1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8 #ifndef EFX_BITFIELD_H 9 #define EFX_BITFIELD_H 10 11 /* 12 * Efx bitfield access 13 * 14 * Efx NICs make extensive use of bitfields up to 128 bits 15 * wide. Since there is no native 128-bit datatype on most systems, 16 * and since 64-bit datatypes are inefficient on 32-bit systems and 17 * vice versa, we wrap accesses in a way that uses the most efficient 18 * datatype. 19 * 20 * The NICs are PCI devices and therefore little-endian. Since most 21 * of the quantities that we deal with are DMAed to/from host memory, 22 * we define our datatypes (efx_oword_t, efx_qword_t and 23 * efx_dword_t) to be little-endian. 24 */ 25 26 /* Lowest bit numbers and widths */ 27 #define EFX_DUMMY_FIELD_LBN 0 28 #define EFX_DUMMY_FIELD_WIDTH 0 29 #define EFX_WORD_0_LBN 0 30 #define EFX_WORD_0_WIDTH 16 31 #define EFX_WORD_1_LBN 16 32 #define EFX_WORD_1_WIDTH 16 33 #define EFX_DWORD_0_LBN 0 34 #define EFX_DWORD_0_WIDTH 32 35 #define EFX_DWORD_1_LBN 32 36 #define EFX_DWORD_1_WIDTH 32 37 #define EFX_DWORD_2_LBN 64 38 #define EFX_DWORD_2_WIDTH 32 39 #define EFX_DWORD_3_LBN 96 40 #define EFX_DWORD_3_WIDTH 32 41 #define EFX_QWORD_0_LBN 0 42 #define EFX_QWORD_0_WIDTH 64 43 44 /* Specified attribute (e.g. LBN) of the specified field */ 45 #define EFX_VAL(field, attribute) field ## _ ## attribute 46 /* Low bit number of the specified field */ 47 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN) 48 /* Bit width of the specified field */ 49 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH) 50 /* High bit number of the specified field */ 51 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) 52 /* Mask equal in width to the specified field. 53 * 54 * For example, a field with width 5 would have a mask of 0x1f. 55 * 56 * The maximum width mask that can be generated is 64 bits. 57 */ 58 #define EFX_MASK64(width) \ 59 ((width) == 64 ? ~((u64) 0) : \ 60 (((((u64) 1) << (width))) - 1)) 61 62 /* Mask equal in width to the specified field. 63 * 64 * For example, a field with width 5 would have a mask of 0x1f. 65 * 66 * The maximum width mask that can be generated is 32 bits. Use 67 * EFX_MASK64 for higher width fields. 68 */ 69 #define EFX_MASK32(width) \ 70 ((width) == 32 ? ~((u32) 0) : \ 71 (((((u32) 1) << (width))) - 1)) 72 73 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ 74 typedef union efx_dword { 75 __le32 u32[1]; 76 } efx_dword_t; 77 78 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */ 79 typedef union efx_qword { 80 __le64 u64[1]; 81 __le32 u32[2]; 82 efx_dword_t dword[2]; 83 } efx_qword_t; 84 85 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ 86 typedef union efx_oword { 87 __le64 u64[2]; 88 efx_qword_t qword[2]; 89 __le32 u32[4]; 90 efx_dword_t dword[4]; 91 } efx_oword_t; 92 93 /* Format string and value expanders for printk */ 94 #define EFX_DWORD_FMT "%08x" 95 #define EFX_QWORD_FMT "%08x:%08x" 96 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" 97 #define EFX_DWORD_VAL(dword) \ 98 ((unsigned int) le32_to_cpu((dword).u32[0])) 99 #define EFX_QWORD_VAL(qword) \ 100 ((unsigned int) le32_to_cpu((qword).u32[1])), \ 101 ((unsigned int) le32_to_cpu((qword).u32[0])) 102 #define EFX_OWORD_VAL(oword) \ 103 ((unsigned int) le32_to_cpu((oword).u32[3])), \ 104 ((unsigned int) le32_to_cpu((oword).u32[2])), \ 105 ((unsigned int) le32_to_cpu((oword).u32[1])), \ 106 ((unsigned int) le32_to_cpu((oword).u32[0])) 107 108 /* 109 * Extract bit field portion [low,high) from the native-endian element 110 * which contains bits [min,max). 111 * 112 * For example, suppose "element" represents the high 32 bits of a 113 * 64-bit value, and we wish to extract the bits belonging to the bit 114 * field occupying bits 28-45 of this 64-bit value. 115 * 116 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give 117 * 118 * ( element ) << 4 119 * 120 * The result will contain the relevant bits filled in in the range 121 * [0,high-low), with garbage in bits [high-low+1,...). 122 */ 123 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ 124 ((low) > (max) || (high) < (min) ? 0 : \ 125 (low) > (min) ? \ 126 (native_element) >> ((low) - (min)) : \ 127 (native_element) << ((min) - (low))) 128 129 /* 130 * Extract bit field portion [low,high) from the 64-bit little-endian 131 * element which contains bits [min,max) 132 */ 133 #define EFX_EXTRACT64(element, min, max, low, high) \ 134 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) 135 136 /* 137 * Extract bit field portion [low,high) from the 32-bit little-endian 138 * element which contains bits [min,max) 139 */ 140 #define EFX_EXTRACT32(element, min, max, low, high) \ 141 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) 142 143 #define EFX_EXTRACT_OWORD64(oword, low, high) \ 144 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ 145 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ 146 EFX_MASK64((high) + 1 - (low))) 147 148 #define EFX_EXTRACT_QWORD64(qword, low, high) \ 149 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ 150 EFX_MASK64((high) + 1 - (low))) 151 152 #define