1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2012-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include "net_driver.h" 11 #include "ef10_regs.h" 12 #include "io.h" 13 #include "mcdi.h" 14 #include "mcdi_pcol.h" 15 #include "nic.h" 16 #include "workarounds.h" 17 #include "selftest.h" 18 #include "ef10_sriov.h" 19 #include <linux/in.h> 20 #include <linux/jhash.h> 21 #include <linux/wait.h> 22 #include <linux/workqueue.h> 23 24 /* Hardware control for EF10 architecture including 'Huntington'. */ 25 26 #define EFX_EF10_DRVGEN_EV 7 27 enum { 28 EFX_EF10_TEST = 1, 29 EFX_EF10_REFILL, 30 }; 31 /* The maximum size of a shared RSS context */ 32 /* TODO: this should really be from the mcdi protocol export */ 33 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL 34 35 /* The filter table(s) are managed by firmware and we have write-only 36 * access. When removing filters we must identify them to the 37 * firmware by a 64-bit handle, but this is too wide for Linux kernel 38 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to 39 * be able to tell in advance whether a requested insertion will 40 * replace an existing filter. Therefore we maintain a software hash 41 * table, which should be at least as large as the hardware hash 42 * table. 43 * 44 * Huntington has a single 8K filter table shared between all filter 45 * types and both ports. 46 */ 47 #define HUNT_FILTER_TBL_ROWS 8192 48 49 #define EFX_EF10_FILTER_ID_INVALID 0xffff 50 51 #define EFX_EF10_FILTER_DEV_UC_MAX 32 52 #define EFX_EF10_FILTER_DEV_MC_MAX 256 53 54 /* VLAN list entry */ 55 struct efx_ef10_vlan { 56 struct list_head list; 57 u16 vid; 58 }; 59 60 enum efx_ef10_default_filters { 61 EFX_EF10_BCAST, 62 EFX_EF10_UCDEF, 63 EFX_EF10_MCDEF, 64 EFX_EF10_VXLAN4_UCDEF, 65 EFX_EF10_VXLAN4_MCDEF, 66 EFX_EF10_VXLAN6_UCDEF, 67 EFX_EF10_VXLAN6_MCDEF, 68 EFX_EF10_NVGRE4_UCDEF, 69 EFX_EF10_NVGRE4_MCDEF, 70 EFX_EF10_NVGRE6_UCDEF, 71 EFX_EF10_NVGRE6_MCDEF, 72 EFX_EF10_GENEVE4_UCDEF, 73 EFX_EF10_GENEVE4_MCDEF, 74 EFX_EF10_GENEVE6_UCDEF, 75 EFX_EF10_GENEVE6_MCDEF, 76 77 EFX_EF10_NUM_DEFAULT_FILTERS 78 }; 79 80 /* Per-VLAN filters information */ 81 struct efx_ef10_filter_vlan { 82 struct list_head list; 83 u16 vid; 84 u16 uc[EFX_EF10_FILTER_DEV_UC_MAX]; 85 u16 mc[EFX_EF10_FILTER_DEV_MC_MAX]; 86 u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS]; 87 }; 88 89 struct efx_ef10_dev_addr { 90 u8 addr[ETH_ALEN]; 91 }; 92 93 struct efx_ef10_filter_table { 94 /* The MCDI match masks supported by this fw & hw, in order of priority */ 95 u32 rx_match_mcdi_flags[ 96 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2]; 97 unsigned int rx_match_count; 98 99 struct rw_semaphore lock; /* Protects entries */ 100 struct { 101 unsigned long spec; /* pointer to spec plus flag bits */ 102 /* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */ 103 /* unused flag 1UL */ 104 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL 105 #define EFX_EF10_FILTER_FLAGS 3UL 106 u64 handle; /* firmware handle */ 107 } *entry; 108 /* Shadow of net_device address lists, guarded by mac_lock */ 109 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX]; 110 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX]; 111 int dev_uc_count; 112 int dev_mc_count; 113 bool uc_promisc; 114 bool mc_promisc; 115 /* Whether in multicast promiscuous mode when last changed */ 116 bool mc_promisc_last; 117 bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */ 118 bool vlan_filter; 119 struct list_head vlan_list; 120 }; 121 122 /* An arbitrary search limit for the software hash table */ 123 #define EFX_EF10_FILTER_SEARCH_LIMIT 200 124 125 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx); 126 static void efx_ef10_filter_table_remove(struct efx_nic *efx); 127 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid); 128 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx, 129 struct efx_ef10_filter_vlan *vlan); 130 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid); 131 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading); 132 133 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id) 134 { 135 WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID); 136 return filter_id & (HUNT_FILTER_TBL_ROWS - 1); 137 } 138 139 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id) 140 { 141 return filter_id / (HUNT_FILTER_TBL_ROWS * 2); 142 } 143 144 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx) 145 { 146 return pri * HUNT_FILTER_TBL_ROWS * 2 + idx; 147 } 148 149 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) 150 { 151 efx_dword_t reg; 152 153 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); 154 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? 155 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; 156 } 157 158 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for 159 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O 160 * bar; PFs use BAR 0/1 for memory. 161 */ 162 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx) 163 { 164 switch (efx->pci_dev->device) { 165 case 0x0b03: /* SFC9250 PF */ 166 return 0; 167 default: 168 return 2; 169 } 170 } 171 172 /* All VFs use BAR 0/1 for memory */ 173 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx) 174 { 175 return 0; 176 } 177 178 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) 179 { 180 int bar; 181 182 bar = efx->type->mem_bar(efx); 183 return resource_size(&efx->pci_dev->resource[bar]); 184 } 185 186 static bool efx_ef10_is_vf(struct efx_nic *efx) 187 { 188 return efx->type->is_vf; 189 } 190 191 static int efx_ef10_get_pf_index(struct efx_nic *efx) 192 { 193 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); 194 struct efx_ef10_nic_data *nic_data = efx->nic_data; 195 size_t outlen; 196 int rc; 197 198 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, 199 sizeof(outbuf), &outlen); 200 if (rc) 201 return rc; 202 if (outlen < sizeof(outbuf)) 203 return -EIO; 204 205 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF); 206 return 0; 207 } 208 209 #ifdef CONFIG_SFC_SRIOV 210 static int efx_ef10_get_vf_index(struct efx_nic *efx) 211 { 212 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); 213 struct efx_ef10_nic_data *nic_data = efx->nic_data; 214 size_t outlen; 215 int rc; 216 217 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, 218 sizeof(outbuf), &outlen); 219 if (rc) 220 return rc; 221 if (outlen < sizeof(outbuf)) 222 return -EIO; 223 224 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF); 225 return 0; 226 } 227 #endif 228 229 static int efx_ef10_init_datapath_caps(struct efx_nic *efx) 230 { 231 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN); 232 struct efx_ef10_nic_data *nic_data = efx->nic_data; 233 size_t outlen; 234 int rc; 235 236 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 237 238 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 239 outbuf, sizeof(outbuf), &outlen); 240 if (rc) 241 return rc; 242 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) { 243 netif_err(efx, drv, efx->net_dev, 244 "unable to read datapath firmware capabilities\n"); 245 return -EIO; 246 } 247 248 nic_data->datapath_caps = 249 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); 250 251 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) { 252 nic_data->datapath_caps2 = MCDI_DWORD(outbuf, 253 GET_CAPABILITIES_V2_OUT_FLAGS2); 254 nic_data->piobuf_size = MCDI_WORD(outbuf, 255 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF); 256 } else { 257 nic_data->datapath_caps2 = 0; 258 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE; 259 } 260 261 /* record the DPCPU firmware IDs to determine VEB vswitching support. 262 */ 263 nic_data->rx_dpcpu_fw_id = 264 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); 265 nic_data->tx_dpcpu_fw_id = 266 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); 267 268 if (!(nic_data->datapath_caps & 269 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { 270 netif_err(efx, probe, efx->net_dev, 271 "current firmware does not support an RX prefix\n"); 272 return -ENODEV; 273 } 274 275 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) { 276 u8 vi_window_mode = MCDI_BYTE(outbuf, 277 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); 278 279 switch (vi_window_mode) { 280 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K: 281 efx->vi_stride = 8192; 282 break; 283 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K: 284 efx->vi_stride = 16384; 285 break; 286 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K: 287 efx->vi_stride = 65536; 288 break; 289 default: 290 netif_err(efx, probe, efx->net_dev, 291 "Unrecognised VI window mode %d\n", 292 vi_window_mode); 293 return -EIO; 294 } 295 netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n", 296 efx->vi_stride); 297 } else { 298 /* keep default VI stride */ 299 netif_dbg(efx, probe, efx->net_dev, 300 "firmware did not report VI window mode, assuming vi_stride = %u\n", 301 efx->vi_stride); 302 } 303 304 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { 305 efx->num_mac_stats = MCDI_WORD(outbuf, 306 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); 307 netif_dbg(efx, probe, efx->net_dev, 308 "firmware reports num_mac_stats = %u\n", 309 efx->num_mac_stats); 310 } else { 311 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */ 312 netif_dbg(efx, probe, efx->net_dev, 313 "firmware did not report num_mac_stats, assuming %u\n", 314 efx->num_mac_stats); 315 } 316 317 return 0; 318 } 319 320 static void efx_ef10_read_licensed_features(struct efx_nic *efx) 321 { 322 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN); 323 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN); 324 struct efx_ef10_nic_data *nic_data = efx->nic_data; 325 size_t outlen; 326 int rc; 327 328 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP, 329 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE); 330 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf), 331 outbuf, sizeof(outbuf), &outlen); 332 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN)) 333 return; 334 335 nic_data->licensed_features = MCDI_QWORD(outbuf, 336 LICENSING_V3_OUT_LICENSED_FEATURES); 337 } 338 339 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) 340 { 341 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); 342 int rc; 343 344 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, 345 outbuf, sizeof(outbuf), NULL); 346 if (rc) 347 return rc; 348 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); 349 return rc > 0 ? rc : -ERANGE; 350 } 351 352 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx) 353 { 354 struct efx_ef10_nic_data *nic_data = efx->nic_data; 355 unsigned int implemented; 356 unsigned int enabled; 357 int rc; 358 359 nic_data->workaround_35388 = false; 360 nic_data->workaround_61265 = false; 361 362 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); 363 364 if (rc == -ENOSYS) { 365 /* Firmware without GET_WORKAROUNDS - not a problem. */ 366 rc = 0; 367 } else if (rc == 0) { 368 /* Bug61265 workaround is always enabled if implemented. */ 369 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265) 370 nic_data->workaround_61265 = true; 371 372 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { 373 nic_data->workaround_35388 = true; 374 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { 375 /* Workaround is implemented but not enabled. 376 * Try to enable it. 377 */ 378 rc = efx_mcdi_set_workaround(efx, 379 MC_CMD_WORKAROUND_BUG35388, 380 true, NULL); 381 if (rc == 0) 382 nic_data->workaround_35388 = true; 383 /* If we failed to set the workaround just carry on. */ 384 rc = 0; 385 } 386 } 387 388 netif_dbg(efx, probe, efx->net_dev, 389 "workaround for bug 35388 is %sabled\n", 390 nic_data->workaround_35388 ? "en" : "dis"); 391 netif_dbg(efx, probe, efx->net_dev, 392 "workaround for bug 61265 is %sabled\n", 393 nic_data->workaround_61265 ? "en" : "dis"); 394 395 return rc; 396 } 397 398 static void efx_ef10_process_timer_config(struct efx_nic *efx, 399 const efx_dword_t *data) 400 { 401 unsigned int max_count; 402 403 if (EFX_EF10_WORKAROUND_61265(efx)) { 404 efx->timer_quantum_ns = MCDI_DWORD(data, 405 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS); 406 efx->timer_max_ns = MCDI_DWORD(data, 407 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS); 408 } else if (EFX_EF10_WORKAROUND_35388(efx)) { 409 efx->timer_quantum_ns = MCDI_DWORD(data, 410 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT); 411 max_count = MCDI_DWORD(data, 412 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT); 413 efx->timer_max_ns = max_count * efx->timer_quantum_ns; 414 } else { 415 efx->timer_quantum_ns = MCDI_DWORD(data, 416 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT); 417 max_count = MCDI_DWORD(data, 418 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT); 419 efx->timer_max_ns = max_count * efx->timer_quantum_ns; 420 } 421 422 netif_dbg(efx, probe, efx->net_dev, 423 "got timer properties from MC: quantum %u ns; max %u ns\n", 424 efx->timer_quantum_ns, efx->timer_max_ns); 425 } 426 427 static int efx_ef10_get_timer_config(struct efx_nic *efx) 428 { 429 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN); 430 int rc; 431 432 rc = efx_ef10_get_timer_workarounds(efx); 433 if (rc) 434 return rc; 435 436 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0, 437 outbuf, sizeof(outbuf), NULL); 438 439 if (rc == 0) { 440 efx_ef10_process_timer_config(efx, outbuf); 441 } else if (rc == -ENOSYS || rc == -EPERM) { 442 /* Not available - fall back to Huntington defaults. */ 443 unsigned int quantum; 444 445 rc = efx_ef10_get_sysclk_freq(efx); 446 if (rc < 0) 447 return rc; 448 449 quantum = 1536000 / rc; /* 1536 cycles */ 450 efx->timer_quantum_ns = quantum; 451 efx->timer_max_ns = efx->type->timer_period_max * quantum; 452 rc = 0; 453 } else { 454 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, 455 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN, 456 NULL, 0, rc); 457 } 458 459 return rc; 460 } 461 462 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address) 463 { 464 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); 465 size_t outlen; 466 int rc; 467 468 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); 469 470 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, 471 outbuf, sizeof(outbuf), &outlen); 472 if (rc) 473 return rc; 474 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) 475 return -EIO; 476 477 ether_addr_copy(mac_address, 478 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); 479 return 0; 480 } 481 482 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address) 483 { 484 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN); 485 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); 486 size_t outlen; 487 int num_addrs, rc; 488 489 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, 490 EVB_PORT_ID_ASSIGNED); 491 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf, 492 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 493 494 if (rc) 495 return rc; 496 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) 497 return -EIO; 498 499 num_addrs = MCDI_DWORD(outbuf, 500 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT); 501 502 WARN_ON(num_addrs != 1); 503 504 ether_addr_copy(mac_address, 505 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR)); 506 507 return 0; 508 } 509 510 static ssize_t efx_ef10_show_link_control_flag(struct device *dev, 511 struct device_attribute *attr, 512 char *buf) 513 { 514 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 515 516 return sprintf(buf, "%d\n", 517 ((efx->mcdi->fn_flags) & 518 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) 519 ? 1 : 0); 520 } 521 522 static ssize_t efx_ef10_show_primary_flag(struct device *dev, 523 struct device_attribute *attr, 524 char *buf) 525 { 526 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 527 528 return sprintf(buf, "%d\n", 529 ((efx->mcdi->fn_flags) & 530 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 531 ? 1 : 0); 532 } 533 534 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid) 535 { 536 struct efx_ef10_nic_data *nic_data = efx->nic_data; 537 struct efx_ef10_vlan *vlan; 538 539 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); 540 541 list_for_each_entry(vlan, &nic_data->vlan_list, list) { 542 if (vlan->vid == vid) 543 return vlan; 544 } 545 546 return NULL; 547 } 548 549 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid) 550 { 551 struct efx_ef10_nic_data *nic_data = efx->nic_data; 552 struct efx_ef10_vlan *vlan; 553 int rc; 554 555 mutex_lock(&nic_data->vlan_lock); 556 557 vlan = efx_ef10_find_vlan(efx, vid); 558 if (vlan) { 559 /* We add VID 0 on init. 8021q adds it on module init 560 * for all interfaces with VLAN filtring feature. 561 */ 562 if (vid == 0) 563 goto done_unlock; 564 netif_warn(efx, drv, efx->net_dev, 565 "VLAN %u already added\n", vid); 566 rc = -EALREADY; 567 goto fail_exist; 568 } 569 570 rc = -ENOMEM; 571 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 572 if (!vlan) 573 goto fail_alloc; 574 575 vlan->vid = vid; 576 577 list_add_tail(&vlan->list, &nic_data->vlan_list); 578 579 if (efx->filter_state) { 580 mutex_lock(&efx->mac_lock); 581 down_write(&efx->filter_sem); 582 rc = efx_ef10_filter_add_vlan(efx, vlan->vid); 583 up_write(&efx->filter_sem); 584 mutex_unlock(&efx->mac_lock); 585 if (rc) 586 goto fail_filter_add_vlan; 587 } 588 589 done_unlock: 590 mutex_unlock(&nic_data->vlan_lock); 591 return 0; 592 593 fail_filter_add_vlan: 594 list_del(&vlan->list); 595 kfree(vlan); 596 fail_alloc: 597 fail_exist: 598 mutex_unlock(&nic_data->vlan_lock); 599 return rc; 600 } 601 602 static void efx_ef10_del_vlan_internal(struct efx_nic *efx, 603 struct efx_ef10_vlan *vlan) 604 { 605 struct efx_ef10_nic_data *nic_data = efx->nic_data; 606 607 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); 608 609 if (efx->filter_state) { 610 down_write(&efx->filter_sem); 611 efx_ef10_filter_del_vlan(efx, vlan->vid); 612 up_write(&efx->filter_sem); 613 } 614 615 list_del(&vlan->list); 616 kfree(vlan); 617 } 618 619 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid) 620 { 621 struct efx_ef10_nic_data *nic_data = efx->nic_data; 622 struct efx_ef10_vlan *vlan; 623 int rc = 0; 624 625 /* 8021q removes VID 0 on module unload for all interfaces 626 * with VLAN filtering feature. We need to keep it to receive 627 * untagged traffic. 628 */ 629 if (vid == 0) 630 return 0; 631 632 mutex_lock(&nic_data->vlan_lock); 633 634 vlan = efx_ef10_find_vlan(efx, vid); 635 if (!vlan) { 636 netif_err(efx, drv, efx->net_dev, 637 "VLAN %u to be deleted not found\n", vid); 638 rc = -ENOENT; 639 } else { 640 efx_ef10_del_vlan_internal(efx, vlan); 641 } 642 643 mutex_unlock(&nic_data->vlan_lock); 644 645 return rc; 646 } 647 648 static void efx_ef10_cleanup_vlans(struct efx_nic *efx) 649 { 650 struct efx_ef10_nic_data *nic_data = efx->nic_data; 651 struct efx_ef10_vlan *vlan, *next_vlan; 652 653 mutex_lock(&nic_data->vlan_lock); 654 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list) 655 efx_ef10_del_vlan_internal(efx, vlan); 656 mutex_unlock(&nic_data->vlan_lock); 657 } 658 659 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag, 660 NULL); 661 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL); 662 663 static int efx_ef10_probe(struct efx_nic *efx) 664 { 665 struct efx_ef10_nic_data *nic_data; 666 int i, rc; 667 668 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); 669 if (!nic_data) 670 return -ENOMEM; 671 efx->nic_data = nic_data; 672 673 /* we assume later that we can copy from this buffer in dwords */ 674 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); 675 676 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, 677 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); 678 if (rc) 679 goto fail1; 680 681 /* Get the MC's warm boot count. In case it's rebooting right 682 * now, be prepared to retry. 683 */ 684 i = 0; 685 for (;;) { 686 rc = efx_ef10_get_warm_boot_count(efx); 687 if (rc >= 0) 688 break; 689 if (++i == 5) 690 goto fail2; 691 ssleep(1); 692 } 693 nic_data->warm_boot_count = rc; 694 695 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID; 696 697 nic_data->vport_id = EVB_PORT_ID_ASSIGNED; 698 699 /* In case we're recovering from a crash (kexec), we want to 700 * cancel any outstanding request by the previous user of this 701 * function. We send a special message using the least 702 * significant bits of the 'high' (doorbell) register. 703 */ 704 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); 705 706 rc = efx_mcdi_init(efx); 707 if (rc) 708 goto fail2; 709 710 mutex_init(&nic_data->udp_tunnels_lock); 711 712 /* Reset (most) configuration for this function */ 713 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); 714 if (rc) 715 goto fail3; 716 717 /* Enable event logging */ 718 rc = efx_mcdi_log_ctrl(efx, true, false, 0); 719 if (rc) 720 goto fail3; 721 722 rc = device_create_file(&efx->pci_dev->dev, 723 &dev_attr_link_control_flag); 724 if (rc) 725 goto fail3; 726 727 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 728 if (rc) 729 goto fail4; 730 731 rc = efx_ef10_get_pf_index(efx); 732 if (rc) 733 goto fail5; 734 735 rc = efx_ef10_init_datapath_caps(efx); 736 if (rc < 0) 737 goto fail5; 738 739 efx_ef10_read_licensed_features(efx); 740 741 /* We can have one VI for each vi_stride-byte region. 742 * However, until we use TX option descriptors we need two TX queues 743 * per channel. 744 */ 745 efx->max_channels = min_t(unsigned int, 746 EFX_MAX_CHANNELS, 747 efx_ef10_mem_map_size(efx) / 748 (efx->vi_stride * EFX_TXQ_TYPES)); 749 efx->max_tx_channels = efx->max_channels; 750 if (WARN_ON(efx->max_channels == 0)) { 751 rc = -EIO; 752 goto fail5; 753 } 754 755 efx->rx_packet_len_offset = 756 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; 757 758 if (nic_data->datapath_caps & 759 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN)) 760 efx->net_dev->hw_features |= NETIF_F_RXFCS; 761 762 rc = efx_mcdi_port_get_number(efx); 763 if (rc < 0) 764 goto fail5; 765 efx->port_num = rc; 766 767 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr); 768 if (rc) 769 goto fail5; 770 771 rc = efx_ef10_get_timer_config(efx); 772 if (rc < 0) 773 goto fail5; 774 775 rc = efx_mcdi_mon_probe(efx); 776 if (rc && rc != -EPERM) 777 goto fail5; 778 779 efx_ptp_defer_probe_with_channel(efx); 780 781 #ifdef CONFIG_SFC_SRIOV 782 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) { 783 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; 784 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); 785 786 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id); 787 } else 788 #endif 789 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr); 790 791 INIT_LIST_HEAD(&nic_data->vlan_list); 792 mutex_init(&nic_data->vlan_lock); 793 794 /* Add unspecified VID to support VLAN filtering being disabled */ 795 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC); 796 if (rc) 797 goto fail_add_vid_unspec; 798 799 /* If VLAN filtering is enabled, we need VID 0 to get untagged 800 * traffic. It is added automatically if 8021q module is loaded, 801 * but we can't rely on it since module may be not loaded. 802 */ 803 rc = efx_ef10_add_vlan(efx, 0); 804 if (rc) 805 goto fail_add_vid_0; 806 807 return 0; 808 809 fail_add_vid_0: 810 efx_ef10_cleanup_vlans(efx); 811 fail_add_vid_unspec: 812 mutex_destroy(&nic_data->vlan_lock); 813 efx_ptp_remove(efx); 814 efx_mcdi_mon_remove(efx); 815 fail5: 816 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 817 fail4: 818 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); 819 fail3: 820 efx_mcdi_detach(efx); 821 822 mutex_lock(&nic_data->udp_tunnels_lock); 823 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); 824 (void)efx_ef10_set_udp_tnl_ports(efx, true); 825 mutex_unlock(&nic_data->udp_tunnels_lock); 826 mutex_destroy(&nic_data->udp_tunnels_lock); 827 828 efx_mcdi_fini(efx); 829 fail2: 830 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 831 fail1: 832 kfree(nic_data); 833 efx->nic_data = NULL; 834 return rc; 835 } 836 837 static int efx_ef10_free_vis(struct efx_nic *efx) 838 { 839 MCDI_DECLARE_BUF_ERR(outbuf); 840 size_t outlen; 841 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0, 842 outbuf, sizeof(outbuf), &outlen); 843 844 /* -EALREADY means nothing to free, so ignore */ 845 if (rc == -EALREADY) 846 rc = 0; 847 if (rc) 848 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen, 849 rc); 850 return rc; 851 } 852 853 #ifdef EFX_USE_PIO 854 855 static void efx_ef10_free_piobufs(struct efx_nic *efx) 856 { 857 struct efx_ef10_nic_data *nic_data = efx->nic_data; 858 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); 859 unsigned int i; 860 int rc; 861 862 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); 863 864 for (i = 0; i < nic_data->n_piobufs; i++) { 865 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, 866 nic_data->piobuf_handle[i]); 867 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), 868 NULL, 0, NULL); 869 WARN_ON(rc); 870 } 871 872 nic_data->n_piobufs = 0; 873 } 874 875 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) 876 { 877 struct efx_ef10_nic_data *nic_data = efx->nic_data; 878 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); 879 unsigned int i; 880 size_t outlen; 881 int rc = 0; 882 883 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); 884 885 for (i = 0; i < n; i++) { 886 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, 887 outbuf, sizeof(outbuf), &outlen); 888 if (rc) { 889 /* Don't display the MC error if we didn't have space 890 * for a VF. 891 */ 892 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC)) 893 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF, 894 0, outbuf, outlen, rc); 895 break; 896 } 897 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { 898 rc = -EIO; 899 break; 900 } 901 nic_data->piobuf_handle[i] = 902 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); 903 netif_dbg(efx, probe, efx->net_dev, 904 "allocated PIO buffer %u handle %x\n", i, 905 nic_data->piobuf_handle[i]); 906 } 907 908 nic_data->n_piobufs = i; 909 if (rc) 910 efx_ef10_free_piobufs(efx); 911 return rc; 912 } 913 914 static int efx_ef10_link_piobufs(struct efx_nic *efx) 915 { 916 struct efx_ef10_nic_data *nic_data = efx->nic_data; 917 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN); 918 struct efx_channel *channel; 919 struct efx_tx_queue *tx_queue; 920 unsigned int offset, index; 921 int rc; 922 923 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); 924 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); 925 926 /* Link a buffer to each VI in the write-combining mapping */ 927 for (index = 0; index < nic_data->n_piobufs; ++index) { 928 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, 929 nic_data->piobuf_handle[index]); 930 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, 931 nic_data->pio_write_vi_base + index); 932 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, 933 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, 934 NULL, 0, NULL); 935 if (rc) { 936 netif_err(efx, drv, efx->net_dev, 937 "failed to link VI %u to PIO buffer %u (%d)\n", 938 nic_data->pio_write_vi_base + index, index, 939 rc); 940 goto fail; 941 } 942 netif_dbg(efx, probe, efx->net_dev, 943 "linked VI %u to PIO buffer %u\n", 944 nic_data->pio_write_vi_base + index, index); 945 } 946 947 /* Link a buffer to each TX queue */ 948 efx_for_each_channel(channel, efx) { 949 /* Extra channels, even those with TXQs (PTP), do not require 950 * PIO resources. 