xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision 588b48ca)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include <linux/in.h>
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
22 
23 /* Hardware control for EF10 architecture including 'Huntington'. */
24 
25 #define EFX_EF10_DRVGEN_EV		7
26 enum {
27 	EFX_EF10_TEST = 1,
28 	EFX_EF10_REFILL,
29 };
30 
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
33 
34 /* The filter table(s) are managed by firmware and we have write-only
35  * access.  When removing filters we must identify them to the
36  * firmware by a 64-bit handle, but this is too wide for Linux kernel
37  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
38  * be able to tell in advance whether a requested insertion will
39  * replace an existing filter.  Therefore we maintain a software hash
40  * table, which should be at least as large as the hardware hash
41  * table.
42  *
43  * Huntington has a single 8K filter table shared between all filter
44  * types and both ports.
45  */
46 #define HUNT_FILTER_TBL_ROWS 8192
47 
48 struct efx_ef10_filter_table {
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50 	enum efx_filter_match_flags rx_match_flags[
51 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52 	unsigned int rx_match_count;
53 
54 	struct {
55 		unsigned long spec;	/* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
57  * used to mark and sweep MAC filters for the device address lists.
58  */
59 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
61 #define EFX_EF10_FILTER_FLAGS		3UL
62 		u64 handle;		/* firmware handle */
63 	} *entry;
64 	wait_queue_head_t waitq;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX	32
67 #define EFX_EF10_FILTER_DEV_MC_MAX	256
68 	struct {
69 		u8 addr[ETH_ALEN];
70 		u16 id;
71 	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72 	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73 	int dev_uc_count;		/* negative for PROMISC */
74 	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
75 };
76 
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
79 
80 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83 
84 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85 {
86 	efx_dword_t reg;
87 
88 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
89 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91 }
92 
93 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94 {
95 	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96 }
97 
98 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99 {
100 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
102 	size_t outlen;
103 	int rc;
104 
105 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106 
107 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108 			  outbuf, sizeof(outbuf), &outlen);
109 	if (rc)
110 		return rc;
111 	if (outlen < sizeof(outbuf)) {
112 		netif_err(efx, drv, efx->net_dev,
113 			  "unable to read datapath firmware capabilities\n");
114 		return -EIO;
115 	}
116 
117 	nic_data->datapath_caps =
118 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119 
120 	if (!(nic_data->datapath_caps &
121 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122 		netif_err(efx, drv, efx->net_dev,
123 			  "current firmware does not support TSO\n");
124 		return -ENODEV;
125 	}
126 
127 	if (!(nic_data->datapath_caps &
128 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129 		netif_err(efx, probe, efx->net_dev,
130 			  "current firmware does not support an RX prefix\n");
131 		return -ENODEV;
132 	}
133 
134 	return 0;
135 }
136 
137 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138 {
139 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140 	int rc;
141 
142 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143 			  outbuf, sizeof(outbuf), NULL);
144 	if (rc)
145 		return rc;
146 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147 	return rc > 0 ? rc : -ERANGE;
148 }
149 
150 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151 {
152 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153 	size_t outlen;
154 	int rc;
155 
156 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157 
158 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159 			  outbuf, sizeof(outbuf), &outlen);
160 	if (rc)
161 		return rc;
162 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163 		return -EIO;
164 
165 	ether_addr_copy(mac_address,
166 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167 	return 0;
168 }
169 
170 static int efx_ef10_probe(struct efx_nic *efx)
171 {
172 	struct efx_ef10_nic_data *nic_data;
173 	int i, rc;
174 
175 	/* We can have one VI for each 8K region.  However, until we
176 	 * use TX option descriptors we need two TX queues per channel.
177 	 */
178 	efx->max_channels =
179 		min_t(unsigned int,
180 		      EFX_MAX_CHANNELS,
181 		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182 		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183 	BUG_ON(efx->max_channels == 0);
184 
185 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
186 	if (!nic_data)
187 		return -ENOMEM;
188 	efx->nic_data = nic_data;
189 
190 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
191 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
192 	if (rc)
193 		goto fail1;
194 
195 	/* Get the MC's warm boot count.  In case it's rebooting right
196 	 * now, be prepared to retry.
197 	 */
198 	i = 0;
199 	for (;;) {
200 		rc = efx_ef10_get_warm_boot_count(efx);
201 		if (rc >= 0)
202 			break;
203 		if (++i == 5)
204 			goto fail2;
205 		ssleep(1);
206 	}
207 	nic_data->warm_boot_count = rc;
208 
209 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
210 
211 	/* In case we're recovering from a crash (kexec), we want to
212 	 * cancel any outstanding request by the previous user of this
213 	 * function.  We send a special message using the least
214 	 * significant bits of the 'high' (doorbell) register.
215 	 */
216 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
217 
218 	rc = efx_mcdi_init(efx);
219 	if (rc)
220 		goto fail2;
221 
222 	/* Reset (most) configuration for this function */
223 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
224 	if (rc)
225 		goto fail3;
226 
227 	/* Enable event logging */
228 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
229 	if (rc)
230 		goto fail3;
231 
232 	rc = efx_ef10_init_datapath_caps(efx);
233 	if (rc < 0)
234 		goto fail3;
235 
236 	efx->rx_packet_len_offset =
237 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
238 
239 	rc = efx_mcdi_port_get_number(efx);
240 	if (rc < 0)
241 		goto fail3;
242 	efx->port_num = rc;
243 
244 	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
245 	if (rc)
246 		goto fail3;
247 
248 	rc = efx_ef10_get_sysclk_freq(efx);
249 	if (rc < 0)
250 		goto fail3;
251 	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
252 
253 	/* Check whether firmware supports bug 35388 workaround */
254 	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
255 	if (rc == 0)
256 		nic_data->workaround_35388 = true;
257 	else if (rc != -ENOSYS && rc != -ENOENT)
258 		goto fail3;
259 	netif_dbg(efx, probe, efx->net_dev,
260 		  "workaround for bug 35388 is %sabled\n",
261 		  nic_data->workaround_35388 ? "en" : "dis");
262 
263 	rc = efx_mcdi_mon_probe(efx);
264 	if (rc)
265 		goto fail3;
266 
267 	efx_ptp_probe(efx, NULL);
268 
269 	return 0;
270 
271 fail3:
272 	efx_mcdi_fini(efx);
273 fail2:
274 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
275 fail1:
276 	kfree(nic_data);
277 	efx->nic_data = NULL;
278 	return rc;
279 }
280 
281 static int efx_ef10_free_vis(struct efx_nic *efx)
282 {
283 	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
284 	size_t outlen;
285 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
286 				    outbuf, sizeof(outbuf), &outlen);
287 
288 	/* -EALREADY means nothing to free, so ignore */
289 	if (rc == -EALREADY)
290 		rc = 0;
291 	if (rc)
292 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
293 				       rc);
294 	return rc;
295 }
296 
297 #ifdef EFX_USE_PIO
298 
299 static void efx_ef10_free_piobufs(struct efx_nic *efx)
300 {
301 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
302 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
303 	unsigned int i;
304 	int rc;
305 
306 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
307 
308 	for (i = 0; i < nic_data->n_piobufs; i++) {
309 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
310 			       nic_data->piobuf_handle[i]);
311 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
312 				  NULL, 0, NULL);
313 		WARN_ON(rc);
314 	}
315 
316 	nic_data->n_piobufs = 0;
317 }
318 
319 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
320 {
321 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
322 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
323 	unsigned int i;
324 	size_t outlen;
325 	int rc = 0;
326 
327 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
328 
329 	for (i = 0; i < n; i++) {
330 		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
331 				  outbuf, sizeof(outbuf), &outlen);
332 		if (rc)
333 			break;
334 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
335 			rc = -EIO;
336 			break;
337 		}
338 		nic_data->piobuf_handle[i] =
339 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
340 		netif_dbg(efx, probe, efx->net_dev,
341 			  "allocated PIO buffer %u handle %x\n", i,
342 			  nic_data->piobuf_handle[i]);
343 	}
344 
345 	nic_data->n_piobufs = i;
346 	if (rc)
347 		efx_ef10_free_piobufs(efx);
348 	return rc;
349 }
350 
351 static int efx_ef10_link_piobufs(struct efx_nic *efx)
352 {
353 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
354 	MCDI_DECLARE_BUF(inbuf,
355 			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
356 			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
357 	struct efx_channel *channel;
358 	struct efx_tx_queue *tx_queue;
359 	unsigned int offset, index;
360 	int rc;
361 
362 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
363 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
364 
365 	/* Link a buffer to each VI in the write-combining mapping */
366 	for (index = 0; index < nic_data->n_piobufs; ++index) {
367 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
368 			       nic_data->piobuf_handle[index]);
369 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
370 			       nic_data->pio_write_vi_base + index);
371 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
372 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
373 				  NULL, 0, NULL);
374 		if (rc) {
375 			netif_err(efx, drv, efx->net_dev,
376 				  "failed to link VI %u to PIO buffer %u (%d)\n",
377 				  nic_data->pio_write_vi_base + index, index,
378 				  rc);
379 			goto fail;
380 		}
381 		netif_dbg(efx, probe, efx->net_dev,
382 			  "linked VI %u to PIO buffer %u\n",
383 			  nic_data->pio_write_vi_base + index, index);
384 	}
385 
386 	/* Link a buffer to each TX queue */
387 	efx_for_each_channel(channel, efx) {
388 		efx_for_each_channel_tx_queue(tx_queue, channel) {
389 			/* We assign the PIO buffers to queues in
390 			 * reverse order to allow for the following
391 			 * special case.
392 			 */
393 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
394 				   tx_queue->channel->channel - 1) *
395 				  efx_piobuf_size);
396 			index = offset / ER_DZ_TX_PIOBUF_SIZE;
397 			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
398 
399 			/* When the host page size is 4K, the first
400 			 * host page in the WC mapping may be within
401 			 * the same VI page as the last TX queue.  We
402 			 * can only link one buffer to each VI.
403 			 */
404 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
405 				BUG_ON(index != 0);
406 				rc = 0;
407 			} else {
408 				MCDI_SET_DWORD(inbuf,
409 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
410 					       nic_data->piobuf_handle[index]);
411 				MCDI_SET_DWORD(inbuf,
412 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
413 					       tx_queue->queue);
414 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
415 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
416 						  NULL, 0, NULL);
417 			}
418 
419 			if (rc) {
420 				/* This is non-fatal; the TX path just
421 				 * won't use PIO for this queue
422 				 */
423 				netif_err(efx, drv, efx->net_dev,
424 					  "failed to link VI %u to PIO buffer %u (%d)\n",
425 					  tx_queue->queue, index, rc);
426 				tx_queue->piobuf = NULL;
427 			} else {
428 				tx_queue->piobuf =
429 					nic_data->pio_write_base +
430 					index * EFX_VI_PAGE_SIZE + offset;
431 				tx_queue->piobuf_offset = offset;
432 				netif_dbg(efx, probe, efx->net_dev,
433 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
434 					  tx_queue->queue, index,
435 					  tx_queue->piobuf_offset,
436 					  tx_queue->piobuf);
437 			}
438 		}
439 	}
440 
441 	return 0;
442 
443 fail:
444 	while (index--) {
445 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
446 			       nic_data->pio_write_vi_base + index);
447 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
448 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
449 			     NULL, 0, NULL);
450 	}
451 	return rc;
452 }
453 
454 #else /* !EFX_USE_PIO */
455 
456 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
457 {
458 	return n == 0 ? 0 : -ENOBUFS;
459 }
460 
461 static int efx_ef10_link_piobufs(struct efx_nic *efx)
462 {
463 	return 0;
464 }
465 
466 static void efx_ef10_free_piobufs(struct efx_nic *efx)
467 {
468 }
469 
470 #endif /* EFX_USE_PIO */
471 
472 static void efx_ef10_remove(struct efx_nic *efx)
473 {
474 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
475 	int rc;
476 
477 	efx_ptp_remove(efx);
478 
479 	efx_mcdi_mon_remove(efx);
480 
481 	efx_ef10_rx_free_indir_table(efx);
482 
483 	if (nic_data->wc_membase)
484 		iounmap(nic_data->wc_membase);
485 
486 	rc = efx_ef10_free_vis(efx);
487 	WARN_ON(rc != 0);
488 
489 	if (!nic_data->must_restore_piobufs)
490 		efx_ef10_free_piobufs(efx);
491 
492 	efx_mcdi_fini(efx);
493 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
494 	kfree(nic_data);
495 }
496 
497 static int efx_ef10_alloc_vis(struct efx_nic *efx,
498 			      unsigned int min_vis, unsigned int max_vis)
499 {
500 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
501 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
502 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
503 	size_t outlen;
504 	int rc;
505 
506 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
507 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
508 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
509 			  outbuf, sizeof(outbuf), &outlen);
510 	if (rc != 0)
511 		return rc;
512 
513 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
514 		return -EIO;
515 
516 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
517 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
518 
519 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
520 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
521 	return 0;
522 }
523 
524 /* Note that the failure path of this function does not free
525  * resources, as this will be done by efx_ef10_remove().