EFX_EXTRACT_OWORD32(oword, low, high) \ 153 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ 154 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ 155 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ 156 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ 157 EFX_MASK32((high) + 1 - (low))) 158 159 #define EFX_EXTRACT_QWORD32(qword, low, high) \ 160 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ 161 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ 162 EFX_MASK32((high) + 1 - (low))) 163 164 #define EFX_EXTRACT_DWORD(dword, low, high) \ 165 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ 166 EFX_MASK32((high) + 1 - (low))) 167 168 #define EFX_OWORD_FIELD64(oword, field) \ 169 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ 170 EFX_HIGH_BIT(field)) 171 172 #define EFX_QWORD_FIELD64(qword, field) \ 173 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ 174 EFX_HIGH_BIT(field)) 175 176 #define EFX_OWORD_FIELD32(oword, field) \ 177 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ 178 EFX_HIGH_BIT(field)) 179 180 #define EFX_QWORD_FIELD32(qword, field) \ 181 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ 182 EFX_HIGH_BIT(field)) 183 184 #define EFX_DWORD_FIELD(dword, field) \ 185 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ 186 EFX_HIGH_BIT(field)) 187 188 #define EFX_OWORD_IS_ZERO64(oword) \ 189 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) 190 191 #define EFX_QWORD_IS_ZERO64(qword) \ 192 (((qword).u64[0]) == (__force __le64) 0) 193 194 #define EFX_OWORD_IS_ZERO32(oword) \ 195 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ 196 == (__force __le32) 0) 197 198 #define EFX_QWORD_IS_ZERO32(qword) \ 199 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) 200 201 #define EFX_DWORD_IS_ZERO(dword) \ 202 (((dword).u32[0]) == (__force __le32) 0) 203 204 #define EFX_OWORD_IS_ALL_ONES64(oword) \ 205 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) 206 207 #define EFX_QWORD_IS_ALL_ONES64(qword) \ 208 ((qword).u64[0] == ~((__force __le64) 0)) 209 210 #define EFX_OWORD_IS_ALL_ONES32(oword) \ 211 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ 212 == ~((__force __le32) 0)) 213 214 #define EFX_QWORD_IS_ALL_ONES32(qword) \ 215 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) 216 217 #define EFX_DWORD_IS_ALL_ONES(dword) \ 218 ((dword).u32[0] == ~((__force __le32) 0)) 219 220 #if BITS_PER_LONG == 64 221 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64 222 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64 223 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 224 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 225 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 226 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 227 #else 228 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32 229 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32 230 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 231 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 232 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 233 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 234 #endif 235 236 /* 237 * Construct bit field portion 238 * 239 * Creates the portion of the bit field [low,high) that lies within 240 * the range [min,max). 241 */ 242 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \ 243 (((low > max) || (high < min)) ? 0 : \ 244 ((low > min) ? \ 245 (((u64) (value)) << (low - min)) : \ 246 (((u64) (value)) >> (min - low)))) 247 248 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \ 249 (((low > max) || (high < min)) ? 0 : \ 250 ((low > min) ? \ 251 (((u32) (value)) << (low - min)) : \ 252 (((u32) (value)) >> (min - low)))) 253 254 #define EFX_INSERT_NATIVE(min, max, low, high, value) \ 255 ((((max - min) >= 32) || ((high - low) >= 32)) ? \ 256 EFX_INSERT_NATIVE64(min, max, low, high, value) : \ 257 EFX_INSERT_NATIVE32(min, max, low, high, value)) 258 259 /* 260 * Construct bit field portion 261 * 262 * Creates the portion of the named bit field that lies within the 263 * range [min,max). 264 */ 265 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ 266 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ 267 EFX_HIGH_BIT(field), value) 268 269 /* 270 * Construct bit field 271 * 272 * Creates the portion of the named bit fields that lie within the 273 * range [min,max). 