xref: /openbmc/linux/drivers/net/ethernet/sfc/ef10.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 
54 #define EFX_EF10_FILTER_DEV_UC_MAX	32
55 #define EFX_EF10_FILTER_DEV_MC_MAX	256
56 
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59 	struct list_head list;
60 	u16 vid;
61 };
62 
63 enum efx_ef10_default_filters {
64 	EFX_EF10_BCAST,
65 	EFX_EF10_UCDEF,
66 	EFX_EF10_MCDEF,
67 	EFX_EF10_VXLAN4_UCDEF,
68 	EFX_EF10_VXLAN4_MCDEF,
69 	EFX_EF10_VXLAN6_UCDEF,
70 	EFX_EF10_VXLAN6_MCDEF,
71 	EFX_EF10_NVGRE4_UCDEF,
72 	EFX_EF10_NVGRE4_MCDEF,
73 	EFX_EF10_NVGRE6_UCDEF,
74 	EFX_EF10_NVGRE6_MCDEF,
75 	EFX_EF10_GENEVE4_UCDEF,
76 	EFX_EF10_GENEVE4_MCDEF,
77 	EFX_EF10_GENEVE6_UCDEF,
78 	EFX_EF10_GENEVE6_MCDEF,
79 
80 	EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82 
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85 	struct list_head list;
86 	u16 vid;
87 	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88 	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89 	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91 
92 struct efx_ef10_dev_addr {
93 	u8 addr[ETH_ALEN];
94 };
95 
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98 	u32 rx_match_mcdi_flags[
99 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100 	unsigned int rx_match_count;
101 
102 	struct {
103 		unsigned long spec;	/* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
109 #define EFX_EF10_FILTER_FLAGS		3UL
110 		u64 handle;		/* firmware handle */
111 	} *entry;
112 	wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114 	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115 	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116 	int dev_uc_count;
117 	int dev_mc_count;
118 	bool uc_promisc;
119 	bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121 	bool mc_promisc_last;
122 	bool vlan_filter;
123 	struct list_head vlan_list;
124 };
125 
126 /* An arbitrary search limit for the software hash table */
127 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
128 
129 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
130 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
131 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
132 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
133 					      struct efx_ef10_filter_vlan *vlan);
134 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
135 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
136 
137 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
138 {
139 	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
140 	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
141 }
142 
143 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
144 {
145 	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
146 }
147 
148 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
149 {
150 	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
151 }
152 
153 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
154 {
155 	efx_dword_t reg;
156 
157 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
158 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
159 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
160 }
161 
162 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
163 {
164 	int bar;
165 
166 	bar = efx->type->mem_bar;
167 	return resource_size(&efx->pci_dev->resource[bar]);
168 }
169 
170 static bool efx_ef10_is_vf(struct efx_nic *efx)
171 {
172 	return efx->type->is_vf;
173 }
174 
175 static int efx_ef10_get_pf_index(struct efx_nic *efx)
176 {
177 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
178 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
179 	size_t outlen;
180 	int rc;
181 
182 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
183 			  sizeof(outbuf), &outlen);
184 	if (rc)
185 		return rc;
186 	if (outlen < sizeof(outbuf))
187 		return -EIO;
188 
189 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
190 	return 0;
191 }
192 
193 #ifdef CONFIG_SFC_SRIOV
194 static int efx_ef10_get_vf_index(struct efx_nic *efx)
195 {
196 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
197 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
198 	size_t outlen;
199 	int rc;
200 
201 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
202 			  sizeof(outbuf), &outlen);
203 	if (rc)
204 		return rc;
205 	if (outlen < sizeof(outbuf))
206 		return -EIO;
207 
208 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
209 	return 0;
210 }
211 #endif
212 
213 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
214 {
215 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
216 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
217 	size_t outlen;
218 	int rc;
219 
220 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
221 
222 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
223 			  outbuf, sizeof(outbuf), &outlen);
224 	if (rc)
225 		return rc;
226 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
227 		netif_err(efx, drv, efx->net_dev,
228 			  "unable to read datapath firmware capabilities\n");
229 		return -EIO;
230 	}
231 
232 	nic_data->datapath_caps =
233 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
234 
235 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
236 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
237 				GET_CAPABILITIES_V2_OUT_FLAGS2);
238 		nic_data->piobuf_size = MCDI_WORD(outbuf,
239 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
240 	} else {
241 		nic_data->datapath_caps2 = 0;
242 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
243 	}
244 
245 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
246 	 */
247 	nic_data->rx_dpcpu_fw_id =
248 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
249 	nic_data->tx_dpcpu_fw_id =
250 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
251 
252 	if (!(nic_data->datapath_caps &
253 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
254 		netif_err(efx, probe, efx->net_dev,
255 			  "current firmware does not support an RX prefix\n");
256 		return -ENODEV;
257 	}
258 
259 	return 0;
260 }
261 
262 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
263 {
264 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
265 	int rc;
266 
267 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
268 			  outbuf, sizeof(outbuf), NULL);
269 	if (rc)
270 		return rc;
271 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
272 	return rc > 0 ? rc : -ERANGE;
273 }
274 
275 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
276 {
277 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
278 	unsigned int implemented;
279 	unsigned int enabled;
280 	int rc;
281 
282 	nic_data->workaround_35388 = false;
283 	nic_data->workaround_61265 = false;
284 
285 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
286 
287 	if (rc == -ENOSYS) {
288 		/* Firmware without GET_WORKAROUNDS - not a problem. */
289 		rc = 0;
290 	} else if (rc == 0) {
291 		/* Bug61265 workaround is always enabled if implemented. */
292 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
293 			nic_data->workaround_61265 = true;
294 
295 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
296 			nic_data->workaround_35388 = true;
297 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
298 			/* Workaround is implemented but not enabled.
299 			 * Try to enable it.
300 			 */
301 			rc = efx_mcdi_set_workaround(efx,
302 						     MC_CMD_WORKAROUND_BUG35388,
303 						     true, NULL);
304 			if (rc == 0)
305 				nic_data->workaround_35388 = true;
306 			/* If we failed to set the workaround just carry on. */
307 			rc = 0;
308 		}
309 	}
310 
311 	netif_dbg(efx, probe, efx->net_dev,
312 		  "workaround for bug 35388 is %sabled\n",
313 		  nic_data->workaround_35388 ? "en" : "dis");
314 	netif_dbg(efx, probe, efx->net_dev,
315 		  "workaround for bug 61265 is %sabled\n",
316 		  nic_data->workaround_61265 ? "en" : "dis");
317 
318 	return rc;
319 }
320 
321 static void efx_ef10_process_timer_config(struct efx_nic *efx,
322 					  const efx_dword_t *data)
323 {
324 	unsigned int max_count;
325 
326 	if (EFX_EF10_WORKAROUND_61265(efx)) {
327 		efx->timer_quantum_ns = MCDI_DWORD(data,
328 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
329 		efx->timer_max_ns = MCDI_DWORD(data,
330 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
331 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
332 		efx->timer_quantum_ns = MCDI_DWORD(data,
333 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
334 		max_count = MCDI_DWORD(data,
335 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
336 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
337 	} else {
338 		efx->timer_quantum_ns = MCDI_DWORD(data,
339 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
340 		max_count = MCDI_DWORD(data,
341 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
342 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
343 	}
344 
345 	netif_dbg(efx, probe, efx->net_dev,
346 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
347 		  efx->timer_quantum_ns, efx->timer_max_ns);
348 }
349 
350 static int efx_ef10_get_timer_config(struct efx_nic *efx)
351 {
352 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
353 	int rc;
354 
355 	rc = efx_ef10_get_timer_workarounds(efx);
356 	if (rc)
357 		return rc;
358 
359 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
360 				outbuf, sizeof(outbuf), NULL);
361 
362 	if (rc == 0) {
363 		efx_ef10_process_timer_config(efx, outbuf);
364 	} else if (rc == -ENOSYS || rc == -EPERM) {
365 		/* Not available - fall back to Huntington defaults. */
366 		unsigned int quantum;
367 
368 		rc = efx_ef10_get_sysclk_freq(efx);
369 		if (rc < 0)
370 			return rc;
371 
372 		quantum = 1536000 / rc; /* 1536 cycles */
373 		efx->timer_quantum_ns = quantum;
374 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
375 		rc = 0;
376 	} else {
377 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
378 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
379 				       NULL, 0, rc);
380 	}
381 
382 	return rc;
383 }
384 
385 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
386 {
387 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
388 	size_t outlen;
389 	int rc;
390 
391 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
392 
393 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
394 			  outbuf, sizeof(outbuf), &outlen);
395 	if (rc)
396 		return rc;
397 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
398 		return -EIO;
399 
400 	ether_addr_copy(mac_address,
401 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
402 	return 0;
403 }
404 
405 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
406 {
407 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
408 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
409 	size_t outlen;
410 	int num_addrs, rc;
411 
412 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
413 		       EVB_PORT_ID_ASSIGNED);
414 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
415 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
416 
417 	if (rc)
418 		return rc;
419 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
420 		return -EIO;
421 
422 	num_addrs = MCDI_DWORD(outbuf,
423 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
424 
425 	WARN_ON(num_addrs != 1);
426 
427 	ether_addr_copy(mac_address,
428 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
429 
430 	return 0;
431 }
432 
433 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
434 					       struct device_attribute *attr,
435 					       char *buf)
436 {
437 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
438 
439 	return sprintf(buf, "%d\n",
440 		       ((efx->mcdi->fn_flags) &
441 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
442 		       ? 1 : 0);
443 }
444 
445 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
446 					  struct device_attribute *attr,
447 					  char *buf)
448 {
449 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
450 
451 	return sprintf(buf, "%d\n",
452 		       ((efx->mcdi->fn_flags) &
453 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
454 		       ? 1 : 0);
455 }
456 
457 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
458 {
459 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
460 	struct efx_ef10_vlan *vlan;
461 
462 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
463 
464 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
465 		if (vlan->vid == vid)
466 			return vlan;
467 	}
468 
469 	return NULL;
470 }
471 
472 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
473 {
474 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
475 	struct efx_ef10_vlan *vlan;
476 	int rc;
477 
478 	mutex_lock(&nic_data->vlan_lock);
479 
480 	vlan = efx_ef10_find_vlan(efx, vid);
481 	if (vlan) {
482 		/* We add VID 0 on init. 8021q adds it on module init
483 		 * for all interfaces with VLAN filtring feature.
484 		 */
485 		if (vid == 0)
486 			goto done_unlock;
487 		netif_warn(efx, drv, efx->net_dev,
488 			   "VLAN %u already added\n", vid);
489 		rc = -EALREADY;
490 		goto fail_exist;
491 	}
492 
493 	rc = -ENOMEM;
494 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
495 	if (!vlan)
496 		goto fail_alloc;
497 
498 	vlan->vid = vid;
499 
500 	list_add_tail(&vlan->list, &nic_data->vlan_list);
501 
502 	if (efx->filter_state) {
503 		mutex_lock(&efx->mac_lock);
504 		down_write(&efx->filter_sem);
505 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
506 		up_write(&efx->filter_sem);
507 		mutex_unlock(&efx->mac_lock);
508 		if (rc)
509 			goto fail_filter_add_vlan;
510 	}
511 
512 done_unlock:
513 	mutex_unlock(&nic_data->vlan_lock);
514 	return 0;
515 
516 fail_filter_add_vlan:
517 	list_del(&vlan->list);
518 	kfree(vlan);
519 fail_alloc:
520 fail_exist:
521 	mutex_unlock(&nic_data->vlan_lock);
522 	return rc;
523 }
524 
525 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
526 				       struct efx_ef10_vlan *vlan)
527 {
528 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
529 
530 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
531 
532 	if (efx->filter_state) {
533 		down_write(&efx->filter_sem);
534 		efx_ef10_filter_del_vlan(efx, vlan->vid);
535 		up_write(&efx->filter_sem);
536 	}
537 
538 	list_del(&vlan->list);
539 	kfree(vlan);
540 }
541 
542 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
543 {
544 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
545 	struct efx_ef10_vlan *vlan;
546 	int rc = 0;
547 
548 	/* 8021q removes VID 0 on module unload for all interfaces
549 	 * with VLAN filtering feature. We need to keep it to receive
550 	 * untagged traffic.
551 	 */
552 	if (vid == 0)
553 		return 0;
554 
555 	mutex_lock(&nic_data->vlan_lock);
556 
557 	vlan = efx_ef10_find_vlan(efx, vid);
558 	if (!vlan) {
559 		netif_err(efx, drv, efx->net_dev,
560 			  "VLAN %u to be deleted not found\n", vid);
561 		rc = -ENOENT;
562 	} else {
563 		efx_ef10_del_vlan_internal(efx, vlan);
564 	}
565 
566 	mutex_unlock(&nic_data->vlan_lock);
567 
568 	return rc;
569 }
570 
571 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
572 {
573 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
574 	struct efx_ef10_vlan *vlan, *next_vlan;
575 
576 	mutex_lock(&nic_data->vlan_lock);
577 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
578 		efx_ef10_del_vlan_internal(efx, vlan);
579 	mutex_unlock(&nic_data->vlan_lock);
580 }
581 
582 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
583 		   NULL);
584 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
585 
586 static int efx_ef10_probe(struct efx_nic *efx)
587 {
588 	struct efx_ef10_nic_data *nic_data;
589 	int i, rc;
590 
591 	/* We can have one VI for each 8K region.  However, until we
592 	 * use TX option descriptors we need two TX queues per channel.
593 	 */
594 	efx->max_channels = min_t(unsigned int,
595 				  EFX_MAX_CHANNELS,
596 				  efx_ef10_mem_map_size(efx) /
597 				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
598 	efx->max_tx_channels = efx->max_channels;
599 	if (WARN_ON(efx->max_channels == 0))
600 		return -EIO;
601 
602 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
603 	if (!nic_data)
604 		return -ENOMEM;
605 	efx->nic_data = nic_data;
606 
607 	/* we assume later that we can copy from this buffer in dwords */
608 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
609 
610 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
611 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
612 	if (rc)
613 		goto fail1;
614 
615 	/* Get the MC's warm boot count.  In case it's rebooting right
616 	 * now, be prepared to retry.
617 	 */
618 	i = 0;
619 	for (;;) {
620 		rc = efx_ef10_get_warm_boot_count(efx);
621 		if (rc >= 0)
622 			break;
623 		if (++i == 5)
624 			goto fail2;
625 		ssleep(1);
626 	}
627 	nic_data->warm_boot_count = rc;
628 
629 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
630 
631 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
632 
633 	/* In case we're recovering from a crash (kexec), we want to
634 	 * cancel any outstanding request by the previous user of this
635 	 * function.  We send a special message using the least
636 	 * significant bits of the 'high' (doorbell) register.
637 	 */
638 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
639 
640 	rc = efx_mcdi_init(efx);
641 	if (rc)
642 		goto fail2;
643 
644 	mutex_init(&nic_data->udp_tunnels_lock);
645 
646 	/* Reset (most) configuration for this function */
647 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
648 	if (rc)
649 		goto fail3;
650 
651 	/* Enable event logging */
652 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
653 	if (rc)
654 		goto fail3;
655 
656 	rc = device_create_file(&efx->pci_dev->dev,
657 				&dev_attr_link_control_flag);
658 	if (rc)
659 		goto fail3;
660 
661 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
662 	if (rc)
663 		goto fail4;
664 
665 	rc = efx_ef10_get_pf_index(efx);
666 	if (rc)
667 		goto fail5;
668 
669 	rc = efx_ef10_init_datapath_caps(efx);
670 	if (rc < 0)
671 		goto fail5;
672 
673 	efx->rx_packet_len_offset =
674 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
675 
676 	rc = efx_mcdi_port_get_number(efx);
677 	if (rc < 0)
678 		goto fail5;
679 	efx->port_num = rc;
680 
681 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
682 	if (rc)
683 		goto fail5;
684 
685 	rc = efx_ef10_get_timer_config(efx);
686 	if (rc < 0)
687 		goto fail5;
688 
689 	rc = efx_mcdi_mon_probe(efx);
690 	if (rc && rc != -EPERM)
691 		goto fail5;
692 
693 	efx_ptp_probe(efx, NULL);
694 
695 #ifdef CONFIG_SFC_SRIOV
696 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
697 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
698 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
699 
700 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
701 	} else
702 #endif
703 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
704 
705 	INIT_LIST_HEAD(&nic_data->vlan_list);
706 	mutex_init(&nic_data->vlan_lock);
707 
708 	/* Add unspecified VID to support VLAN filtering being disabled */
709 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
710 	if (rc)
711 		goto fail_add_vid_unspec;
712 
713 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
714 	 * traffic.  It is added automatically if 8021q module is loaded,
715 	 * but we can't rely on it since module may be not loaded.
716 	 */
717 	rc = efx_ef10_add_vlan(efx, 0);
718 	if (rc)
719 		goto fail_add_vid_0;
720 
721 	return 0;
722 
723 fail_add_vid_0:
724 	efx_ef10_cleanup_vlans(efx);
725 fail_add_vid_unspec:
726 	mutex_destroy(&nic_data->vlan_lock);
727 	efx_ptp_remove(efx);
728 	efx_mcdi_mon_remove(efx);
729 fail5:
730 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
731 fail4:
732 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
733 fail3:
734 	efx_mcdi_detach(efx);
735 
736 	mutex_lock(&nic_data->udp_tunnels_lock);
737 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
738 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
739 	mutex_unlock(&nic_data->udp_tunnels_lock);
740 	mutex_destroy(&nic_data->udp_tunnels_lock);
741 
742 	efx_mcdi_fini(efx);
743 fail2:
744 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
745 fail1:
746 	kfree(nic_data);
747 	efx->nic_data = NULL;
748 	return rc;
749 }
750 
751 static int efx_ef10_free_vis(struct efx_nic *efx)
752 {
753 	MCDI_DECLARE_BUF_ERR(outbuf);
754 	size_t outlen;
755 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
756 				    outbuf, sizeof(outbuf), &outlen);
757 
758 	/* -EALREADY means nothing to free, so ignore */
759 	if (rc == -EALREADY)
760 		rc = 0;
761 	if (rc)
762 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
763 				       rc);
764 	return rc;
765 }
766 
767 #ifdef EFX_USE_PIO
768 
769 static void efx_ef10_free_piobufs(struct efx_nic *efx)
770 {
771 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
772 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
773 	unsigned int i;
774 	int rc;
775 
776 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
777 
778 	for (i = 0; i < nic_data->n_piobufs; i++) {
779 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
780 			       nic_data->piobuf_handle[i]);
781 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
782 				  NULL, 0, NULL);
783 		WARN_ON(rc);
784 	}
785 
786 	nic_data->n_piobufs = 0;
787 }
788 
789 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
790 {
791 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
792 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
793 	unsigned int i;
794 	size_t outlen;
795 	int rc = 0;
796 
797 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
798 
799 	for (i = 0; i < n; i++) {
800 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
801 					outbuf, sizeof(outbuf), &outlen);
802 		if (rc) {
803 			/* Don't display the MC error if we didn't have space
804 			 * for a VF.
805 			 */
806 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
807 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
808 						       0, outbuf, outlen, rc);
809 			break;
810 		}
811 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
812 			rc = -EIO;
813 			break;
814 		}
815 		nic_data->piobuf_handle[i] =
816 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
817 		netif_dbg(efx, probe, efx->net_dev,
818 			  "allocated PIO buffer %u handle %x\n", i,
819 			  nic_data->piobuf_handle[i]);
820 	}
821 
822 	nic_data->n_piobufs = i;
823 	if (rc)
824 		efx_ef10_free_piobufs(efx);
825 	return rc;
826 }
827 
828 static int efx_ef10_link_piobufs(struct efx_nic *efx)
829 {
830 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
831 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
832 	struct efx_channel *channel;
833 	struct efx_tx_queue *tx_queue;
834 	unsigned int offset, index;
835 	int rc;
836 
837 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
838 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
839 
840 	/* Link a buffer to each VI in the write-combining mapping */
841 	for (index = 0; index < nic_data->n_piobufs; ++index) {
842 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
843 			       nic_data->piobuf_handle[index]);
844 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
845 			       nic_data->pio_write_vi_base + index);
846 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
847 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
848 				  NULL, 0, NULL);
849 		if (rc) {
850 			netif_err(efx, drv, efx->net_dev,
851 				  "failed to link VI %u to PIO buffer %u (%d)\n",
852 				  nic_data->pio_write_vi_base + index, index,
853 				  rc);
854 			goto fail;
855 		}
856 		netif_dbg(efx, probe, efx->net_dev,
857 			  "linked VI %u to PIO buffer %u\n",
858 			  nic_data->pio_write_vi_base + index, index);
859 	}
860 
861 	/* Link a buffer to each TX queue */
862 	efx_for_each_channel(channel, efx) {
863 		efx_for_each_channel_tx_queue(tx_queue, channel) {
864 			/* We assign the PIO buffers to queues in
865 			 * reverse order to allow for the following
866 			 * special case.
867 			 */
868 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
869 				   tx_queue->channel->channel - 1) *
870 				  efx_piobuf_size);
871 			index = offset / nic_data->piobuf_size;
872 			offset = offset % nic_data->piobuf_size;
873 
874 			/* When the host page size is 4K, the first
875 			 * host page in the WC mapping may be within
876 			 * the same VI page as the last TX queue.  We
877 			 * can only link one buffer to each VI.
