1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 10G controller driver for Samsung SoCs 3 * 4 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com 6 * 7 * Author: Siva Reddy Kallam <siva.kallam@samsung.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/clk.h> 13 #include <linux/crc32.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/if.h> 18 #include <linux/if_ether.h> 19 #include <linux/if_vlan.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/ip.h> 23 #include <linux/kernel.h> 24 #include <linux/mii.h> 25 #include <linux/module.h> 26 #include <linux/net_tstamp.h> 27 #include <linux/netdevice.h> 28 #include <linux/phy.h> 29 #include <linux/platform_device.h> 30 #include <linux/prefetch.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/tcp.h> 34 #include <linux/sxgbe_platform.h> 35 36 #include "sxgbe_common.h" 37 #include "sxgbe_desc.h" 38 #include "sxgbe_dma.h" 39 #include "sxgbe_mtl.h" 40 #include "sxgbe_reg.h" 41 42 #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x) 43 #define JUMBO_LEN 9000 44 45 /* Module parameters */ 46 #define TX_TIMEO 5000 47 #define DMA_TX_SIZE 512 48 #define DMA_RX_SIZE 1024 49 #define TC_DEFAULT 64 50 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB 51 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */ 52 #define SXGBE_DEFAULT_LPI_TIMER 1000 53 54 static int debug = -1; 55 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER; 56 57 module_param(eee_timer, int, 0644); 58 59 module_param(debug, int, 0644); 60 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 61 NETIF_MSG_LINK | NETIF_MSG_IFUP | 62 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 63 64 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id); 65 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id); 66 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id); 67 68 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 69 70 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) 71 72 /** 73 * sxgbe_verify_args - verify the driver parameters. 74 * Description: it verifies if some wrong parameter is passed to the driver. 75 * Note that wrong parameters are replaced with the default values. 76 */ 77 static void sxgbe_verify_args(void) 78 { 79 if (unlikely(eee_timer < 0)) 80 eee_timer = SXGBE_DEFAULT_LPI_TIMER; 81 } 82 83 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv) 84 { 85 /* Check and enter in LPI mode */ 86 if (!priv->tx_path_in_lpi_mode) 87 priv->hw->mac->set_eee_mode(priv->ioaddr); 88 } 89 90 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv) 91 { 92 /* Exit and disable EEE in case of we are are in LPI state. */ 93 priv->hw->mac->reset_eee_mode(priv->ioaddr); 94 del_timer_sync(&priv->eee_ctrl_timer); 95 priv->tx_path_in_lpi_mode = false; 96 } 97 98 /** 99 * sxgbe_eee_ctrl_timer 100 * @t: timer list containing a data 101 * Description: 102 * If there is no data transfer and if we are not in LPI state, 103 * then MAC Transmitter can be moved to LPI state. 104 */ 105 static void sxgbe_eee_ctrl_timer(struct timer_list *t) 106 { 107 struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer); 108 109 sxgbe_enable_eee_mode(priv); 110 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 111 } 112 113 /** 114 * sxgbe_eee_init 115 * @priv: private device pointer 116 * Description: 117 * If the EEE support has been enabled while configuring the driver, 118 * if the GMAC actually supports the EEE (from the HW cap reg) and the 119 * phy can also manage EEE, so enable the LPI state and start the timer 120 * to verify if the tx path can enter in LPI state. 121 */ 122 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv) 123 { 124 struct net_device *ndev = priv->dev; 125 bool ret = false; 126 127 /* MAC core supports the EEE feature. */ 128 if (priv->hw_cap.eee) { 129 /* Check if the PHY supports EEE */ 130 if (phy_init_eee(ndev->phydev, 1)) 131 return false; 132 133 priv->eee_active = 1; 134 timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0); 135 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer); 136 add_timer(&priv->eee_ctrl_timer); 137 138 priv->hw->mac->set_eee_timer(priv->ioaddr, 139 SXGBE_DEFAULT_LPI_TIMER, 140 priv->tx_lpi_timer); 141 142 pr_info("Energy-Efficient Ethernet initialized\n"); 143 144 ret = true; 145 } 146 147 return ret; 148 } 149 150 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv) 151 { 152 struct net_device *ndev = priv->dev; 153 154 /* When the EEE has been already initialised we have to 155 * modify the PLS bit in the LPI ctrl & status reg according 156 * to the PHY link status. For this reason. 157 */ 158 if (priv->eee_enabled) 159 priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link); 160 } 161 162 /** 163 * sxgbe_clk_csr_set - dynamically set the MDC clock 164 * @priv: driver private structure 165 * Description: this is to dynamically set the MDC clock according to the csr 166 * clock input. 167 */ 168 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv) 169 { 170 u32 clk_rate = clk_get_rate(priv->sxgbe_clk); 171 172 /* assign the proper divider, this will be used during 173 * mdio communication 174 */ 175 if (clk_rate < SXGBE_CSR_F_150M) 176 priv->clk_csr = SXGBE_CSR_100_150M; 177 else if (clk_rate <= SXGBE_CSR_F_250M) 178 priv->clk_csr = SXGBE_CSR_150_250M; 179 else if (clk_rate <= SXGBE_CSR_F_300M) 180 priv->clk_csr = SXGBE_CSR_250_300M; 181 else if (clk_rate <= SXGBE_CSR_F_350M) 182 priv->clk_csr = SXGBE_CSR_300_350M; 183 else if (clk_rate <= SXGBE_CSR_F_400M) 184 priv->clk_csr = SXGBE_CSR_350_400M; 185 else if (clk_rate <= SXGBE_CSR_F_500M) 186 priv->clk_csr = SXGBE_CSR_400_500M; 187 } 188 189 /* minimum number of free TX descriptors required to wake up TX process */ 190 #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4) 191 192 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize) 193 { 194 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1; 195 } 196 197 /** 198 * sxgbe_adjust_link 199 * @dev: net device structure 200 * Description: it adjusts the link parameters. 201 */ 202 static void sxgbe_adjust_link(struct net_device *dev) 203 { 204 struct sxgbe_priv_data *priv = netdev_priv(dev); 205 struct phy_device *phydev = dev->phydev; 206 u8 new_state = 0; 207 u8 speed = 0xff; 208 209 if (!phydev) 210 return; 211 212 /* SXGBE is not supporting auto-negotiation and 213 * half duplex mode. so, not handling duplex change 214 * in this function. only handling speed and link status 215 */ 216 if (phydev->link) { 217 if (phydev->speed != priv->speed) { 218 new_state = 1; 219 switch (phydev->speed) { 220 case SPEED_10000: 221 speed = SXGBE_SPEED_10G; 222 break; 223 case SPEED_2500: 224 speed = SXGBE_SPEED_2_5G; 225 break; 226 case SPEED_1000: 227 speed = SXGBE_SPEED_1G; 228 break; 229 default: 230 netif_err(priv, link, dev, 231 "Speed (%d) not supported\n", 232 phydev->speed); 233 } 234 235 priv->speed = phydev->speed; 236 priv->hw->mac->set_speed(priv->ioaddr, speed); 237 } 238 239 if (!priv->oldlink) { 240 new_state = 1; 241 priv->oldlink = 1; 242 } 243 } else if (priv->oldlink) { 244 new_state = 1; 245 priv->oldlink = 0; 246 priv->speed = SPEED_UNKNOWN; 247 } 248 249 if (new_state & netif_msg_link(priv)) 250 phy_print_status(phydev); 251 252 /* Alter the MAC settings for EEE */ 253 sxgbe_eee_adjust(priv); 254 } 255 256 /** 257 * sxgbe_init_phy - PHY initialization 258 * @ndev: net device structure 259 * Description: it initializes the driver's PHY state, and attaches the PHY 260 * to the mac driver. 