274 */ 275 #define EFX_INSERT_FIELDS_NATIVE(min, max, \ 276 field1, value1, \ 277 field2, value2, \ 278 field3, value3, \ 279 field4, value4, \ 280 field5, value5, \ 281 field6, value6, \ 282 field7, value7, \ 283 field8, value8, \ 284 field9, value9, \ 285 field10, value10) \ 286 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ 287 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ 288 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ 289 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ 290 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ 291 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ 292 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ 293 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ 294 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ 295 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) 296 297 #define EFX_INSERT_FIELDS64(...) \ 298 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 299 300 #define EFX_INSERT_FIELDS32(...) \ 301 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 302 303 #define EFX_POPULATE_OWORD64(oword, ...) do { \ 304 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 305 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ 306 } while (0) 307 308 #define EFX_POPULATE_QWORD64(qword, ...) do { \ 309 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 310 } while (0) 311 312 #define EFX_POPULATE_OWORD32(oword, ...) do { \ 313 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 314 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 315 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ 316 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ 317 } while (0) 318 319 #define EFX_POPULATE_QWORD32(qword, ...) do { \ 320 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 321 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 322 } while (0) 323 324 #define EFX_POPULATE_DWORD(dword, ...) do { \ 325 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 326 } while (0) 327 328 #if BITS_PER_LONG == 64 329 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 330 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 331 #else 332 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 333 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 334 #endif 335 336 /* Populate an octword field with various numbers of arguments */ 337 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD 338 #define EFX_POPULATE_OWORD_9(oword, ...) \ 339 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 340 #define EFX_POPULATE_OWORD_8(oword, ...) \ 341 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 342 #define EFX_POPULATE_OWORD_7(oword, ...) \ 343 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 344 #define EFX_POPULATE_OWORD_6(oword, ...) \ 345 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 346 #define EFX_POPULATE_OWORD_5(oword, ...) \ 347 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 348 #define EFX_POPULATE_OWORD_4(oword, ...) \ 349 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 350 #define EFX_POPULATE_OWORD_3(oword, ...) \ 351 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 352 #define EFX_POPULATE_OWORD_2(oword, ...) \ 353 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 354 #define EFX_POPULATE_OWORD_1(oword, ...) \ 355 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 356 #define EFX_ZERO_OWORD(oword) \ 357 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) 358 #define EFX_SET_OWORD(oword) \ 359 EFX_POPULATE_OWORD_4(oword, \ 360 EFX_DWORD_0, 0xffffffff, \ 361 EFX_DWORD_1, 0xffffffff, \ 362 EFX_DWORD_2, 0xffffffff, \ 363 EFX_DWORD_3, 0xffffffff) 364 365 /* Populate a quadword field with various numbers of arguments */ 366 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD 367 #define EFX_POPULATE_QWORD_9(qword, ...) \ 368 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 369 #define EFX_POPULATE_QWORD_8(qword, ...) \ 370 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 371 #define EFX_POPULATE_QWORD_7(qword, ...) \ 372 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 373 #define EFX_POPULATE_QWORD_6(qword, ...) \ 374 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 375 #define EFX_POPULATE_QWORD_5(qword, ...) \ 376 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 377 #define EFX_POPULATE_QWORD_4(qword, ...) \ 378 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 379 #define EFX_POPULATE_QWORD_3(qword, ...) \ 380 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 381 #define EFX_POPULATE_QWORD_2(qword, ...) \ 382 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 383 #define EFX_POPULATE_QWORD_1(qword, ...) \ 384 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 385 #define EFX_ZERO_QWORD(qword) \ 386 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) 387 #define EFX_SET_QWORD(qword) \ 388 EFX_POPULATE_QWORD_2(qword, \ 389 EFX_DWORD_0, 0xffffffff, \ 390 EFX_DWORD_1, 0xffffffff) 391 392 /* Populate a dword field with various numbers of arguments */ 393 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD 394 #define EFX_POPULATE_DWORD_9(dword, ...) \ 395 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 396 #define EFX_POPULATE_DWORD_8(dword, ...) \ 397 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 398 #define EFX_POPULATE_DWORD_7(dword, ...) \ 399 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 400 #define EFX_POPULATE_DWORD_6(dword, ...) \ 401 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 402 #define EFX_POPULATE_DWORD_5(dword, ...) \ 403 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 404 #define EFX_POPULATE_DWORD_4(dword, ...) \ 405 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 406 #define EFX_POPULATE_DWORD_3(dword, ...) \ 407 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 408 #define EFX_POPULATE_DWORD_2(dword, ...) \ 409 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 410 #define EFX_POPULATE_DWORD_1(dword, ...) \ 411 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 412 #define EFX_ZERO_DWORD(dword) \ 413 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) 414 #define EFX_SET_DWORD(dword) \ 415 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) 416 417 /* 418 * Modify a named field within an already-populated structure. Used 419 * for read-modify-write operations. 