878 			 */
879 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
880 				BUG_ON(index != 0);
881 				rc = 0;
882 			} else {
883 				MCDI_SET_DWORD(inbuf,
884 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
885 					       nic_data->piobuf_handle[index]);
886 				MCDI_SET_DWORD(inbuf,
887 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
888 					       tx_queue->queue);
889 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
890 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
891 						  NULL, 0, NULL);
892 			}
893 
894 			if (rc) {
895 				/* This is non-fatal; the TX path just
896 				 * won't use PIO for this queue
897 				 */
898 				netif_err(efx, drv, efx->net_dev,
899 					  "failed to link VI %u to PIO buffer %u (%d)\n",
900 					  tx_queue->queue, index, rc);
901 				tx_queue->piobuf = NULL;
902 			} else {
903 				tx_queue->piobuf =
904 					nic_data->pio_write_base +
905 					index * EFX_VI_PAGE_SIZE + offset;
906 				tx_queue->piobuf_offset = offset;
907 				netif_dbg(efx, probe, efx->net_dev,
908 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
909 					  tx_queue->queue, index,
910 					  tx_queue->piobuf_offset,
911 					  tx_queue->piobuf);
912 			}
913 		}
914 	}
915 
916 	return 0;
917 
918 fail:
919 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
920 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
921 	 */
922 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
923 	while (index--) {
924 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
925 			       nic_data->pio_write_vi_base + index);
926 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
927 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
928 			     NULL, 0, NULL);
929 	}
930 	return rc;
931 }
932 
933 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
934 {
935 	struct efx_channel *channel;
936 	struct efx_tx_queue *tx_queue;
937 
938 	/* All our existing PIO buffers went away */
939 	efx_for_each_channel(channel, efx)
940 		efx_for_each_channel_tx_queue(tx_queue, channel)
941 			tx_queue->piobuf = NULL;
942 }
943 
944 #else /* !EFX_USE_PIO */
945 
946 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
947 {
948 	return n == 0 ? 0 : -ENOBUFS;
949 }
950 
951 static int efx_ef10_link_piobufs(struct efx_nic *efx)
952 {
953 	return 0;
954 }
955 
956 static void efx_ef10_free_piobufs(struct efx_nic *efx)
957 {
958 }
959 
960 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
961 {
962 }
963 
964 #endif /* EFX_USE_PIO */
965 
966 static void efx_ef10_remove(struct efx_nic *efx)
967 {
968 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
969 	int rc;
970 
971 #ifdef CONFIG_SFC_SRIOV
972 	struct efx_ef10_nic_data *nic_data_pf;
973 	struct pci_dev *pci_dev_pf;
974 	struct efx_nic *efx_pf;
975 	struct ef10_vf *vf;
976 
977 	if (efx->pci_dev->is_virtfn) {
978 		pci_dev_pf = efx->pci_dev->physfn;
979 		if (pci_dev_pf) {
980 			efx_pf = pci_get_drvdata(pci_dev_pf);
981 			nic_data_pf = efx_pf->nic_data;
982 			vf = nic_data_pf->vf + nic_data->vf_index;
983 			vf->efx = NULL;
984 		} else
985 			netif_info(efx, drv, efx->net_dev,
986 				   "Could not get the PF id from VF\n");
987 	}
988 #endif
989 
990 	efx_ef10_cleanup_vlans(efx);
991 	mutex_destroy(&nic_data->vlan_lock);
992 
993 	efx_ptp_remove(efx);
994 
995 	efx_mcdi_mon_remove(efx);
996 
997 	efx_ef10_rx_free_indir_table(efx);
998 
999 	if (nic_data->wc_membase)
1000 		iounmap(nic_data->wc_membase);
1001 
1002 	rc = efx_ef10_free_vis(efx);
1003 	WARN_ON(rc != 0);
1004 
1005 	if (!nic_data->must_restore_piobufs)
1006 		efx_ef10_free_piobufs(efx);
1007 
1008 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1009 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1010 
1011 	efx_mcdi_detach(efx);
1012 
1013 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1014 	mutex_lock(&nic_data->udp_tunnels_lock);
1015 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
1016 	mutex_unlock(&nic_data->udp_tunnels_lock);
1017 
1018 	mutex_destroy(&nic_data->udp_tunnels_lock);
1019 
1020 	efx_mcdi_fini(efx);
1021 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1022 	kfree(nic_data);
1023 }
1024 
1025 static int efx_ef10_probe_pf(struct efx_nic *efx)
1026 {
1027 	return efx_ef10_probe(efx);
1028 }
1029 
1030 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1031 			    u32 *port_flags, u32 *vadaptor_flags,
1032 			    unsigned int *vlan_tags)
1033 {
1034 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1035 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1036 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1037 	size_t outlen;
1038 	int rc;
1039 
1040 	if (nic_data->datapath_caps &
1041 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1042 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1043 			       port_id);
1044 
1045 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1046 				  outbuf, sizeof(outbuf), &outlen);
1047 		if (rc)
1048 			return rc;
1049 
1050 		if (outlen < sizeof(outbuf)) {
1051 			rc = -EIO;
1052 			return rc;
1053 		}
1054 	}
1055 
1056 	if (port_flags)
1057 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1058 	if (vadaptor_flags)
1059 		*vadaptor_flags =
1060 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1061 	if (vlan_tags)
1062 		*vlan_tags =
1063 			MCDI_DWORD(outbuf,
1064 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1065 
1066 	return 0;
1067 }
1068 
1069 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1070 {
1071 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1072 
1073 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1074 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1075 			    NULL, 0, NULL);
1076 }
1077 
1078 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1079 {
1080 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1081 
1082 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1083 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1084 			    NULL, 0, NULL);
1085 }
1086 
1087 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1088 			   unsigned int port_id, u8 *mac)
1089 {
1090 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1091 
1092 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1093 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1094 
1095 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1096 			    sizeof(inbuf), NULL, 0, NULL);
1097 }
1098 
1099 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1100 			   unsigned int port_id, u8 *mac)
1101 {
1102 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1103 
1104 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1105 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1106 
1107 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1108 			    sizeof(inbuf), NULL, 0, NULL);
1109 }
1110 
1111 #ifdef CONFIG_SFC_SRIOV
1112 static int efx_ef10_probe_vf(struct efx_nic *efx)
1113 {
1114 	int rc;
1115 	struct pci_dev *pci_dev_pf;
1116 
1117 	/* If the parent PF has no VF data structure, it doesn't know about this
1118 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1119 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1120 	 */
1121 	pci_dev_pf = efx->pci_dev->physfn;
1122 	if (pci_dev_pf) {
1123 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1124 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1125 
1126 		if (!nic_data_pf->vf) {
1127 			netif_info(efx, drv, efx->net_dev,
1128 				   "The VF cannot link to its parent PF; "
1129 				   "please destroy and re-create the VF\n");
1130 			return -EBUSY;
1131 		}
1132 	}
1133 
1134 	rc = efx_ef10_probe(efx);
1135 	if (rc)
1136 		return rc;
1137 
1138 	rc = efx_ef10_get_vf_index(efx);
1139 	if (rc)
1140 		goto fail;
1141 
1142 	if (efx->pci_dev->is_virtfn) {
1143 		if (efx->pci_dev->physfn) {
1144 			struct efx_nic *efx_pf =
1145 				pci_get_drvdata(efx->pci_dev->physfn);
1146 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1147 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1148 
1149 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1150 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1151 				efx->pci_dev;
1152 		} else
1153 			netif_info(efx, drv, efx->net_dev,
1154 				   "Could not get the PF id from VF\n");
1155 	}
1156 
1157 	return 0;
1158 
1159 fail:
1160 	efx_ef10_remove(efx);
1161 	return rc;
1162 }
1163 #else
1164 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1165 {
1166 	return 0;
1167 }
1168 #endif
1169 
1170 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1171 			      unsigned int min_vis, unsigned int max_vis)
1172 {
1173 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1174 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1175 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1176 	size_t outlen;
1177 	int rc;
1178 
1179 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1180 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1181 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1182 			  outbuf, sizeof(outbuf), &outlen);
1183 	if (rc != 0)
1184 		return rc;
1185 
1186 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1187 		return -EIO;
1188 
1189 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1190 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1191 
1192 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1193 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1194 	return 0;
1195 }
1196 
1197 /* Note that the failure path of this function does not free
1198  * resources, as this will be done by efx_ef10_remove().
1199  */
1200 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1201 {
1202 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1203 	unsigned int uc_mem_map_size, wc_mem_map_size;
1204 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1205 				   efx_separate_tx_channels ? 2 : 1);
1206 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1207 	void __iomem *membase;
1208 	int rc;
1209 
1210 	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1211 
1212 #ifdef EFX_USE_PIO
1213 	/* Try to allocate PIO buffers if wanted and if the full
1214 	 * number of PIO buffers would be sufficient to allocate one
1215 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1216 	 * are only a small number of PIO buffers shared between all
1217 	 * functions of the controller.
1218 	 */
1219 	if (efx_piobuf_size != 0 &&
1220 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1221 	    efx->n_tx_channels) {
1222 		unsigned int n_piobufs =
1223 			DIV_ROUND_UP(efx->n_tx_channels,
1224 				     nic_data->piobuf_size / efx_piobuf_size);
1225 
1226 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1227 		if (rc == -ENOSPC)
1228 			netif_dbg(efx, probe, efx->net_dev,
1229 				  "out of PIO buffers; cannot allocate more\n");
1230 		else if (rc == -EPERM)
1231 			netif_dbg(efx, probe, efx->net_dev,
1232 				  "not permitted to allocate PIO buffers\n");
1233 		else if (rc)
1234 			netif_err(efx, probe, efx->net_dev,
1235 				  "failed to allocate PIO buffers (%d)\n", rc);
1236 		else
1237 			netif_dbg(efx, probe, efx->net_dev,
1238 				  "allocated %u PIO buffers\n", n_piobufs);
1239 	}
1240 #else
1241 	nic_data->n_piobufs = 0;
1242 #endif
1243 
1244 	/* PIO buffers should be mapped with write-combining enabled,
1245 	 * and we want to make single UC and WC mappings rather than
1246 	 * several of each (in fact that's the only option if host
1247 	 * page size is >4K).  So we may allocate some extra VIs just
1248 	 * for writing PIO buffers through.
1249 	 *
1250 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1251 	 * first half of the next VI.  Then the WC mapping begins with
1252 	 * the second half of this last VI.
1253 	 */
1254 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1255 				     ER_DZ_TX_PIOBUF);
1256 	if (nic_data->n_piobufs) {
1257 		/* pio_write_vi_base rounds down to give the number of complete
1258 		 * VIs inside the UC mapping.
1259 		 */
1260 		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1261 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1262 					       nic_data->n_piobufs) *
1263 					      EFX_VI_PAGE_SIZE) -
1264 				   uc_mem_map_size);
1265 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1266 	} else {
1267 		pio_write_vi_base = 0;
1268 		wc_mem_map_size = 0;
1269 		max_vis = channel_vis;
1270 	}
1271 
1272 	/* In case the last attached driver failed to free VIs, do it now */
1273 	rc = efx_ef10_free_vis(efx);
1274 	if (rc != 0)
1275 		return rc;
1276 
1277 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1278 	if (rc != 0)
1279 		return rc;
1280 
1281 	if (nic_data->n_allocated_vis < channel_vis) {
1282 		netif_info(efx, drv, efx->net_dev,
1283 			   "Could not allocate enough VIs to satisfy RSS"
1284 			   " requirements. Performance may not be optimal.\n");
1285 		/* We didn't get the VIs to populate our channels.
1286 		 * We could keep what we got but then we'd have more
1287 		 * interrupts than we need.
1288 		 * Instead calculate new max_channels and restart
1289 		 */
1290 		efx->max_channels = nic_data->n_allocated_vis;
1291 		efx->max_tx_channels =
1292 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1293 
1294 		efx_ef10_free_vis(efx);
1295 		return -EAGAIN;
1296 	}
1297 
1298 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1299 	 * PIO buffers
1300 	 */
1301 	if (nic_data->n_piobufs &&
1302 	    nic_data->n_allocated_vis <
1303 	    pio_write_vi_base + nic_data->n_piobufs) {
1304 		netif_dbg(efx, probe, efx->net_dev,
1305 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1306 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1307 		efx_ef10_free_piobufs(efx);
1308 	}
1309 
1310 	/* Shrink the original UC mapping of the memory BAR */
1311 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1312 	if (!membase) {
1313 		netif_err(efx, probe, efx->net_dev,
1314 			  "could not shrink memory BAR to %x\n",
1315 			  uc_mem_map_size);
1316 		return -ENOMEM;
1317 	}
1318 	iounmap(efx->membase);
1319 	efx->membase = membase;
1320 
1321 	/* Set up the WC mapping if needed */
1322 	if (wc_mem_map_size) {
1323 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1324 						  uc_mem_map_size,
1325 						  wc_mem_map_size);
1326 		if (!nic_data->wc_membase) {
1327 			netif_err(efx, probe, efx->net_dev,
1328 				  "could not allocate WC mapping of size %x\n",
1329 				  wc_mem_map_size);
1330 			return -ENOMEM;
1331 		}
1332 		nic_data->pio_write_vi_base = pio_write_vi_base;
1333 		nic_data->pio_write_base =
1334 			nic_data->wc_membase +
1335 			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1336 			 uc_mem_map_size);
1337 
1338 		rc = efx_ef10_link_piobufs(efx);
1339 		if (rc)
1340 			efx_ef10_free_piobufs(efx);
1341 	}
1342 
1343 	netif_dbg(efx, probe, efx->net_dev,
1344 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1345 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1346 		  nic_data->wc_membase, wc_mem_map_size);
1347 
1348 	return 0;
1349 }
1350 
1351 static int efx_ef10_init_nic(struct efx_nic *efx)
1352 {
1353 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1354 	int rc;
1355 
1356 	if (nic_data->must_check_datapath_caps) {
1357 		rc = efx_ef10_init_datapath_caps(efx);
1358 		if (rc)
1359 			return rc;
1360 		nic_data->must_check_datapath_caps = false;
1361 	}
1362 
1363 	if (nic_data->must_realloc_vis) {
1364 		/* We cannot let the number of VIs change now */
1365 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1366 					nic_data->n_allocated_vis);
1367 		if (rc)
1368 			return rc;
1369 		nic_data->must_realloc_vis = false;
1370 	}
1371 
1372 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1373 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1374 		if (rc == 0) {
1375 			rc = efx_ef10_link_piobufs(efx);
1376 			if (rc)
1377 				efx_ef10_free_piobufs(efx);
1378 		}
1379 
1380 		/* Log an error on failure, but this is non-fatal.
1381 		 * Permission errors are less important - we've presumably
1382 		 * had the PIO buffer licence removed.
1383 		 */
1384 		if (rc == -EPERM)
1385 			netif_dbg(efx, drv, efx->net_dev,
1386 				  "not permitted to restore PIO buffers\n");
1387 		else if (rc)
1388 			netif_err(efx, drv, efx->net_dev,
1389 				  "failed to restore PIO buffers (%d)\n", rc);
1390 		nic_data->must_restore_piobufs = false;
1391 	}
1392 
1393 	/* don't fail init if RSS setup doesn't work */
1394 	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1395 	efx->rss_active = (rc == 0);
1396 
1397 	return 0;
1398 }
1399 
1400 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1401 {
1402 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1403 #ifdef CONFIG_SFC_SRIOV
1404 	unsigned int i;
1405 #endif
1406 
1407 	/* All our allocations have been reset */
1408 	nic_data->must_realloc_vis = true;
1409 	nic_data->must_restore_filters = true;
1410 	nic_data->must_restore_piobufs = true;
1411 	efx_ef10_forget_old_piobufs(efx);
1412 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1413 
1414 	/* Driver-created vswitches and vports must be re-created */
1415 	nic_data->must_probe_vswitching = true;
1416 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1417 #ifdef CONFIG_SFC_SRIOV
1418 	if (nic_data->vf)
1419 		for (i = 0; i < efx->vf_count; i++)
1420 			nic_data->vf[i].vport_id = 0;
1421 #endif
1422 }
1423 
1424 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1425 {
1426 	if (reason == RESET_TYPE_MC_FAILURE)
1427 		return RESET_TYPE_DATAPATH;
1428 
1429 	return efx_mcdi_map_reset_reason(reason);
1430 }
1431 
1432 static int efx_ef10_map_reset_flags(u32 *flags)
1433 {
1434 	enum {
1435 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1436 				   ETH_RESET_SHARED_SHIFT),
1437 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1438 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1439 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1440 				 ETH_RESET_SHARED_SHIFT)
1441 	};
1442 
1443 	/* We assume for now that our PCI function is permitted to
1444 	 * reset everything.
1445 	 */
1446 
1447 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1448 		*flags &= ~EF10_RESET_MC;
1449 		return RESET_TYPE_WORLD;
1450 	}
1451 
1452 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1453 		*flags &= ~EF10_RESET_PORT;
1454 		return RESET_TYPE_ALL;
1455 	}
1456 
1457 	/* no invisible reset implemented */
1458 
1459 	return -EINVAL;
1460 }
1461 
1462 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1463 {
1464 	int rc = efx_mcdi_reset(efx, reset_type);
1465 
1466 	/* Unprivileged functions return -EPERM, but need to return success
1467 	 * here so that the datapath is brought back up.
1468 	 */
1469 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1470 		rc = 0;
1471 
1472 	/* If it was a port reset, trigger reallocation of MC resources.
1473 	 * Note that on an MC reset nothing needs to be done now because we'll
1474 	 * detect the MC reset later and handle it then.
1475 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1476 	 * resources assigned to us, so we have to trigger reallocation now.
1477 	 */
1478 	if ((reset_type == RESET_TYPE_ALL ||
1479 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1480 		efx_ef10_reset_mc_allocations(efx);
1481 	return rc;
1482 }
1483 
1484 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1485 	[EF10_STAT_ ## ext_name] =				\
1486 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1487 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1488 	[EF10_STAT_ ## int_name] =				\
1489 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1490 #define EF10_OTHER_STAT(ext_name)				\
1491 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1492 #define GENERIC_SW_STAT(ext_name)				\
1493 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1494 
1495 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1496 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1497 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1498 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1499 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1500 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1501 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1502 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1503 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1504 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1505 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1506 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1507 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1508 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1509 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1510 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1511 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1512 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1513 	EF10_OTHER_STAT(port_rx_good_bytes),
1514 	EF10_OTHER_STAT(port_rx_bad_bytes),
1515 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1516 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1517 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1518 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1519 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1520 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1521 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1522 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1523 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1524 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1525 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1526 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1527 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1528 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1529 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1530 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1531 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1532 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1533 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1534 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1535 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1536 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1537 	GENERIC_SW_STAT(rx_nodesc_trunc),
1538 	GENERIC_SW_STAT(rx_noskb_drops),
1539 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1540 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1541 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1542 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1543 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1544 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1545 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1546 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1547 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1548 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1549 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1550 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1551 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1552 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1553 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1554 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1555 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1556 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1557 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1558 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1559 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1560 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1561 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1562 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1563 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1564 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1565 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1566 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1567 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1568 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1569 };
1570 
1571 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1572 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1573 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1574 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1575 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1576 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1577 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1578 			       (1ULL <<                                 \
1579 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1580 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1581 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1582 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1583 			       (1ULL << EF10_STAT_port_rx_good) |	\
1584 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1585 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1586 			       (1ULL << EF10_STAT_port_rx_control) |	\
1587 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1588 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1589 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1590 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1591 			       (1ULL << EF10_STAT_port_rx_64) |		\
1592 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1593 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1594 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1595 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1596 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1597 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1598 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1599 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1600 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1601 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1602 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1603 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1604 
1605 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1606  * For a 10G/40G switchable port we do not expose these because they might
1607  * not include all the packets they should.
1608  * On 8000 series NICs these statistics are always provided.
1609  */
1610 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1611 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1612 				 (1ULL << EF10_STAT_port_tx_64) |	\
1613 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1614 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1615 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1616 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1617 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1618 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1619 
1620 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1621  * switchable port we do expose these because the errors will otherwise
1622  * be silent.
1623  */
1624 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1625 				  (1ULL << EF10_STAT_port_rx_length_error))
1626 
1627 /* These statistics are only provided if the firmware supports the
1628  * capability PM_AND_RXDP_COUNTERS.
1629  */
1630 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1631 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1632 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1633 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1634 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1635 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1636 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1637 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1638 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1639 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1640 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1641 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1642 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1643 
1644 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1645 {
1646 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1647 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1648 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1649 
1650 	if (!(efx->mcdi->fn_flags &
1651 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1652 		return 0;
1653 
1654 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1655 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1656 		/* 8000 series have everything even at 40G */
1657 		if (nic_data->datapath_caps2 &
1658 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1659 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1660 	} else {
1661 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1662 	}
1663 
1664 	if (nic_data->datapath_caps &
1665 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1666 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1667 
1668 	return raw_mask;
1669 }
1670 
1671 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1672 {
1673 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1674 	u64 raw_mask[2];
1675 
1676 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1677 
1678 	/* Only show vadaptor stats when EVB capability is present */
1679 	if (nic_data->datapath_caps &
1680 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1681 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1682 		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1683 	} else {
1684 		raw_mask[1] = 0;
1685 	}
1686 
1687 #if BITS_PER_LONG == 64
1688 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1689 	mask[0] = raw_mask[0];
1690 	mask[1] = raw_mask[1];
1691 #else
1692 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1693 	mask[0] = raw_mask[0] & 0xffffffff;
1694 	mask[1] = raw_mask[0] >> 32;
1695 	mask[2] = raw_mask[1] & 0xffffffff;
1696 #endif
1697 }
1698 
1699 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1700 {
1701 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1702 
1703 	efx_ef10_get_stat_mask(efx, mask);
1704 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1705 				      mask, names);
1706 }
1707 
1708 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1709 					   struct rtnl_link_stats64 *core_stats)
1710 {
1711 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1712 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1713 	u64 *stats = nic_data->stats;
1714 	size_t stats_count = 0, index;
1715 
1716 	efx_ef10_get_stat_mask(efx, mask);
1717 
1718 	if (full_stats) {
1719 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1720 			if (efx_ef10_stat_desc[index].name) {
1721 				*full_stats++ = stats[index];
1722 				++stats_count;
1723 			}
1724 		}
1725 	}
1726 
1727 	if (!core_stats)
1728 		return stats_count;
1729 
1730 	if (nic_data->datapath_caps &
1731 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1732 		/* Use vadaptor stats. */
1733 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1734 					 stats[EF10_STAT_rx_multicast] +
1735 					 stats[EF10_STAT_rx_broadcast];
1736 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1737 					 stats[EF10_STAT_tx_multicast] +
1738 					 stats[EF10_STAT_tx_broadcast];
1739 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1740 				       stats[EF10_STAT_rx_multicast_bytes] +
1741 				       stats[EF10_STAT_rx_broadcast_bytes];
1742 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1743 				       stats[EF10_STAT_tx_multicast_bytes] +
1744 				       stats[EF10_STAT_tx_broadcast_bytes];
1745 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1746 					 stats[GENERIC_STAT_rx_noskb_drops];
1747 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1748 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1749 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1750 		core_stats->rx_errors = core_stats->rx_crc_errors;
1751 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1752 	} else {
1753 		/* Use port stats. */
1754 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1755 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1756 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1757 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1758 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1759 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1760 					 stats[GENERIC_STAT_rx_noskb_drops];
1761 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1762 		core_stats->rx_length_errors =
1763 				stats[EF10_STAT_port_rx_gtjumbo] +
1764 				stats[EF10_STAT_port_rx_length_error];
1765 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1766 		core_stats->rx_frame_errors =
1767 				stats[EF10_STAT_port_rx_align_error];
1768 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1769 		core_stats->rx_errors = (core_stats->rx_length_errors +
1770 					 core_stats->rx_crc_errors +
1771 					 core_stats->rx_frame_errors);
1772 	}
1773 
1774 	return stats_count;
1775 }
1776 
1777 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1778 {
1779 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1780 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1781 	__le64 generation_start, generation_end;
1782 	u64 *stats = nic_data->stats;
1783 	__le64 *dma_stats;
1784 
1785 	efx_ef10_get_stat_mask(efx, mask);
1786 
1787 	dma_stats = efx->stats_buffer.addr;
1788 
1789 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1790 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1791 		return 0;
1792 	rmb();
1793 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1794 			     stats, efx->stats_buffer.addr, false);
1795 	rmb();
1796 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1797 	if (generation_end != generation_start)
1798 		return -EAGAIN;
1799 
1800 	/* Update derived statistics */
1801 	efx_nic_fix_nodesc_drop_stat(efx,
1802 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1803 	stats[EF10_STAT_port_rx_good_bytes] =
1804 		stats[EF10_STAT_port_rx_bytes] -
1805 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1806 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1807 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1808 	efx_update_sw_stats(efx, stats);
1809 	return 0;
1810 }
1811 
1812 
1813 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1814 				       struct rtnl_link_stats64 *core_stats)
1815 {
1816 	int retry;
1817 
1818 	/* If we're unlucky enough to read statistics during the DMA, wait
1819 	 * up to 10ms for it to finish (typically takes <500us)
1820 	 */
1821 	for (retry = 0; retry < 100; ++retry) {
1822 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1823 			break;
1824 		udelay(100);
1825 	}
1826 
1827 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1828 }
1829 
1830 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1831 {
1832 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1833 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1834 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1835 	__le64 generation_start, generation_end;
1836 	u64 *stats = nic_data->stats;
1837 	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1838 	struct efx_buffer stats_buf;
1839 	__le64 *dma_stats;
1840 	int rc;
1841 
1842 	spin_unlock_bh(&efx->stats_lock);
1843 
1844 	if (in_interrupt()) {
1845 		/* If in atomic context, cannot update stats.  Just update the
1846 		 * software stats and return so the caller can continue.