261 * Return value: 262 * 0 on success 263 */ 264 static int sxgbe_init_phy(struct net_device *ndev) 265 { 266 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 267 char bus_id[MII_BUS_ID_SIZE]; 268 struct phy_device *phydev; 269 struct sxgbe_priv_data *priv = netdev_priv(ndev); 270 int phy_iface = priv->plat->interface; 271 272 /* assign default link status */ 273 priv->oldlink = 0; 274 priv->speed = SPEED_UNKNOWN; 275 priv->oldduplex = DUPLEX_UNKNOWN; 276 277 if (priv->plat->phy_bus_name) 278 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 279 priv->plat->phy_bus_name, priv->plat->bus_id); 280 else 281 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x", 282 priv->plat->bus_id); 283 284 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 285 priv->plat->phy_addr); 286 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt); 287 288 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface); 289 290 if (IS_ERR(phydev)) { 291 netdev_err(ndev, "Could not attach to PHY\n"); 292 return PTR_ERR(phydev); 293 } 294 295 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 296 if ((phy_iface == PHY_INTERFACE_MODE_MII) || 297 (phy_iface == PHY_INTERFACE_MODE_RMII)) 298 phy_set_max_speed(phydev, SPEED_1000); 299 300 if (phydev->phy_id == 0) { 301 phy_disconnect(phydev); 302 return -ENODEV; 303 } 304 305 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n", 306 __func__, phydev->phy_id, phydev->link); 307 308 return 0; 309 } 310 311 /** 312 * sxgbe_clear_descriptors: clear descriptors 313 * @priv: driver private structure 314 * Description: this function is called to clear the tx and rx descriptors 315 * in case of both basic and extended descriptors are used. 316 */ 317 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv) 318 { 319 int i, j; 320 unsigned int txsize = priv->dma_tx_size; 321 unsigned int rxsize = priv->dma_rx_size; 322 323 /* Clear the Rx/Tx descriptors */ 324 for (j = 0; j < SXGBE_RX_QUEUES; j++) { 325 for (i = 0; i < rxsize; i++) 326 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i], 327 priv->use_riwt, priv->mode, 328 (i == rxsize - 1)); 329 } 330 331 for (j = 0; j < SXGBE_TX_QUEUES; j++) { 332 for (i = 0; i < txsize; i++) 333 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]); 334 } 335 } 336 337 static int sxgbe_init_rx_buffers(struct net_device *dev, 338 struct sxgbe_rx_norm_desc *p, int i, 339 unsigned int dma_buf_sz, 340 struct sxgbe_rx_queue *rx_ring) 341 { 342 struct sxgbe_priv_data *priv = netdev_priv(dev); 343 struct sk_buff *skb; 344 345 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL); 346 if (!skb) 347 return -ENOMEM; 348 349 rx_ring->rx_skbuff[i] = skb; 350 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 351 dma_buf_sz, DMA_FROM_DEVICE); 352 353 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) { 354 netdev_err(dev, "%s: DMA mapping error\n", __func__); 355 dev_kfree_skb_any(skb); 356 return -EINVAL; 357 } 358 359 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i]; 360 361 return 0; 362 } 363 364 /** 365 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated 366 * @dev: net device structure 367 * @p: dec pointer 368 * @i: index 369 * @dma_buf_sz: size 370 * @rx_ring: ring to be freed 371 * 372 * Description: this function initializes the DMA RX descriptor 373 */ 374 static void sxgbe_free_rx_buffers(struct net_device *dev, 375 struct sxgbe_rx_norm_desc *p, int i, 376 unsigned int dma_buf_sz, 377 struct sxgbe_rx_queue *rx_ring) 378 { 379 struct sxgbe_priv_data *priv = netdev_priv(dev); 380 381 kfree_skb(rx_ring->rx_skbuff[i]); 382 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i], 383 dma_buf_sz, DMA_FROM_DEVICE); 384 } 385 386 /** 387 * init_tx_ring - init the TX descriptor ring 388 * @dev: net device structure 389 * @queue_no: queue 390 * @tx_ring: ring to be initialised 391 * @tx_rsize: ring size 392 * Description: this function initializes the DMA TX descriptor 393 */ 394 static int init_tx_ring(struct device *dev, u8 queue_no, 395 struct sxgbe_tx_queue *tx_ring, int tx_rsize) 396 { 397 /* TX ring is not allcoated */ 398 if (!tx_ring) { 399 dev_err(dev, "No memory for TX queue of SXGBE\n"); 400 return -ENOMEM; 401 } 402 403 /* allocate memory for TX descriptors */ 404 tx_ring->dma_tx = dma_alloc_coherent(dev, 405 tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 406 &tx_ring->dma_tx_phy, GFP_KERNEL); 407 if (!tx_ring->dma_tx) 408 return -ENOMEM; 409 410 /* allocate memory for TX skbuff array */ 411 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize, 412 sizeof(dma_addr_t), GFP_KERNEL); 413 if (!tx_ring->tx_skbuff_dma) 414 goto dmamem_err; 415 416 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize, 417 sizeof(struct sk_buff *), GFP_KERNEL); 418 419 if (!tx_ring->tx_skbuff) 420 goto dmamem_err; 421 422 /* assign queue number */ 423 tx_ring->queue_no = queue_no; 424 425 /* initialise counters */ 426 tx_ring->dirty_tx = 0; 427 tx_ring->cur_tx = 0; 428 429 return 0; 430 431 dmamem_err: 432 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 433 tx_ring->dma_tx, tx_ring->dma_tx_phy); 434 return -ENOMEM; 435 } 436 437 /** 438 * free_rx_ring - free the RX descriptor ring 439 * @dev: net device structure 440 * @rx_ring: ring to be initialised 441 * @rx_rsize: ring size 442 * Description: this function initializes the DMA RX descriptor 443 */ 444 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring, 445 int rx_rsize) 446 { 447 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 448 rx_ring->dma_rx, rx_ring->dma_rx_phy); 449 kfree(rx_ring->rx_skbuff_dma); 450 kfree(rx_ring->rx_skbuff); 451 } 452 453 /** 454 * init_rx_ring - init the RX descriptor ring 455 * @dev: net device structure 456 * @queue_no: queue 457 * @rx_ring: ring to be initialised 458 * @rx_rsize: ring size 459 * Description: this function initializes the DMA RX descriptor 460 */ 461 static int init_rx_ring(struct net_device *dev, u8 queue_no, 462 struct sxgbe_rx_queue *rx_ring, int rx_rsize) 463 { 464 struct sxgbe_priv_data *priv = netdev_priv(dev); 465 int desc_index; 466 unsigned int bfsize = 0; 467 unsigned int ret = 0; 468 469 /* Set the max buffer size according to the MTU. */ 470 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); 471 472 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize); 473 474 /* RX ring is not allcoated */ 475 if (rx_ring == NULL) { 476 netdev_err(dev, "No memory for RX queue\n"); 477 return -ENOMEM; 478 } 479 480 /* assign queue number */ 481 rx_ring->queue_no = queue_no; 482 483 /* allocate memory for RX descriptors */ 484 rx_ring->dma_rx = dma_alloc_coherent(priv->device, 485 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 486 &rx_ring->dma_rx_phy, GFP_KERNEL); 487 488 if (rx_ring->dma_rx == NULL) 489 return -ENOMEM; 490 491 /* allocate memory for RX skbuff array */ 492 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize, 493 sizeof(dma_addr_t), GFP_KERNEL); 494 if (!rx_ring->rx_skbuff_dma) { 495 ret = -ENOMEM; 496 goto err_free_dma_rx; 497 } 498 499 rx_ring->rx_skbuff = kmalloc_array(rx_rsize, 500 sizeof(struct sk_buff *), GFP_KERNEL); 501 if (!rx_ring->rx_skbuff) { 502 ret = -ENOMEM; 503 goto err_free_skbuff_dma; 504 } 505 506 /* initialise the buffers */ 507 for (desc_index = 0; desc_index < rx_rsize; desc_index++) { 508 struct sxgbe_rx_norm_desc *p; 509 p = rx_ring->dma_rx + desc_index; 510 ret = sxgbe_init_rx_buffers(dev, p, desc_index, 511 bfsize, rx_ring); 512 if (ret) 513 goto err_free_rx_buffers; 514 } 515 516 /* initialise counters */ 517 rx_ring->cur_rx = 0; 518 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize); 519 priv->dma_buf_sz = bfsize; 520 521 return 0; 522 523 err_free_rx_buffers: 524 while (--desc_index >= 0) { 525 struct sxgbe_rx_norm_desc *p; 526 527 p = rx_ring->dma_rx + desc_index; 528 sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring); 529 } 530 kfree(rx_ring->rx_skbuff); 531 err_free_skbuff_dma: 532 kfree(rx_ring->rx_skbuff_dma); 533 err_free_dma_rx: 534 dma_free_coherent(priv->device, 535 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 536 rx_ring->dma_rx, rx_ring->dma_rx_phy); 537 538 return ret; 539 } 540 /** 541 * free_tx_ring - free the TX descriptor ring 542 * @dev: net device structure 543 * @tx_ring: ring to be initialised 544 * @tx_rsize: ring size 545 * Description: this function initializes the DMA TX descriptor 546 */ 547 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring, 548 int tx_rsize) 549 { 550 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 551 tx_ring->dma_tx, tx_ring->dma_tx_phy); 552 } 553 554 /** 555 * init_dma_desc_rings - init the RX/TX descriptor rings 556 * @netd: net device structure 557 * Description: this function initializes the DMA RX/TX descriptors 558 * and allocates the socket buffers. It suppors the chained and ring 559 * modes. 560 */ 561 static int init_dma_desc_rings(struct net_device *netd) 562 { 563 int queue_num, ret; 564 struct sxgbe_priv_data *priv = netdev_priv(netd); 565 int tx_rsize = priv->dma_tx_size; 566 int rx_rsize = priv->dma_rx_size; 567 568 /* Allocate memory for queue structures and TX descs */ 569 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 570 ret = init_tx_ring(priv->device, queue_num, 571 priv->txq[queue_num], tx_rsize); 572 if (ret) { 573 dev_err(&netd->dev, "TX DMA ring allocation failed!\n"); 574 goto txalloc_err; 575 } 576 577 /* save private pointer in each ring this 578 * pointer is needed during cleaing TX queue 579 */ 580 priv->txq[queue_num]->priv_ptr = priv; 581 } 582 583 /* Allocate memory for queue structures and RX descs */ 584 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 585 ret = init_rx_ring(netd, queue_num, 586 priv->rxq[queue_num], rx_rsize); 587 if (ret) { 588 netdev_err(netd, "RX DMA ring allocation failed!!