420 * 421 */ 422 #define EFX_INVERT_OWORD(oword) do { \ 423 (oword).u64[0] = ~((oword).u64[0]); \ 424 (oword).u64[1] = ~((oword).u64[1]); \ 425 } while (0) 426 427 #define EFX_AND_OWORD(oword, from, mask) \ 428 do { \ 429 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ 430 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ 431 } while (0) 432 433 #define EFX_AND_QWORD(qword, from, mask) \ 434 (qword).u64[0] = (from).u64[0] & (mask).u64[0] 435 436 #define EFX_OR_OWORD(oword, from, mask) \ 437 do { \ 438 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ 439 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ 440 } while (0) 441 442 #define EFX_INSERT64(min, max, low, high, value) \ 443 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) 444 445 #define EFX_INSERT32(min, max, low, high, value) \ 446 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) 447 448 #define EFX_INPLACE_MASK64(min, max, low, high) \ 449 EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low))) 450 451 #define EFX_INPLACE_MASK32(min, max, low, high) \ 452 EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low))) 453 454 #define EFX_SET_OWORD64(oword, low, high, value) do { \ 455 (oword).u64[0] = (((oword).u64[0] \ 456 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 457 | EFX_INSERT64(0, 63, low, high, value)); \ 458 (oword).u64[1] = (((oword).u64[1] \ 459 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ 460 | EFX_INSERT64(64, 127, low, high, value)); \ 461 } while (0) 462 463 #define EFX_SET_QWORD64(qword, low, high, value) do { \ 464 (qword).u64[0] = (((qword).u64[0] \ 465 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 466 | EFX_INSERT64(0, 63, low, high, value)); \ 467 } while (0) 468 469 #define EFX_SET_OWORD32(oword, low, high, value) do { \ 470 (oword).u32[0] = (((oword).u32[0] \ 471 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 472 | EFX_INSERT32(0, 31, low, high, value)); \ 473 (oword).u32[1] = (((oword).u32[1] \ 474 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 475 | EFX_INSERT32(32, 63, low, high, value)); \ 476 (oword).u32[2] = (((oword).u32[2] \ 477 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ 478 | EFX_INSERT32(64, 95, low, high, value)); \ 479 (oword).u32[3] = (((oword).u32[3] \ 480 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ 481 | EFX_INSERT32(96, 127, low, high, value)); \ 482 } while (0) 483 484 #define EFX_SET_QWORD32(qword, low, high, value) do { \ 485 (qword).u32[0] = (((qword).u32[0] \ 486 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 487 | EFX_INSERT32(0, 31, low, high, value)); \ 488 (qword).u32[1] = (((qword).u32[1] \ 489 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 490 | EFX_INSERT32(32, 63, low, high, value)); \ 491 } while (0) 492 493 #define EFX_SET_DWORD32(dword, low, high, value) do { \ 494 (dword).u32[0] = (((dword).u32[0] \ 495 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 496 | EFX_INSERT32(0, 31, low, high, value)); \ 497 } while (0) 498 499 #define EFX_SET_OWORD_FIELD64(oword, field, value) \ 500 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ 501 EFX_HIGH_BIT(field), value) 502 503 #define EFX_SET_QWORD_FIELD64(qword, field, value) \ 504 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ 505 EFX_HIGH_BIT(field), value) 506 507 #define EFX_SET_OWORD_FIELD32(oword, field, value) \ 508 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ 509 EFX_HIGH_BIT(field), value) 510 511 #define EFX_SET_QWORD_FIELD32(qword, field, value) \ 512 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ 513 EFX_HIGH_BIT(field), value) 514 515 #define EFX_SET_DWORD_FIELD(dword, field, value) \ 516 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ 517 EFX_HIGH_BIT(field), value) 518 519 520 521 #if BITS_PER_LONG == 64 522 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 523 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 524 #else 525 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 526 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 527 #endif 528 529 /* Used to avoid compiler warnings about shift range exceeding width 530 * of the data types when dma_addr_t is only 32 bits wide. 531 */ 532 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) 533 #define EFX_DMA_TYPE_WIDTH(width) \ 534 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) 535 536 537 /* Static initialiser */ 538 #define EFX_OWORD32(a, b, c, d) \ 539 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \ 540 cpu_to_le32(c), cpu_to_le32(d) } } 541 542 #endif /* EFX_BITFIELD_H */ 543