526  */
527 static int efx_ef10_dimension_resources(struct efx_nic *efx)
528 {
529 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
530 	unsigned int uc_mem_map_size, wc_mem_map_size;
531 	unsigned int min_vis, pio_write_vi_base, max_vis;
532 	void __iomem *membase;
533 	int rc;
534 
535 	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
536 
537 #ifdef EFX_USE_PIO
538 	/* Try to allocate PIO buffers if wanted and if the full
539 	 * number of PIO buffers would be sufficient to allocate one
540 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
541 	 * are only a small number of PIO buffers shared between all
542 	 * functions of the controller.
543 	 */
544 	if (efx_piobuf_size != 0 &&
545 	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
546 	    efx->n_tx_channels) {
547 		unsigned int n_piobufs =
548 			DIV_ROUND_UP(efx->n_tx_channels,
549 				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
550 
551 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
552 		if (rc)
553 			netif_err(efx, probe, efx->net_dev,
554 				  "failed to allocate PIO buffers (%d)\n", rc);
555 		else
556 			netif_dbg(efx, probe, efx->net_dev,
557 				  "allocated %u PIO buffers\n", n_piobufs);
558 	}
559 #else
560 	nic_data->n_piobufs = 0;
561 #endif
562 
563 	/* PIO buffers should be mapped with write-combining enabled,
564 	 * and we want to make single UC and WC mappings rather than
565 	 * several of each (in fact that's the only option if host
566 	 * page size is >4K).  So we may allocate some extra VIs just
567 	 * for writing PIO buffers through.
568 	 *
569 	 * The UC mapping contains (min_vis - 1) complete VIs and the
570 	 * first half of the next VI.  Then the WC mapping begins with
571 	 * the second half of this last VI.
572 	 */
573 	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
574 				     ER_DZ_TX_PIOBUF);
575 	if (nic_data->n_piobufs) {
576 		/* pio_write_vi_base rounds down to give the number of complete
577 		 * VIs inside the UC mapping.
578 		 */
579 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
580 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
581 					       nic_data->n_piobufs) *
582 					      EFX_VI_PAGE_SIZE) -
583 				   uc_mem_map_size);
584 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
585 	} else {
586 		pio_write_vi_base = 0;
587 		wc_mem_map_size = 0;
588 		max_vis = min_vis;
589 	}
590 
591 	/* In case the last attached driver failed to free VIs, do it now */
592 	rc = efx_ef10_free_vis(efx);
593 	if (rc != 0)
594 		return rc;
595 
596 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
597 	if (rc != 0)
598 		return rc;
599 
600 	/* If we didn't get enough VIs to map all the PIO buffers, free the
601 	 * PIO buffers
602 	 */
603 	if (nic_data->n_piobufs &&
604 	    nic_data->n_allocated_vis <
605 	    pio_write_vi_base + nic_data->n_piobufs) {
606 		netif_dbg(efx, probe, efx->net_dev,
607 			  "%u VIs are not sufficient to map %u PIO buffers\n",
608 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
609 		efx_ef10_free_piobufs(efx);
610 	}
611 
612 	/* Shrink the original UC mapping of the memory BAR */
613 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
614 	if (!membase) {
615 		netif_err(efx, probe, efx->net_dev,
616 			  "could not shrink memory BAR to %x\n",
617 			  uc_mem_map_size);
618 		return -ENOMEM;
619 	}
620 	iounmap(efx->membase);
621 	efx->membase = membase;
622 
623 	/* Set up the WC mapping if needed */
624 	if (wc_mem_map_size) {
625 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
626 						  uc_mem_map_size,
627 						  wc_mem_map_size);
628 		if (!nic_data->wc_membase) {
629 			netif_err(efx, probe, efx->net_dev,
630 				  "could not allocate WC mapping of size %x\n",
631 				  wc_mem_map_size);
632 			return -ENOMEM;
633 		}
634 		nic_data->pio_write_vi_base = pio_write_vi_base;
635 		nic_data->pio_write_base =
636 			nic_data->wc_membase +
637 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
638 			 uc_mem_map_size);
639 
640 		rc = efx_ef10_link_piobufs(efx);
641 		if (rc)
642 			efx_ef10_free_piobufs(efx);
643 	}
644 
645 	netif_dbg(efx, probe, efx->net_dev,
646 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
647 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
648 		  nic_data->wc_membase, wc_mem_map_size);
649 
650 	return 0;
651 }
652 
653 static int efx_ef10_init_nic(struct efx_nic *efx)
654 {
655 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
656 	int rc;
657 
658 	if (nic_data->must_check_datapath_caps) {
659 		rc = efx_ef10_init_datapath_caps(efx);
660 		if (rc)
661 			return rc;
662 		nic_data->must_check_datapath_caps = false;
663 	}
664 
665 	if (nic_data->must_realloc_vis) {
666 		/* We cannot let the number of VIs change now */
667 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
668 					nic_data->n_allocated_vis);
669 		if (rc)
670 			return rc;
671 		nic_data->must_realloc_vis = false;
672 	}
673 
674 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
675 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
676 		if (rc == 0) {
677 			rc = efx_ef10_link_piobufs(efx);
678 			if (rc)
679 				efx_ef10_free_piobufs(efx);
680 		}
681 
682 		/* Log an error on failure, but this is non-fatal */
683 		if (rc)
684 			netif_err(efx, drv, efx->net_dev,
685 				  "failed to restore PIO buffers (%d)\n", rc);
686 		nic_data->must_restore_piobufs = false;
687 	}
688 
689 	efx_ef10_rx_push_rss_config(efx);
690 	return 0;
691 }
692 
693 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
694 {
695 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
696 
697 	/* All our allocations have been reset */
698 	nic_data->must_realloc_vis = true;
699 	nic_data->must_restore_filters = true;
700 	nic_data->must_restore_piobufs = true;
701 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
702 }
703 
704 static int efx_ef10_map_reset_flags(u32 *flags)
705 {
706 	enum {
707 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
708 				   ETH_RESET_SHARED_SHIFT),
709 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
710 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
711 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
712 				 ETH_RESET_SHARED_SHIFT)
713 	};
714 
715 	/* We assume for now that our PCI function is permitted to
716 	 * reset everything.
717 	 */
718 
719 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
720 		*flags &= ~EF10_RESET_MC;
721 		return RESET_TYPE_WORLD;
722 	}
723 
724 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
725 		*flags &= ~EF10_RESET_PORT;
726 		return RESET_TYPE_ALL;
727 	}
728 
729 	/* no invisible reset implemented */
730 
731 	return -EINVAL;
732 }
733 
734 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
735 {
736 	int rc = efx_mcdi_reset(efx, reset_type);
737 
738 	/* If it was a port reset, trigger reallocation of MC resources.
739 	 * Note that on an MC reset nothing needs to be done now because we'll
740 	 * detect the MC reset later and handle it then.
741 	 * For an FLR, we never get an MC reset event, but the MC has reset all
742 	 * resources assigned to us, so we have to trigger reallocation now.
743 	 */
744 	if ((reset_type == RESET_TYPE_ALL ||
745 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
746 		efx_ef10_reset_mc_allocations(efx);
747 	return rc;
748 }
749 
750 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
751 	[EF10_STAT_ ## ext_name] =				\
752 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
753 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
754 	[EF10_STAT_ ## int_name] =				\
755 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
756 #define EF10_OTHER_STAT(ext_name)				\
757 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
758 #define GENERIC_SW_STAT(ext_name)				\
759 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
760 
761 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
762 	EF10_DMA_STAT(tx_bytes, TX_BYTES),
763 	EF10_DMA_STAT(tx_packets, TX_PKTS),
764 	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
765 	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
766 	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
767 	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
768 	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
769 	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
770 	EF10_DMA_STAT(tx_64, TX_64_PKTS),
771 	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
772 	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
773 	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
774 	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
775 	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
776 	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
777 	EF10_DMA_STAT(rx_bytes, RX_BYTES),
778 	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
779 	EF10_OTHER_STAT(rx_good_bytes),
780 	EF10_OTHER_STAT(rx_bad_bytes),
781 	EF10_DMA_STAT(rx_packets, RX_PKTS),
782 	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
783 	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
784 	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
785 	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
786 	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
787 	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
788 	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
789 	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
790 	EF10_DMA_STAT(rx_64, RX_64_PKTS),
791 	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
792 	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
793 	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
794 	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
795 	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
796 	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
797 	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
798 	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
799 	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
800 	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
801 	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
802 	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
803 	GENERIC_SW_STAT(rx_nodesc_trunc),
804 	GENERIC_SW_STAT(rx_noskb_drops),
805 	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
806 	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
807 	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
808 	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
809 	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
810 	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
811 	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
812 	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
813 	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
814 	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
815 	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
816 	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
817 };
818 
819 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
820 			       (1ULL << EF10_STAT_tx_packets) |		\
821 			       (1ULL << EF10_STAT_tx_pause) |		\
822 			       (1ULL << EF10_STAT_tx_unicast) |		\
823 			       (1ULL << EF10_STAT_tx_multicast) |	\
824 			       (1ULL << EF10_STAT_tx_broadcast) |	\
825 			       (1ULL << EF10_STAT_rx_bytes) |		\
826 			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
827 			       (1ULL << EF10_STAT_rx_good_bytes) |	\
828 			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
829 			       (1ULL << EF10_STAT_rx_packets) |		\
830 			       (1ULL << EF10_STAT_rx_good) |		\
831 			       (1ULL << EF10_STAT_rx_bad) |		\
832 			       (1ULL << EF10_STAT_rx_pause) |		\
833 			       (1ULL << EF10_STAT_rx_control) |		\
834 			       (1ULL << EF10_STAT_rx_unicast) |		\
835 			       (1ULL << EF10_STAT_rx_multicast) |	\
836 			       (1ULL << EF10_STAT_rx_broadcast) |	\
837 			       (1ULL << EF10_STAT_rx_lt64) |		\
838 			       (1ULL << EF10_STAT_rx_64) |		\
839 			       (1ULL << EF10_STAT_rx_65_to_127) |	\
840 			       (1ULL << EF10_STAT_rx_128_to_255) |	\
841 			       (1ULL << EF10_STAT_rx_256_to_511) |	\
842 			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
843 			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
844 			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
845 			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
846 			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
847 			       (1ULL << EF10_STAT_rx_overflow) |	\
848 			       (1ULL << EF10_STAT_rx_nodesc_drops) |	\
849 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
850 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
851 
852 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
853  * switchable port we do not expose these because they might not
854  * include all the packets they should.
855  */
856 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
857 				 (1ULL << EF10_STAT_tx_lt64) |		\
858 				 (1ULL << EF10_STAT_tx_64) |		\
859 				 (1ULL << EF10_STAT_tx_65_to_127) |	\
860 				 (1ULL << EF10_STAT_tx_128_to_255) |	\
861 				 (1ULL << EF10_STAT_tx_256_to_511) |	\
862 				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
863 				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
864 				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
865 
866 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
867  * switchable port we do expose these because the errors will otherwise
868  * be silent.
869  */
870 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
871 				  (1ULL << EF10_STAT_rx_length_error))
872 
873 /* These statistics are only provided if the firmware supports the
874  * capability PM_AND_RXDP_COUNTERS.