\n"); 589 goto rxalloc_err; 590 } 591 592 /* save private pointer in each ring this 593 * pointer is needed during cleaing TX queue 594 */ 595 priv->rxq[queue_num]->priv_ptr = priv; 596 } 597 598 sxgbe_clear_descriptors(priv); 599 600 return 0; 601 602 txalloc_err: 603 while (queue_num--) 604 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 605 return ret; 606 607 rxalloc_err: 608 while (queue_num--) 609 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 610 return ret; 611 } 612 613 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue) 614 { 615 int dma_desc; 616 struct sxgbe_priv_data *priv = txqueue->priv_ptr; 617 int tx_rsize = priv->dma_tx_size; 618 619 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) { 620 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc; 621 622 if (txqueue->tx_skbuff_dma[dma_desc]) 623 dma_unmap_single(priv->device, 624 txqueue->tx_skbuff_dma[dma_desc], 625 priv->hw->desc->get_tx_len(tdesc), 626 DMA_TO_DEVICE); 627 628 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]); 629 txqueue->tx_skbuff[dma_desc] = NULL; 630 txqueue->tx_skbuff_dma[dma_desc] = 0; 631 } 632 } 633 634 635 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv) 636 { 637 int queue_num; 638 639 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 640 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 641 tx_free_ring_skbufs(tqueue); 642 } 643 } 644 645 static void free_dma_desc_resources(struct sxgbe_priv_data *priv) 646 { 647 int queue_num; 648 int tx_rsize = priv->dma_tx_size; 649 int rx_rsize = priv->dma_rx_size; 650 651 /* Release the DMA TX buffers */ 652 dma_free_tx_skbufs(priv); 653 654 /* Release the TX ring memory also */ 655 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 656 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 657 } 658 659 /* Release the RX ring memory also */ 660 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 661 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 662 } 663 } 664 665 static int txring_mem_alloc(struct sxgbe_priv_data *priv) 666 { 667 int queue_num; 668 669 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 670 priv->txq[queue_num] = devm_kmalloc(priv->device, 671 sizeof(struct sxgbe_tx_queue), GFP_KERNEL); 672 if (!priv->txq[queue_num]) 673 return -ENOMEM; 674 } 675 676 return 0; 677 } 678 679 static int rxring_mem_alloc(struct sxgbe_priv_data *priv) 680 { 681 int queue_num; 682 683 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 684 priv->rxq[queue_num] = devm_kmalloc(priv->device, 685 sizeof(struct sxgbe_rx_queue), GFP_KERNEL); 686 if (!priv->rxq[queue_num]) 687 return -ENOMEM; 688 } 689 690 return 0; 691 } 692 693 /** 694 * sxgbe_mtl_operation_mode - HW MTL operation mode 695 * @priv: driver private structure 696 * Description: it sets the MTL operation mode: tx/rx MTL thresholds 697 * or Store-And-Forward capability. 698 */ 699 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv) 700 { 701 int queue_num; 702 703 /* TX/RX threshold control */ 704 if (likely(priv->plat->force_sf_dma_mode)) { 705 /* set TC mode for TX QUEUES */ 706 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 707 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 708 SXGBE_MTL_SFMODE); 709 priv->tx_tc = SXGBE_MTL_SFMODE; 710 711 /* set TC mode for RX QUEUES */ 712 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 713 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 714 SXGBE_MTL_SFMODE); 715 priv->rx_tc = SXGBE_MTL_SFMODE; 716 } else if (unlikely(priv->plat->force_thresh_dma_mode)) { 717 /* set TC mode for TX QUEUES */ 718 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 719 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 720 priv->tx_tc); 721 /* set TC mode for RX QUEUES */ 722 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 723 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 724 priv->rx_tc); 725 } else { 726 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__); 727 } 728 } 729 730 /** 731 * sxgbe_tx_queue_clean: 732 * @tqueue: queue pointer 733 * Description: it reclaims resources after transmission completes. 734 */ 735 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue) 736 { 737 struct sxgbe_priv_data *priv = tqueue->priv_ptr; 738 unsigned int tx_rsize = priv->dma_tx_size; 739 struct netdev_queue *dev_txq; 740 u8 queue_no = tqueue->queue_no; 741 742 dev_txq = netdev_get_tx_queue(priv->dev, queue_no); 743 744 __netif_tx_lock(dev_txq, smp_processor_id()); 745 746 priv->xstats.tx_clean++; 747 while (tqueue->dirty_tx != tqueue->cur_tx) { 748 unsigned int entry = tqueue->dirty_tx % tx_rsize; 749 struct sk_buff *skb = tqueue->tx_skbuff[entry]; 750 struct sxgbe_tx_norm_desc *p; 751 752 p = tqueue->dma_tx + entry; 753 754 /* Check if the descriptor is owned by the DMA. */ 755 if (priv->hw->desc->get_tx_owner(p)) 756 break; 757 758 if (netif_msg_tx_done(priv)) 759 pr_debug("%s: curr %d, dirty %d\n", 760 __func__, tqueue->cur_tx, tqueue->dirty_tx); 761 762 if (likely(tqueue->tx_skbuff_dma[entry])) { 763 dma_unmap_single(priv->device, 764 tqueue->tx_skbuff_dma[entry], 765 priv->hw->desc->get_tx_len(p), 766 DMA_TO_DEVICE); 767 tqueue->tx_skbuff_dma[entry] = 0; 768 } 769 770 if (likely(skb)) { 771 dev_kfree_skb(skb); 772 tqueue->tx_skbuff[entry] = NULL; 773 } 774 775 priv->hw->desc->release_tx_desc(p); 776 777 tqueue->dirty_tx++; 778 } 779 780 /* wake up queue */ 781 if (unlikely(netif_tx_queue_stopped(dev_txq) && 782 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) { 783 if (netif_msg_tx_done(priv)) 784 pr_debug("%s: restart transmit\n", __func__); 785 netif_tx_wake_queue(dev_txq); 786 } 787 788 __netif_tx_unlock(dev_txq); 789 } 790 791 /** 792 * sxgbe_tx_clean: 793 * @priv: driver private structure 794 * Description: it reclaims resources after transmission completes. 795 */ 796 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv) 797 { 798 u8 queue_num; 799 800 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 801 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 802 803 sxgbe_tx_queue_clean(tqueue); 804 } 805 806 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 807 sxgbe_enable_eee_mode(priv); 808 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 809 } 810 } 811 812 /** 813 * sxgbe_restart_tx_queue: irq tx error mng function 814 * @priv: driver private structure 815 * @queue_num: queue number 816 * Description: it cleans the descriptors and restarts the transmission 817 * in case of errors. 818 */ 819 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num) 820 { 821 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num]; 822 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev, 823 queue_num); 824 825 /* stop the queue */ 826 netif_tx_stop_queue(dev_txq); 827 828 /* stop the tx dma */ 829 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num); 830 831 /* free the skbuffs of the ring */ 832 tx_free_ring_skbufs(tx_ring); 833 834 /* initialise counters */ 835 tx_ring->cur_tx = 0; 836 tx_ring->dirty_tx = 0; 837 838 /* start the tx dma */ 839 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num); 840 841 priv->dev->stats.tx_errors++; 842 843 /* wakeup the queue */ 844 netif_tx_wake_queue(dev_txq); 845 } 846 847 /** 848 * sxgbe_reset_all_tx_queues: irq tx error mng function 849 * @priv: driver private structure 850 * Description: it cleans all the descriptors and 851 * restarts the transmission on all queues in case of errors. 852 */ 853 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv) 854 { 855 int queue_num; 856 857 /* On TX timeout of net device, resetting of all queues 858 * may not be proper way, revisit this later if needed 859 */ 860 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 861 sxgbe_restart_tx_queue(priv, queue_num); 862 } 863 864 /** 865 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register. 866 * @priv: driver private structure 867 * Description: 868 * new GMAC chip generations have a new register to indicate the 869 * presence of the optional feature/functions. 870 * This can be also used to override the value passed through the 871 * platform and necessary for old MAC10/100 and GMAC chips. 