951 */ 952 if (!channel->type->want_pio) 953 continue; 954 efx_for_each_channel_tx_queue(tx_queue, channel) { 955 /* We assign the PIO buffers to queues in 956 * reverse order to allow for the following 957 * special case. 958 */ 959 offset = ((efx->tx_channel_offset + efx->n_tx_channels - 960 tx_queue->channel->channel - 1) * 961 efx_piobuf_size); 962 index = offset / nic_data->piobuf_size; 963 offset = offset % nic_data->piobuf_size; 964 965 /* When the host page size is 4K, the first 966 * host page in the WC mapping may be within 967 * the same VI page as the last TX queue. We 968 * can only link one buffer to each VI. 969 */ 970 if (tx_queue->queue == nic_data->pio_write_vi_base) { 971 BUG_ON(index != 0); 972 rc = 0; 973 } else { 974 MCDI_SET_DWORD(inbuf, 975 LINK_PIOBUF_IN_PIOBUF_HANDLE, 976 nic_data->piobuf_handle[index]); 977 MCDI_SET_DWORD(inbuf, 978 LINK_PIOBUF_IN_TXQ_INSTANCE, 979 tx_queue->queue); 980 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, 981 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, 982 NULL, 0, NULL); 983 } 984 985 if (rc) { 986 /* This is non-fatal; the TX path just 987 * won't use PIO for this queue 988 */ 989 netif_err(efx, drv, efx->net_dev, 990 "failed to link VI %u to PIO buffer %u (%d)\n", 991 tx_queue->queue, index, rc); 992 tx_queue->piobuf = NULL; 993 } else { 994 tx_queue->piobuf = 995 nic_data->pio_write_base + 996 index * efx->vi_stride + offset; 997 tx_queue->piobuf_offset = offset; 998 netif_dbg(efx, probe, efx->net_dev, 999 "linked VI %u to PIO buffer %u offset %x addr %p\n", 1000 tx_queue->queue, index, 1001 tx_queue->piobuf_offset, 1002 tx_queue->piobuf); 1003 } 1004 } 1005 } 1006 1007 return 0; 1008 1009 fail: 1010 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same 1011 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter. 1012 */ 1013 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN); 1014 while (index--) { 1015 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, 1016 nic_data->pio_write_vi_base + index); 1017 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, 1018 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, 1019 NULL, 0, NULL); 1020 } 1021 return rc; 1022 } 1023 1024 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) 1025 { 1026 struct efx_channel *channel; 1027 struct efx_tx_queue *tx_queue; 1028 1029 /* All our existing PIO buffers went away */ 1030 efx_for_each_channel(channel, efx) 1031 efx_for_each_channel_tx_queue(tx_queue, channel) 1032 tx_queue->piobuf = NULL; 1033 } 1034 1035 #else /* !EFX_USE_PIO */ 1036 1037 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) 1038 { 1039 return n == 0 ? 0 : -ENOBUFS; 1040 } 1041 1042 static int efx_ef10_link_piobufs(struct efx_nic *efx) 1043 { 1044 return 0; 1045 } 1046 1047 static void efx_ef10_free_piobufs(struct efx_nic *efx) 1048 { 1049 } 1050 1051 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) 1052 { 1053 } 1054 1055 #endif /* EFX_USE_PIO */ 1056 1057 static void efx_ef10_remove(struct efx_nic *efx) 1058 { 1059 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1060 int rc; 1061 1062 #ifdef CONFIG_SFC_SRIOV 1063 struct efx_ef10_nic_data *nic_data_pf; 1064 struct pci_dev *pci_dev_pf; 1065 struct efx_nic *efx_pf; 1066 struct ef10_vf *vf; 1067 1068 if (efx->pci_dev->is_virtfn) { 1069 pci_dev_pf = efx->pci_dev->physfn; 1070 if (pci_dev_pf) { 1071 efx_pf = pci_get_drvdata(pci_dev_pf); 1072 nic_data_pf = efx_pf->nic_data; 1073 vf = nic_data_pf->vf + nic_data->vf_index; 1074 vf->efx = NULL; 1075 } else 1076 netif_info(efx, drv, efx->net_dev, 1077 "Could not get the PF id from VF\n"); 1078 } 1079 #endif 1080 1081 efx_ef10_cleanup_vlans(efx); 1082 mutex_destroy(&nic_data->vlan_lock); 1083 1084 efx_ptp_remove(efx); 1085 1086 efx_mcdi_mon_remove(efx); 1087 1088 efx_ef10_rx_free_indir_table(efx); 1089 1090 if (nic_data->wc_membase) 1091 iounmap(nic_data->wc_membase); 1092 1093 rc = efx_ef10_free_vis(efx); 1094 WARN_ON(rc != 0); 1095 1096 if (!nic_data->must_restore_piobufs) 1097 efx_ef10_free_piobufs(efx); 1098 1099 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 1100 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); 1101 1102 efx_mcdi_detach(efx); 1103 1104 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); 1105 mutex_lock(&nic_data->udp_tunnels_lock); 1106 (void)efx_ef10_set_udp_tnl_ports(efx, true); 1107 mutex_unlock(&nic_data->udp_tunnels_lock); 1108 1109 mutex_destroy(&nic_data->udp_tunnels_lock); 1110 1111 efx_mcdi_fini(efx); 1112 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 1113 kfree(nic_data); 1114 } 1115 1116 static int efx_ef10_probe_pf(struct efx_nic *efx) 1117 { 1118 return efx_ef10_probe(efx); 1119 } 1120 1121 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, 1122 u32 *port_flags, u32 *vadaptor_flags, 1123 unsigned int *vlan_tags) 1124 { 1125 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1126 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN); 1127 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN); 1128 size_t outlen; 1129 int rc; 1130 1131 if (nic_data->datapath_caps & 1132 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) { 1133 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID, 1134 port_id); 1135 1136 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf), 1137 outbuf, sizeof(outbuf), &outlen); 1138 if (rc) 1139 return rc; 1140 1141 if (outlen < sizeof(outbuf)) { 1142 rc = -EIO; 1143 return rc; 1144 } 1145 } 1146 1147 if (port_flags) 1148 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS); 1149 if (vadaptor_flags) 1150 *vadaptor_flags = 1151 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS); 1152 if (vlan_tags) 1153 *vlan_tags = 1154 MCDI_DWORD(outbuf, 1155 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS); 1156 1157 return 0; 1158 } 1159 1160 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id) 1161 { 1162 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN); 1163 1164 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); 1165 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf), 1166 NULL, 0, NULL); 1167 } 1168 1169 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id) 1170 { 1171 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN); 1172 1173 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); 1174 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf), 1175 NULL, 0, NULL); 1176 } 1177 1178 int efx_ef10_vport_add_mac(struct efx_nic *efx, 1179 unsigned int port_id, u8 *mac) 1180 { 1181 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN); 1182 1183 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id); 1184 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac); 1185 1186 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf, 1187 sizeof(inbuf), NULL, 0, NULL); 1188 } 1189 1190 int efx_ef10_vport_del_mac(struct efx_nic *efx, 1191 unsigned int port_id, u8 *mac) 1192 { 1193 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN); 1194 1195 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id); 1196 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac); 1197 1198 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf, 1199 sizeof(inbuf), NULL, 0, NULL); 1200 } 1201 1202 #ifdef CONFIG_SFC_SRIOV 1203 static int efx_ef10_probe_vf(struct efx_nic *efx) 1204 { 1205 int rc; 1206 struct pci_dev *pci_dev_pf; 1207 1208 /* If the parent PF has no VF data structure, it doesn't know about this 1209 * VF so fail probe. The VF needs to be re-created. This can happen 1210 * if the PF driver is unloaded while the VF is assigned to a guest. 1211 */ 1212 pci_dev_pf = efx->pci_dev->physfn; 1213 if (pci_dev_pf) { 1214 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); 1215 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data; 1216 1217 if (!nic_data_pf->vf) { 1218 netif_info(efx, drv, efx->net_dev, 1219 "The VF cannot link to its parent PF; " 1220 "please destroy and re-create the VF\n"); 1221 return -EBUSY; 1222 } 1223 } 1224 1225 rc = efx_ef10_probe(efx); 1226 if (rc) 1227 return rc; 1228 1229 rc = efx_ef10_get_vf_index(efx); 1230 if (rc) 1231 goto fail; 1232 1233 if (efx->pci_dev->is_virtfn) { 1234 if (efx->pci_dev->physfn) { 1235 struct efx_nic *efx_pf = 1236 pci_get_drvdata(efx->pci_dev->physfn); 1237 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data; 1238 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1239 1240 nic_data_p->vf[nic_data->vf_index].efx = efx; 1241 nic_data_p->vf[nic_data->vf_index].pci_dev = 1242 efx->pci_dev; 1243 } else 1244 netif_info(efx, drv, efx->net_dev, 1245 "Could not get the PF id from VF\n"); 1246 } 1247 1248 return 0; 1249 1250 fail: 1251 efx_ef10_remove(efx); 1252 return rc; 1253 } 1254 #else 1255 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused))) 1256 { 1257 return 0; 1258 } 1259 #endif 1260 1261 static int efx_ef10_alloc_vis(struct efx_nic *efx, 1262 unsigned int min_vis, unsigned int max_vis) 1263 { 1264 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN); 1265 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN); 1266 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1267 size_t outlen; 1268 int rc; 1269 1270 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis); 1271 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis); 1272 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf), 1273 outbuf, sizeof(outbuf), &outlen); 1274 if (rc != 0) 1275 return rc; 1276 1277 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN) 1278 return -EIO; 1279 1280 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n", 1281 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE)); 1282 1283 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE); 1284 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT); 1285 return 0; 1286 } 1287 1288 /* Note that the failure path of this function does not free 1289 * resources, as this will be done by efx_ef10_remove(). 1290 */ 1291 static int efx_ef10_dimension_resources(struct efx_nic *efx) 1292 { 1293 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1294 unsigned int uc_mem_map_size, wc_mem_map_size; 1295 unsigned int min_vis = max(EFX_TXQ_TYPES, 1296 efx_separate_tx_channels ? 2 : 1); 1297 unsigned int channel_vis, pio_write_vi_base, max_vis; 1298 void __iomem *membase; 1299 int rc; 1300 1301 channel_vis = max(efx->n_channels, 1302 (efx->n_tx_channels + efx->n_extra_tx_channels) * 1303 EFX_TXQ_TYPES); 1304 1305 #ifdef EFX_USE_PIO 1306 /* Try to allocate PIO buffers if wanted and if the full 1307 * number of PIO buffers would be sufficient to allocate one 1308 * copy-buffer per TX channel. Failure is non-fatal, as there 1309 * are only a small number of PIO buffers shared between all 1310 * functions of the controller. 1311 */ 1312 if (efx_piobuf_size != 0 && 1313 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= 1314 efx->n_tx_channels) { 1315 unsigned int n_piobufs = 1316 DIV_ROUND_UP(efx->n_tx_channels, 1317 nic_data->piobuf_size / efx_piobuf_size); 1318 1319 rc = efx_ef10_alloc_piobufs(efx, n_piobufs); 1320 if (rc == -ENOSPC) 1321 netif_dbg(efx, probe, efx->net_dev, 1322 "out of PIO buffers; cannot allocate more\n"); 1323 else if (rc == -EPERM) 1324 netif_dbg(efx, probe, efx->net_dev, 1325 "not permitted to allocate PIO buffers\n"); 1326 else if (rc) 1327 netif_err(efx, probe, efx->net_dev, 1328 "failed to allocate PIO buffers (%d)\n", rc); 1329 else 1330 netif_dbg(efx, probe, efx->net_dev, 1331 "allocated %u PIO buffers\n", n_piobufs); 1332 } 1333 #else 1334 nic_data->n_piobufs = 0; 1335 #endif 1336 1337 /* PIO buffers should be mapped with write-combining enabled, 1338 * and we want to make single UC and WC mappings rather than 1339 * several of each (in fact that's the only option if host 1340 * page size is >4K). So we may allocate some extra VIs just 1341 * for writing PIO buffers through. 1342 * 1343 * The UC mapping contains (channel_vis - 1) complete VIs and the 1344 * first 4K of the next VI. Then the WC mapping begins with 1345 * the remainder of this last VI. 1346 */ 1347 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride + 1348 ER_DZ_TX_PIOBUF); 1349 if (nic_data->n_piobufs) { 1350 /* pio_write_vi_base rounds down to give the number of complete 1351 * VIs inside the UC mapping. 1352 */ 1353 pio_write_vi_base = uc_mem_map_size / efx->vi_stride; 1354 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + 1355 nic_data->n_piobufs) * 1356 efx->vi_stride) - 1357 uc_mem_map_size); 1358 max_vis = pio_write_vi_base + nic_data->n_piobufs; 1359 } else { 1360 pio_write_vi_base = 0; 1361 wc_mem_map_size = 0; 1362 max_vis = channel_vis; 1363 } 1364 1365 /* In case the last attached driver failed to free VIs, do it now */ 1366 rc = efx_ef10_free_vis(efx); 1367 if (rc != 0) 1368 return rc; 1369 1370 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); 1371 if (rc != 0) 1372 return rc; 1373 1374 if (nic_data->n_allocated_vis < channel_vis) { 1375 netif_info(efx, drv, efx->net_dev, 1376 "Could not allocate enough VIs to satisfy RSS" 1377 " requirements. Performance may not be optimal.\n"); 1378 /* We didn't get the VIs to populate our channels. 1379 * We could keep what we got but then we'd have more 1380 * interrupts than we need. 1381 * Instead calculate new max_channels and restart 1382 */ 1383 efx->max_channels = nic_data->n_allocated_vis; 1384 efx->max_tx_channels = 1385 nic_data->n_allocated_vis / EFX_TXQ_TYPES; 1386 1387 efx_ef10_free_vis(efx); 1388 return -EAGAIN; 1389 } 1390 1391 /* If we didn't get enough VIs to map all the PIO buffers, free the 1392 * PIO buffers 1393 */ 1394 if (nic_data->n_piobufs && 1395 nic_data->n_allocated_vis < 1396 pio_write_vi_base + nic_data->n_piobufs) { 1397 netif_dbg(efx, probe, efx->net_dev, 1398 "%u VIs are not sufficient to map %u PIO buffers\n", 1399 nic_data->n_allocated_vis, nic_data->n_piobufs); 1400 efx_ef10_free_piobufs(efx); 1401 } 1402 1403 /* Shrink the original UC mapping of the memory BAR */ 1404 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size); 1405 if (!membase) { 1406 netif_err(efx, probe, efx->net_dev, 1407 "could not shrink memory BAR to %x\n", 1408 uc_mem_map_size); 1409 return -ENOMEM; 1410 } 1411 iounmap(efx->membase); 1412 efx->membase = membase; 1413 1414 /* Set up the WC mapping if needed */ 1415 if (wc_mem_map_size) { 1416 nic_data->wc_membase = ioremap_wc(efx->membase_phys + 1417 uc_mem_map_size, 1418 wc_mem_map_size); 1419 if (!nic_data->wc_membase) { 1420 netif_err(efx, probe, efx->net_dev, 1421 "could not allocate WC mapping of size %x\n", 1422 wc_mem_map_size); 1423 return -ENOMEM; 1424 } 1425 nic_data->pio_write_vi_base = pio_write_vi_base; 1426 nic_data->pio_write_base = 1427 nic_data->wc_membase + 1428 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF - 1429 uc_mem_map_size); 1430 1431 rc = efx_ef10_link_piobufs(efx); 1432 if (rc) 1433 efx_ef10_free_piobufs(efx); 1434 } 1435 1436 netif_dbg(efx, probe, efx->net_dev, 1437 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", 1438 &efx->membase_phys, efx->membase, uc_mem_map_size, 1439 nic_data->wc_membase, wc_mem_map_size); 1440 1441 return 0; 1442 } 1443 1444 static int efx_ef10_init_nic(struct efx_nic *efx) 1445 { 1446 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1447 int rc; 1448 1449 if (nic_data->must_check_datapath_caps) { 1450 rc = efx_ef10_init_datapath_caps(efx); 1451 if (rc) 1452 return rc; 1453 nic_data->must_check_datapath_caps = false; 1454 } 1455 1456 if (nic_data->must_realloc_vis) { 1457 /* We cannot let the number of VIs change now */ 1458 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, 1459 nic_data->n_allocated_vis); 1460 if (rc) 1461 return rc; 1462 nic_data->must_realloc_vis = false; 1463 } 1464 1465 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { 1466 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); 1467 if (rc == 0) { 1468 rc = efx_ef10_link_piobufs(efx); 1469 if (rc) 1470 efx_ef10_free_piobufs(efx); 1471 } 1472 1473 /* Log an error on failure, but this is non-fatal. 1474 * Permission errors are less important - we've presumably 1475 * had the PIO buffer licence removed. 1476 */ 1477 if (rc == -EPERM) 1478 netif_dbg(efx, drv, efx->net_dev, 1479 "not permitted to restore PIO buffers\n"); 1480 else if (rc) 1481 netif_err(efx, drv, efx->net_dev, 1482 "failed to restore PIO buffers (%d)\n", rc); 1483 nic_data->must_restore_piobufs = false; 1484 } 1485 1486 /* don't fail init if RSS setup doesn't work */ 1487 rc = efx->type->rx_push_rss_config(efx, false, 1488 efx->rss_context.rx_indir_table, NULL); 1489 1490 return 0; 1491 } 1492 1493 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx) 1494 { 1495 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1496 #ifdef CONFIG_SFC_SRIOV 1497 unsigned int i; 1498 #endif 1499 1500 /* All our allocations have been reset */ 1501 nic_data->must_realloc_vis = true; 1502 nic_data->must_restore_rss_contexts = true; 1503 nic_data->must_restore_filters = true; 1504 nic_data->must_restore_piobufs = true; 1505 efx_ef10_forget_old_piobufs(efx); 1506 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID; 1507 1508 /* Driver-created vswitches and vports must be re-created */ 1509 nic_data->must_probe_vswitching = true; 1510 nic_data->vport_id = EVB_PORT_ID_ASSIGNED; 1511 #ifdef CONFIG_SFC_SRIOV 1512 if (nic_data->vf) 1513 for (i = 0; i < efx->vf_count; i++) 1514 nic_data->vf[i].vport_id = 0; 1515 #endif 1516 } 1517 1518 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason) 1519 { 1520 if (reason == RESET_TYPE_MC_FAILURE) 1521 return RESET_TYPE_DATAPATH; 1522 1523 return efx_mcdi_map_reset_reason(reason); 1524 } 1525 1526 static int efx_ef10_map_reset_flags(u32 *flags) 1527 { 1528 enum { 1529 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << 1530 ETH_RESET_SHARED_SHIFT), 1531 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | 1532 ETH_RESET_OFFLOAD | ETH_RESET_MAC | 1533 ETH_RESET_PHY | ETH_RESET_MGMT) << 1534 ETH_RESET_SHARED_SHIFT) 1535 }; 1536 1537 /* We assume for now that our PCI function is permitted to 1538 * reset everything. 1539 */ 1540 1541 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { 1542 *flags &= ~EF10_RESET_MC; 1543 return RESET_TYPE_WORLD; 1544 } 1545 1546 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { 1547 *flags &= ~EF10_RESET_PORT; 1548 return RESET_TYPE_ALL; 1549 } 1550 1551 /* no invisible reset implemented */ 1552 1553 return -EINVAL; 1554 } 1555 1556 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) 1557 { 1558 int rc = efx_mcdi_reset(efx, reset_type); 1559 1560 /* Unprivileged functions return -EPERM, but need to return success 1561 * here so that the datapath is brought back up. 1562 */ 1563 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM) 1564 rc = 0; 1565 1566 /* If it was a port reset, trigger reallocation of MC resources. 1567 * Note that on an MC reset nothing needs to be done now because we'll 1568 * detect the MC reset later and handle it then. 1569 * For an FLR, we never get an MC reset event, but the MC has reset all 1570 * resources assigned to us, so we have to trigger reallocation now. 1571 */ 1572 if ((reset_type == RESET_TYPE_ALL || 1573 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) 1574 efx_ef10_reset_mc_allocations(efx); 1575 return rc; 1576 } 1577 1578 #define EF10_DMA_STAT(ext_name, mcdi_name) \ 1579 [EF10_STAT_ ## ext_name] = \ 1580 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 1581 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ 1582 [EF10_STAT_ ## int_name] = \ 1583 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 1584 #define EF10_OTHER_STAT(ext_name) \ 1585 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } 1586 #define GENERIC_SW_STAT(ext_name) \ 1587 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } 1588 1589 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { 1590 EF10_DMA_STAT(port_tx_bytes, TX_BYTES), 1591 EF10_DMA_STAT(port_tx_packets, TX_PKTS), 1592 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), 1593 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS), 1594 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), 1595 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), 1596 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), 1597 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), 1598 EF10_DMA_STAT(port_tx_64, TX_64_PKTS), 1599 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), 1600 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), 1601 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), 1602 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), 1603 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), 1604 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), 1605 EF10_DMA_STAT(port_rx_bytes, RX_BYTES), 1606 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES), 1607 EF10_OTHER_STAT(port_rx_good_bytes), 1608 EF10_OTHER_STAT(port_rx_bad_bytes), 1609 EF10_DMA_STAT(port_rx_packets, RX_PKTS), 1610 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS), 1611 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), 1612 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), 1613 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS), 1614 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), 1615 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), 1616 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), 1617 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), 1618 EF10_DMA_STAT(port_rx_64, RX_64_PKTS), 1619 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), 1620 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), 1621 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), 1622 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), 1623 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), 1624 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), 1625 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), 1626 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), 1627 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), 1628 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), 1629 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), 1630 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), 1631 GENERIC_SW_STAT(rx_nodesc_trunc), 1632 GENERIC_SW_STAT(rx_noskb_drops), 1633 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), 1634 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), 1635 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), 1636 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), 1637 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB), 1638 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB), 1639 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING), 1640 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), 1641 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), 1642 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS), 1643 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS), 1644 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS), 1645 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS), 1646 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES), 1647 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS), 1648 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES), 1649 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS), 1650 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES), 1651 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS), 1652 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES), 1653 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW), 1654 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS), 1655 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES), 1656 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS), 1657 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES), 1658 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS), 1659 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES), 1660 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS), 1661 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES), 1662 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW), 1663 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS), 1664 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS), 1665 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0), 1666 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1), 1667 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2), 1668 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3), 1669 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK), 1670 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS), 1671 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL), 1672 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL), 1673 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL), 1674 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL), 1675 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL), 1676 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL), 1677 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL), 1678 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK), 1679 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK), 1680 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK), 1681 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS), 1682 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK), 1683 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON), 1684 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE), 1685 }; 1686 1687 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \ 1688 (1ULL << EF10_STAT_port_tx_packets) | \ 1689 (1ULL << EF10_STAT_port_tx_pause) | \ 1690 (1ULL << EF10_STAT_port_tx_unicast) | \ 1691 (1ULL << EF10_STAT_port_tx_multicast) | \ 1692 (1ULL << EF10_STAT_port_tx_broadcast) | \ 1693 (1ULL << EF10_STAT_port_rx_bytes) | \ 1694 (1ULL << \ 1695 EF10_STAT_port_rx_bytes_minus_good_bytes) | \ 1696 (1ULL << EF10_STAT_port_rx_good_bytes) | \ 1697 (1ULL << EF10_STAT_port_rx_bad_bytes) | \ 1698 (1ULL << EF10_STAT_port_rx_packets) | \ 1699 (1ULL << EF10_STAT_port_rx_good) | \ 1700 (1ULL << EF10_STAT_port_rx_bad) | \ 1701 (1ULL << EF10_STAT_port_rx_pause) | \ 1702 (1ULL << EF10_STAT_port_rx_control) | \ 1703 (1ULL << EF10_STAT_port_rx_unicast) | \ 1704 (1ULL << EF10_STAT_port_rx_multicast) | \ 1705 (1ULL << EF10_STAT_port_rx_broadcast) | \ 1706 (1ULL << EF10_STAT_port_rx_lt64) | \ 1707 (1ULL << EF10_STAT_port_rx_64) | \ 1708 (1ULL << EF10_STAT_port_rx_65_to_127) | \ 1709 (1ULL << EF10_STAT_port_rx_128_to_255) | \ 1710 (1ULL << EF10_STAT_port_rx_256_to_511) | \ 1711 (1ULL << EF10_STAT_port_rx_512_to_1023) |\ 1712 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\ 1713 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\ 1714 (1ULL << EF10_STAT_port_rx_gtjumbo) | \ 1715 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\ 1716 (1ULL << EF10_STAT_port_rx_overflow) | \ 1717 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\ 1718 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ 1719 (1ULL << GENERIC_STAT_rx_noskb_drops)) 1720 1721 /* On 7000 series NICs, these statistics are only provided by the 10G MAC. 1722 * For a 10G/40G switchable port we do not expose these because they might 1723 * not include all the packets they should. 1724 * On 8000 series NICs these statistics are always provided. 1725 */ 1726 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \ 1727 (1ULL << EF10_STAT_port_tx_lt64) | \ 1728 (1ULL << EF10_STAT_port_tx_64) | \ 1729 (1ULL << EF10_STAT_port_tx_65_to_127) |\ 1730 (1ULL << EF10_STAT_port_tx_128_to_255) |\ 1731 (1ULL << EF10_STAT_port_tx_256_to_511) |\ 1732 (1ULL << EF10_STAT_port_tx_512_to_1023) |\ 1733 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\ 1734 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo)) 1735 1736 /* These statistics are only provided by the 40G MAC. For a 10G/40G 1737 * switchable port we do expose these because the errors will otherwise 1738 * be silent. 1739 */ 1740 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\ 1741 (1ULL << EF10_STAT_port_rx_length_error)) 1742 1743 /* These statistics are only provided if the firmware supports the 1744 * capability PM_AND_RXDP_COUNTERS. 