1 /* 10G controller driver for Samsung SoCs 2 * 3 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/clk.h> 16 #include <linux/crc32.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/etherdevice.h> 19 #include <linux/ethtool.h> 20 #include <linux/if.h> 21 #include <linux/if_ether.h> 22 #include <linux/if_vlan.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/kernel.h> 27 #include <linux/mii.h> 28 #include <linux/module.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/netdevice.h> 31 #include <linux/phy.h> 32 #include <linux/platform_device.h> 33 #include <linux/prefetch.h> 34 #include <linux/skbuff.h> 35 #include <linux/slab.h> 36 #include <linux/tcp.h> 37 #include <linux/sxgbe_platform.h> 38 39 #include "sxgbe_common.h" 40 #include "sxgbe_desc.h" 41 #include "sxgbe_dma.h" 42 #include "sxgbe_mtl.h" 43 #include "sxgbe_reg.h" 44 45 #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x) 46 #define JUMBO_LEN 9000 47 48 /* Module parameters */ 49 #define TX_TIMEO 5000 50 #define DMA_TX_SIZE 512 51 #define DMA_RX_SIZE 1024 52 #define TC_DEFAULT 64 53 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB 54 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */ 55 #define SXGBE_DEFAULT_LPI_TIMER 1000 56 57 static int debug = -1; 58 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER; 59 60 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 61 62 module_param(debug, int, S_IRUGO | S_IWUSR); 63 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 64 NETIF_MSG_LINK | NETIF_MSG_IFUP | 65 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 66 67 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id); 68 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id); 69 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id); 70 71 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 72 73 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) 74 75 /** 76 * sxgbe_verify_args - verify the driver parameters. 77 * Description: it verifies if some wrong parameter is passed to the driver. 78 * Note that wrong parameters are replaced with the default values. 79 */ 80 static void sxgbe_verify_args(void) 81 { 82 if (unlikely(eee_timer < 0)) 83 eee_timer = SXGBE_DEFAULT_LPI_TIMER; 84 } 85 86 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv) 87 { 88 /* Check and enter in LPI mode */ 89 if (!priv->tx_path_in_lpi_mode) 90 priv->hw->mac->set_eee_mode(priv->ioaddr); 91 } 92 93 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv) 94 { 95 /* Exit and disable EEE in case of we are are in LPI state. */ 96 priv->hw->mac->reset_eee_mode(priv->ioaddr); 97 del_timer_sync(&priv->eee_ctrl_timer); 98 priv->tx_path_in_lpi_mode = false; 99 } 100 101 /** 102 * sxgbe_eee_ctrl_timer 103 * @arg : data hook 104 * Description: 105 * If there is no data transfer and if we are not in LPI state, 106 * then MAC Transmitter can be moved to LPI state. 107 */ 108 static void sxgbe_eee_ctrl_timer(unsigned long arg) 109 { 110 struct sxgbe_priv_data *priv = (struct sxgbe_priv_data *)arg; 111 112 sxgbe_enable_eee_mode(priv); 113 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 114 } 115 116 /** 117 * sxgbe_eee_init 118 * @priv: private device pointer 119 * Description: 120 * If the EEE support has been enabled while configuring the driver, 121 * if the GMAC actually supports the EEE (from the HW cap reg) and the 122 * phy can also manage EEE, so enable the LPI state and start the timer 123 * to verify if the tx path can enter in LPI state. 124 */ 125 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv) 126 { 127 bool ret = false; 128 129 /* MAC core supports the EEE feature. */ 130 if (priv->hw_cap.eee) { 131 /* Check if the PHY supports EEE */ 132 if (phy_init_eee(priv->phydev, 1)) 133 return false; 134 135 priv->eee_active = 1; 136 setup_timer(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 137 (unsigned long)priv); 138 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer); 139 add_timer(&priv->eee_ctrl_timer); 140 141 priv->hw->mac->set_eee_timer(priv->ioaddr, 142 SXGBE_DEFAULT_LPI_TIMER, 143 priv->tx_lpi_timer); 144 145 pr_info("Energy-Efficient Ethernet initialized\n"); 146 147 ret = true; 148 } 149 150 return ret; 151 } 152 153 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv) 154 { 155 /* When the EEE has been already initialised we have to 156 * modify the PLS bit in the LPI ctrl & status reg according 157 * to the PHY link status. For this reason. 