875  */
876 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
877 	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
878 	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
879 	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
880 	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
881 	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
882 	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
883 	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
884 	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
885 	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
886 	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
887 	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
888 	(1ULL << EF10_STAT_rx_dp_hlb_wait))
889 
890 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
891 {
892 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
893 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
894 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
895 
896 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
897 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
898 	else
899 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
900 
901 	if (nic_data->datapath_caps &
902 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
903 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
904 
905 	return raw_mask;
906 }
907 
908 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
909 {
910 	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
911 
912 #if BITS_PER_LONG == 64
913 	mask[0] = raw_mask;
914 #else
915 	mask[0] = raw_mask & 0xffffffff;
916 	mask[1] = raw_mask >> 32;
917 #endif
918 }
919 
920 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
921 {
922 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
923 
924 	efx_ef10_get_stat_mask(efx, mask);
925 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
926 				      mask, names);
927 }
928 
929 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
930 {
931 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
932 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
933 	__le64 generation_start, generation_end;
934 	u64 *stats = nic_data->stats;
935 	__le64 *dma_stats;
936 
937 	efx_ef10_get_stat_mask(efx, mask);
938 
939 	dma_stats = efx->stats_buffer.addr;
940 	nic_data = efx->nic_data;
941 
942 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
943 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
944 		return 0;
945 	rmb();
946 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
947 			     stats, efx->stats_buffer.addr, false);
948 	rmb();
949 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
950 	if (generation_end != generation_start)
951 		return -EAGAIN;
952 
953 	/* Update derived statistics */
954 	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
955 	stats[EF10_STAT_rx_good_bytes] =
956 		stats[EF10_STAT_rx_bytes] -
957 		stats[EF10_STAT_rx_bytes_minus_good_bytes];
958 	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
959 			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
960 	efx_update_sw_stats(efx, stats);
961 	return 0;
962 }
963 
964 
965 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
966 				    struct rtnl_link_stats64 *core_stats)
967 {
968 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
969 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
970 	u64 *stats = nic_data->stats;
971 	size_t stats_count = 0, index;
972 	int retry;
973 
974 	efx_ef10_get_stat_mask(efx, mask);
975 
976 	/* If we're unlucky enough to read statistics during the DMA, wait
977 	 * up to 10ms for it to finish (typically takes <500us)
978 	 */
979 	for (retry = 0; retry < 100; ++retry) {
980 		if (efx_ef10_try_update_nic_stats(efx) == 0)
981 			break;
982 		udelay(100);
983 	}
984 
985 	if (full_stats) {
986 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
987 			if (efx_ef10_stat_desc[index].name) {
988 				*full_stats++ = stats[index];
989 				++stats_count;
990 			}
991 		}
992 	}
993 
994 	if (core_stats) {
995 		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
996 		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
997 		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
998 		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
999 		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops] +
1000 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1001 					 stats[GENERIC_STAT_rx_noskb_drops];
1002 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1003 		core_stats->rx_length_errors =
1004 			stats[EF10_STAT_rx_gtjumbo] +
1005 			stats[EF10_STAT_rx_length_error];
1006 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1007 		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1008 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1009 		core_stats->rx_errors = (core_stats->rx_length_errors +
1010 					 core_stats->rx_crc_errors +
1011 					 core_stats->rx_frame_errors);
1012 	}
1013 
1014 	return stats_count;
1015 }
1016 
1017 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1018 {
1019 	struct efx_nic *efx = channel->efx;
1020 	unsigned int mode, value;
1021 	efx_dword_t timer_cmd;
1022 
1023 	if (channel->irq_moderation) {
1024 		mode = 3;
1025 		value = channel->irq_moderation - 1;
1026 	} else {
1027 		mode = 0;
1028 		value = 0;
1029 	}
1030 
1031 	if (EFX_EF10_WORKAROUND_35388(efx)) {
1032 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1033 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1034 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1035 				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1036 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1037 				channel->channel);
1038 	} else {
1039 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1040 				     ERF_DZ_TC_TIMER_VAL, value);
1041 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1042 				channel->channel);
1043 	}
1044 }
1045 
1046 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1047 {
1048 	wol->supported = 0;
1049 	wol->wolopts = 0;
1050 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1051 }
1052 
1053 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1054 {
1055 	if (type != 0)
1056 		return -EINVAL;
1057 	return 0;
1058 }
1059 
1060 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1061 				  const efx_dword_t *hdr, size_t hdr_len,
1062 				  const efx_dword_t *sdu, size_t sdu_len)
1063 {
1064 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1065 	u8 *pdu = nic_data->mcdi_buf.addr;
1066 
1067 	memcpy(pdu, hdr, hdr_len);
1068 	memcpy(pdu + hdr_len, sdu, sdu_len);
1069 	wmb();
1070 
1071 	/* The hardware provides 'low' and 'high' (doorbell) registers
1072 	 * for passing the 64-bit address of an MCDI request to
1073 	 * firmware.  However the dwords are swapped by firmware.  The
1074 	 * least significant bits of the doorbell are then 0 for all
1075 	 * MCDI requests due to alignment.
1076 	 */
1077 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1078 		    ER_DZ_MC_DB_LWRD);
1079 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1080 		    ER_DZ_MC_DB_HWRD);
1081 }
1082 
1083 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1084 {
1085 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1086 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1087 
1088 	rmb();
1089 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1090 }
1091 
1092 static void
1093 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1094 			    size_t offset, size_t outlen)
1095 {
1096 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1097 	const u8 *pdu = nic_data->mcdi_buf.addr;
1098 
1099 	memcpy(outbuf, pdu + offset, outlen);
1100 }
1101 
1102 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1103 {
1104 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1105 	int rc;
1106 
1107 	rc = efx_ef10_get_warm_boot_count(efx);
1108 	if (rc < 0) {
1109 		/* The firmware is presumably in the process of
1110 		 * rebooting.  However, we are supposed to report each
1111 		 * reboot just once, so we must only do that once we
1112 		 * can read and store the updated warm boot count.
1113 		 */
1114 		return 0;
1115 	}
1116 
1117 	if (rc == nic_data->warm_boot_count)
1118 		return 0;
1119 
1120 	nic_data->warm_boot_count = rc;
1121 
1122 	/* All our allocations have been reset */
1123 	efx_ef10_reset_mc_allocations(efx);
1124 
1125 	/* The datapath firmware might have been changed */
1126 	nic_data->must_check_datapath_caps = true;
1127 
1128 	/* MAC statistics have been cleared on the NIC; clear the local
1129 	 * statistic that we update with efx_update_diff_stat().
1130 	 */
1131 	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1132 
1133 	return -EIO;
1134 }
1135 
1136 /* Handle an MSI interrupt
1137  *
1138  * Handle an MSI hardware interrupt.  This routine schedules event
1139  * queue processing.  No interrupt acknowledgement cycle is necessary.
1140  * Also, we never need to check that the interrupt is for us, since
1141  * MSI interrupts cannot be shared.
1142  */
1143 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1144 {
1145 	struct efx_msi_context *context = dev_id;
1146 	struct efx_nic *efx = context->efx;
1147 
1148 	netif_vdbg(efx, intr, efx->net_dev,
1149 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1150 
1151 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1152 		/* Note test interrupts */
1153 		if (context->index == efx->irq_level)
1154 			efx->last_irq_cpu = raw_smp_processor_id();
1155 
1156 		/* Schedule processing of the channel */
1157 		efx_schedule_channel_irq(efx->channel[context->index]);
1158 	}
1159 
1160 	return IRQ_HANDLED;
1161 }
1162 
1163 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1164 {
1165 	struct efx_nic *efx = dev_id;
1166 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1167 	struct efx_channel *channel;
1168 	efx_dword_t reg;
1169 	u32 queues;
1170 
1171 	/* Read the ISR which also ACKs the interrupts */
1172 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1173 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1174 
1175 	if (queues == 0)
1176 		return IRQ_NONE;
1177 
1178 	if (likely(soft_enabled)) {
1179 		/* Note test interrupts */
1180 		if (queues & (1U << efx->irq_level))
1181 			efx->last_irq_cpu = raw_smp_processor_id();
1182 
1183 		efx_for_each_channel(channel, efx) {
1184 			if (queues & 1)
1185 				efx_schedule_channel_irq(channel);
1186 			queues >>= 1;
1187 		}
1188 	}
1189 
1190 	netif_vdbg(efx, intr, efx->net_dev,
1191 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1192 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1193 
1194 	return IRQ_HANDLED;
1195 }
1196 
1197 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1198 {
1199 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1200 
1201 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1202 
1203 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1204 	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1205 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1206 }
1207 
1208 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1209 {
1210 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1211 				    (tx_queue->ptr_mask + 1) *
1212 				    sizeof(efx_qword_t),
1213 				    GFP_KERNEL);
1214 }
1215 
1216 /* This writes to the TX_DESC_WPTR and also pushes data */
1217 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1218 					 const efx_qword_t *txd)
1219 {
1220 	unsigned int write_ptr;
1221 	efx_oword_t reg;
1222 
1223 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1224 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1225 	reg.qword[0] = *txd;
1226 	efx_writeo_page(tx_queue->efx, &reg,
1227 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1228 }
1229 
1230 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1231 {
1232 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1233 						       EFX_BUF_SIZE));
1234 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1235 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1236 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1237 	struct efx_channel *channel = tx_queue->channel;
1238 	struct efx_nic *efx = tx_queue->efx;
1239 	size_t inlen, outlen;
1240 	dma_addr_t dma_addr;
1241 	efx_qword_t *txd;
1242 	int rc;
1243 	int i;
1244 
1245 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1246 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1247 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1248 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1249 	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1250 			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1251 			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1252 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1253 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1254 
1255 	dma_addr = tx_queue->txd.buf.dma_addr;
1256 
1257 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1258 		  tx_queue->queue, entries, (u64)dma_addr);
1259 
1260 	for (i = 0; i < entries; ++i) {
1261 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1262 		dma_addr += EFX_BUF_SIZE;
1263 	}
1264 
1265 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1266 
1267 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1268 			  outbuf, sizeof(outbuf), &outlen);
1269 	if (rc)
1270 		goto fail;
1271 
1272 	/* A previous user of this TX queue might have set us up the
1273 	 * bomb by writing a descriptor to the TX push collector but
1274 	 * not the doorbell.  (Each collector belongs to a port, not a
1275 	 * queue or function, so cannot easily be reset.)  We must
1276 	 * attempt to push a no-op descriptor in its place.
1277 	 */
1278 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1279 	tx_queue->insert_count = 1;
1280 	txd = efx_tx_desc(tx_queue, 0);
1281 	EFX_POPULATE_QWORD_4(*txd,
1282 			     ESF_DZ_TX_DESC_IS_OPT, true,
1283 			     ESF_DZ_TX_OPTION_TYPE,
1284 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1285 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1286 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1287 	tx_queue->write_count = 1;
1288 	wmb();
1289 	efx_ef10_push_tx_desc(tx_queue, txd);
1290 
1291 	return;
1292 
1293 fail:
1294 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1295 		    tx_queue->queue);
1296 }
1297 
1298 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1299 {
1300 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1301 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1302 	struct efx_nic *efx = tx_queue->efx;
1303 	size_t outlen;
1304 	int rc;
1305 
1306 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1307 		       tx_queue->queue);
1308 
1309 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1310 			  outbuf, sizeof(outbuf), &outlen);
1311 
1312 	if (rc && rc != -EALREADY)
1313 		goto fail;
1314 
1315 	return;
1316 
1317 fail:
1318 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1319 			       outbuf, outlen, rc);
1320 }
1321 
1322 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1323 {
1324 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1325 }
1326 
1327 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1328 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1329 {
1330 	unsigned int write_ptr;
1331 	efx_dword_t reg;
1332 
1333 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1334 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1335 	efx_writed_page(tx_queue->efx, &reg,
1336 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1337 }
1338 
1339 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1340 {
1341 	unsigned int old_write_count = tx_queue->write_count;
1342 	struct efx_tx_buffer *buffer;
1343 	unsigned int write_ptr;
1344 	efx_qword_t *txd;
1345 
1346 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1347 
1348 	do {
1349 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1350 		buffer = &tx_queue->buffer[write_ptr];
1351 		txd = efx_tx_desc(tx_queue, write_ptr);
1352 		++tx_queue->write_count;
1353 
1354 		/* Create TX descriptor ring entry */
1355 		if (buffer->flags & EFX_TX_BUF_OPTION) {
1356 			*txd = buffer->option;
1357 		} else {
1358 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1359 			EFX_POPULATE_QWORD_3(
1360 				*txd,
1361 				ESF_DZ_TX_KER_CONT,
1362 				buffer->flags & EFX_TX_BUF_CONT,
1363 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1364 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1365 		}
1366 	} while (tx_queue->write_count != tx_queue->insert_count);
1367 
1368 	wmb(); /* Ensure descriptors are written before they are fetched */
1369 
1370 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1371 		txd = efx_tx_desc(tx_queue,
1372 				  old_write_count & tx_queue->ptr_mask);
1373 		efx_ef10_push_tx_desc(tx_queue, txd);
1374 		++tx_queue->pushes;
1375 	} else {
1376 		efx_ef10_notify_tx_desc(tx_queue);
1377 	}
1378 }
1379 
1380 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1381 {
1382 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1383 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1384 	size_t outlen;
1385 	int rc;
1386 
1387 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1388 		       EVB_PORT_ID_ASSIGNED);
1389 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1390 		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1391 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1392 		       EFX_MAX_CHANNELS);
1393 
1394 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1395 		outbuf, sizeof(outbuf), &outlen);
1396 	if (rc != 0)
1397 		return rc;
1398 
1399 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1400 		return -EIO;
1401 
1402 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1403 
1404 	return 0;
1405 }
1406 
1407 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1408 {
1409 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1410 	int rc;
1411 
1412 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1413 		       context);
1414 
1415 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1416 			    NULL, 0, NULL);
1417 	WARN_ON(rc != 0);
1418 }
1419 
1420 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1421 {
1422 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1423 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1424 	int i, rc;
1425 
1426 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1427 		       context);
1428 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1429 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1430 
1431 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1432 		MCDI_PTR(tablebuf,
1433 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1434 				(u8) efx->rx_indir_table[i];
1435 
1436 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1437 			  sizeof(tablebuf), NULL, 0, NULL);
1438 	if (rc != 0)
1439 		return rc;
1440 
1441 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1442 		       context);
1443 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1444 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1445 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1446 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1447 			efx->rx_hash_key[i];
1448 
1449 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1450 			    sizeof(keybuf), NULL, 0, NULL);
1451 }
1452 
1453 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1454 {
1455 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1456 
1457 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1458 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1459 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1460 }
1461 
1462 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1463 {
1464 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1465 	int rc;
1466 
1467 	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1468 
1469 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1470 		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1471 		if (rc != 0)
1472 			goto fail;
1473 	}
1474 
1475 	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1476 	if (rc != 0)
1477 		goto fail;
1478 
1479 	return;
1480 
1481 fail:
1482 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1483 }
1484 
1485 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1486 {
1487 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1488 				    (rx_queue->ptr_mask + 1) *
1489 				    sizeof(efx_qword_t),
1490 				    GFP_KERNEL);
1491 }
1492 
1493 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1494 {
1495 	MCDI_DECLARE_BUF(inbuf,
1496 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1497 						EFX_BUF_SIZE));
1498 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1499 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1500 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1501 	struct efx_nic *efx = rx_queue->efx;
1502 	size_t inlen, outlen;
1503 	dma_addr_t dma_addr;
1504 	int rc;
1505 	int i;
1506 
1507 	rx_queue->scatter_n = 0;
1508 	rx_queue->scatter_len = 0;
1509 
1510 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1511 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1512 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1513 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1514 		       efx_rx_queue_index(rx_queue));
1515 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1516 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1517 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1518 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1519 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1520 
1521 	dma_addr = rx_queue->rxd.buf.dma_addr;
1522 
1523 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1524 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1525 
1526 	for (i = 0; i < entries; ++i) {
1527 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1528 		dma_addr += EFX_BUF_SIZE;
1529 	}
1530 
1531 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1532 
1533 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1534 			  outbuf, sizeof(outbuf), &outlen);
1535 	if (rc)
1536 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1537 			    efx_rx_queue_index(rx_queue));
1538 }
1539 
1540 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1541 {
1542 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1543 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1544 	struct efx_nic *efx = rx_queue->efx;
1545 	size_t outlen;
1546 	int rc;
1547 
1548 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1549 		       efx_rx_queue_index(rx_queue));
1550 
1551 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1552 			  outbuf, sizeof(outbuf), &outlen);
1553 
1554 	if (rc && rc != -EALREADY)
1555 		goto fail;
1556 
1557 	return;
1558 
1559 fail:
1560 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1561 			       outbuf, outlen, rc);
1562 }
1563 
1564 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1565 {
1566 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1567 }
1568 
1569 /* This creates an entry in the RX descriptor queue */
1570 static inline void
1571 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1572 {
1573 	struct efx_rx_buffer *rx_buf;
1574 	efx_qword_t *rxd;
1575 
1576 	rxd = efx_rx_desc(rx_queue, index);
1577 	rx_buf = efx_rx_buffer(rx_queue, index);
1578 	EFX_POPULATE_QWORD_2(*rxd,
1579 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1580 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1581 }
1582 
1583 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1584 {
1585 	struct efx_nic *efx = rx_queue->efx;
1586 	unsigned int write_count;
1587 	efx_dword_t reg;
1588 
1589 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1590 	write_count = rx_queue->added_count & ~7;
1591 	if (rx_queue->notified_count == write_count)
1592 		return;
1593 
1594 	do
1595 		efx_ef10_build_rx_desc(
1596 			rx_queue,
1597 			rx_queue->notified_count & rx_queue->ptr_mask);
1598 	while (++rx_queue->notified_count != write_count);
1599 
1600 	wmb();
1601 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1602 			     write_count & rx_queue->ptr_mask);
1603 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1604 			efx_rx_queue_index(rx_queue));
1605 }
1606 
1607 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1608 
1609 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1610 {
1611 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1612 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1613 	efx_qword_t event;
1614 
1615 	EFX_POPULATE_QWORD_2(event,
1616 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1617 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1618 
1619 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1620 
1621 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1622 	 * already swapped the data to little-endian order.