1745 */ 1746 #define HUNT_PM_AND_RXDP_STAT_MASK ( \ 1747 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \ 1748 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \ 1749 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \ 1750 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \ 1751 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \ 1752 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \ 1753 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \ 1754 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \ 1755 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \ 1756 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \ 1757 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \ 1758 (1ULL << EF10_STAT_port_rx_dp_hlb_wait)) 1759 1760 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2, 1761 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in 1762 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. 1763 * These bits are in the second u64 of the raw mask. 1764 */ 1765 #define EF10_FEC_STAT_MASK ( \ 1766 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \ 1767 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \ 1768 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \ 1769 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \ 1770 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \ 1771 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64))) 1772 1773 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3, 1774 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in 1775 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. 1776 * These bits are in the second u64 of the raw mask. 1777 */ 1778 #define EF10_CTPIO_STAT_MASK ( \ 1779 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \ 1780 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \ 1781 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \ 1782 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \ 1783 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \ 1784 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \ 1785 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \ 1786 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \ 1787 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \ 1788 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \ 1789 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \ 1790 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \ 1791 (1ULL << (EF10_STAT_ctpio_success - 64)) | \ 1792 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \ 1793 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \ 1794 (1ULL << (EF10_STAT_ctpio_erase - 64))) 1795 1796 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) 1797 { 1798 u64 raw_mask = HUNT_COMMON_STAT_MASK; 1799 u32 port_caps = efx_mcdi_phy_get_caps(efx); 1800 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1801 1802 if (!(efx->mcdi->fn_flags & 1803 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) 1804 return 0; 1805 1806 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) { 1807 raw_mask |= HUNT_40G_EXTRA_STAT_MASK; 1808 /* 8000 series have everything even at 40G */ 1809 if (nic_data->datapath_caps2 & 1810 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN)) 1811 raw_mask |= HUNT_10G_ONLY_STAT_MASK; 1812 } else { 1813 raw_mask |= HUNT_10G_ONLY_STAT_MASK; 1814 } 1815 1816 if (nic_data->datapath_caps & 1817 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) 1818 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; 1819 1820 return raw_mask; 1821 } 1822 1823 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) 1824 { 1825 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1826 u64 raw_mask[2]; 1827 1828 raw_mask[0] = efx_ef10_raw_stat_mask(efx); 1829 1830 /* Only show vadaptor stats when EVB capability is present */ 1831 if (nic_data->datapath_caps & 1832 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) { 1833 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1); 1834 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1; 1835 } else { 1836 raw_mask[1] = 0; 1837 } 1838 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */ 1839 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2) 1840 raw_mask[1] |= EF10_FEC_STAT_MASK; 1841 1842 /* CTPIO stats appear in V3. Only show them on devices that actually 1843 * support CTPIO. Although this driver doesn't use CTPIO others might, 1844 * and we may be reporting the stats for the underlying port. 1845 */ 1846 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 && 1847 (nic_data->datapath_caps2 & 1848 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN))) 1849 raw_mask[1] |= EF10_CTPIO_STAT_MASK; 1850 1851 #if BITS_PER_LONG == 64 1852 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2); 1853 mask[0] = raw_mask[0]; 1854 mask[1] = raw_mask[1]; 1855 #else 1856 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3); 1857 mask[0] = raw_mask[0] & 0xffffffff; 1858 mask[1] = raw_mask[0] >> 32; 1859 mask[2] = raw_mask[1] & 0xffffffff; 1860 #endif 1861 } 1862 1863 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) 1864 { 1865 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1866 1867 efx_ef10_get_stat_mask(efx, mask); 1868 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, 1869 mask, names); 1870 } 1871 1872 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, 1873 struct rtnl_link_stats64 *core_stats) 1874 { 1875 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1876 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1877 u64 *stats = nic_data->stats; 1878 size_t stats_count = 0, index; 1879 1880 efx_ef10_get_stat_mask(efx, mask); 1881 1882 if (full_stats) { 1883 for_each_set_bit(index, mask, EF10_STAT_COUNT) { 1884 if (efx_ef10_stat_desc[index].name) { 1885 *full_stats++ = stats[index]; 1886 ++stats_count; 1887 } 1888 } 1889 } 1890 1891 if (!core_stats) 1892 return stats_count; 1893 1894 if (nic_data->datapath_caps & 1895 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) { 1896 /* Use vadaptor stats. */ 1897 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] + 1898 stats[EF10_STAT_rx_multicast] + 1899 stats[EF10_STAT_rx_broadcast]; 1900 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] + 1901 stats[EF10_STAT_tx_multicast] + 1902 stats[EF10_STAT_tx_broadcast]; 1903 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] + 1904 stats[EF10_STAT_rx_multicast_bytes] + 1905 stats[EF10_STAT_rx_broadcast_bytes]; 1906 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] + 1907 stats[EF10_STAT_tx_multicast_bytes] + 1908 stats[EF10_STAT_tx_broadcast_bytes]; 1909 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] + 1910 stats[GENERIC_STAT_rx_noskb_drops]; 1911 core_stats->multicast = stats[EF10_STAT_rx_multicast]; 1912 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; 1913 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; 1914 core_stats->rx_errors = core_stats->rx_crc_errors; 1915 core_stats->tx_errors = stats[EF10_STAT_tx_bad]; 1916 } else { 1917 /* Use port stats. */ 1918 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets]; 1919 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets]; 1920 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes]; 1921 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes]; 1922 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] + 1923 stats[GENERIC_STAT_rx_nodesc_trunc] + 1924 stats[GENERIC_STAT_rx_noskb_drops]; 1925 core_stats->multicast = stats[EF10_STAT_port_rx_multicast]; 1926 core_stats->rx_length_errors = 1927 stats[EF10_STAT_port_rx_gtjumbo] + 1928 stats[EF10_STAT_port_rx_length_error]; 1929 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad]; 1930 core_stats->rx_frame_errors = 1931 stats[EF10_STAT_port_rx_align_error]; 1932 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow]; 1933 core_stats->rx_errors = (core_stats->rx_length_errors + 1934 core_stats->rx_crc_errors + 1935 core_stats->rx_frame_errors); 1936 } 1937 1938 return stats_count; 1939 } 1940 1941 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx) 1942 { 1943 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1944 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1945 __le64 generation_start, generation_end; 1946 u64 *stats = nic_data->stats; 1947 __le64 *dma_stats; 1948 1949 efx_ef10_get_stat_mask(efx, mask); 1950 1951 dma_stats = efx->stats_buffer.addr; 1952 1953 generation_end = dma_stats[efx->num_mac_stats - 1]; 1954 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) 1955 return 0; 1956 rmb(); 1957 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, 1958 stats, efx->stats_buffer.addr, false); 1959 rmb(); 1960 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; 1961 if (generation_end != generation_start) 1962 return -EAGAIN; 1963 1964 /* Update derived statistics */ 1965 efx_nic_fix_nodesc_drop_stat(efx, 1966 &stats[EF10_STAT_port_rx_nodesc_drops]); 1967 stats[EF10_STAT_port_rx_good_bytes] = 1968 stats[EF10_STAT_port_rx_bytes] - 1969 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]; 1970 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes], 1971 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]); 1972 efx_update_sw_stats(efx, stats); 1973 return 0; 1974 } 1975 1976 1977 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, 1978 struct rtnl_link_stats64 *core_stats) 1979 { 1980 int retry; 1981 1982 /* If we're unlucky enough to read statistics during the DMA, wait 1983 * up to 10ms for it to finish (typically takes <500us) 1984 */ 1985 for (retry = 0; retry < 100; ++retry) { 1986 if (efx_ef10_try_update_nic_stats_pf(efx) == 0) 1987 break; 1988 udelay(100); 1989 } 1990 1991 return efx_ef10_update_stats_common(efx, full_stats, core_stats); 1992 } 1993 1994 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx) 1995 { 1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN); 1997 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1998 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1999 __le64 generation_start, generation_end; 2000 u64 *stats = nic_data->stats; 2001 u32 dma_len = efx->num_mac_stats * sizeof(u64); 2002 struct efx_buffer stats_buf; 2003 __le64 *dma_stats; 2004 int rc; 2005 2006 spin_unlock_bh(&efx->stats_lock); 2007 2008 if (in_interrupt()) { 2009 /* If in atomic context, cannot update stats. Just update the 2010 * software stats and return so the caller can continue. 2011 */ 2012 spin_lock_bh(&efx->stats_lock); 2013 efx_update_sw_stats(efx, stats); 2014 return 0; 2015 } 2016 2017 efx_ef10_get_stat_mask(efx, mask); 2018 2019 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC); 2020 if (rc) { 2021 spin_lock_bh(&efx->stats_lock); 2022 return rc; 2023 } 2024 2025 dma_stats = stats_buf.addr; 2026 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID; 2027 2028 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr); 2029 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD, 2030 MAC_STATS_IN_DMA, 1); 2031 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); 2032 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); 2033 2034 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), 2035 NULL, 0, NULL); 2036 spin_lock_bh(&efx->stats_lock); 2037 if (rc) { 2038 /* Expect ENOENT if DMA queues have not been set up */ 2039 if (rc != -ENOENT || atomic_read(&efx->active_queues)) 2040 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS, 2041 sizeof(inbuf), NULL, 0, rc); 2042 goto out; 2043 } 2044 2045 generation_end = dma_stats[efx->num_mac_stats - 1]; 2046 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) { 2047 WARN_ON_ONCE(1); 2048 goto out; 2049 } 2050 rmb(); 2051 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, 2052 stats, stats_buf.addr, false); 2053 rmb(); 2054 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; 2055 if (generation_end != generation_start) { 2056 rc = -EAGAIN; 2057 goto out; 2058 } 2059 2060 efx_update_sw_stats(efx, stats); 2061 out: 2062 efx_nic_free_buffer(efx, &stats_buf); 2063 return rc; 2064 } 2065 2066 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, 2067 struct rtnl_link_stats64 *core_stats) 2068 { 2069 if (efx_ef10_try_update_nic_stats_vf(efx)) 2070 return 0; 2071 2072 return efx_ef10_update_stats_common(efx, full_stats, core_stats); 2073 } 2074 2075 static void efx_ef10_push_irq_moderation(struct efx_channel *channel) 2076 { 2077 struct efx_nic *efx = channel->efx; 2078 unsigned int mode, usecs; 2079 efx_dword_t timer_cmd; 2080 2081 if (channel->irq_moderation_us) { 2082 mode = 3; 2083 usecs = channel->irq_moderation_us; 2084 } else { 2085 mode = 0; 2086 usecs = 0; 2087 } 2088 2089 if (EFX_EF10_WORKAROUND_61265(efx)) { 2090 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN); 2091 unsigned int ns = usecs * 1000; 2092 2093 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE, 2094 channel->channel); 2095 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns); 2096 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns); 2097 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode); 2098 2099 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR, 2100 inbuf, sizeof(inbuf), 0, NULL, 0); 2101 } else if (EFX_EF10_WORKAROUND_35388(efx)) { 2102 unsigned int ticks = efx_usecs_to_ticks(efx, usecs); 2103 2104 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, 2105 EFE_DD_EVQ_IND_TIMER_FLAGS, 2106 ERF_DD_EVQ_IND_TIMER_MODE, mode, 2107 ERF_DD_EVQ_IND_TIMER_VAL, ticks); 2108 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, 2109 channel->channel); 2110 } else { 2111 unsigned int ticks = efx_usecs_to_ticks(efx, usecs); 2112 2113 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, 2114 ERF_DZ_TC_TIMER_VAL, ticks, 2115 ERF_FZ_TC_TMR_REL_VAL, ticks); 2116 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, 2117 channel->channel); 2118 } 2119 } 2120 2121 static void efx_ef10_get_wol_vf(struct efx_nic *efx, 2122 struct ethtool_wolinfo *wol) {} 2123 2124 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type) 2125 { 2126 return -EOPNOTSUPP; 2127 } 2128 2129 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) 2130 { 2131 wol->supported = 0; 2132 wol->wolopts = 0; 2133 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2134 } 2135 2136 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) 2137 { 2138 if (type != 0) 2139 return -EINVAL; 2140 return 0; 2141 } 2142 2143 static void efx_ef10_mcdi_request(struct efx_nic *efx, 2144 const efx_dword_t *hdr, size_t hdr_len, 2145 const efx_dword_t *sdu, size_t sdu_len) 2146 { 2147 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2148 u8 *pdu = nic_data->mcdi_buf.addr; 2149 2150 memcpy(pdu, hdr, hdr_len); 2151 memcpy(pdu + hdr_len, sdu, sdu_len); 2152 wmb(); 2153 2154 /* The hardware provides 'low' and 'high' (doorbell) registers 2155 * for passing the 64-bit address of an MCDI request to 2156 * firmware. However the dwords are swapped by firmware. The 2157 * least significant bits of the doorbell are then 0 for all 2158 * MCDI requests due to alignment. 2159 */ 2160 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), 2161 ER_DZ_MC_DB_LWRD); 2162 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), 2163 ER_DZ_MC_DB_HWRD); 2164 } 2165 2166 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) 2167 { 2168 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2169 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; 2170 2171 rmb(); 2172 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); 2173 } 2174 2175 static void 2176 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, 2177 size_t offset, size_t outlen) 2178 { 2179 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2180 const u8 *pdu = nic_data->mcdi_buf.addr; 2181 2182 memcpy(outbuf, pdu + offset, outlen); 2183 } 2184 2185 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx) 2186 { 2187 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2188 2189 /* All our allocations have been reset */ 2190 efx_ef10_reset_mc_allocations(efx); 2191 2192 /* The datapath firmware might have been changed */ 2193 nic_data->must_check_datapath_caps = true; 2194 2195 /* MAC statistics have been cleared on the NIC; clear the local 2196 * statistic that we update with efx_update_diff_stat(). 2197 */ 2198 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0; 2199 } 2200 2201 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) 2202 { 2203 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2204 int rc; 2205 2206 rc = efx_ef10_get_warm_boot_count(efx); 2207 if (rc < 0) { 2208 /* The firmware is presumably in the process of 2209 * rebooting. However, we are supposed to report each 2210 * reboot just once, so we must only do that once we 2211 * can read and store the updated warm boot count. 2212 */ 2213 return 0; 2214 } 2215 2216 if (rc == nic_data->warm_boot_count) 2217 return 0; 2218 2219 nic_data->warm_boot_count = rc; 2220 efx_ef10_mcdi_reboot_detected(efx); 2221 2222 return -EIO; 2223 } 2224 2225 /* Handle an MSI interrupt 2226 * 2227 * Handle an MSI hardware interrupt. This routine schedules event 2228 * queue processing. No interrupt acknowledgement cycle is necessary. 2229 * Also, we never need to check that the interrupt is for us, since 2230 * MSI interrupts cannot be shared. 2231 */ 2232 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) 2233 { 2234 struct efx_msi_context *context = dev_id; 2235 struct efx_nic *efx = context->efx; 2236 2237 netif_vdbg(efx, intr, efx->net_dev, 2238 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); 2239 2240 if (likely(READ_ONCE(efx->irq_soft_enabled))) { 2241 /* Note test interrupts */ 2242 if (context->index == efx->irq_level) 2243 efx->last_irq_cpu = raw_smp_processor_id(); 2244 2245 /* Schedule processing of the channel */ 2246 efx_schedule_channel_irq(efx->channel[context->index]); 2247 } 2248 2249 return IRQ_HANDLED; 2250 } 2251 2252 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) 2253 { 2254 struct efx_nic *efx = dev_id; 2255 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); 2256 struct efx_channel *channel; 2257 efx_dword_t reg; 2258 u32 queues; 2259 2260 /* Read the ISR which also ACKs the interrupts */ 2261 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); 2262 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); 2263 2264 if (queues == 0) 2265 return IRQ_NONE; 2266 2267 if (likely(soft_enabled)) { 2268 /* Note test interrupts */ 2269 if (queues & (1U << efx->irq_level)) 2270 efx->last_irq_cpu = raw_smp_processor_id(); 2271 2272 efx_for_each_channel(channel, efx) { 2273 if (queues & 1) 2274 efx_schedule_channel_irq(channel); 2275 queues >>= 1; 2276 } 2277 } 2278 2279 netif_vdbg(efx, intr, efx->net_dev, 2280 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", 2281 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); 2282 2283 return IRQ_HANDLED; 2284 } 2285 2286 static int efx_ef10_irq_test_generate(struct efx_nic *efx) 2287 { 2288 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); 2289 2290 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true, 2291 NULL) == 0) 2292 return -ENOTSUPP; 2293 2294 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); 2295 2296 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); 2297 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, 2298 inbuf, sizeof(inbuf), NULL, 0, NULL); 2299 } 2300 2301 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) 2302 { 2303 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf, 2304 (tx_queue->ptr_mask + 1) * 2305 sizeof(efx_qword_t), 2306 GFP_KERNEL); 2307 } 2308 2309 /* This writes to the TX_DESC_WPTR and also pushes data */ 2310 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, 2311 const efx_qword_t *txd) 2312 { 2313 unsigned int write_ptr; 2314 efx_oword_t reg; 2315 2316 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2317 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); 2318 reg.qword[0] = *txd; 2319 efx_writeo_page(tx_queue->efx, ®, 2320 ER_DZ_TX_DESC_UPD, tx_queue->queue); 2321 } 2322 2323 /* Add Firmware-Assisted TSO v2 option descriptors to a queue. 2324 */ 2325 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, 2326 struct sk_buff *skb, 2327 bool *data_mapped) 2328 { 2329 struct efx_tx_buffer *buffer; 2330 struct tcphdr *tcp; 2331 struct iphdr *ip; 2332 2333 u16 ipv4_id; 2334 u32 seqnum; 2335 u32 mss; 2336 2337 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2); 2338 2339 mss = skb_shinfo(skb)->gso_size; 2340 2341 if (unlikely(mss < 4)) { 2342 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss); 2343 return -EINVAL; 2344 } 2345 2346 ip = ip_hdr(skb); 2347 if (ip->version == 4) { 2348 /* Modify IPv4 header if needed. */ 2349 ip->tot_len = 0; 2350 ip->check = 0; 2351 ipv4_id = ntohs(ip->id); 2352 } else { 2353 /* Modify IPv6 header if needed. */ 2354 struct ipv6hdr *ipv6 = ipv6_hdr(skb); 2355 2356 ipv6->payload_len = 0; 2357 ipv4_id = 0; 2358 } 2359 2360 tcp = tcp_hdr(skb); 2361 seqnum = ntohl(tcp->seq); 2362 2363 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 2364 2365 buffer->flags = EFX_TX_BUF_OPTION; 2366 buffer->len = 0; 2367 buffer->unmap_len = 0; 2368 EFX_POPULATE_QWORD_5(buffer->option, 2369 ESF_DZ_TX_DESC_IS_OPT, 1, 2370 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, 2371 ESF_DZ_TX_TSO_OPTION_TYPE, 2372 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, 2373 ESF_DZ_TX_TSO_IP_ID, ipv4_id, 2374 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum 2375 ); 2376 ++tx_queue->insert_count; 2377 2378 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 2379 2380 buffer->flags = EFX_TX_BUF_OPTION; 2381 buffer->len = 0; 2382 buffer->unmap_len = 0; 2383 EFX_POPULATE_QWORD_4(buffer->option, 2384 ESF_DZ_TX_DESC_IS_OPT, 1, 2385 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, 2386 ESF_DZ_TX_TSO_OPTION_TYPE, 2387 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, 2388 ESF_DZ_TX_TSO_TCP_MSS, mss 2389 ); 2390 ++tx_queue->insert_count; 2391 2392 return 0; 2393 } 2394 2395 static u32 efx_ef10_tso_versions(struct efx_nic *efx) 2396 { 2397 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2398 u32 tso_versions = 0; 2399 2400 if (nic_data->datapath_caps & 2401 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) 2402 tso_versions |= BIT(1); 2403 if (nic_data->datapath_caps2 & 2404 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) 2405 tso_versions |= BIT(2); 2406 return tso_versions; 2407 } 2408 2409 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) 2410 { 2411 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / 2412 EFX_BUF_SIZE)); 2413 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; 2414 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE; 2415 struct efx_channel *channel = tx_queue->channel; 2416 struct efx_nic *efx = tx_queue->efx; 2417 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2418 bool tso_v2 = false; 2419 size_t inlen; 2420 dma_addr_t dma_addr; 2421 efx_qword_t *txd; 2422 int rc; 2423 int i; 2424 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0); 2425 2426 /* Only attempt to enable TX timestamping if we have the license for it, 2427 * otherwise TXQ init will fail 2428 */ 2429 if (!(nic_data->licensed_features & 2430 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) { 2431 tx_queue->timestamping = false; 2432 /* Disable sync events on this channel. */ 2433 if (efx->type->ptp_set_ts_sync_events) 2434 efx->type->ptp_set_ts_sync_events(efx, false, false); 2435 } 2436 2437 /* TSOv2 is a limited resource that can only be configured on a limited 2438 * number of queues. TSO without checksum offload is not really a thing, 2439 * so we only enable it for those queues. 2440 * TSOv2 cannot be used with Hardware timestamping. 2441 */ 2442 if (csum_offload && (nic_data->datapath_caps2 & 2443 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) && 2444 !tx_queue->timestamping) { 2445 tso_v2 = true; 2446 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n", 2447 channel->channel); 2448 } 2449 2450 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1); 2451 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel); 2452 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue); 2453 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue); 2454 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0); 2455 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id); 2456 2457 dma_addr = tx_queue->txd.buf.dma_addr; 2458 2459 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n", 2460 tx_queue->queue, entries, (u64)dma_addr); 2461 2462 for (i = 0; i < entries; ++i) { 2463 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr); 2464 dma_addr += EFX_BUF_SIZE; 2465 } 2466 2467 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries); 2468 2469 do { 2470 MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS, 2471 /* This flag was removed from mcdi_pcol.h for 2472 * the non-_EXT version of INIT_TXQ. However, 2473 * firmware still honours it. 2474 */ 2475 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2, 2476 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload, 2477 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload, 2478 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP, 2479 tx_queue->timestamping); 2480 2481 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen, 2482 NULL, 0, NULL); 2483 if (rc == -ENOSPC && tso_v2) { 2484 /* Retry without TSOv2 if we're short on contexts. */ 2485 tso_v2 = false; 2486 netif_warn(efx, probe, efx->net_dev, 2487 "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n"); 2488 } else if (rc) { 2489 efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ, 2490 MC_CMD_INIT_TXQ_EXT_IN_LEN, 2491 NULL, 0, rc); 2492 goto fail; 2493 } 2494 } while (rc); 2495 2496 /* A previous user of this TX queue might have set us up the 2497 * bomb by writing a descriptor to the TX push collector but 2498 * not the doorbell. (Each collector belongs to a port, not a 2499 * queue or function, so cannot easily be reset.) We must 2500 * attempt to push a no-op descriptor in its place. 