158 */ 159 if (priv->eee_enabled) 160 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link); 161 } 162 163 /** 164 * sxgbe_clk_csr_set - dynamically set the MDC clock 165 * @priv: driver private structure 166 * Description: this is to dynamically set the MDC clock according to the csr 167 * clock input. 168 */ 169 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv) 170 { 171 u32 clk_rate = clk_get_rate(priv->sxgbe_clk); 172 173 /* assign the proper divider, this will be used during 174 * mdio communication 175 */ 176 if (clk_rate < SXGBE_CSR_F_150M) 177 priv->clk_csr = SXGBE_CSR_100_150M; 178 else if (clk_rate <= SXGBE_CSR_F_250M) 179 priv->clk_csr = SXGBE_CSR_150_250M; 180 else if (clk_rate <= SXGBE_CSR_F_300M) 181 priv->clk_csr = SXGBE_CSR_250_300M; 182 else if (clk_rate <= SXGBE_CSR_F_350M) 183 priv->clk_csr = SXGBE_CSR_300_350M; 184 else if (clk_rate <= SXGBE_CSR_F_400M) 185 priv->clk_csr = SXGBE_CSR_350_400M; 186 else if (clk_rate <= SXGBE_CSR_F_500M) 187 priv->clk_csr = SXGBE_CSR_400_500M; 188 } 189 190 /* minimum number of free TX descriptors required to wake up TX process */ 191 #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4) 192 193 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize) 194 { 195 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1; 196 } 197 198 /** 199 * sxgbe_adjust_link 200 * @dev: net device structure 201 * Description: it adjusts the link parameters. 202 */ 203 static void sxgbe_adjust_link(struct net_device *dev) 204 { 205 struct sxgbe_priv_data *priv = netdev_priv(dev); 206 struct phy_device *phydev = priv->phydev; 207 u8 new_state = 0; 208 u8 speed = 0xff; 209 210 if (!phydev) 211 return; 212 213 /* SXGBE is not supporting auto-negotiation and 214 * half duplex mode. so, not handling duplex change 215 * in this function. only handling speed and link status 216 */ 217 if (phydev->link) { 218 if (phydev->speed != priv->speed) { 219 new_state = 1; 220 switch (phydev->speed) { 221 case SPEED_10000: 222 speed = SXGBE_SPEED_10G; 223 break; 224 case SPEED_2500: 225 speed = SXGBE_SPEED_2_5G; 226 break; 227 case SPEED_1000: 228 speed = SXGBE_SPEED_1G; 229 break; 230 default: 231 netif_err(priv, link, dev, 232 "Speed (%d) not supported\n", 233 phydev->speed); 234 } 235 236 priv->speed = phydev->speed; 237 priv->hw->mac->set_speed(priv->ioaddr, speed); 238 } 239 240 if (!priv->oldlink) { 241 new_state = 1; 242 priv->oldlink = 1; 243 } 244 } else if (priv->oldlink) { 245 new_state = 1; 246 priv->oldlink = 0; 247 priv->speed = SPEED_UNKNOWN; 248 } 249 250 if (new_state & netif_msg_link(priv)) 251 phy_print_status(phydev); 252 253 /* Alter the MAC settings for EEE */ 254 sxgbe_eee_adjust(priv); 255 } 256 257 /** 258 * sxgbe_init_phy - PHY initialization 259 * @dev: net device structure 260 * Description: it initializes the driver's PHY state, and attaches the PHY 261 * to the mac driver. 262 * Return value: 263 * 0 on success 264 */ 265 static int sxgbe_init_phy(struct net_device *ndev) 266 { 267 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 268 char bus_id[MII_BUS_ID_SIZE]; 269 struct phy_device *phydev; 270 struct sxgbe_priv_data *priv = netdev_priv(ndev); 271 int phy_iface = priv->plat->interface; 272 273 /* assign default link status */ 274 priv->oldlink = 0; 275 priv->speed = SPEED_UNKNOWN; 276 priv->oldduplex = DUPLEX_UNKNOWN; 277 278 if (priv->plat->phy_bus_name) 279 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 280 priv->plat->phy_bus_name, priv->plat->bus_id); 281 else 282 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x", 283 priv->plat->bus_id); 284 285 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 286 priv->plat->phy_addr); 