 		flags |= EFX_RX_PKT_TCP;
1851 
1852 	channel->irq_mod_score += 2 * n_packets;
1853 
1854 	/* Handle received packet(s) */
1855 	for (i = 0; i < n_packets; i++) {
1856 		efx_rx_packet(rx_queue,
1857 			      rx_queue->removed_count & rx_queue->ptr_mask,
1858 			      rx_queue->scatter_n, rx_queue->scatter_len,
1859 			      flags);
1860 		rx_queue->removed_count += rx_queue->scatter_n;
1861 	}
1862 
1863 	rx_queue->scatter_n = 0;
1864 	rx_queue->scatter_len = 0;
1865 
1866 	return n_packets;
1867 }
1868 
1869 static int
1870 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1871 {
1872 	struct efx_nic *efx = channel->efx;
1873 	struct efx_tx_queue *tx_queue;
1874 	unsigned int tx_ev_desc_ptr;
1875 	unsigned int tx_ev_q_label;
1876 	int tx_descs = 0;
1877 
1878 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1879 		return 0;
1880 
1881 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1882 		return 0;
1883 
1884 	/* Transmit completion */
1885 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1886 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1887 	tx_queue = efx_channel_get_tx_queue(channel,
1888 					    tx_ev_q_label % EFX_TXQ_TYPES);
1889 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1890 		    tx_queue->ptr_mask);
1891 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1892 
1893 	return tx_descs;
1894 }
1895 
1896 static void
1897 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1898 {
1899 	struct efx_nic *efx = channel->efx;
1900 	int subcode;
1901 
1902 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1903 
1904 	switch (subcode) {
1905 	case ESE_DZ_DRV_TIMER_EV:
1906 	case ESE_DZ_DRV_WAKE_UP_EV:
1907 		break;
1908 	case ESE_DZ_DRV_START_UP_EV:
1909 		/* event queue init complete. ok. */
1910 		break;
1911 	default:
1912 		netif_err(efx, hw, efx->net_dev,
1913 			  "channel %d unknown driver event type %d"
1914 			  " (data " EFX_QWORD_FMT ")\n",
1915 			  channel->channel, subcode,
1916 			  EFX_QWORD_VAL(*event));
1917 
1918 	}
1919 }
1920 
1921 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1922 						   efx_qword_t *event)
1923 {
1924 	struct efx_nic *efx = channel->efx;
1925 	u32 subcode;
1926 
1927 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1928 
1929 	switch (subcode) {
1930 	case EFX_EF10_TEST:
1931 		channel->event_test_cpu = raw_smp_processor_id();
1932 		break;
1933 	case EFX_EF10_REFILL:
1934 		/* The queue must be empty, so we won't receive any rx
1935 		 * events, so efx_process_channel() won't refill the
1936 		 * queue. Refill it here
1937 		 */
1938 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1939 		break;
1940 	default:
1941 		netif_err(efx, hw, efx->net_dev,
1942 			  "channel %d unknown driver event type %u"
1943 			  " (data " EFX_QWORD_FMT ")\n",
1944 			  channel->channel, (unsigned) subcode,
1945 			  EFX_QWORD_VAL(*event));
1946 	}
1947 }
1948 
1949 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1950 {
1951 	struct efx_nic *efx = channel->efx;
1952 	efx_qword_t event, *p_event;
1953 	unsigned int read_ptr;
1954 	int ev_code;
1955 	int tx_descs = 0;
1956 	int spent = 0;
1957 
1958 	read_ptr = channel->eventq_read_ptr;
1959 
1960 	for (;;) {
1961 		p_event = efx_event(channel, read_ptr);
1962 		event = *p_event;
1963 
1964 		if (!efx_event_present(&event))
1965 			break;
1966 
1967 		EFX_SET_QWORD(*p_event);
1968 
1969 		++read_ptr;
1970 
1971 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1972 
1973 		netif_vdbg(efx, drv, efx->net_dev,
1974 			   "processing event on %d " EFX_QWORD_FMT "\n",
1975 			   channel->channel, EFX_QWORD_VAL(event));
1976 
1977 		switch (ev_code) {
1978 		case ESE_DZ_EV_CODE_MCDI_EV:
1979 			efx_mcdi_process_event(channel, &event);
1980 			break;
1981 		case ESE_DZ_EV_CODE_RX_EV:
1982 			spent += efx_ef10_handle_rx_event(channel, &event);
1983 			if (spent >= quota) {
1984 				/* XXX can we split a merged event to
1985 				 * avoid going over-quota?
1986 				 */
1987 				spent = quota;
1988 				goto out;
1989 			}
1990 			break;
1991 		case ESE_DZ_EV_CODE_TX_EV:
1992 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
1993 			if (tx_descs > efx->txq_entries) {
1994 				spent = quota;
1995 				goto out;
1996 			} else if (++spent == quota) {
1997 				goto out;
1998 			}
1999 			break;
2000 		case ESE_DZ_EV_CODE_DRIVER_EV:
2001 			efx_ef10_handle_driver_event(channel, &event);
2002 			if (++spent == quota)
2003 				goto out;
2004 			break;
2005 		case EFX_EF10_DRVGEN_EV:
2006 			efx_ef10_handle_driver_generated_event(channel, &event);
2007 			break;
2008 		default:
2009 			netif_err(efx, hw, efx->net_dev,
2010 				  "channel %d unknown event type %d"
2011 				  " (data " EFX_QWORD_FMT ")\n",
2012 				  channel->channel, ev_code,
2013 				  EFX_QWORD_VAL(event));
2014 		}
2015 	}
2016 
2017 out:
2018 	channel->eventq_read_ptr = read_ptr;
2019 	return spent;
2020 }
2021 
2022 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2023 {
2024 	struct efx_nic *efx = channel->efx;
2025 	efx_dword_t rptr;
2026 
2027 	if (EFX_EF10_WORKAROUND_35388(efx)) {
2028 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2029 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2030 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2031 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2032 
2033 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2034 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2035 				     ERF_DD_EVQ_IND_RPTR,
2036 				     (channel->eventq_read_ptr &
2037 				      channel->eventq_mask) >>
2038 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2039 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2040 				channel->channel);
2041 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2042 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2043 				     ERF_DD_EVQ_IND_RPTR,
2044 				     channel->eventq_read_ptr &
2045 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2046 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2047 				channel->channel);
2048 	} else {
2049 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2050 				     channel->eventq_read_ptr &
2051 				     channel->eventq_mask);
2052 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2053 	}
2054 }
2055 
2056 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2057 {
2058 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2059 	struct efx_nic *efx = channel->efx;
2060 	efx_qword_t event;
2061 	int rc;
2062 
2063 	EFX_POPULATE_QWORD_2(event,
2064 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2065 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2066 
2067 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2068 
2069 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2070 	 * already swapped the data to little-endian order.