872 */ 873 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv) 874 { 875 int rval = 0; 876 struct sxgbe_hw_features *features = &priv->hw_cap; 877 878 /* Read First Capability Register CAP[0] */ 879 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0); 880 if (rval) { 881 features->pmt_remote_wake_up = 882 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval); 883 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval); 884 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval); 885 features->tx_csum_offload = 886 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval); 887 features->rx_csum_offload = 888 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval); 889 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval); 890 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval); 891 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval); 892 features->eee = SXGBE_HW_FEAT_EEE(rval); 893 } 894 895 /* Read First Capability Register CAP[1] */ 896 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1); 897 if (rval) { 898 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval); 899 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 900 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 901 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval); 902 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval); 903 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval); 904 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval); 905 features->rss_enable = SXGBE_HW_FEAT_RSS(rval); 906 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval); 907 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval); 908 } 909 910 /* Read First Capability Register CAP[2] */ 911 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2); 912 if (rval) { 913 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval); 914 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval); 915 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval); 916 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval); 917 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval); 918 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval); 919 } 920 921 return rval; 922 } 923 924 /** 925 * sxgbe_check_ether_addr: check if the MAC addr is valid 926 * @priv: driver private structure 927 * Description: 928 * it is to verify if the MAC address is valid, in case of failures it 929 * generates a random MAC address 930 */ 931 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv) 932 { 933 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 934 priv->hw->mac->get_umac_addr((void __iomem *) 935 priv->ioaddr, 936 priv->dev->dev_addr, 0); 937 if (!is_valid_ether_addr(priv->dev->dev_addr)) 938 eth_hw_addr_random(priv->dev); 939 } 940 dev_info(priv->device, "device MAC address %pM\n", 941 priv->dev->dev_addr); 942 } 943 944 /** 945 * sxgbe_init_dma_engine: DMA init. 946 * @priv: driver private structure 947 * Description: 948 * It inits the DMA invoking the specific SXGBE callback. 949 * Some DMA parameters can be passed from the platform; 950 * in case of these are not passed a default is kept for the MAC or GMAC. 951 */ 952 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv) 953 { 954 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0; 955 int queue_num; 956 957 if (priv->plat->dma_cfg) { 958 pbl = priv->plat->dma_cfg->pbl; 959 fixed_burst = priv->plat->dma_cfg->fixed_burst; 960 burst_map = priv->plat->dma_cfg->burst_map; 961 } 962 963 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 964 priv->hw->dma->cha_init(priv->ioaddr, queue_num, 965 fixed_burst, pbl, 966 (priv->txq[queue_num])->dma_tx_phy, 967 (priv->rxq[queue_num])->dma_rx_phy, 968 priv->dma_tx_size, priv->dma_rx_size); 969 970 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map); 971 } 972 973 /** 974 * sxgbe_init_mtl_engine: MTL init. 975 * @priv: driver private structure 976 * Description: 977 * It inits the MTL invoking the specific SXGBE callback. 978 */ 979 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv) 980 { 981 int queue_num; 982 983 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 984 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num, 985 priv->hw_cap.tx_mtl_qsize); 986 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num); 987 } 988 } 989 990 /** 991 * sxgbe_disable_mtl_engine: MTL disable. 992 * @priv: driver private structure 993 * Description: 994 * It disables the MTL queues by invoking the specific SXGBE callback. 995 */ 996 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv) 997 { 998 int queue_num; 999 1000 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 1001 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num); 1002 } 1003 1004 1005 /** 1006 * sxgbe_tx_timer: mitigation sw timer for tx. 1007 * @t: timer pointer 1008 * Description: 1009 * This is the timer handler to directly invoke the sxgbe_tx_clean. 1010 */ 1011 static void sxgbe_tx_timer(struct timer_list *t) 1012 { 1013 struct sxgbe_tx_queue *p = from_timer(p, t, txtimer); 1014 sxgbe_tx_queue_clean(p); 1015 } 1016 1017 /** 1018 * sxgbe_init_tx_coalesce: init tx mitigation options. 1019 * @priv: driver private structure 1020 * Description: 1021 * This inits the transmit coalesce parameters: i.e. timer rate, 1022 * timer handler and default threshold used for enabling the 1023 * interrupt on completion bit. 1024 */ 1025 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv) 1026 { 1027 u8 queue_num; 1028 1029 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1030 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1031 p->tx_coal_frames = SXGBE_TX_FRAMES; 1032 p->tx_coal_timer = SXGBE_COAL_TX_TIMER; 1033 timer_setup(&p->txtimer, sxgbe_tx_timer, 0); 1034 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer); 1035 add_timer(&p->txtimer); 1036 } 1037 } 1038 1039 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv) 1040 { 1041 u8 queue_num; 1042 1043 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1044 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1045 del_timer_sync(&p->txtimer); 1046 } 1047 } 1048 1049 /** 1050 * sxgbe_open - open entry point of the driver 1051 * @dev : pointer to the device structure. 1052 * Description: 1053 * This function is the open entry point of the driver. 1054 * Return value: 1055 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1056 * file on failure. 1057 */ 1058 static int sxgbe_open(struct net_device *dev) 1059 { 1060 struct sxgbe_priv_data *priv = netdev_priv(dev); 1061 int ret, queue_num; 1062 1063 clk_prepare_enable(priv->sxgbe_clk); 1064 1065 sxgbe_check_ether_addr(priv); 1066 1067 /* Init the phy */ 1068 ret = sxgbe_init_phy(dev); 1069 if (ret) { 1070 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n", 1071 __func__, ret); 1072 goto phy_error; 1073 } 1074 1075 /* Create and initialize the TX/RX descriptors chains. */ 1076 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE); 1077 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE); 1078 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE); 1079 priv->tx_tc = TC_DEFAULT; 1080 priv->rx_tc = TC_DEFAULT; 1081 init_dma_desc_rings(dev); 1082 1083 /* DMA initialization and SW reset */ 1084 ret = sxgbe_init_dma_engine(priv); 1085 if (ret < 0) { 1086 netdev_err(dev, "%s: DMA initialization failed\n", __func__); 1087 goto init_error; 1088 } 1089 1090 /* MTL initialization */ 1091 sxgbe_init_mtl_engine(priv); 1092 1093 /* Copy the MAC addr into the HW */ 1094 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); 1095 1096 /* Initialize the MAC Core */ 1097 priv->hw->mac->core_init(priv->ioaddr); 1098 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1099 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num); 1100 } 1101 1102 /* Request the IRQ lines */ 1103 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt, 1104 IRQF_SHARED, dev->name, dev); 1105 if (unlikely(ret < 0)) { 1106 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", 1107 __func__, priv->irq, ret); 1108 goto init_error; 1109 } 1110 1111 /* If the LPI irq is different from the mac irq 1112 * register a dedicated handler 1113 */ 1114 if (priv->lpi_irq != dev->irq) { 1115 ret = devm_request_irq(priv->device, priv->lpi_irq, 1116 sxgbe_common_interrupt, 1117 IRQF_SHARED, dev->name, dev); 1118 if (unlikely(ret < 0)) { 1119 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1120 __func__, priv->lpi_irq, ret); 1121 goto init_error; 1122 } 1123 } 1124 1125 /* Request TX DMA irq lines */ 1126 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1127 ret = devm_request_irq(priv->device, 1128 (priv->txq[queue_num])->irq_no, 1129 sxgbe_tx_interrupt, 0, 1130 dev->name, priv->txq[queue_num]); 1131 if (unlikely(ret < 0)) { 1132 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1133 __func__, priv->irq, ret); 1134 goto init_error; 1135 } 1136 } 1137 1138 /* Request RX DMA irq lines */ 1139 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1140 ret = devm_request_irq(priv->device, 1141 (priv->rxq[queue_num])->irq_no, 1142 sxgbe_rx_interrupt, 0, 1143 dev->name, priv->rxq[queue_num]); 1144 if (unlikely(ret < 0)) { 1145 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1146 __func__, priv->irq, ret); 1147 goto init_error; 1148 } 1149 } 1150 1151 /* Enable the MAC Rx/Tx */ 1152 priv->hw->mac->enable_tx(priv->ioaddr, true); 1153 priv->hw->mac->enable_rx(priv->ioaddr, true); 1154 1155 /* Set the HW DMA mode and the COE */ 1156 sxgbe_mtl_operation_mode(priv); 1157 1158 /* Extra statistics */ 1159 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats)); 1160 1161 priv->xstats.tx_threshold = priv->tx_tc; 1162 priv->xstats.rx_threshold = priv->rx_tc; 1163 1164 /* Start the ball rolling... */ 1165 netdev_dbg(dev, "DMA RX/TX processes started...