1847 		 */
1848 		spin_lock_bh(&efx->stats_lock);
1849 		efx_update_sw_stats(efx, stats);
1850 		return 0;
1851 	}
1852 
1853 	efx_ef10_get_stat_mask(efx, mask);
1854 
1855 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1856 	if (rc) {
1857 		spin_lock_bh(&efx->stats_lock);
1858 		return rc;
1859 	}
1860 
1861 	dma_stats = stats_buf.addr;
1862 	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1863 
1864 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1865 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1866 			      MAC_STATS_IN_DMA, 1);
1867 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1868 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1869 
1870 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1871 				NULL, 0, NULL);
1872 	spin_lock_bh(&efx->stats_lock);
1873 	if (rc) {
1874 		/* Expect ENOENT if DMA queues have not been set up */
1875 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1876 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1877 					       sizeof(inbuf), NULL, 0, rc);
1878 		goto out;
1879 	}
1880 
1881 	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1882 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1883 		WARN_ON_ONCE(1);
1884 		goto out;
1885 	}
1886 	rmb();
1887 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1888 			     stats, stats_buf.addr, false);
1889 	rmb();
1890 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1891 	if (generation_end != generation_start) {
1892 		rc = -EAGAIN;
1893 		goto out;
1894 	}
1895 
1896 	efx_update_sw_stats(efx, stats);
1897 out:
1898 	efx_nic_free_buffer(efx, &stats_buf);
1899 	return rc;
1900 }
1901 
1902 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1903 				       struct rtnl_link_stats64 *core_stats)
1904 {
1905 	if (efx_ef10_try_update_nic_stats_vf(efx))
1906 		return 0;
1907 
1908 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1909 }
1910 
1911 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1912 {
1913 	struct efx_nic *efx = channel->efx;
1914 	unsigned int mode, usecs;
1915 	efx_dword_t timer_cmd;
1916 
1917 	if (channel->irq_moderation_us) {
1918 		mode = 3;
1919 		usecs = channel->irq_moderation_us;
1920 	} else {
1921 		mode = 0;
1922 		usecs = 0;
1923 	}
1924 
1925 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1926 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1927 		unsigned int ns = usecs * 1000;
1928 
1929 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1930 			       channel->channel);
1931 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1932 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1933 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1934 
1935 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1936 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1937 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1938 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1939 
1940 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1941 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1942 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1943 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1944 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1945 				channel->channel);
1946 	} else {
1947 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1948 
1949 		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1950 				     ERF_DZ_TC_TIMER_VAL, ticks);
1951 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1952 				channel->channel);
1953 	}
1954 }
1955 
1956 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1957 				struct ethtool_wolinfo *wol) {}
1958 
1959 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1960 {
1961 	return -EOPNOTSUPP;
1962 }
1963 
1964 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1965 {
1966 	wol->supported = 0;
1967 	wol->wolopts = 0;
1968 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1969 }
1970 
1971 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1972 {
1973 	if (type != 0)
1974 		return -EINVAL;
1975 	return 0;
1976 }
1977 
1978 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1979 				  const efx_dword_t *hdr, size_t hdr_len,
1980 				  const efx_dword_t *sdu, size_t sdu_len)
1981 {
1982 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1983 	u8 *pdu = nic_data->mcdi_buf.addr;
1984 
1985 	memcpy(pdu, hdr, hdr_len);
1986 	memcpy(pdu + hdr_len, sdu, sdu_len);
1987 	wmb();
1988 
1989 	/* The hardware provides 'low' and 'high' (doorbell) registers
1990 	 * for passing the 64-bit address of an MCDI request to
1991 	 * firmware.  However the dwords are swapped by firmware.  The
1992 	 * least significant bits of the doorbell are then 0 for all
1993 	 * MCDI requests due to alignment.
1994 	 */
1995 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1996 		    ER_DZ_MC_DB_LWRD);
1997 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1998 		    ER_DZ_MC_DB_HWRD);
1999 }
2000 
2001 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2002 {
2003 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2004 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2005 
2006 	rmb();
2007 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2008 }
2009 
2010 static void
2011 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2012 			    size_t offset, size_t outlen)
2013 {
2014 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015 	const u8 *pdu = nic_data->mcdi_buf.addr;
2016 
2017 	memcpy(outbuf, pdu + offset, outlen);
2018 }
2019 
2020 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2021 {
2022 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2023 
2024 	/* All our allocations have been reset */
2025 	efx_ef10_reset_mc_allocations(efx);
2026 
2027 	/* The datapath firmware might have been changed */
2028 	nic_data->must_check_datapath_caps = true;
2029 
2030 	/* MAC statistics have been cleared on the NIC; clear the local
2031 	 * statistic that we update with efx_update_diff_stat().
2032 	 */
2033 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2034 }
2035 
2036 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2037 {
2038 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2039 	int rc;
2040 
2041 	rc = efx_ef10_get_warm_boot_count(efx);
2042 	if (rc < 0) {
2043 		/* The firmware is presumably in the process of
2044 		 * rebooting.  However, we are supposed to report each
2045 		 * reboot just once, so we must only do that once we
2046 		 * can read and store the updated warm boot count.
2047 		 */
2048 		return 0;
2049 	}
2050 
2051 	if (rc == nic_data->warm_boot_count)
2052 		return 0;
2053 
2054 	nic_data->warm_boot_count = rc;
2055 	efx_ef10_mcdi_reboot_detected(efx);
2056 
2057 	return -EIO;
2058 }
2059 
2060 /* Handle an MSI interrupt
2061  *
2062  * Handle an MSI hardware interrupt.  This routine schedules event
2063  * queue processing.  No interrupt acknowledgement cycle is necessary.
2064  * Also, we never need to check that the interrupt is for us, since
2065  * MSI interrupts cannot be shared.
2066  */
2067 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2068 {
2069 	struct efx_msi_context *context = dev_id;
2070 	struct efx_nic *efx = context->efx;
2071 
2072 	netif_vdbg(efx, intr, efx->net_dev,
2073 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2074 
2075 	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2076 		/* Note test interrupts */
2077 		if (context->index == efx->irq_level)
2078 			efx->last_irq_cpu = raw_smp_processor_id();
2079 
2080 		/* Schedule processing of the channel */
2081 		efx_schedule_channel_irq(efx->channel[context->index]);
2082 	}
2083 
2084 	return IRQ_HANDLED;
2085 }
2086 
2087 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2088 {
2089 	struct efx_nic *efx = dev_id;
2090 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2091 	struct efx_channel *channel;
2092 	efx_dword_t reg;
2093 	u32 queues;
2094 
2095 	/* Read the ISR which also ACKs the interrupts */
2096 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2097 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2098 
2099 	if (queues == 0)
2100 		return IRQ_NONE;
2101 
2102 	if (likely(soft_enabled)) {
2103 		/* Note test interrupts */
2104 		if (queues & (1U << efx->irq_level))
2105 			efx->last_irq_cpu = raw_smp_processor_id();
2106 
2107 		efx_for_each_channel(channel, efx) {
2108 			if (queues & 1)
2109 				efx_schedule_channel_irq(channel);
2110 			queues >>= 1;
2111 		}
2112 	}
2113 
2114 	netif_vdbg(efx, intr, efx->net_dev,
2115 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2116 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2117 
2118 	return IRQ_HANDLED;
2119 }
2120 
2121 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2122 {
2123 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2124 
2125 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2126 				    NULL) == 0)
2127 		return -ENOTSUPP;
2128 
2129 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2130 
2131 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2132 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2133 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2134 }
2135 
2136 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2137 {
2138 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2139 				    (tx_queue->ptr_mask + 1) *
2140 				    sizeof(efx_qword_t),
2141 				    GFP_KERNEL);
2142 }
2143 
2144 /* This writes to the TX_DESC_WPTR and also pushes data */
2145 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2146 					 const efx_qword_t *txd)
2147 {
2148 	unsigned int write_ptr;
2149 	efx_oword_t reg;
2150 
2151 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2152 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2153 	reg.qword[0] = *txd;
2154 	efx_writeo_page(tx_queue->efx, &reg,
2155 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2156 }
2157 
2158 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2159  */
2160 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2161 				struct sk_buff *skb,
2162 				bool *data_mapped)
2163 {
2164 	struct efx_tx_buffer *buffer;
2165 	struct tcphdr *tcp;
2166 	struct iphdr *ip;
2167 
2168 	u16 ipv4_id;
2169 	u32 seqnum;
2170 	u32 mss;
2171 
2172 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2173 
2174 	mss = skb_shinfo(skb)->gso_size;
2175 
2176 	if (unlikely(mss < 4)) {
2177 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2178 		return -EINVAL;
2179 	}
2180 
2181 	ip = ip_hdr(skb);
2182 	if (ip->version == 4) {
2183 		/* Modify IPv4 header if needed. */
2184 		ip->tot_len = 0;
2185 		ip->check = 0;
2186 		ipv4_id = ntohs(ip->id);
2187 	} else {
2188 		/* Modify IPv6 header if needed. */
2189 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2190 
2191 		ipv6->payload_len = 0;
2192 		ipv4_id = 0;
2193 	}
2194 
2195 	tcp = tcp_hdr(skb);
2196 	seqnum = ntohl(tcp->seq);
2197 
2198 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2199 
2200 	buffer->flags = EFX_TX_BUF_OPTION;
2201 	buffer->len = 0;
2202 	buffer->unmap_len = 0;
2203 	EFX_POPULATE_QWORD_5(buffer->option,
2204 			ESF_DZ_TX_DESC_IS_OPT, 1,
2205 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2206 			ESF_DZ_TX_TSO_OPTION_TYPE,
2207 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2208 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2209 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2210 			);
2211 	++tx_queue->insert_count;
2212 
2213 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2214 
2215 	buffer->flags = EFX_TX_BUF_OPTION;
2216 	buffer->len = 0;
2217 	buffer->unmap_len = 0;
2218 	EFX_POPULATE_QWORD_4(buffer->option,
2219 			ESF_DZ_TX_DESC_IS_OPT, 1,
2220 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2221 			ESF_DZ_TX_TSO_OPTION_TYPE,
2222 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2223 			ESF_DZ_TX_TSO_TCP_MSS, mss
2224 			);
2225 	++tx_queue->insert_count;
2226 
2227 	return 0;
2228 }
2229 
2230 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2231 {
2232 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2233 	u32 tso_versions = 0;
2234 
2235 	if (nic_data->datapath_caps &
2236 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2237 		tso_versions |= BIT(1);
2238 	if (nic_data->datapath_caps2 &
2239 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2240 		tso_versions |= BIT(2);
2241 	return tso_versions;
2242 }
2243 
2244 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2245 {
2246 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2247 						       EFX_BUF_SIZE));
2248 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2249 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2250 	struct efx_channel *channel = tx_queue->channel;
2251 	struct efx_nic *efx = tx_queue->efx;
2252 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2253 	bool tso_v2 = false;
2254 	size_t inlen;
2255 	dma_addr_t dma_addr;
2256 	efx_qword_t *txd;
2257 	int rc;
2258 	int i;
2259 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2260 
2261 	/* TSOv2 is a limited resource that can only be configured on a limited
2262 	 * number of queues. TSO without checksum offload is not really a thing,
2263 	 * so we only enable it for those queues.
2264 	 */
2265 	if (csum_offload && (nic_data->datapath_caps2 &
2266 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2267 		tso_v2 = true;
2268 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2269 				channel->channel);
2270 	}
2271 
2272 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2273 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2274 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2275 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2276 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2277 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2278 
2279 	dma_addr = tx_queue->txd.buf.dma_addr;
2280 
2281 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2282 		  tx_queue->queue, entries, (u64)dma_addr);
2283 
2284 	for (i = 0; i < entries; ++i) {
2285 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2286 		dma_addr += EFX_BUF_SIZE;
2287 	}
2288 
2289 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2290 
2291 	do {
2292 		MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2293 				/* This flag was removed from mcdi_pcol.h for
2294 				 * the non-_EXT version of INIT_TXQ.  However,
2295 				 * firmware still honours it.
2296 				 */
2297 				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2298 				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2299 				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2300 
2301 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2302 					NULL, 0, NULL);
2303 		if (rc == -ENOSPC && tso_v2) {
2304 			/* Retry without TSOv2 if we're short on contexts. */
2305 			tso_v2 = false;
2306 			netif_warn(efx, probe, efx->net_dev,
2307 				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2308 		} else if (rc) {
2309 			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2310 					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2311 					       NULL, 0, rc);
2312 			goto fail;
2313 		}
2314 	} while (rc);
2315 
2316 	/* A previous user of this TX queue might have set us up the
2317 	 * bomb by writing a descriptor to the TX push collector but
2318 	 * not the doorbell.  (Each collector belongs to a port, not a
2319 	 * queue or function, so cannot easily be reset.)  We must
2320 	 * attempt to push a no-op descriptor in its place.
2321 	 */
2322 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2323 	tx_queue->insert_count = 1;
2324 	txd = efx_tx_desc(tx_queue, 0);
2325 	EFX_POPULATE_QWORD_4(*txd,
2326 			     ESF_DZ_TX_DESC_IS_OPT, true,
2327 			     ESF_DZ_TX_OPTION_TYPE,
2328 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2329 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2330 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2331 	tx_queue->write_count = 1;
2332 
2333 	if (tso_v2) {
2334 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2335 		tx_queue->tso_version = 2;
2336 	} else if (nic_data->datapath_caps &
2337 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2338 		tx_queue->tso_version = 1;
2339 	}
2340 
2341 	wmb();
2342 	efx_ef10_push_tx_desc(tx_queue, txd);
2343 
2344 	return;
2345 
2346 fail:
2347 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2348 		    tx_queue->queue);
2349 }
2350 
2351 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2352 {
2353 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2354 	MCDI_DECLARE_BUF_ERR(outbuf);
2355 	struct efx_nic *efx = tx_queue->efx;
2356 	size_t outlen;
2357 	int rc;
2358 
2359 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2360 		       tx_queue->queue);
2361 
2362 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2363 			  outbuf, sizeof(outbuf), &outlen);
2364 
2365 	if (rc && rc != -EALREADY)
2366 		goto fail;
2367 
2368 	return;
2369 
2370 fail:
2371 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2372 			       outbuf, outlen, rc);
2373 }
2374 
2375 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2376 {
2377 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2378 }
2379 
2380 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2381 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2382 {
2383 	unsigned int write_ptr;
2384 	efx_dword_t reg;
2385 
2386 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2387 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2388 	efx_writed_page(tx_queue->efx, &reg,
2389 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2390 }
2391 
2392 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2393 
2394 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2395 					  dma_addr_t dma_addr, unsigned int len)
2396 {
2397 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2398 		/* If we need to break across multiple descriptors we should
2399 		 * stop at a page boundary. This assumes the length limit is
2400 		 * greater than the page size.
2401 		 */
2402 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2403 
2404 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2405 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2406 	}
2407 
2408 	return len;
2409 }
2410 
2411 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2412 {
2413 	unsigned int old_write_count = tx_queue->write_count;
2414 	struct efx_tx_buffer *buffer;
2415 	unsigned int write_ptr;
2416 	efx_qword_t *txd;
2417 
2418 	tx_queue->xmit_more_available = false;
2419 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2420 		return;
2421 
2422 	do {
2423 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2424 		buffer = &tx_queue->buffer[write_ptr];
2425 		txd = efx_tx_desc(tx_queue, write_ptr);
2426 		++tx_queue->write_count;
2427 
2428 		/* Create TX descriptor ring entry */
2429 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2430 			*txd = buffer->option;
2431 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2432 				/* PIO descriptor */
2433 				tx_queue->packet_write_count = tx_queue->write_count;
2434 		} else {
2435 			tx_queue->packet_write_count = tx_queue->write_count;
2436 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2437 			EFX_POPULATE_QWORD_3(
2438 				*txd,
2439 				ESF_DZ_TX_KER_CONT,
2440 				buffer->flags & EFX_TX_BUF_CONT,
2441 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2442 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2443 		}
2444 	} while (tx_queue->write_count != tx_queue->insert_count);
2445 
2446 	wmb(); /* Ensure descriptors are written before they are fetched */
2447 
2448 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2449 		txd = efx_tx_desc(tx_queue,
2450 				  old_write_count & tx_queue->ptr_mask);
2451 		efx_ef10_push_tx_desc(tx_queue, txd);
2452 		++tx_queue->pushes;
2453 	} else {
2454 		efx_ef10_notify_tx_desc(tx_queue);
2455 	}
2456 }
2457 
2458 #define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2459 				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2460 #define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2461 				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2462 #define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2463 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2464 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2465 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2466 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2467 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2468 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2469 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2470 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2471 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2472 
2473 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2474 {
2475 	/* Firmware had a bug (sfc bug 61952) where it would not actually
2476 	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2477 	 * This meant that it would always contain whatever was previously
2478 	 * in the MCDI buffer.  Fortunately, all firmware versions with
2479 	 * this bug have the same default flags value for a newly-allocated
2480 	 * RSS context, and the only time we want to get the flags is just
2481 	 * after allocating.  Moreover, the response has a 32-bit hole
2482 	 * where the context ID would be in the request, so we can use an
2483 	 * overlength buffer in the request and pre-fill the flags field
2484 	 * with what we believe the default to be.  Thus if the firmware
2485 	 * has the bug, it will leave our pre-filled value in the flags
2486 	 * field of the response, and we will get the right answer.
2487 	 *
2488 	 * However, this does mean that this function should NOT be used if
2489 	 * the RSS context flags might not be their defaults - it is ONLY
2490 	 * reliably correct for a newly-allocated RSS context.
2491 	 */
2492 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2493 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2494 	size_t outlen;
2495 	int rc;
2496 
2497 	/* Check we have a hole for the context ID */
2498 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2499 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2500 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2501 		       RSS_CONTEXT_FLAGS_DEFAULT);
2502 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2503 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2504 	if (rc == 0) {
2505 		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2506 			rc = -EIO;
2507 		else
2508 			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2509 	}
2510 	return rc;
2511 }
2512 
2513 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2514  * If we fail, we just leave the RSS context at its default hash settings,
2515  * which is safe but may slightly reduce performance.
2516  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2517  * just need to set the UDP ports flags (for both IP versions).
2518  */
2519 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2520 {
2521 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2522 	u32 flags;
2523 
2524 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2525 
2526 	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2527 		return;
2528 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2529 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2530 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2531 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2532 	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2533 			  NULL, 0, NULL))
2534 		/* Succeeded, so UDP 4-tuple is now enabled */
2535 		efx->rx_hash_udp_4tuple = true;
2536 }
2537 
2538 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2539 				      bool exclusive, unsigned *context_size)
2540 {
2541 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2542 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2543 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2544 	size_t outlen;
2545 	int rc;
2546 	u32 alloc_type = exclusive ?
2547 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2548 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2549 	unsigned rss_spread = exclusive ?
2550 				efx->rss_spread :
2551 				min(rounddown_pow_of_two(efx->rss_spread),
2552 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2553 
2554 	if (!exclusive && rss_spread == 1) {
2555 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
2556 		if (context_size)
2557 			*context_size = 1;
2558 		return 0;
2559 	}
2560 
2561 	if (nic_data->datapath_caps &
2562 	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2563 		return -EOPNOTSUPP;
2564 
2565 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2566 		       nic_data->vport_id);
2567 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2568 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2569 
2570 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2571 		outbuf, sizeof(outbuf), &outlen);
2572 	if (rc != 0)
2573 		return rc;
2574 
2575 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2576 		return -EIO;
2577 
2578 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2579 
2580 	if (context_size)
2581 		*context_size = rss_spread;
2582 
2583 	if (nic_data->datapath_caps &
2584 	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2585 		efx_ef10_set_rss_flags(efx, *context);
2586 
2587 	return 0;
2588 }
2589 
2590 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2591 {
2592 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2593 	int rc;
2594 
2595 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2596 		       context);
2597 
2598 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2599 			    NULL, 0, NULL);
2600 	WARN_ON(rc != 0);
2601 }
2602 
2603 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2604 				       const u32 *rx_indir_table, const u8 *key)
2605 {
2606 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2607 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2608 	int i, rc;
2609 
2610 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2611 		       context);
2612 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2613 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2614 
2615 	/* This iterates over the length of efx->rx_indir_table, but copies
2616 	 * bytes from rx_indir_table.  That's because the latter is a pointer
2617 	 * rather than an array, but should have the same length.
2618 	 * The efx->rx_hash_key loop below is similar.