1623 	 */
1624 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1625 	       sizeof(efx_qword_t));
1626 
1627 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1628 			   inbuf, sizeof(inbuf), 0,
1629 			   efx_ef10_rx_defer_refill_complete, 0);
1630 }
1631 
1632 static void
1633 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1634 				  int rc, efx_dword_t *outbuf,
1635 				  size_t outlen_actual)
1636 {
1637 	/* nothing to do */
1638 }
1639 
1640 static int efx_ef10_ev_probe(struct efx_channel *channel)
1641 {
1642 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1643 				    (channel->eventq_mask + 1) *
1644 				    sizeof(efx_qword_t),
1645 				    GFP_KERNEL);
1646 }
1647 
1648 static int efx_ef10_ev_init(struct efx_channel *channel)
1649 {
1650 	MCDI_DECLARE_BUF(inbuf,
1651 			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1652 						EFX_BUF_SIZE));
1653 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1654 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1655 	struct efx_nic *efx = channel->efx;
1656 	struct efx_ef10_nic_data *nic_data;
1657 	bool supports_rx_merge;
1658 	size_t inlen, outlen;
1659 	dma_addr_t dma_addr;
1660 	int rc;
1661 	int i;
1662 
1663 	nic_data = efx->nic_data;
1664 	supports_rx_merge =
1665 		!!(nic_data->datapath_caps &
1666 		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1667 
1668 	/* Fill event queue with all ones (i.e. empty events) */
1669 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1670 
1671 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1672 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1673 	/* INIT_EVQ expects index in vector table, not absolute */
1674 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1675 	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1676 			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1677 			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1678 			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1679 			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1680 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1681 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1682 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1683 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1684 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1685 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1686 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1687 
1688 	dma_addr = channel->eventq.buf.dma_addr;
1689 	for (i = 0; i < entries; ++i) {
1690 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1691 		dma_addr += EFX_BUF_SIZE;
1692 	}
1693 
1694 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1695 
1696 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1697 			  outbuf, sizeof(outbuf), &outlen);
1698 	/* IRQ return is ignored */
1699 	return rc;
1700 }
1701 
1702 static void efx_ef10_ev_fini(struct efx_channel *channel)
1703 {
1704 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1705 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1706 	struct efx_nic *efx = channel->efx;
1707 	size_t outlen;
1708 	int rc;
1709 
1710 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1711 
1712 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1713 			  outbuf, sizeof(outbuf), &outlen);
1714 
1715 	if (rc && rc != -EALREADY)
1716 		goto fail;
1717 
1718 	return;
1719 
1720 fail:
1721 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1722 			       outbuf, outlen, rc);
1723 }
1724 
1725 static void efx_ef10_ev_remove(struct efx_channel *channel)
1726 {
1727 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1728 }
1729 
1730 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1731 					   unsigned int rx_queue_label)
1732 {
1733 	struct efx_nic *efx = rx_queue->efx;
1734 
1735 	netif_info(efx, hw, efx->net_dev,
1736 		   "rx event arrived on queue %d labeled as queue %u\n",
1737 		   efx_rx_queue_index(rx_queue), rx_queue_label);
1738 
1739 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1740 }
1741 
1742 static void
1743 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1744 			     unsigned int actual, unsigned int expected)
1745 {
1746 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1747 	struct efx_nic *efx = rx_queue->efx;
1748 
1749 	netif_info(efx, hw, efx->net_dev,
1750 		   "dropped %d events (index=%d expected=%d)\n",
1751 		   dropped, actual, expected);
1752 
1753 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1754 }
1755 
1756 /* partially received RX was aborted. clean up. */
1757 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1758 {
1759 	unsigned int rx_desc_ptr;
1760 
1761 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1762 		  "scattered RX aborted (dropping %u buffers)\n",
1763 		  rx_queue->scatter_n);
1764 
1765 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1766 
1767 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1768 		      0, EFX_RX_PKT_DISCARD);
1769 
1770 	rx_queue->removed_count += rx_queue->scatter_n;
1771 	rx_queue->scatter_n = 0;
1772 	rx_queue->scatter_len = 0;
1773 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1774 }
1775 
1776 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1777 				    const efx_qword_t *event)
1778 {
1779 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1780 	unsigned int n_descs, n_packets, i;
1781 	struct efx_nic *efx = channel->efx;
1782 	struct efx_rx_queue *rx_queue;
1783 	bool rx_cont;
1784 	u16 flags = 0;
1785 
1786 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1787 		return 0;
1788 
1789 	/* Basic packet information */
1790 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1791 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1792 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1793 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1794 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1795 
1796 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1797 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1798 			    EFX_QWORD_FMT "\n",
1799 			    EFX_QWORD_VAL(*event));
1800 
1801 	rx_queue = efx_channel_get_rx_queue(channel);
1802 
1803 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1804 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1805 
1806 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1807 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1808 
1809 	if (n_descs != rx_queue->scatter_n + 1) {
1810 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1811 
1812 		/* detect rx abort */
1813 		if (unlikely(n_descs == rx_queue->scatter_n)) {
1814 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1815 				netdev_WARN(efx->net_dev,
1816 					    "invalid RX abort: scatter_n=%u event="
1817 					    EFX_QWORD_FMT "\n",
1818 					    rx_queue->scatter_n,
1819 					    EFX_QWORD_VAL(*event));
1820 			efx_ef10_handle_rx_abort(rx_queue);
1821 			return 0;
1822 		}
1823 
1824 		/* Check that RX completion merging is valid, i.e.
1825 		 * the current firmware supports it and this is a
1826 		 * non-scattered packet.
1827 		 */
1828 		if (!(nic_data->datapath_caps &
1829 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1830 		    rx_queue->scatter_n != 0 || rx_cont) {
1831 			efx_ef10_handle_rx_bad_lbits(
1832 				rx_queue, next_ptr_lbits,
1833 				(rx_queue->removed_count +
1834 				 rx_queue->scatter_n + 1) &
1835 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1836 			return 0;
1837 		}
1838 
1839 		/* Merged completion for multiple non-scattered packets */
1840 		rx_queue->scatter_n = 1;
1841 		rx_queue->scatter_len = 0;
1842 		n_packets = n_descs;
1843 		++channel->n_rx_merge_events;
1844 		channel->n_rx_merge_packets += n_packets;
1845 		flags |= EFX_RX_PKT_PREFIX_LEN;
1846 	} else {
1847 		++rx_queue->scatter_n;
1848 		rx_queue->scatter_len += rx_bytes;
1849 		if (rx_cont)
1850 			return 0;
1851 		n_packets = 1;
1852 	}
1853 
1854 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1855 		flags |= EFX_RX_PKT_DISCARD;
1856 
1857 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1858 		channel->n_rx_ip_hdr_chksum_err += n_packets;
1859 	} else if (unlikely(EFX_QWORD_FIELD(*event,
1860 					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1861 		channel->n_rx_tcp_udp_chksum_err += n_packets;
1862 	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1863 		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1864 		flags |= EFX_RX_PKT_CSUMMED;
1865 	}
1866 
1867 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1868 		flags |= EFX_RX_PKT_TCP;
1869 
1870 	channel->irq_mod_score += 2 * n_packets;
1871 
1872 	/* Handle received packet(s) */
1873 	for (i = 0; i < n_packets; i++) {
1874 		efx_rx_packet(rx_queue,
1875 			      rx_queue->removed_count & rx_queue->ptr_mask,
1876 			      rx_queue->scatter_n, rx_queue->scatter_len,
1877 			      flags);
1878 		rx_queue->removed_count += rx_queue->scatter_n;
1879 	}
1880 
1881 	rx_queue->scatter_n = 0;
1882 	rx_queue->scatter_len = 0;
1883 
1884 	return n_packets;
1885 }
1886 
1887 static int
1888 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1889 {
1890 	struct efx_nic *efx = channel->efx;
1891 	struct efx_tx_queue *tx_queue;
1892 	unsigned int tx_ev_desc_ptr;
1893 	unsigned int tx_ev_q_label;
1894 	int tx_descs = 0;
1895 
1896 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1897 		return 0;
1898 
1899 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1900 		return 0;
1901 
1902 	/* Transmit completion */
1903 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1904 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1905 	tx_queue = efx_channel_get_tx_queue(channel,
1906 					    tx_ev_q_label % EFX_TXQ_TYPES);
1907 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1908 		    tx_queue->ptr_mask);
1909 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1910 
1911 	return tx_descs;
1912 }
1913 
1914 static void
1915 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1916 {
1917 	struct efx_nic *efx = channel->efx;
1918 	int subcode;
1919 
1920 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1921 
1922 	switch (subcode) {
1923 	case ESE_DZ_DRV_TIMER_EV:
1924 	case ESE_DZ_DRV_WAKE_UP_EV:
1925 		break;
1926 	case ESE_DZ_DRV_START_UP_EV:
1927 		/* event queue init complete. ok. */
1928 		break;
1929 	default:
1930 		netif_err(efx, hw, efx->net_dev,
1931 			  "channel %d unknown driver event type %d"
1932 			  " (data " EFX_QWORD_FMT ")\n",
1933 			  channel->channel, subcode,
1934 			  EFX_QWORD_VAL(*event));
1935 
1936 	}
1937 }
1938 
1939 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1940 						   efx_qword_t *event)
1941 {
1942 	struct efx_nic *efx = channel->efx;
1943 	u32 subcode;
1944 
1945 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1946 
1947 	switch (subcode) {
1948 	case EFX_EF10_TEST:
1949 		channel->event_test_cpu = raw_smp_processor_id();
1950 		break;
1951 	case EFX_EF10_REFILL:
1952 		/* The queue must be empty, so we won't receive any rx
1953 		 * events, so efx_process_channel() won't refill the
1954 		 * queue. Refill it here
1955 		 */
1956 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1957 		break;
1958 	default:
1959 		netif_err(efx, hw, efx->net_dev,
1960 			  "channel %d unknown driver event type %u"
1961 			  " (data " EFX_QWORD_FMT ")\n",
1962 			  channel->channel, (unsigned) subcode,
1963 			  EFX_QWORD_VAL(*event));
1964 	}
1965 }
1966 
1967 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1968 {
1969 	struct efx_nic *efx = channel->efx;
1970 	efx_qword_t event, *p_event;
1971 	unsigned int read_ptr;
1972 	int ev_code;
1973 	int tx_descs = 0;
1974 	int spent = 0;
1975 
1976 	if (quota <= 0)
1977 		return spent;
1978 
1979 	read_ptr = channel->eventq_read_ptr;
1980 
1981 	for (;;) {
1982 		p_event = efx_event(channel, read_ptr);
1983 		event = *p_event;
1984 
1985 		if (!efx_event_present(&event))
1986 			break;
1987 
1988 		EFX_SET_QWORD(*p_event);
1989 
1990 		++read_ptr;
1991 
1992 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1993 
1994 		netif_vdbg(efx, drv, efx->net_dev,
1995 			   "processing event on %d " EFX_QWORD_FMT "\n",
1996 			   channel->channel, EFX_QWORD_VAL(event));
1997 
1998 		switch (ev_code) {
1999 		case ESE_DZ_EV_CODE_MCDI_EV:
2000 			efx_mcdi_process_event(channel, &event);
2001 			break;
2002 		case ESE_DZ_EV_CODE_RX_EV:
2003 			spent += efx_ef10_handle_rx_event(channel, &event);
2004 			if (spent >= quota) {
2005 				/* XXX can we split a merged event to
2006 				 * avoid going over-quota?