\n"); 1166 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1167 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1168 1169 if (dev->phydev) 1170 phy_start(dev->phydev); 1171 1172 /* initialise TX coalesce parameters */ 1173 sxgbe_tx_init_coalesce(priv); 1174 1175 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1176 priv->rx_riwt = SXGBE_MAX_DMA_RIWT; 1177 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT); 1178 } 1179 1180 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER; 1181 priv->eee_enabled = sxgbe_eee_init(priv); 1182 1183 napi_enable(&priv->napi); 1184 netif_start_queue(dev); 1185 1186 return 0; 1187 1188 init_error: 1189 free_dma_desc_resources(priv); 1190 if (dev->phydev) 1191 phy_disconnect(dev->phydev); 1192 phy_error: 1193 clk_disable_unprepare(priv->sxgbe_clk); 1194 1195 return ret; 1196 } 1197 1198 /** 1199 * sxgbe_release - close entry point of the driver 1200 * @dev : device pointer. 1201 * Description: 1202 * This is the stop entry point of the driver. 1203 */ 1204 static int sxgbe_release(struct net_device *dev) 1205 { 1206 struct sxgbe_priv_data *priv = netdev_priv(dev); 1207 1208 if (priv->eee_enabled) 1209 del_timer_sync(&priv->eee_ctrl_timer); 1210 1211 /* Stop and disconnect the PHY */ 1212 if (dev->phydev) { 1213 phy_stop(dev->phydev); 1214 phy_disconnect(dev->phydev); 1215 } 1216 1217 netif_tx_stop_all_queues(dev); 1218 1219 napi_disable(&priv->napi); 1220 1221 /* delete TX timers */ 1222 sxgbe_tx_del_timer(priv); 1223 1224 /* Stop TX/RX DMA and clear the descriptors */ 1225 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1226 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1227 1228 /* disable MTL queue */ 1229 sxgbe_disable_mtl_engine(priv); 1230 1231 /* Release and free the Rx/Tx resources */ 1232 free_dma_desc_resources(priv); 1233 1234 /* Disable the MAC Rx/Tx */ 1235 priv->hw->mac->enable_tx(priv->ioaddr, false); 1236 priv->hw->mac->enable_rx(priv->ioaddr, false); 1237 1238 clk_disable_unprepare(priv->sxgbe_clk); 1239 1240 return 0; 1241 } 1242 /* Prepare first Tx descriptor for doing TSO operation */ 1243 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv, 1244 struct sxgbe_tx_norm_desc *first_desc, 1245 struct sk_buff *skb) 1246 { 1247 unsigned int total_hdr_len, tcp_hdr_len; 1248 1249 /* Write first Tx descriptor with appropriate value */ 1250 tcp_hdr_len = tcp_hdrlen(skb); 1251 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len; 1252 1253 first_desc->tdes01 = dma_map_single(priv->device, skb->data, 1254 total_hdr_len, DMA_TO_DEVICE); 1255 if (dma_mapping_error(priv->device, first_desc->tdes01)) 1256 pr_err("%s: TX dma mapping failed!!\n", __func__); 1257 1258 first_desc->tdes23.tx_rd_des23.first_desc = 1; 1259 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len, 1260 tcp_hdr_len, 1261 skb->len - total_hdr_len); 1262 } 1263 1264 /** 1265 * sxgbe_xmit: Tx entry point of the driver 1266 * @skb : the socket buffer 1267 * @dev : device pointer 1268 * Description : this is the tx entry point of the driver. 1269 * It programs the chain or the ring and supports oversized frames 1270 * and SG feature. 1271 */ 1272 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev) 1273 { 1274 unsigned int entry, frag_num; 1275 int cksum_flag = 0; 1276 struct netdev_queue *dev_txq; 1277 unsigned txq_index = skb_get_queue_mapping(skb); 1278 struct sxgbe_priv_data *priv = netdev_priv(dev); 1279 unsigned int tx_rsize = priv->dma_tx_size; 1280 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index]; 1281 struct sxgbe_tx_norm_desc *tx_desc, *first_desc; 1282 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL; 1283 int nr_frags = skb_shinfo(skb)->nr_frags; 1284 int no_pagedlen = skb_headlen(skb); 1285 int is_jumbo = 0; 1286 u16 cur_mss = skb_shinfo(skb)->gso_size; 1287 u32 ctxt_desc_req = 0; 1288 1289 /* get the TX queue handle */ 1290 dev_txq = netdev_get_tx_queue(dev, txq_index); 1291 1292 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss)) 1293 ctxt_desc_req = 1; 1294 1295 if (unlikely(skb_vlan_tag_present(skb) || 1296 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1297 tqueue->hwts_tx_en))) 1298 ctxt_desc_req = 1; 1299 1300 if (priv->tx_path_in_lpi_mode) 1301 sxgbe_disable_eee_mode(priv); 1302 1303 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) { 1304 if (!netif_tx_queue_stopped(dev_txq)) { 1305 netif_tx_stop_queue(dev_txq); 1306 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n", 1307 __func__, txq_index); 1308 } 1309 return NETDEV_TX_BUSY; 1310 } 1311 1312 entry = tqueue->cur_tx % tx_rsize; 1313 tx_desc = tqueue->dma_tx + entry; 1314 1315 first_desc = tx_desc; 1316 if (ctxt_desc_req) 1317 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc; 1318 1319 /* save the skb address */ 1320 tqueue->tx_skbuff[entry] = skb; 1321 1322 if (!is_jumbo) { 1323 if (likely(skb_is_gso(skb))) { 1324 /* TSO support */ 1325 if (unlikely(tqueue->prev_mss != cur_mss)) { 1326 priv->hw->desc->tx_ctxt_desc_set_mss( 1327 ctxt_desc, cur_mss); 1328 priv->hw->desc->tx_ctxt_desc_set_tcmssv( 1329 ctxt_desc); 1330 priv->hw->desc->tx_ctxt_desc_reset_ostc( 1331 ctxt_desc); 1332 priv->hw->desc->tx_ctxt_desc_set_ctxt( 1333 ctxt_desc); 1334 priv->hw->desc->tx_ctxt_desc_set_owner( 1335 ctxt_desc); 1336 1337 entry = (++tqueue->cur_tx) % tx_rsize; 1338 first_desc = tqueue->dma_tx + entry; 1339 1340 tqueue->prev_mss = cur_mss; 1341 } 1342 sxgbe_tso_prepare(priv, first_desc, skb); 1343 } else { 1344 tx_desc->tdes01 = dma_map_single(priv->device, 1345 skb->data, no_pagedlen, DMA_TO_DEVICE); 1346 if (dma_mapping_error(priv->device, tx_desc->tdes01)) 1347 netdev_err(dev, "%s: TX dma mapping failed!!\n", 1348 __func__); 1349 1350 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen, 1351 no_pagedlen, cksum_flag); 1352 } 1353 } 1354 1355 for (frag_num = 0; frag_num < nr_frags; frag_num++) { 1356 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; 1357 int len = skb_frag_size(frag); 1358 1359 entry = (++tqueue->cur_tx) % tx_rsize; 1360 tx_desc = tqueue->dma_tx + entry; 1361 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len, 1362 DMA_TO_DEVICE); 1363 1364 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01; 1365 tqueue->tx_skbuff[entry] = NULL; 1366 1367 /* prepare the descriptor */ 1368 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len, 1369 len, cksum_flag); 1370 /* memory barrier to flush descriptor */ 1371 wmb(); 1372 1373 /* set the owner */ 1374 priv->hw->desc->set_tx_owner(tx_desc); 1375 } 1376 1377 /* close the descriptors */ 1378 priv->hw->desc->close_tx_desc(tx_desc); 1379 1380 /* memory barrier to flush descriptor */ 1381 wmb(); 1382 1383 tqueue->tx_count_frames += nr_frags + 1; 1384 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) { 1385 priv->hw->desc->clear_tx_ic(tx_desc); 1386 priv->xstats.tx_reset_ic_bit++; 1387 mod_timer(&tqueue->txtimer, 1388 SXGBE_COAL_TIMER(tqueue->tx_coal_timer)); 1389 } else { 1390 tqueue->tx_count_frames = 0; 1391 } 1392 1393 /* set owner for first desc */ 1394 priv->hw->desc->set_tx_owner(first_desc); 1395 1396 /* memory barrier to flush descriptor */ 1397 wmb(); 1398 1399 tqueue->cur_tx++; 1400 1401 /* display current ring */ 1402 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n", 1403 __func__, tqueue->cur_tx % tx_rsize, 1404 tqueue->dirty_tx % tx_rsize, entry, 1405 first_desc, nr_frags); 1406 1407 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) { 1408 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n", 1409 __func__); 1410 netif_tx_stop_queue(dev_txq); 1411 } 1412 1413 dev->stats.tx_bytes += skb->len; 1414 1415 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1416 tqueue->hwts_tx_en)) { 1417 /* declare that device is doing timestamping */ 1418 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1419 priv->hw->desc->tx_enable_tstamp(first_desc); 1420 } 1421 1422 skb_tx_timestamp(skb); 1423 1424 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index); 1425 1426 return NETDEV_TX_OK; 1427 } 1428 1429 /** 1430 * sxgbe_rx_refill: refill used skb preallocated buffers 1431 * @priv: driver private structure 1432 * Description : this is to reallocate the skb for the reception process 1433 * that is based on zero-copy. 1434 */ 1435 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv) 1436 { 1437 unsigned int rxsize = priv->dma_rx_size; 1438 int bfsize = priv->dma_buf_sz; 1439 u8 qnum = priv->cur_rx_qnum; 1440 1441 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0; 1442 priv->rxq[qnum]->dirty_rx++) { 1443 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize; 1444 struct sxgbe_rx_norm_desc *p; 1445 1446 p = priv->rxq[qnum]->dma_rx + entry; 1447 1448 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) { 1449 struct sk_buff *skb; 1450 1451 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 1452 1453 if (unlikely(skb == NULL)) 1454 break; 1455 1456 priv->rxq[qnum]->rx_skbuff[entry] = skb; 1457 priv->rxq[qnum]->rx_skbuff_dma[entry] = 1458 dma_map_single(priv->device, skb->data, bfsize, 1459 DMA_FROM_DEVICE); 1460 1461 p->rdes23.rx_rd_des23.buf2_addr = 1462 priv->rxq[qnum]->rx_skbuff_dma[entry]; 1463 } 1464 1465 /* Added memory barrier for RX descriptor modification */ 1466 wmb(); 1467 priv->hw->desc->set_rx_owner(p); 1468 priv->hw->desc->set_rx_int_on_com(p); 1469 /* Added memory barrier for RX descriptor modification */ 1470 wmb(); 1471 } 1472 } 1473 1474 /** 1475 * sxgbe_rx: receive the frames from the remote host 1476 * @priv: driver private structure 1477 * @limit: napi bugget. 