1 /* 10G controller driver for Samsung SoCs 2 * 3 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/clk.h> 16 #include <linux/crc32.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/etherdevice.h> 19 #include <linux/ethtool.h> 20 #include <linux/if.h> 21 #include <linux/if_ether.h> 22 #include <linux/if_vlan.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/kernel.h> 27 #include <linux/mii.h> 28 #include <linux/module.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/netdevice.h> 31 #include <linux/phy.h> 32 #include <linux/platform_device.h> 33 #include <linux/prefetch.h> 34 #include <linux/skbuff.h> 35 #include <linux/slab.h> 36 #include <linux/tcp.h> 37 #include <linux/sxgbe_platform.h> 38 39 #include "sxgbe_common.h" 40 #include "sxgbe_desc.h" 41 #include "sxgbe_dma.h" 42 #include "sxgbe_mtl.h" 43 #include "sxgbe_reg.h" 44 45 #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x) 46 #define JUMBO_LEN 9000 47 48 /* Module parameters */ 49 #define TX_TIMEO 5000 50 #define DMA_TX_SIZE 512 51 #define DMA_RX_SIZE 1024 52 #define TC_DEFAULT 64 53 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB 54 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */ 55 #define SXGBE_DEFAULT_LPI_TIMER 1000 56 57 static int debug = -1; 58 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER; 59 60 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 61 62 module_param(debug, int, S_IRUGO | S_IWUSR); 63 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 64 NETIF_MSG_LINK | NETIF_MSG_IFUP | 65 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 66 67 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id); 68 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id); 69 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id); 70 71 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 72 73 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) 74 75 /** 76 * sxgbe_verify_args - verify the driver parameters. 77 * Description: it verifies if some wrong parameter is passed to the driver. 78 * Note that wrong parameters are replaced with the default values. 79 */ 80 static void sxgbe_verify_args(void) 81 { 82 if (unlikely(eee_timer < 0)) 83 eee_timer = SXGBE_DEFAULT_LPI_TIMER; 84 } 85 86 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv) 87 { 88 /* Check and enter in LPI mode */ 89 if (!priv->tx_path_in_lpi_mode) 90 priv->hw->mac->set_eee_mode(priv->ioaddr); 91 } 92 93 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv) 94 { 95 /* Exit and disable EEE in case of we are are in LPI state. */ 96 priv->hw->mac->reset_eee_mode(priv->ioaddr); 97 del_timer_sync(&priv->eee_ctrl_timer); 98 priv->tx_path_in_lpi_mode = false; 99 } 100 101 /** 102 * sxgbe_eee_ctrl_timer 103 * @arg : data hook 104 * Description: 105 * If there is no data transfer and if we are not in LPI state, 106 * then MAC Transmitter can be moved to LPI state. 107 */ 108 static void sxgbe_eee_ctrl_timer(unsigned long arg) 109 { 110 struct sxgbe_priv_data *priv = (struct sxgbe_priv_data *)arg; 111 112 sxgbe_enable_eee_mode(priv); 113 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 114 } 115 116 /** 117 * sxgbe_eee_init 118 * @priv: private device pointer 119 * Description: 120 * If the EEE support has been enabled while configuring the driver, 121 * if the GMAC actually supports the EEE (from the HW cap reg) and the 122 * phy can also manage EEE, so enable the LPI state and start the timer 123 * to verify if the tx path can enter in LPI state. 124 */ 125 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv) 126 { 127 bool ret = false; 128 129 /* MAC core supports the EEE feature. */ 130 if (priv->hw_cap.eee) { 131 /* Check if the PHY supports EEE */ 132 if (phy_init_eee(priv->phydev, 1)) 133 return false; 134 135 priv->eee_active = 1; 136 init_timer(&priv->eee_ctrl_timer); 137 priv->eee_ctrl_timer.function = sxgbe_eee_ctrl_timer; 138 priv->eee_ctrl_timer.data = (unsigned long)priv; 139 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer); 140 add_timer(&priv->eee_ctrl_timer); 141 142 priv->hw->mac->set_eee_timer(priv->ioaddr, 143 SXGBE_DEFAULT_LPI_TIMER, 144 priv->tx_lpi_timer); 145 146 pr_info("Energy-Efficient Ethernet initialized\n"); 147 148 ret = true; 149 } 150 151 return ret; 152 } 153 154 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv) 155 { 156 /* When the EEE has been already initialised we have to 157 * modify the PLS bit in the LPI ctrl & status reg according 158 * to the PHY link status. For this reason. 159 */ 160 if (priv->eee_enabled) 161 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link); 162 } 163 164 /** 165 * sxgbe_clk_csr_set - dynamically set the MDC clock 166 * @priv: driver private structure 167 * Description: this is to dynamically set the MDC clock according to the csr 168 * clock input. 169 */ 170 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv) 171 { 172 u32 clk_rate = clk_get_rate(priv->sxgbe_clk); 173 174 /* assign the proper divider, this will be used during 175 * mdio communication 176 */ 177 if (clk_rate < SXGBE_CSR_F_150M) 178 priv->clk_csr = SXGBE_CSR_100_150M; 179 else if (clk_rate <= SXGBE_CSR_F_250M) 180 priv->clk_csr = SXGBE_CSR_150_250M; 181 else if (clk_rate <= SXGBE_CSR_F_300M) 182 priv->clk_csr = SXGBE_CSR_250_300M; 183 else if (clk_rate <= SXGBE_CSR_F_350M) 184 priv->clk_csr = SXGBE_CSR_300_350M; 185 else if (clk_rate <= SXGBE_CSR_F_400M) 186 priv->clk_csr = SXGBE_CSR_350_400M; 187 else if (clk_rate <= SXGBE_CSR_F_500M) 188 priv->clk_csr = SXGBE_CSR_400_500M; 189 } 190 191 /* minimum number of free TX descriptors required to wake up TX process */ 192 #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4) 193 194 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize) 195 { 196 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1; 197 } 198 199 /** 200 * sxgbe_adjust_link 201 * @dev: net device structure 202 * Description: it adjusts the link parameters. 203 */ 204 static void sxgbe_adjust_link(struct net_device *dev) 205 { 206 struct sxgbe_priv_data *priv = netdev_priv(dev); 207 struct phy_device *phydev = priv->phydev; 208 u8 new_state = 0; 209 u8 speed = 0xff; 210 211 if (!phydev) 212 return; 213 214 /* SXGBE is not supporting auto-negotiation and 215 * half duplex mode. so, not handling duplex change 216 * in this function. only handling speed and link status 217 */ 218 if (phydev->link) { 219 if (phydev->speed != priv->speed) { 220 new_state = 1; 221 switch (phydev->speed) { 222 case SPEED_10000: 223 speed = SXGBE_SPEED_10G; 224 break; 225 case SPEED_2500: 226 speed = SXGBE_SPEED_2_5G; 227 break; 228 case SPEED_1000: 229 speed = SXGBE_SPEED_1G; 230 break; 231 default: 232 netif_err(priv, link, dev, 233 "Speed (%d) not supported\n", 234 phydev->speed); 235 } 236 237 priv->speed = phydev->speed; 238 priv->hw->mac->set_speed(priv->ioaddr, speed); 239 } 240 241 if (!priv->oldlink) { 242 new_state = 1; 243 priv->oldlink = 1; 244 } 245 } else if (priv->oldlink) { 246 new_state = 1; 247 priv->oldlink = 0; 248 priv->speed = SPEED_UNKNOWN; 249 } 250 251 if (new_state & netif_msg_link(priv)) 252 phy_print_status(phydev); 253 254 /* Alter the MAC settings for EEE */ 255 sxgbe_eee_adjust(priv); 256 } 257 258 /** 259 * sxgbe_init_phy - PHY initialization 260 * @dev: net device structure 261 * Description: it initializes the driver's PHY state, and attaches the PHY 262 * to the mac driver. 263 * Return value: 264 * 0 on success 265 */ 266 static int sxgbe_init_phy(struct net_device *ndev) 267 { 268 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 269 char bus_id[MII_BUS_ID_SIZE]; 270 struct phy_device *phydev; 271 struct sxgbe_priv_data *priv = netdev_priv(ndev); 272 int phy_iface = priv->plat->interface; 273 274 /* assign default link status */ 275 priv->oldlink = 0; 276 priv->speed = SPEED_UNKNOWN; 277 priv->oldduplex = DUPLEX_UNKNOWN; 278 279 if (priv->plat->phy_bus_name) 280 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 281 priv->plat->phy_bus_name, priv->plat->bus_id); 282 else 283 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x", 284 priv->plat->bus_id); 285 286 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 287 priv->plat->phy_addr); 288 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt); 289 290 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface); 291 292 if (IS_ERR(phydev)) { 293 netdev_err(ndev, "Could not attach to PHY\n"); 294 return PTR_ERR(phydev); 295 } 296 297 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 298 if ((phy_iface == PHY_INTERFACE_MODE_MII) || 299 (phy_iface == PHY_INTERFACE_MODE_RMII)) 300 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 301 SUPPORTED_1000baseT_Full); 302 if (phydev->phy_id == 0) { 303 phy_disconnect(phydev); 304 return -ENODEV; 305 } 306 307 