2007 				 */
2008 				spent = quota;
2009 				goto out;
2010 			}
2011 			break;
2012 		case ESE_DZ_EV_CODE_TX_EV:
2013 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2014 			if (tx_descs > efx->txq_entries) {
2015 				spent = quota;
2016 				goto out;
2017 			} else if (++spent == quota) {
2018 				goto out;
2019 			}
2020 			break;
2021 		case ESE_DZ_EV_CODE_DRIVER_EV:
2022 			efx_ef10_handle_driver_event(channel, &event);
2023 			if (++spent == quota)
2024 				goto out;
2025 			break;
2026 		case EFX_EF10_DRVGEN_EV:
2027 			efx_ef10_handle_driver_generated_event(channel, &event);
2028 			break;
2029 		default:
2030 			netif_err(efx, hw, efx->net_dev,
2031 				  "channel %d unknown event type %d"
2032 				  " (data " EFX_QWORD_FMT ")\n",
2033 				  channel->channel, ev_code,
2034 				  EFX_QWORD_VAL(event));
2035 		}
2036 	}
2037 
2038 out:
2039 	channel->eventq_read_ptr = read_ptr;
2040 	return spent;
2041 }
2042 
2043 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2044 {
2045 	struct efx_nic *efx = channel->efx;
2046 	efx_dword_t rptr;
2047 
2048 	if (EFX_EF10_WORKAROUND_35388(efx)) {
2049 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2050 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2051 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2052 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2053 
2054 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2055 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2056 				     ERF_DD_EVQ_IND_RPTR,
2057 				     (channel->eventq_read_ptr &
2058 				      channel->eventq_mask) >>
2059 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2060 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2061 				channel->channel);
2062 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2063 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2064 				     ERF_DD_EVQ_IND_RPTR,
2065 				     channel->eventq_read_ptr &
2066 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2067 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2068 				channel->channel);
2069 	} else {
2070 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2071 				     channel->eventq_read_ptr &
2072 				     channel->eventq_mask);
2073 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2074 	}
2075 }
2076 
2077 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2078 {
2079 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2080 	struct efx_nic *efx = channel->efx;
2081 	efx_qword_t event;
2082 	int rc;
2083 
2084 	EFX_POPULATE_QWORD_2(event,
2085 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2086 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2087 
2088 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2089 
2090 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2091 	 * already swapped the data to little-endian order.
2092 	 */
2093 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2094 	       sizeof(efx_qword_t));
2095 
2096 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2097 			  NULL, 0, NULL);
2098 	if (rc != 0)
2099 		goto fail;
2100 
2101 	return;
2102 
2103 fail:
2104 	WARN_ON(true);
2105 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2106 }
2107 
2108 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2109 {
2110 	if (atomic_dec_and_test(&efx->active_queues))
2111 		wake_up(&efx->flush_wq);
2112 
2113 	WARN_ON(atomic_read(&efx->active_queues) < 0);
2114 }
2115 
2116 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2117 {
2118 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2119 	struct efx_channel *channel;
2120 	struct efx_tx_queue *tx_queue;
2121 	struct efx_rx_queue *rx_queue;
2122 	int pending;
2123 
2124 	/* If the MC has just rebooted, the TX/RX queues will have already been
2125 	 * torn down, but efx->active_queues needs to be set to zero.
2126 	 */
2127 	if (nic_data->must_realloc_vis) {
2128 		atomic_set(&efx->active_queues, 0);
2129 		return 0;
2130 	}
2131 
2132 	/* Do not attempt to write to the NIC during EEH recovery */
2133 	if (efx->state != STATE_RECOVERY) {
2134 		efx_for_each_channel(channel, efx) {
2135 			efx_for_each_channel_rx_queue(rx_queue, channel)
2136 				efx_ef10_rx_fini(rx_queue);
2137 			efx_for_each_channel_tx_queue(tx_queue, channel)
2138 				efx_ef10_tx_fini(tx_queue);
2139 		}
2140 
2141 		wait_event_timeout(efx->flush_wq,
2142 				   atomic_read(&efx->active_queues) == 0,
2143 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2144 		pending = atomic_read(&efx->active_queues);
2145 		if (pending) {
2146 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2147 				  pending);
2148 			return -ETIMEDOUT;
2149 		}
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2156 {
2157 	atomic_set(&efx->active_queues, 0);
2158 }
2159 
2160 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2161 				  const struct efx_filter_spec *right)
2162 {
2163 	if ((left->match_flags ^ right->match_flags) |
2164 	    ((left->flags ^ right->flags) &
2165 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2166 		return false;
2167 
2168 	return memcmp(&left->outer_vid, &right->outer_vid,
2169 		      sizeof(struct efx_filter_spec) -
2170 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2171 }
2172 
2173 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2174 {
2175 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2176 	return jhash2((const u32 *)&spec->outer_vid,
2177 		      (sizeof(struct efx_filter_spec) -
2178 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2179 		      0);
2180 	/* XXX should we randomise the initval? */
2181 }
2182 
2183 /* Decide whether a filter should be exclusive or else should allow
2184  * delivery to additional recipients.  Currently we decide that
2185  * filters for specific local unicast MAC and IP addresses are
2186  * exclusive.
2187  */
2188 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2189 {
2190 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2191 	    !is_multicast_ether_addr(spec->loc_mac))
2192 		return true;
2193 
2194 	if ((spec->match_flags &
2195 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2196 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2197 		if (spec->ether_type == htons(ETH_P_IP) &&
2198 		    !ipv4_is_multicast(spec->loc_host[0]))
2199 			return true;
2200 		if (spec->ether_type == htons(ETH_P_IPV6) &&
2201 		    ((const u8 *)spec->loc_host)[0] != 0xff)
2202 			return true;
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 static struct efx_filter_spec *
2209 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2210 			   unsigned int filter_idx)
2211 {
2212 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2213 					  ~EFX_EF10_FILTER_FLAGS);
2214 }
2215 
2216 static unsigned int
2217 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2218 			   unsigned int filter_idx)
2219 {
2220 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2221 }
2222 
2223 static void
2224 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2225 			  unsigned int filter_idx,
2226 			  const struct efx_filter_spec *spec,
2227 			  unsigned int flags)
2228 {
2229 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2230 }
2231 
2232 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2233 				      const struct efx_filter_spec *spec,
2234 				      efx_dword_t *inbuf, u64 handle,
2235 				      bool replacing)
2236 {
2237 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2238 
2239 	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2240 
2241 	if (replacing) {
2242 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2243 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2244 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2245 	} else {
2246 		u32 match_fields = 0;
2247 
2248 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2249 			       efx_ef10_filter_is_exclusive(spec) ?
2250 			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2251 			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2252 
2253 		/* Convert match flags and values.  Unlike almost
2254 		 * everything else in MCDI, these fields are in
2255 		 * network byte order.
2256 		 */
2257 		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2258 			match_fields |=
2259 				is_multicast_ether_addr(spec->loc_mac) ?
2260 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2261 				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2262 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2263 		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2264 			match_fields |=					     \
2265 				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2266 				mcdi_field ## _LBN;			     \
2267 			BUILD_BUG_ON(					     \
2268 				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2269 				sizeof(spec->gen_field));		     \
2270 			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2271 			       &spec->gen_field, sizeof(spec->gen_field));   \
2272 		}
2273 		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2274 		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2275 		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2276 		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2277 		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2278 		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2279 		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2280 		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2281 		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2282 		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2283 #undef COPY_FIELD
2284 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2285 			       match_fields);
2286 	}
2287 
2288 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2289 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2290 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2291 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2292 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2293 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2294 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2295 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2296 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2297 		       0 : spec->dmaq_id);
2298 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2299 		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2300 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2301 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2302 	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2303 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2304 			       spec->rss_context !=
2305 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2306 			       spec->rss_context : nic_data->rx_rss_context);
2307 }
2308 
2309 static int efx_ef10_filter_push(struct efx_nic *efx,
2310 				const struct efx_filter_spec *spec,
2311 				u64 *handle, bool replacing)
2312 {
2313 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2314 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2315 	int rc;
2316 
2317 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2318 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2319 			  outbuf, sizeof(outbuf), NULL);
2320 	if (rc == 0)
2321 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2322 	if (rc == -ENOSPC)
2323 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2324 	return rc;
2325 }
2326 
2327 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2328 					enum efx_filter_match_flags match_flags)
2329 {
2330 	unsigned int match_pri;
2331 
2332 	for (match_pri = 0;
2333 	     match_pri < table->rx_match_count;
2334 	     match_pri++)
2335 		if (table->rx_match_flags[match_pri] == match_flags)
2336 			return match_pri;
2337 
2338 	return -EPROTONOSUPPORT;
2339 }
2340 
2341 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2342 				  struct efx_filter_spec *spec,
2343 				  bool replace_equal)
2344 {
2345 	struct efx_ef10_filter_table *table = efx->filter_state;
2346 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2347 	struct efx_filter_spec *saved_spec;
2348 	unsigned int match_pri, hash;
2349 	unsigned int priv_flags;
2350 	bool replacing = false;
2351 	int ins_index = -1;
2352 	DEFINE_WAIT(wait);
2353 	bool is_mc_recip;
2354 	s32 rc;
2355 
2356 	/* For now, only support RX filters */
2357 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2358 	    EFX_FILTER_FLAG_RX)
2359 		return -EINVAL;
2360 
2361 	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2362 	if (rc < 0)
2363 		return rc;
2364 	match_pri = rc;
2365 
2366 	hash = efx_ef10_filter_hash(spec);
2367 	is_mc_recip = efx_filter_is_mc_recipient(spec);
2368 	if (is_mc_recip)
2369 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2370 
2371 	/* Find any existing filters with the same match tuple or
2372 	 * else a free slot to insert at.  If any of them are busy,
2373 	 * we have to wait and retry.