2071 	 */
2072 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2073 	       sizeof(efx_qword_t));
2074 
2075 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2076 			  NULL, 0, NULL);
2077 	if (rc != 0)
2078 		goto fail;
2079 
2080 	return;
2081 
2082 fail:
2083 	WARN_ON(true);
2084 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2085 }
2086 
2087 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2088 {
2089 	if (atomic_dec_and_test(&efx->active_queues))
2090 		wake_up(&efx->flush_wq);
2091 
2092 	WARN_ON(atomic_read(&efx->active_queues) < 0);
2093 }
2094 
2095 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2096 {
2097 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2098 	struct efx_channel *channel;
2099 	struct efx_tx_queue *tx_queue;
2100 	struct efx_rx_queue *rx_queue;
2101 	int pending;
2102 
2103 	/* If the MC has just rebooted, the TX/RX queues will have already been
2104 	 * torn down, but efx->active_queues needs to be set to zero.
2105 	 */
2106 	if (nic_data->must_realloc_vis) {
2107 		atomic_set(&efx->active_queues, 0);
2108 		return 0;
2109 	}
2110 
2111 	/* Do not attempt to write to the NIC during EEH recovery */
2112 	if (efx->state != STATE_RECOVERY) {
2113 		efx_for_each_channel(channel, efx) {
2114 			efx_for_each_channel_rx_queue(rx_queue, channel)
2115 				efx_ef10_rx_fini(rx_queue);
2116 			efx_for_each_channel_tx_queue(tx_queue, channel)
2117 				efx_ef10_tx_fini(tx_queue);
2118 		}
2119 
2120 		wait_event_timeout(efx->flush_wq,
2121 				   atomic_read(&efx->active_queues) == 0,
2122 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2123 		pending = atomic_read(&efx->active_queues);
2124 		if (pending) {
2125 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2126 				  pending);
2127 			return -ETIMEDOUT;
2128 		}
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2135 				  const struct efx_filter_spec *right)
2136 {
2137 	if ((left->match_flags ^ right->match_flags) |
2138 	    ((left->flags ^ right->flags) &
2139 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2140 		return false;
2141 
2142 	return memcmp(&left->outer_vid, &right->outer_vid,
2143 		      sizeof(struct efx_filter_spec) -
2144 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2145 }
2146 
2147 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2148 {
2149 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2150 	return jhash2((const u32 *)&spec->outer_vid,
2151 		      (sizeof(struct efx_filter_spec) -
2152 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2153 		      0);
2154 	/* XXX should we randomise the initval? */
2155 }
2156 
2157 /* Decide whether a filter should be exclusive or else should allow
2158  * delivery to additional recipients.  Currently we decide that
2159  * filters for specific local unicast MAC and IP addresses are
2160  * exclusive.
2161  */
2162 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2163 {
2164 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2165 	    !is_multicast_ether_addr(spec->loc_mac))
2166 		return true;
2167 
2168 	if ((spec->match_flags &
2169 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2170 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2171 		if (spec->ether_type == htons(ETH_P_IP) &&
2172 		    !ipv4_is_multicast(spec->loc_host[0]))
2173 			return true;
2174 		if (spec->ether_type == htons(ETH_P_IPV6) &&
2175 		    ((const u8 *)spec->loc_host)[0] != 0xff)
2176 			return true;
2177 	}
2178 
2179 	return false;
2180 }
2181 
2182 static struct efx_filter_spec *
2183 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2184 			   unsigned int filter_idx)
2185 {
2186 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2187 					  ~EFX_EF10_FILTER_FLAGS);
2188 }
2189 
2190 static unsigned int
2191 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2192 			   unsigned int filter_idx)
2193 {
2194 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2195 }
2196 
2197 static void
2198 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2199 			  unsigned int filter_idx,
2200 			  const struct efx_filter_spec *spec,
2201 			  unsigned int flags)
2202 {
2203 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2204 }
2205 
2206 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2207 				      const struct efx_filter_spec *spec,
2208 				      efx_dword_t *inbuf, u64 handle,
2209 				      bool replacing)
2210 {
2211 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2212 
2213 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2214 
2215 	if (replacing) {
2216 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2217 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2218 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2219 	} else {
2220 		u32 match_fields = 0;
2221 
2222 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2223 			       efx_ef10_filter_is_exclusive(spec) ?
2224 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2225 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2226 
2227 		/* Convert match flags and values.  Unlike almost
2228 		 * everything else in MCDI, these fields are in
2229 		 * network byte order.
2230 		 */
2231 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2232 			match_fields |=
2233 				is_multicast_ether_addr(spec->loc_mac) ?
2234 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2235 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2236 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2237 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2238 			match_fields |=					     \
2239 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2240 				mcdi_field ## _LBN;			     \
2241 			BUILD_BUG_ON(					     \
2242 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2243 				sizeof(spec->gen_field));		     \
2244 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2245 			       &spec->gen_field, sizeof(spec->gen_field));   \
2246 		}
2247 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2248 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2249 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2250 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2251 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2252 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2253 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2254 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2255 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2256 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2257 #undef COPY_FIELD
2258 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2259 			       match_fields);
2260 	}
2261 
2262 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2263 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2264 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2265 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2266 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2267 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2268 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2269 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2270 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2271 		       0 : spec->dmaq_id);
2272 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2273 		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2274 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2275 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2276 	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2277 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2278 			       spec->rss_context !=
2279 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2280 			       spec->rss_context : nic_data->rx_rss_context);
2281 }
2282 
2283 static int efx_ef10_filter_push(struct efx_nic *efx,
2284 				const struct efx_filter_spec *spec,
2285 				u64 *handle, bool replacing)
2286 {
2287 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2288 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2289 	int rc;
2290 
2291 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2292 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2293 			  outbuf, sizeof(outbuf), NULL);
2294 	if (rc == 0)
2295 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2296 	if (rc == -ENOSPC)
2297 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2298 	return rc;
2299 }
2300 
2301 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2302 					enum efx_filter_match_flags match_flags)
2303 {
2304 	unsigned int match_pri;
2305 
2306 	for (match_pri = 0;
2307 	     match_pri < table->rx_match_count;
2308 	     match_pri++)
2309 		if (table->rx_match_flags[match_pri] == match_flags)
2310 			return match_pri;
2311 
2312 	return -EPROTONOSUPPORT;
2313 }
2314 
2315 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2316 				  struct efx_filter_spec *spec,
2317 				  bool replace_equal)
2318 {
2319 	struct efx_ef10_filter_table *table = efx->filter_state;
2320 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2321 	struct efx_filter_spec *saved_spec;
2322 	unsigned int match_pri, hash;
2323 	unsigned int priv_flags;
2324 	bool replacing = false;
2325 	int ins_index = -1;
2326 	DEFINE_WAIT(wait);
2327 	bool is_mc_recip;
2328 	s32 rc;
2329 
2330 	/* For now, only support RX filters */
2331 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2332 	    EFX_FILTER_FLAG_RX)
2333 		return -EINVAL;
2334 
2335 	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2336 	if (rc < 0)
2337 		return rc;
2338 	match_pri = rc;
2339 
2340 	hash = efx_ef10_filter_hash(spec);
2341 	is_mc_recip = efx_filter_is_mc_recipient(spec);
2342 	if (is_mc_recip)
2343 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2344 
2345 	/* Find any existing filters with the same match tuple or
2346 	 * else a free slot to insert at.  If any of them are busy,
2347 	 * we have to wait and retry.