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n", 308 __func__, phydev->phy_id, phydev->link); 309 310 /* save phy device in private structure */ 311 priv->phydev = phydev; 312 313 return 0; 314 } 315 316 /** 317 * sxgbe_clear_descriptors: clear descriptors 318 * @priv: driver private structure 319 * Description: this function is called to clear the tx and rx descriptors 320 * in case of both basic and extended descriptors are used. 321 */ 322 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv) 323 { 324 int i, j; 325 unsigned int txsize = priv->dma_tx_size; 326 unsigned int rxsize = priv->dma_rx_size; 327 328 /* Clear the Rx/Tx descriptors */ 329 for (j = 0; j < SXGBE_RX_QUEUES; j++) { 330 for (i = 0; i < rxsize; i++) 331 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i], 332 priv->use_riwt, priv->mode, 333 (i == rxsize - 1)); 334 } 335 336 for (j = 0; j < SXGBE_TX_QUEUES; j++) { 337 for (i = 0; i < txsize; i++) 338 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]); 339 } 340 } 341 342 static int sxgbe_init_rx_buffers(struct net_device *dev, 343 struct sxgbe_rx_norm_desc *p, int i, 344 unsigned int dma_buf_sz, 345 struct sxgbe_rx_queue *rx_ring) 346 { 347 struct sxgbe_priv_data *priv = netdev_priv(dev); 348 struct sk_buff *skb; 349 350 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL); 351 if (!skb) 352 return -ENOMEM; 353 354 rx_ring->rx_skbuff[i] = skb; 355 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 356 dma_buf_sz, DMA_FROM_DEVICE); 357 358 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) { 359 netdev_err(dev, "%s: DMA mapping error\n", __func__); 360 dev_kfree_skb_any(skb); 361 return -EINVAL; 362 } 363 364 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i]; 365 366 return 0; 367 } 368 /** 369 * init_tx_ring - init the TX descriptor ring 370 * @dev: net device structure 371 * @tx_ring: ring to be intialised 372 * @tx_rsize: ring size 373 * Description: this function initializes the DMA TX descriptor 374 */ 375 static int init_tx_ring(struct device *dev, u8 queue_no, 376 struct sxgbe_tx_queue *tx_ring, int tx_rsize) 377 { 378 /* TX ring is not allcoated */ 379 if (!tx_ring) { 380 dev_err(dev, "No memory for TX queue of SXGBE\n"); 381 return -ENOMEM; 382 } 383 384 /* allocate memory for TX descriptors */ 385 tx_ring->dma_tx = dma_zalloc_coherent(dev, 386 tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 387 &tx_ring->dma_tx_phy, GFP_KERNEL); 388 if (!tx_ring->dma_tx) 389 return -ENOMEM; 390 391 /* allocate memory for TX skbuff array */ 392 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize, 393 sizeof(dma_addr_t), GFP_KERNEL); 394 if (!tx_ring->tx_skbuff_dma) 395 goto dmamem_err; 396 397 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize, 398 sizeof(struct sk_buff *), GFP_KERNEL); 399 400 if (!tx_ring->tx_skbuff) 401 goto dmamem_err; 402 403 /* assign queue number */ 404 tx_ring->queue_no = queue_no; 405 406 /* initalise counters */ 407 tx_ring->dirty_tx = 0; 408 tx_ring->cur_tx = 0; 409 410 /* initalise TX queue lock */ 411 spin_lock_init(&tx_ring->tx_lock); 412 413 return 0; 414 415 dmamem_err: 416 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 417 tx_ring->dma_tx, tx_ring->dma_tx_phy); 418 return -ENOMEM; 419 } 420 421 /** 422 * free_rx_ring - free the RX descriptor ring 423 * @dev: net device structure 424 * @rx_ring: ring to be intialised 425 * @rx_rsize: ring size 426 * Description: this function initializes the DMA RX descriptor 427 */ 428 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring, 429 int rx_rsize) 430 { 431 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 432 rx_ring->dma_rx, rx_ring->dma_rx_phy); 433 kfree(rx_ring->rx_skbuff_dma); 434 kfree(rx_ring->rx_skbuff); 435 } 436 437 /** 438 * init_rx_ring - init the RX descriptor ring 439 * @dev: net device structure 440 * @rx_ring: ring to be intialised 441 * @rx_rsize: ring size 442 * Description: this function initializes the DMA RX descriptor 443 */ 444 static int init_rx_ring(struct net_device *dev, u8 queue_no, 445 struct sxgbe_rx_queue *rx_ring, int rx_rsize) 446 { 447 struct sxgbe_priv_data *priv = netdev_priv(dev); 448 int desc_index; 449 unsigned int bfsize = 0; 450 unsigned int ret = 0; 451 452 /* Set the max buffer size according to the MTU. */ 453 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); 454 455 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize); 456 457 /* RX ring is not allcoated */ 458 if (rx_ring == NULL) { 459 netdev_err(dev, "No memory for RX queue\n"); 460 goto error; 461 } 462 463 /* assign queue number */ 464 rx_ring->queue_no = queue_no; 465 466 /* allocate memory for RX descriptors */ 467 rx_ring->dma_rx = dma_zalloc_coherent(priv->device, 468 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 469 &rx_ring->dma_rx_phy, GFP_KERNEL); 470 471 if (rx_ring->dma_rx == NULL) 472 goto error; 473 474 /* allocate memory for RX skbuff array */ 475 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize, 476 sizeof(dma_addr_t), GFP_KERNEL); 477 if (!rx_ring->rx_skbuff_dma) { 478 dma_free_coherent(priv->device, 479 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 480 rx_ring->dma_rx, rx_ring->dma_rx_phy); 481 goto error; 482 } 483 484 rx_ring->rx_skbuff = kmalloc_array(rx_rsize, 485 sizeof(struct sk_buff *), GFP_KERNEL); 486 if (!rx_ring->rx_skbuff) { 487 kfree(rx_ring->rx_skbuff_dma); 488 goto error; 489 } 490 491 /* initialise the buffers */ 492 for (desc_index = 0; desc_index < rx_rsize; desc_index++) { 493 struct sxgbe_rx_norm_desc *p; 494 p = rx_ring->dma_rx + desc_index; 495 ret = sxgbe_init_rx_buffers(dev, p, desc_index, 496 bfsize, rx_ring); 497 if (ret) 498 goto err_init_rx_buffers; 499 } 500 501 /* initalise counters */ 502 rx_ring->cur_rx = 0; 503 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize); 504 priv->dma_buf_sz = bfsize; 505 506 return 0; 507 508 err_init_rx_buffers: 509 while (--desc_index >= 0) 510 free_rx_ring(priv->device, rx_ring, desc_index); 511 error: 512 return -ENOMEM; 513 } 514 /** 515 * free_tx_ring - free the TX descriptor ring 516 * @dev: net device structure 517 * @tx_ring: ring to be intialised 518 * @tx_rsize: ring size 519 * Description: this function initializes the DMA TX descriptor 520 */ 521 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring, 522 int tx_rsize) 523 { 524 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 525 tx_ring->dma_tx, tx_ring->dma_tx_phy); 526 } 527 528 /** 529 * init_dma_desc_rings - init the RX/TX descriptor rings 530 * @dev: net device structure 531 * Description: this function initializes the DMA RX/TX descriptors 532 * and allocates the socket buffers. It suppors the chained and ring 533 * modes. 534 */ 535 static int init_dma_desc_rings(struct net_device *netd) 536 { 537 int queue_num, ret; 538 struct sxgbe_priv_data *priv = netdev_priv(netd); 539 int tx_rsize = priv->dma_tx_size; 540 int rx_rsize = priv->dma_rx_size; 541 542 /* Allocate memory for queue structures and TX descs */ 543 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 544 ret = init_tx_ring(priv->device, queue_num, 545 priv->txq[queue_num], tx_rsize); 546 if (ret) { 547 dev_err(&netd->dev, "TX DMA ring allocation failed!\n"); 548 goto txalloc_err; 549 } 550 551 /* save private pointer in each ring this 552 * pointer is needed during cleaing TX queue 553 */ 554 priv->txq[queue_num]->priv_ptr = priv; 555 } 556 557 /* Allocate memory for queue structures and RX descs */ 558 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 559 ret = init_rx_ring(netd, queue_num, 560 priv->rxq[queue_num], rx_rsize); 561 if (ret) { 562 netdev_err(netd, "RX DMA ring allocation failed!!