2501 */ 2502 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; 2503 tx_queue->insert_count = 1; 2504 txd = efx_tx_desc(tx_queue, 0); 2505 EFX_POPULATE_QWORD_5(*txd, 2506 ESF_DZ_TX_DESC_IS_OPT, true, 2507 ESF_DZ_TX_OPTION_TYPE, 2508 ESE_DZ_TX_OPTION_DESC_CRC_CSUM, 2509 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, 2510 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload, 2511 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping); 2512 tx_queue->write_count = 1; 2513 2514 if (tso_v2) { 2515 tx_queue->handle_tso = efx_ef10_tx_tso_desc; 2516 tx_queue->tso_version = 2; 2517 } else if (nic_data->datapath_caps & 2518 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) { 2519 tx_queue->tso_version = 1; 2520 } 2521 2522 wmb(); 2523 efx_ef10_push_tx_desc(tx_queue, txd); 2524 2525 return; 2526 2527 fail: 2528 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", 2529 tx_queue->queue); 2530 } 2531 2532 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue) 2533 { 2534 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN); 2535 MCDI_DECLARE_BUF_ERR(outbuf); 2536 struct efx_nic *efx = tx_queue->efx; 2537 size_t outlen; 2538 int rc; 2539 2540 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE, 2541 tx_queue->queue); 2542 2543 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf), 2544 outbuf, sizeof(outbuf), &outlen); 2545 2546 if (rc && rc != -EALREADY) 2547 goto fail; 2548 2549 return; 2550 2551 fail: 2552 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN, 2553 outbuf, outlen, rc); 2554 } 2555 2556 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue) 2557 { 2558 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf); 2559 } 2560 2561 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ 2562 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) 2563 { 2564 unsigned int write_ptr; 2565 efx_dword_t reg; 2566 2567 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2568 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); 2569 efx_writed_page(tx_queue->efx, ®, 2570 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); 2571 } 2572 2573 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff 2574 2575 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, 2576 dma_addr_t dma_addr, unsigned int len) 2577 { 2578 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) { 2579 /* If we need to break across multiple descriptors we should 2580 * stop at a page boundary. This assumes the length limit is 2581 * greater than the page size. 2582 */ 2583 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN; 2584 2585 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE); 2586 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr; 2587 } 2588 2589 return len; 2590 } 2591 2592 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) 2593 { 2594 unsigned int old_write_count = tx_queue->write_count; 2595 struct efx_tx_buffer *buffer; 2596 unsigned int write_ptr; 2597 efx_qword_t *txd; 2598 2599 tx_queue->xmit_more_available = false; 2600 if (unlikely(tx_queue->write_count == tx_queue->insert_count)) 2601 return; 2602 2603 do { 2604 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2605 buffer = &tx_queue->buffer[write_ptr]; 2606 txd = efx_tx_desc(tx_queue, write_ptr); 2607 ++tx_queue->write_count; 2608 2609 /* Create TX descriptor ring entry */ 2610 if (buffer->flags & EFX_TX_BUF_OPTION) { 2611 *txd = buffer->option; 2612 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1) 2613 /* PIO descriptor */ 2614 tx_queue->packet_write_count = tx_queue->write_count; 2615 } else { 2616 tx_queue->packet_write_count = tx_queue->write_count; 2617 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); 2618 EFX_POPULATE_QWORD_3( 2619 *txd, 2620 ESF_DZ_TX_KER_CONT, 2621 buffer->flags & EFX_TX_BUF_CONT, 2622 ESF_DZ_TX_KER_BYTE_CNT, buffer->len, 2623 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); 2624 } 2625 } while (tx_queue->write_count != tx_queue->insert_count); 2626 2627 wmb(); /* Ensure descriptors are written before they are fetched */ 2628 2629 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { 2630 txd = efx_tx_desc(tx_queue, 2631 old_write_count & tx_queue->ptr_mask); 2632 efx_ef10_push_tx_desc(tx_queue, txd); 2633 ++tx_queue->pushes; 2634 } else { 2635 efx_ef10_notify_tx_desc(tx_queue); 2636 } 2637 } 2638 2639 #define RSS_MODE_HASH_ADDRS (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\ 2640 1 << RSS_MODE_HASH_DST_ADDR_LBN) 2641 #define RSS_MODE_HASH_PORTS (1 << RSS_MODE_HASH_SRC_PORT_LBN |\ 2642 1 << RSS_MODE_HASH_DST_PORT_LBN) 2643 #define RSS_CONTEXT_FLAGS_DEFAULT (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\ 2644 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\ 2645 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\ 2646 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\ 2647 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\ 2648 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\ 2649 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\ 2650 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\ 2651 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\ 2652 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN) 2653 2654 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags) 2655 { 2656 /* Firmware had a bug (sfc bug 61952) where it would not actually 2657 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS. 2658 * This meant that it would always contain whatever was previously 2659 * in the MCDI buffer. Fortunately, all firmware versions with 2660 * this bug have the same default flags value for a newly-allocated 2661 * RSS context, and the only time we want to get the flags is just 2662 * after allocating. Moreover, the response has a 32-bit hole 2663 * where the context ID would be in the request, so we can use an 2664 * overlength buffer in the request and pre-fill the flags field 2665 * with what we believe the default to be. Thus if the firmware 2666 * has the bug, it will leave our pre-filled value in the flags 2667 * field of the response, and we will get the right answer. 2668 * 2669 * However, this does mean that this function should NOT be used if 2670 * the RSS context flags might not be their defaults - it is ONLY 2671 * reliably correct for a newly-allocated RSS context. 2672 */ 2673 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN); 2674 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN); 2675 size_t outlen; 2676 int rc; 2677 2678 /* Check we have a hole for the context ID */ 2679 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST); 2680 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context); 2681 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS, 2682 RSS_CONTEXT_FLAGS_DEFAULT); 2683 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf, 2684 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 2685 if (rc == 0) { 2686 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN) 2687 rc = -EIO; 2688 else 2689 *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS); 2690 } 2691 return rc; 2692 } 2693 2694 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context. 2695 * If we fail, we just leave the RSS context at its default hash settings, 2696 * which is safe but may slightly reduce performance. 2697 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we 2698 * just need to set the UDP ports flags (for both IP versions). 2699 */ 2700 static void efx_ef10_set_rss_flags(struct efx_nic *efx, 2701 struct efx_rss_context *ctx) 2702 { 2703 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN); 2704 u32 flags; 2705 2706 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0); 2707 2708 if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0) 2709 return; 2710 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, 2711 ctx->context_id); 2712 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN; 2713 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN; 2714 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags); 2715 if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf), 2716 NULL, 0, NULL)) 2717 /* Succeeded, so UDP 4-tuple is now enabled */ 2718 ctx->rx_hash_udp_4tuple = true; 2719 } 2720 2721 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive, 2722 struct efx_rss_context *ctx, 2723 unsigned *context_size) 2724 { 2725 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN); 2726 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN); 2727 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2728 size_t outlen; 2729 int rc; 2730 u32 alloc_type = exclusive ? 2731 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE : 2732 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED; 2733 unsigned rss_spread = exclusive ? 2734 efx->rss_spread : 2735 min(rounddown_pow_of_two(efx->rss_spread), 2736 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE); 2737 2738 if (!exclusive && rss_spread == 1) { 2739 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID; 2740 if (context_size) 2741 *context_size = 1; 2742 return 0; 2743 } 2744 2745 if (nic_data->datapath_caps & 2746 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN) 2747 return -EOPNOTSUPP; 2748 2749 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID, 2750 nic_data->vport_id); 2751 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type); 2752 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread); 2753 2754 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf), 2755 outbuf, sizeof(outbuf), &outlen); 2756 if (rc != 0) 2757 return rc; 2758 2759 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN) 2760 return -EIO; 2761 2762 ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID); 2763 2764 if (context_size) 2765 *context_size = rss_spread; 2766 2767 if (nic_data->datapath_caps & 2768 1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN) 2769 efx_ef10_set_rss_flags(efx, ctx); 2770 2771 return 0; 2772 } 2773 2774 static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context) 2775 { 2776 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN); 2777 2778 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID, 2779 context); 2780 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf), 2781 NULL, 0, NULL); 2782 } 2783 2784 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context, 2785 const u32 *rx_indir_table, const u8 *key) 2786 { 2787 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN); 2788 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN); 2789 int i, rc; 2790 2791 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID, 2792 context); 2793 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != 2794 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN); 2795 2796 /* This iterates over the length of efx->rss_context.rx_indir_table, but 2797 * copies bytes from rx_indir_table. That's because the latter is a 2798 * pointer rather than an array, but should have the same length. 2799 * The efx->rss_context.rx_hash_key loop below is similar. 2800 */ 2801 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i) 2802 MCDI_PTR(tablebuf, 2803 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] = 2804 (u8) rx_indir_table[i]; 2805 2806 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf, 2807 sizeof(tablebuf), NULL, 0, NULL); 2808 if (rc != 0) 2809 return rc; 2810 2811 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID, 2812 context); 2813 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) != 2814 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); 2815 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i) 2816 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i]; 2817 2818 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf, 2819 sizeof(keybuf), NULL, 0, NULL); 2820 } 2821 2822 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx) 2823 { 2824 int rc; 2825 2826 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) { 2827 rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id); 2828 WARN_ON(rc != 0); 2829 } 2830 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID; 2831 } 2832 2833 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx, 2834 unsigned *context_size) 2835 { 2836 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2837 int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context, 2838 context_size); 2839 2840 if (rc != 0) 2841 return rc; 2842 2843 nic_data->rx_rss_context_exclusive = false; 2844 efx_set_default_rx_indir_table(efx, &efx->rss_context); 2845 return 0; 2846 } 2847 2848 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx, 2849 const u32 *rx_indir_table, 2850 const u8 *key) 2851 { 2852 u32 old_rx_rss_context = efx->rss_context.context_id; 2853 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2854 int rc; 2855 2856 if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID || 2857 !nic_data->rx_rss_context_exclusive) { 2858 rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context, 2859 NULL); 2860 if (rc == -EOPNOTSUPP) 2861 return rc; 2862 else if (rc != 0) 2863 goto fail1; 2864 } 2865 2866 rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id, 2867 rx_indir_table, key); 2868 if (rc != 0) 2869 goto fail2; 2870 2871 if (efx->rss_context.context_id != old_rx_rss_context && 2872 old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID) 2873 WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0); 2874 nic_data->rx_rss_context_exclusive = true; 2875 if (rx_indir_table != efx->rss_context.rx_indir_table) 2876 memcpy(efx->rss_context.rx_indir_table, rx_indir_table, 2877 sizeof(efx->rss_context.rx_indir_table)); 2878 if (key != efx->rss_context.rx_hash_key) 2879 memcpy(efx->rss_context.rx_hash_key, key, 2880 efx->type->rx_hash_key_size); 2881 2882 return 0; 2883 2884 fail2: 2885 if (old_rx_rss_context != efx->rss_context.context_id) { 2886 WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0); 2887 efx->rss_context.context_id = old_rx_rss_context; 2888 } 2889 fail1: 2890 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 2891 return rc; 2892 } 2893 2894 static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx, 2895 struct efx_rss_context *ctx, 2896 const u32 *rx_indir_table, 2897 const u8 *key) 2898 { 2899 int rc; 2900 2901 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 2902 2903 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) { 2904 rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL); 2905 if (rc) 2906 return rc; 2907 } 2908 2909 if (!rx_indir_table) /* Delete this context */ 2910 return efx_ef10_free_rss_context(efx, ctx->context_id); 2911 2912 rc = efx_ef10_populate_rss_table(efx, ctx->context_id, 2913 rx_indir_table, key); 2914 if (rc) 2915 return rc; 2916 2917 memcpy(ctx->rx_indir_table, rx_indir_table, 2918 sizeof(efx->rss_context.rx_indir_table)); 2919 memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size); 2920 2921 return 0; 2922 } 2923 2924 static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx, 2925 struct efx_rss_context *ctx) 2926 { 2927 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN); 2928 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN); 2929 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN); 2930 size_t outlen; 2931 int rc, i; 2932 2933 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 2934 2935 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN != 2936 MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN); 2937 2938 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) 2939 return -ENOENT; 2940 2941 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID, 2942 ctx->context_id); 2943 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) != 2944 MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN); 2945 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf), 2946 tablebuf, sizeof(tablebuf), &outlen); 2947 if (rc != 0) 2948 return rc; 2949 2950 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN)) 2951 return -EIO; 2952 2953 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 2954 ctx->rx_indir_table[i] = MCDI_PTR(tablebuf, 2955 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i]; 2956 2957 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID, 2958 ctx->context_id); 2959 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) != 2960 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); 2961 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf), 2962 keybuf, sizeof(keybuf), &outlen); 2963 if (rc != 0) 2964 return rc; 2965 2966 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN)) 2967 return -EIO; 2968 2969 for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i) 2970 ctx->rx_hash_key[i] = MCDI_PTR( 2971 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i]; 2972 2973 return 0; 2974 } 2975 2976 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx) 2977 { 2978 int rc; 2979 2980 mutex_lock(&efx->rss_lock); 2981 rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context); 2982 mutex_unlock(&efx->rss_lock); 2983 return rc; 2984 } 2985 2986 static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx) 2987 { 2988 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2989 struct efx_rss_context *ctx; 2990 int rc; 2991 2992 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 2993 2994 if (!nic_data->must_restore_rss_contexts) 2995 return; 2996 2997 list_for_each_entry(ctx, &efx->rss_context.list, list) { 2998 /* previous NIC RSS context is gone */ 2999 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID; 3000 /* so try to allocate a new one */ 3001 rc = efx_ef10_rx_push_rss_context_config(efx, ctx, 3002 ctx->rx_indir_table, 3003 ctx->rx_hash_key); 3004 if (rc) 3005 netif_warn(efx, probe, efx->net_dev, 3006 "failed to restore RSS context %u, rc=%d" 3007 "; RSS filters may fail to be applied\n", 3008 ctx->user_id, rc); 3009 } 3010 nic_data->must_restore_rss_contexts = false; 3011 } 3012 3013 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user, 3014 const u32 *rx_indir_table, 3015 const u8 *key) 3016 { 3017 int rc; 3018 3019 if (efx->rss_spread == 1) 3020 return 0; 3021 3022 if (!key) 3023 key = efx->rss_context.rx_hash_key; 3024 3025 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key); 3026 3027 if (rc == -ENOBUFS && !user) { 3028 unsigned context_size; 3029 bool mismatch = false; 3030 size_t i; 3031 3032 for (i = 0; 3033 i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch; 3034 i++) 3035 mismatch = rx_indir_table[i] != 3036 ethtool_rxfh_indir_default(i, efx->rss_spread); 3037 3038 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size); 3039 if (rc == 0) { 3040 if (context_size != efx->rss_spread) 3041 netif_warn(efx, probe, efx->net_dev, 3042 "Could not allocate an exclusive RSS" 3043 " context; allocated a shared one of" 3044 " different size." 3045 " Wanted %u, got %u.\n", 3046 efx->rss_spread, context_size); 3047 else if (mismatch) 3048 netif_warn(efx, probe, efx->net_dev, 3049 "Could not allocate an exclusive RSS" 3050 " context; allocated a shared one but" 3051 " could not apply custom" 3052 " indirection.\n"); 3053 else 3054 netif_info(efx, probe, efx->net_dev, 3055 "Could not allocate an exclusive RSS" 3056 " context; allocated a shared one.\n"); 3057 } 3058 } 3059 return rc; 3060 } 3061 3062 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user, 3063 const u32 *rx_indir_table 3064 __attribute__ ((unused)), 3065 const u8 *key 3066 __attribute__ ((unused))) 3067 { 3068 if (user) 3069 return -EOPNOTSUPP; 3070 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) 3071 return 0; 3072 return efx_ef10_rx_push_shared_rss_config(efx, NULL); 3073 } 3074 3075 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue) 3076 { 3077 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf, 3078 (rx_queue->ptr_mask + 1) * 3079 sizeof(efx_qword_t), 3080 GFP_KERNEL); 3081 } 3082 3083 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue) 3084 { 3085 MCDI_DECLARE_BUF(inbuf, 3086 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / 3087 EFX_BUF_SIZE)); 3088 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 3089 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE; 3090 struct efx_nic *efx = rx_queue->efx; 3091 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3092 size_t inlen; 3093 dma_addr_t dma_addr; 3094 int rc; 3095 int i; 3096 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0); 3097 3098 rx_queue->scatter_n = 0; 3099 rx_queue->scatter_len = 0; 3100 3101 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1); 3102 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel); 3103 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue)); 3104 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE, 3105 efx_rx_queue_index(rx_queue)); 3106 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS, 3107 INIT_RXQ_IN_FLAG_PREFIX, 1, 3108 INIT_RXQ_IN_FLAG_TIMESTAMP, 1); 3109 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0); 3110 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id); 3111 3112 dma_addr = rx_queue->rxd.buf.dma_addr; 3113 3114 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n", 3115 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr); 3116 3117 for (i = 0; i < entries; ++i) { 3118 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr); 3119 dma_addr += EFX_BUF_SIZE; 3120 } 3121 3122 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries); 3123 3124 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen, 3125 NULL, 0, NULL); 3126 if (rc) 3127 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n", 3128 efx_rx_queue_index(rx_queue)); 3129 } 3130 3131 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue) 3132 { 3133 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN); 3134 MCDI_DECLARE_BUF_ERR(outbuf); 3135 struct efx_nic *efx = rx_queue->efx; 3136 size_t outlen; 3137 int rc; 3138 3139 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE, 3140 efx_rx_queue_index(rx_queue)); 3141 3142 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf), 3143 outbuf, sizeof(outbuf), &outlen); 3144 3145 if (rc && rc != -EALREADY) 3146 goto fail; 3147 3148 return; 3149 3150 fail: 3151 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN, 3152 outbuf, outlen, rc); 3153 } 3154 3155 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue) 3156 { 3157 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf); 3158 } 3159 3160 /* This creates an entry in the RX descriptor queue */ 3161 static inline void 3162 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) 3163 { 3164 struct efx_rx_buffer *rx_buf; 3165 efx_qword_t *rxd; 3166 3167 rxd = efx_rx_desc(rx_queue, index); 3168 rx_buf = efx_rx_buffer(rx_queue, index); 3169 EFX_POPULATE_QWORD_2(*rxd, 3170 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, 3171 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); 3172 } 3173 3174 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) 3175 { 3176 struct efx_nic *efx = rx_queue->efx; 3177 unsigned int write_count; 3178 efx_dword_t reg; 3179 3180 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ 3181 write_count = rx_queue->added_count & ~7; 3182 if (rx_queue->notified_count == write_count) 3183 return; 3184 3185 do 3186 efx_ef10_build_rx_desc( 3187 rx_queue, 3188 rx_queue->notified_count & rx_queue->ptr_mask); 3189 while (++rx_queue->notified_count != write_count); 3190 3191 wmb(); 3192 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, 3193 write_count & rx_queue->ptr_mask); 3194 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, 3195 efx_rx_queue_index(rx_queue)); 3196 } 3197 3198 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; 3199 3200 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) 3201 { 3202 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 3203 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 3204 efx_qword_t event; 3205 3206 EFX_POPULATE_QWORD_2(event, 3207 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, 3208 ESF_DZ_EV_DATA, EFX_EF10_REFILL); 3209 3210 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 3211 3212 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 3213 * already swapped the data to little-endian order. 3214 */ 3215 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 3216 sizeof(efx_qword_t)); 3217 3218 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, 3219 inbuf, sizeof(inbuf), 0, 3220 efx_ef10_rx_defer_refill_complete, 0); 3221 } 3222 3223 static void 3224 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, 3225 int rc, efx_dword_t *outbuf, 3226 size_t outlen_actual) 3227 { 3228 /* nothing to do */ 3229 } 3230 3231 static int efx_ef10_ev_probe(struct efx_channel *channel) 3232 { 3233 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, 3234 (channel->eventq_mask + 1) * 3235 sizeof(efx_qword_t), 3236 GFP_KERNEL); 3237 } 3238 3239 static void efx_ef10_ev_fini(struct efx_channel *channel) 3240 { 3241 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN); 3242 MCDI_DECLARE_BUF_ERR(outbuf); 3243 struct efx_nic *efx = channel->efx; 3244 size_t outlen; 3245 int rc; 3246 3247 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel); 3248 3249 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf), 3250 outbuf, sizeof(outbuf), &outlen); 3251 3252 if (rc && rc != -EALREADY) 3253 goto fail; 3254 3255 return; 3256 3257 fail: 3258 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN, 3259 outbuf, outlen, rc); 3260 } 3261 3262 static int efx_ef10_ev_init(struct efx_channel *channel) 3263 { 3264 MCDI_DECLARE_BUF(inbuf, 3265 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 / 3266 EFX_BUF_SIZE)); 3267 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN); 3268 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE; 3269 struct efx_nic *efx = channel->efx; 3270 struct efx_ef10_nic_data *nic_data; 3271 size_t inlen, outlen; 3272 unsigned int enabled, implemented; 3273 dma_addr_t dma_addr; 3274 int rc; 3275 int i; 3276 3277 nic_data = efx->nic_data; 3278 3279 /* Fill event queue with all ones (i.e. empty events) */ 3280 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); 3281 3282 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1); 3283 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel); 3284 /* INIT_EVQ expects index in vector table, not absolute */ 3285 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel); 3286 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE, 3287 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); 3288 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0); 3289 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0); 3290 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE, 3291 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); 3292 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0); 3293 3294 if (nic_data->datapath_caps2 & 3295 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) { 3296 /* Use the new generic approach to specifying event queue 3297 * configuration, requesting lower latency or higher throughput. 3298 * The options that actually get used appear in the output. 3299 */ 3300 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS, 3301 INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1, 3302 INIT_EVQ_V2_IN_FLAG_TYPE, 3303 MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO); 3304 } else { 3305 bool cut_thru = !(nic_data->datapath_caps & 3306 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); 3307 3308 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS, 3309 INIT_EVQ_IN_FLAG_INTERRUPTING, 1, 3310 INIT_EVQ_IN_FLAG_RX_MERGE, 1, 3311 INIT_EVQ_IN_FLAG_TX_MERGE, 1, 3312 INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru); 3313 } 3314 3315 dma_addr = channel->eventq.buf.dma_addr; 3316 for (i = 0; i < entries; ++i) { 3317 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr); 3318 dma_addr += EFX_BUF_SIZE; 3319 } 3320 3321 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries); 3322 3323 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen, 3324 outbuf, sizeof(outbuf), &outlen); 3325 3326 if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN) 3327 netif_dbg(efx, drv, efx->net_dev, 3328 "Channel %d using event queue flags %08x\n", 3329 channel->channel, 3330 MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS)); 3331 3332 /* IRQ return is ignored */ 3333 if (channel->channel || rc) 3334 return rc; 3335 3336 /* Successfully created event queue on channel 0 */ 3337 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); 3338 if (rc == -ENOSYS) { 3339 /* GET_WORKAROUNDS was implemented before this workaround, 3340 * thus it must be unavailable in this firmware. 3341 */ 3342 nic_data->workaround_26807 = false; 3343 rc = 0; 3344 } else if (rc) { 3345 goto fail; 3346 } else { 3347 nic_data->workaround_26807 = 3348 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807); 3349 3350 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 && 3351 !nic_data->workaround_26807) { 3352 unsigned int flags; 3353 3354 rc = efx_mcdi_set_workaround(efx, 3355 MC_CMD_WORKAROUND_BUG26807, 3356 true, &flags); 3357 3358 if (!rc) { 3359 if (flags & 3360 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) { 3361 netif_info(efx, drv, efx->net_dev, 3362 "other functions on NIC have been reset\n"); 3363 3364 /* With MCFW v4.6.x and earlier, the 3365 * boot count will have incremented, 3366 * so re-read the warm_boot_count 3367 * value now to ensure this function 3368 * doesn't think it has changed next 3369 * time it checks. 