2348 	 */
2349 	for (;;) {
2350 		unsigned int depth = 1;
2351 		unsigned int i;
2352 
2353 		spin_lock_bh(&efx->filter_lock);
2354 
2355 		for (;;) {
2356 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2357 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2358 
2359 			if (!saved_spec) {
2360 				if (ins_index < 0)
2361 					ins_index = i;
2362 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2363 				if (table->entry[i].spec &
2364 				    EFX_EF10_FILTER_FLAG_BUSY)
2365 					break;
2366 				if (spec->priority < saved_spec->priority &&
2367 				    spec->priority != EFX_FILTER_PRI_AUTO) {
2368 					rc = -EPERM;
2369 					goto out_unlock;
2370 				}
2371 				if (!is_mc_recip) {
2372 					/* This is the only one */
2373 					if (spec->priority ==
2374 					    saved_spec->priority &&
2375 					    !replace_equal) {
2376 						rc = -EEXIST;
2377 						goto out_unlock;
2378 					}
2379 					ins_index = i;
2380 					goto found;
2381 				} else if (spec->priority >
2382 					   saved_spec->priority ||
2383 					   (spec->priority ==
2384 					    saved_spec->priority &&
2385 					    replace_equal)) {
2386 					if (ins_index < 0)
2387 						ins_index = i;
2388 					else
2389 						__set_bit(depth, mc_rem_map);
2390 				}
2391 			}
2392 
2393 			/* Once we reach the maximum search depth, use
2394 			 * the first suitable slot or return -EBUSY if
2395 			 * there was none
2396 			 */
2397 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2398 				if (ins_index < 0) {
2399 					rc = -EBUSY;
2400 					goto out_unlock;
2401 				}
2402 				goto found;
2403 			}
2404 
2405 			++depth;
2406 		}
2407 
2408 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2409 		spin_unlock_bh(&efx->filter_lock);
2410 		schedule();
2411 	}
2412 
2413 found:
2414 	/* Create a software table entry if necessary, and mark it
2415 	 * busy.  We might yet fail to insert, but any attempt to
2416 	 * insert a conflicting filter while we're waiting for the
2417 	 * firmware must find the busy entry.
2418 	 */
2419 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2420 	if (saved_spec) {
2421 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2422 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2423 			/* Just make sure it won't be removed */
2424 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2425 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2426 			table->entry[ins_index].spec &=
2427 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2428 			rc = ins_index;
2429 			goto out_unlock;
2430 		}
2431 		replacing = true;
2432 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2433 	} else {
2434 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2435 		if (!saved_spec) {
2436 			rc = -ENOMEM;
2437 			goto out_unlock;
2438 		}
2439 		*saved_spec = *spec;
2440 		priv_flags = 0;
2441 	}
2442 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2443 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2444 
2445 	/* Mark lower-priority multicast recipients busy prior to removal */
2446 	if (is_mc_recip) {
2447 		unsigned int depth, i;
2448 
2449 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2450 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2451 			if (test_bit(depth, mc_rem_map))
2452 				table->entry[i].spec |=
2453 					EFX_EF10_FILTER_FLAG_BUSY;
2454 		}
2455 	}
2456 
2457 	spin_unlock_bh(&efx->filter_lock);
2458 
2459 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2460 				  replacing);
2461 
2462 	/* Finalise the software table entry */
2463 	spin_lock_bh(&efx->filter_lock);
2464 	if (rc == 0) {
2465 		if (replacing) {
2466 			/* Update the fields that may differ */
2467 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2468 				saved_spec->flags |=
2469 					EFX_FILTER_FLAG_RX_OVER_AUTO;
2470 			saved_spec->priority = spec->priority;
2471 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2472 			saved_spec->flags |= spec->flags;
2473 			saved_spec->rss_context = spec->rss_context;
2474 			saved_spec->dmaq_id = spec->dmaq_id;
2475 		}
2476 	} else if (!replacing) {
2477 		kfree(saved_spec);
2478 		saved_spec = NULL;
2479 	}
2480 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2481 
2482 	/* Remove and finalise entries for lower-priority multicast
2483 	 * recipients
2484 	 */
2485 	if (is_mc_recip) {
2486 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2487 		unsigned int depth, i;
2488 
2489 		memset(inbuf, 0, sizeof(inbuf));
2490 
2491 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2492 			if (!test_bit(depth, mc_rem_map))
2493 				continue;
2494 
2495 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2496 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2497 			priv_flags = efx_ef10_filter_entry_flags(table, i);
2498 
2499 			if (rc == 0) {
2500 				spin_unlock_bh(&efx->filter_lock);
2501 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2502 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2503 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2504 					       table->entry[i].handle);
2505 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2506 						  inbuf, sizeof(inbuf),
2507 						  NULL, 0, NULL);
2508 				spin_lock_bh(&efx->filter_lock);
2509 			}
2510 
2511 			if (rc == 0) {
2512 				kfree(saved_spec);
2513 				saved_spec = NULL;
2514 				priv_flags = 0;
2515 			} else {
2516 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2517 			}
2518 			efx_ef10_filter_set_entry(table, i, saved_spec,
2519 						  priv_flags);
2520 		}
2521 	}
2522 
2523 	/* If successful, return the inserted filter ID */
2524 	if (rc == 0)
2525 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2526 
2527 	wake_up_all(&table->waitq);
2528 out_unlock:
2529 	spin_unlock_bh(&efx->filter_lock);
2530 	finish_wait(&table->waitq, &wait);
2531 	return rc;
2532 }
2533 
2534 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2535 {
2536 	/* no need to do anything here on EF10 */
2537 }
2538 
2539 /* Remove a filter.
2540  * If !by_index, remove by ID
2541  * If by_index, remove by index
2542  * Filter ID may come from userland and must be range-checked.
2543  */
2544 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2545 					   unsigned int priority_mask,
2546 					   u32 filter_id, bool by_index)
2547 {
2548 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2549 	struct efx_ef10_filter_table *table = efx->filter_state;
2550 	MCDI_DECLARE_BUF(inbuf,
2551 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2552 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2553 	struct efx_filter_spec *spec;
2554 	DEFINE_WAIT(wait);
2555 	int rc;
2556 
2557 	/* Find the software table entry and mark it busy.  Don't
2558 	 * remove it yet; any attempt to update while we're waiting
2559 	 * for the firmware must find the busy entry.