\n"); 563 goto rxalloc_err; 564 } 565 566 /* save private pointer in each ring this 567 * pointer is needed during cleaing TX queue 568 */ 569 priv->rxq[queue_num]->priv_ptr = priv; 570 } 571 572 sxgbe_clear_descriptors(priv); 573 574 return 0; 575 576 txalloc_err: 577 while (queue_num--) 578 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 579 return ret; 580 581 rxalloc_err: 582 while (queue_num--) 583 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 584 return ret; 585 } 586 587 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue) 588 { 589 int dma_desc; 590 struct sxgbe_priv_data *priv = txqueue->priv_ptr; 591 int tx_rsize = priv->dma_tx_size; 592 593 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) { 594 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc; 595 596 if (txqueue->tx_skbuff_dma[dma_desc]) 597 dma_unmap_single(priv->device, 598 txqueue->tx_skbuff_dma[dma_desc], 599 priv->hw->desc->get_tx_len(tdesc), 600 DMA_TO_DEVICE); 601 602 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]); 603 txqueue->tx_skbuff[dma_desc] = NULL; 604 txqueue->tx_skbuff_dma[dma_desc] = 0; 605 } 606 } 607 608 609 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv) 610 { 611 int queue_num; 612 613 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 614 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 615 tx_free_ring_skbufs(tqueue); 616 } 617 } 618 619 static void free_dma_desc_resources(struct sxgbe_priv_data *priv) 620 { 621 int queue_num; 622 int tx_rsize = priv->dma_tx_size; 623 int rx_rsize = priv->dma_rx_size; 624 625 /* Release the DMA TX buffers */ 626 dma_free_tx_skbufs(priv); 627 628 /* Release the TX ring memory also */ 629 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 630 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 631 } 632 633 /* Release the RX ring memory also */ 634 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 635 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 636 } 637 } 638 639 static int txring_mem_alloc(struct sxgbe_priv_data *priv) 640 { 641 int queue_num; 642 643 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 644 priv->txq[queue_num] = devm_kmalloc(priv->device, 645 sizeof(struct sxgbe_tx_queue), GFP_KERNEL); 646 if (!priv->txq[queue_num]) 647 return -ENOMEM; 648 } 649 650 return 0; 651 } 652 653 static int rxring_mem_alloc(struct sxgbe_priv_data *priv) 654 { 655 int queue_num; 656 657 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 658 priv->rxq[queue_num] = devm_kmalloc(priv->device, 659 sizeof(struct sxgbe_rx_queue), GFP_KERNEL); 660 if (!priv->rxq[queue_num]) 661 return -ENOMEM; 662 } 663 664 return 0; 665 } 666 667 /** 668 * sxgbe_mtl_operation_mode - HW MTL operation mode 669 * @priv: driver private structure 670 * Description: it sets the MTL operation mode: tx/rx MTL thresholds 671 * or Store-And-Forward capability. 672 */ 673 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv) 674 { 675 int queue_num; 676 677 /* TX/RX threshold control */ 678 if (likely(priv->plat->force_sf_dma_mode)) { 679 /* set TC mode for TX QUEUES */ 680 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 681 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 682 SXGBE_MTL_SFMODE); 683 priv->tx_tc = SXGBE_MTL_SFMODE; 684 685 /* set TC mode for RX QUEUES */ 686 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 687 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 688 SXGBE_MTL_SFMODE); 689 priv->rx_tc = SXGBE_MTL_SFMODE; 690 } else if (unlikely(priv->plat->force_thresh_dma_mode)) { 691 /* set TC mode for TX QUEUES */ 692 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 693 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 694 priv->tx_tc); 695 /* set TC mode for RX QUEUES */ 696 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 697 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 698 priv->rx_tc); 699 } else { 700 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__); 701 } 702 } 703 704 /** 705 * sxgbe_tx_queue_clean: 706 * @priv: driver private structure 707 * Description: it reclaims resources after transmission completes. 708 */ 709 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue) 710 { 711 struct sxgbe_priv_data *priv = tqueue->priv_ptr; 712 unsigned int tx_rsize = priv->dma_tx_size; 713 struct netdev_queue *dev_txq; 714 u8 queue_no = tqueue->queue_no; 715 716 dev_txq = netdev_get_tx_queue(priv->dev, queue_no); 717 718 spin_lock(&tqueue->tx_lock); 719 720 priv->xstats.tx_clean++; 721 while (tqueue->dirty_tx != tqueue->cur_tx) { 722 unsigned int entry = tqueue->dirty_tx % tx_rsize; 723 struct sk_buff *skb = tqueue->tx_skbuff[entry]; 724 struct sxgbe_tx_norm_desc *p; 725 726 p = tqueue->dma_tx + entry; 727 728 /* Check if the descriptor is owned by the DMA. */ 729 if (priv->hw->desc->get_tx_owner(p)) 730 break; 731 732 if (netif_msg_tx_done(priv)) 733 pr_debug("%s: curr %d, dirty %d\n", 734 __func__, tqueue->cur_tx, tqueue->dirty_tx); 735 736 if (likely(tqueue->tx_skbuff_dma[entry])) { 737 dma_unmap_single(priv->device, 738 tqueue->tx_skbuff_dma[entry], 739 priv->hw->desc->get_tx_len(p), 740 DMA_TO_DEVICE); 741 tqueue->tx_skbuff_dma[entry] = 0; 742 } 743 744 if (likely(skb)) { 745 dev_kfree_skb(skb); 746 tqueue->tx_skbuff[entry] = NULL; 747 } 748 749 priv->hw->desc->release_tx_desc(p); 750 751 tqueue->dirty_tx++; 752 } 753 754 /* wake up queue */ 755 if (unlikely(netif_tx_queue_stopped(dev_txq) && 756 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) { 757 netif_tx_lock(priv->dev); 758 if (netif_tx_queue_stopped(dev_txq) && 759 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv)) { 760 if (netif_msg_tx_done(priv)) 761 pr_debug("%s: restart transmit\n", __func__); 762 netif_tx_wake_queue(dev_txq); 763 } 764 netif_tx_unlock(priv->dev); 765 } 766 767 spin_unlock(&tqueue->tx_lock); 768 } 769 770 /** 771 * sxgbe_tx_clean: 772 * @priv: driver private structure 773 * Description: it reclaims resources after transmission completes. 774 */ 775 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv) 776 { 777 u8 queue_num; 778 779 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 780 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 781 782 sxgbe_tx_queue_clean(tqueue); 783 } 784 785 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 786 sxgbe_enable_eee_mode(priv); 787 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 788 } 789 } 790 791 /** 792 * sxgbe_restart_tx_queue: irq tx error mng function 793 * @priv: driver private structure 794 * Description: it cleans the descriptors and restarts the transmission 795 * in case of errors. 796 */ 797 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num) 798 { 799 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num]; 800 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev, 801 queue_num); 802 803 /* stop the queue */ 804 netif_tx_stop_queue(dev_txq); 805 806 /* stop the tx dma */ 807 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num); 808 809 /* free the skbuffs of the ring */ 810 tx_free_ring_skbufs(tx_ring); 811 812 /* initalise counters */ 813 tx_ring->cur_tx = 0; 814 tx_ring->dirty_tx = 0; 815 816 /* start the tx dma */ 817 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num); 818 819 priv->dev->stats.tx_errors++; 820 821 /* wakeup the queue */ 822 netif_tx_wake_queue(dev_txq); 823 } 824 825 /** 826 * sxgbe_reset_all_tx_queues: irq tx error mng function 827 * @priv: driver private structure 828 * Description: it cleans all the descriptors and 829 * restarts the transmission on all queues in case of errors. 830 */ 831 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv) 832 { 833 int queue_num; 834 835 /* On TX timeout of net device, resetting of all queues 836 * may not be proper way, revisit this later if needed 837 */ 838 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 839 sxgbe_restart_tx_queue(priv, queue_num); 840 } 841 842 /** 843 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register. 844 * @priv: driver private structure 845 * Description: 846 * new GMAC chip generations have a new register to indicate the 847 * presence of the optional feature/functions. 848 * This can be also used to override the value passed through the 849 * platform and necessary for old MAC10/100 and GMAC chips. 850 */ 851 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv) 852 { 853 int rval = 0; 854 struct sxgbe_hw_features *features = &priv->hw_cap; 855 856 /* Read First Capability Register CAP[0] */ 857 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0); 858 if (rval) { 859 features->pmt_remote_wake_up = 860 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval); 861 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval); 862 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval); 863 features->tx_csum_offload = 864 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval); 865 features->rx_csum_offload = 866 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval); 867 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval); 868 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval); 869 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval); 870 features->eee = SXGBE_HW_FEAT_EEE(rval); 871 } 872 873 /* Read First Capability Register CAP[1] */ 874 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1); 875 if (rval) { 876 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval); 877 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 878 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 879 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval); 880 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval); 881 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval); 882 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval); 883 features->rss_enable = SXGBE_HW_FEAT_RSS(rval); 884 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval); 