1478 * Description : this the function called by the napi poll method. 1479 * It gets all the frames inside the ring. 1480 */ 1481 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit) 1482 { 1483 u8 qnum = priv->cur_rx_qnum; 1484 unsigned int rxsize = priv->dma_rx_size; 1485 unsigned int entry = priv->rxq[qnum]->cur_rx; 1486 unsigned int next_entry = 0; 1487 unsigned int count = 0; 1488 int checksum; 1489 int status; 1490 1491 while (count < limit) { 1492 struct sxgbe_rx_norm_desc *p; 1493 struct sk_buff *skb; 1494 int frame_len; 1495 1496 p = priv->rxq[qnum]->dma_rx + entry; 1497 1498 if (priv->hw->desc->get_rx_owner(p)) 1499 break; 1500 1501 count++; 1502 1503 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize; 1504 prefetch(priv->rxq[qnum]->dma_rx + next_entry); 1505 1506 /* Read the status of the incoming frame and also get checksum 1507 * value based on whether it is enabled in SXGBE hardware or 1508 * not. 1509 */ 1510 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats, 1511 &checksum); 1512 if (unlikely(status < 0)) { 1513 entry = next_entry; 1514 continue; 1515 } 1516 if (unlikely(!priv->rxcsum_insertion)) 1517 checksum = CHECKSUM_NONE; 1518 1519 skb = priv->rxq[qnum]->rx_skbuff[entry]; 1520 1521 if (unlikely(!skb)) 1522 netdev_err(priv->dev, "rx descriptor is not consistent\n"); 1523 1524 prefetch(skb->data - NET_IP_ALIGN); 1525 priv->rxq[qnum]->rx_skbuff[entry] = NULL; 1526 1527 frame_len = priv->hw->desc->get_rx_frame_len(p); 1528 1529 skb_put(skb, frame_len); 1530 1531 skb->ip_summed = checksum; 1532 if (checksum == CHECKSUM_NONE) 1533 netif_receive_skb(skb); 1534 else 1535 napi_gro_receive(&priv->napi, skb); 1536 1537 entry = next_entry; 1538 } 1539 1540 sxgbe_rx_refill(priv); 1541 1542 return count; 1543 } 1544 1545 /** 1546 * sxgbe_poll - sxgbe poll method (NAPI) 1547 * @napi : pointer to the napi structure. 1548 * @budget : maximum number of packets that the current CPU can receive from 1549 * all interfaces. 1550 * Description : 1551 * To look at the incoming frames and clear the tx resources. 1552 */ 1553 static int sxgbe_poll(struct napi_struct *napi, int budget) 1554 { 1555 struct sxgbe_priv_data *priv = container_of(napi, 1556 struct sxgbe_priv_data, napi); 1557 int work_done = 0; 1558 u8 qnum = priv->cur_rx_qnum; 1559 1560 priv->xstats.napi_poll++; 1561 /* first, clean the tx queues */ 1562 sxgbe_tx_all_clean(priv); 1563 1564 work_done = sxgbe_rx(priv, budget); 1565 if (work_done < budget) { 1566 napi_complete_done(napi, work_done); 1567 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum); 1568 } 1569 1570 return work_done; 1571 } 1572 1573 /** 1574 * sxgbe_tx_timeout 1575 * @dev : Pointer to net device structure 1576 * @txqueue: index of the hanging queue 1577 * Description: this function is called when a packet transmission fails to 1578 * complete within a reasonable time. The driver will mark the error in the 1579 * netdev structure and arrange for the device to be reset to a sane state 1580 * in order to transmit a new packet. 1581 */ 1582 static void sxgbe_tx_timeout(struct net_device *dev, unsigned int txqueue) 1583 { 1584 struct sxgbe_priv_data *priv = netdev_priv(dev); 1585 1586 sxgbe_reset_all_tx_queues(priv); 1587 } 1588 1589 /** 1590 * sxgbe_common_interrupt - main ISR 1591 * @irq: interrupt number. 1592 * @dev_id: to pass the net device pointer. 1593 * Description: this is the main driver interrupt service routine. 1594 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI 1595 * interrupts. 1596 */ 1597 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id) 1598 { 1599 struct net_device *netdev = (struct net_device *)dev_id; 1600 struct sxgbe_priv_data *priv = netdev_priv(netdev); 1601 int status; 1602 1603 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats); 1604 /* For LPI we need to save the tx status */ 1605 if (status & TX_ENTRY_LPI_MODE) { 1606 priv->xstats.tx_lpi_entry_n++; 1607 priv->tx_path_in_lpi_mode = true; 1608 } 1609 if (status & TX_EXIT_LPI_MODE) { 1610 priv->xstats.tx_lpi_exit_n++; 1611 priv->tx_path_in_lpi_mode = false; 1612 } 1613 if (status & RX_ENTRY_LPI_MODE) 1614 priv->xstats.rx_lpi_entry_n++; 1615 if (status & RX_EXIT_LPI_MODE) 1616 priv->xstats.rx_lpi_exit_n++; 1617 1618 return IRQ_HANDLED; 1619 } 1620 1621 /** 1622 * sxgbe_tx_interrupt - TX DMA ISR 1623 * @irq: interrupt number. 1624 * @dev_id: to pass the net device pointer. 1625 * Description: this is the tx dma interrupt service routine. 1626 */ 1627 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id) 1628 { 1629 int status; 1630 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id; 1631 struct sxgbe_priv_data *priv = txq->priv_ptr; 1632 1633 /* get the channel status */ 1634 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no, 1635 &priv->xstats); 1636 /* check for normal path */ 1637 if (likely((status & handle_tx))) 1638 napi_schedule(&priv->napi); 1639 1640 /* check for unrecoverable error */ 1641 if (unlikely((status & tx_hard_error))) 1642 sxgbe_restart_tx_queue(priv, txq->queue_no); 1643 1644 /* check for TC configuration change */ 1645 if (unlikely((status & tx_bump_tc) && 1646 (priv->tx_tc != SXGBE_MTL_SFMODE) && 1647 (priv->tx_tc < 512))) { 1648 /* step of TX TC is 32 till 128, otherwise 64 */ 1649 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64; 1650 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, 1651 txq->queue_no, priv->tx_tc); 1652 priv->xstats.tx_threshold = priv->tx_tc; 1653 } 1654 1655 return IRQ_HANDLED; 1656 } 1657 1658 /** 1659 * sxgbe_rx_interrupt - RX DMA ISR 1660 * @irq: interrupt number. 1661 * @dev_id: to pass the net device pointer. 1662 * Description: this is the rx dma interrupt service routine. 1663 */ 1664 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id) 1665 { 1666 int status; 1667 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id; 1668 struct sxgbe_priv_data *priv = rxq->priv_ptr; 1669 1670 /* get the channel status */ 1671 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no, 1672 &priv->xstats); 1673 1674 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) { 1675 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no); 1676 __napi_schedule(&priv->napi); 1677 } 1678 1679 /* check for TC configuration change */ 1680 if (unlikely((status & rx_bump_tc) && 1681 (priv->rx_tc != SXGBE_MTL_SFMODE) && 1682 (priv->rx_tc < 128))) { 1683 /* step of TC is 32 */ 1684 priv->rx_tc += 32; 1685 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, 1686 rxq->queue_no, priv->rx_tc); 1687 priv->xstats.rx_threshold = priv->rx_tc; 1688 } 1689 1690 return IRQ_HANDLED; 1691 } 1692 1693 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi) 1694 { 1695 u64 val = readl(ioaddr + reg_lo); 1696 1697 val |= ((u64)readl(ioaddr + reg_hi)) << 32; 1698 1699 return val; 1700 } 1701 1702 1703 /* sxgbe_get_stats64 - entry point to see statistical information of device 1704 * @dev : device pointer. 1705 * @stats : pointer to hold all the statistical information of device. 