287 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt); 288 289 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface); 290 291 if (IS_ERR(phydev)) { 292 netdev_err(ndev, "Could not attach to PHY\n"); 293 return PTR_ERR(phydev); 294 } 295 296 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 297 if ((phy_iface == PHY_INTERFACE_MODE_MII) || 298 (phy_iface == PHY_INTERFACE_MODE_RMII)) 299 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 300 SUPPORTED_1000baseT_Full); 301 if (phydev->phy_id == 0) { 302 phy_disconnect(phydev); 303 return -ENODEV; 304 } 305 306 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n", 307 __func__, phydev->phy_id, phydev->link); 308 309 /* save phy device in private structure */ 310 priv->phydev = phydev; 311 312 return 0; 313 } 314 315 /** 316 * sxgbe_clear_descriptors: clear descriptors 317 * @priv: driver private structure 318 * Description: this function is called to clear the tx and rx descriptors 319 * in case of both basic and extended descriptors are used. 320 */ 321 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv) 322 { 323 int i, j; 324 unsigned int txsize = priv->dma_tx_size; 325 unsigned int rxsize = priv->dma_rx_size; 326 327 /* Clear the Rx/Tx descriptors */ 328 for (j = 0; j < SXGBE_RX_QUEUES; j++) { 329 for (i = 0; i < rxsize; i++) 330 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i], 331 priv->use_riwt, priv->mode, 332 (i == rxsize - 1)); 333 } 334 335 for (j = 0; j < SXGBE_TX_QUEUES; j++) { 336 for (i = 0; i < txsize; i++) 337 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]); 338 } 339 } 340 341 static int sxgbe_init_rx_buffers(struct net_device *dev, 342 struct sxgbe_rx_norm_desc *p, int i, 343 unsigned int dma_buf_sz, 344 struct sxgbe_rx_queue *rx_ring) 345 { 346 struct sxgbe_priv_data *priv = netdev_priv(dev); 347 struct sk_buff *skb; 348 349 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL); 350 if (!skb) 351 return -ENOMEM; 352 353 rx_ring->rx_skbuff[i] = skb; 354 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 355 dma_buf_sz, DMA_FROM_DEVICE); 356 357 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) { 358 netdev_err(dev, "%s: DMA mapping error\n", __func__); 359 dev_kfree_skb_any(skb); 360 return -EINVAL; 361 } 362 363 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i]; 364 365 return 0; 366 } 367 368 /** 369 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated 370 * @dev: net device structure 371 * @rx_ring: ring to be freed 372 * @rx_rsize: ring size 373 * Description: this function initializes the DMA RX descriptor 374 */ 375 static void sxgbe_free_rx_buffers(struct net_device *dev, 376 struct sxgbe_rx_norm_desc *p, int i, 377 unsigned int dma_buf_sz, 378 struct sxgbe_rx_queue *rx_ring) 379 { 380 struct sxgbe_priv_data *priv = netdev_priv(dev); 381 382 kfree_skb(rx_ring->rx_skbuff[i]); 383 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i], 384 dma_buf_sz, DMA_FROM_DEVICE); 385 } 386 387 /** 388 * init_tx_ring - init the TX descriptor ring 389 * @dev: net device structure 390 * @tx_ring: ring to be intialised 391 * @tx_rsize: ring size 392 * Description: this function initializes the DMA TX descriptor 393 */ 394 static int init_tx_ring(struct device *dev, u8 queue_no, 395 struct sxgbe_tx_queue *tx_ring, int tx_rsize) 396 { 397 /* TX ring is not allcoated */ 398 if (!tx_ring) { 399 dev_err(dev, "No memory for TX queue of SXGBE\n"); 400 return -ENOMEM; 401 } 402 403 /* allocate memory for TX descriptors */ 404 tx_ring->dma_tx = dma_zalloc_coherent(dev, 405 tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 406 &tx_ring->dma_tx_phy, GFP_KERNEL); 407 if (!tx_ring->dma_tx) 408 return -ENOMEM; 409 410 /* allocate memory for TX skbuff array */ 411 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize, 412 sizeof(dma_addr_t), GFP_KERNEL); 413 if (!tx_ring->tx_skbuff_dma) 414 goto dmamem_err; 415 416 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize, 417 sizeof(struct sk_buff *), GFP_KERNEL); 418 419 if (!tx_ring->tx_skbuff) 420 goto dmamem_err; 421 