885 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval); 886 } 887 888 /* Read First Capability Register CAP[2] */ 889 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2); 890 if (rval) { 891 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval); 892 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval); 893 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval); 894 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval); 895 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval); 896 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval); 897 } 898 899 return rval; 900 } 901 902 /** 903 * sxgbe_check_ether_addr: check if the MAC addr is valid 904 * @priv: driver private structure 905 * Description: 906 * it is to verify if the MAC address is valid, in case of failures it 907 * generates a random MAC address 908 */ 909 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv) 910 { 911 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 912 priv->hw->mac->get_umac_addr((void __iomem *) 913 priv->ioaddr, 914 priv->dev->dev_addr, 0); 915 if (!is_valid_ether_addr(priv->dev->dev_addr)) 916 eth_hw_addr_random(priv->dev); 917 } 918 dev_info(priv->device, "device MAC address %pM\n", 919 priv->dev->dev_addr); 920 } 921 922 /** 923 * sxgbe_init_dma_engine: DMA init. 924 * @priv: driver private structure 925 * Description: 926 * It inits the DMA invoking the specific SXGBE callback. 927 * Some DMA parameters can be passed from the platform; 928 * in case of these are not passed a default is kept for the MAC or GMAC. 929 */ 930 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv) 931 { 932 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0; 933 int queue_num; 934 935 if (priv->plat->dma_cfg) { 936 pbl = priv->plat->dma_cfg->pbl; 937 fixed_burst = priv->plat->dma_cfg->fixed_burst; 938 burst_map = priv->plat->dma_cfg->burst_map; 939 } 940 941 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 942 priv->hw->dma->cha_init(priv->ioaddr, queue_num, 943 fixed_burst, pbl, 944 (priv->txq[queue_num])->dma_tx_phy, 945 (priv->rxq[queue_num])->dma_rx_phy, 946 priv->dma_tx_size, priv->dma_rx_size); 947 948 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map); 949 } 950 951 /** 952 * sxgbe_init_mtl_engine: MTL init. 953 * @priv: driver private structure 954 * Description: 955 * It inits the MTL invoking the specific SXGBE callback. 956 */ 957 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv) 958 { 959 int queue_num; 960 961 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 962 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num, 963 priv->hw_cap.tx_mtl_qsize); 964 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num); 965 } 966 } 967 968 /** 969 * sxgbe_disable_mtl_engine: MTL disable. 970 * @priv: driver private structure 971 * Description: 972 * It disables the MTL queues by invoking the specific SXGBE callback. 973 */ 974 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv) 975 { 976 int queue_num; 977 978 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 979 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num); 980 } 981 982 983 /** 984 * sxgbe_tx_timer: mitigation sw timer for tx. 985 * @data: data pointer 986 * Description: 987 * This is the timer handler to directly invoke the sxgbe_tx_clean. 988 */ 989 static void sxgbe_tx_timer(unsigned long data) 990 { 991 struct sxgbe_tx_queue *p = (struct sxgbe_tx_queue *)data; 992 sxgbe_tx_queue_clean(p); 993 } 994 995 /** 996 * sxgbe_init_tx_coalesce: init tx mitigation options. 997 * @priv: driver private structure 998 * Description: 999 * This inits the transmit coalesce parameters: i.e. timer rate, 1000 * timer handler and default threshold used for enabling the 1001 * interrupt on completion bit. 1002 */ 1003 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv) 1004 { 1005 u8 queue_num; 1006 1007 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1008 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1009 p->tx_coal_frames = SXGBE_TX_FRAMES; 1010 p->tx_coal_timer = SXGBE_COAL_TX_TIMER; 1011 init_timer(&p->txtimer); 1012 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer); 1013 p->txtimer.data = (unsigned long)&priv->txq[queue_num]; 1014 p->txtimer.function = sxgbe_tx_timer; 1015 add_timer(&p->txtimer); 1016 } 1017 } 1018 1019 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv) 1020 { 1021 u8 queue_num; 1022 1023 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1024 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1025 del_timer_sync(&p->txtimer); 1026 } 1027 } 1028 1029 /** 1030 * sxgbe_open - open entry point of the driver 1031 * @dev : pointer to the device structure. 1032 * Description: 1033 * This function is the open entry point of the driver. 1034 * Return value: 1035 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1036 * file on failure. 1037 */ 1038 static int sxgbe_open(struct net_device *dev) 1039 { 1040 struct sxgbe_priv_data *priv = netdev_priv(dev); 1041 int ret, queue_num; 1042 1043 clk_prepare_enable(priv->sxgbe_clk); 1044 1045 sxgbe_check_ether_addr(priv); 1046 1047 /* Init the phy */ 1048 ret = sxgbe_init_phy(dev); 1049 if (ret) { 1050 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n", 1051 __func__, ret); 1052 goto phy_error; 1053 } 1054 1055 /* Create and initialize the TX/RX descriptors chains. */ 1056 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE); 1057 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE); 1058 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE); 1059 priv->tx_tc = TC_DEFAULT; 1060 priv->rx_tc = TC_DEFAULT; 1061 init_dma_desc_rings(dev); 1062 1063 /* DMA initialization and SW reset */ 1064 ret = sxgbe_init_dma_engine(priv); 1065 if (ret < 0) { 1066 netdev_err(dev, "%s: DMA initialization failed\n", __func__); 1067 goto init_error; 1068 } 1069 1070 /* MTL initialization */ 1071 sxgbe_init_mtl_engine(priv); 1072 1073 /* Copy the MAC addr into the HW */ 1074 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); 1075 1076 /* Initialize the MAC Core */ 1077 priv->hw->mac->core_init(priv->ioaddr); 1078 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1079 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num); 1080 } 1081 1082 /* Request the IRQ lines */ 1083 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt, 1084 IRQF_SHARED, dev->name, dev); 1085 if (unlikely(ret < 0)) { 1086 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", 1087 __func__, priv->irq, ret); 1088 goto init_error; 1089 } 1090 1091 /* If the LPI irq is different from the mac irq 1092 * register a dedicated handler 1093 */ 1094 if (priv->lpi_irq != dev->irq) { 1095 ret = devm_request_irq(priv->device, priv->lpi_irq, 1096 sxgbe_common_interrupt, 1097 IRQF_SHARED, dev->name, dev); 1098 if (unlikely(ret < 0)) { 1099 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1100 __func__, priv->lpi_irq, ret); 1101 goto init_error; 1102 } 1103 } 1104 1105 /* Request TX DMA irq lines */ 1106 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1107 ret = devm_request_irq(priv->device, 1108 (priv->txq[queue_num])->irq_no, 1109 sxgbe_tx_interrupt, 0, 1110 dev->name, priv->txq[queue_num]); 1111 if (unlikely(ret < 0)) { 1112 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1113 __func__, priv->irq, ret); 1114 goto init_error; 1115 } 1116 } 1117 1118 /* Request RX DMA irq lines */ 1119 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1120 ret = devm_request_irq(priv->device, 1121 (priv->rxq[queue_num])->irq_no, 1122 sxgbe_rx_interrupt, 0, 1123 dev->name, priv->rxq[queue_num]); 1124 if (unlikely(ret < 0)) { 1125 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1126 __func__, priv->irq, ret); 1127 goto init_error; 1128 } 1129 } 1130 1131 /* Enable the MAC Rx/Tx */ 1132 priv->hw->mac->enable_tx(priv->ioaddr, true); 1133 priv->hw->mac->enable_rx(priv->ioaddr, true); 1134 1135 /* Set the HW DMA mode and the COE */ 1136 sxgbe_mtl_operation_mode(priv); 1137 1138 /* Extra statistics */ 1139 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats)); 1140 1141 priv->xstats.tx_threshold = priv->tx_tc; 1142 priv->xstats.rx_threshold = priv->rx_tc; 1143 1144 /* Start the ball rolling... */ 1145 netdev_dbg(dev, "DMA RX/TX processes started...\n"); 1146 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1147 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1148 1149 if (priv->phydev) 1150 phy_start(priv->phydev); 1151 1152 /* initalise TX coalesce parameters */ 1153 sxgbe_tx_init_coalesce(priv); 1154 1155 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1156 priv->rx_riwt = SXGBE_MAX_DMA_RIWT; 1157 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT); 1158 } 1159 1160 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER; 1161 priv->eee_enabled = sxgbe_eee_init(priv); 1162 1163 napi_enable(&priv->napi); 1164 netif_start_queue(dev); 1165 1166 return 0; 1167 1168 init_error: 1169 free_dma_desc_resources(priv); 1170 if (priv->phydev) 1171 phy_disconnect(priv->phydev); 1172 phy_error: 1173 clk_disable_unprepare(priv->sxgbe_clk); 1174 1175 return ret; 1176 } 1177 1178 /** 1179 * sxgbe_release - close entry point of the driver 1180 * @dev : device pointer. 