3370 */ 3371 rc = efx_ef10_get_warm_boot_count(efx); 3372 if (rc >= 0) { 3373 nic_data->warm_boot_count = rc; 3374 rc = 0; 3375 } 3376 } 3377 nic_data->workaround_26807 = true; 3378 } else if (rc == -EPERM) { 3379 rc = 0; 3380 } 3381 } 3382 } 3383 3384 if (!rc) 3385 return 0; 3386 3387 fail: 3388 efx_ef10_ev_fini(channel); 3389 return rc; 3390 } 3391 3392 static void efx_ef10_ev_remove(struct efx_channel *channel) 3393 { 3394 efx_nic_free_buffer(channel->efx, &channel->eventq.buf); 3395 } 3396 3397 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, 3398 unsigned int rx_queue_label) 3399 { 3400 struct efx_nic *efx = rx_queue->efx; 3401 3402 netif_info(efx, hw, efx->net_dev, 3403 "rx event arrived on queue %d labeled as queue %u\n", 3404 efx_rx_queue_index(rx_queue), rx_queue_label); 3405 3406 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 3407 } 3408 3409 static void 3410 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, 3411 unsigned int actual, unsigned int expected) 3412 { 3413 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; 3414 struct efx_nic *efx = rx_queue->efx; 3415 3416 netif_info(efx, hw, efx->net_dev, 3417 "dropped %d events (index=%d expected=%d)\n", 3418 dropped, actual, expected); 3419 3420 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 3421 } 3422 3423 /* partially received RX was aborted. clean up. */ 3424 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) 3425 { 3426 unsigned int rx_desc_ptr; 3427 3428 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, 3429 "scattered RX aborted (dropping %u buffers)\n", 3430 rx_queue->scatter_n); 3431 3432 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; 3433 3434 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, 3435 0, EFX_RX_PKT_DISCARD); 3436 3437 rx_queue->removed_count += rx_queue->scatter_n; 3438 rx_queue->scatter_n = 0; 3439 rx_queue->scatter_len = 0; 3440 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; 3441 } 3442 3443 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel, 3444 unsigned int n_packets, 3445 unsigned int rx_encap_hdr, 3446 unsigned int rx_l3_class, 3447 unsigned int rx_l4_class, 3448 const efx_qword_t *event) 3449 { 3450 struct efx_nic *efx = channel->efx; 3451 bool handled = false; 3452 3453 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) { 3454 if (!(efx->net_dev->features & NETIF_F_RXALL)) { 3455 if (!efx->loopback_selftest) 3456 channel->n_rx_eth_crc_err += n_packets; 3457 return EFX_RX_PKT_DISCARD; 3458 } 3459 handled = true; 3460 } 3461 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) { 3462 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && 3463 rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 3464 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && 3465 rx_l3_class != ESE_DZ_L3_CLASS_IP6 && 3466 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) 3467 netdev_WARN(efx->net_dev, 3468 "invalid class for RX_IPCKSUM_ERR: event=" 3469 EFX_QWORD_FMT "\n", 3470 EFX_QWORD_VAL(*event)); 3471 if (!efx->loopback_selftest) 3472 *(rx_encap_hdr ? 3473 &channel->n_rx_outer_ip_hdr_chksum_err : 3474 &channel->n_rx_ip_hdr_chksum_err) += n_packets; 3475 return 0; 3476 } 3477 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { 3478 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && 3479 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 3480 rx_l3_class != ESE_DZ_L3_CLASS_IP6) || 3481 (rx_l4_class != ESE_FZ_L4_CLASS_TCP && 3482 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))) 3483 netdev_WARN(efx->net_dev, 3484 "invalid class for RX_TCPUDP_CKSUM_ERR: event=" 3485 EFX_QWORD_FMT "\n", 3486 EFX_QWORD_VAL(*event)); 3487 if (!efx->loopback_selftest) 3488 *(rx_encap_hdr ? 3489 &channel->n_rx_outer_tcp_udp_chksum_err : 3490 &channel->n_rx_tcp_udp_chksum_err) += n_packets; 3491 return 0; 3492 } 3493 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) { 3494 if (unlikely(!rx_encap_hdr)) 3495 netdev_WARN(efx->net_dev, 3496 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event=" 3497 EFX_QWORD_FMT "\n", 3498 EFX_QWORD_VAL(*event)); 3499 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 3500 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && 3501 rx_l3_class != ESE_DZ_L3_CLASS_IP6 && 3502 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) 3503 netdev_WARN(efx->net_dev, 3504 "invalid class for RX_IP_INNER_CHKSUM_ERR: event=" 3505 EFX_QWORD_FMT "\n", 3506 EFX_QWORD_VAL(*event)); 3507 if (!efx->loopback_selftest) 3508 channel->n_rx_inner_ip_hdr_chksum_err += n_packets; 3509 return 0; 3510 } 3511 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) { 3512 if (unlikely(!rx_encap_hdr)) 3513 netdev_WARN(efx->net_dev, 3514 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" 3515 EFX_QWORD_FMT "\n", 3516 EFX_QWORD_VAL(*event)); 3517 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 3518 rx_l3_class != ESE_DZ_L3_CLASS_IP6) || 3519 (rx_l4_class != ESE_FZ_L4_CLASS_TCP && 3520 rx_l4_class != ESE_FZ_L4_CLASS_UDP))) 3521 netdev_WARN(efx->net_dev, 3522 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" 3523 EFX_QWORD_FMT "\n", 3524 EFX_QWORD_VAL(*event)); 3525 if (!efx->loopback_selftest) 3526 channel->n_rx_inner_tcp_udp_chksum_err += n_packets; 3527 return 0; 3528 } 3529 3530 WARN_ON(!handled); /* No error bits were recognised */ 3531 return 0; 3532 } 3533 3534 static int efx_ef10_handle_rx_event(struct efx_channel *channel, 3535 const efx_qword_t *event) 3536 { 3537 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label; 3538 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr; 3539 unsigned int n_descs, n_packets, i; 3540 struct efx_nic *efx = channel->efx; 3541 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3542 struct efx_rx_queue *rx_queue; 3543 efx_qword_t errors; 3544 bool rx_cont; 3545 u16 flags = 0; 3546 3547 if (unlikely(READ_ONCE(efx->reset_pending))) 3548 return 0; 3549 3550 /* Basic packet information */ 3551 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); 3552 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); 3553 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); 3554 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS); 3555 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS); 3556 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); 3557 rx_encap_hdr = 3558 nic_data->datapath_caps & 3559 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ? 3560 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) : 3561 ESE_EZ_ENCAP_HDR_NONE; 3562 3563 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) 3564 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" 3565 EFX_QWORD_FMT "\n", 3566 EFX_QWORD_VAL(*event)); 3567 3568 rx_queue = efx_channel_get_rx_queue(channel); 3569 3570 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) 3571 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); 3572 3573 n_descs = ((next_ptr_lbits - rx_queue->removed_count) & 3574 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); 3575 3576 if (n_descs != rx_queue->scatter_n + 1) { 3577 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3578 3579 /* detect rx abort */ 3580 if (unlikely(n_descs == rx_queue->scatter_n)) { 3581 if (rx_queue->scatter_n == 0 || rx_bytes != 0) 3582 netdev_WARN(efx->net_dev, 3583 "invalid RX abort: scatter_n=%u event=" 3584 EFX_QWORD_FMT "\n", 3585 rx_queue->scatter_n, 3586 EFX_QWORD_VAL(*event)); 3587 efx_ef10_handle_rx_abort(rx_queue); 3588 return 0; 3589 } 3590 3591 /* Check that RX completion merging is valid, i.e. 3592 * the current firmware supports it and this is a 3593 * non-scattered packet. 3594 */ 3595 if (!(nic_data->datapath_caps & 3596 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || 3597 rx_queue->scatter_n != 0 || rx_cont) { 3598 efx_ef10_handle_rx_bad_lbits( 3599 rx_queue, next_ptr_lbits, 3600 (rx_queue->removed_count + 3601 rx_queue->scatter_n + 1) & 3602 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); 3603 return 0; 3604 } 3605 3606 /* Merged completion for multiple non-scattered packets */ 3607 rx_queue->scatter_n = 1; 3608 rx_queue->scatter_len = 0; 3609 n_packets = n_descs; 3610 ++channel->n_rx_merge_events; 3611 channel->n_rx_merge_packets += n_packets; 3612 flags |= EFX_RX_PKT_PREFIX_LEN; 3613 } else { 3614 ++rx_queue->scatter_n; 3615 rx_queue->scatter_len += rx_bytes; 3616 if (rx_cont) 3617 return 0; 3618 n_packets = 1; 3619 } 3620 3621 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1, 3622 ESF_DZ_RX_IPCKSUM_ERR, 1, 3623 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1, 3624 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1, 3625 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1); 3626 EFX_AND_QWORD(errors, *event, errors); 3627 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) { 3628 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets, 3629 rx_encap_hdr, 3630 rx_l3_class, rx_l4_class, 3631 event); 3632 } else { 3633 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP || 3634 rx_l4_class == ESE_FZ_L4_CLASS_UDP; 3635 3636 switch (rx_encap_hdr) { 3637 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */ 3638 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */ 3639 if (tcpudp) 3640 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */ 3641 break; 3642 case ESE_EZ_ENCAP_HDR_GRE: 3643 case ESE_EZ_ENCAP_HDR_NONE: 3644 if (tcpudp) 3645 flags |= EFX_RX_PKT_CSUMMED; 3646 break; 3647 default: 3648 netdev_WARN(efx->net_dev, 3649 "unknown encapsulation type: event=" 3650 EFX_QWORD_FMT "\n", 3651 EFX_QWORD_VAL(*event)); 3652 } 3653 } 3654 3655 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP) 3656 flags |= EFX_RX_PKT_TCP; 3657 3658 channel->irq_mod_score += 2 * n_packets; 3659 3660 /* Handle received packet(s) */ 3661 for (i = 0; i < n_packets; i++) { 3662 efx_rx_packet(rx_queue, 3663 rx_queue->removed_count & rx_queue->ptr_mask, 3664 rx_queue->scatter_n, rx_queue->scatter_len, 3665 flags); 3666 rx_queue->removed_count += rx_queue->scatter_n; 3667 } 3668 3669 rx_queue->scatter_n = 0; 3670 rx_queue->scatter_len = 0; 3671 3672 return n_packets; 3673 } 3674 3675 static u32 efx_ef10_extract_event_ts(efx_qword_t *event) 3676 { 3677 u32 tstamp; 3678 3679 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI); 3680 tstamp <<= 16; 3681 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO); 3682 3683 return tstamp; 3684 } 3685 3686 static void 3687 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) 3688 { 3689 struct efx_nic *efx = channel->efx; 3690 struct efx_tx_queue *tx_queue; 3691 unsigned int tx_ev_desc_ptr; 3692 unsigned int tx_ev_q_label; 3693 unsigned int tx_ev_type; 3694 u64 ts_part; 3695 3696 if (unlikely(READ_ONCE(efx->reset_pending))) 3697 return; 3698 3699 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) 3700 return; 3701 3702 /* Get the transmit queue */ 3703 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); 3704 tx_queue = efx_channel_get_tx_queue(channel, 3705 tx_ev_q_label % EFX_TXQ_TYPES); 3706 3707 if (!tx_queue->timestamping) { 3708 /* Transmit completion */ 3709 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); 3710 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); 3711 return; 3712 } 3713 3714 /* Transmit timestamps are only available for 8XXX series. They result 3715 * in three events per packet. These occur in order, and are: 3716 * - the normal completion event 3717 * - the low part of the timestamp 3718 * - the high part of the timestamp 3719 * 3720 * Each part of the timestamp is itself split across two 16 bit 3721 * fields in the event. 3722 */ 3723 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1); 3724 3725 switch (tx_ev_type) { 3726 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION: 3727 /* In case of Queue flush or FLR, we might have received 3728 * the previous TX completion event but not the Timestamp 3729 * events. 3730 */ 3731 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask) 3732 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr); 3733 3734 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, 3735 ESF_DZ_TX_DESCR_INDX); 3736 tx_queue->completed_desc_ptr = 3737 tx_ev_desc_ptr & tx_queue->ptr_mask; 3738 break; 3739 3740 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO: 3741 ts_part = efx_ef10_extract_event_ts(event); 3742 tx_queue->completed_timestamp_minor = ts_part; 3743 break; 3744 3745 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI: 3746 ts_part = efx_ef10_extract_event_ts(event); 3747 tx_queue->completed_timestamp_major = ts_part; 3748 3749 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr); 3750 tx_queue->completed_desc_ptr = tx_queue->ptr_mask; 3751 break; 3752 3753 default: 3754 netif_err(efx, hw, efx->net_dev, 3755 "channel %d unknown tx event type %d (data " 3756 EFX_QWORD_FMT ")\n", 3757 channel->channel, tx_ev_type, 3758 EFX_QWORD_VAL(*event)); 3759 break; 3760 } 3761 } 3762 3763 static void 3764 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) 3765 { 3766 struct efx_nic *efx = channel->efx; 3767 int subcode; 3768 3769 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); 3770 3771 switch (subcode) { 3772 case ESE_DZ_DRV_TIMER_EV: 3773 case ESE_DZ_DRV_WAKE_UP_EV: 3774 break; 3775 case ESE_DZ_DRV_START_UP_EV: 3776 /* event queue init complete. ok. */ 3777 break; 3778 default: 3779 netif_err(efx, hw, efx->net_dev, 3780 "channel %d unknown driver event type %d" 3781 " (data " EFX_QWORD_FMT ")\n", 3782 channel->channel, subcode, 3783 EFX_QWORD_VAL(*event)); 3784 3785 } 3786 } 3787 3788 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, 3789 efx_qword_t *event) 3790 { 3791 struct efx_nic *efx = channel->efx; 3792 u32 subcode; 3793 3794 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); 3795 3796 switch (subcode) { 3797 case EFX_EF10_TEST: 3798 channel->event_test_cpu = raw_smp_processor_id(); 3799 break; 3800 case EFX_EF10_REFILL: 3801 /* The queue must be empty, so we won't receive any rx 3802 * events, so efx_process_channel() won't refill the 3803 * queue. Refill it here 3804 */ 3805 efx_fast_push_rx_descriptors(&channel->rx_queue, true); 3806 break; 3807 default: 3808 netif_err(efx, hw, efx->net_dev, 3809 "channel %d unknown driver event type %u" 3810 " (data " EFX_QWORD_FMT ")\n", 3811 channel->channel, (unsigned) subcode, 3812 EFX_QWORD_VAL(*event)); 3813 } 3814 } 3815 3816 static int efx_ef10_ev_process(struct efx_channel *channel, int quota) 3817 { 3818 struct efx_nic *efx = channel->efx; 3819 efx_qword_t event, *p_event; 3820 unsigned int read_ptr; 3821 int ev_code; 3822 int spent = 0; 3823 3824 if (quota <= 0) 3825 return spent; 3826 3827 read_ptr = channel->eventq_read_ptr; 3828 3829 for (;;) { 3830 p_event = efx_event(channel, read_ptr); 3831 event = *p_event; 3832 3833 if (!efx_event_present(&event)) 3834 break; 3835 3836 EFX_SET_QWORD(*p_event); 3837 3838 ++read_ptr; 3839 3840 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); 3841 3842 netif_vdbg(efx, drv, efx->net_dev, 3843 "processing event on %d " EFX_QWORD_FMT "\n", 3844 channel->channel, EFX_QWORD_VAL(event)); 3845 3846 switch (ev_code) { 3847 case ESE_DZ_EV_CODE_MCDI_EV: 3848 efx_mcdi_process_event(channel, &event); 3849 break; 3850 case ESE_DZ_EV_CODE_RX_EV: 3851 spent += efx_ef10_handle_rx_event(channel, &event); 3852 if (spent >= quota) { 3853 /* XXX can we split a merged event to 3854 * avoid going over-quota? 3855 */ 3856 spent = quota; 3857 goto out; 3858 } 3859 break; 3860 case ESE_DZ_EV_CODE_TX_EV: 3861 efx_ef10_handle_tx_event(channel, &event); 3862 break; 3863 case ESE_DZ_EV_CODE_DRIVER_EV: 3864 efx_ef10_handle_driver_event(channel, &event); 3865 if (++spent == quota) 3866 goto out; 3867 break; 3868 case EFX_EF10_DRVGEN_EV: 3869 efx_ef10_handle_driver_generated_event(channel, &event); 3870 break; 3871 default: 3872 netif_err(efx, hw, efx->net_dev, 3873 "channel %d unknown event type %d" 3874 " (data " EFX_QWORD_FMT ")\n", 3875 channel->channel, ev_code, 3876 EFX_QWORD_VAL(event)); 3877 } 3878 } 3879 3880 out: 3881 channel->eventq_read_ptr = read_ptr; 3882 return spent; 3883 } 3884 3885 static void efx_ef10_ev_read_ack(struct efx_channel *channel) 3886 { 3887 struct efx_nic *efx = channel->efx; 3888 efx_dword_t rptr; 3889 3890 if (EFX_EF10_WORKAROUND_35388(efx)) { 3891 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < 3892 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); 3893 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > 3894 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); 3895 3896 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, 3897 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, 3898 ERF_DD_EVQ_IND_RPTR, 3899 (channel->eventq_read_ptr & 3900 channel->eventq_mask) >> 3901 ERF_DD_EVQ_IND_RPTR_WIDTH); 3902 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, 3903 channel->channel); 3904 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, 3905 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, 3906 ERF_DD_EVQ_IND_RPTR, 3907 channel->eventq_read_ptr & 3908 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); 3909 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, 3910 channel->channel); 3911 } else { 3912 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, 3913 channel->eventq_read_ptr & 3914 channel->eventq_mask); 3915 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); 3916 } 3917 } 3918 3919 static void efx_ef10_ev_test_generate(struct efx_channel *channel) 3920 { 3921 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 3922 struct efx_nic *efx = channel->efx; 3923 efx_qword_t event; 3924 int rc; 3925 3926 EFX_POPULATE_QWORD_2(event, 3927 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, 3928 ESF_DZ_EV_DATA, EFX_EF10_TEST); 3929 3930 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 3931 3932 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 3933 * already swapped the data to little-endian order. 3934 */ 3935 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 3936 sizeof(efx_qword_t)); 3937 3938 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 3939 NULL, 0, NULL); 3940 if (rc != 0) 3941 goto fail; 3942 3943 return; 3944 3945 fail: 3946 WARN_ON(true); 3947 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 3948 } 3949 3950 void efx_ef10_handle_drain_event(struct efx_nic *efx) 3951 { 3952 if (atomic_dec_and_test(&efx->active_queues)) 3953 wake_up(&efx->flush_wq); 3954 3955 WARN_ON(atomic_read(&efx->active_queues) < 0); 3956 } 3957 3958 static int efx_ef10_fini_dmaq(struct efx_nic *efx) 3959 { 3960 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3961 struct efx_channel *channel; 3962 struct efx_tx_queue *tx_queue; 3963 struct efx_rx_queue *rx_queue; 3964 int pending; 3965 3966 /* If the MC has just rebooted, the TX/RX queues will have already been 3967 * torn down, but efx->active_queues needs to be set to zero. 3968 */ 3969 if (nic_data->must_realloc_vis) { 3970 atomic_set(&efx->active_queues, 0); 3971 return 0; 3972 } 3973 3974 /* Do not attempt to write to the NIC during EEH recovery */ 3975 if (efx->state != STATE_RECOVERY) { 3976 efx_for_each_channel(channel, efx) { 3977 efx_for_each_channel_rx_queue(rx_queue, channel) 3978 efx_ef10_rx_fini(rx_queue); 3979 efx_for_each_channel_tx_queue(tx_queue, channel) 3980 efx_ef10_tx_fini(tx_queue); 3981 } 3982 3983 wait_event_timeout(efx->flush_wq, 3984 atomic_read(&efx->active_queues) == 0, 3985 msecs_to_jiffies(EFX_MAX_FLUSH_TIME)); 3986 pending = atomic_read(&efx->active_queues); 3987 if (pending) { 3988 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n", 3989 pending); 3990 return -ETIMEDOUT; 3991 } 3992 } 3993 3994 return 0; 3995 } 3996 3997 static void efx_ef10_prepare_flr(struct efx_nic *efx) 3998 { 3999 atomic_set(&efx->active_queues, 0); 4000 } 4001 4002 /* Decide whether a filter should be exclusive or else should allow 4003 * delivery to additional recipients. Currently we decide that 4004 * filters for specific local unicast MAC and IP addresses are 4005 * exclusive. 4006 */ 4007 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec) 4008 { 4009 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC && 4010 !is_multicast_ether_addr(spec->loc_mac)) 4011 return true; 4012 4013 if ((spec->match_flags & 4014 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 4015 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 4016 if (spec->ether_type == htons(ETH_P_IP) && 4017 !ipv4_is_multicast(spec->loc_host[0])) 4018 return true; 4019 if (spec->ether_type == htons(ETH_P_IPV6) && 4020 ((const u8 *)spec->loc_host)[0] != 0xff) 4021 return true; 4022 } 4023 4024 return false; 4025 } 4026 4027 static struct efx_filter_spec * 4028 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table, 4029 unsigned int filter_idx) 4030 { 4031 return (struct efx_filter_spec *)(table->entry[filter_idx].spec & 4032 ~EFX_EF10_FILTER_FLAGS); 4033 } 4034 4035 static unsigned int 4036 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table, 4037 unsigned int filter_idx) 4038 { 4039 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS; 4040 } 4041 4042 static void 4043 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table, 4044 unsigned int filter_idx, 4045 const struct efx_filter_spec *spec, 4046 unsigned int flags) 4047 { 4048 table->entry[filter_idx].spec = (unsigned long)spec | flags; 4049 } 4050 4051 static void 4052 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx, 4053 const struct efx_filter_spec *spec, 4054 efx_dword_t *inbuf) 4055 { 4056 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec); 4057 u32 match_fields = 0, uc_match, mc_match; 4058 4059 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, 4060 efx_ef10_filter_is_exclusive(spec) ? 4061 MC_CMD_FILTER_OP_IN_OP_INSERT : 4062 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE); 4063 4064 /* Convert match flags and values. Unlike almost 4065 * everything else in MCDI, these fields are in 4066 * network byte order. 4067 */ 4068 #define COPY_VALUE(value, mcdi_field) \ 4069 do { \ 4070 match_fields |= \ 4071 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \ 4072 mcdi_field ## _LBN; \ 4073 BUILD_BUG_ON( \ 4074 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \ 4075 sizeof(value)); \ 4076 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \ 4077 &value, sizeof(value)); \ 4078 } while (0) 4079 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \ 4080 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \ 4081 COPY_VALUE(spec->gen_field, mcdi_field); \ 4082 } 4083 /* Handle encap filters first. They will always be mismatch 4084 * (unknown UC or MC) filters 4085 */ 4086 if (encap_type) { 4087 /* ether_type and outer_ip_proto need to be variables 4088 * because COPY_VALUE wants to memcpy them 4089 */ 4090 __be16 ether_type = 4091 htons(encap_type & EFX_ENCAP_FLAG_IPV6 ? 4092 ETH_P_IPV6 : ETH_P_IP); 4093 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE; 4094 u8 outer_ip_proto; 4095 4096 switch (encap_type & EFX_ENCAP_TYPES_MASK) { 4097 case EFX_ENCAP_TYPE_VXLAN: 4098 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN; 4099 /* fallthrough */ 4100 case EFX_ENCAP_TYPE_GENEVE: 4101 COPY_VALUE(ether_type, ETHER_TYPE); 4102 outer_ip_proto = IPPROTO_UDP; 4103 COPY_VALUE(outer_ip_proto, IP_PROTO); 4104 /* We always need to set the type field, even 4105 * though we're not matching on the TNI. 4106 */ 4107 MCDI_POPULATE_DWORD_1(inbuf, 4108 FILTER_OP_EXT_IN_VNI_OR_VSID, 4109 FILTER_OP_EXT_IN_VNI_TYPE, 4110 vni_type); 4111 break; 4112 case EFX_ENCAP_TYPE_NVGRE: 4113 COPY_VALUE(ether_type, ETHER_TYPE); 4114 outer_ip_proto = IPPROTO_GRE; 4115 COPY_VALUE(outer_ip_proto, IP_PROTO); 4116 break; 4117 default: 4118 WARN_ON(1); 4119 } 4120 4121 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN; 4122 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN; 4123 } else { 4124 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN; 4125 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN; 4126 } 4127 4128 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) 4129 match_fields |= 4130 is_multicast_ether_addr(spec->loc_mac) ? 4131 1 << mc_match : 4132 1 << uc_match; 4133 COPY_FIELD(REM_HOST, rem_host, SRC_IP); 4134 COPY_FIELD(LOC_HOST, loc_host, DST_IP); 4135 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC); 4136 COPY_FIELD(REM_PORT, rem_port, SRC_PORT); 4137 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC); 4138 COPY_FIELD(LOC_PORT, loc_port, DST_PORT); 4139 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE); 4140 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN); 4141 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN); 4142 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO); 4143 #undef COPY_FIELD 4144 #undef COPY_VALUE 4145 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS, 4146 match_fields); 4147 } 4148 4149 static void efx_ef10_filter_push_prep(struct efx_nic *efx, 4150 const struct efx_filter_spec *spec, 4151 efx_dword_t *inbuf, u64 handle, 4152 struct efx_rss_context *ctx, 4153 bool replacing) 4154 { 4155 struct efx_ef10_nic_data *nic_data = efx->nic_data; 4156 u32 flags = spec->flags; 4157 4158 memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN); 4159 4160 /* If RSS filter, caller better have given us an RSS context */ 4161 if (flags & EFX_FILTER_FLAG_RX_RSS) { 4162 /* We don't have the ability to return an error, so we'll just 4163 * log a warning and disable RSS for the filter. 4164 */ 4165 if (WARN_ON_ONCE(!ctx)) 4166 flags &= ~EFX_FILTER_FLAG_RX_RSS; 4167 else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)) 4168 flags &= ~EFX_FILTER_FLAG_RX_RSS; 4169 } 4170 4171 if (replacing) { 4172 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, 4173 MC_CMD_FILTER_OP_IN_OP_REPLACE); 4174 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle); 4175 } else { 4176 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf); 4177 } 4178 4179 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id); 4180 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST, 4181 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? 4182 MC_CMD_FILTER_OP_IN_RX_DEST_DROP : 4183 MC_CMD_FILTER_OP_IN_RX_DEST_HOST); 4184 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0); 4185 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST, 4186 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT); 4187 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, 4188 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? 4189 0 : spec->dmaq_id); 4190 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE, 4191 (flags & EFX_FILTER_FLAG_RX_RSS) ? 4192 MC_CMD_FILTER_OP_IN_RX_MODE_RSS : 4193 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE); 4194 if (flags & EFX_FILTER_FLAG_RX_RSS) 4195 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id); 4196 } 4197 4198 static int efx_ef10_filter_push(struct efx_nic *efx, 4199 const struct efx_filter_spec *spec, u64 *handle, 4200 struct efx_rss_context *ctx, bool replacing) 4201 { 4202 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN); 4203 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN); 4204 int rc; 4205 4206 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing); 4207 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 4208 outbuf, sizeof(outbuf), NULL); 4209 if (rc == 0) 4210 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE); 4211 if (rc == -ENOSPC) 4212 rc = -EBUSY; /* to match efx_farch_filter_insert() */ 4213 return rc; 4214 } 4215 4216 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec) 4217 { 4218 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec); 4219 unsigned int match_flags = spec->match_flags; 4220 unsigned int uc_match, mc_match; 4221 u32 mcdi_flags = 0; 4222 4223 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) { \ 4224 unsigned int old_match_flags = match_flags; \ 4225 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \ 4226 if (match_flags != old_match_flags) \ 4227 mcdi_flags |= \ 4228 (1 << ((encap) ? \ 4229 MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \ 4230 mcdi_field ## _LBN : \ 4231 MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\ 4232 mcdi_field ## _LBN)); \ 4233 } 4234 /* inner or outer based on encap type */ 4235 MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type); 4236 MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type); 4237 MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type); 4238 MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type); 4239 MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type); 4240 MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type); 4241 MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type); 4242 MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type); 4243 /* always outer */ 4244 MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false); 4245 MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false); 4246 #undef MAP_FILTER_TO_MCDI_FLAG 4247 4248 /* special handling for encap type, and mismatch */ 4249 if (encap_type) { 4250 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE; 4251 mcdi_flags |= 4252 (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN); 4253 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN); 4254 4255 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN; 4256 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN; 4257 } else { 4258 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN; 4259 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN; 4260 } 4261 4262 if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) { 4263 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG; 4264 mcdi_flags |= 4265 is_multicast_ether_addr(spec->loc_mac) ? 