2560 	 */
2561 	for (;;) {
2562 		spin_lock_bh(&efx->filter_lock);
2563 		if (!(table->entry[filter_idx].spec &
2564 		      EFX_EF10_FILTER_FLAG_BUSY))
2565 			break;
2566 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2567 		spin_unlock_bh(&efx->filter_lock);
2568 		schedule();
2569 	}
2570 
2571 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2572 	if (!spec ||
2573 	    (!by_index &&
2574 	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2575 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2576 		rc = -ENOENT;
2577 		goto out_unlock;
2578 	}
2579 
2580 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2581 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2582 		/* Just remove flags */
2583 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2584 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2585 		rc = 0;
2586 		goto out_unlock;
2587 	}
2588 
2589 	if (!(priority_mask & (1U << spec->priority))) {
2590 		rc = -ENOENT;
2591 		goto out_unlock;
2592 	}
2593 
2594 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2595 	spin_unlock_bh(&efx->filter_lock);
2596 
2597 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2598 		/* Reset to an automatic filter */
2599 
2600 		struct efx_filter_spec new_spec = *spec;
2601 
2602 		new_spec.priority = EFX_FILTER_PRI_AUTO;
2603 		new_spec.flags = (EFX_FILTER_FLAG_RX |
2604 				  EFX_FILTER_FLAG_RX_RSS);
2605 		new_spec.dmaq_id = 0;
2606 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2607 		rc = efx_ef10_filter_push(efx, &new_spec,
2608 					  &table->entry[filter_idx].handle,
2609 					  true);
2610 
2611 		spin_lock_bh(&efx->filter_lock);
2612 		if (rc == 0)
2613 			*spec = new_spec;
2614 	} else {
2615 		/* Really remove the filter */
2616 
2617 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2618 			       efx_ef10_filter_is_exclusive(spec) ?
2619 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2620 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2621 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2622 			       table->entry[filter_idx].handle);
2623 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2624 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2625 
2626 		spin_lock_bh(&efx->filter_lock);
2627 		if (rc == 0) {
2628 			kfree(spec);
2629 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2630 		}
2631 	}
2632 
2633 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2634 	wake_up_all(&table->waitq);
2635 out_unlock:
2636 	spin_unlock_bh(&efx->filter_lock);
2637 	finish_wait(&table->waitq, &wait);
2638 	return rc;
2639 }
2640 
2641 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2642 				       enum efx_filter_priority priority,
2643 				       u32 filter_id)
2644 {
2645 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2646 					       filter_id, false);
2647 }
2648 
2649 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2650 				    enum efx_filter_priority priority,
2651 				    u32 filter_id, struct efx_filter_spec *spec)
2652 {
2653 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2654 	struct efx_ef10_filter_table *table = efx->filter_state;
2655 	const struct efx_filter_spec *saved_spec;
2656 	int rc;
2657 
2658 	spin_lock_bh(&efx->filter_lock);
2659 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2660 	if (saved_spec && saved_spec->priority == priority &&
2661 	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2662 	    filter_id / HUNT_FILTER_TBL_ROWS) {
2663 		*spec = *saved_spec;
2664 		rc = 0;
2665 	} else {
2666 		rc = -ENOENT;
2667 	}
2668 	spin_unlock_bh(&efx->filter_lock);
2669 	return rc;
2670 }
2671 
2672 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2673 				     enum efx_filter_priority priority)
2674 {
2675 	unsigned int priority_mask;
2676 	unsigned int i;
2677 	int rc;
2678 
2679 	priority_mask = (((1U << (priority + 1)) - 1) &
2680 			 ~(1U << EFX_FILTER_PRI_AUTO));
2681 
2682 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2683 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2684 						     i, true);
2685 		if (rc && rc != -ENOENT)
2686 			return rc;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2693 					 enum efx_filter_priority priority)
2694 {
2695 	struct efx_ef10_filter_table *table = efx->filter_state;
2696 	unsigned int filter_idx;
2697 	s32 count = 0;
2698 
2699 	spin_lock_bh(&efx->filter_lock);
2700 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2701 		if (table->entry[filter_idx].spec &&
2702 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2703 		    priority)
2704 			++count;
2705 	}
2706 	spin_unlock_bh(&efx->filter_lock);
2707 	return count;
2708 }
2709 
2710 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2711 {
2712 	struct efx_ef10_filter_table *table = efx->filter_state;
2713 
2714 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2715 }
2716 
2717 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2718 				      enum efx_filter_priority priority,
2719 				      u32 *buf, u32 size)
2720 {
2721 	struct efx_ef10_filter_table *table = efx->filter_state;
2722 	struct efx_filter_spec *spec;
2723 	unsigned int filter_idx;
2724 	s32 count = 0;
2725 
2726 	spin_lock_bh(&efx->filter_lock);
2727 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2728 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2729 		if (spec && spec->priority == priority) {
2730 			if (count == size) {
2731 				count = -EMSGSIZE;
2732 				break;
2733 			}
2734 			buf[count++] = (efx_ef10_filter_rx_match_pri(
2735 						table, spec->match_flags) *
2736 					HUNT_FILTER_TBL_ROWS +
2737 					filter_idx);
2738 		}
2739 	}
2740 	spin_unlock_bh(&efx->filter_lock);
2741 	return count;
2742 }
2743 
2744 #ifdef CONFIG_RFS_ACCEL
2745 
2746 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2747 
2748 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2749 				      struct efx_filter_spec *spec)
2750 {
2751 	struct efx_ef10_filter_table *table = efx->filter_state;
2752 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2753 	struct efx_filter_spec *saved_spec;
2754 	unsigned int hash, i, depth = 1;
2755 	bool replacing = false;
2756 	int ins_index = -1;
2757 	u64 cookie;
2758 	s32 rc;
2759 
2760 	/* Must be an RX filter without RSS and not for a multicast
2761 	 * destination address (RFS only works for connected sockets).
2762 	 * These restrictions allow us to pass only a tiny amount of
2763 	 * data through to the completion function.
2764 	 */
2765 	EFX_WARN_ON_PARANOID(spec->flags !=
2766 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2767 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2768 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2769 
2770 	hash = efx_ef10_filter_hash(spec);
2771 
2772 	spin_lock_bh(&efx->filter_lock);
2773 
2774 	/* Find any existing filter with the same match tuple or else
2775 	 * a free slot to insert at.  If an existing filter is busy,
2776 	 * we have to give up.