1181 * Description: 1182 * This is the stop entry point of the driver. 1183 */ 1184 static int sxgbe_release(struct net_device *dev) 1185 { 1186 struct sxgbe_priv_data *priv = netdev_priv(dev); 1187 1188 if (priv->eee_enabled) 1189 del_timer_sync(&priv->eee_ctrl_timer); 1190 1191 /* Stop and disconnect the PHY */ 1192 if (priv->phydev) { 1193 phy_stop(priv->phydev); 1194 phy_disconnect(priv->phydev); 1195 priv->phydev = NULL; 1196 } 1197 1198 netif_tx_stop_all_queues(dev); 1199 1200 napi_disable(&priv->napi); 1201 1202 /* delete TX timers */ 1203 sxgbe_tx_del_timer(priv); 1204 1205 /* Stop TX/RX DMA and clear the descriptors */ 1206 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1207 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1208 1209 /* disable MTL queue */ 1210 sxgbe_disable_mtl_engine(priv); 1211 1212 /* Release and free the Rx/Tx resources */ 1213 free_dma_desc_resources(priv); 1214 1215 /* Disable the MAC Rx/Tx */ 1216 priv->hw->mac->enable_tx(priv->ioaddr, false); 1217 priv->hw->mac->enable_rx(priv->ioaddr, false); 1218 1219 clk_disable_unprepare(priv->sxgbe_clk); 1220 1221 return 0; 1222 } 1223 /* Prepare first Tx descriptor for doing TSO operation */ 1224 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv, 1225 struct sxgbe_tx_norm_desc *first_desc, 1226 struct sk_buff *skb) 1227 { 1228 unsigned int total_hdr_len, tcp_hdr_len; 1229 1230 /* Write first Tx descriptor with appropriate value */ 1231 tcp_hdr_len = tcp_hdrlen(skb); 1232 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len; 1233 1234 first_desc->tdes01 = dma_map_single(priv->device, skb->data, 1235 total_hdr_len, DMA_TO_DEVICE); 1236 if (dma_mapping_error(priv->device, first_desc->tdes01)) 1237 pr_err("%s: TX dma mapping failed!!\n", __func__); 1238 1239 first_desc->tdes23.tx_rd_des23.first_desc = 1; 1240 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len, 1241 tcp_hdr_len, 1242 skb->len - total_hdr_len); 1243 } 1244 1245 /** 1246 * sxgbe_xmit: Tx entry point of the driver 1247 * @skb : the socket buffer 1248 * @dev : device pointer 1249 * Description : this is the tx entry point of the driver. 1250 * It programs the chain or the ring and supports oversized frames 1251 * and SG feature. 1252 */ 1253 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev) 1254 { 1255 unsigned int entry, frag_num; 1256 int cksum_flag = 0; 1257 struct netdev_queue *dev_txq; 1258 unsigned txq_index = skb_get_queue_mapping(skb); 1259 struct sxgbe_priv_data *priv = netdev_priv(dev); 1260 unsigned int tx_rsize = priv->dma_tx_size; 1261 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index]; 1262 struct sxgbe_tx_norm_desc *tx_desc, *first_desc; 1263 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL; 1264 int nr_frags = skb_shinfo(skb)->nr_frags; 1265 int no_pagedlen = skb_headlen(skb); 1266 int is_jumbo = 0; 1267 u16 cur_mss = skb_shinfo(skb)->gso_size; 1268 u32 ctxt_desc_req = 0; 1269 1270 /* get the TX queue handle */ 1271 dev_txq = netdev_get_tx_queue(dev, txq_index); 1272 1273 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss)) 1274 ctxt_desc_req = 1; 1275 1276 if (unlikely(vlan_tx_tag_present(skb) || 1277 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1278 tqueue->hwts_tx_en))) 1279 ctxt_desc_req = 1; 1280 1281 /* get the spinlock */ 1282 spin_lock(&tqueue->tx_lock); 1283 1284 if (priv->tx_path_in_lpi_mode) 1285 sxgbe_disable_eee_mode(priv); 1286 1287 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) { 1288 if (!netif_tx_queue_stopped(dev_txq)) { 1289 netif_tx_stop_queue(dev_txq); 1290 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n", 1291 __func__, txq_index); 1292 } 1293 /* release the spin lock in case of BUSY */ 1294 spin_unlock(&tqueue->tx_lock); 1295 return NETDEV_TX_BUSY; 1296 } 1297 1298 entry = tqueue->cur_tx % tx_rsize; 1299 tx_desc = tqueue->dma_tx + entry; 1300 1301 first_desc = tx_desc; 1302 if (ctxt_desc_req) 1303 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc; 1304 1305 /* save the skb address */ 1306 tqueue->tx_skbuff[entry] = skb; 1307 1308 if (!is_jumbo) { 1309 if (likely(skb_is_gso(skb))) { 1310 /* TSO support */ 1311 if (unlikely(tqueue->prev_mss != cur_mss)) { 1312 priv->hw->desc->tx_ctxt_desc_set_mss( 1313 ctxt_desc, cur_mss); 1314 priv->hw->desc->tx_ctxt_desc_set_tcmssv( 1315 ctxt_desc); 1316 priv->hw->desc->tx_ctxt_desc_reset_ostc( 1317 ctxt_desc); 1318 priv->hw->desc->tx_ctxt_desc_set_ctxt( 1319 ctxt_desc); 1320 priv->hw->desc->tx_ctxt_desc_set_owner( 1321 ctxt_desc); 1322 1323 entry = (++tqueue->cur_tx) % tx_rsize; 1324 first_desc = tqueue->dma_tx + entry; 1325 1326 tqueue->prev_mss = cur_mss; 1327 } 1328 sxgbe_tso_prepare(priv, first_desc, skb); 1329 } else { 1330 tx_desc->tdes01 = dma_map_single(priv->device, 1331 skb->data, no_pagedlen, DMA_TO_DEVICE); 1332 if (dma_mapping_error(priv->device, tx_desc->tdes01)) 1333 netdev_err(dev, "%s: TX dma mapping failed!!\n", 1334 __func__); 1335 1336 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen, 1337 no_pagedlen, cksum_flag); 1338 } 1339 } 1340 1341 for (frag_num = 0; frag_num < nr_frags; frag_num++) { 1342 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; 1343 int len = skb_frag_size(frag); 1344 1345 entry = (++tqueue->cur_tx) % tx_rsize; 1346 tx_desc = tqueue->dma_tx + entry; 1347 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len, 1348 DMA_TO_DEVICE); 1349 1350 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01; 1351 tqueue->tx_skbuff[entry] = NULL; 1352 1353 /* prepare the descriptor */ 1354 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len, 1355 len, cksum_flag); 1356 /* memory barrier to flush descriptor */ 1357 wmb(); 1358 1359 /* set the owner */ 1360 priv->hw->desc->set_tx_owner(tx_desc); 1361 } 1362 1363 /* close the descriptors */ 1364 priv->hw->desc->close_tx_desc(tx_desc); 1365 1366 /* memory barrier to flush descriptor */ 1367 wmb(); 1368 1369 tqueue->tx_count_frames += nr_frags + 1; 1370 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) { 1371 priv->hw->desc->clear_tx_ic(tx_desc); 1372 priv->xstats.tx_reset_ic_bit++; 1373 mod_timer(&tqueue->txtimer, 1374 SXGBE_COAL_TIMER(tqueue->tx_coal_timer)); 1375 } else { 1376 tqueue->tx_count_frames = 0; 1377 } 1378 1379 /* set owner for first desc */ 1380 priv->hw->desc->set_tx_owner(first_desc); 1381 1382 /* memory barrier to flush descriptor */ 1383 wmb(); 1384 1385 tqueue->cur_tx++; 1386 1387 /* display current ring */ 1388 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n", 1389 __func__, tqueue->cur_tx % tx_rsize, 1390 tqueue->dirty_tx % tx_rsize, entry, 1391 first_desc, nr_frags); 1392 1393 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) { 1394 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n", 1395 __func__); 1396 netif_tx_stop_queue(dev_txq); 1397 } 1398 1399 dev->stats.tx_bytes += skb->len; 1400 1401 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1402 tqueue->hwts_tx_en)) { 1403 /* declare that device is doing timestamping */ 1404 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1405 priv->hw->desc->tx_enable_tstamp(first_desc); 1406 } 1407 1408 if (!tqueue->hwts_tx_en) 1409 skb_tx_timestamp(skb); 1410 1411 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index); 1412 1413 spin_unlock(&tqueue->tx_lock); 1414 1415 return NETDEV_TX_OK; 1416 } 1417 1418 /** 1419 * sxgbe_rx_refill: refill used skb preallocated buffers 1420 * @priv: driver private structure 1421 * Description : this is to reallocate the skb for the reception process 1422 * that is based on zero-copy. 1423 */ 1424 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv) 1425 { 1426 unsigned int rxsize = priv->dma_rx_size; 1427 int bfsize = priv->dma_buf_sz; 1428 u8 qnum = priv->cur_rx_qnum; 1429 1430 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0; 1431 priv->rxq[qnum]->dirty_rx++) { 1432 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize; 1433 struct sxgbe_rx_norm_desc *p; 1434 1435 p = priv->rxq[qnum]->dma_rx + entry; 1436 1437 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) { 1438 struct sk_buff *skb; 1439 1440 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 1441 1442 if (unlikely(skb == NULL)) 1443 break; 1444 1445 priv->rxq[qnum]->rx_skbuff[entry] = skb; 1446 priv->rxq[qnum]->rx_skbuff_dma[entry] = 1447 dma_map_single(priv->device, skb->data, bfsize, 1448 DMA_FROM_DEVICE); 1449 1450 p->rdes23.rx_rd_des23.buf2_addr = 1451 priv->rxq[qnum]->rx_skbuff_dma[entry]; 1452 } 1453 1454 /* Added memory barrier for RX descriptor modification */ 1455 wmb(); 1456 priv->hw->desc->set_rx_owner(p); 1457 priv->hw->desc->set_rx_int_on_com(p); 1458 /* Added memory barrier for RX descriptor modification */ 1459 wmb(); 1460 } 1461 } 1462 1463 /** 1464 * sxgbe_rx: receive the frames from the remote host 1465 * @priv: driver private structure 1466 * @limit: napi bugget. 