1706 * Description: 1707 * This function is a driver entry point whenever ifconfig command gets 1708 * executed to see device statistics. Statistics are number of 1709 * bytes sent or received, errors occurred etc. 1710 */ 1711 static void sxgbe_get_stats64(struct net_device *dev, 1712 struct rtnl_link_stats64 *stats) 1713 { 1714 struct sxgbe_priv_data *priv = netdev_priv(dev); 1715 void __iomem *ioaddr = priv->ioaddr; 1716 u64 count; 1717 1718 spin_lock(&priv->stats_lock); 1719 /* Freeze the counter registers before reading value otherwise it may 1720 * get updated by hardware while we are reading them 1721 */ 1722 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG); 1723 1724 stats->rx_bytes = sxgbe_get_stat64(ioaddr, 1725 SXGBE_MMC_RXOCTETLO_GCNT_REG, 1726 SXGBE_MMC_RXOCTETHI_GCNT_REG); 1727 1728 stats->rx_packets = sxgbe_get_stat64(ioaddr, 1729 SXGBE_MMC_RXFRAMELO_GBCNT_REG, 1730 SXGBE_MMC_RXFRAMEHI_GBCNT_REG); 1731 1732 stats->multicast = sxgbe_get_stat64(ioaddr, 1733 SXGBE_MMC_RXMULTILO_GCNT_REG, 1734 SXGBE_MMC_RXMULTIHI_GCNT_REG); 1735 1736 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr, 1737 SXGBE_MMC_RXCRCERRLO_REG, 1738 SXGBE_MMC_RXCRCERRHI_REG); 1739 1740 stats->rx_length_errors = sxgbe_get_stat64(ioaddr, 1741 SXGBE_MMC_RXLENERRLO_REG, 1742 SXGBE_MMC_RXLENERRHI_REG); 1743 1744 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr, 1745 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG, 1746 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG); 1747 1748 stats->tx_bytes = sxgbe_get_stat64(ioaddr, 1749 SXGBE_MMC_TXOCTETLO_GCNT_REG, 1750 SXGBE_MMC_TXOCTETHI_GCNT_REG); 1751 1752 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG, 1753 SXGBE_MMC_TXFRAMEHI_GBCNT_REG); 1754 1755 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG, 1756 SXGBE_MMC_TXFRAMEHI_GCNT_REG); 1757 stats->tx_errors = count - stats->tx_errors; 1758 stats->tx_packets = count; 1759 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG, 1760 SXGBE_MMC_TXUFLWHI_GBCNT_REG); 1761 writel(0, ioaddr + SXGBE_MMC_CTL_REG); 1762 spin_unlock(&priv->stats_lock); 1763 } 1764 1765 /* sxgbe_set_features - entry point to set offload features of the device. 1766 * @dev : device pointer. 1767 * @features : features which are required to be set. 1768 * Description: 1769 * This function is a driver entry point and called by Linux kernel whenever 1770 * any device features are set or reset by user. 1771 * Return value: 1772 * This function returns 0 after setting or resetting device features. 1773 */ 1774 static int sxgbe_set_features(struct net_device *dev, 1775 netdev_features_t features) 1776 { 1777 struct sxgbe_priv_data *priv = netdev_priv(dev); 1778 netdev_features_t changed = dev->features ^ features; 1779 1780 if (changed & NETIF_F_RXCSUM) { 1781 if (features & NETIF_F_RXCSUM) { 1782 priv->hw->mac->enable_rx_csum(priv->ioaddr); 1783 priv->rxcsum_insertion = true; 1784 } else { 1785 priv->hw->mac->disable_rx_csum(priv->ioaddr); 1786 priv->rxcsum_insertion = false; 1787 } 1788 } 1789 1790 return 0; 1791 } 1792 1793 /* sxgbe_change_mtu - entry point to change MTU size for the device. 1794 * @dev : device pointer. 1795 * @new_mtu : the new MTU size for the device. 1796 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 1797 * to drive packet transmission. Ethernet has an MTU of 1500 octets 1798 * (ETH_DATA_LEN). This value can be changed with ifconfig. 1799 * Return value: 1800 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1801 * file on failure. 1802 */ 1803 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu) 1804 { 1805 dev->mtu = new_mtu; 1806 1807 if (!netif_running(dev)) 1808 return 0; 1809 1810 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is 1811 * changed then reinitilisation of the receive ring buffers need to be 1812 * done. Hence bring interface down and bring interface back up 1813 */ 1814 sxgbe_release(dev); 1815 return sxgbe_open(dev); 1816 } 1817 1818 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr, 1819 unsigned int reg_n) 1820 { 1821 unsigned long data; 1822 1823 data = (addr[5] << 8) | addr[4]; 1824 /* For MAC Addr registers se have to set the Address Enable (AE) 1825 * bit that has no effect on the High Reg 0 where the bit 31 (MO) 1826 * is RO. 1827 */ 1828 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n)); 1829 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 1830 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n)); 1831 } 1832 1833 /** 1834 * sxgbe_set_rx_mode - entry point for setting different receive mode of 1835 * a device. unicast, multicast addressing 1836 * @dev : pointer to the device structure 1837 * Description: 1838 * This function is a driver entry point which gets called by the kernel 1839 * whenever different receive mode like unicast, multicast and promiscuous 1840 * must be enabled/disabled. 1841 * Return value: 1842 * void. 1843 */ 1844 static void sxgbe_set_rx_mode(struct net_device *dev) 1845 { 1846 struct sxgbe_priv_data *priv = netdev_priv(dev); 1847 void __iomem *ioaddr = (void __iomem *)priv->ioaddr; 1848 unsigned int value = 0; 1849 u32 mc_filter[2]; 1850 struct netdev_hw_addr *ha; 1851 int reg = 1; 1852 1853 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n", 1854 __func__, netdev_mc_count(dev), netdev_uc_count(dev)); 1855 1856 if (dev->flags & IFF_PROMISC) { 1857 value = SXGBE_FRAME_FILTER_PR; 1858 1859 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) || 1860 (dev->flags & IFF_ALLMULTI)) { 1861 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */ 1862 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH); 1863 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW); 1864 1865 } else if (!netdev_mc_empty(dev)) { 1866 /* Hash filter for multicast */ 1867 value = SXGBE_FRAME_FILTER_HMC; 1868 1869 memset(mc_filter, 0, sizeof(mc_filter)); 1870 netdev_for_each_mc_addr(ha, dev) { 1871 /* The upper 6 bits of the calculated CRC are used to 1872 * index the contens of the hash table 1873 */ 1874 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; 1875 1876 /* The most significant bit determines the register to 1877 * use (H/L) while the other 5 bits determine the bit 1878 * within the register. 1879 */ 1880 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 1881 } 1882 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW); 1883 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH); 1884 } 1885 1886 /* Handle multiple unicast addresses (perfect filtering) */ 1887 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES) 1888 /* Switch to promiscuous mode if more than 16 addrs 1889 * are required 1890 */ 1891 value |= SXGBE_FRAME_FILTER_PR; 1892 else { 1893 netdev_for_each_uc_addr(ha, dev) { 1894 sxgbe_set_umac_addr(ioaddr, ha->addr, reg); 1895 reg++; 1896 } 1897 } 1898 #ifdef FRAME_FILTER_DEBUG 1899 /* Enable Receive all mode (to debug filtering_fail errors) */ 1900 value |= SXGBE_FRAME_FILTER_RA; 1901 #endif 1902 writel(value, ioaddr + SXGBE_FRAME_FILTER); 1903 1904 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n", 1905 readl(ioaddr + SXGBE_FRAME_FILTER), 1906 readl(ioaddr + SXGBE_HASH_HIGH), 1907 readl(ioaddr + SXGBE_HASH_LOW)); 1908 } 1909 1910 #ifdef CONFIG_NET_POLL_CONTROLLER 1911 /** 1912 * sxgbe_poll_controller - entry point for polling receive by device 1913 * @dev : pointer to the device structure 1914 * Description: 1915 * This function is used by NETCONSOLE and other diagnostic tools 1916 * to allow network I/O with interrupts disabled. 1917 * Return value: 1918 * Void. 1919 */ 1920 static void sxgbe_poll_controller(struct net_device *dev) 1921 { 1922 struct sxgbe_priv_data *priv = netdev_priv(dev); 1923 1924 disable_irq(priv->irq); 1925 sxgbe_rx_interrupt(priv->irq, dev); 1926 enable_irq(priv->irq); 1927 } 1928 #endif 1929 1930 /* sxgbe_ioctl - Entry point for the Ioctl 1931 * @dev: Device pointer. 1932 * @rq: An IOCTL specefic structure, that can contain a pointer to 1933 * a proprietary structure used to pass information to the driver. 1934 * @cmd: IOCTL command 1935 * Description: 1936 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 1937 */ 1938 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1939 { 1940 int ret = -EOPNOTSUPP; 1941 1942 if (!netif_running(dev)) 1943 return -EINVAL; 1944 1945 switch (cmd) { 1946 case SIOCGMIIPHY: 1947 case SIOCGMIIREG: 1948 case SIOCSMIIREG: 1949 ret = phy_do_ioctl(dev, rq, cmd); 1950 break; 1951 default: 1952 break; 1953 } 1954 1955 return ret; 1956 } 1957 1958 static const struct net_device_ops sxgbe_netdev_ops = { 1959 .ndo_open = sxgbe_open, 1960 .ndo_start_xmit = sxgbe_xmit, 1961 .ndo_stop = sxgbe_release, 1962 .ndo_get_stats64 = sxgbe_get_stats64, 1963 .ndo_change_mtu = sxgbe_change_mtu, 1964 .ndo_set_features = sxgbe_set_features, 1965 .ndo_set_rx_mode = sxgbe_set_rx_mode, 1966 .ndo_tx_timeout = sxgbe_tx_timeout, 1967 .ndo_do_ioctl = sxgbe_ioctl, 1968 #ifdef CONFIG_NET_POLL_CONTROLLER 1969 .ndo_poll_controller = sxgbe_poll_controller, 1970 #endif 1971 .ndo_set_mac_address = eth_mac_addr, 1972 }; 1973 1974 /* Get the hardware ops */ 1975 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr) 1976 { 1977 ops_ptr->mac = sxgbe_get_core_ops(); 1978 ops_ptr->desc = sxgbe_get_desc_ops(); 1979 ops_ptr->dma = sxgbe_get_dma_ops(); 1980 ops_ptr->mtl = sxgbe_get_mtl_ops(); 1981 1982 /* set the MDIO communication Address/Data regisers */ 1983 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG; 1984 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG; 1985 1986 /* Assigning the default link settings 1987 * no SXGBE defined default values to be set in registers, 1988 * so assigning as 0 for port and duplex 1989 */ 1990 ops_ptr->link.port = 0; 1991 ops_ptr->link.duplex = 0; 1992 ops_ptr->link.speed = SXGBE_SPEED_10G; 1993 } 1994 1995 /** 1996 * sxgbe_hw_init - Init the GMAC device 1997 * @priv: driver private structure 1998 * Description: this function checks the HW capability 1999 * (if supported) and sets the driver's features. 