2374 	 */
2375 	for (;;) {
2376 		unsigned int depth = 1;
2377 		unsigned int i;
2378 
2379 		spin_lock_bh(&efx->filter_lock);
2380 
2381 		for (;;) {
2382 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2383 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2384 
2385 			if (!saved_spec) {
2386 				if (ins_index < 0)
2387 					ins_index = i;
2388 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2389 				if (table->entry[i].spec &
2390 				    EFX_EF10_FILTER_FLAG_BUSY)
2391 					break;
2392 				if (spec->priority < saved_spec->priority &&
2393 				    spec->priority != EFX_FILTER_PRI_AUTO) {
2394 					rc = -EPERM;
2395 					goto out_unlock;
2396 				}
2397 				if (!is_mc_recip) {
2398 					/* This is the only one */
2399 					if (spec->priority ==
2400 					    saved_spec->priority &&
2401 					    !replace_equal) {
2402 						rc = -EEXIST;
2403 						goto out_unlock;
2404 					}
2405 					ins_index = i;
2406 					goto found;
2407 				} else if (spec->priority >
2408 					   saved_spec->priority ||
2409 					   (spec->priority ==
2410 					    saved_spec->priority &&
2411 					    replace_equal)) {
2412 					if (ins_index < 0)
2413 						ins_index = i;
2414 					else
2415 						__set_bit(depth, mc_rem_map);
2416 				}
2417 			}
2418 
2419 			/* Once we reach the maximum search depth, use
2420 			 * the first suitable slot or return -EBUSY if
2421 			 * there was none
2422 			 */
2423 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2424 				if (ins_index < 0) {
2425 					rc = -EBUSY;
2426 					goto out_unlock;
2427 				}
2428 				goto found;
2429 			}
2430 
2431 			++depth;
2432 		}
2433 
2434 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2435 		spin_unlock_bh(&efx->filter_lock);
2436 		schedule();
2437 	}
2438 
2439 found:
2440 	/* Create a software table entry if necessary, and mark it
2441 	 * busy.  We might yet fail to insert, but any attempt to
2442 	 * insert a conflicting filter while we're waiting for the
2443 	 * firmware must find the busy entry.
2444 	 */
2445 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2446 	if (saved_spec) {
2447 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2448 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2449 			/* Just make sure it won't be removed */
2450 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2451 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2452 			table->entry[ins_index].spec &=
2453 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2454 			rc = ins_index;
2455 			goto out_unlock;
2456 		}
2457 		replacing = true;
2458 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2459 	} else {
2460 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2461 		if (!saved_spec) {
2462 			rc = -ENOMEM;
2463 			goto out_unlock;
2464 		}
2465 		*saved_spec = *spec;
2466 		priv_flags = 0;
2467 	}
2468 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2469 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2470 
2471 	/* Mark lower-priority multicast recipients busy prior to removal */
2472 	if (is_mc_recip) {
2473 		unsigned int depth, i;
2474 
2475 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2476 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2477 			if (test_bit(depth, mc_rem_map))
2478 				table->entry[i].spec |=
2479 					EFX_EF10_FILTER_FLAG_BUSY;
2480 		}
2481 	}
2482 
2483 	spin_unlock_bh(&efx->filter_lock);
2484 
2485 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2486 				  replacing);
2487 
2488 	/* Finalise the software table entry */
2489 	spin_lock_bh(&efx->filter_lock);
2490 	if (rc == 0) {
2491 		if (replacing) {
2492 			/* Update the fields that may differ */
2493 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2494 				saved_spec->flags |=
2495 					EFX_FILTER_FLAG_RX_OVER_AUTO;
2496 			saved_spec->priority = spec->priority;
2497 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498 			saved_spec->flags |= spec->flags;
2499 			saved_spec->rss_context = spec->rss_context;
2500 			saved_spec->dmaq_id = spec->dmaq_id;
2501 		}
2502 	} else if (!replacing) {
2503 		kfree(saved_spec);
2504 		saved_spec = NULL;
2505 	}
2506 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2507 
2508 	/* Remove and finalise entries for lower-priority multicast
2509 	 * recipients
2510 	 */
2511 	if (is_mc_recip) {
2512 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2513 		unsigned int depth, i;
2514 
2515 		memset(inbuf, 0, sizeof(inbuf));
2516 
2517 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2518 			if (!test_bit(depth, mc_rem_map))
2519 				continue;
2520 
2521 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2522 			saved_spec = efx_ef10_filter_entry_spec(table, i);
2523 			priv_flags = efx_ef10_filter_entry_flags(table, i);
2524 
2525 			if (rc == 0) {
2526 				spin_unlock_bh(&efx->filter_lock);
2527 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2528 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2529 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2530 					       table->entry[i].handle);
2531 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2532 						  inbuf, sizeof(inbuf),
2533 						  NULL, 0, NULL);
2534 				spin_lock_bh(&efx->filter_lock);
2535 			}
2536 
2537 			if (rc == 0) {
2538 				kfree(saved_spec);
2539 				saved_spec = NULL;
2540 				priv_flags = 0;
2541 			} else {
2542 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2543 			}
2544 			efx_ef10_filter_set_entry(table, i, saved_spec,
2545 						  priv_flags);
2546 		}
2547 	}
2548 
2549 	/* If successful, return the inserted filter ID */
2550 	if (rc == 0)
2551 		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2552 
2553 	wake_up_all(&table->waitq);
2554 out_unlock:
2555 	spin_unlock_bh(&efx->filter_lock);
2556 	finish_wait(&table->waitq, &wait);
2557 	return rc;
2558 }
2559 
2560 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2561 {
2562 	/* no need to do anything here on EF10 */
2563 }
2564 
2565 /* Remove a filter.
2566  * If !by_index, remove by ID
2567  * If by_index, remove by index
2568  * Filter ID may come from userland and must be range-checked.
2569  */
2570 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2571 					   unsigned int priority_mask,
2572 					   u32 filter_id, bool by_index)
2573 {
2574 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2575 	struct efx_ef10_filter_table *table = efx->filter_state;
2576 	MCDI_DECLARE_BUF(inbuf,
2577 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2578 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2579 	struct efx_filter_spec *spec;
2580 	DEFINE_WAIT(wait);
2581 	int rc;
2582 
2583 	/* Find the software table entry and mark it busy.  Don't
2584 	 * remove it yet; any attempt to update while we're waiting
2585 	 * for the firmware must find the busy entry.
2586 	 */
2587 	for (;;) {
2588 		spin_lock_bh(&efx->filter_lock);
2589 		if (!(table->entry[filter_idx].spec &
2590 		      EFX_EF10_FILTER_FLAG_BUSY))
2591 			break;
2592 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2593 		spin_unlock_bh(&efx->filter_lock);
2594 		schedule();
2595 	}
2596 
2597 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2598 	if (!spec ||
2599 	    (!by_index &&
2600 	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2601 	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2602 		rc = -ENOENT;
2603 		goto out_unlock;
2604 	}
2605 
2606 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2607 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2608 		/* Just remove flags */
2609 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2610 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2611 		rc = 0;
2612 		goto out_unlock;
2613 	}
2614 
2615 	if (!(priority_mask & (1U << spec->priority))) {
2616 		rc = -ENOENT;
2617 		goto out_unlock;
2618 	}
2619 
2620 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2621 	spin_unlock_bh(&efx->filter_lock);
2622 
2623 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2624 		/* Reset to an automatic filter */
2625 
2626 		struct efx_filter_spec new_spec = *spec;
2627 
2628 		new_spec.priority = EFX_FILTER_PRI_AUTO;
2629 		new_spec.flags = (EFX_FILTER_FLAG_RX |
2630 				  EFX_FILTER_FLAG_RX_RSS);
2631 		new_spec.dmaq_id = 0;
2632 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2633 		rc = efx_ef10_filter_push(efx, &new_spec,
2634 					  &table->entry[filter_idx].handle,
2635 					  true);
2636 
2637 		spin_lock_bh(&efx->filter_lock);
2638 		if (rc == 0)
2639 			*spec = new_spec;
2640 	} else {
2641 		/* Really remove the filter */
2642 
2643 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2644 			       efx_ef10_filter_is_exclusive(spec) ?
2645 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2646 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2647 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2648 			       table->entry[filter_idx].handle);
2649 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2650 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2651 
2652 		spin_lock_bh(&efx->filter_lock);
2653 		if (rc == 0) {
2654 			kfree(spec);
2655 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2656 		}
2657 	}
2658 
2659 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2660 	wake_up_all(&table->waitq);
2661 out_unlock:
2662 	spin_unlock_bh(&efx->filter_lock);
2663 	finish_wait(&table->waitq, &wait);
2664 	return rc;
2665 }
2666 
2667 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2668 				       enum efx_filter_priority priority,
2669 				       u32 filter_id)
2670 {
2671 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2672 					       filter_id, false);
2673 }
2674 
2675 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2676 				    enum efx_filter_priority priority,
2677 				    u32 filter_id, struct efx_filter_spec *spec)
2678 {
2679 	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2680 	struct efx_ef10_filter_table *table = efx->filter_state;
2681 	const struct efx_filter_spec *saved_spec;
2682 	int rc;
2683 
2684 	spin_lock_bh(&efx->filter_lock);
2685 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2686 	if (saved_spec && saved_spec->priority == priority &&
2687 	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2688 	    filter_id / HUNT_FILTER_TBL_ROWS) {
2689 		*spec = *saved_spec;
2690 		rc = 0;
2691 	} else {
2692 		rc = -ENOENT;
2693 	}
2694 	spin_unlock_bh(&efx->filter_lock);
2695 	return rc;
2696 }
2697 
2698 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2699 				     enum efx_filter_priority priority)
2700 {
2701 	unsigned int priority_mask;
2702 	unsigned int i;
2703 	int rc;
2704 
2705 	priority_mask = (((1U << (priority + 1)) - 1) &
2706 			 ~(1U << EFX_FILTER_PRI_AUTO));
2707 
2708 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2709 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2710 						     i, true);
2711 		if (rc && rc != -ENOENT)
2712 			return rc;
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2719 					 enum efx_filter_priority priority)
2720 {
2721 	struct efx_ef10_filter_table *table = efx->filter_state;
2722 	unsigned int filter_idx;
2723 	s32 count = 0;
2724 
2725 	spin_lock_bh(&efx->filter_lock);
2726 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2727 		if (table->entry[filter_idx].spec &&
2728 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2729 		    priority)
2730 			++count;
2731 	}
2732 	spin_unlock_bh(&efx->filter_lock);
2733 	return count;
2734 }
2735 
2736 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2737 {
2738 	struct efx_ef10_filter_table *table = efx->filter_state;
2739 
2740 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2741 }
2742 
2743 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2744 				      enum efx_filter_priority priority,
2745 				      u32 *buf, u32 size)
2746 {
2747 	struct efx_ef10_filter_table *table = efx->filter_state;
2748 	struct efx_filter_spec *spec;
2749 	unsigned int filter_idx;
2750 	s32 count = 0;
2751 
2752 	spin_lock_bh(&efx->filter_lock);
2753 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2754 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2755 		if (spec && spec->priority == priority) {
2756 			if (count == size) {
2757 				count = -EMSGSIZE;
2758 				break;
2759 			}
2760 			buf[count++] = (efx_ef10_filter_rx_match_pri(
2761 						table, spec->match_flags) *
2762 					HUNT_FILTER_TBL_ROWS +
2763 					filter_idx);
2764 		}
2765 	}
2766 	spin_unlock_bh(&efx->filter_lock);
2767 	return count;
2768 }
2769 
2770 #ifdef CONFIG_RFS_ACCEL
2771 
2772 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2773 
2774 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2775 				      struct efx_filter_spec *spec)
2776 {
2777 	struct efx_ef10_filter_table *table = efx->filter_state;
2778 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2779 	struct efx_filter_spec *saved_spec;
2780 	unsigned int hash, i, depth = 1;
2781 	bool replacing = false;
2782 	int ins_index = -1;
2783 	u64 cookie;
2784 	s32 rc;
2785 
2786 	/* Must be an RX filter without RSS and not for a multicast
2787 	 * destination address (RFS only works for connected sockets).
2788 	 * These restrictions allow us to pass only a tiny amount of
2789 	 * data through to the completion function.
2790 	 */
2791 	EFX_WARN_ON_PARANOID(spec->flags !=
2792 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2793 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2794 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2795 
2796 	hash = efx_ef10_filter_hash(spec);
2797 
2798 	spin_lock_bh(&efx->filter_lock);
2799 
2800 	/* Find any existing filter with the same match tuple or else
2801 	 * a free slot to insert at.  If an existing filter is busy,
2802 	 * we have to give up.
2803 	 */
2804 	for (;;) {
2805 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2806 		saved_spec = efx_ef10_filter_entry_spec(table, i);
2807 
2808 		if (!saved_spec) {
2809 			if (ins_index < 0)
2810 				ins_index = i;
2811 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2812 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2813 				rc = -EBUSY;
2814 				goto fail_unlock;
2815 			}
2816 			if (spec->priority < saved_spec->priority) {
2817 				rc = -EPERM;
2818 				goto fail_unlock;
2819 			}
2820 			ins_index = i;
2821 			break;
2822 		}
2823 
2824 		/* Once we reach the maximum search depth, use the
2825 		 * first suitable slot or return -EBUSY if there was
2826 		 * none
2827 		 */
2828 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2829 			if (ins_index < 0) {
2830 				rc = -EBUSY;
2831 				goto fail_unlock;
2832 			}
2833 			break;
2834 		}
2835 
2836 		++depth;
2837 	}
2838 
2839 	/* Create a software table entry if necessary, and mark it
2840 	 * busy.  We might yet fail to insert, but any attempt to
2841 	 * insert a conflicting filter while we're waiting for the
2842 	 * firmware must find the busy entry.