422 /* assign queue number */ 423 tx_ring->queue_no = queue_no; 424 425 /* initialise counters */ 426 tx_ring->dirty_tx = 0; 427 tx_ring->cur_tx = 0; 428 429 /* initialise TX queue lock */ 430 spin_lock_init(&tx_ring->tx_lock); 431 432 return 0; 433 434 dmamem_err: 435 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 436 tx_ring->dma_tx, tx_ring->dma_tx_phy); 437 return -ENOMEM; 438 } 439 440 /** 441 * free_rx_ring - free the RX descriptor ring 442 * @dev: net device structure 443 * @rx_ring: ring to be intialised 444 * @rx_rsize: ring size 445 * Description: this function initializes the DMA RX descriptor 446 */ 447 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring, 448 int rx_rsize) 449 { 450 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 451 rx_ring->dma_rx, rx_ring->dma_rx_phy); 452 kfree(rx_ring->rx_skbuff_dma); 453 kfree(rx_ring->rx_skbuff); 454 } 455 456 /** 457 * init_rx_ring - init the RX descriptor ring 458 * @dev: net device structure 459 * @rx_ring: ring to be intialised 460 * @rx_rsize: ring size 461 * Description: this function initializes the DMA RX descriptor 462 */ 463 static int init_rx_ring(struct net_device *dev, u8 queue_no, 464 struct sxgbe_rx_queue *rx_ring, int rx_rsize) 465 { 466 struct sxgbe_priv_data *priv = netdev_priv(dev); 467 int desc_index; 468 unsigned int bfsize = 0; 469 unsigned int ret = 0; 470 471 /* Set the max buffer size according to the MTU. */ 472 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); 473 474 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize); 475 476 /* RX ring is not allcoated */ 477 if (rx_ring == NULL) { 478 netdev_err(dev, "No memory for RX queue\n"); 479 return -ENOMEM; 480 } 481 482 /* assign queue number */ 483 rx_ring->queue_no = queue_no; 484 485 /* allocate memory for RX descriptors */ 486 rx_ring->dma_rx = dma_zalloc_coherent(priv->device, 487 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 488 &rx_ring->dma_rx_phy, GFP_KERNEL); 489 490 if (rx_ring->dma_rx == NULL) 491 return -ENOMEM; 492 493 /* allocate memory for RX skbuff array */ 494 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize, 495 sizeof(dma_addr_t), GFP_KERNEL); 496 if (!rx_ring->rx_skbuff_dma) { 497 ret = -ENOMEM; 498 goto err_free_dma_rx; 499 } 500 501 rx_ring->rx_skbuff = kmalloc_array(rx_rsize, 502 sizeof(struct sk_buff *), GFP_KERNEL); 503 if (!rx_ring->rx_skbuff) { 504 ret = -ENOMEM; 505 goto err_free_skbuff_dma; 506 } 507 508 /* initialise the buffers */ 509 for (desc_index = 0; desc_index < rx_rsize; desc_index++) { 510 struct sxgbe_rx_norm_desc *p; 511 p = rx_ring->dma_rx + desc_index; 512 ret = sxgbe_init_rx_buffers(dev, p, desc_index, 513 bfsize, rx_ring); 514 if (ret) 515 goto err_free_rx_buffers; 516 } 517 518 /* initialise counters */ 519 rx_ring->cur_rx = 0; 520 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize); 521 priv->dma_buf_sz = bfsize; 522 523 return 0; 524 525 err_free_rx_buffers: 526 while (--desc_index >= 0) { 527 struct sxgbe_rx_norm_desc *p; 528 529 p = rx_ring->dma_rx + desc_index; 530 sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring); 531 } 532 kfree(rx_ring->rx_skbuff); 533 err_free_skbuff_dma: 534 kfree(rx_ring->rx_skbuff_dma); 535 err_free_dma_rx: 536 dma_free_coherent(priv->device, 537 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 538 rx_ring->dma_rx, rx_ring->dma_rx_phy); 539 540 return ret; 541 } 542 /** 543 * free_tx_ring - free the TX descriptor ring 544 * @dev: net device structure 545 * @tx_ring: ring to be intialised 546 * @tx_rsize: ring size 547 * Description: this function initializes the DMA TX descriptor 548 */ 549 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring, 550 int tx_rsize) 551 { 552 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 553 tx_ring->dma_tx, tx_ring->dma_tx_phy); 554 } 555 556 /** 557 * init_dma_desc_rings - init the RX/TX descriptor rings 558 * @dev: net device structure 559 * Description: this function initializes the DMA RX/TX descriptors 560 * and allocates the socket buffers. It suppors the chained and ring 561 * modes. 