2619 	 */
2620 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2621 		MCDI_PTR(tablebuf,
2622 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2623 				(u8) rx_indir_table[i];
2624 
2625 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2626 			  sizeof(tablebuf), NULL, 0, NULL);
2627 	if (rc != 0)
2628 		return rc;
2629 
2630 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2631 		       context);
2632 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2633 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2634 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2635 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2636 
2637 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2638 			    sizeof(keybuf), NULL, 0, NULL);
2639 }
2640 
2641 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2642 {
2643 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2644 
2645 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2646 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2647 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2648 }
2649 
2650 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2651 					      unsigned *context_size)
2652 {
2653 	u32 new_rx_rss_context;
2654 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2655 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2656 					    false, context_size);
2657 
2658 	if (rc != 0)
2659 		return rc;
2660 
2661 	nic_data->rx_rss_context = new_rx_rss_context;
2662 	nic_data->rx_rss_context_exclusive = false;
2663 	efx_set_default_rx_indir_table(efx);
2664 	return 0;
2665 }
2666 
2667 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2668 						 const u32 *rx_indir_table,
2669 						 const u8 *key)
2670 {
2671 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2672 	int rc;
2673 	u32 new_rx_rss_context;
2674 
2675 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2676 	    !nic_data->rx_rss_context_exclusive) {
2677 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2678 						true, NULL);
2679 		if (rc == -EOPNOTSUPP)
2680 			return rc;
2681 		else if (rc != 0)
2682 			goto fail1;
2683 	} else {
2684 		new_rx_rss_context = nic_data->rx_rss_context;
2685 	}
2686 
2687 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2688 					 rx_indir_table, key);
2689 	if (rc != 0)
2690 		goto fail2;
2691 
2692 	if (nic_data->rx_rss_context != new_rx_rss_context)
2693 		efx_ef10_rx_free_indir_table(efx);
2694 	nic_data->rx_rss_context = new_rx_rss_context;
2695 	nic_data->rx_rss_context_exclusive = true;
2696 	if (rx_indir_table != efx->rx_indir_table)
2697 		memcpy(efx->rx_indir_table, rx_indir_table,
2698 		       sizeof(efx->rx_indir_table));
2699 	if (key != efx->rx_hash_key)
2700 		memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2701 
2702 	return 0;
2703 
2704 fail2:
2705 	if (new_rx_rss_context != nic_data->rx_rss_context)
2706 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2707 fail1:
2708 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2709 	return rc;
2710 }
2711 
2712 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2713 {
2714 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2715 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2716 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2717 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2718 	size_t outlen;
2719 	int rc, i;
2720 
2721 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2722 		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2723 
2724 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2725 		return -ENOENT;
2726 
2727 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2728 		       nic_data->rx_rss_context);
2729 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2730 		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2731 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2732 			  tablebuf, sizeof(tablebuf), &outlen);
2733 	if (rc != 0)
2734 		return rc;
2735 
2736 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2737 		return -EIO;
2738 
2739 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2740 		efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2741 				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2742 
2743 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2744 		       nic_data->rx_rss_context);
2745 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2746 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2747 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2748 			  keybuf, sizeof(keybuf), &outlen);
2749 	if (rc != 0)
2750 		return rc;
2751 
2752 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2753 		return -EIO;
2754 
2755 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2756 		efx->rx_hash_key[i] = MCDI_PTR(
2757 				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2758 
2759 	return 0;
2760 }
2761 
2762 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2763 					  const u32 *rx_indir_table,
2764 					  const u8 *key)
2765 {
2766 	int rc;
2767 
2768 	if (efx->rss_spread == 1)
2769 		return 0;
2770 
2771 	if (!key)
2772 		key = efx->rx_hash_key;
2773 
2774 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2775 
2776 	if (rc == -ENOBUFS && !user) {
2777 		unsigned context_size;
2778 		bool mismatch = false;
2779 		size_t i;
2780 
2781 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2782 		     i++)
2783 			mismatch = rx_indir_table[i] !=
2784 				ethtool_rxfh_indir_default(i, efx->rss_spread);
2785 
2786 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2787 		if (rc == 0) {
2788 			if (context_size != efx->rss_spread)
2789 				netif_warn(efx, probe, efx->net_dev,
2790 					   "Could not allocate an exclusive RSS"
2791 					   " context; allocated a shared one of"
2792 					   " different size."
2793 					   " Wanted %u, got %u.\n",
2794 					   efx->rss_spread, context_size);
2795 			else if (mismatch)
2796 				netif_warn(efx, probe, efx->net_dev,
2797 					   "Could not allocate an exclusive RSS"
2798 					   " context; allocated a shared one but"
2799 					   " could not apply custom"
2800 					   " indirection.\n");
2801 			else
2802 				netif_info(efx, probe, efx->net_dev,
2803 					   "Could not allocate an exclusive RSS"
2804 					   " context; allocated a shared one.\n");
2805 		}
2806 	}
2807 	return rc;
2808 }
2809 
2810 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2811 					  const u32 *rx_indir_table
2812 					  __attribute__ ((unused)),
2813 					  const u8 *key
2814 					  __attribute__ ((unused)))
2815 {
2816 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2817 
2818 	if (user)
2819 		return -EOPNOTSUPP;
2820 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2821 		return 0;
2822 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2823 }
2824 
2825 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2826 {
2827 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2828 				    (rx_queue->ptr_mask + 1) *
2829 				    sizeof(efx_qword_t),
2830 				    GFP_KERNEL);
2831 }
2832 
2833 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2834 {
2835 	MCDI_DECLARE_BUF(inbuf,
2836 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2837 						EFX_BUF_SIZE));
2838 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2839 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2840 	struct efx_nic *efx = rx_queue->efx;
2841 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2842 	size_t inlen;
2843 	dma_addr_t dma_addr;
2844 	int rc;
2845 	int i;
2846 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2847 
2848 	rx_queue->scatter_n = 0;
2849 	rx_queue->scatter_len = 0;
2850 
2851 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2852 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2853 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2854 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2855 		       efx_rx_queue_index(rx_queue));
2856 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2857 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2858 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2859 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2860 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2861 
2862 	dma_addr = rx_queue->rxd.buf.dma_addr;
2863 
2864 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2865 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2866 
2867 	for (i = 0; i < entries; ++i) {
2868 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2869 		dma_addr += EFX_BUF_SIZE;
2870 	}
2871 
2872 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2873 
2874 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2875 			  NULL, 0, NULL);
2876 	if (rc)
2877 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2878 			    efx_rx_queue_index(rx_queue));
2879 }
2880 
2881 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2882 {
2883 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2884 	MCDI_DECLARE_BUF_ERR(outbuf);
2885 	struct efx_nic *efx = rx_queue->efx;
2886 	size_t outlen;
2887 	int rc;
2888 
2889 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2890 		       efx_rx_queue_index(rx_queue));
2891 
2892 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2893 			  outbuf, sizeof(outbuf), &outlen);
2894 
2895 	if (rc && rc != -EALREADY)
2896 		goto fail;
2897 
2898 	return;
2899 
2900 fail:
2901 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2902 			       outbuf, outlen, rc);
2903 }
2904 
2905 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2906 {
2907 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2908 }
2909 
2910 /* This creates an entry in the RX descriptor queue */
2911 static inline void
2912 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2913 {
2914 	struct efx_rx_buffer *rx_buf;
2915 	efx_qword_t *rxd;
2916 
2917 	rxd = efx_rx_desc(rx_queue, index);
2918 	rx_buf = efx_rx_buffer(rx_queue, index);
2919 	EFX_POPULATE_QWORD_2(*rxd,
2920 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2921 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2922 }
2923 
2924 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2925 {
2926 	struct efx_nic *efx = rx_queue->efx;
2927 	unsigned int write_count;
2928 	efx_dword_t reg;
2929 
2930 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2931 	write_count = rx_queue->added_count & ~7;
2932 	if (rx_queue->notified_count == write_count)
2933 		return;
2934 
2935 	do
2936 		efx_ef10_build_rx_desc(
2937 			rx_queue,
2938 			rx_queue->notified_count & rx_queue->ptr_mask);
2939 	while (++rx_queue->notified_count != write_count);
2940 
2941 	wmb();
2942 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2943 			     write_count & rx_queue->ptr_mask);
2944 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2945 			efx_rx_queue_index(rx_queue));
2946 }
2947 
2948 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2949 
2950 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2951 {
2952 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2953 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2954 	efx_qword_t event;
2955 
2956 	EFX_POPULATE_QWORD_2(event,
2957 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2958 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2959 
2960 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2961 
2962 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2963 	 * already swapped the data to little-endian order.
2964 	 */
2965 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2966 	       sizeof(efx_qword_t));
2967 
2968 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2969 			   inbuf, sizeof(inbuf), 0,
2970 			   efx_ef10_rx_defer_refill_complete, 0);
2971 }
2972 
2973 static void
2974 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2975 				  int rc, efx_dword_t *outbuf,
2976 				  size_t outlen_actual)
2977 {
2978 	/* nothing to do */
2979 }
2980 
2981 static int efx_ef10_ev_probe(struct efx_channel *channel)
2982 {
2983 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2984 				    (channel->eventq_mask + 1) *
2985 				    sizeof(efx_qword_t),
2986 				    GFP_KERNEL);
2987 }
2988 
2989 static void efx_ef10_ev_fini(struct efx_channel *channel)
2990 {
2991 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2992 	MCDI_DECLARE_BUF_ERR(outbuf);
2993 	struct efx_nic *efx = channel->efx;
2994 	size_t outlen;
2995 	int rc;
2996 
2997 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2998 
2999 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3000 			  outbuf, sizeof(outbuf), &outlen);
3001 
3002 	if (rc && rc != -EALREADY)
3003 		goto fail;
3004 
3005 	return;
3006 
3007 fail:
3008 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3009 			       outbuf, outlen, rc);
3010 }
3011 
3012 static int efx_ef10_ev_init(struct efx_channel *channel)
3013 {
3014 	MCDI_DECLARE_BUF(inbuf,
3015 			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3016 						   EFX_BUF_SIZE));
3017 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3018 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3019 	struct efx_nic *efx = channel->efx;
3020 	struct efx_ef10_nic_data *nic_data;
3021 	size_t inlen, outlen;
3022 	unsigned int enabled, implemented;
3023 	dma_addr_t dma_addr;
3024 	int rc;
3025 	int i;
3026 
3027 	nic_data = efx->nic_data;
3028 
3029 	/* Fill event queue with all ones (i.e. empty events) */
3030 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3031 
3032 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3033 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3034 	/* INIT_EVQ expects index in vector table, not absolute */
3035 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3036 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3037 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3038 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3039 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3040 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3041 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3042 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3043 
3044 	if (nic_data->datapath_caps2 &
3045 	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3046 		/* Use the new generic approach to specifying event queue
3047 		 * configuration, requesting lower latency or higher throughput.
3048 		 * The options that actually get used appear in the output.
3049 		 */
3050 		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3051 				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3052 				      INIT_EVQ_V2_IN_FLAG_TYPE,
3053 				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3054 	} else {
3055 		bool cut_thru = !(nic_data->datapath_caps &
3056 			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3057 
3058 		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3059 				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3060 				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3061 				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3062 				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3063 	}
3064 
3065 	dma_addr = channel->eventq.buf.dma_addr;
3066 	for (i = 0; i < entries; ++i) {
3067 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3068 		dma_addr += EFX_BUF_SIZE;
3069 	}
3070 
3071 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3072 
3073 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3074 			  outbuf, sizeof(outbuf), &outlen);
3075 
3076 	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3077 		netif_dbg(efx, drv, efx->net_dev,
3078 			  "Channel %d using event queue flags %08x\n",
3079 			  channel->channel,
3080 			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3081 
3082 	/* IRQ return is ignored */
3083 	if (channel->channel || rc)
3084 		return rc;
3085 
3086 	/* Successfully created event queue on channel 0 */
3087 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3088 	if (rc == -ENOSYS) {
3089 		/* GET_WORKAROUNDS was implemented before this workaround,
3090 		 * thus it must be unavailable in this firmware.
3091 		 */
3092 		nic_data->workaround_26807 = false;
3093 		rc = 0;
3094 	} else if (rc) {
3095 		goto fail;
3096 	} else {
3097 		nic_data->workaround_26807 =
3098 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3099 
3100 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3101 		    !nic_data->workaround_26807) {
3102 			unsigned int flags;
3103 
3104 			rc = efx_mcdi_set_workaround(efx,
3105 						     MC_CMD_WORKAROUND_BUG26807,
3106 						     true, &flags);
3107 
3108 			if (!rc) {
3109 				if (flags &
3110 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3111 					netif_info(efx, drv, efx->net_dev,
3112 						   "other functions on NIC have been reset\n");
3113 
3114 					/* With MCFW v4.6.x and earlier, the
3115 					 * boot count will have incremented,
3116 					 * so re-read the warm_boot_count
3117 					 * value now to ensure this function
3118 					 * doesn't think it has changed next
3119 					 * time it checks.
3120 					 */
3121 					rc = efx_ef10_get_warm_boot_count(efx);
3122 					if (rc >= 0) {
3123 						nic_data->warm_boot_count = rc;
3124 						rc = 0;
3125 					}
3126 				}
3127 				nic_data->workaround_26807 = true;
3128 			} else if (rc == -EPERM) {
3129 				rc = 0;
3130 			}
3131 		}
3132 	}
3133 
3134 	if (!rc)
3135 		return 0;
3136 
3137 fail:
3138 	efx_ef10_ev_fini(channel);
3139 	return rc;
3140 }
3141 
3142 static void efx_ef10_ev_remove(struct efx_channel *channel)
3143 {
3144 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3145 }
3146 
3147 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3148 					   unsigned int rx_queue_label)
3149 {
3150 	struct efx_nic *efx = rx_queue->efx;
3151 
3152 	netif_info(efx, hw, efx->net_dev,
3153 		   "rx event arrived on queue %d labeled as queue %u\n",
3154 		   efx_rx_queue_index(rx_queue), rx_queue_label);
3155 
3156 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3157 }
3158 
3159 static void
3160 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3161 			     unsigned int actual, unsigned int expected)
3162 {
3163 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3164 	struct efx_nic *efx = rx_queue->efx;
3165 
3166 	netif_info(efx, hw, efx->net_dev,
3167 		   "dropped %d events (index=%d expected=%d)\n",
3168 		   dropped, actual, expected);
3169 
3170 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3171 }
3172 
3173 /* partially received RX was aborted. clean up. */
3174 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3175 {
3176 	unsigned int rx_desc_ptr;
3177 
3178 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3179 		  "scattered RX aborted (dropping %u buffers)\n",
3180 		  rx_queue->scatter_n);
3181 
3182 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3183 
3184 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3185 		      0, EFX_RX_PKT_DISCARD);
3186 
3187 	rx_queue->removed_count += rx_queue->scatter_n;
3188 	rx_queue->scatter_n = 0;
3189 	rx_queue->scatter_len = 0;
3190 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3191 }
3192 
3193 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3194 					   unsigned int n_packets,
3195 					   unsigned int rx_encap_hdr,
3196 					   unsigned int rx_l3_class,
3197 					   unsigned int rx_l4_class,
3198 					   const efx_qword_t *event)
3199 {
3200 	struct efx_nic *efx = channel->efx;
3201 
3202 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3203 		if (!efx->loopback_selftest)
3204 			channel->n_rx_eth_crc_err += n_packets;
3205 		return EFX_RX_PKT_DISCARD;
3206 	}
3207 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3208 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3209 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3210 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3211 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3212 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3213 			netdev_WARN(efx->net_dev,
3214 				    "invalid class for RX_IPCKSUM_ERR: event="
3215 				    EFX_QWORD_FMT "\n",
3216 				    EFX_QWORD_VAL(*event));
3217 		if (!efx->loopback_selftest)
3218 			*(rx_encap_hdr ?
3219 			  &channel->n_rx_outer_ip_hdr_chksum_err :
3220 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3221 		return 0;
3222 	}
3223 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3224 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3225 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3226 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3227 			      (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3228 			       rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
3229 			netdev_WARN(efx->net_dev,
3230 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3231 				    EFX_QWORD_FMT "\n",
3232 				    EFX_QWORD_VAL(*event));
3233 		if (!efx->loopback_selftest)
3234 			*(rx_encap_hdr ?
3235 			  &channel->n_rx_outer_tcp_udp_chksum_err :
3236 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3237 		return 0;
3238 	}
3239 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3240 		if (unlikely(!rx_encap_hdr))
3241 			netdev_WARN(efx->net_dev,
3242 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3243 				    EFX_QWORD_FMT "\n",
3244 				    EFX_QWORD_VAL(*event));
3245 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3246 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3247 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3248 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3249 			netdev_WARN(efx->net_dev,
3250 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3251 				    EFX_QWORD_FMT "\n",
3252 				    EFX_QWORD_VAL(*event));
3253 		if (!efx->loopback_selftest)
3254 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3255 		return 0;
3256 	}
3257 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3258 		if (unlikely(!rx_encap_hdr))
3259 			netdev_WARN(efx->net_dev,
3260 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3261 				    EFX_QWORD_FMT "\n",
3262 				    EFX_QWORD_VAL(*event));
3263 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3264 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3265 				  (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3266 				   rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
3267 			netdev_WARN(efx->net_dev,
3268 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3269 				    EFX_QWORD_FMT "\n",
3270 				    EFX_QWORD_VAL(*event));
3271 		if (!efx->loopback_selftest)
3272 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3273 		return 0;
3274 	}
3275 
3276 	WARN_ON(1); /* No error bits were recognised */
3277 	return 0;
3278 }
3279 
3280 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3281 				    const efx_qword_t *event)
3282 {
3283 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3284 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3285 	unsigned int n_descs, n_packets, i;
3286 	struct efx_nic *efx = channel->efx;
3287 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3288 	struct efx_rx_queue *rx_queue;
3289 	efx_qword_t errors;
3290 	bool rx_cont;
3291 	u16 flags = 0;
3292 
3293 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3294 		return 0;
3295 
3296 	/* Basic packet information */
3297 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3298 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3299 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3300 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3301 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
3302 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3303 	rx_encap_hdr =
3304 		nic_data->datapath_caps &
3305 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3306 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3307 		ESE_EZ_ENCAP_HDR_NONE;
3308 
3309 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3310 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3311 			    EFX_QWORD_FMT "\n",
3312 			    EFX_QWORD_VAL(*event));
3313 
3314 	rx_queue = efx_channel_get_rx_queue(channel);
3315 
3316 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3317 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3318 
3319 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3320 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3321 
3322 	if (n_descs != rx_queue->scatter_n + 1) {
3323 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3324 
3325 		/* detect rx abort */
3326 		if (unlikely(n_descs == rx_queue->scatter_n)) {
3327 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3328 				netdev_WARN(efx->net_dev,
3329 					    "invalid RX abort: scatter_n=%u event="
3330 					    EFX_QWORD_FMT "\n",
3331 					    rx_queue->scatter_n,
3332 					    EFX_QWORD_VAL(*event));
3333 			efx_ef10_handle_rx_abort(rx_queue);
3334 			return 0;
3335 		}
3336 
3337 		/* Check that RX completion merging is valid, i.e.
3338 		 * the current firmware supports it and this is a
3339 		 * non-scattered packet.
3340 		 */
3341 		if (!(nic_data->datapath_caps &
3342 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3343 		    rx_queue->scatter_n != 0 || rx_cont) {
3344 			efx_ef10_handle_rx_bad_lbits(
3345 				rx_queue, next_ptr_lbits,
3346 				(rx_queue->removed_count +
3347 				 rx_queue->scatter_n + 1) &
3348 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3349 			return 0;
3350 		}
3351 
3352 		/* Merged completion for multiple non-scattered packets */
3353 		rx_queue->scatter_n = 1;
3354 		rx_queue->scatter_len = 0;
3355 		n_packets = n_descs;
3356 		++channel->n_rx_merge_events;
3357 		channel->n_rx_merge_packets += n_packets;
3358 		flags |= EFX_RX_PKT_PREFIX_LEN;
3359 	} else {
3360 		++rx_queue->scatter_n;
3361 		rx_queue->scatter_len += rx_bytes;
3362 		if (rx_cont)
3363 			return 0;
3364 		n_packets = 1;
3365 	}
3366 
3367 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3368 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
3369 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3370 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3371 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3372 	EFX_AND_QWORD(errors, *event, errors);
3373 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3374 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3375 							 rx_encap_hdr,
3376 							 rx_l3_class, rx_l4_class,
3377 							 event);
3378 	} else {
3379 		bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3380 			      rx_l4_class == ESE_DZ_L4_CLASS_UDP;
3381 
3382 		switch (rx_encap_hdr) {
3383 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3384 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3385 			if (tcpudp)
3386 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3387 			break;
3388 		case ESE_EZ_ENCAP_HDR_GRE:
3389 		case ESE_EZ_ENCAP_HDR_NONE:
3390 			if (tcpudp)
3391 				flags |= EFX_RX_PKT_CSUMMED;
3392 			break;
3393 		default:
3394 			netdev_WARN(efx->net_dev,
3395 				    "unknown encapsulation type: event="
3396 				    EFX_QWORD_FMT "\n",
3397 				    EFX_QWORD_VAL(*event));
3398 		}
3399 	}
3400 
3401 	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3402 		flags |= EFX_RX_PKT_TCP;
3403 
3404 	channel->irq_mod_score += 2 * n_packets;
3405 
3406 	/* Handle received packet(s) */
3407 	for (i = 0; i < n_packets; i++) {
3408 		efx_rx_packet(rx_queue,
3409 			      rx_queue->removed_count & rx_queue->ptr_mask,
3410 			      rx_queue->scatter_n, rx_queue->scatter_len,
3411 			      flags);
3412 		rx_queue->removed_count += rx_queue->scatter_n;
3413 	}
3414 
3415 	rx_queue->scatter_n = 0;
3416 	rx_queue->scatter_len = 0;
3417 
3418 	return n_packets;
3419 }
3420 
3421 static int
3422 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3423 {
3424 	struct efx_nic *efx = channel->efx;
3425 	struct efx_tx_queue *tx_queue;
3426 	unsigned int tx_ev_desc_ptr;
3427 	unsigned int tx_ev_q_label;
3428 	int tx_descs = 0;
3429 
3430 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3431 		return 0;
3432 
3433 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3434 		return 0;
3435 
3436 	/* Transmit completion */
3437 	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3438 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3439 	tx_queue = efx_channel_get_tx_queue(channel,
3440 					    tx_ev_q_label % EFX_TXQ_TYPES);
3441 	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3442 		    tx_queue->ptr_mask);
3443 	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3444 
3445 	return tx_descs;
3446 }
3447 
3448 static void
3449 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3450 {
3451 	struct efx_nic *efx = channel->efx;
3452 	int subcode;
3453 
3454 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3455 
3456 	switch (subcode) {
3457 	case ESE_DZ_DRV_TIMER_EV:
3458 	case ESE_DZ_DRV_WAKE_UP_EV:
3459 		break;
3460 	case ESE_DZ_DRV_START_UP_EV:
3461 		/* event queue init complete. ok. */
3462 		break;
3463 	default:
3464 		netif_err(efx, hw, efx->net_dev,
3465 			  "channel %d unknown driver event type %d"
3466 			  " (data " EFX_QWORD_FMT ")\n",
3467 			  channel->channel, subcode,
3468 			  EFX_QWORD_VAL(*event));
3469 
3470 	}
3471 }
3472 
3473 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3474 						   efx_qword_t *event)
3475 {
3476 	struct efx_nic *efx = channel->efx;
3477 	u32 subcode;
3478 
3479 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3480 
3481 	switch (subcode) {
3482 	case EFX_EF10_TEST:
3483 		channel->event_test_cpu = raw_smp_processor_id();
3484 		break;
3485 	case EFX_EF10_REFILL:
3486 		/* The queue must be empty, so we won't receive any rx
3487 		 * events, so efx_process_channel() won't refill the
3488 		 * queue. Refill it here
3489 		 */
3490 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3491 		break;
3492 	default:
3493 		netif_err(efx, hw, efx->net_dev,
3494 			  "channel %d unknown driver event type %u"
3495 			  " (data " EFX_QWORD_FMT ")\n",
3496 			  channel->channel, (unsigned) subcode,
3497 			  EFX_QWORD_VAL(*event));
3498 	}
3499 }
3500 
3501 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3502 {
3503 	struct efx_nic *efx = channel->efx;
3504 	efx_qword_t event, *p_event;
3505 	unsigned int read_ptr;
3506 	int ev_code;
3507 	int tx_descs = 0;
3508 	int spent = 0;
3509 
3510 	if (quota <= 0)
3511 		return spent;
3512 
3513 	read_ptr = channel->eventq_read_ptr;
3514 
3515 	for (;;) {
3516 		p_event = efx_event(channel, read_ptr);
3517 		event = *p_event;
3518 
3519 		if (!efx_event_present(&event))
3520 			break;
3521 
3522 		EFX_SET_QWORD(*p_event);
3523 
3524 		++read_ptr;
3525 
3526 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3527 
3528 		netif_vdbg(efx, drv, efx->net_dev,
3529 			   "processing event on %d " EFX_QWORD_FMT "\n",
3530 			   channel->channel, EFX_QWORD_VAL(event));
3531 
3532 		switch (ev_code) {
3533 		case ESE_DZ_EV_CODE_MCDI_EV:
3534 			efx_mcdi_process_event(channel, &event);
3535 			break;
3536 		case ESE_DZ_EV_CODE_RX_EV:
3537 			spent += efx_ef10_handle_rx_event(channel, &event);
3538 			if (spent >= quota) {
3539 				/* XXX can we split a merged event to
3540 				 * avoid going over-quota?