2843 	 */
2844 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2845 	if (saved_spec) {
2846 		replacing = true;
2847 	} else {
2848 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2849 		if (!saved_spec) {
2850 			rc = -ENOMEM;
2851 			goto fail_unlock;
2852 		}
2853 		*saved_spec = *spec;
2854 	}
2855 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2856 				  EFX_EF10_FILTER_FLAG_BUSY);
2857 
2858 	spin_unlock_bh(&efx->filter_lock);
2859 
2860 	/* Pack up the variables needed on completion */
2861 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2862 
2863 	efx_ef10_filter_push_prep(efx, spec, inbuf,
2864 				  table->entry[ins_index].handle, replacing);
2865 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2866 			   MC_CMD_FILTER_OP_OUT_LEN,
2867 			   efx_ef10_filter_rfs_insert_complete, cookie);
2868 
2869 	return ins_index;
2870 
2871 fail_unlock:
2872 	spin_unlock_bh(&efx->filter_lock);
2873 	return rc;
2874 }
2875 
2876 static void
2877 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2878 				    int rc, efx_dword_t *outbuf,
2879 				    size_t outlen_actual)
2880 {
2881 	struct efx_ef10_filter_table *table = efx->filter_state;
2882 	unsigned int ins_index, dmaq_id;
2883 	struct efx_filter_spec *spec;
2884 	bool replacing;
2885 
2886 	/* Unpack the cookie */
2887 	replacing = cookie >> 31;
2888 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2889 	dmaq_id = cookie & 0xffff;
2890 
2891 	spin_lock_bh(&efx->filter_lock);
2892 	spec = efx_ef10_filter_entry_spec(table, ins_index);
2893 	if (rc == 0) {
2894 		table->entry[ins_index].handle =
2895 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2896 		if (replacing)
2897 			spec->dmaq_id = dmaq_id;
2898 	} else if (!replacing) {
2899 		kfree(spec);
2900 		spec = NULL;
2901 	}
2902 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2903 	spin_unlock_bh(&efx->filter_lock);
2904 
2905 	wake_up_all(&table->waitq);
2906 }
2907 
2908 static void
2909 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2910 				    unsigned long filter_idx,
2911 				    int rc, efx_dword_t *outbuf,
2912 				    size_t outlen_actual);
2913 
2914 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2915 					   unsigned int filter_idx)
2916 {
2917 	struct efx_ef10_filter_table *table = efx->filter_state;
2918 	struct efx_filter_spec *spec =
2919 		efx_ef10_filter_entry_spec(table, filter_idx);
2920 	MCDI_DECLARE_BUF(inbuf,
2921 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2922 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2923 
2924 	if (!spec ||
2925 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2926 	    spec->priority != EFX_FILTER_PRI_HINT ||
2927 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2928 				 flow_id, filter_idx))
2929 		return false;
2930 
2931 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2932 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2933 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2934 		       table->entry[filter_idx].handle);
2935 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2936 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2937 		return false;
2938 
2939 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2940 	return true;
2941 }
2942 
2943 static void
2944 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2945 				    unsigned long filter_idx,
2946 				    int rc, efx_dword_t *outbuf,
2947 				    size_t outlen_actual)
2948 {
2949 	struct efx_ef10_filter_table *table = efx->filter_state;
2950 	struct efx_filter_spec *spec =
2951 		efx_ef10_filter_entry_spec(table, filter_idx);
2952 
2953 	spin_lock_bh(&efx->filter_lock);
2954 	if (rc == 0) {
2955 		kfree(spec);
2956 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2957 	}
2958 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2959 	wake_up_all(&table->waitq);
2960 	spin_unlock_bh(&efx->filter_lock);
2961 }
2962 
2963 #endif /* CONFIG_RFS_ACCEL */
2964 
2965 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2966 {
2967 	int match_flags = 0;
2968 
2969 #define MAP_FLAG(gen_flag, mcdi_field) {				\
2970 		u32 old_mcdi_flags = mcdi_flags;			\
2971 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2972 				mcdi_field ## _LBN);			\
2973 		if (mcdi_flags != old_mcdi_flags)			\
2974 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2975 	}
2976 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2977 	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2978 	MAP_FLAG(REM_HOST, SRC_IP);
2979 	MAP_FLAG(LOC_HOST, DST_IP);
2980 	MAP_FLAG(REM_MAC, SRC_MAC);
2981 	MAP_FLAG(REM_PORT, SRC_PORT);
2982 	MAP_FLAG(LOC_MAC, DST_MAC);
2983 	MAP_FLAG(LOC_PORT, DST_PORT);
2984 	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2985 	MAP_FLAG(INNER_VID, INNER_VLAN);
2986 	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2987 	MAP_FLAG(IP_PROTO, IP_PROTO);
2988 #undef MAP_FLAG
2989 
2990 	/* Did we map them all? */
2991 	if (mcdi_flags)
2992 		return -EINVAL;
2993 
2994 	return match_flags;
2995 }
2996 
2997 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2998 {
2999 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3000 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3001 	unsigned int pd_match_pri, pd_match_count;
3002 	struct efx_ef10_filter_table *table;
3003 	size_t outlen;
3004 	int rc;
3005 
3006 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3007 	if (!table)
3008 		return -ENOMEM;
3009 
3010 	/* Find out which RX filter types are supported, and their priorities */
3011 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3012 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3013 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3014 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3015 			  &outlen);
3016 	if (rc)
3017 		goto fail;
3018 	pd_match_count = MCDI_VAR_ARRAY_LEN(
3019 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3020 	table->rx_match_count = 0;
3021 
3022 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3023 		u32 mcdi_flags =
3024 			MCDI_ARRAY_DWORD(
3025 				outbuf,
3026 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3027 				pd_match_pri);
3028 		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3029 		if (rc < 0) {
3030 			netif_dbg(efx, probe, efx->net_dev,
3031 				  "%s: fw flags %#x pri %u not supported in driver\n",
3032 				  __func__, mcdi_flags, pd_match_pri);
3033 		} else {
3034 			netif_dbg(efx, probe, efx->net_dev,
3035 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3036 				  __func__, mcdi_flags, pd_match_pri,
3037 				  rc, table->rx_match_count);
3038 			table->rx_match_flags[table->rx_match_count++] = rc;
3039 		}
3040 	}
3041 
3042 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3043 	if (!table->entry) {
3044 		rc = -ENOMEM;
3045 		goto fail;
3046 	}
3047 
3048 	efx->filter_state = table;
3049 	init_waitqueue_head(&table->waitq);
3050 	return 0;
3051 
3052 fail:
3053 	kfree(table);
3054 	return rc;
3055 }
3056 
3057 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3058 {
3059 	struct efx_ef10_filter_table *table = efx->filter_state;
3060 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3061 	struct efx_filter_spec *spec;
3062 	unsigned int filter_idx;
3063 	bool failed = false;
3064 	int rc;
3065 
3066 	if (!nic_data->must_restore_filters)
3067 		return;
3068 
3069 	spin_lock_bh(&efx->filter_lock);
3070 
3071 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3072 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3073 		if (!spec)
3074 			continue;
3075 
3076 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3077 		spin_unlock_bh(&efx->filter_lock);
3078 
3079 		rc = efx_ef10_filter_push(efx, spec,
3080 					  &table->entry[filter_idx].handle,
3081 					  false);
3082 		if (rc)
3083 			failed = true;
3084 
3085 		spin_lock_bh(&efx->filter_lock);
3086 		if (rc) {
3087 			kfree(spec);
3088 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3089 		} else {
3090 			table->entry[filter_idx].spec &=
3091 				~EFX_EF10_FILTER_FLAG_BUSY;
3092 		}
3093 	}
3094 
3095 	spin_unlock_bh(&efx->filter_lock);
3096 
3097 	if (failed)
3098 		netif_err(efx, hw, efx->net_dev,
3099 			  "unable to restore all filters\n");
3100 	else
3101 		nic_data->must_restore_filters = false;
3102 }
3103 
3104 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3105 {
3106 	struct efx_ef10_filter_table *table = efx->filter_state;
3107 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3108 	struct efx_filter_spec *spec;
3109 	unsigned int filter_idx;
3110 	int rc;
3111 
3112 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3113 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3114 		if (!spec)
3115 			continue;
3116 
3117 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3118 			       efx_ef10_filter_is_exclusive(spec) ?
3119 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3120 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3121 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3122 			       table->entry[filter_idx].handle);
3123 		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3124 				  NULL, 0, NULL);
3125 		if (rc)
3126 			netdev_WARN(efx->net_dev,
3127 				    "filter_idx=%#x handle=%#llx\n",
3128 				    filter_idx,
3129 				    table->entry[filter_idx].handle);
3130 		kfree(spec);
3131 	}
3132 
3133 	vfree(table->entry);
3134 	kfree(table);
3135 }
3136 
3137 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3138 {
3139 	struct efx_ef10_filter_table *table = efx->filter_state;
3140 	struct net_device *net_dev = efx->net_dev;
3141 	struct efx_filter_spec spec;
3142 	bool remove_failed = false;
3143 	struct netdev_hw_addr *uc;
3144 	struct netdev_hw_addr *mc;
3145 	unsigned int filter_idx;
3146 	int i, n, rc;
3147 
3148 	if (!efx_dev_registered(efx))
3149 		return;
3150 
3151 	/* Mark old filters that may need to be removed */
3152 	spin_lock_bh(&efx->filter_lock);
3153 	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3154 	for (i = 0; i < n; i++) {
3155 		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3156 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3157 	}
3158 	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3159 	for (i = 0; i < n; i++) {
3160 		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3161 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3162 	}
3163 	spin_unlock_bh(&efx->filter_lock);
3164 
3165 	/* Copy/convert the address lists; add the primary station
3166 	 * address and broadcast address
3167 	 */
3168 	netif_addr_lock_bh(net_dev);
3169 	if (net_dev->flags & IFF_PROMISC ||
3170 	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3171 		table->dev_uc_count = -1;
3172 	} else {
3173 		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3174 		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3175 		i = 1;
3176 		netdev_for_each_uc_addr(uc, net_dev) {
3177 			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3178 			i++;
3179 		}
3180 	}
3181 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3182 	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3183 		table->dev_mc_count = -1;
3184 	} else {
3185 		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3186 		eth_broadcast_addr(table->dev_mc_list[0].addr);
3187 		i = 1;
3188 		netdev_for_each_mc_addr(mc, net_dev) {
3189 			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3190 			i++;
3191 		}
3192 	}
3193 	netif_addr_unlock_bh(net_dev);
3194 
3195 	/* Insert/renew unicast filters */
3196 	if (table->dev_uc_count >= 0) {
3197 		for (i = 0; i < table->dev_uc_count; i++) {
3198 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3199 					   EFX_FILTER_FLAG_RX_RSS,
3200 					   0);
3201 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3202 						 table->dev_uc_list[i].addr);
3203 			rc = efx_ef10_filter_insert(efx, &spec, true);
3204 			if (rc < 0) {
3205 				/* Fall back to unicast-promisc */
3206 				while (i--)
3207 					efx_ef10_filter_remove_safe(
3208 						efx, EFX_FILTER_PRI_AUTO,
3209 						table->dev_uc_list[i].id);
3210 				table->dev_uc_count = -1;
3211 				break;
3212 			}
3213 			table->dev_uc_list[i].id = rc;
3214 		}
3215 	}
3216 	if (table->dev_uc_count < 0) {
3217 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3218 				   EFX_FILTER_FLAG_RX_RSS,
3219 				   0);
3220 		efx_filter_set_uc_def(&spec);
3221 		rc = efx_ef10_filter_insert(efx, &spec, true);
3222 		if (rc < 0) {
3223 			WARN_ON(1);
3224 			table->dev_uc_count = 0;
3225 		} else {
3226 			table->dev_uc_list[0].id = rc;
3227 		}
3228 	}
3229 
3230 	/* Insert/renew multicast filters */
3231 	if (table->dev_mc_count >= 0) {
3232 		for (i = 0; i < table->dev_mc_count; i++) {
3233 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3234 					   EFX_FILTER_FLAG_RX_RSS,
3235 					   0);
3236 			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3237 						 table->dev_mc_list[i].addr);
3238 			rc = efx_ef10_filter_insert(efx, &spec, true);
3239 			if (rc < 0) {
3240 				/* Fall back to multicast-promisc */
3241 				while (i--)
3242 					efx_ef10_filter_remove_safe(
3243 						efx, EFX_FILTER_PRI_AUTO,
3244 						table->dev_mc_list[i].id);
3245 				table->dev_mc_count = -1;
3246 				break;
3247 			}
3248 			table->dev_mc_list[i].id = rc;
3249 		}
3250 	}
3251 	if (table->dev_mc_count < 0) {
3252 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3253 				   EFX_FILTER_FLAG_RX_RSS,
3254 				   0);
3255 		efx_filter_set_mc_def(&spec);
3256 		rc = efx_ef10_filter_insert(efx, &spec, true);
3257 		if (rc < 0) {
3258 			WARN_ON(1);
3259 			table->dev_mc_count = 0;
3260 		} else {
3261 			table->dev_mc_list[0].id = rc;
3262 		}
3263 	}
3264 
3265 	/* Remove filters that weren't renewed.  Since nothing else
3266 	 * changes the AUTO_OLD flag or removes these filters, we
3267 	 * don't need to hold the filter_lock while scanning for
3268 	 * these filters.