4266 1 << mc_match : 4267 1 << uc_match; 4268 } 4269 4270 /* Did we map them all? */ 4271 WARN_ON_ONCE(match_flags); 4272 4273 return mcdi_flags; 4274 } 4275 4276 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table, 4277 const struct efx_filter_spec *spec) 4278 { 4279 u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec); 4280 unsigned int match_pri; 4281 4282 for (match_pri = 0; 4283 match_pri < table->rx_match_count; 4284 match_pri++) 4285 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags) 4286 return match_pri; 4287 4288 return -EPROTONOSUPPORT; 4289 } 4290 4291 static s32 efx_ef10_filter_insert(struct efx_nic *efx, 4292 struct efx_filter_spec *spec, 4293 bool replace_equal) 4294 { 4295 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); 4296 struct efx_ef10_nic_data *nic_data = efx->nic_data; 4297 struct efx_ef10_filter_table *table; 4298 struct efx_filter_spec *saved_spec; 4299 struct efx_rss_context *ctx = NULL; 4300 unsigned int match_pri, hash; 4301 unsigned int priv_flags; 4302 bool rss_locked = false; 4303 bool replacing = false; 4304 unsigned int depth, i; 4305 int ins_index = -1; 4306 DEFINE_WAIT(wait); 4307 bool is_mc_recip; 4308 s32 rc; 4309 4310 down_read(&efx->filter_sem); 4311 table = efx->filter_state; 4312 down_write(&table->lock); 4313 4314 /* For now, only support RX filters */ 4315 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) != 4316 EFX_FILTER_FLAG_RX) { 4317 rc = -EINVAL; 4318 goto out_unlock; 4319 } 4320 4321 rc = efx_ef10_filter_pri(table, spec); 4322 if (rc < 0) 4323 goto out_unlock; 4324 match_pri = rc; 4325 4326 hash = efx_filter_spec_hash(spec); 4327 is_mc_recip = efx_filter_is_mc_recipient(spec); 4328 if (is_mc_recip) 4329 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); 4330 4331 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) { 4332 mutex_lock(&efx->rss_lock); 4333 rss_locked = true; 4334 if (spec->rss_context) 4335 ctx = efx_find_rss_context_entry(efx, spec->rss_context); 4336 else 4337 ctx = &efx->rss_context; 4338 if (!ctx) { 4339 rc = -ENOENT; 4340 goto out_unlock; 4341 } 4342 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) { 4343 rc = -EOPNOTSUPP; 4344 goto out_unlock; 4345 } 4346 } 4347 4348 /* Find any existing filters with the same match tuple or 4349 * else a free slot to insert at. 4350 */ 4351 for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { 4352 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); 4353 saved_spec = efx_ef10_filter_entry_spec(table, i); 4354 4355 if (!saved_spec) { 4356 if (ins_index < 0) 4357 ins_index = i; 4358 } else if (efx_filter_spec_equal(spec, saved_spec)) { 4359 if (spec->priority < saved_spec->priority && 4360 spec->priority != EFX_FILTER_PRI_AUTO) { 4361 rc = -EPERM; 4362 goto out_unlock; 4363 } 4364 if (!is_mc_recip) { 4365 /* This is the only one */ 4366 if (spec->priority == 4367 saved_spec->priority && 4368 !replace_equal) { 4369 rc = -EEXIST; 4370 goto out_unlock; 4371 } 4372 ins_index = i; 4373 break; 4374 } else if (spec->priority > 4375 saved_spec->priority || 4376 (spec->priority == 4377 saved_spec->priority && 4378 replace_equal)) { 4379 if (ins_index < 0) 4380 ins_index = i; 4381 else 4382 __set_bit(depth, mc_rem_map); 4383 } 4384 } 4385 } 4386 4387 /* Once we reach the maximum search depth, use the first suitable 4388 * slot, or return -EBUSY if there was none 4389 */ 4390 if (ins_index < 0) { 4391 rc = -EBUSY; 4392 goto out_unlock; 4393 } 4394 4395 /* Create a software table entry if necessary. */ 4396 saved_spec = efx_ef10_filter_entry_spec(table, ins_index); 4397 if (saved_spec) { 4398 if (spec->priority == EFX_FILTER_PRI_AUTO && 4399 saved_spec->priority >= EFX_FILTER_PRI_AUTO) { 4400 /* Just make sure it won't be removed */ 4401 if (saved_spec->priority > EFX_FILTER_PRI_AUTO) 4402 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; 4403 table->entry[ins_index].spec &= 4404 ~EFX_EF10_FILTER_FLAG_AUTO_OLD; 4405 rc = ins_index; 4406 goto out_unlock; 4407 } 4408 replacing = true; 4409 priv_flags = efx_ef10_filter_entry_flags(table, ins_index); 4410 } else { 4411 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC); 4412 if (!saved_spec) { 4413 rc = -ENOMEM; 4414 goto out_unlock; 4415 } 4416 *saved_spec = *spec; 4417 priv_flags = 0; 4418 } 4419 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags); 4420 4421 /* Actually insert the filter on the HW */ 4422 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle, 4423 ctx, replacing); 4424 4425 if (rc == -EINVAL && nic_data->must_realloc_vis) 4426 /* The MC rebooted under us, causing it to reject our filter 4427 * insertion as pointing to an invalid VI (spec->dmaq_id). 4428 */ 4429 rc = -EAGAIN; 4430 4431 /* Finalise the software table entry */ 4432 if (rc == 0) { 4433 if (replacing) { 4434 /* Update the fields that may differ */ 4435 if (saved_spec->priority == EFX_FILTER_PRI_AUTO) 4436 saved_spec->flags |= 4437 EFX_FILTER_FLAG_RX_OVER_AUTO; 4438 saved_spec->priority = spec->priority; 4439 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO; 4440 saved_spec->flags |= spec->flags; 4441 saved_spec->rss_context = spec->rss_context; 4442 saved_spec->dmaq_id = spec->dmaq_id; 4443 } 4444 } else if (!replacing) { 4445 kfree(saved_spec); 4446 saved_spec = NULL; 4447 } else { 4448 /* We failed to replace, so the old filter is still present. 4449 * Roll back the software table to reflect this. In fact the 4450 * efx_ef10_filter_set_entry() call below will do the right 4451 * thing, so nothing extra is needed here. 4452 */ 4453 } 4454 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags); 4455 4456 /* Remove and finalise entries for lower-priority multicast 4457 * recipients 4458 */ 4459 if (is_mc_recip) { 4460 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN); 4461 unsigned int depth, i; 4462 4463 memset(inbuf, 0, sizeof(inbuf)); 4464 4465 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { 4466 if (!test_bit(depth, mc_rem_map)) 4467 continue; 4468 4469 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); 4470 saved_spec = efx_ef10_filter_entry_spec(table, i); 4471 priv_flags = efx_ef10_filter_entry_flags(table, i); 4472 4473 if (rc == 0) { 4474 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, 4475 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); 4476 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, 4477 table->entry[i].handle); 4478 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, 4479 inbuf, sizeof(inbuf), 4480 NULL, 0, NULL); 4481 } 4482 4483 if (rc == 0) { 4484 kfree(saved_spec); 4485 saved_spec = NULL; 4486 priv_flags = 0; 4487 } 4488 efx_ef10_filter_set_entry(table, i, saved_spec, 4489 priv_flags); 4490 } 4491 } 4492 4493 /* If successful, return the inserted filter ID */ 4494 if (rc == 0) 4495 rc = efx_ef10_make_filter_id(match_pri, ins_index); 4496 4497 out_unlock: 4498 if (rss_locked) 4499 mutex_unlock(&efx->rss_lock); 4500 up_write(&table->lock); 4501 up_read(&efx->filter_sem); 4502 return rc; 4503 } 4504 4505 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx) 4506 { 4507 /* no need to do anything here on EF10 */ 4508 } 4509 4510 /* Remove a filter. 4511 * If !by_index, remove by ID 4512 * If by_index, remove by index 4513 * Filter ID may come from userland and must be range-checked. 4514 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock 4515 * for write. 4516 */ 4517 static int efx_ef10_filter_remove_internal(struct efx_nic *efx, 4518 unsigned int priority_mask, 4519 u32 filter_id, bool by_index) 4520 { 4521 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id); 4522 struct efx_ef10_filter_table *table = efx->filter_state; 4523 MCDI_DECLARE_BUF(inbuf, 4524 MC_CMD_FILTER_OP_IN_HANDLE_OFST + 4525 MC_CMD_FILTER_OP_IN_HANDLE_LEN); 4526 struct efx_filter_spec *spec; 4527 DEFINE_WAIT(wait); 4528 int rc; 4529 4530 spec = efx_ef10_filter_entry_spec(table, filter_idx); 4531 if (!spec || 4532 (!by_index && 4533 efx_ef10_filter_pri(table, spec) != 4534 efx_ef10_filter_get_unsafe_pri(filter_id))) 4535 return -ENOENT; 4536 4537 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO && 4538 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) { 4539 /* Just remove flags */ 4540 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO; 4541 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD; 4542 return 0; 4543 } 4544 4545 if (!(priority_mask & (1U << spec->priority))) 4546 return -ENOENT; 4547 4548 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { 4549 /* Reset to an automatic filter */ 4550 4551 struct efx_filter_spec new_spec = *spec; 4552 4553 new_spec.priority = EFX_FILTER_PRI_AUTO; 4554 new_spec.flags = (EFX_FILTER_FLAG_RX | 4555 (efx_rss_active(&efx->rss_context) ? 4556 EFX_FILTER_FLAG_RX_RSS : 0)); 4557 new_spec.dmaq_id = 0; 4558 new_spec.rss_context = 0; 4559 rc = efx_ef10_filter_push(efx, &new_spec, 4560 &table->entry[filter_idx].handle, 4561 &efx->rss_context, 4562 true); 4563 4564 if (rc == 0) 4565 *spec = new_spec; 4566 } else { 4567 /* Really remove the filter */ 4568 4569 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, 4570 efx_ef10_filter_is_exclusive(spec) ? 4571 MC_CMD_FILTER_OP_IN_OP_REMOVE : 4572 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); 4573 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, 4574 table->entry[filter_idx].handle); 4575 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, 4576 inbuf, sizeof(inbuf), NULL, 0, NULL); 4577 4578 if ((rc == 0) || (rc == -ENOENT)) { 4579 /* Filter removed OK or didn't actually exist */ 4580 kfree(spec); 4581 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); 4582 } else { 4583 efx_mcdi_display_error(efx, MC_CMD_FILTER_OP, 4584 MC_CMD_FILTER_OP_EXT_IN_LEN, 4585 NULL, 0, rc); 4586 } 4587 } 4588 4589 return rc; 4590 } 4591 4592 static int efx_ef10_filter_remove_safe(struct efx_nic *efx, 4593 enum efx_filter_priority priority, 4594 u32 filter_id) 4595 { 4596 struct efx_ef10_filter_table *table; 4597 int rc; 4598 4599 down_read(&efx->filter_sem); 4600 table = efx->filter_state; 4601 down_write(&table->lock); 4602 rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, 4603 false); 4604 up_write(&table->lock); 4605 up_read(&efx->filter_sem); 4606 return rc; 4607 } 4608 4609 /* Caller must hold efx->filter_sem for read */ 4610 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx, 4611 enum efx_filter_priority priority, 4612 u32 filter_id) 4613 { 4614 struct efx_ef10_filter_table *table = efx->filter_state; 4615 4616 if (filter_id == EFX_EF10_FILTER_ID_INVALID) 4617 return; 4618 4619 down_write(&table->lock); 4620 efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, 4621 true); 4622 up_write(&table->lock); 4623 } 4624 4625 static int efx_ef10_filter_get_safe(struct efx_nic *efx, 4626 enum efx_filter_priority priority, 4627 u32 filter_id, struct efx_filter_spec *spec) 4628 { 4629 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id); 4630 const struct efx_filter_spec *saved_spec; 4631 struct efx_ef10_filter_table *table; 4632 int rc; 4633 4634 down_read(&efx->filter_sem); 4635 table = efx->filter_state; 4636 down_read(&table->lock); 4637 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx); 4638 if (saved_spec && saved_spec->priority == priority && 4639 efx_ef10_filter_pri(table, saved_spec) == 4640 efx_ef10_filter_get_unsafe_pri(filter_id)) { 4641 *spec = *saved_spec; 4642 rc = 0; 4643 } else { 4644 rc = -ENOENT; 4645 } 4646 up_read(&table->lock); 4647 up_read(&efx->filter_sem); 4648 return rc; 4649 } 4650 4651 static int efx_ef10_filter_clear_rx(struct efx_nic *efx, 4652 enum efx_filter_priority priority) 4653 { 4654 struct efx_ef10_filter_table *table; 4655 unsigned int priority_mask; 4656 unsigned int i; 4657 int rc; 4658 4659 priority_mask = (((1U << (priority + 1)) - 1) & 4660 ~(1U << EFX_FILTER_PRI_AUTO)); 4661 4662 down_read(&efx->filter_sem); 4663 table = efx->filter_state; 4664 down_write(&table->lock); 4665 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { 4666 rc = efx_ef10_filter_remove_internal(efx, priority_mask, 4667 i, true); 4668 if (rc && rc != -ENOENT) 4669 break; 4670 rc = 0; 4671 } 4672 4673 up_write(&table->lock); 4674 up_read(&efx->filter_sem); 4675 return rc; 4676 } 4677 4678 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx, 4679 enum efx_filter_priority priority) 4680 { 4681 struct efx_ef10_filter_table *table; 4682 unsigned int filter_idx; 4683 s32 count = 0; 4684 4685 down_read(&efx->filter_sem); 4686 table = efx->filter_state; 4687 down_read(&table->lock); 4688 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { 4689 if (table->entry[filter_idx].spec && 4690 efx_ef10_filter_entry_spec(table, filter_idx)->priority == 4691 priority) 4692 ++count; 4693 } 4694 up_read(&table->lock); 4695 up_read(&efx->filter_sem); 4696 return count; 4697 } 4698 4699 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx) 4700 { 4701 struct efx_ef10_filter_table *table = efx->filter_state; 4702 4703 return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2; 4704 } 4705 4706 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx, 4707 enum efx_filter_priority priority, 4708 u32 *buf, u32 size) 4709 { 4710 struct efx_ef10_filter_table *table; 4711 struct efx_filter_spec *spec; 4712 unsigned int filter_idx; 4713 s32 count = 0; 4714 4715 down_read(&efx->filter_sem); 4716 table = efx->filter_state; 4717 down_read(&table->lock); 4718 4719 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { 4720 spec = efx_ef10_filter_entry_spec(table, filter_idx); 4721 if (spec && spec->priority == priority) { 4722 if (count == size) { 4723 count = -EMSGSIZE; 4724 break; 4725 } 4726 buf[count++] = 4727 efx_ef10_make_filter_id( 4728 efx_ef10_filter_pri(table, spec), 4729 filter_idx); 4730 } 4731 } 4732 up_read(&table->lock); 4733 up_read(&efx->filter_sem); 4734 return count; 4735 } 4736 4737 #ifdef CONFIG_RFS_ACCEL 4738 4739 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, 4740 unsigned int filter_idx) 4741 { 4742 struct efx_filter_spec *spec, saved_spec; 4743 struct efx_ef10_filter_table *table; 4744 struct efx_arfs_rule *rule = NULL; 4745 bool ret = true, force = false; 4746 u16 arfs_id; 4747 4748 down_read(&efx->filter_sem); 4749 table = efx->filter_state; 4750 down_write(&table->lock); 4751 spec = efx_ef10_filter_entry_spec(table, filter_idx); 4752 4753 if (!spec || spec->priority != EFX_FILTER_PRI_HINT) 4754 goto out_unlock; 4755 4756 spin_lock_bh(&efx->rps_hash_lock); 4757 if (!efx->rps_hash_table) { 4758 /* In the absence of the table, we always return 0 to ARFS. */ 4759 arfs_id = 0; 4760 } else { 4761 rule = efx_rps_hash_find(efx, spec); 4762 if (!rule) 4763 /* ARFS table doesn't know of this filter, so remove it */ 4764 goto expire; 4765 arfs_id = rule->arfs_id; 4766 ret = efx_rps_check_rule(rule, filter_idx, &force); 4767 if (force) 4768 goto expire; 4769 if (!ret) { 4770 spin_unlock_bh(&efx->rps_hash_lock); 4771 goto out_unlock; 4772 } 4773 } 4774 if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id)) 4775 ret = false; 4776 else if (rule) 4777 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 4778 expire: 4779 saved_spec = *spec; /* remove operation will kfree spec */ 4780 spin_unlock_bh(&efx->rps_hash_lock); 4781 /* At this point (since we dropped the lock), another thread might queue 4782 * up a fresh insertion request (but the actual insertion will be held 4783 * up by our possession of the filter table lock). In that case, it 4784 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that 4785 * the rule is not removed by efx_rps_hash_del() below. 4786 */ 4787 if (ret) 4788 ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority, 4789 filter_idx, true) == 0; 4790 /* While we can't safely dereference rule (we dropped the lock), we can 4791 * still test it for NULL. 4792 */ 4793 if (ret && rule) { 4794 /* Expiring, so remove entry from ARFS table */ 4795 spin_lock_bh(&efx->rps_hash_lock); 4796 efx_rps_hash_del(efx, &saved_spec); 4797 spin_unlock_bh(&efx->rps_hash_lock); 4798 } 4799 out_unlock: 4800 up_write(&table->lock); 4801 up_read(&efx->filter_sem); 4802 return ret; 4803 } 4804 4805 #endif /* CONFIG_RFS_ACCEL */ 4806 4807 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags) 4808 { 4809 int match_flags = 0; 4810 4811 #define MAP_FLAG(gen_flag, mcdi_field) do { \ 4812 u32 old_mcdi_flags = mcdi_flags; \ 4813 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ## \ 4814 mcdi_field ## _LBN); \ 4815 if (mcdi_flags != old_mcdi_flags) \ 4816 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \ 4817 } while (0) 4818 4819 if (encap) { 4820 /* encap filters must specify encap type */ 4821 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 4822 /* and imply ethertype and ip proto */ 4823 mcdi_flags &= 4824 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN); 4825 mcdi_flags &= 4826 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN); 4827 /* VLAN tags refer to the outer packet */ 4828 MAP_FLAG(INNER_VID, INNER_VLAN); 4829 MAP_FLAG(OUTER_VID, OUTER_VLAN); 4830 /* everything else refers to the inner packet */ 4831 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST); 4832 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST); 4833 MAP_FLAG(REM_HOST, IFRM_SRC_IP); 4834 MAP_FLAG(LOC_HOST, IFRM_DST_IP); 4835 MAP_FLAG(REM_MAC, IFRM_SRC_MAC); 4836 MAP_FLAG(REM_PORT, IFRM_SRC_PORT); 4837 MAP_FLAG(LOC_MAC, IFRM_DST_MAC); 4838 MAP_FLAG(LOC_PORT, IFRM_DST_PORT); 4839 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE); 4840 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO); 4841 } else { 4842 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST); 4843 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST); 4844 MAP_FLAG(REM_HOST, SRC_IP); 4845 MAP_FLAG(LOC_HOST, DST_IP); 4846 MAP_FLAG(REM_MAC, SRC_MAC); 4847 MAP_FLAG(REM_PORT, SRC_PORT); 4848 MAP_FLAG(LOC_MAC, DST_MAC); 4849 MAP_FLAG(LOC_PORT, DST_PORT); 4850 MAP_FLAG(ETHER_TYPE, ETHER_TYPE); 4851 MAP_FLAG(INNER_VID, INNER_VLAN); 4852 MAP_FLAG(OUTER_VID, OUTER_VLAN); 4853 MAP_FLAG(IP_PROTO, IP_PROTO); 4854 } 4855 #undef MAP_FLAG 4856 4857 /* Did we map them all? */ 4858 if (mcdi_flags) 4859 return -EINVAL; 4860 4861 return match_flags; 4862 } 4863 4864 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx) 4865 { 4866 struct efx_ef10_filter_table *table = efx->filter_state; 4867 struct efx_ef10_filter_vlan *vlan, *next_vlan; 4868 4869 /* See comment in efx_ef10_filter_table_remove() */ 4870 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 4871 return; 4872 4873 if (!table) 4874 return; 4875 4876 list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list) 4877 efx_ef10_filter_del_vlan_internal(efx, vlan); 4878 } 4879 4880 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table, 4881 bool encap, 4882 enum efx_filter_match_flags match_flags) 4883 { 4884 unsigned int match_pri; 4885 int mf; 4886 4887 for (match_pri = 0; 4888 match_pri < table->rx_match_count; 4889 match_pri++) { 4890 mf = efx_ef10_filter_match_flags_from_mcdi(encap, 4891 table->rx_match_mcdi_flags[match_pri]); 4892 if (mf == match_flags) 4893 return true; 4894 } 4895 4896 return false; 4897 } 4898 4899 static int 4900 efx_ef10_filter_table_probe_matches(struct efx_nic *efx, 4901 struct efx_ef10_filter_table *table, 4902 bool encap) 4903 { 4904 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN); 4905 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX); 4906 unsigned int pd_match_pri, pd_match_count; 4907 size_t outlen; 4908 int rc; 4909 4910 /* Find out which RX filter types are supported, and their priorities */ 4911 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP, 4912 encap ? 4913 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES : 4914 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES); 4915 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO, 4916 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), 4917 &outlen); 4918 if (rc) 4919 return rc; 4920 4921 pd_match_count = MCDI_VAR_ARRAY_LEN( 4922 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES); 4923 4924 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) { 4925 u32 mcdi_flags = 4926 MCDI_ARRAY_DWORD( 4927 outbuf, 4928 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES, 4929 pd_match_pri); 4930 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags); 4931 if (rc < 0) { 4932 netif_dbg(efx, probe, efx->net_dev, 4933 "%s: fw flags %#x pri %u not supported in driver\n", 4934 __func__, mcdi_flags, pd_match_pri); 4935 } else { 4936 netif_dbg(efx, probe, efx->net_dev, 4937 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n", 4938 __func__, mcdi_flags, pd_match_pri, 4939 rc, table->rx_match_count); 4940 table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags; 4941 table->rx_match_count++; 4942 } 4943 } 4944 4945 return 0; 4946 } 4947 4948 static int efx_ef10_filter_table_probe(struct efx_nic *efx) 4949 { 4950 struct efx_ef10_nic_data *nic_data = efx->nic_data; 4951 struct net_device *net_dev = efx->net_dev; 4952 struct efx_ef10_filter_table *table; 4953 struct efx_ef10_vlan *vlan; 4954 int rc; 4955 4956 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 4957 return -EINVAL; 4958 4959 if (efx->filter_state) /* already probed */ 4960 return 0; 4961 4962 table = kzalloc(sizeof(*table), GFP_KERNEL); 4963 if (!table) 4964 return -ENOMEM; 4965 4966 table->rx_match_count = 0; 4967 rc = efx_ef10_filter_table_probe_matches(efx, table, false); 4968 if (rc) 4969 goto fail; 4970 if (nic_data->datapath_caps & 4971 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) 4972 rc = efx_ef10_filter_table_probe_matches(efx, table, true); 4973 if (rc) 4974 goto fail; 4975 if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) && 4976 !(efx_ef10_filter_match_supported(table, false, 4977 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) && 4978 efx_ef10_filter_match_supported(table, false, 4979 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) { 4980 netif_info(efx, probe, net_dev, 4981 "VLAN filters are not supported in this firmware variant\n"); 4982 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4983 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4984 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4985 } 4986 4987 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry)); 4988 if (!table->entry) { 4989 rc = -ENOMEM; 4990 goto fail; 4991 } 4992 4993 table->mc_promisc_last = false; 4994 table->vlan_filter = 4995 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER); 4996 INIT_LIST_HEAD(&table->vlan_list); 4997 init_rwsem(&table->lock); 4998 4999 efx->filter_state = table; 5000 5001 list_for_each_entry(vlan, &nic_data->vlan_list, list) { 5002 rc = efx_ef10_filter_add_vlan(efx, vlan->vid); 5003 if (rc) 5004 goto fail_add_vlan; 5005 } 5006 5007 return 0; 5008 5009 fail_add_vlan: 5010 efx_ef10_filter_cleanup_vlans(efx); 5011 efx->filter_state = NULL; 5012 fail: 5013 kfree(table); 5014 return rc; 5015 } 5016 5017 /* Caller must hold efx->filter_sem for read if race against 5018 * efx_ef10_filter_table_remove() is possible 5019 */ 5020 static void efx_ef10_filter_table_restore(struct efx_nic *efx) 5021 { 5022 struct efx_ef10_filter_table *table = efx->filter_state; 5023 struct efx_ef10_nic_data *nic_data = efx->nic_data; 5024 unsigned int invalid_filters = 0, failed = 0; 5025 struct efx_ef10_filter_vlan *vlan; 5026 struct efx_filter_spec *spec; 5027 struct efx_rss_context *ctx; 5028 unsigned int filter_idx; 5029 u32 mcdi_flags; 5030 int match_pri; 5031 int rc, i; 5032 5033 WARN_ON(!rwsem_is_locked(&efx->filter_sem)); 5034 5035 if (!nic_data->must_restore_filters) 5036 return; 5037 5038 if (!table) 5039 return; 5040 5041 down_write(&table->lock); 5042 mutex_lock(&efx->rss_lock); 5043 5044 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { 5045 spec = efx_ef10_filter_entry_spec(table, filter_idx); 5046 if (!spec) 5047 continue; 5048 5049 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec); 5050 match_pri = 0; 5051 while (match_pri < table->rx_match_count && 5052 table->rx_match_mcdi_flags[match_pri] != mcdi_flags) 5053 ++match_pri; 5054 if (match_pri >= table->rx_match_count) { 5055 invalid_filters++; 5056 goto not_restored; 5057 } 5058 if (spec->rss_context) 5059 ctx = efx_find_rss_context_entry(efx, spec->rss_context); 5060 else 5061 ctx = &efx->rss_context; 5062 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) { 5063 if (!ctx) { 5064 netif_warn(efx, drv, efx->net_dev, 5065 "Warning: unable to restore a filter with nonexistent RSS context %u.\n", 5066 spec->rss_context); 5067 invalid_filters++; 5068 goto not_restored; 5069 } 5070 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) { 5071 netif_warn(efx, drv, efx->net_dev, 5072 "Warning: unable to restore a filter with RSS context %u as it was not created.\n", 5073 spec->rss_context); 5074 invalid_filters++; 5075 goto not_restored; 5076 } 5077 } 5078 5079 rc = efx_ef10_filter_push(efx, spec, 5080 &table->entry[filter_idx].handle, 5081 ctx, false); 5082 if (rc) 5083 failed++; 5084 5085 if (rc) { 5086 not_restored: 5087 list_for_each_entry(vlan, &table->vlan_list, list) 5088 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i) 5089 if (vlan->default_filters[i] == filter_idx) 5090 vlan->default_filters[i] = 5091 EFX_EF10_FILTER_ID_INVALID; 5092 5093 kfree(spec); 5094 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); 5095 } 5096 } 5097 5098 mutex_unlock(&efx->rss_lock); 5099 up_write(&table->lock); 5100 5101 /* This can happen validly if the MC's capabilities have changed, so 5102 * is not an error. 5103 */ 5104 if (invalid_filters) 5105 netif_dbg(efx, drv, efx->net_dev, 5106 "Did not restore %u filters that are now unsupported.\n", 5107 invalid_filters); 5108 5109 if (failed) 5110 netif_err(efx, hw, efx->net_dev, 5111 "unable to restore %u filters\n", failed); 5112 else 5113 nic_data->must_restore_filters = false; 5114 } 5115 5116 static void efx_ef10_filter_table_remove(struct efx_nic *efx) 5117 { 5118 struct efx_ef10_filter_table *table = efx->filter_state; 5119 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN); 5120 struct efx_filter_spec *spec; 5121 unsigned int filter_idx; 5122 int rc; 5123 5124 efx_ef10_filter_cleanup_vlans(efx); 5125 efx->filter_state = NULL; 5126 /* If we were called without locking, then it's not safe to free 5127 * the table as others might be using it. So we just WARN, leak 5128 * the memory, and potentially get an inconsistent filter table 5129 * state. 5130 * This should never actually happen. 5131 */ 5132 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 5133 return; 5134 5135 if (!table) 5136 return; 5137 5138 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { 5139 spec = efx_ef10_filter_entry_spec(table, filter_idx); 5140 if (!spec) 5141 continue; 5142 5143 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, 5144 efx_ef10_filter_is_exclusive(spec) ? 