2777 	 */
2778 	for (;;) {
2779 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2780 		saved_spec = efx_ef10_filter_entry_spec(table, i);
2781 
2782 		if (!saved_spec) {
2783 			if (ins_index < 0)
2784 				ins_index = i;
2785 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2786 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2787 				rc = -EBUSY;
2788 				goto fail_unlock;
2789 			}
2790 			if (spec->priority < saved_spec->priority) {
2791 				rc = -EPERM;
2792 				goto fail_unlock;
2793 			}
2794 			ins_index = i;
2795 			break;
2796 		}
2797 
2798 		/* Once we reach the maximum search depth, use the
2799 		 * first suitable slot or return -EBUSY if there was
2800 		 * none
2801 		 */
2802 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2803 			if (ins_index < 0) {
2804 				rc = -EBUSY;
2805 				goto fail_unlock;
2806 			}
2807 			break;
2808 		}
2809 
2810 		++depth;
2811 	}
2812 
2813 	/* Create a software table entry if necessary, and mark it
2814 	 * busy.  We might yet fail to insert, but any attempt to
2815 	 * insert a conflicting filter while we're waiting for the
2816 	 * firmware must find the busy entry.
2817 	 */
2818 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2819 	if (saved_spec) {
2820 		replacing = true;
2821 	} else {
2822 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2823 		if (!saved_spec) {
2824 			rc = -ENOMEM;
2825 			goto fail_unlock;
2826 		}
2827 		*saved_spec = *spec;
2828 	}
2829 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2830 				  EFX_EF10_FILTER_FLAG_BUSY);
2831 
2832 	spin_unlock_bh(&efx->filter_lock);
2833 
2834 	/* Pack up the variables needed on completion */
2835 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2836 
2837 	efx_ef10_filter_push_prep(efx, spec, inbuf,
2838 				  table->entry[ins_index].handle, replacing);
2839 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2840 			   MC_CMD_FILTER_OP_OUT_LEN,
2841 			   efx_ef10_filter_rfs_insert_complete, cookie);
2842 
2843 	return ins_index;
2844 
2845 fail_unlock:
2846 	spin_unlock_bh(&efx->filter_lock);
2847 	return rc;
2848 }
2849 
2850 static void
2851 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2852 				    int rc, efx_dword_t *outbuf,
2853 				    size_t outlen_actual)
2854 {
2855 	struct efx_ef10_filter_table *table = efx->filter_state;
2856 	unsigned int ins_index, dmaq_id;
2857 	struct efx_filter_spec *spec;
2858 	bool replacing;
2859 
2860 	/* Unpack the cookie */
2861 	replacing = cookie >> 31;
2862 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2863 	dmaq_id = cookie & 0xffff;
2864 
2865 	spin_lock_bh(&efx->filter_lock);
2866 	spec = efx_ef10_filter_entry_spec(table, ins_index);
2867 	if (rc == 0) {
2868 		table->entry[ins_index].handle =
2869 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2870 		if (replacing)
2871 			spec->dmaq_id = dmaq_id;
2872 	} else if (!replacing) {
2873 		kfree(spec);
2874 		spec = NULL;
2875 	}
2876 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2877 	spin_unlock_bh(&efx->filter_lock);
2878 
2879 	wake_up_all(&table->waitq);
2880 }
2881 
2882 static void
2883 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2884 				    unsigned long filter_idx,
2885 				    int rc, efx_dword_t *outbuf,
2886 				    size_t outlen_actual);
2887 
2888 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2889 					   unsigned int filter_idx)
2890 {
2891 	struct efx_ef10_filter_table *table = efx->filter_state;
2892 	struct efx_filter_spec *spec =
2893 		efx_ef10_filter_entry_spec(table, filter_idx);
2894 	MCDI_DECLARE_BUF(inbuf,
2895 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2896 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2897 
2898 	if (!spec ||
2899 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2900 	    spec->priority != EFX_FILTER_PRI_HINT ||
2901 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2902 				 flow_id, filter_idx))
2903 		return false;
2904 
2905 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2906 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2907 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2908 		       table->entry[filter_idx].handle);
2909 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2910 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2911 		return false;
2912 
2913 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2914 	return true;
2915 }
2916 
2917 static void
2918 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2919 				    unsigned long filter_idx,
2920 				    int rc, efx_dword_t *outbuf,
2921 				    size_t outlen_actual)
2922 {
2923 	struct efx_ef10_filter_table *table = efx->filter_state;
2924 	struct efx_filter_spec *spec =
2925 		efx_ef10_filter_entry_spec(table, filter_idx);
2926 
2927 	spin_lock_bh(&efx->filter_lock);
2928 	if (rc == 0) {
2929 		kfree(spec);
2930 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2931 	}
2932 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2933 	wake_up_all(&table->waitq);
2934 	spin_unlock_bh(&efx->filter_lock);
2935 }
2936 
2937 #endif /* CONFIG_RFS_ACCEL */
2938 
2939 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2940 {
2941 	int match_flags = 0;
2942 
2943 #define MAP_FLAG(gen_flag, mcdi_field) {				\
2944 		u32 old_mcdi_flags = mcdi_flags;			\
2945 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2946 				mcdi_field ## _LBN);			\
2947 		if (mcdi_flags != old_mcdi_flags)			\
2948 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2949 	}
2950 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2951 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2952 	MAP_FLAG(REM_HOST, SRC_IP);
2953 	MAP_FLAG(LOC_HOST, DST_IP);
2954 	MAP_FLAG(REM_MAC, SRC_MAC);
2955 	MAP_FLAG(REM_PORT, SRC_PORT);
2956 	MAP_FLAG(LOC_MAC, DST_MAC);
2957 	MAP_FLAG(LOC_PORT, DST_PORT);
2958 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2959 	MAP_FLAG(INNER_VID, INNER_VLAN);
2960 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2961 	MAP_FLAG(IP_PROTO, IP_PROTO);
2962 #undef MAP_FLAG
2963 
2964 	/* Did we map them all? */
2965 	if (mcdi_flags)
2966 		return -EINVAL;
2967 
2968 	return match_flags;
2969 }
2970 
2971 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2972 {
2973 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2974 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2975 	unsigned int pd_match_pri, pd_match_count;
2976 	struct efx_ef10_filter_table *table;
2977 	size_t outlen;
2978 	int rc;
2979 
2980 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2981 	if (!table)
2982 		return -ENOMEM;
2983 
2984 	/* Find out which RX filter types are supported, and their priorities */
2985 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2986 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2987 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2988 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2989 			  &outlen);
2990 	if (rc)
2991 		goto fail;
2992 	pd_match_count = MCDI_VAR_ARRAY_LEN(
2993 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2994 	table->rx_match_count = 0;
2995 
2996 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2997 		u32 mcdi_flags =
2998 			MCDI_ARRAY_DWORD(
2999 				outbuf,
3000 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3001 				pd_match_pri);
3002 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3003 		if (rc < 0) {
3004 			netif_dbg(efx, probe, efx->net_dev,
3005 				  "%s: fw flags %#x pri %u not supported in driver\n",
3006 				  __func__, mcdi_flags, pd_match_pri);