3269 	 */
3270 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3271 		if (ACCESS_ONCE(table->entry[i].spec) &
3272 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3273 			if (efx_ef10_filter_remove_internal(
3274 				    efx, 1U << EFX_FILTER_PRI_AUTO,
3275 				    i, true) < 0)
3276 				remove_failed = true;
3277 		}
3278 	}
3279 	WARN_ON(remove_failed);
3280 }
3281 
3282 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3283 {
3284 	efx_ef10_filter_sync_rx_mode(efx);
3285 
3286 	return efx_mcdi_set_mac(efx);
3287 }
3288 
3289 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3290 {
3291 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3292 
3293 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3294 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3295 			    NULL, 0, NULL);
3296 }
3297 
3298 /* MC BISTs follow a different poll mechanism to phy BISTs.
3299  * The BIST is done in the poll handler on the MC, and the MCDI command
3300  * will block until the BIST is done.
3301  */
3302 static int efx_ef10_poll_bist(struct efx_nic *efx)
3303 {
3304 	int rc;
3305 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3306 	size_t outlen;
3307 	u32 result;
3308 
3309 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3310 			   outbuf, sizeof(outbuf), &outlen);
3311 	if (rc != 0)
3312 		return rc;
3313 
3314 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3315 		return -EIO;
3316 
3317 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3318 	switch (result) {
3319 	case MC_CMD_POLL_BIST_PASSED:
3320 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3321 		return 0;
3322 	case MC_CMD_POLL_BIST_TIMEOUT:
3323 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3324 		return -EIO;
3325 	case MC_CMD_POLL_BIST_FAILED:
3326 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3327 		return -EIO;
3328 	default:
3329 		netif_err(efx, hw, efx->net_dev,
3330 			  "BIST returned unknown result %u", result);
3331 		return -EIO;
3332 	}
3333 }
3334 
3335 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3336 {
3337 	int rc;
3338 
3339 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3340 
3341 	rc = efx_ef10_start_bist(efx, bist_type);
3342 	if (rc != 0)
3343 		return rc;
3344 
3345 	return efx_ef10_poll_bist(efx);
3346 }
3347 
3348 static int
3349 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3350 {
3351 	int rc, rc2;
3352 
3353 	efx_reset_down(efx, RESET_TYPE_WORLD);
3354 
3355 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3356 			  NULL, 0, NULL, 0, NULL);
3357 	if (rc != 0)
3358 		goto out;
3359 
3360 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3361 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3362 
3363 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3364 
3365 out:
3366 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3367 	return rc ? rc : rc2;
3368 }
3369 
3370 #ifdef CONFIG_SFC_MTD
3371 
3372 struct efx_ef10_nvram_type_info {
3373 	u16 type, type_mask;
3374 	u8 port;
3375 	const char *name;
3376 };
3377 
3378 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3379 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3380 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3381 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3382 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3383 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3384 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3385 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3386 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3387 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3388 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3389 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3390 };
3391 
3392 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3393 					struct efx_mcdi_mtd_partition *part,
3394 					unsigned int type)
3395 {
3396 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3397 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3398 	const struct efx_ef10_nvram_type_info *info;
3399 	size_t size, erase_size, outlen;
3400 	bool protected;
3401 	int rc;
3402 
3403 	for (info = efx_ef10_nvram_types; ; info++) {
3404 		if (info ==
3405 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3406 			return -ENODEV;
3407 		if ((type & ~info->type_mask) == info->type)
3408 			break;
3409 	}
3410 	if (info->port != efx_port_num(efx))
3411 		return -ENODEV;
3412 
3413 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3414 	if (rc)
3415 		return rc;
3416 	if (protected)
3417 		return -ENODEV; /* hide it */
3418 
3419 	part->nvram_type = type;
3420 
3421 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3422 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3423 			  outbuf, sizeof(outbuf), &outlen);
3424 	if (rc)
3425 		return rc;
3426 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3427 		return -EIO;
3428 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3429 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3430 		part->fw_subtype = MCDI_DWORD(outbuf,
3431 					      NVRAM_METADATA_OUT_SUBTYPE);
3432 
3433 	part->common.dev_type_name = "EF10 NVRAM manager";
3434 	part->common.type_name = info->name;
3435 
3436 	part->common.mtd.type = MTD_NORFLASH;
3437 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3438 	part->common.mtd.size = size;
3439 	part->common.mtd.erasesize = erase_size;
3440 
3441 	return 0;
3442 }
3443 
3444 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3445 {
3446 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3447 	struct efx_mcdi_mtd_partition *parts;
3448 	size_t outlen, n_parts_total, i, n_parts;
3449 	unsigned int type;
3450 	int rc;
3451 
3452 	ASSERT_RTNL();
3453 
3454 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3455 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3456 			  outbuf, sizeof(outbuf), &outlen);
3457 	if (rc)
3458 		return rc;
3459 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3460 		return -EIO;
3461 
3462 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3463 	if (n_parts_total >
3464 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3465 		return -EIO;
3466 
3467 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3468 	if (!parts)
3469 		return -ENOMEM;
3470 
3471 	n_parts = 0;
3472 	for (i = 0; i < n_parts_total; i++) {
3473 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3474 					i);
3475 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3476 		if (rc == 0)
3477 			n_parts++;
3478 		else if (rc != -ENODEV)
3479 			goto fail;
3480 	}
3481 
3482 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3483 fail:
3484 	if (rc)
3485 		kfree(parts);
3486 	return rc;
3487 }
3488 
3489 #endif /* CONFIG_SFC_MTD */
3490 
3491 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3492 {
3493 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3494 }
3495 
3496 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3497 					   bool temp)
3498 {
3499 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3500 	int rc;
3501 
3502 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3503 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3504 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3505 		return 0;
3506 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3507 
3508 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3509 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3510 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3511 		       channel->channel);
3512 
3513 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3514 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3515 
3516 	if (rc != 0)
3517 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3518 						    SYNC_EVENTS_DISABLED;
3519 
3520 	return rc;
3521 }
3522 
3523 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3524 					    bool temp)
3525 {
3526 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3527 	int rc;
3528 
3529 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3530 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3531 		return 0;
3532 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3533 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3534 		return 0;
3535 	}
3536 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3537 					    SYNC_EVENTS_DISABLED;
3538 
3539 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3540 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3541 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3542 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3543 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3544 		       channel->channel);
3545 
3546 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3547 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3548 
3549 	return rc;
3550 }
3551 
3552 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3553 					   bool temp)
3554 {
3555 	int (*set)(struct efx_channel *channel, bool temp);
3556 	struct efx_channel *channel;
3557 
3558 	set = en ?
3559 	      efx_ef10_rx_enable_timestamping :
3560 	      efx_ef10_rx_disable_timestamping;
3561 
3562 	efx_for_each_channel(channel, efx) {
3563 		int rc = set(channel, temp);
3564 		if (en && rc != 0) {
3565 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3566 			return rc;
3567 		}
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3574 				      struct hwtstamp_config *init)
3575 {
3576 	int rc;
3577 
3578 	switch (init->rx_filter) {
3579 	case HWTSTAMP_FILTER_NONE:
3580 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3581 		/* if TX timestamping is still requested then leave PTP on */
3582 		return efx_ptp_change_mode(efx,
3583 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3584 	case HWTSTAMP_FILTER_ALL:
3585 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3586 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3587 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3588 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3589 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3590 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3591 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3592 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3593 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3594 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3595 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3596 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3597 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3598 		rc = efx_ptp_change_mode(efx, true, 0);
3599 		if (!rc)
3600 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3601 		if (rc)
3602 			efx_ptp_change_mode(efx, false, 0);
3603 		return rc;
3604 	default:
3605 		return -ERANGE;
3606 	}
3607 }
3608 
3609 const struct efx_nic_type efx_hunt_a0_nic_type = {
3610 	.mem_map_size = efx_ef10_mem_map_size,
3611 	.probe = efx_ef10_probe,
3612 	.remove = efx_ef10_remove,
3613 	.dimension_resources = efx_ef10_dimension_resources,
3614 	.init = efx_ef10_init_nic,
3615 	.fini = efx_port_dummy_op_void,
3616 	.map_reset_reason = efx_mcdi_map_reset_reason,
3617 	.map_reset_flags = efx_ef10_map_reset_flags,
3618 	.reset = efx_ef10_reset,
3619 	.probe_port = efx_mcdi_port_probe,
3620 	.remove_port = efx_mcdi_port_remove,
3621 	.fini_dmaq = efx_ef10_fini_dmaq,
3622 	.prepare_flr = efx_ef10_prepare_flr,
3623 	.finish_flr = efx_port_dummy_op_void,
3624 	.describe_stats = efx_ef10_describe_stats,
3625 	.update_stats = efx_ef10_update_stats,
3626 	.start_stats = efx_mcdi_mac_start_stats,
3627 	.pull_stats = efx_mcdi_mac_pull_stats,
3628 	.stop_stats = efx_mcdi_mac_stop_stats,
3629 	.set_id_led = efx_mcdi_set_id_led,
3630 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3631 	.reconfigure_mac = efx_ef10_mac_reconfigure,
3632 	.check_mac_fault = efx_mcdi_mac_check_fault,
3633 	.reconfigure_port = efx_mcdi_port_reconfigure,
3634 	.get_wol = efx_ef10_get_wol,
3635 	.set_wol = efx_ef10_set_wol,
3636 	.resume_wol = efx_port_dummy_op_void,
3637 	.test_chip = efx_ef10_test_chip,
3638 	.test_nvram = efx_mcdi_nvram_test_all,
3639 	.mcdi_request = efx_ef10_mcdi_request,
3640 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3641 	.mcdi_read_response = efx_ef10_mcdi_read_response,
3642 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3643 	.irq_enable_master = efx_port_dummy_op_void,
3644 	.irq_test_generate = efx_ef10_irq_test_generate,
3645 	.irq_disable_non_ev = efx_port_dummy_op_void,
3646 	.irq_handle_msi = efx_ef10_msi_interrupt,
3647 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3648 	.tx_probe = efx_ef10_tx_probe,
3649 	.tx_init = efx_ef10_tx_init,
3650 	.tx_remove = efx_ef10_tx_remove,
3651 	.tx_write = efx_ef10_tx_write,
3652 	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3653 	.rx_probe = efx_ef10_rx_probe,
3654 	.rx_init = efx_ef10_rx_init,
3655 	.rx_remove = efx_ef10_rx_remove,
3656 	.rx_write = efx_ef10_rx_write,
3657 	.rx_defer_refill = efx_ef10_rx_defer_refill,
3658 	.ev_probe = efx_ef10_ev_probe,
3659 	.ev_init = efx_ef10_ev_init,
3660 	.ev_fini = efx_ef10_ev_fini,
3661 	.ev_remove = efx_ef10_ev_remove,
3662 	.ev_process = efx_ef10_ev_process,
3663 	.ev_read_ack = efx_ef10_ev_read_ack,
3664 	.ev_test_generate = efx_ef10_ev_test_generate,
3665 	.filter_table_probe = efx_ef10_filter_table_probe,
3666 	.filter_table_restore = efx_ef10_filter_table_restore,
3667 	.filter_table_remove = efx_ef10_filter_table_remove,
3668 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3669 	.filter_insert = efx_ef10_filter_insert,
3670 	.filter_remove_safe = efx_ef10_filter_remove_safe,
3671 	.filter_get_safe = efx_ef10_filter_get_safe,
3672 	.filter_clear_rx = efx_ef10_filter_clear_rx,
3673 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3674 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3675 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3676 #ifdef CONFIG_RFS_ACCEL
3677 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3678 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3679 #endif
3680 #ifdef CONFIG_SFC_MTD
3681 	.mtd_probe = efx_ef10_mtd_probe,
3682 	.mtd_rename = efx_mcdi_mtd_rename,
3683 	.mtd_read = efx_mcdi_mtd_read,
3684 	.mtd_erase = efx_mcdi_mtd_erase,
3685 	.mtd_write = efx_mcdi_mtd_write,
3686 	.mtd_sync = efx_mcdi_mtd_sync,
3687 #endif
3688 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3689 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3690 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3691 
3692 	.revision = EFX_REV_HUNT_A0,
3693 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3694 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3695 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3696 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3697 	.can_rx_scatter = true,
3698 	.always_rx_scatter = true,
3699 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3700 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3701 	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3702 			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3703 	.mcdi_max_ver = 2,
3704 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3705 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3706 			    1 << HWTSTAMP_FILTER_ALL,
3707 };
3708