5145 MC_CMD_FILTER_OP_IN_OP_REMOVE : 5146 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); 5147 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, 5148 table->entry[filter_idx].handle); 5149 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf, 5150 sizeof(inbuf), NULL, 0, NULL); 5151 if (rc) 5152 netif_info(efx, drv, efx->net_dev, 5153 "%s: filter %04x remove failed\n", 5154 __func__, filter_idx); 5155 kfree(spec); 5156 } 5157 5158 vfree(table->entry); 5159 kfree(table); 5160 } 5161 5162 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id) 5163 { 5164 struct efx_ef10_filter_table *table = efx->filter_state; 5165 unsigned int filter_idx; 5166 5167 efx_rwsem_assert_write_locked(&table->lock); 5168 5169 if (*id != EFX_EF10_FILTER_ID_INVALID) { 5170 filter_idx = efx_ef10_filter_get_unsafe_id(*id); 5171 if (!table->entry[filter_idx].spec) 5172 netif_dbg(efx, drv, efx->net_dev, 5173 "marked null spec old %04x:%04x\n", *id, 5174 filter_idx); 5175 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; 5176 *id = EFX_EF10_FILTER_ID_INVALID; 5177 } 5178 } 5179 5180 /* Mark old per-VLAN filters that may need to be removed */ 5181 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx, 5182 struct efx_ef10_filter_vlan *vlan) 5183 { 5184 struct efx_ef10_filter_table *table = efx->filter_state; 5185 unsigned int i; 5186 5187 for (i = 0; i < table->dev_uc_count; i++) 5188 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]); 5189 for (i = 0; i < table->dev_mc_count; i++) 5190 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]); 5191 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) 5192 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]); 5193 } 5194 5195 /* Mark old filters that may need to be removed. 5196 * Caller must hold efx->filter_sem for read if race against 5197 * efx_ef10_filter_table_remove() is possible 5198 */ 5199 static void efx_ef10_filter_mark_old(struct efx_nic *efx) 5200 { 5201 struct efx_ef10_filter_table *table = efx->filter_state; 5202 struct efx_ef10_filter_vlan *vlan; 5203 5204 down_write(&table->lock); 5205 list_for_each_entry(vlan, &table->vlan_list, list) 5206 _efx_ef10_filter_vlan_mark_old(efx, vlan); 5207 up_write(&table->lock); 5208 } 5209 5210 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx) 5211 { 5212 struct efx_ef10_filter_table *table = efx->filter_state; 5213 struct net_device *net_dev = efx->net_dev; 5214 struct netdev_hw_addr *uc; 5215 unsigned int i; 5216 5217 table->uc_promisc = !!(net_dev->flags & IFF_PROMISC); 5218 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr); 5219 i = 1; 5220 netdev_for_each_uc_addr(uc, net_dev) { 5221 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) { 5222 table->uc_promisc = true; 5223 break; 5224 } 5225 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr); 5226 i++; 5227 } 5228 5229 table->dev_uc_count = i; 5230 } 5231 5232 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx) 5233 { 5234 struct efx_ef10_filter_table *table = efx->filter_state; 5235 struct net_device *net_dev = efx->net_dev; 5236 struct netdev_hw_addr *mc; 5237 unsigned int i; 5238 5239 table->mc_overflow = false; 5240 table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)); 5241 5242 i = 0; 5243 netdev_for_each_mc_addr(mc, net_dev) { 5244 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) { 5245 table->mc_promisc = true; 5246 table->mc_overflow = true; 5247 break; 5248 } 5249 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr); 5250 i++; 5251 } 5252 5253 table->dev_mc_count = i; 5254 } 5255 5256 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx, 5257 struct efx_ef10_filter_vlan *vlan, 5258 bool multicast, bool rollback) 5259 { 5260 struct efx_ef10_filter_table *table = efx->filter_state; 5261 struct efx_ef10_dev_addr *addr_list; 5262 enum efx_filter_flags filter_flags; 5263 struct efx_filter_spec spec; 5264 u8 baddr[ETH_ALEN]; 5265 unsigned int i, j; 5266 int addr_count; 5267 u16 *ids; 5268 int rc; 5269 5270 if (multicast) { 5271 addr_list = table->dev_mc_list; 5272 addr_count = table->dev_mc_count; 5273 ids = vlan->mc; 5274 } else { 5275 addr_list = table->dev_uc_list; 5276 addr_count = table->dev_uc_count; 5277 ids = vlan->uc; 5278 } 5279 5280 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0; 5281 5282 /* Insert/renew filters */ 5283 for (i = 0; i < addr_count; i++) { 5284 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID); 5285 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); 5286 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr); 5287 rc = efx_ef10_filter_insert(efx, &spec, true); 5288 if (rc < 0) { 5289 if (rollback) { 5290 netif_info(efx, drv, efx->net_dev, 5291 "efx_ef10_filter_insert failed rc=%d\n", 5292 rc); 5293 /* Fall back to promiscuous */ 5294 for (j = 0; j < i; j++) { 5295 efx_ef10_filter_remove_unsafe( 5296 efx, EFX_FILTER_PRI_AUTO, 5297 ids[j]); 5298 ids[j] = EFX_EF10_FILTER_ID_INVALID; 5299 } 5300 return rc; 5301 } else { 5302 /* keep invalid ID, and carry on */ 5303 } 5304 } else { 5305 ids[i] = efx_ef10_filter_get_unsafe_id(rc); 5306 } 5307 } 5308 5309 if (multicast && rollback) { 5310 /* Also need an Ethernet broadcast filter */ 5311 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] != 5312 EFX_EF10_FILTER_ID_INVALID); 5313 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); 5314 eth_broadcast_addr(baddr); 5315 efx_filter_set_eth_local(&spec, vlan->vid, baddr); 5316 rc = efx_ef10_filter_insert(efx, &spec, true); 5317 if (rc < 0) { 5318 netif_warn(efx, drv, efx->net_dev, 5319 "Broadcast filter insert failed rc=%d\n", rc); 5320 /* Fall back to promiscuous */ 5321 for (j = 0; j < i; j++) { 5322 efx_ef10_filter_remove_unsafe( 5323 efx, EFX_FILTER_PRI_AUTO, 5324 ids[j]); 5325 ids[j] = EFX_EF10_FILTER_ID_INVALID; 5326 } 5327 return rc; 5328 } else { 5329 vlan->default_filters[EFX_EF10_BCAST] = 5330 efx_ef10_filter_get_unsafe_id(rc); 5331 } 5332 } 5333 5334 return 0; 5335 } 5336 5337 static int efx_ef10_filter_insert_def(struct efx_nic *efx, 5338 struct efx_ef10_filter_vlan *vlan, 5339 enum efx_encap_type encap_type, 5340 bool multicast, bool rollback) 5341 { 5342 struct efx_ef10_nic_data *nic_data = efx->nic_data; 5343 enum efx_filter_flags filter_flags; 5344 struct efx_filter_spec spec; 5345 u8 baddr[ETH_ALEN]; 5346 int rc; 5347 u16 *id; 5348 5349 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0; 5350 5351 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); 5352 5353 if (multicast) 5354 efx_filter_set_mc_def(&spec); 5355 else 5356 efx_filter_set_uc_def(&spec); 5357 5358 if (encap_type) { 5359 if (nic_data->datapath_caps & 5360 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) 5361 efx_filter_set_encap_type(&spec, encap_type); 5362 else 5363 /* don't insert encap filters on non-supporting 5364 * platforms. ID will be left as INVALID. 5365 */ 5366 return 0; 5367 } 5368 5369 if (vlan->vid != EFX_FILTER_VID_UNSPEC) 5370 efx_filter_set_eth_local(&spec, vlan->vid, NULL); 5371 5372 rc = efx_ef10_filter_insert(efx, &spec, true); 5373 if (rc < 0) { 5374 const char *um = multicast ? "Multicast" : "Unicast"; 5375 const char *encap_name = ""; 5376 const char *encap_ipv = ""; 5377 5378 if ((encap_type & EFX_ENCAP_TYPES_MASK) == 5379 EFX_ENCAP_TYPE_VXLAN) 5380 encap_name = "VXLAN "; 5381 else if ((encap_type & EFX_ENCAP_TYPES_MASK) == 5382 EFX_ENCAP_TYPE_NVGRE) 5383 encap_name = "NVGRE "; 5384 else if ((encap_type & EFX_ENCAP_TYPES_MASK) == 5385 EFX_ENCAP_TYPE_GENEVE) 5386 encap_name = "GENEVE "; 5387 if (encap_type & EFX_ENCAP_FLAG_IPV6) 5388 encap_ipv = "IPv6 "; 5389 else if (encap_type) 5390 encap_ipv = "IPv4 "; 5391 5392 /* unprivileged functions can't insert mismatch filters 5393 * for encapsulated or unicast traffic, so downgrade 5394 * those warnings to debug. 5395 */ 5396 netif_cond_dbg(efx, drv, efx->net_dev, 5397 rc == -EPERM && (encap_type || !multicast), warn, 5398 "%s%s%s mismatch filter insert failed rc=%d\n", 5399 encap_name, encap_ipv, um, rc); 5400 } else if (multicast) { 5401 /* mapping from encap types to default filter IDs (multicast) */ 5402 static enum efx_ef10_default_filters map[] = { 5403 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF, 5404 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF, 5405 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF, 5406 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF, 5407 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] = 5408 EFX_EF10_VXLAN6_MCDEF, 5409 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] = 5410 EFX_EF10_NVGRE6_MCDEF, 5411 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] = 5412 EFX_EF10_GENEVE6_MCDEF, 5413 }; 5414 5415 /* quick bounds check (BCAST result impossible) */ 5416 BUILD_BUG_ON(EFX_EF10_BCAST != 0); 5417 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) { 5418 WARN_ON(1); 5419 return -EINVAL; 5420 } 5421 /* then follow map */ 5422 id = &vlan->default_filters[map[encap_type]]; 5423 5424 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID); 5425 *id = efx_ef10_filter_get_unsafe_id(rc); 5426 if (!nic_data->workaround_26807 && !encap_type) { 5427 /* Also need an Ethernet broadcast filter */ 5428 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, 5429 filter_flags, 0); 5430 eth_broadcast_addr(baddr); 5431 efx_filter_set_eth_local(&spec, vlan->vid, baddr); 5432 rc = efx_ef10_filter_insert(efx, &spec, true); 5433 if (rc < 0) { 5434 netif_warn(efx, drv, efx->net_dev, 5435 "Broadcast filter insert failed rc=%d\n", 5436 rc); 5437 if (rollback) { 5438 /* Roll back the mc_def filter */ 5439 efx_ef10_filter_remove_unsafe( 5440 efx, EFX_FILTER_PRI_AUTO, 5441 *id); 5442 *id = EFX_EF10_FILTER_ID_INVALID; 5443 return rc; 5444 } 5445 } else { 5446 EFX_WARN_ON_PARANOID( 5447 vlan->default_filters[EFX_EF10_BCAST] != 5448 EFX_EF10_FILTER_ID_INVALID); 5449 vlan->default_filters[EFX_EF10_BCAST] = 5450 efx_ef10_filter_get_unsafe_id(rc); 5451 } 5452 } 5453 rc = 0; 5454 } else { 5455 /* mapping from encap types to default filter IDs (unicast) */ 5456 static enum efx_ef10_default_filters map[] = { 5457 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF, 5458 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF, 5459 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF, 5460 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF, 5461 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] = 5462 EFX_EF10_VXLAN6_UCDEF, 5463 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] = 5464 EFX_EF10_NVGRE6_UCDEF, 5465 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] = 5466 EFX_EF10_GENEVE6_UCDEF, 5467 }; 5468 5469 /* quick bounds check (BCAST result impossible) */ 5470 BUILD_BUG_ON(EFX_EF10_BCAST != 0); 5471 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) { 5472 WARN_ON(1); 5473 return -EINVAL; 5474 } 5475 /* then follow map */ 5476 id = &vlan->default_filters[map[encap_type]]; 5477 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID); 5478 *id = rc; 5479 rc = 0; 5480 } 5481 return rc; 5482 } 5483 5484 /* Remove filters that weren't renewed. */ 5485 static void efx_ef10_filter_remove_old(struct efx_nic *efx) 5486 { 5487 struct efx_ef10_filter_table *table = efx->filter_state; 5488 int remove_failed = 0; 5489 int remove_noent = 0; 5490 int rc; 5491 int i; 5492 5493 down_write(&table->lock); 5494 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { 5495 if (READ_ONCE(table->entry[i].spec) & 5496 EFX_EF10_FILTER_FLAG_AUTO_OLD) { 5497 rc = efx_ef10_filter_remove_internal(efx, 5498 1U << EFX_FILTER_PRI_AUTO, i, true); 5499 if (rc == -ENOENT) 5500 remove_noent++; 5501 else if (rc) 5502 remove_failed++; 5503 } 5504 } 5505 up_write(&table->lock); 5506 5507 if (remove_failed) 5508 netif_info(efx, drv, efx->net_dev, 5509 "%s: failed to remove %d filters\n", 5510 __func__, remove_failed); 5511 if (remove_noent) 5512 netif_info(efx, drv, efx->net_dev, 5513 "%s: failed to remove %d non-existent filters\n", 5514 __func__, remove_noent); 5515 } 5516 5517 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx) 5518 { 5519 struct efx_ef10_nic_data *nic_data = efx->nic_data; 5520 u8 mac_old[ETH_ALEN]; 5521 int rc, rc2; 5522 5523 /* Only reconfigure a PF-created vport */ 5524 if (is_zero_ether_addr(nic_data->vport_mac)) 5525 return 0; 5526 5527 efx_device_detach_sync(efx); 5528 efx_net_stop(efx->net_dev); 5529 down_write(&efx->filter_sem); 5530 efx_ef10_filter_table_remove(efx); 5531 up_write(&efx->filter_sem); 5532 5533 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id); 5534 if (rc) 5535 goto restore_filters; 5536 5537 ether_addr_copy(mac_old, nic_data->vport_mac); 5538 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id, 5539 nic_data->vport_mac); 5540 if (rc) 5541 goto restore_vadaptor; 5542 5543 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id, 5544 efx->net_dev->dev_addr); 5545 if (!rc) { 5546 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr); 5547 } else { 5548 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old); 5549 if (rc2) { 5550 /* Failed to add original MAC, so clear vport_mac */ 5551 eth_zero_addr(nic_data->vport_mac); 5552 goto reset_nic; 5553 } 5554 } 5555 5556 restore_vadaptor: 5557 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id); 5558 if (rc2) 5559 goto reset_nic; 5560 restore_filters: 5561 down_write(&efx->filter_sem); 5562 rc2 = efx_ef10_filter_table_probe(efx); 5563 up_write(&efx->filter_sem); 5564 if (rc2) 5565 goto reset_nic; 5566 5567 rc2 = efx_net_open(efx->net_dev); 5568 if (rc2) 5569 goto reset_nic; 5570 5571 efx_device_attach_if_not_resetting(efx); 5572 5573 return rc; 5574 5575 reset_nic: 5576 netif_err(efx, drv, efx->net_dev, 5577 "Failed to restore when changing MAC address - scheduling reset\n"); 5578 efx_schedule_reset(efx, RESET_TYPE_DATAPATH); 5579 5580 return rc ? rc : rc2; 5581 } 5582 5583 /* Caller must hold efx->filter_sem for read if race against 5584 * efx_ef10_filter_table_remove() is possible 5585 */ 5586 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx, 5587 struct efx_ef10_filter_vlan *vlan) 5588 { 5589 struct efx_ef10_filter_table *table = efx->filter_state; 5590 struct efx_ef10_nic_data *nic_data = efx->nic_data; 5591 5592 /* Do not install unspecified VID if VLAN filtering is enabled. 5593 * Do not install all specified VIDs if VLAN filtering is disabled. 5594 */ 5595 if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter) 5596 return; 5597 5598 /* Insert/renew unicast filters */ 5599 if (table->uc_promisc) { 5600 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, 5601 false, false); 5602 efx_ef10_filter_insert_addr_list(efx, vlan, false, false); 5603 } else { 5604 /* If any of the filters failed to insert, fall back to 5605 * promiscuous mode - add in the uc_def filter. But keep 5606 * our individual unicast filters. 5607 */ 5608 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false)) 5609 efx_ef10_filter_insert_def(efx, vlan, 5610 EFX_ENCAP_TYPE_NONE, 5611 false, false); 5612 } 5613 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN, 5614 false, false); 5615 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN | 5616 EFX_ENCAP_FLAG_IPV6, 5617 false, false); 5618 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE, 5619 false, false); 5620 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE | 5621 EFX_ENCAP_FLAG_IPV6, 5622 false, false); 5623 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE, 5624 false, false); 5625 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE | 5626 EFX_ENCAP_FLAG_IPV6, 5627 false, false); 5628 5629 /* Insert/renew multicast filters */ 5630 /* If changing promiscuous state with cascaded multicast filters, remove 5631 * old filters first, so that packets are dropped rather than duplicated 5632 */ 5633 if (nic_data->workaround_26807 && 5634 table->mc_promisc_last != table->mc_promisc) 5635 efx_ef10_filter_remove_old(efx); 5636 if (table->mc_promisc) { 5637 if (nic_data->workaround_26807) { 5638 /* If we failed to insert promiscuous filters, rollback 5639 * and fall back to individual multicast filters 5640 */ 5641 if (efx_ef10_filter_insert_def(efx, vlan, 5642 EFX_ENCAP_TYPE_NONE, 5643 true, true)) { 5644 /* Changing promisc state, so remove old filters */ 5645 efx_ef10_filter_remove_old(efx); 5646 efx_ef10_filter_insert_addr_list(efx, vlan, 5647 true, false); 5648 } 5649 } else { 5650 /* If we failed to insert promiscuous filters, don't 5651 * rollback. Regardless, also insert the mc_list, 5652 * unless it's incomplete due to overflow 5653 */ 5654 efx_ef10_filter_insert_def(efx, vlan, 5655 EFX_ENCAP_TYPE_NONE, 5656 true, false); 5657 if (!table->mc_overflow) 5658 efx_ef10_filter_insert_addr_list(efx, vlan, 5659 true, false); 5660 } 5661 } else { 5662 /* If any filters failed to insert, rollback and fall back to 5663 * promiscuous mode - mc_def filter and maybe broadcast. If 5664 * that fails, roll back again and insert as many of our 5665 * individual multicast filters as we can. 5666 */ 5667 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) { 5668 /* Changing promisc state, so remove old filters */ 5669 if (nic_data->workaround_26807) 5670 efx_ef10_filter_remove_old(efx); 5671 if (efx_ef10_filter_insert_def(efx, vlan, 5672 EFX_ENCAP_TYPE_NONE, 5673 true, true)) 5674 efx_ef10_filter_insert_addr_list(efx, vlan, 5675 true, false); 5676 } 5677 } 5678 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN, 5679 true, false); 5680 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN | 5681 EFX_ENCAP_FLAG_IPV6, 5682 true, false); 5683 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE, 5684 true, false); 5685 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE | 5686 EFX_ENCAP_FLAG_IPV6, 5687 true, false); 5688 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE, 5689 true, false); 5690 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE | 5691 EFX_ENCAP_FLAG_IPV6, 5692 true, false); 5693 } 5694 5695 /* Caller must hold efx->filter_sem for read if race against 5696 * efx_ef10_filter_table_remove() is possible 5697 */ 5698 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx) 5699 { 5700 struct efx_ef10_filter_table *table = efx->filter_state; 5701 struct net_device *net_dev = efx->net_dev; 5702 struct efx_ef10_filter_vlan *vlan; 5703 bool vlan_filter; 5704 5705 if (!efx_dev_registered(efx)) 5706 return; 5707 5708 if (!table) 5709 return; 5710 5711 efx_ef10_filter_mark_old(efx); 5712 5713 /* Copy/convert the address lists; add the primary station 5714 * address and broadcast address 5715 */ 5716 netif_addr_lock_bh(net_dev); 5717 efx_ef10_filter_uc_addr_list(efx); 5718 efx_ef10_filter_mc_addr_list(efx); 5719 netif_addr_unlock_bh(net_dev); 5720 5721 /* If VLAN filtering changes, all old filters are finally removed. 5722 * Do it in advance to avoid conflicts for unicast untagged and 5723 * VLAN 0 tagged filters. 5724 */ 5725 vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER); 5726 if (table->vlan_filter != vlan_filter) { 5727 table->vlan_filter = vlan_filter; 5728 efx_ef10_filter_remove_old(efx); 5729 } 5730 5731 list_for_each_entry(vlan, &table->vlan_list, list) 5732 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan); 5733 5734 efx_ef10_filter_remove_old(efx); 5735 table->mc_promisc_last = table->mc_promisc; 5736 } 5737 5738 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid) 5739 { 5740 struct efx_ef10_filter_table *table = efx->filter_state; 5741 struct efx_ef10_filter_vlan *vlan; 5742 5743 WARN_ON(!rwsem_is_locked(&efx->filter_sem)); 5744 5745 list_for_each_entry(vlan, &table->vlan_list, list) { 5746 if (vlan->vid == vid) 5747 return vlan; 5748 } 5749 5750 return NULL; 5751 } 5752 5753 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid) 5754 { 5755 struct efx_ef10_filter_table *table = efx->filter_state; 5756 struct efx_ef10_filter_vlan *vlan; 5757 unsigned int i; 5758 5759 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 5760 return -EINVAL; 5761 5762 vlan = efx_ef10_filter_find_vlan(efx, vid); 5763 if (WARN_ON(vlan)) { 5764 netif_err(efx, drv, efx->net_dev, 5765 "VLAN %u already added\n", vid); 5766 return -EALREADY; 5767 } 5768 5769 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 5770 if (!vlan) 5771 return -ENOMEM; 5772 5773 vlan->vid = vid; 5774 5775 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++) 5776 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID; 5777 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++) 5778 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID; 5779 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) 5780 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID; 5781 5782 list_add_tail(&vlan->list, &table->vlan_list); 5783 5784 if (efx_dev_registered(efx)) 5785 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan); 5786 5787 return 0; 5788 } 5789 5790 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx, 5791 struct efx_ef10_filter_vlan *vlan) 5792 { 5793 unsigned int i; 5794 5795 /* See comment in efx_ef10_filter_table_remove() */ 5796 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 5797 return; 5798 5799 list_del(&vlan->list); 5800 5801 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++) 5802 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, 5803 vlan->uc[i]); 5804 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++) 5805 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, 5806 vlan->mc[i]); 5807 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) 5808 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID) 5809 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, 5810 vlan->default_filters[i]); 5811 5812 kfree(vlan); 5813 } 5814 5815 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid) 5816 { 5817 struct efx_ef10_filter_vlan *vlan; 5818 5819 /* See comment in efx_ef10_filter_table_remove() */ 5820 if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) 5821 return; 5822 5823 vlan = efx_ef10_filter_find_vlan(efx, vid); 5824 if (!vlan) { 5825 netif_err(efx, drv, efx->net_dev, 5826 "VLAN %u not found in filter state\n", vid); 5827 return; 5828 } 5829 5830 efx_ef10_filter_del_vlan_internal(efx, vlan); 5831 } 5832 5833 static int efx_ef10_set_mac_address(struct efx_nic *efx) 5834 { 5835 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN); 5836 struct efx_ef10_nic_data *nic_data = efx->nic_data; 5837 bool was_enabled = efx->port_enabled; 5838 int rc; 5839 5840 efx_device_detach_sync(efx); 5841 efx_net_stop(efx->net_dev); 5842 5843 mutex_lock(&efx->mac_lock); 5844 down_write(&efx->filter_sem); 5845 efx_ef10_filter_table_remove(efx); 5846 5847 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR), 5848 efx->net_dev->dev_addr); 5849 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, 5850 nic_data->vport_id); 5851 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf, 5852 sizeof(inbuf), NULL, 0, NULL); 5853 5854 efx_ef10_filter_table_probe(efx); 5855 up_write(&efx->filter_sem); 5856 mutex_unlock(&efx->mac_lock); 5857 5858 if (was_enabled) 5859 efx_net_open(efx->net_dev); 5860 efx_device_attach_if_not_resetting(efx); 5861 5862 #ifdef CONFIG_SFC_SRIOV 5863 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) { 5864 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; 5865 5866 if (rc == -EPERM) { 5867 struct efx_nic *efx_pf; 5868 5869 /* Switch to PF and change MAC address on vport */ 5870 efx_pf = pci_get_drvdata(pci_dev_pf); 5871 5872 rc = efx_ef10_sriov_set_vf_mac(efx_pf, 5873 nic_data->vf_index, 5874 efx->net_dev->dev_addr); 5875 } else if (!rc) { 5876 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); 5877 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data; 5878 unsigned int i; 5879 5880 /* MAC address successfully changed by VF (with MAC 5881 * spoofing) so update the parent PF if possible. 5882 */ 5883 for (i = 0; i < efx_pf->vf_count; ++i) { 5884 struct ef10_vf *vf = nic_data->vf + i; 5885 5886 if (vf->efx == efx) { 5887 ether_addr_copy(vf->mac, 5888 efx->net_dev->dev_addr); 5889 return 0; 5890 } 5891 } 5892 } 5893 } else 5894 #endif 5895 if (rc == -EPERM) { 5896 netif_err(efx, drv, efx->net_dev, 5897 "Cannot change MAC address; use sfboot to enable" 5898 " mac-spoofing on this interface\n"); 5899 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) { 5900 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC 5901 * fall-back to the method of changing the MAC address on the 5902 * vport. This only applies to PFs because such versions of 5903 * MCFW do not support VFs. 5904 */ 5905 rc = efx_ef10_vport_set_mac_address(efx); 5906 } else if (rc) { 5907 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC, 5908 sizeof(inbuf), NULL, 0, rc); 5909 } 5910 5911 return rc; 5912 } 5913 5914 static int efx_ef10_mac_reconfigure(struct efx_nic *efx) 5915 { 5916 efx_ef10_filter_sync_rx_mode(efx); 5917 5918 return efx_mcdi_set_mac(efx); 5919 } 5920 5921 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx) 5922 { 5923 efx_ef10_filter_sync_rx_mode(efx); 5924 5925 return 0; 5926 } 5927 5928 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) 5929 { 5930 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); 5931 5932 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); 5933 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), 5934 NULL, 0, NULL); 5935 } 5936 5937 /* MC BISTs follow a different poll mechanism to phy BISTs. 