3007 		} else {
3008 			netif_dbg(efx, probe, efx->net_dev,
3009 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3010 				  __func__, mcdi_flags, pd_match_pri,
3011 				  rc, table->rx_match_count);
3012 			table->rx_match_flags[table->rx_match_count++] = rc;
3013 		}
3014 	}
3015 
3016 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3017 	if (!table->entry) {
3018 		rc = -ENOMEM;
3019 		goto fail;
3020 	}
3021 
3022 	efx->filter_state = table;
3023 	init_waitqueue_head(&table->waitq);
3024 	return 0;
3025 
3026 fail:
3027 	kfree(table);
3028 	return rc;
3029 }
3030 
3031 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3032 {
3033 	struct efx_ef10_filter_table *table = efx->filter_state;
3034 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3035 	struct efx_filter_spec *spec;
3036 	unsigned int filter_idx;
3037 	bool failed = false;
3038 	int rc;
3039 
3040 	if (!nic_data->must_restore_filters)
3041 		return;
3042 
3043 	spin_lock_bh(&efx->filter_lock);
3044 
3045 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3046 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3047 		if (!spec)
3048 			continue;
3049 
3050 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3051 		spin_unlock_bh(&efx->filter_lock);
3052 
3053 		rc = efx_ef10_filter_push(efx, spec,
3054 					  &table->entry[filter_idx].handle,
3055 					  false);
3056 		if (rc)
3057 			failed = true;
3058 
3059 		spin_lock_bh(&efx->filter_lock);
3060 		if (rc) {
3061 			kfree(spec);
3062 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3063 		} else {
3064 			table->entry[filter_idx].spec &=
3065 				~EFX_EF10_FILTER_FLAG_BUSY;
3066 		}
3067 	}
3068 
3069 	spin_unlock_bh(&efx->filter_lock);
3070 
3071 	if (failed)
3072 		netif_err(efx, hw, efx->net_dev,
3073 			  "unable to restore all filters\n");
3074 	else
3075 		nic_data->must_restore_filters = false;
3076 }
3077 
3078 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3079 {
3080 	struct efx_ef10_filter_table *table = efx->filter_state;
3081 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3082 	struct efx_filter_spec *spec;
3083 	unsigned int filter_idx;
3084 	int rc;
3085 
3086 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3087 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3088 		if (!spec)
3089 			continue;
3090 
3091 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3092 			       efx_ef10_filter_is_exclusive(spec) ?
3093 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3094 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3095 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3096 			       table->entry[filter_idx].handle);
3097 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3098 				  NULL, 0, NULL);
3099 		if (rc)
3100 			netdev_WARN(efx->net_dev,
3101 				    "filter_idx=%#x handle=%#llx\n",
3102 				    filter_idx,
3103 				    table->entry[filter_idx].handle);
3104 		kfree(spec);
3105 	}
3106 
3107 	vfree(table->entry);
3108 	kfree(table);
3109 }
3110 
3111 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3112 {
3113 	struct efx_ef10_filter_table *table = efx->filter_state;
3114 	struct net_device *net_dev = efx->net_dev;
3115 	struct efx_filter_spec spec;
3116 	bool remove_failed = false;
3117 	struct netdev_hw_addr *uc;
3118 	struct netdev_hw_addr *mc;
3119 	unsigned int filter_idx;
3120 	int i, n, rc;
3121 
3122 	if (!efx_dev_registered(efx))
3123 		return;
3124 
3125 	/* Mark old filters that may need to be removed */
3126 	spin_lock_bh(&efx->filter_lock);
3127 	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3128 	for (i = 0; i < n; i++) {
3129 		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3130 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3131 	}
3132 	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3133 	for (i = 0; i < n; i++) {
3134 		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3135 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3136 	}
3137 	spin_unlock_bh(&efx->filter_lock);
3138 
3139 	/* Copy/convert the address lists; add the primary station
3140 	 * address and broadcast address
3141 	 */
3142 	netif_addr_lock_bh(net_dev);
3143 	if (net_dev->flags & IFF_PROMISC ||
3144 	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3145 		table->dev_uc_count = -1;
3146 	} else {
3147 		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3148 		memcpy(table->dev_uc_list[0].addr, net_dev->dev_addr,
3149 		       ETH_ALEN);
3150 		i = 1;
3151 		netdev_for_each_uc_addr(uc, net_dev) {
3152 			memcpy(table->dev_uc_list[i].addr,
3153 			       uc->addr, ETH_ALEN);
3154 			i++;
3155 		}
3156 	}
3157 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3158 	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3159 		table->dev_mc_count = -1;
3160 	} else {
3161 		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3162 		eth_broadcast_addr(table->dev_mc_list[0].addr);
3163 		i = 1;
3164 		netdev_for_each_mc_addr(mc, net_dev) {
3165 			memcpy(table->dev_mc_list[i].addr,
3166 			       mc->addr, ETH_ALEN);
3167 			i++;
3168 		}
3169 	}
3170 	netif_addr_unlock_bh(net_dev);
3171 
3172 	/* Insert/renew unicast filters */
3173 	if (table->dev_uc_count >= 0) {
3174 		for (i = 0; i < table->dev_uc_count; i++) {
3175 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3176 					   EFX_FILTER_FLAG_RX_RSS,
3177 					   0);
3178 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3179 						 table->dev_uc_list[i].addr);
3180 			rc = efx_ef10_filter_insert(efx, &spec, true);
3181 			if (rc < 0) {
3182 				/* Fall back to unicast-promisc */
3183 				while (i--)
3184 					efx_ef10_filter_remove_safe(
3185 						efx, EFX_FILTER_PRI_AUTO,
3186 						table->dev_uc_list[i].id);
3187 				table->dev_uc_count = -1;
3188 				break;
3189 			}
3190 			table->dev_uc_list[i].id = rc;
3191 		}
3192 	}
3193 	if (table->dev_uc_count < 0) {
3194 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3195 				   EFX_FILTER_FLAG_RX_RSS,
3196 				   0);
3197 		efx_filter_set_uc_def(&spec);
3198 		rc = efx_ef10_filter_insert(efx, &spec, true);
3199 		if (rc < 0) {
3200 			WARN_ON(1);
3201 			table->dev_uc_count = 0;
3202 		} else {
3203 			table->dev_uc_list[0].id = rc;
3204 		}
3205 	}
3206 
3207 	/* Insert/renew multicast filters */
3208 	if (table->dev_mc_count >= 0) {
3209 		for (i = 0; i < table->dev_mc_count; i++) {
3210 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3211 					   EFX_FILTER_FLAG_RX_RSS,
3212 					   0);
3213 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3214 						 table->dev_mc_list[i].addr);
3215 			rc = efx_ef10_filter_insert(efx, &spec, true);
3216 			if (rc < 0) {
3217 				/* Fall back to multicast-promisc */
3218 				while (i--)
3219 					efx_ef10_filter_remove_safe(
3220 						efx, EFX_FILTER_PRI_AUTO,
3221 						table->dev_mc_list[i].id);
3222 				table->dev_mc_count = -1;
3223 				break;
3224 			}
3225 			table->dev_mc_list[i].id = rc;
3226 		}
3227 	}
3228 	if (table->dev_mc_count < 0) {
3229 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3230 				   EFX_FILTER_FLAG_RX_RSS,
3231 				   0);
3232 		efx_filter_set_mc_def(&spec);
3233 		rc = efx_ef10_filter_insert(efx, &spec, true);
3234 		if (rc < 0) {
3235 			WARN_ON(1);
3236 			table->dev_mc_count = 0;
3237 		} else {
3238 			table->dev_mc_list[0].id = rc;
3239 		}
3240 	}
3241 
3242 	/* Remove filters that weren't renewed.  Since nothing else
3243 	 * changes the AUTO_OLD flag or removes these filters, we
3244 	 * don't need to hold the filter_lock while scanning for
3245 	 * these filters.