2000 */ 2001 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv) 2002 { 2003 u32 ctrl_ids; 2004 2005 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL); 2006 if(!priv->hw) 2007 return -ENOMEM; 2008 2009 /* get the hardware ops */ 2010 sxgbe_get_ops(priv->hw); 2011 2012 /* get the controller id */ 2013 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr); 2014 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16; 2015 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff); 2016 pr_info("user ID: 0x%x, Controller ID: 0x%x\n", 2017 priv->hw->ctrl_uid, priv->hw->ctrl_id); 2018 2019 /* get the H/W features */ 2020 if (!sxgbe_get_hw_features(priv)) 2021 pr_info("Hardware features not found\n"); 2022 2023 if (priv->hw_cap.tx_csum_offload) 2024 pr_info("TX Checksum offload supported\n"); 2025 2026 if (priv->hw_cap.rx_csum_offload) 2027 pr_info("RX Checksum offload supported\n"); 2028 2029 return 0; 2030 } 2031 2032 static int sxgbe_sw_reset(void __iomem *addr) 2033 { 2034 int retry_count = 10; 2035 2036 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG); 2037 while (retry_count--) { 2038 if (!(readl(addr + SXGBE_DMA_MODE_REG) & 2039 SXGBE_DMA_SOFT_RESET)) 2040 break; 2041 mdelay(10); 2042 } 2043 2044 if (retry_count < 0) 2045 return -EBUSY; 2046 2047 return 0; 2048 } 2049 2050 /** 2051 * sxgbe_drv_probe 2052 * @device: device pointer 2053 * @plat_dat: platform data pointer 2054 * @addr: iobase memory address 2055 * Description: this is the main probe function used to 2056 * call the alloc_etherdev, allocate the priv structure. 2057 */ 2058 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device, 2059 struct sxgbe_plat_data *plat_dat, 2060 void __iomem *addr) 2061 { 2062 struct sxgbe_priv_data *priv; 2063 struct net_device *ndev; 2064 int ret; 2065 u8 queue_num; 2066 2067 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data), 2068 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES); 2069 if (!ndev) 2070 return NULL; 2071 2072 SET_NETDEV_DEV(ndev, device); 2073 2074 priv = netdev_priv(ndev); 2075 priv->device = device; 2076 priv->dev = ndev; 2077 2078 sxgbe_set_ethtool_ops(ndev); 2079 priv->plat = plat_dat; 2080 priv->ioaddr = addr; 2081 2082 ret = sxgbe_sw_reset(priv->ioaddr); 2083 if (ret) 2084 goto error_free_netdev; 2085 2086 /* Verify driver arguments */ 2087 sxgbe_verify_args(); 2088 2089 /* Init MAC and get the capabilities */ 2090 ret = sxgbe_hw_init(priv); 2091 if (ret) 2092 goto error_free_netdev; 2093 2094 /* allocate memory resources for Descriptor rings */ 2095 ret = txring_mem_alloc(priv); 2096 if (ret) 2097 goto error_free_hw; 2098 2099 ret = rxring_mem_alloc(priv); 2100 if (ret) 2101 goto error_free_hw; 2102 2103 ndev->netdev_ops = &sxgbe_netdev_ops; 2104 2105 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2106 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 | 2107 NETIF_F_GRO; 2108 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2109 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO); 2110 2111 /* assign filtering support */ 2112 ndev->priv_flags |= IFF_UNICAST_FLT; 2113 2114 /* MTU range: 68 - 9000 */ 2115 ndev->min_mtu = MIN_MTU; 2116 ndev->max_mtu = MAX_MTU; 2117 2118 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2119 2120 /* Enable TCP segmentation offload for all DMA channels */ 2121 if (priv->hw_cap.tcpseg_offload) { 2122 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 2123 priv->hw->dma->enable_tso(priv->ioaddr, queue_num); 2124 } 2125 } 2126 2127 /* Enable Rx checksum offload */ 2128 if (priv->hw_cap.rx_csum_offload) { 2129 priv->hw->mac->enable_rx_csum(priv->ioaddr); 2130 priv->rxcsum_insertion = true; 2131 } 2132 2133 /* Initialise pause frame settings */ 2134 priv->rx_pause = 1; 2135 priv->tx_pause = 1; 2136 2137 /* Rx Watchdog is available, enable depend on platform data */ 2138 if (!priv->plat->riwt_off) { 2139 priv->use_riwt = 1; 2140 pr_info("Enable RX Mitigation via HW Watchdog Timer\n"); 2141 } 2142 2143 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64); 2144 2145 spin_lock_init(&priv->stats_lock); 2146 2147 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME); 2148 if (IS_ERR(priv->sxgbe_clk)) { 2149 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n", 2150 __func__); 2151 goto error_napi_del; 2152 } 2153 2154 /* If a specific clk_csr value is passed from the platform 2155 * this means that the CSR Clock Range selection cannot be 2156 * changed at run-time and it is fixed. Viceversa the driver'll try to 2157 * set the MDC clock dynamically according to the csr actual 2158 * clock input. 2159 */ 2160 if (!priv->plat->clk_csr) 2161 sxgbe_clk_csr_set(priv); 2162 else 2163 priv->clk_csr = priv->plat->clk_csr; 2164 2165 /* MDIO bus Registration */ 2166 ret = sxgbe_mdio_register(ndev); 2167 if (ret < 0) { 2168 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n", 2169 __func__, priv->plat->bus_id); 2170 goto error_clk_put; 2171 } 2172 2173 ret = register_netdev(ndev); 2174 if (ret) { 2175 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2176 goto error_mdio_unregister; 2177 } 2178 2179 sxgbe_check_ether_addr(priv); 2180 2181 return priv; 2182 2183 error_mdio_unregister: 2184 sxgbe_mdio_unregister(ndev); 2185 error_clk_put: 2186 clk_put(priv->sxgbe_clk); 2187 error_napi_del: 2188 netif_napi_del(&priv->napi); 2189 error_free_hw: 2190 kfree(priv->hw); 2191 error_free_netdev: 2192 free_netdev(ndev); 2193 2194 return NULL; 2195 } 2196 2197 /** 2198 * sxgbe_drv_remove 2199 * @ndev: net device pointer 2200 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2201 * changes the link status, releases the DMA descriptor rings. 2202 */ 2203 int sxgbe_drv_remove(struct net_device *ndev) 2204 { 2205 struct sxgbe_priv_data *priv = netdev_priv(ndev); 2206 u8 queue_num; 2207 2208 netdev_info(ndev, "%s: removing driver\n", __func__); 2209 2210 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 2211 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num); 2212 } 2213 2214 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 2215 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 2216 2217 priv->hw->mac->enable_tx(priv->ioaddr, false); 2218 priv->hw->mac->enable_rx(priv->ioaddr, false); 2219 2220 unregister_netdev(ndev); 2221 2222 sxgbe_mdio_unregister(ndev); 2223 2224 clk_put(priv->sxgbe_clk); 2225 2226 netif_napi_del(&priv->napi); 2227 2228 kfree(priv->hw); 2229 2230 free_netdev(ndev); 2231 2232 return 0; 2233 } 2234 2235 #ifdef CONFIG_PM 2236 int sxgbe_suspend(struct net_device *ndev) 2237 { 2238 return 0; 2239 } 2240 2241 int sxgbe_resume(struct net_device *ndev) 2242 { 2243 return 0; 2244 } 2245 2246 int sxgbe_freeze(struct net_device *ndev) 2247 { 2248 return -ENOSYS; 2249 } 2250 2251 int sxgbe_restore(struct net_device *ndev) 2252 { 2253 return -ENOSYS; 2254 } 2255 #endif /* CONFIG_PM */ 2256 2257 /* Driver is configured as Platform driver */ 2258 static int __init sxgbe_init(void) 2259 { 2260 int ret; 2261 2262 ret = sxgbe_register_platform(); 2263 if (ret) 2264 goto err; 2265 return 0; 2266 err: 2267 pr_err("driver registration failed\n"); 2268 return ret; 2269 } 2270 2271 static void __exit sxgbe_exit(void) 2272 { 2273 sxgbe_unregister_platform(); 2274 } 2275 2276 module_init(sxgbe_init); 2277 module_exit(sxgbe_exit); 2278 2279 #ifndef MODULE 2280 static int __init sxgbe_cmdline_opt(char *str) 2281 { 2282 char *opt; 2283 2284 if (!str || !*str) 2285 return -EINVAL; 2286 while ((opt = strsep(&str, ",")) != NULL) { 2287 if (!strncmp(opt, "eee_timer:", 10)) { 2288 if (kstrtoint(opt + 10, 0, &eee_timer)) 2289 goto err; 2290 } 2291 } 2292 return 0; 2293 2294 err: 2295 pr_err("%s: ERROR broken module parameter conversion\n", __func__); 2296 return -EINVAL; 2297 } 2298 2299 __setup("sxgbeeth=", sxgbe_cmdline_opt); 2300 #endif /* MODULE */ 2301 2302 2303 2304 MODULE_DESCRIPTION("Samsung 10G/2.5G/1G Ethernet PLATFORM driver"); 2305 2306 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 2307 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value"); 2308 2309 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>"); 2310 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>"); 2311 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>"); 2312 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>"); 2313 2314 MODULE_LICENSE("GPL"); 2315