1467 * Description : this the function called by the napi poll method. 1468 * It gets all the frames inside the ring. 1469 */ 1470 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit) 1471 { 1472 u8 qnum = priv->cur_rx_qnum; 1473 unsigned int rxsize = priv->dma_rx_size; 1474 unsigned int entry = priv->rxq[qnum]->cur_rx; 1475 unsigned int next_entry = 0; 1476 unsigned int count = 0; 1477 int checksum; 1478 int status; 1479 1480 while (count < limit) { 1481 struct sxgbe_rx_norm_desc *p; 1482 struct sk_buff *skb; 1483 int frame_len; 1484 1485 p = priv->rxq[qnum]->dma_rx + entry; 1486 1487 if (priv->hw->desc->get_rx_owner(p)) 1488 break; 1489 1490 count++; 1491 1492 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize; 1493 prefetch(priv->rxq[qnum]->dma_rx + next_entry); 1494 1495 /* Read the status of the incoming frame and also get checksum 1496 * value based on whether it is enabled in SXGBE hardware or 1497 * not. 1498 */ 1499 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats, 1500 &checksum); 1501 if (unlikely(status < 0)) { 1502 entry = next_entry; 1503 continue; 1504 } 1505 if (unlikely(!priv->rxcsum_insertion)) 1506 checksum = CHECKSUM_NONE; 1507 1508 skb = priv->rxq[qnum]->rx_skbuff[entry]; 1509 1510 if (unlikely(!skb)) 1511 netdev_err(priv->dev, "rx descriptor is not consistent\n"); 1512 1513 prefetch(skb->data - NET_IP_ALIGN); 1514 priv->rxq[qnum]->rx_skbuff[entry] = NULL; 1515 1516 frame_len = priv->hw->desc->get_rx_frame_len(p); 1517 1518 skb_put(skb, frame_len); 1519 1520 skb->ip_summed = checksum; 1521 if (checksum == CHECKSUM_NONE) 1522 netif_receive_skb(skb); 1523 else 1524 napi_gro_receive(&priv->napi, skb); 1525 1526 entry = next_entry; 1527 } 1528 1529 sxgbe_rx_refill(priv); 1530 1531 return count; 1532 } 1533 1534 /** 1535 * sxgbe_poll - sxgbe poll method (NAPI) 1536 * @napi : pointer to the napi structure. 1537 * @budget : maximum number of packets that the current CPU can receive from 1538 * all interfaces. 1539 * Description : 1540 * To look at the incoming frames and clear the tx resources. 1541 */ 1542 static int sxgbe_poll(struct napi_struct *napi, int budget) 1543 { 1544 struct sxgbe_priv_data *priv = container_of(napi, 1545 struct sxgbe_priv_data, napi); 1546 int work_done = 0; 1547 u8 qnum = priv->cur_rx_qnum; 1548 1549 priv->xstats.napi_poll++; 1550 /* first, clean the tx queues */ 1551 sxgbe_tx_all_clean(priv); 1552 1553 work_done = sxgbe_rx(priv, budget); 1554 if (work_done < budget) { 1555 napi_complete(napi); 1556 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum); 1557 } 1558 1559 return work_done; 1560 } 1561 1562 /** 1563 * sxgbe_tx_timeout 1564 * @dev : Pointer to net device structure 1565 * Description: this function is called when a packet transmission fails to 1566 * complete within a reasonable time. The driver will mark the error in the 1567 * netdev structure and arrange for the device to be reset to a sane state 1568 * in order to transmit a new packet. 1569 */ 1570 static void sxgbe_tx_timeout(struct net_device *dev) 1571 { 1572 struct sxgbe_priv_data *priv = netdev_priv(dev); 1573 1574 sxgbe_reset_all_tx_queues(priv); 1575 } 1576 1577 /** 1578 * sxgbe_common_interrupt - main ISR 1579 * @irq: interrupt number. 1580 * @dev_id: to pass the net device pointer. 1581 * Description: this is the main driver interrupt service routine. 1582 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI 1583 * interrupts. 1584 */ 1585 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id) 1586 { 1587 struct net_device *netdev = (struct net_device *)dev_id; 1588 struct sxgbe_priv_data *priv = netdev_priv(netdev); 1589 int status; 1590 1591 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats); 1592 /* For LPI we need to save the tx status */ 1593 if (status & TX_ENTRY_LPI_MODE) { 1594 priv->xstats.tx_lpi_entry_n++; 1595 priv->tx_path_in_lpi_mode = true; 1596 } 1597 if (status & TX_EXIT_LPI_MODE) { 1598 priv->xstats.tx_lpi_exit_n++; 1599 priv->tx_path_in_lpi_mode = false; 1600 } 1601 if (status & RX_ENTRY_LPI_MODE) 1602 priv->xstats.rx_lpi_entry_n++; 1603 if (status & RX_EXIT_LPI_MODE) 1604 priv->xstats.rx_lpi_exit_n++; 1605 1606 return IRQ_HANDLED; 1607 } 1608 1609 /** 1610 * sxgbe_tx_interrupt - TX DMA ISR 1611 * @irq: interrupt number. 1612 * @dev_id: to pass the net device pointer. 1613 * Description: this is the tx dma interrupt service routine. 1614 */ 1615 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id) 1616 { 1617 int status; 1618 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id; 1619 struct sxgbe_priv_data *priv = txq->priv_ptr; 1620 1621 /* get the channel status */ 1622 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no, 1623 &priv->xstats); 1624 /* check for normal path */ 1625 if (likely((status & handle_tx))) 1626 napi_schedule(&priv->napi); 1627 1628 /* check for unrecoverable error */ 1629 if (unlikely((status & tx_hard_error))) 1630 sxgbe_restart_tx_queue(priv, txq->queue_no); 1631 1632 /* check for TC configuration change */ 1633 if (unlikely((status & tx_bump_tc) && 1634 (priv->tx_tc != SXGBE_MTL_SFMODE) && 1635 (priv->tx_tc < 512))) { 1636 /* step of TX TC is 32 till 128, otherwise 64 */ 1637 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64; 1638 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, 1639 txq->queue_no, priv->tx_tc); 1640 priv->xstats.tx_threshold = priv->tx_tc; 1641 } 1642 1643 return IRQ_HANDLED; 1644 } 1645 1646 /** 1647 * sxgbe_rx_interrupt - RX DMA ISR 1648 * @irq: interrupt number. 1649 * @dev_id: to pass the net device pointer. 1650 * Description: this is the rx dma interrupt service routine. 1651 */ 1652 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id) 1653 { 1654 int status; 1655 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id; 1656 struct sxgbe_priv_data *priv = rxq->priv_ptr; 1657 1658 /* get the channel status */ 1659 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no, 1660 &priv->xstats); 1661 1662 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) { 1663 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no); 1664 __napi_schedule(&priv->napi); 1665 } 1666 1667 /* check for TC configuration change */ 1668 if (unlikely((status & rx_bump_tc) && 1669 (priv->rx_tc != SXGBE_MTL_SFMODE) && 1670 (priv->rx_tc < 128))) { 1671 /* step of TC is 32 */ 1672 priv->rx_tc += 32; 1673 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, 1674 rxq->queue_no, priv->rx_tc); 1675 priv->xstats.rx_threshold = priv->rx_tc; 1676 } 1677 1678 return IRQ_HANDLED; 1679 } 1680 1681 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi) 1682 { 1683 u64 val = readl(ioaddr + reg_lo); 1684 1685 val |= ((u64)readl(ioaddr + reg_hi)) << 32; 1686 1687 return val; 1688 } 1689 1690 1691 /* sxgbe_get_stats64 - entry point to see statistical information of device 1692 * @dev : device pointer. 1693 * @stats : pointer to hold all the statistical information of device. 1694 * Description: 1695 * This function is a driver entry point whenever ifconfig command gets 1696 * executed to see device statistics. Statistics are number of 1697 * bytes sent or received, errors occured etc. 1698 * Return value: 1699 * This function returns various statistical information of device. 1700 */ 1701 static struct rtnl_link_stats64 *sxgbe_get_stats64(struct net_device *dev, 1702 struct rtnl_link_stats64 *stats) 1703 { 1704 struct sxgbe_priv_data *priv = netdev_priv(dev); 1705 void __iomem *ioaddr = priv->ioaddr; 1706 u64 count; 1707 1708 spin_lock(&priv->stats_lock); 1709 /* Freeze the counter registers before reading value otherwise it may 1710 * get updated by hardware while we are reading them 1711 */ 1712 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG); 1713 1714 stats->rx_bytes = sxgbe_get_stat64(ioaddr, 1715 SXGBE_MMC_RXOCTETLO_GCNT_REG, 1716 SXGBE_MMC_RXOCTETHI_GCNT_REG); 1717 1718 stats->rx_packets = sxgbe_get_stat64(ioaddr, 1719 SXGBE_MMC_RXFRAMELO_GBCNT_REG, 1720 SXGBE_MMC_RXFRAMEHI_GBCNT_REG); 1721 1722 stats->multicast = sxgbe_get_stat64(ioaddr, 1723 SXGBE_MMC_RXMULTILO_GCNT_REG, 1724 SXGBE_MMC_RXMULTIHI_GCNT_REG); 1725 1726 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr, 1727 SXGBE_MMC_RXCRCERRLO_REG, 1728 SXGBE_MMC_RXCRCERRHI_REG); 1729 1730 stats->rx_length_errors = sxgbe_get_stat64(ioaddr, 1731 SXGBE_MMC_RXLENERRLO_REG, 1732 SXGBE_MMC_RXLENERRHI_REG); 1733 1734 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr, 1735 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG, 1736 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG); 1737 1738 stats->tx_bytes = sxgbe_get_stat64(ioaddr, 1739 SXGBE_MMC_TXOCTETLO_GCNT_REG, 1740 SXGBE_MMC_TXOCTETHI_GCNT_REG); 1741 1742 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG, 1743 SXGBE_MMC_TXFRAMEHI_GBCNT_REG); 1744 1745 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG, 1746 SXGBE_MMC_TXFRAMEHI_GCNT_REG); 1747 stats->tx_errors = count - stats->tx_errors; 1748 stats->tx_packets = count; 1749 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG, 1750 SXGBE_MMC_TXUFLWHI_GBCNT_REG); 1751 writel(0, ioaddr + SXGBE_MMC_CTL_REG); 1752 spin_unlock(&priv->stats_lock); 1753 1754 return stats; 1755 } 1756 1757 /* sxgbe_set_features - entry point to set offload features of the device. 