3246 	 */
3247 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3248 		if (ACCESS_ONCE(table->entry[i].spec) &
3249 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3250 			if (efx_ef10_filter_remove_internal(
3251 				    efx, 1U << EFX_FILTER_PRI_AUTO,
3252 				    i, true) < 0)
3253 				remove_failed = true;
3254 		}
3255 	}
3256 	WARN_ON(remove_failed);
3257 }
3258 
3259 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3260 {
3261 	efx_ef10_filter_sync_rx_mode(efx);
3262 
3263 	return efx_mcdi_set_mac(efx);
3264 }
3265 
3266 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3267 {
3268 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3269 
3270 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3271 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3272 			    NULL, 0, NULL);
3273 }
3274 
3275 /* MC BISTs follow a different poll mechanism to phy BISTs.
3276  * The BIST is done in the poll handler on the MC, and the MCDI command
3277  * will block until the BIST is done.
3278  */
3279 static int efx_ef10_poll_bist(struct efx_nic *efx)
3280 {
3281 	int rc;
3282 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3283 	size_t outlen;
3284 	u32 result;
3285 
3286 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3287 			   outbuf, sizeof(outbuf), &outlen);
3288 	if (rc != 0)
3289 		return rc;
3290 
3291 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3292 		return -EIO;
3293 
3294 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3295 	switch (result) {
3296 	case MC_CMD_POLL_BIST_PASSED:
3297 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3298 		return 0;
3299 	case MC_CMD_POLL_BIST_TIMEOUT:
3300 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3301 		return -EIO;
3302 	case MC_CMD_POLL_BIST_FAILED:
3303 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3304 		return -EIO;
3305 	default:
3306 		netif_err(efx, hw, efx->net_dev,
3307 			  "BIST returned unknown result %u", result);
3308 		return -EIO;
3309 	}
3310 }
3311 
3312 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3313 {
3314 	int rc;
3315 
3316 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3317 
3318 	rc = efx_ef10_start_bist(efx, bist_type);
3319 	if (rc != 0)
3320 		return rc;
3321 
3322 	return efx_ef10_poll_bist(efx);
3323 }
3324 
3325 static int
3326 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3327 {
3328 	int rc, rc2;
3329 
3330 	efx_reset_down(efx, RESET_TYPE_WORLD);
3331 
3332 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3333 			  NULL, 0, NULL, 0, NULL);
3334 	if (rc != 0)
3335 		goto out;
3336 
3337 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3338 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3339 
3340 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3341 
3342 out:
3343 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3344 	return rc ? rc : rc2;
3345 }
3346 
3347 #ifdef CONFIG_SFC_MTD
3348 
3349 struct efx_ef10_nvram_type_info {
3350 	u16 type, type_mask;
3351 	u8 port;
3352 	const char *name;
3353 };
3354 
3355 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3356 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3357 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3358 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3359 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3360 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3361 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3362 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3363 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3364 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3365 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3366 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3367 };
3368 
3369 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3370 					struct efx_mcdi_mtd_partition *part,
3371 					unsigned int type)
3372 {
3373 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3374 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3375 	const struct efx_ef10_nvram_type_info *info;
3376 	size_t size, erase_size, outlen;
3377 	bool protected;
3378 	int rc;
3379 
3380 	for (info = efx_ef10_nvram_types; ; info++) {
3381 		if (info ==
3382 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3383 			return -ENODEV;
3384 		if ((type & ~info->type_mask) == info->type)
3385 			break;
3386 	}
3387 	if (info->port != efx_port_num(efx))
3388 		return -ENODEV;
3389 
3390 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3391 	if (rc)
3392 		return rc;
3393 	if (protected)
3394 		return -ENODEV; /* hide it */
3395 
3396 	part->nvram_type = type;
3397 
3398 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3399 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3400 			  outbuf, sizeof(outbuf), &outlen);
3401 	if (rc)
3402 		return rc;
3403 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3404 		return -EIO;
3405 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3406 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3407 		part->fw_subtype = MCDI_DWORD(outbuf,
3408 					      NVRAM_METADATA_OUT_SUBTYPE);
3409 
3410 	part->common.dev_type_name = "EF10 NVRAM manager";
3411 	part->common.type_name = info->name;
3412 
3413 	part->common.mtd.type = MTD_NORFLASH;
3414 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3415 	part->common.mtd.size = size;
3416 	part->common.mtd.erasesize = erase_size;
3417 
3418 	return 0;
3419 }
3420 
3421 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3422 {
3423 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3424 	struct efx_mcdi_mtd_partition *parts;
3425 	size_t outlen, n_parts_total, i, n_parts;
3426 	unsigned int type;
3427 	int rc;
3428 
3429 	ASSERT_RTNL();
3430 
3431 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3432 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3433 			  outbuf, sizeof(outbuf), &outlen);
3434 	if (rc)
3435 		return rc;
3436 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3437 		return -EIO;
3438 
3439 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3440 	if (n_parts_total >
3441 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3442 		return -EIO;
3443 
3444 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3445 	if (!parts)
3446 		return -ENOMEM;
3447 
3448 	n_parts = 0;
3449 	for (i = 0; i < n_parts_total; i++) {
3450 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3451 					i);
3452 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3453 		if (rc == 0)
3454 			n_parts++;
3455 		else if (rc != -ENODEV)
3456 			goto fail;
3457 	}
3458 
3459 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3460 fail:
3461 	if (rc)
3462 		kfree(parts);
3463 	return rc;
3464 }
3465 
3466 #endif /* CONFIG_SFC_MTD */
3467 
3468 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3469 {
3470 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3471 }
3472 
3473 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3474 					   bool temp)
3475 {
3476 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3477 	int rc;
3478 
3479 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3480 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3481 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3482 		return 0;
3483 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3484 
3485 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3486 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3487 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3488 		       channel->channel);
3489 
3490 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3491 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3492 
3493 	if (rc != 0)
3494 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3495 						    SYNC_EVENTS_DISABLED;
3496 
3497 	return rc;
3498 }
3499 
3500 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3501 					    bool temp)
3502 {
3503 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3504 	int rc;
3505 
3506 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3507 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3508 		return 0;
3509 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3510 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3511 		return 0;
3512 	}
3513 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3514 					    SYNC_EVENTS_DISABLED;
3515 
3516 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3517 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3518 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3519 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3520 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3521 		       channel->channel);
3522 
3523 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3524 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3525 
3526 	return rc;
3527 }
3528 
3529 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3530 					   bool temp)
3531 {
3532 	int (*set)(struct efx_channel *channel, bool temp);
3533 	struct efx_channel *channel;
3534 
3535 	set = en ?