3541 				 */
3542 				spent = quota;
3543 				goto out;
3544 			}
3545 			break;
3546 		case ESE_DZ_EV_CODE_TX_EV:
3547 			tx_descs += efx_ef10_handle_tx_event(channel, &event);
3548 			if (tx_descs > efx->txq_entries) {
3549 				spent = quota;
3550 				goto out;
3551 			} else if (++spent == quota) {
3552 				goto out;
3553 			}
3554 			break;
3555 		case ESE_DZ_EV_CODE_DRIVER_EV:
3556 			efx_ef10_handle_driver_event(channel, &event);
3557 			if (++spent == quota)
3558 				goto out;
3559 			break;
3560 		case EFX_EF10_DRVGEN_EV:
3561 			efx_ef10_handle_driver_generated_event(channel, &event);
3562 			break;
3563 		default:
3564 			netif_err(efx, hw, efx->net_dev,
3565 				  "channel %d unknown event type %d"
3566 				  " (data " EFX_QWORD_FMT ")\n",
3567 				  channel->channel, ev_code,
3568 				  EFX_QWORD_VAL(event));
3569 		}
3570 	}
3571 
3572 out:
3573 	channel->eventq_read_ptr = read_ptr;
3574 	return spent;
3575 }
3576 
3577 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3578 {
3579 	struct efx_nic *efx = channel->efx;
3580 	efx_dword_t rptr;
3581 
3582 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3583 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3584 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3585 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3586 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3587 
3588 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3589 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3590 				     ERF_DD_EVQ_IND_RPTR,
3591 				     (channel->eventq_read_ptr &
3592 				      channel->eventq_mask) >>
3593 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3594 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3595 				channel->channel);
3596 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3597 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3598 				     ERF_DD_EVQ_IND_RPTR,
3599 				     channel->eventq_read_ptr &
3600 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3601 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3602 				channel->channel);
3603 	} else {
3604 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3605 				     channel->eventq_read_ptr &
3606 				     channel->eventq_mask);
3607 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3608 	}
3609 }
3610 
3611 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3612 {
3613 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3614 	struct efx_nic *efx = channel->efx;
3615 	efx_qword_t event;
3616 	int rc;
3617 
3618 	EFX_POPULATE_QWORD_2(event,
3619 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3620 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3621 
3622 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3623 
3624 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3625 	 * already swapped the data to little-endian order.
3626 	 */
3627 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3628 	       sizeof(efx_qword_t));
3629 
3630 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3631 			  NULL, 0, NULL);
3632 	if (rc != 0)
3633 		goto fail;
3634 
3635 	return;
3636 
3637 fail:
3638 	WARN_ON(true);
3639 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3640 }
3641 
3642 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3643 {
3644 	if (atomic_dec_and_test(&efx->active_queues))
3645 		wake_up(&efx->flush_wq);
3646 
3647 	WARN_ON(atomic_read(&efx->active_queues) < 0);
3648 }
3649 
3650 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3651 {
3652 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3653 	struct efx_channel *channel;
3654 	struct efx_tx_queue *tx_queue;
3655 	struct efx_rx_queue *rx_queue;
3656 	int pending;
3657 
3658 	/* If the MC has just rebooted, the TX/RX queues will have already been
3659 	 * torn down, but efx->active_queues needs to be set to zero.
3660 	 */
3661 	if (nic_data->must_realloc_vis) {
3662 		atomic_set(&efx->active_queues, 0);
3663 		return 0;
3664 	}
3665 
3666 	/* Do not attempt to write to the NIC during EEH recovery */
3667 	if (efx->state != STATE_RECOVERY) {
3668 		efx_for_each_channel(channel, efx) {
3669 			efx_for_each_channel_rx_queue(rx_queue, channel)
3670 				efx_ef10_rx_fini(rx_queue);
3671 			efx_for_each_channel_tx_queue(tx_queue, channel)
3672 				efx_ef10_tx_fini(tx_queue);
3673 		}
3674 
3675 		wait_event_timeout(efx->flush_wq,
3676 				   atomic_read(&efx->active_queues) == 0,
3677 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3678 		pending = atomic_read(&efx->active_queues);
3679 		if (pending) {
3680 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3681 				  pending);
3682 			return -ETIMEDOUT;
3683 		}
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3690 {
3691 	atomic_set(&efx->active_queues, 0);
3692 }
3693 
3694 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3695 				  const struct efx_filter_spec *right)
3696 {
3697 	if ((left->match_flags ^ right->match_flags) |
3698 	    ((left->flags ^ right->flags) &
3699 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3700 		return false;
3701 
3702 	return memcmp(&left->outer_vid, &right->outer_vid,
3703 		      sizeof(struct efx_filter_spec) -
3704 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3705 }
3706 
3707 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3708 {
3709 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3710 	return jhash2((const u32 *)&spec->outer_vid,
3711 		      (sizeof(struct efx_filter_spec) -
3712 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3713 		      0);
3714 	/* XXX should we randomise the initval? */
3715 }
3716 
3717 /* Decide whether a filter should be exclusive or else should allow
3718  * delivery to additional recipients.  Currently we decide that
3719  * filters for specific local unicast MAC and IP addresses are
3720  * exclusive.
3721  */
3722 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3723 {
3724 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3725 	    !is_multicast_ether_addr(spec->loc_mac))
3726 		return true;
3727 
3728 	if ((spec->match_flags &
3729 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3730 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3731 		if (spec->ether_type == htons(ETH_P_IP) &&
3732 		    !ipv4_is_multicast(spec->loc_host[0]))
3733 			return true;
3734 		if (spec->ether_type == htons(ETH_P_IPV6) &&
3735 		    ((const u8 *)spec->loc_host)[0] != 0xff)
3736 			return true;
3737 	}
3738 
3739 	return false;
3740 }
3741 
3742 static struct efx_filter_spec *
3743 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3744 			   unsigned int filter_idx)
3745 {
3746 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3747 					  ~EFX_EF10_FILTER_FLAGS);
3748 }
3749 
3750 static unsigned int
3751 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3752 			   unsigned int filter_idx)
3753 {
3754 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3755 }
3756 
3757 static void
3758 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3759 			  unsigned int filter_idx,
3760 			  const struct efx_filter_spec *spec,
3761 			  unsigned int flags)
3762 {
3763 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
3764 }
3765 
3766 static void
3767 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
3768 					   const struct efx_filter_spec *spec,
3769 					   efx_dword_t *inbuf)
3770 {
3771 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3772 	u32 match_fields = 0, uc_match, mc_match;
3773 
3774 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3775 		       efx_ef10_filter_is_exclusive(spec) ?
3776 		       MC_CMD_FILTER_OP_IN_OP_INSERT :
3777 		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3778 
3779 	/* Convert match flags and values.  Unlike almost
3780 	 * everything else in MCDI, these fields are in
3781 	 * network byte order.
3782 	 */
3783 #define COPY_VALUE(value, mcdi_field)					     \
3784 	do {							     \
3785 		match_fields |=					     \
3786 			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
3787 			mcdi_field ## _LBN;			     \
3788 		BUILD_BUG_ON(					     \
3789 			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3790 			sizeof(value));				     \
3791 		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
3792 		       &value, sizeof(value));			     \
3793 	} while (0)
3794 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
3795 	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3796 		COPY_VALUE(spec->gen_field, mcdi_field);	     \
3797 	}
3798 	/* Handle encap filters first.  They will always be mismatch
3799 	 * (unknown UC or MC) filters
3800 	 */
3801 	if (encap_type) {
3802 		/* ether_type and outer_ip_proto need to be variables
3803 		 * because COPY_VALUE wants to memcpy them
3804 		 */
3805 		__be16 ether_type =
3806 			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
3807 			      ETH_P_IPV6 : ETH_P_IP);
3808 		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
3809 		u8 outer_ip_proto;
3810 
3811 		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
3812 		case EFX_ENCAP_TYPE_VXLAN:
3813 			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
3814 			/* fallthrough */
3815 		case EFX_ENCAP_TYPE_GENEVE:
3816 			COPY_VALUE(ether_type, ETHER_TYPE);
3817 			outer_ip_proto = IPPROTO_UDP;
3818 			COPY_VALUE(outer_ip_proto, IP_PROTO);
3819 			/* We always need to set the type field, even
3820 			 * though we're not matching on the TNI.
3821 			 */
3822 			MCDI_POPULATE_DWORD_1(inbuf,
3823 				FILTER_OP_EXT_IN_VNI_OR_VSID,
3824 				FILTER_OP_EXT_IN_VNI_TYPE,
3825 				vni_type);
3826 			break;
3827 		case EFX_ENCAP_TYPE_NVGRE:
3828 			COPY_VALUE(ether_type, ETHER_TYPE);
3829 			outer_ip_proto = IPPROTO_GRE;
3830 			COPY_VALUE(outer_ip_proto, IP_PROTO);
3831 			break;
3832 		default:
3833 			WARN_ON(1);
3834 		}
3835 
3836 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3837 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3838 	} else {
3839 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3840 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3841 	}
3842 
3843 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3844 		match_fields |=
3845 			is_multicast_ether_addr(spec->loc_mac) ?
3846 			1 << mc_match :
3847 			1 << uc_match;
3848 	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3849 	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3850 	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3851 	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3852 	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3853 	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3854 	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3855 	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3856 	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3857 	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3858 #undef COPY_FIELD
3859 #undef COPY_VALUE
3860 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3861 		       match_fields);
3862 }
3863 
3864 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3865 				      const struct efx_filter_spec *spec,
3866 				      efx_dword_t *inbuf, u64 handle,
3867 				      bool replacing)
3868 {
3869 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3870 	u32 flags = spec->flags;
3871 
3872 	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3873 
3874 	/* Remove RSS flag if we don't have an RSS context. */
3875 	if (flags & EFX_FILTER_FLAG_RX_RSS &&
3876 	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3877 	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3878 		flags &= ~EFX_FILTER_FLAG_RX_RSS;
3879 
3880 	if (replacing) {
3881 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3882 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
3883 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3884 	} else {
3885 		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3886 	}
3887 
3888 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3889 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3890 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3891 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3892 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3893 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3894 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3895 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3896 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3897 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3898 		       0 : spec->dmaq_id);
3899 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3900 		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3901 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3902 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3903 	if (flags & EFX_FILTER_FLAG_RX_RSS)
3904 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3905 			       spec->rss_context !=
3906 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3907 			       spec->rss_context : nic_data->rx_rss_context);
3908 }
3909 
3910 static int efx_ef10_filter_push(struct efx_nic *efx,
3911 				const struct efx_filter_spec *spec,
3912 				u64 *handle, bool replacing)
3913 {
3914 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
3915 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3916 	int rc;
3917 
3918 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3919 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3920 			  outbuf, sizeof(outbuf), NULL);
3921 	if (rc == 0)
3922 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3923 	if (rc == -ENOSPC)
3924 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3925 	return rc;
3926 }
3927 
3928 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3929 {
3930 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3931 	unsigned int match_flags = spec->match_flags;
3932 	unsigned int uc_match, mc_match;
3933 	u32 mcdi_flags = 0;
3934 
3935 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
3936 		unsigned int  old_match_flags = match_flags;		\
3937 		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
3938 		if (match_flags != old_match_flags)			\
3939 			mcdi_flags |=					\
3940 				(1 << ((encap) ?			\
3941 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
3942 				       mcdi_field ## _LBN :		\
3943 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
3944 				       mcdi_field ## _LBN));		\
3945 	}
3946 	/* inner or outer based on encap type */
3947 	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
3948 	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
3949 	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
3950 	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
3951 	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
3952 	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
3953 	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
3954 	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
3955 	/* always outer */
3956 	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
3957 	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
3958 #undef MAP_FILTER_TO_MCDI_FLAG
3959 
3960 	/* special handling for encap type, and mismatch */
3961 	if (encap_type) {
3962 		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
3963 		mcdi_flags |=
3964 			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
3965 		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
3966 
3967 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3968 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3969 	} else {
3970 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3971 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3972 	}
3973 
3974 	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3975 		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3976 		mcdi_flags |=
3977 			is_multicast_ether_addr(spec->loc_mac) ?
3978 			1 << mc_match :
3979 			1 << uc_match;
3980 	}
3981 
3982 	/* Did we map them all? */
3983 	WARN_ON_ONCE(match_flags);
3984 
3985 	return mcdi_flags;
3986 }
3987 
3988 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3989 			       const struct efx_filter_spec *spec)
3990 {
3991 	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3992 	unsigned int match_pri;
3993 
3994 	for (match_pri = 0;
3995 	     match_pri < table->rx_match_count;
3996 	     match_pri++)
3997 		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3998 			return match_pri;
3999 
4000 	return -EPROTONOSUPPORT;
4001 }
4002 
4003 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4004 				  struct efx_filter_spec *spec,
4005 				  bool replace_equal)
4006 {
4007 	struct efx_ef10_filter_table *table = efx->filter_state;
4008 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4009 	struct efx_filter_spec *saved_spec;
4010 	unsigned int match_pri, hash;
4011 	unsigned int priv_flags;
4012 	bool replacing = false;
4013 	int ins_index = -1;
4014 	DEFINE_WAIT(wait);
4015 	bool is_mc_recip;
4016 	s32 rc;
4017 
4018 	/* For now, only support RX filters */
4019 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4020 	    EFX_FILTER_FLAG_RX)
4021 		return -EINVAL;
4022 
4023 	rc = efx_ef10_filter_pri(table, spec);
4024 	if (rc < 0)
4025 		return rc;
4026 	match_pri = rc;
4027 
4028 	hash = efx_ef10_filter_hash(spec);
4029 	is_mc_recip = efx_filter_is_mc_recipient(spec);
4030 	if (is_mc_recip)
4031 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4032 
4033 	/* Find any existing filters with the same match tuple or
4034 	 * else a free slot to insert at.  If any of them are busy,
4035 	 * we have to wait and retry.
4036 	 */
4037 	for (;;) {
4038 		unsigned int depth = 1;
4039 		unsigned int i;
4040 
4041 		spin_lock_bh(&efx->filter_lock);
4042 
4043 		for (;;) {
4044 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4045 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4046 
4047 			if (!saved_spec) {
4048 				if (ins_index < 0)
4049 					ins_index = i;
4050 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4051 				if (table->entry[i].spec &
4052 				    EFX_EF10_FILTER_FLAG_BUSY)
4053 					break;
4054 				if (spec->priority < saved_spec->priority &&
4055 				    spec->priority != EFX_FILTER_PRI_AUTO) {
4056 					rc = -EPERM;
4057 					goto out_unlock;
4058 				}
4059 				if (!is_mc_recip) {
4060 					/* This is the only one */
4061 					if (spec->priority ==
4062 					    saved_spec->priority &&
4063 					    !replace_equal) {
4064 						rc = -EEXIST;
4065 						goto out_unlock;
4066 					}
4067 					ins_index = i;
4068 					goto found;
4069 				} else if (spec->priority >
4070 					   saved_spec->priority ||
4071 					   (spec->priority ==
4072 					    saved_spec->priority &&
4073 					    replace_equal)) {
4074 					if (ins_index < 0)
4075 						ins_index = i;
4076 					else
4077 						__set_bit(depth, mc_rem_map);
4078 				}
4079 			}
4080 
4081 			/* Once we reach the maximum search depth, use
4082 			 * the first suitable slot or return -EBUSY if
4083 			 * there was none
4084 			 */
4085 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4086 				if (ins_index < 0) {
4087 					rc = -EBUSY;
4088 					goto out_unlock;
4089 				}
4090 				goto found;
4091 			}
4092 
4093 			++depth;
4094 		}
4095 
4096 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4097 		spin_unlock_bh(&efx->filter_lock);
4098 		schedule();
4099 	}
4100 
4101 found:
4102 	/* Create a software table entry if necessary, and mark it
4103 	 * busy.  We might yet fail to insert, but any attempt to
4104 	 * insert a conflicting filter while we're waiting for the
4105 	 * firmware must find the busy entry.
4106 	 */
4107 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4108 	if (saved_spec) {
4109 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
4110 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4111 			/* Just make sure it won't be removed */
4112 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4113 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4114 			table->entry[ins_index].spec &=
4115 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4116 			rc = ins_index;
4117 			goto out_unlock;
4118 		}
4119 		replacing = true;
4120 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4121 	} else {
4122 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4123 		if (!saved_spec) {
4124 			rc = -ENOMEM;
4125 			goto out_unlock;
4126 		}
4127 		*saved_spec = *spec;
4128 		priv_flags = 0;
4129 	}
4130 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4131 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4132 
4133 	/* Mark lower-priority multicast recipients busy prior to removal */
4134 	if (is_mc_recip) {
4135 		unsigned int depth, i;
4136 
4137 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4138 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4139 			if (test_bit(depth, mc_rem_map))
4140 				table->entry[i].spec |=
4141 					EFX_EF10_FILTER_FLAG_BUSY;
4142 		}
4143 	}
4144 
4145 	spin_unlock_bh(&efx->filter_lock);
4146 
4147 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4148 				  replacing);
4149 
4150 	/* Finalise the software table entry */
4151 	spin_lock_bh(&efx->filter_lock);
4152 	if (rc == 0) {
4153 		if (replacing) {
4154 			/* Update the fields that may differ */
4155 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4156 				saved_spec->flags |=
4157 					EFX_FILTER_FLAG_RX_OVER_AUTO;
4158 			saved_spec->priority = spec->priority;
4159 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4160 			saved_spec->flags |= spec->flags;
4161 			saved_spec->rss_context = spec->rss_context;
4162 			saved_spec->dmaq_id = spec->dmaq_id;
4163 		}
4164 	} else if (!replacing) {
4165 		kfree(saved_spec);
4166 		saved_spec = NULL;
4167 	}
4168 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4169 
4170 	/* Remove and finalise entries for lower-priority multicast
4171 	 * recipients
4172 	 */
4173 	if (is_mc_recip) {
4174 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4175 		unsigned int depth, i;
4176 
4177 		memset(inbuf, 0, sizeof(inbuf));
4178 
4179 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4180 			if (!test_bit(depth, mc_rem_map))
4181 				continue;
4182 
4183 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4184 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4185 			priv_flags = efx_ef10_filter_entry_flags(table, i);
4186 
4187 			if (rc == 0) {
4188 				spin_unlock_bh(&efx->filter_lock);
4189 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4190 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4191 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4192 					       table->entry[i].handle);
4193 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4194 						  inbuf, sizeof(inbuf),
4195 						  NULL, 0, NULL);
4196 				spin_lock_bh(&efx->filter_lock);
4197 			}
4198 
4199 			if (rc == 0) {
4200 				kfree(saved_spec);
4201 				saved_spec = NULL;
4202 				priv_flags = 0;
4203 			} else {
4204 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4205 			}
4206 			efx_ef10_filter_set_entry(table, i, saved_spec,
4207 						  priv_flags);
4208 		}
4209 	}
4210 
4211 	/* If successful, return the inserted filter ID */
4212 	if (rc == 0)
4213 		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4214 
4215 	wake_up_all(&table->waitq);
4216 out_unlock:
4217 	spin_unlock_bh(&efx->filter_lock);
4218 	finish_wait(&table->waitq, &wait);
4219 	return rc;
4220 }
4221 
4222 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4223 {
4224 	/* no need to do anything here on EF10 */
4225 }
4226 
4227 /* Remove a filter.
4228  * If !by_index, remove by ID
4229  * If by_index, remove by index
4230  * Filter ID may come from userland and must be range-checked.
4231  */
4232 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4233 					   unsigned int priority_mask,
4234 					   u32 filter_id, bool by_index)
4235 {
4236 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4237 	struct efx_ef10_filter_table *table = efx->filter_state;
4238 	MCDI_DECLARE_BUF(inbuf,
4239 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4240 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4241 	struct efx_filter_spec *spec;
4242 	DEFINE_WAIT(wait);
4243 	int rc;
4244 
4245 	/* Find the software table entry and mark it busy.  Don't
4246 	 * remove it yet; any attempt to update while we're waiting
4247 	 * for the firmware must find the busy entry.
4248 	 */
4249 	for (;;) {
4250 		spin_lock_bh(&efx->filter_lock);
4251 		if (!(table->entry[filter_idx].spec &
4252 		      EFX_EF10_FILTER_FLAG_BUSY))
4253 			break;
4254 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4255 		spin_unlock_bh(&efx->filter_lock);
4256 		schedule();
4257 	}
4258 
4259 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4260 	if (!spec ||
4261 	    (!by_index &&
4262 	     efx_ef10_filter_pri(table, spec) !=
4263 	     efx_ef10_filter_get_unsafe_pri(filter_id))) {
4264 		rc = -ENOENT;
4265 		goto out_unlock;
4266 	}
4267 
4268 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4269 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4270 		/* Just remove flags */
4271 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4272 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4273 		rc = 0;
4274 		goto out_unlock;
4275 	}
4276 
4277 	if (!(priority_mask & (1U << spec->priority))) {
4278 		rc = -ENOENT;
4279 		goto out_unlock;
4280 	}
4281 
4282 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4283 	spin_unlock_bh(&efx->filter_lock);
4284 
4285 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4286 		/* Reset to an automatic filter */
4287 
4288 		struct efx_filter_spec new_spec = *spec;
4289 
4290 		new_spec.priority = EFX_FILTER_PRI_AUTO;
4291 		new_spec.flags = (EFX_FILTER_FLAG_RX |
4292 				  (efx_rss_enabled(efx) ?
4293 				   EFX_FILTER_FLAG_RX_RSS : 0));
4294 		new_spec.dmaq_id = 0;
4295 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4296 		rc = efx_ef10_filter_push(efx, &new_spec,
4297 					  &table->entry[filter_idx].handle,
4298 					  true);
4299 
4300 		spin_lock_bh(&efx->filter_lock);
4301 		if (rc == 0)
4302 			*spec = new_spec;
4303 	} else {
4304 		/* Really remove the filter */
4305 
4306 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4307 			       efx_ef10_filter_is_exclusive(spec) ?