1758 * @dev : device pointer. 1759 * @features : features which are required to be set. 1760 * Description: 1761 * This function is a driver entry point and called by Linux kernel whenever 1762 * any device features are set or reset by user. 1763 * Return value: 1764 * This function returns 0 after setting or resetting device features. 1765 */ 1766 static int sxgbe_set_features(struct net_device *dev, 1767 netdev_features_t features) 1768 { 1769 struct sxgbe_priv_data *priv = netdev_priv(dev); 1770 netdev_features_t changed = dev->features ^ features; 1771 1772 if (changed & NETIF_F_RXCSUM) { 1773 if (features & NETIF_F_RXCSUM) { 1774 priv->hw->mac->enable_rx_csum(priv->ioaddr); 1775 priv->rxcsum_insertion = true; 1776 } else { 1777 priv->hw->mac->disable_rx_csum(priv->ioaddr); 1778 priv->rxcsum_insertion = false; 1779 } 1780 } 1781 1782 return 0; 1783 } 1784 1785 /* sxgbe_change_mtu - entry point to change MTU size for the device. 1786 * @dev : device pointer. 1787 * @new_mtu : the new MTU size for the device. 1788 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 1789 * to drive packet transmission. Ethernet has an MTU of 1500 octets 1790 * (ETH_DATA_LEN). This value can be changed with ifconfig. 1791 * Return value: 1792 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1793 * file on failure. 1794 */ 1795 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu) 1796 { 1797 /* RFC 791, page 25, "Every internet module must be able to forward 1798 * a datagram of 68 octets without further fragmentation." 1799 */ 1800 if (new_mtu < MIN_MTU || (new_mtu > MAX_MTU)) { 1801 netdev_err(dev, "invalid MTU, MTU should be in between %d and %d\n", 1802 MIN_MTU, MAX_MTU); 1803 return -EINVAL; 1804 } 1805 1806 /* Return if the buffer sizes will not change */ 1807 if (dev->mtu == new_mtu) 1808 return 0; 1809 1810 dev->mtu = new_mtu; 1811 1812 if (!netif_running(dev)) 1813 return 0; 1814 1815 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is 1816 * changed then reinitilisation of the receive ring buffers need to be 1817 * done. Hence bring interface down and bring interface back up 1818 */ 1819 sxgbe_release(dev); 1820 return sxgbe_open(dev); 1821 } 1822 1823 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr, 1824 unsigned int reg_n) 1825 { 1826 unsigned long data; 1827 1828 data = (addr[5] << 8) | addr[4]; 1829 /* For MAC Addr registers se have to set the Address Enable (AE) 1830 * bit that has no effect on the High Reg 0 where the bit 31 (MO) 1831 * is RO. 1832 */ 1833 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n)); 1834 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 1835 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n)); 1836 } 1837 1838 /** 1839 * sxgbe_set_rx_mode - entry point for setting different receive mode of 1840 * a device. unicast, multicast addressing 1841 * @dev : pointer to the device structure 1842 * Description: 1843 * This function is a driver entry point which gets called by the kernel 1844 * whenever different receive mode like unicast, multicast and promiscuous 1845 * must be enabled/disabled. 1846 * Return value: 1847 * void. 1848 */ 1849 static void sxgbe_set_rx_mode(struct net_device *dev) 1850 { 1851 struct sxgbe_priv_data *priv = netdev_priv(dev); 1852 void __iomem *ioaddr = (void __iomem *)priv->ioaddr; 1853 unsigned int value = 0; 1854 u32 mc_filter[2]; 1855 struct netdev_hw_addr *ha; 1856 int reg = 1; 1857 1858 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n", 1859 __func__, netdev_mc_count(dev), netdev_uc_count(dev)); 1860 1861 if (dev->flags & IFF_PROMISC) { 1862 value = SXGBE_FRAME_FILTER_PR; 1863 1864 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) || 1865 (dev->flags & IFF_ALLMULTI)) { 1866 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */ 1867 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH); 1868 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW); 1869 1870 } else if (!netdev_mc_empty(dev)) { 1871 /* Hash filter for multicast */ 1872 value = SXGBE_FRAME_FILTER_HMC; 1873 1874 memset(mc_filter, 0, sizeof(mc_filter)); 1875 netdev_for_each_mc_addr(ha, dev) { 1876 /* The upper 6 bits of the calculated CRC are used to 1877 * index the contens of the hash table 1878 */ 1879 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; 1880 1881 /* The most significant bit determines the register to 1882 * use (H/L) while the other 5 bits determine the bit 1883 * within the register. 1884 */ 1885 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 1886 } 1887 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW); 1888 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH); 1889 } 1890 1891 /* Handle multiple unicast addresses (perfect filtering) */ 1892 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES) 1893 /* Switch to promiscuous mode if more than 16 addrs 1894 * are required 1895 */ 1896 value |= SXGBE_FRAME_FILTER_PR; 1897 else { 1898 netdev_for_each_uc_addr(ha, dev) { 1899 sxgbe_set_umac_addr(ioaddr, ha->addr, reg); 1900 reg++; 1901 } 1902 } 1903 #ifdef FRAME_FILTER_DEBUG 1904 /* Enable Receive all mode (to debug filtering_fail errors) */ 1905 value |= SXGBE_FRAME_FILTER_RA; 1906 #endif 1907 writel(value, ioaddr + SXGBE_FRAME_FILTER); 1908 1909 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n", 1910 readl(ioaddr + SXGBE_FRAME_FILTER), 1911 readl(ioaddr + SXGBE_HASH_HIGH), 1912 readl(ioaddr + SXGBE_HASH_LOW)); 1913 } 1914 1915 #ifdef CONFIG_NET_POLL_CONTROLLER 1916 /** 1917 * sxgbe_poll_controller - entry point for polling receive by device 1918 * @dev : pointer to the device structure 1919 * Description: 1920 * This function is used by NETCONSOLE and other diagnostic tools 1921 * to allow network I/O with interrupts disabled. 1922 * Return value: 1923 * Void. 1924 */ 1925 static void sxgbe_poll_controller(struct net_device *dev) 1926 { 1927 struct sxgbe_priv_data *priv = netdev_priv(dev); 1928 1929 disable_irq(priv->irq); 1930 sxgbe_rx_interrupt(priv->irq, dev); 1931 enable_irq(priv->irq); 1932 } 1933 #endif 1934 1935 /* sxgbe_ioctl - Entry point for the Ioctl 1936 * @dev: Device pointer. 1937 * @rq: An IOCTL specefic structure, that can contain a pointer to 1938 * a proprietary structure used to pass information to the driver. 1939 * @cmd: IOCTL command 1940 * Description: 1941 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 1942 */ 1943 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1944 { 1945 struct sxgbe_priv_data *priv = netdev_priv(dev); 1946 int ret = -EOPNOTSUPP; 1947 1948 if (!netif_running(dev)) 1949 return -EINVAL; 1950 1951 switch (cmd) { 1952 case SIOCGMIIPHY: 1953 case SIOCGMIIREG: 1954 case SIOCSMIIREG: 1955 if (!priv->phydev) 1956 return -EINVAL; 1957 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 1958 break; 1959 default: 1960 break; 1961 } 1962 1963 return ret; 1964 } 1965 1966 static const struct net_device_ops sxgbe_netdev_ops = { 1967 .ndo_open = sxgbe_open, 1968 .ndo_start_xmit = sxgbe_xmit, 1969 .ndo_stop = sxgbe_release, 1970 .ndo_get_stats64 = sxgbe_get_stats64, 1971 .ndo_change_mtu = sxgbe_change_mtu, 1972 .ndo_set_features = sxgbe_set_features, 1973 .ndo_set_rx_mode = sxgbe_set_rx_mode, 1974 .ndo_tx_timeout = sxgbe_tx_timeout, 1975 .ndo_do_ioctl = sxgbe_ioctl, 1976 #ifdef CONFIG_NET_POLL_CONTROLLER 1977 .ndo_poll_controller = sxgbe_poll_controller, 1978 #endif 1979 .ndo_set_mac_address = eth_mac_addr, 1980 }; 1981 1982 /* Get the hardware ops */ 1983 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr) 1984 { 1985 ops_ptr->mac = sxgbe_get_core_ops(); 1986 ops_ptr->desc = sxgbe_get_desc_ops(); 1987 ops_ptr->dma = sxgbe_get_dma_ops(); 1988 ops_ptr->mtl = sxgbe_get_mtl_ops(); 1989 1990 /* set the MDIO communication Address/Data regisers */ 1991 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG; 1992 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG; 1993 1994 /* Assigning the default link settings 1995 * no SXGBE defined default values to be set in registers, 1996 * so assigning as 0 for port and duplex 1997 */ 1998 ops_ptr->link.port = 0; 1999 ops_ptr->link.duplex = 0; 2000 ops_ptr->link.speed = SXGBE_SPEED_10G; 2001 } 2002 2003 /** 2004 * sxgbe_hw_init - Init the GMAC device 2005 * @priv: driver private structure 2006 * Description: this function checks the HW capability 2007 * (if supported) and sets the driver's features. 