3536 	      efx_ef10_rx_enable_timestamping :
3537 	      efx_ef10_rx_disable_timestamping;
3538 
3539 	efx_for_each_channel(channel, efx) {
3540 		int rc = set(channel, temp);
3541 		if (en && rc != 0) {
3542 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3543 			return rc;
3544 		}
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3551 				      struct hwtstamp_config *init)
3552 {
3553 	int rc;
3554 
3555 	switch (init->rx_filter) {
3556 	case HWTSTAMP_FILTER_NONE:
3557 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3558 		/* if TX timestamping is still requested then leave PTP on */
3559 		return efx_ptp_change_mode(efx,
3560 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3561 	case HWTSTAMP_FILTER_ALL:
3562 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3563 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3564 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3565 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3566 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3567 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3568 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3569 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3570 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3571 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3572 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3573 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3574 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3575 		rc = efx_ptp_change_mode(efx, true, 0);
3576 		if (!rc)
3577 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3578 		if (rc)
3579 			efx_ptp_change_mode(efx, false, 0);
3580 		return rc;
3581 	default:
3582 		return -ERANGE;
3583 	}
3584 }
3585 
3586 const struct efx_nic_type efx_hunt_a0_nic_type = {
3587 	.mem_map_size = efx_ef10_mem_map_size,
3588 	.probe = efx_ef10_probe,
3589 	.remove = efx_ef10_remove,
3590 	.dimension_resources = efx_ef10_dimension_resources,
3591 	.init = efx_ef10_init_nic,
3592 	.fini = efx_port_dummy_op_void,
3593 	.map_reset_reason = efx_mcdi_map_reset_reason,
3594 	.map_reset_flags = efx_ef10_map_reset_flags,
3595 	.reset = efx_ef10_reset,
3596 	.probe_port = efx_mcdi_port_probe,
3597 	.remove_port = efx_mcdi_port_remove,
3598 	.fini_dmaq = efx_ef10_fini_dmaq,
3599 	.describe_stats = efx_ef10_describe_stats,
3600 	.update_stats = efx_ef10_update_stats,
3601 	.start_stats = efx_mcdi_mac_start_stats,
3602 	.pull_stats = efx_mcdi_mac_pull_stats,
3603 	.stop_stats = efx_mcdi_mac_stop_stats,
3604 	.set_id_led = efx_mcdi_set_id_led,
3605 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3606 	.reconfigure_mac = efx_ef10_mac_reconfigure,
3607 	.check_mac_fault = efx_mcdi_mac_check_fault,
3608 	.reconfigure_port = efx_mcdi_port_reconfigure,
3609 	.get_wol = efx_ef10_get_wol,
3610 	.set_wol = efx_ef10_set_wol,
3611 	.resume_wol = efx_port_dummy_op_void,
3612 	.test_chip = efx_ef10_test_chip,
3613 	.test_nvram = efx_mcdi_nvram_test_all,
3614 	.mcdi_request = efx_ef10_mcdi_request,
3615 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3616 	.mcdi_read_response = efx_ef10_mcdi_read_response,
3617 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3618 	.irq_enable_master = efx_port_dummy_op_void,
3619 	.irq_test_generate = efx_ef10_irq_test_generate,
3620 	.irq_disable_non_ev = efx_port_dummy_op_void,
3621 	.irq_handle_msi = efx_ef10_msi_interrupt,
3622 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3623 	.tx_probe = efx_ef10_tx_probe,
3624 	.tx_init = efx_ef10_tx_init,
3625 	.tx_remove = efx_ef10_tx_remove,
3626 	.tx_write = efx_ef10_tx_write,
3627 	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3628 	.rx_probe = efx_ef10_rx_probe,
3629 	.rx_init = efx_ef10_rx_init,
3630 	.rx_remove = efx_ef10_rx_remove,
3631 	.rx_write = efx_ef10_rx_write,
3632 	.rx_defer_refill = efx_ef10_rx_defer_refill,
3633 	.ev_probe = efx_ef10_ev_probe,
3634 	.ev_init = efx_ef10_ev_init,
3635 	.ev_fini = efx_ef10_ev_fini,
3636 	.ev_remove = efx_ef10_ev_remove,
3637 	.ev_process = efx_ef10_ev_process,
3638 	.ev_read_ack = efx_ef10_ev_read_ack,
3639 	.ev_test_generate = efx_ef10_ev_test_generate,
3640 	.filter_table_probe = efx_ef10_filter_table_probe,
3641 	.filter_table_restore = efx_ef10_filter_table_restore,
3642 	.filter_table_remove = efx_ef10_filter_table_remove,
3643 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3644 	.filter_insert = efx_ef10_filter_insert,
3645 	.filter_remove_safe = efx_ef10_filter_remove_safe,
3646 	.filter_get_safe = efx_ef10_filter_get_safe,
3647 	.filter_clear_rx = efx_ef10_filter_clear_rx,
3648 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3649 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3650 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3651 #ifdef CONFIG_RFS_ACCEL
3652 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3653 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3654 #endif
3655 #ifdef CONFIG_SFC_MTD
3656 	.mtd_probe = efx_ef10_mtd_probe,
3657 	.mtd_rename = efx_mcdi_mtd_rename,
3658 	.mtd_read = efx_mcdi_mtd_read,
3659 	.mtd_erase = efx_mcdi_mtd_erase,
3660 	.mtd_write = efx_mcdi_mtd_write,
3661 	.mtd_sync = efx_mcdi_mtd_sync,
3662 #endif
3663 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3664 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3665 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3666 
3667 	.revision = EFX_REV_HUNT_A0,
3668 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3669 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3670 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3671 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3672 	.can_rx_scatter = true,
3673 	.always_rx_scatter = true,
3674 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3675 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3676 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3677 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3678 	.mcdi_max_ver = 2,
3679 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3680 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3681 			    1 << HWTSTAMP_FILTER_ALL,
3682 };
3683