4308 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4309 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4310 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4311 			       table->entry[filter_idx].handle);
4312 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4313 					inbuf, sizeof(inbuf), NULL, 0, NULL);
4314 
4315 		spin_lock_bh(&efx->filter_lock);
4316 		if ((rc == 0) || (rc == -ENOENT)) {
4317 			/* Filter removed OK or didn't actually exist */
4318 			kfree(spec);
4319 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4320 		} else {
4321 			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4322 					       MC_CMD_FILTER_OP_IN_LEN,
4323 					       NULL, 0, rc);
4324 		}
4325 	}
4326 
4327 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4328 	wake_up_all(&table->waitq);
4329 out_unlock:
4330 	spin_unlock_bh(&efx->filter_lock);
4331 	finish_wait(&table->waitq, &wait);
4332 	return rc;
4333 }
4334 
4335 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4336 				       enum efx_filter_priority priority,
4337 				       u32 filter_id)
4338 {
4339 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
4340 					       filter_id, false);
4341 }
4342 
4343 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4344 					  enum efx_filter_priority priority,
4345 					  u32 filter_id)
4346 {
4347 	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4348 		return;
4349 	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4350 }
4351 
4352 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4353 				    enum efx_filter_priority priority,
4354 				    u32 filter_id, struct efx_filter_spec *spec)
4355 {
4356 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4357 	struct efx_ef10_filter_table *table = efx->filter_state;
4358 	const struct efx_filter_spec *saved_spec;
4359 	int rc;
4360 
4361 	spin_lock_bh(&efx->filter_lock);
4362 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4363 	if (saved_spec && saved_spec->priority == priority &&
4364 	    efx_ef10_filter_pri(table, saved_spec) ==
4365 	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4366 		*spec = *saved_spec;
4367 		rc = 0;
4368 	} else {
4369 		rc = -ENOENT;
4370 	}
4371 	spin_unlock_bh(&efx->filter_lock);
4372 	return rc;
4373 }
4374 
4375 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4376 				     enum efx_filter_priority priority)
4377 {
4378 	unsigned int priority_mask;
4379 	unsigned int i;
4380 	int rc;
4381 
4382 	priority_mask = (((1U << (priority + 1)) - 1) &
4383 			 ~(1U << EFX_FILTER_PRI_AUTO));
4384 
4385 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4386 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4387 						     i, true);
4388 		if (rc && rc != -ENOENT)
4389 			return rc;
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4396 					 enum efx_filter_priority priority)
4397 {
4398 	struct efx_ef10_filter_table *table = efx->filter_state;
4399 	unsigned int filter_idx;
4400 	s32 count = 0;
4401 
4402 	spin_lock_bh(&efx->filter_lock);
4403 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4404 		if (table->entry[filter_idx].spec &&
4405 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4406 		    priority)
4407 			++count;
4408 	}
4409 	spin_unlock_bh(&efx->filter_lock);
4410 	return count;
4411 }
4412 
4413 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4414 {
4415 	struct efx_ef10_filter_table *table = efx->filter_state;
4416 
4417 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4418 }
4419 
4420 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4421 				      enum efx_filter_priority priority,
4422 				      u32 *buf, u32 size)
4423 {
4424 	struct efx_ef10_filter_table *table = efx->filter_state;
4425 	struct efx_filter_spec *spec;
4426 	unsigned int filter_idx;
4427 	s32 count = 0;
4428 
4429 	spin_lock_bh(&efx->filter_lock);
4430 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4431 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4432 		if (spec && spec->priority == priority) {
4433 			if (count == size) {
4434 				count = -EMSGSIZE;
4435 				break;
4436 			}
4437 			buf[count++] =
4438 				efx_ef10_make_filter_id(
4439 					efx_ef10_filter_pri(table, spec),
4440 					filter_idx);
4441 		}
4442 	}
4443 	spin_unlock_bh(&efx->filter_lock);
4444 	return count;
4445 }
4446 
4447 #ifdef CONFIG_RFS_ACCEL
4448 
4449 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4450 
4451 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4452 				      struct efx_filter_spec *spec)
4453 {
4454 	struct efx_ef10_filter_table *table = efx->filter_state;
4455 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4456 	struct efx_filter_spec *saved_spec;
4457 	unsigned int hash, i, depth = 1;
4458 	bool replacing = false;
4459 	int ins_index = -1;
4460 	u64 cookie;
4461 	s32 rc;
4462 
4463 	/* Must be an RX filter without RSS and not for a multicast
4464 	 * destination address (RFS only works for connected sockets).
4465 	 * These restrictions allow us to pass only a tiny amount of
4466 	 * data through to the completion function.
4467 	 */
4468 	EFX_WARN_ON_PARANOID(spec->flags !=
4469 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4470 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4471 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4472 
4473 	hash = efx_ef10_filter_hash(spec);
4474 
4475 	spin_lock_bh(&efx->filter_lock);
4476 
4477 	/* Find any existing filter with the same match tuple or else
4478 	 * a free slot to insert at.  If an existing filter is busy,
4479 	 * we have to give up.
4480 	 */
4481 	for (;;) {
4482 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4483 		saved_spec = efx_ef10_filter_entry_spec(table, i);
4484 
4485 		if (!saved_spec) {
4486 			if (ins_index < 0)
4487 				ins_index = i;
4488 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4489 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4490 				rc = -EBUSY;
4491 				goto fail_unlock;
4492 			}
4493 			if (spec->priority < saved_spec->priority) {
4494 				rc = -EPERM;
4495 				goto fail_unlock;
4496 			}
4497 			ins_index = i;
4498 			break;
4499 		}
4500 
4501 		/* Once we reach the maximum search depth, use the
4502 		 * first suitable slot or return -EBUSY if there was
4503 		 * none
4504 		 */
4505 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4506 			if (ins_index < 0) {
4507 				rc = -EBUSY;
4508 				goto fail_unlock;
4509 			}
4510 			break;
4511 		}
4512 
4513 		++depth;
4514 	}
4515 
4516 	/* Create a software table entry if necessary, and mark it
4517 	 * busy.  We might yet fail to insert, but any attempt to
4518 	 * insert a conflicting filter while we're waiting for the
4519 	 * firmware must find the busy entry.
4520 	 */
4521 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4522 	if (saved_spec) {
4523 		replacing = true;
4524 	} else {
4525 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4526 		if (!saved_spec) {
4527 			rc = -ENOMEM;
4528 			goto fail_unlock;
4529 		}
4530 		*saved_spec = *spec;
4531 	}
4532 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4533 				  EFX_EF10_FILTER_FLAG_BUSY);
4534 
4535 	spin_unlock_bh(&efx->filter_lock);
4536 
4537 	/* Pack up the variables needed on completion */
4538 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4539 
4540 	efx_ef10_filter_push_prep(efx, spec, inbuf,
4541 				  table->entry[ins_index].handle, replacing);
4542 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4543 			   MC_CMD_FILTER_OP_OUT_LEN,
4544 			   efx_ef10_filter_rfs_insert_complete, cookie);
4545 
4546 	return ins_index;
4547 
4548 fail_unlock:
4549 	spin_unlock_bh(&efx->filter_lock);
4550 	return rc;
4551 }
4552 
4553 static void
4554 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4555 				    int rc, efx_dword_t *outbuf,
4556 				    size_t outlen_actual)
4557 {
4558 	struct efx_ef10_filter_table *table = efx->filter_state;
4559 	unsigned int ins_index, dmaq_id;
4560 	struct efx_filter_spec *spec;
4561 	bool replacing;
4562 
4563 	/* Unpack the cookie */
4564 	replacing = cookie >> 31;
4565 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4566 	dmaq_id = cookie & 0xffff;
4567 
4568 	spin_lock_bh(&efx->filter_lock);
4569 	spec = efx_ef10_filter_entry_spec(table, ins_index);
4570 	if (rc == 0) {
4571 		table->entry[ins_index].handle =
4572 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4573 		if (replacing)
4574 			spec->dmaq_id = dmaq_id;
4575 	} else if (!replacing) {
4576 		kfree(spec);
4577 		spec = NULL;
4578 	}
4579 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4580 	spin_unlock_bh(&efx->filter_lock);
4581 
4582 	wake_up_all(&table->waitq);
4583 }
4584 
4585 static void
4586 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4587 				    unsigned long filter_idx,
4588 				    int rc, efx_dword_t *outbuf,
4589 				    size_t outlen_actual);
4590 
4591 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4592 					   unsigned int filter_idx)
4593 {
4594 	struct efx_ef10_filter_table *table = efx->filter_state;
4595 	struct efx_filter_spec *spec =
4596 		efx_ef10_filter_entry_spec(table, filter_idx);
4597 	MCDI_DECLARE_BUF(inbuf,
4598 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4599 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4600 
4601 	if (!spec ||
4602 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4603 	    spec->priority != EFX_FILTER_PRI_HINT ||
4604 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4605 				 flow_id, filter_idx))
4606 		return false;
4607 
4608 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4609 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
4610 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4611 		       table->entry[filter_idx].handle);
4612 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4613 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
4614 		return false;
4615 
4616 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4617 	return true;
4618 }
4619 
4620 static void
4621 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4622 				    unsigned long filter_idx,
4623 				    int rc, efx_dword_t *outbuf,
4624 				    size_t outlen_actual)
4625 {
4626 	struct efx_ef10_filter_table *table = efx->filter_state;
4627 	struct efx_filter_spec *spec =
4628 		efx_ef10_filter_entry_spec(table, filter_idx);
4629 
4630 	spin_lock_bh(&efx->filter_lock);
4631 	if (rc == 0) {
4632 		kfree(spec);
4633 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4634 	}
4635 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4636 	wake_up_all(&table->waitq);
4637 	spin_unlock_bh(&efx->filter_lock);
4638 }
4639 
4640 #endif /* CONFIG_RFS_ACCEL */
4641 
4642 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4643 {
4644 	int match_flags = 0;
4645 
4646 #define MAP_FLAG(gen_flag, mcdi_field) do {				\
4647 		u32 old_mcdi_flags = mcdi_flags;			\
4648 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
4649 				     mcdi_field ## _LBN);		\
4650 		if (mcdi_flags != old_mcdi_flags)			\
4651 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4652 	} while (0)
4653 
4654 	if (encap) {
4655 		/* encap filters must specify encap type */
4656 		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4657 		/* and imply ethertype and ip proto */
4658 		mcdi_flags &=
4659 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4660 		mcdi_flags &=
4661 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4662 		/* VLAN tags refer to the outer packet */
4663 		MAP_FLAG(INNER_VID, INNER_VLAN);
4664 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4665 		/* everything else refers to the inner packet */
4666 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4667 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4668 		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4669 		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4670 		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4671 		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4672 		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4673 		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4674 		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4675 		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4676 	} else {
4677 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4678 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4679 		MAP_FLAG(REM_HOST, SRC_IP);
4680 		MAP_FLAG(LOC_HOST, DST_IP);
4681 		MAP_FLAG(REM_MAC, SRC_MAC);
4682 		MAP_FLAG(REM_PORT, SRC_PORT);
4683 		MAP_FLAG(LOC_MAC, DST_MAC);
4684 		MAP_FLAG(LOC_PORT, DST_PORT);
4685 		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4686 		MAP_FLAG(INNER_VID, INNER_VLAN);
4687 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4688 		MAP_FLAG(IP_PROTO, IP_PROTO);
4689 	}
4690 #undef MAP_FLAG
4691 
4692 	/* Did we map them all? */
4693 	if (mcdi_flags)
4694 		return -EINVAL;
4695 
4696 	return match_flags;
4697 }
4698 
4699 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4700 {
4701 	struct efx_ef10_filter_table *table = efx->filter_state;
4702 	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4703 
4704 	/* See comment in efx_ef10_filter_table_remove() */
4705 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4706 		return;
4707 
4708 	if (!table)
4709 		return;
4710 
4711 	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4712 		efx_ef10_filter_del_vlan_internal(efx, vlan);
4713 }
4714 
4715 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4716 					    bool encap,
4717 					    enum efx_filter_match_flags match_flags)
4718 {
4719 	unsigned int match_pri;
4720 	int mf;
4721 
4722 	for (match_pri = 0;
4723 	     match_pri < table->rx_match_count;
4724 	     match_pri++) {
4725 		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4726 				table->rx_match_mcdi_flags[match_pri]);
4727 		if (mf == match_flags)
4728 			return true;
4729 	}
4730 
4731 	return false;
4732 }
4733 
4734 static int
4735 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4736 				    struct efx_ef10_filter_table *table,
4737 				    bool encap)
4738 {
4739 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4740 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4741 	unsigned int pd_match_pri, pd_match_count;
4742 	size_t outlen;
4743 	int rc;
4744 
4745 	/* Find out which RX filter types are supported, and their priorities */
4746 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4747 		       encap ?
4748 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4749 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4750 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4751 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4752 			  &outlen);
4753 	if (rc)
4754 		return rc;
4755 
4756 	pd_match_count = MCDI_VAR_ARRAY_LEN(
4757 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4758 
4759 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4760 		u32 mcdi_flags =
4761 			MCDI_ARRAY_DWORD(
4762 				outbuf,
4763 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4764 				pd_match_pri);
4765 		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4766 		if (rc < 0) {
4767 			netif_dbg(efx, probe, efx->net_dev,
4768 				  "%s: fw flags %#x pri %u not supported in driver\n",
4769 				  __func__, mcdi_flags, pd_match_pri);
4770 		} else {
4771 			netif_dbg(efx, probe, efx->net_dev,
4772 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4773 				  __func__, mcdi_flags, pd_match_pri,
4774 				  rc, table->rx_match_count);
4775 			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4776 			table->rx_match_count++;
4777 		}
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4784 {
4785 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4786 	struct net_device *net_dev = efx->net_dev;
4787 	struct efx_ef10_filter_table *table;
4788 	struct efx_ef10_vlan *vlan;
4789 	int rc;
4790 
4791 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4792 		return -EINVAL;
4793 
4794 	if (efx->filter_state) /* already probed */
4795 		return 0;
4796 
4797 	table = kzalloc(sizeof(*table), GFP_KERNEL);
4798 	if (!table)
4799 		return -ENOMEM;
4800 
4801 	table->rx_match_count = 0;
4802 	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4803 	if (rc)
4804 		goto fail;
4805 	if (nic_data->datapath_caps &
4806 		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4807 		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4808 	if (rc)
4809 		goto fail;
4810 	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4811 	    !(efx_ef10_filter_match_supported(table, false,
4812 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4813 	      efx_ef10_filter_match_supported(table, false,
4814 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4815 		netif_info(efx, probe, net_dev,
4816 			   "VLAN filters are not supported in this firmware variant\n");
4817 		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4818 		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4819 		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4820 	}
4821 
4822 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4823 	if (!table->entry) {
4824 		rc = -ENOMEM;
4825 		goto fail;
4826 	}
4827 
4828 	table->mc_promisc_last = false;
4829 	table->vlan_filter =
4830 		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4831 	INIT_LIST_HEAD(&table->vlan_list);
4832 
4833 	efx->filter_state = table;
4834 	init_waitqueue_head(&table->waitq);
4835 
4836 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4837 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4838 		if (rc)
4839 			goto fail_add_vlan;
4840 	}
4841 
4842 	return 0;
4843 
4844 fail_add_vlan:
4845 	efx_ef10_filter_cleanup_vlans(efx);
4846 	efx->filter_state = NULL;
4847 fail:
4848 	kfree(table);
4849 	return rc;
4850 }
4851 
4852 /* Caller must hold efx->filter_sem for read if race against
4853  * efx_ef10_filter_table_remove() is possible
4854  */
4855 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4856 {
4857 	struct efx_ef10_filter_table *table = efx->filter_state;
4858 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4859 	unsigned int invalid_filters = 0, failed = 0;
4860 	struct efx_ef10_filter_vlan *vlan;
4861 	struct efx_filter_spec *spec;
4862 	unsigned int filter_idx;
4863 	u32 mcdi_flags;
4864 	int match_pri;
4865 	int rc, i;
4866 
4867 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4868 
4869 	if (!nic_data->must_restore_filters)
4870 		return;
4871 
4872 	if (!table)
4873 		return;
4874 
4875 	spin_lock_bh(&efx->filter_lock);
4876 
4877 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4878 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4879 		if (!spec)
4880 			continue;
4881 
4882 		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4883 		match_pri = 0;
4884 		while (match_pri < table->rx_match_count &&
4885 		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
4886 			++match_pri;
4887 		if (match_pri >= table->rx_match_count) {
4888 			invalid_filters++;
4889 			goto not_restored;
4890 		}
4891 		if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4892 		    spec->rss_context != nic_data->rx_rss_context)
4893 			netif_warn(efx, drv, efx->net_dev,
4894 				   "Warning: unable to restore a filter with specific RSS context.\n");
4895 
4896 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4897 		spin_unlock_bh(&efx->filter_lock);
4898 
4899 		rc = efx_ef10_filter_push(efx, spec,
4900 					  &table->entry[filter_idx].handle,
4901 					  false);
4902 		if (rc)
4903 			failed++;
4904 		spin_lock_bh(&efx->filter_lock);
4905 
4906 		if (rc) {
4907 not_restored:
4908 			list_for_each_entry(vlan, &table->vlan_list, list)
4909 				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
4910 					if (vlan->default_filters[i] == filter_idx)
4911 						vlan->default_filters[i] =
4912 							EFX_EF10_FILTER_ID_INVALID;
4913 
4914 			kfree(spec);
4915 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4916 		} else {
4917 			table->entry[filter_idx].spec &=
4918 				~EFX_EF10_FILTER_FLAG_BUSY;
4919 		}
4920 	}
4921 
4922 	spin_unlock_bh(&efx->filter_lock);
4923 
4924 	/* This can happen validly if the MC's capabilities have changed, so
4925 	 * is not an error.
4926 	 */
4927 	if (invalid_filters)
4928 		netif_dbg(efx, drv, efx->net_dev,
4929 			  "Did not restore %u filters that are now unsupported.\n",
4930 			  invalid_filters);
4931 
4932 	if (failed)
4933 		netif_err(efx, hw, efx->net_dev,
4934 			  "unable to restore %u filters\n", failed);
4935 	else
4936 		nic_data->must_restore_filters = false;
4937 }
4938 
4939 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4940 {
4941 	struct efx_ef10_filter_table *table = efx->filter_state;
4942 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4943 	struct efx_filter_spec *spec;
4944 	unsigned int filter_idx;
4945 	int rc;
4946 
4947 	efx_ef10_filter_cleanup_vlans(efx);
4948 	efx->filter_state = NULL;
4949 	/* If we were called without locking, then it's not safe to free
4950 	 * the table as others might be using it.  So we just WARN, leak
4951 	 * the memory, and potentially get an inconsistent filter table
4952 	 * state.
4953 	 * This should never actually happen.
4954 	 */
4955 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4956 		return;
4957 
4958 	if (!table)
4959 		return;
4960 
4961 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4962 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4963 		if (!spec)
4964 			continue;
4965 
4966 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4967 			       efx_ef10_filter_is_exclusive(spec) ?
4968 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4969 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4970 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4971 			       table->entry[filter_idx].handle);
4972 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4973 					sizeof(inbuf), NULL, 0, NULL);
4974 		if (rc)
4975 			netif_info(efx, drv, efx->net_dev,
4976 				   "%s: filter %04x remove failed\n",
4977 				   __func__, filter_idx);
4978 		kfree(spec);
4979 	}
4980 
4981 	vfree(table->entry);
4982 	kfree(table);
4983 }
4984 
4985 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4986 {
4987 	struct efx_ef10_filter_table *table = efx->filter_state;
4988 	unsigned int filter_idx;
4989 
4990 	if (*id != EFX_EF10_FILTER_ID_INVALID) {
4991 		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
4992 		if (!table->entry[filter_idx].spec)
4993 			netif_dbg(efx, drv, efx->net_dev,
4994 				  "marked null spec old %04x:%04x\n", *id,
4995 				  filter_idx);
4996 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4997 		*id = EFX_EF10_FILTER_ID_INVALID;
4998 	}
4999 }
5000 
5001 /* Mark old per-VLAN filters that may need to be removed */
5002 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5003 					   struct efx_ef10_filter_vlan *vlan)
5004 {
5005 	struct efx_ef10_filter_table *table = efx->filter_state;
5006 	unsigned int i;
5007 
5008 	for (i = 0; i < table->dev_uc_count; i++)
5009 		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5010 	for (i = 0; i < table->dev_mc_count; i++)
5011 		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5012 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5013 		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5014 }
5015 
5016 /* Mark old filters that may need to be removed.
5017  * Caller must hold efx->filter_sem for read if race against
5018  * efx_ef10_filter_table_remove() is possible
5019  */
5020 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5021 {
5022 	struct efx_ef10_filter_table *table = efx->filter_state;
5023 	struct efx_ef10_filter_vlan *vlan;
5024 
5025 	spin_lock_bh(&efx->filter_lock);
5026 	list_for_each_entry(vlan, &table->vlan_list, list)
5027 		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5028 	spin_unlock_bh(&efx->filter_lock);
5029 }
5030 
5031 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5032 {
5033 	struct efx_ef10_filter_table *table = efx->filter_state;
5034 	struct net_device *net_dev = efx->net_dev;
5035 	struct netdev_hw_addr *uc;
5036 	int addr_count;
5037 	unsigned int i;
5038 
5039 	addr_count = netdev_uc_count(net_dev);
5040 	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5041 	table->dev_uc_count = 1 + addr_count;
5042 	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5043 	i = 1;
5044 	netdev_for_each_uc_addr(uc, net_dev) {
5045 		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5046 			table->uc_promisc = true;
5047 			break;
5048 		}
5049 		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5050 		i++;
5051 	}
5052 }
5053 
5054 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5055 {
5056 	struct efx_ef10_filter_table *table = efx->filter_state;
5057 	struct net_device *net_dev = efx->net_dev;
5058 	struct netdev_hw_addr *mc;
5059 	unsigned int i, addr_count;
5060 
5061 	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5062 
5063 	addr_count = netdev_mc_count(net_dev);
5064 	i = 0;
5065 	netdev_for_each_mc_addr(mc, net_dev) {
5066 		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5067 			table->mc_promisc = true;
5068 			break;
5069 		}
5070 		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5071 		i++;
5072 	}
5073 
5074 	table->dev_mc_count = i;
5075 }
5076 
5077 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5078 					    struct efx_ef10_filter_vlan *vlan,
5079 					    bool multicast, bool rollback)
5080 {
5081 	struct efx_ef10_filter_table *table = efx->filter_state;
5082 	struct efx_ef10_dev_addr *addr_list;
5083 	enum efx_filter_flags filter_flags;
5084 	struct efx_filter_spec spec;
5085 	u8 baddr[ETH_ALEN];
5086 	unsigned int i, j;
5087 	int addr_count;
5088 	u16 *ids;
5089 	int rc;
5090 
5091 	if (multicast) {
5092 		addr_list = table->dev_mc_list;
5093 		addr_count = table->dev_mc_count;
5094 		ids = vlan->mc;
5095 	} else {
5096 		addr_list = table->dev_uc_list;
5097 		addr_count = table->dev_uc_count;
5098 		ids = vlan->uc;
5099 	}
5100 
5101 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5102 
5103 	/* Insert/renew filters */
5104 	for (i = 0; i < addr_count; i++) {
5105 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5106 		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5107 		rc = efx_ef10_filter_insert(efx, &spec, true);
5108 		if (rc < 0) {
5109 			if (rollback) {
5110 				netif_info(efx, drv, efx->net_dev,
5111 					   "efx_ef10_filter_insert failed rc=%d\n",
5112 					   rc);
5113 				/* Fall back to promiscuous */
5114 				for (j = 0; j < i; j++) {
5115 					efx_ef10_filter_remove_unsafe(
5116 						efx, EFX_FILTER_PRI_AUTO,
5117 						ids[j]);
5118 					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5119 				}
5120 				return rc;
5121 			} else {
5122 				/* mark as not inserted, and carry on */
5123 				rc = EFX_EF10_FILTER_ID_INVALID;
5124 			}
5125 		}
5126 		ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5127 	}
5128 
5129 	if (multicast && rollback) {
5130 		/* Also need an Ethernet broadcast filter */
5131 		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5132 				     EFX_EF10_FILTER_ID_INVALID);
5133 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5134 		eth_broadcast_addr(baddr);
5135 		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5136 		rc = efx_ef10_filter_insert(efx, &spec, true);
5137 		if (rc < 0) {
5138 			netif_warn(efx, drv, efx->net_dev,
5139 				   "Broadcast filter insert failed rc=%d\n", rc);
5140 			/* Fall back to promiscuous */
5141 			for (j = 0; j < i; j++) {
5142 				efx_ef10_filter_remove_unsafe(
5143 					efx, EFX_FILTER_PRI_AUTO,
5144 					ids[j]);
5145 				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5146 			}
5147 			return rc;
5148 		} else {
5149 			vlan->default_filters[EFX_EF10_BCAST] =
5150 				efx_ef10_filter_get_unsafe_id(rc);
5151 		}
5152 	}
5153 
5154 	return 0;
5155 }
5156 
5157 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5158 				      struct efx_ef10_filter_vlan *vlan,
5159 				      enum efx_encap_type encap_type,
5160 				      bool multicast, bool rollback)
5161 {
5162 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5163 	enum efx_filter_flags filter_flags;
5164 	struct efx_filter_spec spec;
5165 	u8 baddr[ETH_ALEN];
5166 	int rc;
5167 	u16 *id;
5168 
5169 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5170 
5171 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5172 
5173 	if (multicast)
5174 		efx_filter_set_mc_def(&spec);
5175 	else
5176 		efx_filter_set_uc_def(&spec);
5177 
5178 	if (encap_type) {
5179 		if (nic_data->datapath_caps &
5180 		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5181 			efx_filter_set_encap_type(&spec, encap_type);
5182 		else
5183 			/* don't insert encap filters on non-supporting
5184 			 * platforms. ID will be left as INVALID.