2008 */ 2009 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv) 2010 { 2011 u32 ctrl_ids; 2012 2013 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL); 2014 if(!priv->hw) 2015 return -ENOMEM; 2016 2017 /* get the hardware ops */ 2018 sxgbe_get_ops(priv->hw); 2019 2020 /* get the controller id */ 2021 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr); 2022 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16; 2023 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff); 2024 pr_info("user ID: 0x%x, Controller ID: 0x%x\n", 2025 priv->hw->ctrl_uid, priv->hw->ctrl_id); 2026 2027 /* get the H/W features */ 2028 if (!sxgbe_get_hw_features(priv)) 2029 pr_info("Hardware features not found\n"); 2030 2031 if (priv->hw_cap.tx_csum_offload) 2032 pr_info("TX Checksum offload supported\n"); 2033 2034 if (priv->hw_cap.rx_csum_offload) 2035 pr_info("RX Checksum offload supported\n"); 2036 2037 return 0; 2038 } 2039 2040 static int sxgbe_sw_reset(void __iomem *addr) 2041 { 2042 int retry_count = 10; 2043 2044 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG); 2045 while (retry_count--) { 2046 if (!(readl(addr + SXGBE_DMA_MODE_REG) & 2047 SXGBE_DMA_SOFT_RESET)) 2048 break; 2049 mdelay(10); 2050 } 2051 2052 if (retry_count < 0) 2053 return -EBUSY; 2054 2055 return 0; 2056 } 2057 2058 /** 2059 * sxgbe_drv_probe 2060 * @device: device pointer 2061 * @plat_dat: platform data pointer 2062 * @addr: iobase memory address 2063 * Description: this is the main probe function used to 2064 * call the alloc_etherdev, allocate the priv structure. 2065 */ 2066 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device, 2067 struct sxgbe_plat_data *plat_dat, 2068 void __iomem *addr) 2069 { 2070 struct sxgbe_priv_data *priv; 2071 struct net_device *ndev; 2072 int ret; 2073 u8 queue_num; 2074 2075 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data), 2076 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES); 2077 if (!ndev) 2078 return NULL; 2079 2080 SET_NETDEV_DEV(ndev, device); 2081 2082 priv = netdev_priv(ndev); 2083 priv->device = device; 2084 priv->dev = ndev; 2085 2086 sxgbe_set_ethtool_ops(ndev); 2087 priv->plat = plat_dat; 2088 priv->ioaddr = addr; 2089 2090 ret = sxgbe_sw_reset(priv->ioaddr); 2091 if (ret) 2092 goto error_free_netdev; 2093 2094 /* Verify driver arguments */ 2095 sxgbe_verify_args(); 2096 2097 /* Init MAC and get the capabilities */ 2098 ret = sxgbe_hw_init(priv); 2099 if (ret) 2100 goto error_free_netdev; 2101 2102 /* allocate memory resources for Descriptor rings */ 2103 ret = txring_mem_alloc(priv); 2104 if (ret) 2105 goto error_free_hw; 2106 2107 ret = rxring_mem_alloc(priv); 2108 if (ret) 2109 goto error_free_hw; 2110 2111 ndev->netdev_ops = &sxgbe_netdev_ops; 2112 2113 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2114 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 | 2115 NETIF_F_GRO; 2116 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2117 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO); 2118 2119 /* assign filtering support */ 2120 ndev->priv_flags |= IFF_UNICAST_FLT; 2121 2122 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2123 2124 /* Enable TCP segmentation offload for all DMA channels */ 2125 if (priv->hw_cap.tcpseg_offload) { 2126 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 2127 priv->hw->dma->enable_tso(priv->ioaddr, queue_num); 2128 } 2129 } 2130 2131 /* Enable Rx checksum offload */ 2132 if (priv->hw_cap.rx_csum_offload) { 2133 priv->hw->mac->enable_rx_csum(priv->ioaddr); 2134 priv->rxcsum_insertion = true; 2135 } 2136 2137 /* Initialise pause frame settings */ 2138 priv->rx_pause = 1; 2139 priv->tx_pause = 1; 2140 2141 /* Rx Watchdog is available, enable depend on platform data */ 2142 if (!priv->plat->riwt_off) { 2143 priv->use_riwt = 1; 2144 pr_info("Enable RX Mitigation via HW Watchdog Timer\n"); 2145 } 2146 2147 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64); 2148 2149 spin_lock_init(&priv->stats_lock); 2150 2151 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME); 2152 if (IS_ERR(priv->sxgbe_clk)) { 2153 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n", 2154 __func__); 2155 goto error_napi_del; 2156 } 2157 2158 /* If a specific clk_csr value is passed from the platform 2159 * this means that the CSR Clock Range selection cannot be 2160 * changed at run-time and it is fixed. Viceversa the driver'll try to 2161 * set the MDC clock dynamically according to the csr actual 2162 * clock input. 2163 */ 2164 if (!priv->plat->clk_csr) 2165 sxgbe_clk_csr_set(priv); 2166 else 2167 priv->clk_csr = priv->plat->clk_csr; 2168 2169 /* MDIO bus Registration */ 2170 ret = sxgbe_mdio_register(ndev); 2171 if (ret < 0) { 2172 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n", 2173 __func__, priv->plat->bus_id); 2174 goto error_clk_put; 2175 } 2176 2177 ret = register_netdev(ndev); 2178 if (ret) { 2179 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2180 goto error_mdio_unregister; 2181 } 2182 2183 sxgbe_check_ether_addr(priv); 2184 2185 return priv; 2186 2187 error_mdio_unregister: 2188 sxgbe_mdio_unregister(ndev); 2189 error_clk_put: 2190 clk_put(priv->sxgbe_clk); 2191 error_napi_del: 2192 netif_napi_del(&priv->napi); 2193 error_free_hw: 2194 kfree(priv->hw); 2195 error_free_netdev: 2196 free_netdev(ndev); 2197 2198 return NULL; 2199 } 2200 2201 /** 2202 * sxgbe_drv_remove 2203 * @ndev: net device pointer 2204 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2205 * changes the link status, releases the DMA descriptor rings. 2206 */ 2207 int sxgbe_drv_remove(struct net_device *ndev) 2208 { 2209 struct sxgbe_priv_data *priv = netdev_priv(ndev); 2210 u8 queue_num; 2211 2212 netdev_info(ndev, "%s: removing driver\n", __func__); 2213 2214 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 2215 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num); 2216 } 2217 2218 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 2219 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 2220 2221 priv->hw->mac->enable_tx(priv->ioaddr, false); 2222 priv->hw->mac->enable_rx(priv->ioaddr, false); 2223 2224 unregister_netdev(ndev); 2225 2226 sxgbe_mdio_unregister(ndev); 2227 2228 clk_put(priv->sxgbe_clk); 2229 2230 netif_napi_del(&priv->napi); 2231 2232 kfree(priv->hw); 2233 2234 free_netdev(ndev); 2235 2236 return 0; 2237 } 2238 2239 #ifdef CONFIG_PM 2240 int sxgbe_suspend(struct net_device *ndev) 2241 { 2242 return 0; 2243 } 2244 2245 int sxgbe_resume(struct net_device *ndev) 2246 { 2247 return 0; 2248 } 2249 2250 int sxgbe_freeze(struct net_device *ndev) 2251 { 2252 return -ENOSYS; 2253 } 2254 2255 int sxgbe_restore(struct net_device *ndev) 2256 { 2257 return -ENOSYS; 2258 } 2259 #endif /* CONFIG_PM */ 2260 2261 /* Driver is configured as Platform driver */ 2262 static int __init sxgbe_init(void) 2263 { 2264 int ret; 2265 2266 ret = sxgbe_register_platform(); 2267 if (ret) 2268 goto err; 2269 return 0; 2270 err: 2271 pr_err("driver registration failed\n"); 2272 return ret; 2273 } 2274 2275 static void __exit sxgbe_exit(void) 2276 { 2277 sxgbe_unregister_platform(); 2278 } 2279 2280 module_init(sxgbe_init); 2281 module_exit(sxgbe_exit); 2282 2283 #ifndef MODULE 2284 static int __init sxgbe_cmdline_opt(char *str) 2285 { 2286 char *opt; 2287 2288 if (!str || !*str) 2289 return -EINVAL; 2290 while ((opt = strsep(&str, ",")) != NULL) { 2291 if (!strncmp(opt, "eee_timer:", 6)) { 2292 if (kstrtoint(opt + 10, 0, &eee_timer)) 2293 goto err; 2294 } 2295 } 2296 return 0; 2297 2298 err: 2299 pr_err("%s: ERROR broken module parameter conversion\n", __func__); 2300 return -EINVAL; 2301 } 2302 2303 __setup("sxgbeeth=", sxgbe_cmdline_opt); 2304 #endif /* MODULE */ 2305 2306 2307 2308 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver"); 2309 2310 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 2311 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value"); 2312 2313 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>"); 2314 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>"); 2315 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>"); 2316 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>"); 2317 2318 MODULE_LICENSE("GPL"); 2319