5938 * The BIST is done in the poll handler on the MC, and the MCDI command 5939 * will block until the BIST is done. 5940 */ 5941 static int efx_ef10_poll_bist(struct efx_nic *efx) 5942 { 5943 int rc; 5944 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); 5945 size_t outlen; 5946 u32 result; 5947 5948 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, 5949 outbuf, sizeof(outbuf), &outlen); 5950 if (rc != 0) 5951 return rc; 5952 5953 if (outlen < MC_CMD_POLL_BIST_OUT_LEN) 5954 return -EIO; 5955 5956 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); 5957 switch (result) { 5958 case MC_CMD_POLL_BIST_PASSED: 5959 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); 5960 return 0; 5961 case MC_CMD_POLL_BIST_TIMEOUT: 5962 netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); 5963 return -EIO; 5964 case MC_CMD_POLL_BIST_FAILED: 5965 netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); 5966 return -EIO; 5967 default: 5968 netif_err(efx, hw, efx->net_dev, 5969 "BIST returned unknown result %u", result); 5970 return -EIO; 5971 } 5972 } 5973 5974 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) 5975 { 5976 int rc; 5977 5978 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); 5979 5980 rc = efx_ef10_start_bist(efx, bist_type); 5981 if (rc != 0) 5982 return rc; 5983 5984 return efx_ef10_poll_bist(efx); 5985 } 5986 5987 static int 5988 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) 5989 { 5990 int rc, rc2; 5991 5992 efx_reset_down(efx, RESET_TYPE_WORLD); 5993 5994 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, 5995 NULL, 0, NULL, 0, NULL); 5996 if (rc != 0) 5997 goto out; 5998 5999 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; 6000 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; 6001 6002 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); 6003 6004 out: 6005 if (rc == -EPERM) 6006 rc = 0; 6007 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); 6008 return rc ? rc : rc2; 6009 } 6010 6011 #ifdef CONFIG_SFC_MTD 6012 6013 struct efx_ef10_nvram_type_info { 6014 u16 type, type_mask; 6015 u8 port; 6016 const char *name; 6017 }; 6018 6019 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { 6020 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, 6021 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, 6022 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, 6023 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, 6024 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, 6025 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, 6026 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, 6027 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, 6028 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, 6029 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, 6030 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, 6031 }; 6032 6033 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, 6034 struct efx_mcdi_mtd_partition *part, 6035 unsigned int type) 6036 { 6037 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); 6038 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); 6039 const struct efx_ef10_nvram_type_info *info; 6040 size_t size, erase_size, outlen; 6041 bool protected; 6042 int rc; 6043 6044 for (info = efx_ef10_nvram_types; ; info++) { 6045 if (info == 6046 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types)) 6047 return -ENODEV; 6048 if ((type & ~info->type_mask) == info->type) 6049 break; 6050 } 6051 if (info->port != efx_port_num(efx)) 6052 return -ENODEV; 6053 6054 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); 6055 if (rc) 6056 return rc; 6057 if (protected) 6058 return -ENODEV; /* hide it */ 6059 6060 part->nvram_type = type; 6061 6062 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); 6063 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), 6064 outbuf, sizeof(outbuf), &outlen); 6065 if (rc) 6066 return rc; 6067 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) 6068 return -EIO; 6069 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & 6070 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) 6071 part->fw_subtype = MCDI_DWORD(outbuf, 6072 NVRAM_METADATA_OUT_SUBTYPE); 6073 6074 part->common.dev_type_name = "EF10 NVRAM manager"; 6075 part->common.type_name = info->name; 6076 6077 part->common.mtd.type = MTD_NORFLASH; 6078 part->common.mtd.flags = MTD_CAP_NORFLASH; 6079 part->common.mtd.size = size; 6080 part->common.mtd.erasesize = erase_size; 6081 6082 return 0; 6083 } 6084 6085 static int efx_ef10_mtd_probe(struct efx_nic *efx) 6086 { 6087 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); 6088 struct efx_mcdi_mtd_partition *parts; 6089 size_t outlen, n_parts_total, i, n_parts; 6090 unsigned int type; 6091 int rc; 6092 6093 ASSERT_RTNL(); 6094 6095 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); 6096 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, 6097 outbuf, sizeof(outbuf), &outlen); 6098 if (rc) 6099 return rc; 6100 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) 6101 return -EIO; 6102 6103 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); 6104 if (n_parts_total > 6105 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) 6106 return -EIO; 6107 6108 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); 6109 if (!parts) 6110 return -ENOMEM; 6111 6112 n_parts = 0; 6113 for (i = 0; i < n_parts_total; i++) { 6114 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, 6115 i); 6116 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type); 6117 if (rc == 0) 6118 n_parts++; 6119 else if (rc != -ENODEV) 6120 goto fail; 6121 } 6122 6123 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); 6124 fail: 6125 if (rc) 6126 kfree(parts); 6127 return rc; 6128 } 6129 6130 #endif /* CONFIG_SFC_MTD */ 6131 6132 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) 6133 { 6134 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); 6135 } 6136 6137 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, 6138 u32 host_time) {} 6139 6140 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, 6141 bool temp) 6142 { 6143 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); 6144 int rc; 6145 6146 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || 6147 channel->sync_events_state == SYNC_EVENTS_VALID || 6148 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) 6149 return 0; 6150 channel->sync_events_state = SYNC_EVENTS_REQUESTED; 6151 6152 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); 6153 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 6154 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, 6155 channel->channel); 6156 6157 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, 6158 inbuf, sizeof(inbuf), NULL, 0, NULL); 6159 6160 if (rc != 0) 6161 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : 6162 SYNC_EVENTS_DISABLED; 6163 6164 return rc; 6165 } 6166 6167 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, 6168 bool temp) 6169 { 6170 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); 6171 int rc; 6172 6173 if (channel->sync_events_state == SYNC_EVENTS_DISABLED || 6174 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) 6175 return 0; 6176 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { 6177 channel->sync_events_state = SYNC_EVENTS_DISABLED; 6178 return 0; 6179 } 6180 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : 6181 SYNC_EVENTS_DISABLED; 6182 6183 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); 6184 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 6185 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, 6186 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); 6187 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, 6188 channel->channel); 6189 6190 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, 6191 inbuf, sizeof(inbuf), NULL, 0, NULL); 6192 6193 return rc; 6194 } 6195 6196 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, 6197 bool temp) 6198 { 6199 int (*set)(struct efx_channel *channel, bool temp); 6200 struct efx_channel *channel; 6201 6202 set = en ? 6203 efx_ef10_rx_enable_timestamping : 6204 efx_ef10_rx_disable_timestamping; 6205 6206 channel = efx_ptp_channel(efx); 6207 if (channel) { 6208 int rc = set(channel, temp); 6209 if (en && rc != 0) { 6210 efx_ef10_ptp_set_ts_sync_events(efx, false, temp); 6211 return rc; 6212 } 6213 } 6214 6215 return 0; 6216 } 6217 6218 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, 6219 struct hwtstamp_config *init) 6220 { 6221 return -EOPNOTSUPP; 6222 } 6223 6224 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, 6225 struct hwtstamp_config *init) 6226 { 6227 int rc; 6228 6229 switch (init->rx_filter) { 6230 case HWTSTAMP_FILTER_NONE: 6231 efx_ef10_ptp_set_ts_sync_events(efx, false, false); 6232 /* if TX timestamping is still requested then leave PTP on */ 6233 return efx_ptp_change_mode(efx, 6234 init->tx_type != HWTSTAMP_TX_OFF, 0); 6235 case HWTSTAMP_FILTER_ALL: 6236 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 6237 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 6238 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 6239 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 6240 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 6241 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 6242 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 6243 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 6244 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 6245 case HWTSTAMP_FILTER_PTP_V2_EVENT: 6246 case HWTSTAMP_FILTER_PTP_V2_SYNC: 6247 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 6248 case HWTSTAMP_FILTER_NTP_ALL: 6249 init->rx_filter = HWTSTAMP_FILTER_ALL; 6250 rc = efx_ptp_change_mode(efx, true, 0); 6251 if (!rc) 6252 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); 6253 if (rc) 6254 efx_ptp_change_mode(efx, false, 0); 6255 return rc; 6256 default: 6257 return -ERANGE; 6258 } 6259 } 6260 6261 static int efx_ef10_get_phys_port_id(struct efx_nic *efx, 6262 struct netdev_phys_item_id *ppid) 6263 { 6264 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6265 6266 if (!is_valid_ether_addr(nic_data->port_id)) 6267 return -EOPNOTSUPP; 6268 6269 ppid->id_len = ETH_ALEN; 6270 memcpy(ppid->id, nic_data->port_id, ppid->id_len); 6271 6272 return 0; 6273 } 6274 6275 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid) 6276 { 6277 if (proto != htons(ETH_P_8021Q)) 6278 return -EINVAL; 6279 6280 return efx_ef10_add_vlan(efx, vid); 6281 } 6282 6283 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid) 6284 { 6285 if (proto != htons(ETH_P_8021Q)) 6286 return -EINVAL; 6287 6288 return efx_ef10_del_vlan(efx, vid); 6289 } 6290 6291 /* We rely on the MCDI wiping out our TX rings if it made any changes to the 6292 * ports table, ensuring that any TSO descriptors that were made on a now- 6293 * removed tunnel port will be blown away and won't break things when we try 6294 * to transmit them using the new ports table. 6295 */ 6296 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading) 6297 { 6298 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6299 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX); 6300 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN); 6301 bool will_reset = false; 6302 size_t num_entries = 0; 6303 size_t inlen, outlen; 6304 size_t i; 6305 int rc; 6306 efx_dword_t flags_and_num_entries; 6307 6308 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock)); 6309 6310 nic_data->udp_tunnels_dirty = false; 6311 6312 if (!(nic_data->datapath_caps & 6313 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) { 6314 efx_device_attach_if_not_resetting(efx); 6315 return 0; 6316 } 6317 6318 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) > 6319 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); 6320 6321 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) { 6322 if (nic_data->udp_tunnels[i].count && 6323 nic_data->udp_tunnels[i].port) { 6324 efx_dword_t entry; 6325 6326 EFX_POPULATE_DWORD_2(entry, 6327 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT, 6328 ntohs(nic_data->udp_tunnels[i].port), 6329 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL, 6330 nic_data->udp_tunnels[i].type); 6331 *_MCDI_ARRAY_DWORD(inbuf, 6332 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES, 6333 num_entries++) = entry; 6334 } 6335 } 6336 6337 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST - 6338 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 != 6339 EFX_WORD_1_LBN); 6340 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 != 6341 EFX_WORD_1_WIDTH); 6342 EFX_POPULATE_DWORD_2(flags_and_num_entries, 6343 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING, 6344 !!unloading, 6345 EFX_WORD_1, num_entries); 6346 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) = 6347 flags_and_num_entries; 6348 6349 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries); 6350 6351 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS, 6352 inbuf, inlen, outbuf, sizeof(outbuf), &outlen); 6353 if (rc == -EIO) { 6354 /* Most likely the MC rebooted due to another function also 6355 * setting its tunnel port list. Mark the tunnel port list as 6356 * dirty, so it will be pushed upon coming up from the reboot. 6357 */ 6358 nic_data->udp_tunnels_dirty = true; 6359 return 0; 6360 } 6361 6362 if (rc) { 6363 /* expected not available on unprivileged functions */ 6364 if (rc != -EPERM) 6365 netif_warn(efx, drv, efx->net_dev, 6366 "Unable to set UDP tunnel ports; rc=%d.\n", rc); 6367 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) & 6368 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) { 6369 netif_info(efx, drv, efx->net_dev, 6370 "Rebooting MC due to UDP tunnel port list change\n"); 6371 will_reset = true; 6372 if (unloading) 6373 /* Delay for the MC reset to complete. This will make 6374 * unloading other functions a bit smoother. This is a 6375 * race, but the other unload will work whichever way 6376 * it goes, this just avoids an unnecessary error 6377 * message. 6378 */ 6379 msleep(100); 6380 } 6381 if (!will_reset && !unloading) { 6382 /* The caller will have detached, relying on the MC reset to 6383 * trigger a re-attach. Since there won't be an MC reset, we 6384 * have to do the attach ourselves. 6385 */ 6386 efx_device_attach_if_not_resetting(efx); 6387 } 6388 6389 return rc; 6390 } 6391 6392 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx) 6393 { 6394 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6395 int rc = 0; 6396 6397 mutex_lock(&nic_data->udp_tunnels_lock); 6398 if (nic_data->udp_tunnels_dirty) { 6399 /* Make sure all TX are stopped while we modify the table, else 6400 * we might race against an efx_features_check(). 6401 */ 6402 efx_device_detach_sync(efx); 6403 rc = efx_ef10_set_udp_tnl_ports(efx, false); 6404 } 6405 mutex_unlock(&nic_data->udp_tunnels_lock); 6406 return rc; 6407 } 6408 6409 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx, 6410 __be16 port) 6411 { 6412 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6413 size_t i; 6414 6415 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) { 6416 if (!nic_data->udp_tunnels[i].count) 6417 continue; 6418 if (nic_data->udp_tunnels[i].port == port) 6419 return &nic_data->udp_tunnels[i]; 6420 } 6421 return NULL; 6422 } 6423 6424 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx, 6425 struct efx_udp_tunnel tnl) 6426 { 6427 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6428 struct efx_udp_tunnel *match; 6429 char typebuf[8]; 6430 size_t i; 6431 int rc; 6432 6433 if (!(nic_data->datapath_caps & 6434 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) 6435 return 0; 6436 6437 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf)); 6438 netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n", 6439 typebuf, ntohs(tnl.port)); 6440 6441 mutex_lock(&nic_data->udp_tunnels_lock); 6442 /* Make sure all TX are stopped while we add to the table, else we 6443 * might race against an efx_features_check(). 6444 */ 6445 efx_device_detach_sync(efx); 6446 6447 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port); 6448 if (match != NULL) { 6449 if (match->type == tnl.type) { 6450 netif_dbg(efx, drv, efx->net_dev, 6451 "Referencing existing tunnel entry\n"); 6452 match->count++; 6453 /* No need to cause an MCDI update */ 6454 rc = 0; 6455 goto unlock_out; 6456 } 6457 efx_get_udp_tunnel_type_name(match->type, 6458 typebuf, sizeof(typebuf)); 6459 netif_dbg(efx, drv, efx->net_dev, 6460 "UDP port %d is already in use by %s\n", 6461 ntohs(tnl.port), typebuf); 6462 rc = -EEXIST; 6463 goto unlock_out; 6464 } 6465 6466 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) 6467 if (!nic_data->udp_tunnels[i].count) { 6468 nic_data->udp_tunnels[i] = tnl; 6469 nic_data->udp_tunnels[i].count = 1; 6470 rc = efx_ef10_set_udp_tnl_ports(efx, false); 6471 goto unlock_out; 6472 } 6473 6474 netif_dbg(efx, drv, efx->net_dev, 6475 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n", 6476 typebuf, ntohs(tnl.port)); 6477 6478 rc = -ENOMEM; 6479 6480 unlock_out: 6481 mutex_unlock(&nic_data->udp_tunnels_lock); 6482 return rc; 6483 } 6484 6485 /* Called under the TX lock with the TX queue running, hence no-one can be 6486 * in the middle of updating the UDP tunnels table. However, they could 6487 * have tried and failed the MCDI, in which case they'll have set the dirty 6488 * flag before dropping their locks. 6489 */ 6490 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port) 6491 { 6492 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6493 6494 if (!(nic_data->datapath_caps & 6495 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) 6496 return false; 6497 6498 if (nic_data->udp_tunnels_dirty) 6499 /* SW table may not match HW state, so just assume we can't 6500 * use any UDP tunnel offloads. 6501 */ 6502 return false; 6503 6504 return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL; 6505 } 6506 6507 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx, 6508 struct efx_udp_tunnel tnl) 6509 { 6510 struct efx_ef10_nic_data *nic_data = efx->nic_data; 6511 struct efx_udp_tunnel *match; 6512 char typebuf[8]; 6513 int rc; 6514 6515 if (!(nic_data->datapath_caps & 6516 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) 6517 return 0; 6518 6519 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf)); 6520 netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n", 6521 typebuf, ntohs(tnl.port)); 6522 6523 mutex_lock(&nic_data->udp_tunnels_lock); 6524 /* Make sure all TX are stopped while we remove from the table, else we 6525 * might race against an efx_features_check(). 6526 */ 6527 efx_device_detach_sync(efx); 6528 6529 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port); 6530 if (match != NULL) { 6531 if (match->type == tnl.type) { 6532 if (--match->count) { 6533 /* Port is still in use, so nothing to do */ 6534 netif_dbg(efx, drv, efx->net_dev, 6535 "UDP tunnel port %d remains active\n", 6536 ntohs(tnl.port)); 6537 rc = 0; 6538 goto out_unlock; 6539 } 6540 rc = efx_ef10_set_udp_tnl_ports(efx, false); 6541 goto out_unlock; 6542 } 6543 efx_get_udp_tunnel_type_name(match->type, 6544 typebuf, sizeof(typebuf)); 6545 netif_warn(efx, drv, efx->net_dev, 6546 "UDP port %d is actually in use by %s, not removing\n", 6547 ntohs(tnl.port), typebuf); 6548 } 6549 rc = -ENOENT; 6550 6551 out_unlock: 6552 mutex_unlock(&nic_data->udp_tunnels_lock); 6553 return rc; 6554 } 6555 6556 #define EF10_OFFLOAD_FEATURES \ 6557 (NETIF_F_IP_CSUM | \ 6558 NETIF_F_HW_VLAN_CTAG_FILTER | \ 6559 NETIF_F_IPV6_CSUM | \ 6560 NETIF_F_RXHASH | \ 6561 NETIF_F_NTUPLE) 6562 6563 const struct efx_nic_type efx_hunt_a0_vf_nic_type = { 6564 .is_vf = true, 6565 .mem_bar = efx_ef10_vf_mem_bar, 6566 .mem_map_size = efx_ef10_mem_map_size, 6567 .probe = efx_ef10_probe_vf, 6568 .remove = efx_ef10_remove, 6569 .dimension_resources = efx_ef10_dimension_resources, 6570 .init = efx_ef10_init_nic, 6571 .fini = efx_port_dummy_op_void, 6572 .map_reset_reason = efx_ef10_map_reset_reason, 6573 .map_reset_flags = efx_ef10_map_reset_flags, 6574 .reset = efx_ef10_reset, 6575 .probe_port = efx_mcdi_port_probe, 6576 .remove_port = efx_mcdi_port_remove, 6577 .fini_dmaq = efx_ef10_fini_dmaq, 6578 .prepare_flr = efx_ef10_prepare_flr, 6579 .finish_flr = efx_port_dummy_op_void, 6580 .describe_stats = efx_ef10_describe_stats, 6581 .update_stats = efx_ef10_update_stats_vf, 6582 .start_stats = efx_port_dummy_op_void, 6583 .pull_stats = efx_port_dummy_op_void, 6584 .stop_stats = efx_port_dummy_op_void, 6585 .set_id_led = efx_mcdi_set_id_led, 6586 .push_irq_moderation = efx_ef10_push_irq_moderation, 6587 .reconfigure_mac = efx_ef10_mac_reconfigure_vf, 6588 .check_mac_fault = efx_mcdi_mac_check_fault, 6589 .reconfigure_port = efx_mcdi_port_reconfigure, 6590 .get_wol = efx_ef10_get_wol_vf, 6591 .set_wol = efx_ef10_set_wol_vf, 6592 .resume_wol = efx_port_dummy_op_void, 6593 .mcdi_request = efx_ef10_mcdi_request, 6594 .mcdi_poll_response = efx_ef10_mcdi_poll_response, 6595 .mcdi_read_response = efx_ef10_mcdi_read_response, 6596 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, 6597 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, 6598 .irq_enable_master = efx_port_dummy_op_void, 6599 .irq_test_generate = efx_ef10_irq_test_generate, 6600 .irq_disable_non_ev = efx_port_dummy_op_void, 6601 .irq_handle_msi = efx_ef10_msi_interrupt, 6602 .irq_handle_legacy = efx_ef10_legacy_interrupt, 6603 .tx_probe = efx_ef10_tx_probe, 6604 .tx_init = efx_ef10_tx_init, 6605 .tx_remove = efx_ef10_tx_remove, 6606 .tx_write = efx_ef10_tx_write, 6607 .tx_limit_len = efx_ef10_tx_limit_len, 6608 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config, 6609 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config, 6610 .rx_probe = efx_ef10_rx_probe, 6611 .rx_init = efx_ef10_rx_init, 6612 .rx_remove = efx_ef10_rx_remove, 6613 .rx_write = efx_ef10_rx_write, 6614 .rx_defer_refill = efx_ef10_rx_defer_refill, 6615 .ev_probe = efx_ef10_ev_probe, 6616 .ev_init = efx_ef10_ev_init, 6617 .ev_fini = efx_ef10_ev_fini, 6618 .ev_remove = efx_ef10_ev_remove, 6619 .ev_process = efx_ef10_ev_process, 6620 .ev_read_ack = efx_ef10_ev_read_ack, 6621 .ev_test_generate = efx_ef10_ev_test_generate, 6622 .filter_table_probe = efx_ef10_filter_table_probe, 6623 .filter_table_restore = efx_ef10_filter_table_restore, 6624 .filter_table_remove = efx_ef10_filter_table_remove, 6625 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter, 6626 .filter_insert = efx_ef10_filter_insert, 6627 .filter_remove_safe = efx_ef10_filter_remove_safe, 6628 .filter_get_safe = efx_ef10_filter_get_safe, 6629 .filter_clear_rx = efx_ef10_filter_clear_rx, 6630 .filter_count_rx_used = efx_ef10_filter_count_rx_used, 6631 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit, 6632 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids, 6633 #ifdef CONFIG_RFS_ACCEL 6634 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one, 6635 #endif 6636 #ifdef CONFIG_SFC_MTD 6637 .mtd_probe = efx_port_dummy_op_int, 6638 #endif 6639 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf, 6640 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf, 6641 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, 6642 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, 6643 #ifdef CONFIG_SFC_SRIOV 6644 .vswitching_probe = efx_ef10_vswitching_probe_vf, 6645 .vswitching_restore = efx_ef10_vswitching_restore_vf, 6646 .vswitching_remove = efx_ef10_vswitching_remove_vf, 6647 #endif 6648 .get_mac_address = efx_ef10_get_mac_address_vf, 6649 .set_mac_address = efx_ef10_set_mac_address, 6650 6651 .get_phys_port_id = efx_ef10_get_phys_port_id, 6652 .revision = EFX_REV_HUNT_A0, 6653 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), 6654 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, 6655 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, 6656 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, 6657 .can_rx_scatter = true, 6658 .always_rx_scatter = true, 6659 .min_interrupt_mode = EFX_INT_MODE_MSIX, 6660 .max_interrupt_mode = EFX_INT_MODE_MSIX, 6661 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, 6662 .offload_features = EF10_OFFLOAD_FEATURES, 6663 .mcdi_max_ver = 2, 6664 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS, 6665 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 6666 1 << HWTSTAMP_FILTER_ALL, 6667 .rx_hash_key_size = 40, 6668 }; 6669 6670 const struct efx_nic_type efx_hunt_a0_nic_type = { 6671 .is_vf = false, 6672 .mem_bar = efx_ef10_pf_mem_bar, 6673 .mem_map_size = efx_ef10_mem_map_size, 6674 .probe = efx_ef10_probe_pf, 6675 .remove = efx_ef10_remove, 6676 .dimension_resources = efx_ef10_dimension_resources, 6677 .init = efx_ef10_init_nic, 6678 .fini = efx_port_dummy_op_void, 6679 .map_reset_reason = efx_ef10_map_reset_reason, 6680 .map_reset_flags = efx_ef10_map_reset_flags, 6681 .reset = efx_ef10_reset, 6682 .probe_port = efx_mcdi_port_probe, 6683 .remove_port = efx_mcdi_port_remove, 6684 .fini_dmaq = efx_ef10_fini_dmaq, 6685 .prepare_flr = efx_ef10_prepare_flr, 6686 .finish_flr = efx_port_dummy_op_void, 6687 .describe_stats = efx_ef10_describe_stats, 6688 .update_stats = efx_ef10_update_stats_pf, 6689 .start_stats = efx_mcdi_mac_start_stats, 6690 .pull_stats = efx_mcdi_mac_pull_stats, 6691 .stop_stats = efx_mcdi_mac_stop_stats, 6692 .set_id_led = efx_mcdi_set_id_led, 6693 .push_irq_moderation = efx_ef10_push_irq_moderation, 6694 .reconfigure_mac = efx_ef10_mac_reconfigure, 6695 .check_mac_fault = efx_mcdi_mac_check_fault, 6696 .reconfigure_port = efx_mcdi_port_reconfigure, 6697 .get_wol = efx_ef10_get_wol, 6698 .set_wol = efx_ef10_set_wol, 6699 .resume_wol = efx_port_dummy_op_void, 6700 .test_chip = efx_ef10_test_chip, 6701 .test_nvram = efx_mcdi_nvram_test_all, 6702 .mcdi_request = efx_ef10_mcdi_request, 6703 .mcdi_poll_response = efx_ef10_mcdi_poll_response, 6704 .mcdi_read_response = efx_ef10_mcdi_read_response, 6705 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, 6706 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, 6707 .irq_enable_master = efx_port_dummy_op_void, 6708 .irq_test_generate = efx_ef10_irq_test_generate, 6709 .irq_disable_non_ev = efx_port_dummy_op_void, 6710 .irq_handle_msi = efx_ef10_msi_interrupt, 6711 .irq_handle_legacy = efx_ef10_legacy_interrupt, 6712 .tx_probe = efx_ef10_tx_probe, 6713 .tx_init = efx_ef10_tx_init, 6714 .tx_remove = efx_ef10_tx_remove, 6715 .tx_write = efx_ef10_tx_write, 6716 .tx_limit_len = efx_ef10_tx_limit_len, 6717 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config, 6718 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config, 6719 .rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config, 6720 .rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config, 6721 .rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts, 6722 .rx_probe = efx_ef10_rx_probe, 6723 .rx_init = efx_ef10_rx_init, 6724 .rx_remove = efx_ef10_rx_remove, 6725 .rx_write = efx_ef10_rx_write, 6726 .rx_defer_refill = efx_ef10_rx_defer_refill, 6727 .ev_probe = efx_ef10_ev_probe, 6728 .ev_init = efx_ef10_ev_init, 6729 .ev_fini = efx_ef10_ev_fini, 6730 .ev_remove = efx_ef10_ev_remove, 6731 .ev_process = efx_ef10_ev_process, 6732 .ev_read_ack = efx_ef10_ev_read_ack, 6733 .ev_test_generate = efx_ef10_ev_test_generate, 6734 .filter_table_probe = efx_ef10_filter_table_probe, 6735 .filter_table_restore = efx_ef10_filter_table_restore, 6736 .filter_table_remove = efx_ef10_filter_table_remove, 6737 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter, 6738 .filter_insert = efx_ef10_filter_insert, 6739 .filter_remove_safe = efx_ef10_filter_remove_safe, 6740 .filter_get_safe = efx_ef10_filter_get_safe, 6741 .filter_clear_rx = efx_ef10_filter_clear_rx, 6742 .filter_count_rx_used = efx_ef10_filter_count_rx_used, 6743 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit, 6744 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids, 6745 #ifdef CONFIG_RFS_ACCEL 6746 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one, 6747 #endif 6748 #ifdef CONFIG_SFC_MTD 6749 .mtd_probe = efx_ef10_mtd_probe, 6750 .mtd_rename = efx_mcdi_mtd_rename, 6751 .mtd_read = efx_mcdi_mtd_read, 6752 .mtd_erase = efx_mcdi_mtd_erase, 6753 .mtd_write = efx_mcdi_mtd_write, 6754 .mtd_sync = efx_mcdi_mtd_sync, 6755 #endif 6756 .ptp_write_host_time = efx_ef10_ptp_write_host_time, 6757 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, 6758 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, 6759 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, 6760 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, 6761 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports, 6762 .udp_tnl_add_port = efx_ef10_udp_tnl_add_port, 6763 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port, 6764 .udp_tnl_del_port = efx_ef10_udp_tnl_del_port, 6765 #ifdef CONFIG_SFC_SRIOV 6766 .sriov_configure = efx_ef10_sriov_configure, 6767 .sriov_init = efx_ef10_sriov_init, 6768 .sriov_fini = efx_ef10_sriov_fini, 6769 .sriov_wanted = efx_ef10_sriov_wanted, 6770 .sriov_reset = efx_ef10_sriov_reset, 6771 .sriov_flr = efx_ef10_sriov_flr, 6772 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, 6773 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, 6774 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, 6775 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, 6776 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state, 6777 .vswitching_probe = efx_ef10_vswitching_probe_pf, 6778 .vswitching_restore = efx_ef10_vswitching_restore_pf, 6779 .vswitching_remove = efx_ef10_vswitching_remove_pf, 6780 #endif 6781 .get_mac_address = efx_ef10_get_mac_address_pf, 6782 .set_mac_address = efx_ef10_set_mac_address, 6783 .tso_versions = efx_ef10_tso_versions, 6784 6785 .get_phys_port_id = efx_ef10_get_phys_port_id, 6786 .revision = EFX_REV_HUNT_A0, 6787 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), 6788 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, 6789 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, 6790 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, 6791 .can_rx_scatter = true, 6792 .always_rx_scatter = true, 6793 .option_descriptors = true, 6794 .min_interrupt_mode = EFX_INT_MODE_LEGACY, 6795 .max_interrupt_mode = EFX_INT_MODE_MSIX, 6796 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, 6797 .offload_features = EF10_OFFLOAD_FEATURES, 6798 .mcdi_max_ver = 2, 6799 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS, 6800 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 6801 1 << HWTSTAMP_FILTER_ALL, 6802 .rx_hash_key_size = 40, 6803 }; 6804