5185 			 */
5186 			return 0;
5187 	}
5188 
5189 	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5190 		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5191 
5192 	rc = efx_ef10_filter_insert(efx, &spec, true);
5193 	if (rc < 0) {
5194 		const char *um = multicast ? "Multicast" : "Unicast";
5195 		const char *encap_name = "";
5196 		const char *encap_ipv = "";
5197 
5198 		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5199 		    EFX_ENCAP_TYPE_VXLAN)
5200 			encap_name = "VXLAN ";
5201 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5202 			 EFX_ENCAP_TYPE_NVGRE)
5203 			encap_name = "NVGRE ";
5204 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5205 			 EFX_ENCAP_TYPE_GENEVE)
5206 			encap_name = "GENEVE ";
5207 		if (encap_type & EFX_ENCAP_FLAG_IPV6)
5208 			encap_ipv = "IPv6 ";
5209 		else if (encap_type)
5210 			encap_ipv = "IPv4 ";
5211 
5212 		/* unprivileged functions can't insert mismatch filters
5213 		 * for encapsulated or unicast traffic, so downgrade
5214 		 * those warnings to debug.
5215 		 */
5216 		netif_cond_dbg(efx, drv, efx->net_dev,
5217 			       rc == -EPERM && (encap_type || !multicast), warn,
5218 			       "%s%s%s mismatch filter insert failed rc=%d\n",
5219 			       encap_name, encap_ipv, um, rc);
5220 	} else if (multicast) {
5221 		/* mapping from encap types to default filter IDs (multicast) */
5222 		static enum efx_ef10_default_filters map[] = {
5223 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5224 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5225 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5226 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5227 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5228 				EFX_EF10_VXLAN6_MCDEF,
5229 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5230 				EFX_EF10_NVGRE6_MCDEF,
5231 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5232 				EFX_EF10_GENEVE6_MCDEF,
5233 		};
5234 
5235 		/* quick bounds check (BCAST result impossible) */
5236 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5237 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5238 			WARN_ON(1);
5239 			return -EINVAL;
5240 		}
5241 		/* then follow map */
5242 		id = &vlan->default_filters[map[encap_type]];
5243 
5244 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5245 		*id = efx_ef10_filter_get_unsafe_id(rc);
5246 		if (!nic_data->workaround_26807 && !encap_type) {
5247 			/* Also need an Ethernet broadcast filter */
5248 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5249 					   filter_flags, 0);
5250 			eth_broadcast_addr(baddr);
5251 			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5252 			rc = efx_ef10_filter_insert(efx, &spec, true);
5253 			if (rc < 0) {
5254 				netif_warn(efx, drv, efx->net_dev,
5255 					   "Broadcast filter insert failed rc=%d\n",
5256 					   rc);
5257 				if (rollback) {
5258 					/* Roll back the mc_def filter */
5259 					efx_ef10_filter_remove_unsafe(
5260 							efx, EFX_FILTER_PRI_AUTO,
5261 							*id);
5262 					*id = EFX_EF10_FILTER_ID_INVALID;
5263 					return rc;
5264 				}
5265 			} else {
5266 				EFX_WARN_ON_PARANOID(
5267 					vlan->default_filters[EFX_EF10_BCAST] !=
5268 					EFX_EF10_FILTER_ID_INVALID);
5269 				vlan->default_filters[EFX_EF10_BCAST] =
5270 					efx_ef10_filter_get_unsafe_id(rc);
5271 			}
5272 		}
5273 		rc = 0;
5274 	} else {
5275 		/* mapping from encap types to default filter IDs (unicast) */
5276 		static enum efx_ef10_default_filters map[] = {
5277 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5278 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5279 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5280 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5281 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5282 				EFX_EF10_VXLAN6_UCDEF,
5283 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5284 				EFX_EF10_NVGRE6_UCDEF,
5285 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5286 				EFX_EF10_GENEVE6_UCDEF,
5287 		};
5288 
5289 		/* quick bounds check (BCAST result impossible) */
5290 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5291 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5292 			WARN_ON(1);
5293 			return -EINVAL;
5294 		}
5295 		/* then follow map */
5296 		id = &vlan->default_filters[map[encap_type]];
5297 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5298 		*id = rc;
5299 		rc = 0;
5300 	}
5301 	return rc;
5302 }
5303 
5304 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5305  * flag or removes these filters, we don't need to hold the filter_lock while
5306  * scanning for these filters.
5307  */
5308 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5309 {
5310 	struct efx_ef10_filter_table *table = efx->filter_state;
5311 	int remove_failed = 0;
5312 	int remove_noent = 0;
5313 	int rc;
5314 	int i;
5315 
5316 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5317 		if (ACCESS_ONCE(table->entry[i].spec) &
5318 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5319 			rc = efx_ef10_filter_remove_internal(efx,
5320 					1U << EFX_FILTER_PRI_AUTO, i, true);
5321 			if (rc == -ENOENT)
5322 				remove_noent++;
5323 			else if (rc)
5324 				remove_failed++;
5325 		}
5326 	}
5327 
5328 	if (remove_failed)
5329 		netif_info(efx, drv, efx->net_dev,
5330 			   "%s: failed to remove %d filters\n",
5331 			   __func__, remove_failed);
5332 	if (remove_noent)
5333 		netif_info(efx, drv, efx->net_dev,
5334 			   "%s: failed to remove %d non-existent filters\n",
5335 			   __func__, remove_noent);
5336 }
5337 
5338 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5339 {
5340 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5341 	u8 mac_old[ETH_ALEN];
5342 	int rc, rc2;
5343 
5344 	/* Only reconfigure a PF-created vport */
5345 	if (is_zero_ether_addr(nic_data->vport_mac))
5346 		return 0;
5347 
5348 	efx_device_detach_sync(efx);
5349 	efx_net_stop(efx->net_dev);
5350 	down_write(&efx->filter_sem);
5351 	efx_ef10_filter_table_remove(efx);
5352 	up_write(&efx->filter_sem);
5353 
5354 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5355 	if (rc)
5356 		goto restore_filters;
5357 
5358 	ether_addr_copy(mac_old, nic_data->vport_mac);
5359 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5360 				    nic_data->vport_mac);
5361 	if (rc)
5362 		goto restore_vadaptor;
5363 
5364 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5365 				    efx->net_dev->dev_addr);
5366 	if (!rc) {
5367 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5368 	} else {
5369 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5370 		if (rc2) {
5371 			/* Failed to add original MAC, so clear vport_mac */
5372 			eth_zero_addr(nic_data->vport_mac);
5373 			goto reset_nic;
5374 		}
5375 	}
5376 
5377 restore_vadaptor:
5378 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5379 	if (rc2)
5380 		goto reset_nic;
5381 restore_filters:
5382 	down_write(&efx->filter_sem);
5383 	rc2 = efx_ef10_filter_table_probe(efx);
5384 	up_write(&efx->filter_sem);
5385 	if (rc2)
5386 		goto reset_nic;
5387 
5388 	rc2 = efx_net_open(efx->net_dev);
5389 	if (rc2)
5390 		goto reset_nic;
5391 
5392 	efx_device_attach_if_not_resetting(efx);
5393 
5394 	return rc;
5395 
5396 reset_nic:
5397 	netif_err(efx, drv, efx->net_dev,
5398 		  "Failed to restore when changing MAC address - scheduling reset\n");
5399 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5400 
5401 	return rc ? rc : rc2;
5402 }
5403 
5404 /* Caller must hold efx->filter_sem for read if race against
5405  * efx_ef10_filter_table_remove() is possible
5406  */
5407 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5408 					      struct efx_ef10_filter_vlan *vlan)
5409 {
5410 	struct efx_ef10_filter_table *table = efx->filter_state;
5411 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5412 
5413 	/* Do not install unspecified VID if VLAN filtering is enabled.
5414 	 * Do not install all specified VIDs if VLAN filtering is disabled.
5415 	 */
5416 	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5417 		return;
5418 
5419 	/* Insert/renew unicast filters */
5420 	if (table->uc_promisc) {
5421 		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5422 					   false, false);
5423 		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5424 	} else {
5425 		/* If any of the filters failed to insert, fall back to
5426 		 * promiscuous mode - add in the uc_def filter.  But keep
5427 		 * our individual unicast filters.
5428 		 */
5429 		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5430 			efx_ef10_filter_insert_def(efx, vlan,
5431 						   EFX_ENCAP_TYPE_NONE,
5432 						   false, false);
5433 	}
5434 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5435 				   false, false);
5436 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5437 					      EFX_ENCAP_FLAG_IPV6,
5438 				   false, false);
5439 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5440 				   false, false);
5441 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5442 					      EFX_ENCAP_FLAG_IPV6,
5443 				   false, false);
5444 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5445 				   false, false);
5446 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5447 					      EFX_ENCAP_FLAG_IPV6,
5448 				   false, false);
5449 
5450 	/* Insert/renew multicast filters */
5451 	/* If changing promiscuous state with cascaded multicast filters, remove
5452 	 * old filters first, so that packets are dropped rather than duplicated
5453 	 */
5454 	if (nic_data->workaround_26807 &&
5455 	    table->mc_promisc_last != table->mc_promisc)
5456 		efx_ef10_filter_remove_old(efx);
5457 	if (table->mc_promisc) {
5458 		if (nic_data->workaround_26807) {
5459 			/* If we failed to insert promiscuous filters, rollback
5460 			 * and fall back to individual multicast filters
5461 			 */
5462 			if (efx_ef10_filter_insert_def(efx, vlan,
5463 						       EFX_ENCAP_TYPE_NONE,
5464 						       true, true)) {
5465 				/* Changing promisc state, so remove old filters */
5466 				efx_ef10_filter_remove_old(efx);
5467 				efx_ef10_filter_insert_addr_list(efx, vlan,
5468 								 true, false);
5469 			}
5470 		} else {
5471 			/* If we failed to insert promiscuous filters, don't
5472 			 * rollback.  Regardless, also insert the mc_list
5473 			 */
5474 			efx_ef10_filter_insert_def(efx, vlan,
5475 						   EFX_ENCAP_TYPE_NONE,
5476 						   true, false);
5477 			efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
5478 		}
5479 	} else {
5480 		/* If any filters failed to insert, rollback and fall back to
5481 		 * promiscuous mode - mc_def filter and maybe broadcast.  If
5482 		 * that fails, roll back again and insert as many of our
5483 		 * individual multicast filters as we can.
5484 		 */
5485 		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5486 			/* Changing promisc state, so remove old filters */
5487 			if (nic_data->workaround_26807)
5488 				efx_ef10_filter_remove_old(efx);
5489 			if (efx_ef10_filter_insert_def(efx, vlan,
5490 						       EFX_ENCAP_TYPE_NONE,
5491 						       true, true))
5492 				efx_ef10_filter_insert_addr_list(efx, vlan,
5493 								 true, false);
5494 		}
5495 	}
5496 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5497 				   true, false);
5498 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5499 					      EFX_ENCAP_FLAG_IPV6,
5500 				   true, false);
5501 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5502 				   true, false);
5503 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5504 					      EFX_ENCAP_FLAG_IPV6,
5505 				   true, false);
5506 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5507 				   true, false);
5508 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5509 					      EFX_ENCAP_FLAG_IPV6,
5510 				   true, false);
5511 }
5512 
5513 /* Caller must hold efx->filter_sem for read if race against
5514  * efx_ef10_filter_table_remove() is possible
5515  */
5516 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5517 {
5518 	struct efx_ef10_filter_table *table = efx->filter_state;
5519 	struct net_device *net_dev = efx->net_dev;
5520 	struct efx_ef10_filter_vlan *vlan;
5521 	bool vlan_filter;
5522 
5523 	if (!efx_dev_registered(efx))
5524 		return;
5525 
5526 	if (!table)
5527 		return;
5528 
5529 	efx_ef10_filter_mark_old(efx);
5530 
5531 	/* Copy/convert the address lists; add the primary station
5532 	 * address and broadcast address
5533 	 */
5534 	netif_addr_lock_bh(net_dev);
5535 	efx_ef10_filter_uc_addr_list(efx);
5536 	efx_ef10_filter_mc_addr_list(efx);
5537 	netif_addr_unlock_bh(net_dev);
5538 
5539 	/* If VLAN filtering changes, all old filters are finally removed.
5540 	 * Do it in advance to avoid conflicts for unicast untagged and
5541 	 * VLAN 0 tagged filters.
5542 	 */
5543 	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5544 	if (table->vlan_filter != vlan_filter) {
5545 		table->vlan_filter = vlan_filter;
5546 		efx_ef10_filter_remove_old(efx);
5547 	}
5548 
5549 	list_for_each_entry(vlan, &table->vlan_list, list)
5550 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5551 
5552 	efx_ef10_filter_remove_old(efx);
5553 	table->mc_promisc_last = table->mc_promisc;
5554 }
5555 
5556 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5557 {
5558 	struct efx_ef10_filter_table *table = efx->filter_state;
5559 	struct efx_ef10_filter_vlan *vlan;
5560 
5561 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5562 
5563 	list_for_each_entry(vlan, &table->vlan_list, list) {
5564 		if (vlan->vid == vid)
5565 			return vlan;
5566 	}
5567 
5568 	return NULL;
5569 }
5570 
5571 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5572 {
5573 	struct efx_ef10_filter_table *table = efx->filter_state;
5574 	struct efx_ef10_filter_vlan *vlan;
5575 	unsigned int i;
5576 
5577 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5578 		return -EINVAL;
5579 
5580 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5581 	if (WARN_ON(vlan)) {
5582 		netif_err(efx, drv, efx->net_dev,
5583 			  "VLAN %u already added\n", vid);
5584 		return -EALREADY;
5585 	}
5586 
5587 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5588 	if (!vlan)
5589 		return -ENOMEM;
5590 
5591 	vlan->vid = vid;
5592 
5593 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5594 		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5595 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5596 		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5597 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5598 		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5599 
5600 	list_add_tail(&vlan->list, &table->vlan_list);
5601 
5602 	if (efx_dev_registered(efx))
5603 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5604 
5605 	return 0;
5606 }
5607 
5608 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5609 					      struct efx_ef10_filter_vlan *vlan)
5610 {
5611 	unsigned int i;
5612 
5613 	/* See comment in efx_ef10_filter_table_remove() */
5614 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5615 		return;
5616 
5617 	list_del(&vlan->list);
5618 
5619 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5620 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5621 					      vlan->uc[i]);
5622 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5623 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5624 					      vlan->mc[i]);
5625 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5626 		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5627 			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5628 						      vlan->default_filters[i]);
5629 
5630 	kfree(vlan);
5631 }
5632 
5633 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5634 {
5635 	struct efx_ef10_filter_vlan *vlan;
5636 
5637 	/* See comment in efx_ef10_filter_table_remove() */
5638 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5639 		return;
5640 
5641 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5642 	if (!vlan) {
5643 		netif_err(efx, drv, efx->net_dev,
5644 			  "VLAN %u not found in filter state\n", vid);
5645 		return;
5646 	}
5647 
5648 	efx_ef10_filter_del_vlan_internal(efx, vlan);
5649 }
5650 
5651 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5652 {
5653 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5654 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5655 	bool was_enabled = efx->port_enabled;
5656 	int rc;
5657 
5658 	efx_device_detach_sync(efx);
5659 	efx_net_stop(efx->net_dev);
5660 
5661 	mutex_lock(&efx->mac_lock);
5662 	down_write(&efx->filter_sem);
5663 	efx_ef10_filter_table_remove(efx);
5664 
5665 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5666 			efx->net_dev->dev_addr);
5667 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5668 		       nic_data->vport_id);
5669 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5670 				sizeof(inbuf), NULL, 0, NULL);
5671 
5672 	efx_ef10_filter_table_probe(efx);
5673 	up_write(&efx->filter_sem);
5674 	mutex_unlock(&efx->mac_lock);
5675 
5676 	if (was_enabled)
5677 		efx_net_open(efx->net_dev);
5678 	efx_device_attach_if_not_resetting(efx);
5679 
5680 #ifdef CONFIG_SFC_SRIOV
5681 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5682 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5683 
5684 		if (rc == -EPERM) {
5685 			struct efx_nic *efx_pf;
5686 
5687 			/* Switch to PF and change MAC address on vport */
5688 			efx_pf = pci_get_drvdata(pci_dev_pf);
5689 
5690 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5691 						       nic_data->vf_index,
5692 						       efx->net_dev->dev_addr);
5693 		} else if (!rc) {
5694 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5695 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5696 			unsigned int i;
5697 
5698 			/* MAC address successfully changed by VF (with MAC
5699 			 * spoofing) so update the parent PF if possible.
5700 			 */
5701 			for (i = 0; i < efx_pf->vf_count; ++i) {
5702 				struct ef10_vf *vf = nic_data->vf + i;
5703 
5704 				if (vf->efx == efx) {
5705 					ether_addr_copy(vf->mac,
5706 							efx->net_dev->dev_addr);
5707 					return 0;
5708 				}
5709 			}
5710 		}
5711 	} else
5712 #endif
5713 	if (rc == -EPERM) {
5714 		netif_err(efx, drv, efx->net_dev,
5715 			  "Cannot change MAC address; use sfboot to enable"
5716 			  " mac-spoofing on this interface\n");
5717 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5718 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5719 		 * fall-back to the method of changing the MAC address on the
5720 		 * vport.  This only applies to PFs because such versions of
5721 		 * MCFW do not support VFs.
5722 		 */
5723 		rc = efx_ef10_vport_set_mac_address(efx);
5724 	} else {
5725 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5726 				       sizeof(inbuf), NULL, 0, rc);
5727 	}
5728 
5729 	return rc;
5730 }
5731 
5732 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5733 {
5734 	efx_ef10_filter_sync_rx_mode(efx);
5735 
5736 	return efx_mcdi_set_mac(efx);
5737 }
5738 
5739 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5740 {
5741 	efx_ef10_filter_sync_rx_mode(efx);
5742 
5743 	return 0;
5744 }
5745 
5746 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5747 {
5748 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5749 
5750 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5751 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5752 			    NULL, 0, NULL);
5753 }
5754 
5755 /* MC BISTs follow a different poll mechanism to phy BISTs.
5756  * The BIST is done in the poll handler on the MC, and the MCDI command
5757  * will block until the BIST is done.
5758  */
5759 static int efx_ef10_poll_bist(struct efx_nic *efx)
5760 {
5761 	int rc;
5762 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5763 	size_t outlen;
5764 	u32 result;
5765 
5766 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5767 			   outbuf, sizeof(outbuf), &outlen);
5768 	if (rc != 0)
5769 		return rc;
5770 
5771 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5772 		return -EIO;
5773 
5774 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5775 	switch (result) {
5776 	case MC_CMD_POLL_BIST_PASSED:
5777 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5778 		return 0;
5779 	case MC_CMD_POLL_BIST_TIMEOUT:
5780 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5781 		return -EIO;
5782 	case MC_CMD_POLL_BIST_FAILED:
5783 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5784 		return -EIO;
5785 	default:
5786 		netif_err(efx, hw, efx->net_dev,
5787 			  "BIST returned unknown result %u", result);
5788 		return -EIO;
5789 	}
5790 }
5791 
5792 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5793 {
5794 	int rc;
5795 
5796 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5797 
5798 	rc = efx_ef10_start_bist(efx, bist_type);
5799 	if (rc != 0)
5800 		return rc;
5801 
5802 	return efx_ef10_poll_bist(efx);
5803 }
5804 
5805 static int
5806 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5807 {
5808 	int rc, rc2;
5809 
5810 	efx_reset_down(efx, RESET_TYPE_WORLD);
5811 
5812 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5813 			  NULL, 0, NULL, 0, NULL);
5814 	if (rc != 0)
5815 		goto out;
5816 
5817 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5818 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5819 
5820 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5821 
5822 out:
5823 	if (rc == -EPERM)
5824 		rc = 0;
5825 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5826 	return rc ? rc : rc2;
5827 }
5828 
5829 #ifdef CONFIG_SFC_MTD
5830 
5831 struct efx_ef10_nvram_type_info {
5832 	u16 type, type_mask;
5833 	u8 port;
5834 	const char *name;
5835 };
5836 
5837 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5838 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
5839 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5840 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
5841 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
5842 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
5843 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5844 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5845 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5846 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5847 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5848 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
5849 };
5850 
5851 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5852 					struct efx_mcdi_mtd_partition *part,
5853 					unsigned int type)
5854 {
5855 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5856 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5857 	const struct efx_ef10_nvram_type_info *info;
5858 	size_t size, erase_size, outlen;
5859 	bool protected;
5860 	int rc;
5861 
5862 	for (info = efx_ef10_nvram_types; ; info++) {
5863 		if (info ==
5864 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5865 			return -ENODEV;
5866 		if ((type & ~info->type_mask) == info->type)
5867 			break;
5868 	}
5869 	if (info->port != efx_port_num(efx))
5870 		return -ENODEV;
5871 
5872 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5873 	if (rc)
5874 		return rc;
5875 	if (protected)
5876 		return -ENODEV; /* hide it */
5877 
5878 	part->nvram_type = type;
5879 
5880 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5881 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5882 			  outbuf, sizeof(outbuf), &outlen);
5883 	if (rc)
5884 		return rc;
5885 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5886 		return -EIO;
5887 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5888 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5889 		part->fw_subtype = MCDI_DWORD(outbuf,
5890 					      NVRAM_METADATA_OUT_SUBTYPE);
5891 
5892 	part->common.dev_type_name = "EF10 NVRAM manager";
5893 	part->common.type_name = info->name;
5894 
5895 	part->common.mtd.type = MTD_NORFLASH;
5896 	part->common.mtd.flags = MTD_CAP_NORFLASH;
5897 	part->common.mtd.size = size;
5898 	part->common.mtd.erasesize = erase_size;
5899 
5900 	return 0;
5901 }
5902 
5903 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5904 {
5905 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5906 	struct efx_mcdi_mtd_partition *parts;
5907 	size_t outlen, n_parts_total, i, n_parts;
5908 	unsigned int type;
5909 	int rc;
5910 
5911 	ASSERT_RTNL();
5912 
5913 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5914 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5915 			  outbuf, sizeof(outbuf), &outlen);
5916 	if (rc)
5917 		return rc;
5918 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5919 		return -EIO;
5920 
5921 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5922 	if (n_parts_total >
5923 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5924 		return -EIO;
5925 
5926 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5927 	if (!parts)
5928 		return -ENOMEM;
5929 
5930 	n_parts = 0;
5931 	for (i = 0; i < n_parts_total; i++) {
5932 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5933 					i);
5934 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5935 		if (rc == 0)
5936 			n_parts++;
5937 		else if (rc != -ENODEV)
5938 			goto fail;
5939 	}
5940 
5941 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5942 fail:
5943 	if (rc)
5944 		kfree(parts);
5945 	return rc;
5946 }
5947 
5948 #endif /* CONFIG_SFC_MTD */
5949 
5950 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5951 {
5952 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5953 }
5954 
5955 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5956 					    u32 host_time) {}
5957 
5958 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5959 					   bool temp)
5960 {
5961 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5962 	int rc;
5963 
5964 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5965 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
5966 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5967 		return 0;
5968 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5969 
5970 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5971 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5972 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5973 		       channel->channel);
5974 
5975 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5976 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5977 
5978 	if (rc != 0)
5979 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5980 						    SYNC_EVENTS_DISABLED;
5981 
5982 	return rc;
5983 }
5984 
5985 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5986 					    bool temp)
5987 {
5988 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5989 	int rc;
5990 
5991 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5992 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5993 		return 0;
5994 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5995 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
5996 		return 0;
5997 	}
5998 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5999 					    SYNC_EVENTS_DISABLED;
6000 
6001 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6002 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6003 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6004 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6005 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6006 		       channel->channel);
6007 
6008 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6009 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6010 
6011 	return rc;
6012 }
6013 
6014 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6015 					   bool temp)
6016 {
6017 	int (*set)(struct efx_channel *channel, bool temp);
6018 	struct efx_channel *channel;
6019 
6020 	set = en ?
6021 	      efx_ef10_rx_enable_timestamping :
6022 	      efx_ef10_rx_disable_timestamping;
6023 
6024 	efx_for_each_channel(channel, efx) {
6025 		int rc = set(channel, temp);
6026 		if (en && rc != 0) {
6027 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6028 			return rc;
6029 		}
6030 	}
6031 
6032 	return 0;
6033 }
6034 
6035 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6036 					 struct hwtstamp_config *init)
6037 {
6038 	return -EOPNOTSUPP;
6039 }
6040 
6041 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6042 				      struct hwtstamp_config *init)
6043 {
6044 	int rc;
6045 
6046 	switch (init->rx_filter) {
6047 	case HWTSTAMP_FILTER_NONE:
6048 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6049 		/* if TX timestamping is still requested then leave PTP on */
6050 		return efx_ptp_change_mode(efx,
6051 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
6052 	case HWTSTAMP_FILTER_ALL:
6053 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6054 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6055 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6056 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6057 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6058 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6059 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6060 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6061 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6062 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6063 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6064 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6065 		init->rx_filter = HWTSTAMP_FILTER_ALL;
6066 		rc = efx_ptp_change_mode(efx, true, 0);
6067 		if (!rc)
6068 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6069 		if (rc)
6070 			efx_ptp_change_mode(efx, false, 0);
6071 		return rc;
6072 	default:
6073 		return -ERANGE;
6074 	}
6075 }
6076 
6077 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6078 				     struct netdev_phys_item_id *ppid)
6079 {
6080 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6081 
6082 	if (!is_valid_ether_addr(nic_data->port_id))
6083 		return -EOPNOTSUPP;
6084 
6085 	ppid->id_len = ETH_ALEN;
6086 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6087 
6088 	return 0;
6089 }
6090 
6091 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6092 {
6093 	if (proto != htons(ETH_P_8021Q))
6094 		return -EINVAL;
6095 
6096 	return efx_ef10_add_vlan(efx, vid);
6097 }
6098 
6099 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6100 {
6101 	if (proto != htons(ETH_P_8021Q))
6102 		return -EINVAL;
6103 
6104 	return efx_ef10_del_vlan(efx, vid);
6105 }
6106 
6107 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6108  * ports table, ensuring that any TSO descriptors that were made on a now-
6109  * removed tunnel port will be blown away and won't break things when we try
6110  * to transmit them using the new ports table.
6111  */
6112 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6113 {
6114 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6115 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6116 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6117 	bool will_reset = false;
6118 	size_t num_entries = 0;
6119 	size_t inlen, outlen;
6120 	size_t i;
6121 	int rc;
6122 	efx_dword_t flags_and_num_entries;
6123 
6124 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6125 
6126 	nic_data->udp_tunnels_dirty = false;
6127 
6128 	if (!(nic_data->datapath_caps &
6129 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6130 		efx_device_attach_if_not_resetting(efx);
6131 		return 0;
6132 	}
6133 
6134 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6135 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6136 
6137 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6138 		if (nic_data->udp_tunnels[i].count &&
6139 		    nic_data->udp_tunnels[i].port) {
6140 			efx_dword_t entry;
6141 
6142 			EFX_POPULATE_DWORD_2(entry,
6143 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6144 					ntohs(nic_data->udp_tunnels[i].port),
6145 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6146 					nic_data->udp_tunnels[i].type);
6147 			*_MCDI_ARRAY_DWORD(inbuf,
6148 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6149 				num_entries++) = entry;
6150 		}
6151 	}
6152 
6153 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6154 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6155 		     EFX_WORD_1_LBN);
6156 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6157 		     EFX_WORD_1_WIDTH);
6158 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
6159 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6160 				!!unloading,
6161 			     EFX_WORD_1, num_entries);
6162 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6163 		flags_and_num_entries;
6164 
6165 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6166 
6167 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6168 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6169 	if (rc == -EIO) {
6170 		/* Most likely the MC rebooted due to another function also
6171 		 * setting its tunnel port list. Mark the tunnel port list as
6172 		 * dirty, so it will be pushed upon coming up from the reboot.
6173 		 */
6174 		nic_data->udp_tunnels_dirty = true;
6175 		return 0;
6176 	}
6177 
6178 	if (rc) {
6179 		/* expected not available on unprivileged functions */
6180 		if (rc != -EPERM)
6181 			netif_warn(efx, drv, efx->net_dev,
6182 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6183 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6184 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6185 		netif_info(efx, drv, efx->net_dev,
6186 			   "Rebooting MC due to UDP tunnel port list change\n");
6187 		will_reset = true;
6188 		if (unloading)
6189 			/* Delay for the MC reset to complete. This will make
6190 			 * unloading other functions a bit smoother. This is a
6191 			 * race, but the other unload will work whichever way
6192 			 * it goes, this just avoids an unnecessary error
6193 			 * message.
6194 			 */
6195 			msleep(100);
6196 	}
6197 	if (!will_reset && !unloading) {
6198 		/* The caller will have detached, relying on the MC reset to
6199 		 * trigger a re-attach.  Since there won't be an MC reset, we
6200 		 * have to do the attach ourselves.
6201 		 */
6202 		efx_device_attach_if_not_resetting(efx);
6203 	}
6204 
6205 	return rc;
6206 }
6207 
6208 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6209 {
6210 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6211 	int rc = 0;
6212 
6213 	mutex_lock(&nic_data->udp_tunnels_lock);
6214 	if (nic_data->udp_tunnels_dirty) {
6215 		/* Make sure all TX are stopped while we modify the table, else
6216 		 * we might race against an efx_features_check().
6217 		 */
6218 		efx_device_detach_sync(efx);
6219 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
6220 	}
6221 	mutex_unlock(&nic_data->udp_tunnels_lock);
6222 	return rc;
6223 }
6224 
6225 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6226 							     __be16 port)
6227 {
6228 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6229 	size_t i;
6230 
6231 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6232 		if (!nic_data->udp_tunnels[i].count)
6233 			continue;
6234 		if (nic_data->udp_tunnels[i].port == port)
6235 			return &nic_data->udp_tunnels[i];
6236 	}
6237 	return NULL;
6238 }
6239 
6240 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6241 				     struct efx_udp_tunnel tnl)
6242 {
6243 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6244 	struct efx_udp_tunnel *match;
6245 	char typebuf[8];
6246 	size_t i;
6247 	int rc;
6248 
6249 	if (!(nic_data->datapath_caps &
6250 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6251 		return 0;
6252 
6253 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6254 	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6255 		  typebuf, ntohs(tnl.port));
6256 
6257 	mutex_lock(&nic_data->udp_tunnels_lock);
6258 	/* Make sure all TX are stopped while we add to the table, else we
6259 	 * might race against an efx_features_check().
6260 	 */
6261 	efx_device_detach_sync(efx);
6262 
6263 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6264 	if (match != NULL) {
6265 		if (match->type == tnl.type) {
6266 			netif_dbg(efx, drv, efx->net_dev,
6267 				  "Referencing existing tunnel entry\n");
6268 			match->count++;
6269 			/* No need to cause an MCDI update */
6270 			rc = 0;
6271 			goto unlock_out;
6272 		}
6273 		efx_get_udp_tunnel_type_name(match->type,
6274 					     typebuf, sizeof(typebuf));
6275 		netif_dbg(efx, drv, efx->net_dev,
6276 			  "UDP port %d is already in use by %s\n",
6277 			  ntohs(tnl.port), typebuf);
6278 		rc = -EEXIST;
6279 		goto unlock_out;
6280 	}
6281 
6282 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6283 		if (!nic_data->udp_tunnels[i].count) {
6284 			nic_data->udp_tunnels[i] = tnl;
6285 			nic_data->udp_tunnels[i].count = 1;
6286 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6287 			goto unlock_out;
6288 		}
6289 
6290 	netif_dbg(efx, drv, efx->net_dev,
6291 		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6292 		  typebuf, ntohs(tnl.port));
6293 
6294 	rc = -ENOMEM;
6295 
6296 unlock_out:
6297 	mutex_unlock(&nic_data->udp_tunnels_lock);
6298 	return rc;
6299 }
6300 
6301 /* Called under the TX lock with the TX queue running, hence no-one can be
6302  * in the middle of updating the UDP tunnels table.  However, they could
6303  * have tried and failed the MCDI, in which case they'll have set the dirty
6304  * flag before dropping their locks.
6305  */
6306 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6307 {
6308 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6309 
6310 	if (!(nic_data->datapath_caps &
6311 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6312 		return false;
6313 
6314 	if (nic_data->udp_tunnels_dirty)
6315 		/* SW table may not match HW state, so just assume we can't
6316 		 * use any UDP tunnel offloads.
6317 		 */
6318 		return false;
6319 
6320 	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6321 }
6322 
6323 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6324 				     struct efx_udp_tunnel tnl)
6325 {
6326 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6327 	struct efx_udp_tunnel *match;
6328 	char typebuf[8];
6329 	int rc;
6330 
6331 	if (!(nic_data->datapath_caps &
6332 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6333 		return 0;
6334 
6335 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6336 	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6337 		  typebuf, ntohs(tnl.port));
6338 
6339 	mutex_lock(&nic_data->udp_tunnels_lock);
6340 	/* Make sure all TX are stopped while we remove from the table, else we
6341 	 * might race against an efx_features_check().
6342 	 */
6343 	efx_device_detach_sync(efx);
6344 
6345 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6346 	if (match != NULL) {
6347 		if (match->type == tnl.type) {
6348 			if (--match->count) {
6349 				/* Port is still in use, so nothing to do */
6350 				netif_dbg(efx, drv, efx->net_dev,
6351 					  "UDP tunnel port %d remains active\n",
6352 					  ntohs(tnl.port));
6353 				rc = 0;
6354 				goto out_unlock;
6355 			}
6356 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6357 			goto out_unlock;
6358 		}
6359 		efx_get_udp_tunnel_type_name(match->type,
6360 					     typebuf, sizeof(typebuf));
6361 		netif_warn(efx, drv, efx->net_dev,
6362 			   "UDP port %d is actually in use by %s, not removing\n",
6363 			   ntohs(tnl.port), typebuf);
6364 	}
6365 	rc = -ENOENT;
6366 
6367 out_unlock:
6368 	mutex_unlock(&nic_data->udp_tunnels_lock);
6369 	return rc;
6370 }
6371 
6372 #define EF10_OFFLOAD_FEATURES		\
6373 	(NETIF_F_IP_CSUM |		\
6374 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6375 	 NETIF_F_IPV6_CSUM |		\
6376 	 NETIF_F_RXHASH |		\
6377 	 NETIF_F_NTUPLE)
6378 
6379 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6380 	.is_vf = true,
6381 	.mem_bar = EFX_MEM_VF_BAR,
6382 	.mem_map_size = efx_ef10_mem_map_size,
6383 	.probe = efx_ef10_probe_vf,
6384 	.remove = efx_ef10_remove,
6385 	.dimension_resources = efx_ef10_dimension_resources,
6386 	.init = efx_ef10_init_nic,
6387 	.fini = efx_port_dummy_op_void,
6388 	.map_reset_reason = efx_ef10_map_reset_reason,
6389 	.map_reset_flags = efx_ef10_map_reset_flags,
6390 	.reset = efx_ef10_reset,
6391 	.probe_port = efx_mcdi_port_probe,
6392 	.remove_port = efx_mcdi_port_remove,
6393 	.fini_dmaq = efx_ef10_fini_dmaq,
6394 	.prepare_flr = efx_ef10_prepare_flr,
6395 	.finish_flr = efx_port_dummy_op_void,
6396 	.describe_stats = efx_ef10_describe_stats,
6397 	.update_stats = efx_ef10_update_stats_vf,
6398 	.start_stats = efx_port_dummy_op_void,
6399 	.pull_stats = efx_port_dummy_op_void,
6400 	.stop_stats = efx_port_dummy_op_void,
6401 	.set_id_led = efx_mcdi_set_id_led,
6402 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6403 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6404 	.check_mac_fault = efx_mcdi_mac_check_fault,
6405 	.reconfigure_port = efx_mcdi_port_reconfigure,
6406 	.get_wol = efx_ef10_get_wol_vf,
6407 	.set_wol = efx_ef10_set_wol_vf,
6408 	.resume_wol = efx_port_dummy_op_void,
6409 	.mcdi_request = efx_ef10_mcdi_request,
6410 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6411 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6412 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6413 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6414 	.irq_enable_master = efx_port_dummy_op_void,
6415 	.irq_test_generate = efx_ef10_irq_test_generate,
6416 	.irq_disable_non_ev = efx_port_dummy_op_void,
6417 	.irq_handle_msi = efx_ef10_msi_interrupt,
6418 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6419 	.tx_probe = efx_ef10_tx_probe,
6420 	.tx_init = efx_ef10_tx_init,
6421 	.tx_remove = efx_ef10_tx_remove,
6422 	.tx_write = efx_ef10_tx_write,
6423 	.tx_limit_len = efx_ef10_tx_limit_len,
6424 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6425 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6426 	.rx_probe = efx_ef10_rx_probe,
6427 	.rx_init = efx_ef10_rx_init,
6428 	.rx_remove = efx_ef10_rx_remove,
6429 	.rx_write = efx_ef10_rx_write,
6430 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6431 	.ev_probe = efx_ef10_ev_probe,
6432 	.ev_init = efx_ef10_ev_init,
6433 	.ev_fini = efx_ef10_ev_fini,
6434 	.ev_remove = efx_ef10_ev_remove,
6435 	.ev_process = efx_ef10_ev_process,
6436 	.ev_read_ack = efx_ef10_ev_read_ack,
6437 	.ev_test_generate = efx_ef10_ev_test_generate,
6438 	.filter_table_probe = efx_ef10_filter_table_probe,
6439 	.filter_table_restore = efx_ef10_filter_table_restore,
6440 	.filter_table_remove = efx_ef10_filter_table_remove,
6441 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6442 	.filter_insert = efx_ef10_filter_insert,
6443 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6444 	.filter_get_safe = efx_ef10_filter_get_safe,
6445 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6446 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6447 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6448 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6449 #ifdef CONFIG_RFS_ACCEL
6450 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6451 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6452 #endif
6453 #ifdef CONFIG_SFC_MTD
6454 	.mtd_probe = efx_port_dummy_op_int,
6455 #endif
6456 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6457 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6458 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6459 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6460 #ifdef CONFIG_SFC_SRIOV
6461 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
6462 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
6463 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6464 #endif
6465 	.get_mac_address = efx_ef10_get_mac_address_vf,
6466 	.set_mac_address = efx_ef10_set_mac_address,
6467 
6468 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6469 	.revision = EFX_REV_HUNT_A0,
6470 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6471 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6472 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6473 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6474 	.can_rx_scatter = true,
6475 	.always_rx_scatter = true,
6476 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6477 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6478 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6479 	.offload_features = EF10_OFFLOAD_FEATURES,
6480 	.mcdi_max_ver = 2,
6481 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6482 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6483 			    1 << HWTSTAMP_FILTER_ALL,
6484 	.rx_hash_key_size = 40,
6485 };
6486 
6487 const struct efx_nic_type efx_hunt_a0_nic_type = {
6488 	.is_vf = false,
6489 	.mem_bar = EFX_MEM_BAR,
6490 	.mem_map_size = efx_ef10_mem_map_size,
6491 	.probe = efx_ef10_probe_pf,
6492 	.remove = efx_ef10_remove,
6493 	.dimension_resources = efx_ef10_dimension_resources,
6494 	.init = efx_ef10_init_nic,
6495 	.fini = efx_port_dummy_op_void,
6496 	.map_reset_reason = efx_ef10_map_reset_reason,
6497 	.map_reset_flags = efx_ef10_map_reset_flags,
6498 	.reset = efx_ef10_reset,
6499 	.probe_port = efx_mcdi_port_probe,
6500 	.remove_port = efx_mcdi_port_remove,
6501 	.fini_dmaq = efx_ef10_fini_dmaq,
6502 	.prepare_flr = efx_ef10_prepare_flr,
6503 	.finish_flr = efx_port_dummy_op_void,
6504 	.describe_stats = efx_ef10_describe_stats,
6505 	.update_stats = efx_ef10_update_stats_pf,
6506 	.start_stats = efx_mcdi_mac_start_stats,
6507 	.pull_stats = efx_mcdi_mac_pull_stats,
6508 	.stop_stats = efx_mcdi_mac_stop_stats,
6509 	.set_id_led = efx_mcdi_set_id_led,
6510 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6511 	.reconfigure_mac = efx_ef10_mac_reconfigure,
6512 	.check_mac_fault = efx_mcdi_mac_check_fault,
6513 	.reconfigure_port = efx_mcdi_port_reconfigure,
6514 	.get_wol = efx_ef10_get_wol,
6515 	.set_wol = efx_ef10_set_wol,
6516 	.resume_wol = efx_port_dummy_op_void,
6517 	.test_chip = efx_ef10_test_chip,
6518 	.test_nvram = efx_mcdi_nvram_test_all,
6519 	.mcdi_request = efx_ef10_mcdi_request,
6520 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6521 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6522 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6523 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6524 	.irq_enable_master = efx_port_dummy_op_void,
6525 	.irq_test_generate = efx_ef10_irq_test_generate,
6526 	.irq_disable_non_ev = efx_port_dummy_op_void,
6527 	.irq_handle_msi = efx_ef10_msi_interrupt,
6528 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6529 	.tx_probe = efx_ef10_tx_probe,
6530 	.tx_init = efx_ef10_tx_init,
6531 	.tx_remove = efx_ef10_tx_remove,
6532 	.tx_write = efx_ef10_tx_write,
6533 	.tx_limit_len = efx_ef10_tx_limit_len,
6534 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6535 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6536 	.rx_probe = efx_ef10_rx_probe,
6537 	.rx_init = efx_ef10_rx_init,
6538 	.rx_remove = efx_ef10_rx_remove,
6539 	.rx_write = efx_ef10_rx_write,
6540 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6541 	.ev_probe = efx_ef10_ev_probe,
6542 	.ev_init = efx_ef10_ev_init,
6543 	.ev_fini = efx_ef10_ev_fini,
6544 	.ev_remove = efx_ef10_ev_remove,
6545 	.ev_process = efx_ef10_ev_process,
6546 	.ev_read_ack = efx_ef10_ev_read_ack,
6547 	.ev_test_generate = efx_ef10_ev_test_generate,
6548 	.filter_table_probe = efx_ef10_filter_table_probe,
6549 	.filter_table_restore = efx_ef10_filter_table_restore,
6550 	.filter_table_remove = efx_ef10_filter_table_remove,
6551 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6552 	.filter_insert = efx_ef10_filter_insert,
6553 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6554 	.filter_get_safe = efx_ef10_filter_get_safe,
6555 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6556 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6557 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6558 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6559 #ifdef CONFIG_RFS_ACCEL
6560 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6561 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6562 #endif
6563 #ifdef CONFIG_SFC_MTD
6564 	.mtd_probe = efx_ef10_mtd_probe,
6565 	.mtd_rename = efx_mcdi_mtd_rename,
6566 	.mtd_read = efx_mcdi_mtd_read,
6567 	.mtd_erase = efx_mcdi_mtd_erase,
6568 	.mtd_write = efx_mcdi_mtd_write,
6569 	.mtd_sync = efx_mcdi_mtd_sync,
6570 #endif
6571 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6572 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6573 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6574 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6575 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6576 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6577 	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6578 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6579 	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6580 #ifdef CONFIG_SFC_SRIOV
6581 	.sriov_configure = efx_ef10_sriov_configure,
6582 	.sriov_init = efx_ef10_sriov_init,
6583 	.sriov_fini = efx_ef10_sriov_fini,
6584 	.sriov_wanted = efx_ef10_sriov_wanted,
6585 	.sriov_reset = efx_ef10_sriov_reset,
6586 	.sriov_flr = efx_ef10_sriov_flr,
6587 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6588 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6589 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6590 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6591 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6592 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
6593 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
6594 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6595 #endif
6596 	.get_mac_address = efx_ef10_get_mac_address_pf,
6597 	.set_mac_address = efx_ef10_set_mac_address,
6598 	.tso_versions = efx_ef10_tso_versions,
6599 
6600 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6601 	.revision = EFX_REV_HUNT_A0,
6602 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6603 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6604 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6605 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6606 	.can_rx_scatter = true,
6607 	.always_rx_scatter = true,
6608 	.option_descriptors = true,
6609 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6610 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6611 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6612 	.offload_features = EF10_OFFLOAD_FEATURES,
6613 	.mcdi_max_ver = 2,
6614 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6615 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6616 			    1 << HWTSTAMP_FILTER_ALL,
6617 	.rx_hash_key_size = 40,
6618 };
6619