562 */ 563 static int init_dma_desc_rings(struct net_device *netd) 564 { 565 int queue_num, ret; 566 struct sxgbe_priv_data *priv = netdev_priv(netd); 567 int tx_rsize = priv->dma_tx_size; 568 int rx_rsize = priv->dma_rx_size; 569 570 /* Allocate memory for queue structures and TX descs */ 571 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 572 ret = init_tx_ring(priv->device, queue_num, 573 priv->txq[queue_num], tx_rsize); 574 if (ret) { 575 dev_err(&netd->dev, "TX DMA ring allocation failed!\n"); 576 goto txalloc_err; 577 } 578 579 /* save private pointer in each ring this 580 * pointer is needed during cleaing TX queue 581 */ 582 priv->txq[queue_num]->priv_ptr = priv; 583 } 584 585 /* Allocate memory for queue structures and RX descs */ 586 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 587 ret = init_rx_ring(netd, queue_num, 588 priv->rxq[queue_num], rx_rsize); 589 if (ret) { 590 netdev_err(netd, "RX DMA ring allocation failed!!\n"); 591 goto rxalloc_err; 592 } 593 594 /* save private pointer in each ring this 595 * pointer is needed during cleaing TX queue 596 */ 597 priv->rxq[queue_num]->priv_ptr = priv; 598 } 599 600 sxgbe_clear_descriptors(priv); 601 602 return 0; 603 604 txalloc_err: 605 while (queue_num--) 606 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 607 return ret; 608 609 rxalloc_err: 610 while (queue_num--) 611 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 612 return ret; 613 } 614 615 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue) 616 { 617 int dma_desc; 618 struct sxgbe_priv_data *priv = txqueue->priv_ptr; 619 int tx_rsize = priv->dma_tx_size; 620 621 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) { 622 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc; 623 624 if (txqueue->tx_skbuff_dma[dma_desc]) 625 dma_unmap_single(priv->device, 626 txqueue->tx_skbuff_dma[dma_desc], 627 priv->hw->desc->get_tx_len(tdesc), 628 DMA_TO_DEVICE); 629 630 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]); 631 txqueue->tx_skbuff[dma_desc] = NULL; 632 txqueue->tx_skbuff_dma[dma_desc] = 0; 633 } 634 } 635 636 637 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv) 638 { 639 int queue_num; 640 641 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 642 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 643 tx_free_ring_skbufs(tqueue); 644 } 645 } 646 647 static void free_dma_desc_resources(struct sxgbe_priv_data *priv) 648 { 649 int queue_num; 650 int tx_rsize = priv->dma_tx_size; 651 int rx_rsize = priv->dma_rx_size; 652 653 /* Release the DMA TX buffers */ 654 dma_free_tx_skbufs(priv); 655 656 /* Release the TX ring memory also */ 657 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 658 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 659 } 660 661 /* Release the RX ring memory also */ 662 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 663 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 664 } 665 } 666 667 static int txring_mem_alloc(struct sxgbe_priv_data *priv) 668 { 669 int queue_num; 670 671 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 672 priv->txq[queue_num] = devm_kmalloc(priv->device, 673 sizeof(struct sxgbe_tx_queue), GFP_KERNEL); 674 if (!priv->txq[queue_num]) 675 return -ENOMEM; 676 } 677 678 return 0; 679 } 680 681 static int rxring_mem_alloc(struct sxgbe_priv_data *priv) 682 { 683 int queue_num; 684 685 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 686 priv->rxq[queue_num] = devm_kmalloc(priv->device, 687 sizeof(struct sxgbe_rx_queue), GFP_KERNEL); 688 if (!priv->rxq[queue_num]) 689 return -ENOMEM; 690 } 691 692 return 0; 693 } 694 695 /** 696 * sxgbe_mtl_operation_mode - HW MTL operation mode 697 * @priv: driver private structure 698 * Description: it sets the MTL operation mode: tx/rx MTL thresholds 699 * or Store-And-Forward capability. 700 */ 701 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv) 702 { 703 int queue_num; 704 705 /* TX/RX threshold control */ 706 if (likely(priv->plat->force_sf_dma_mode)) { 707 /* set TC mode for TX QUEUES */ 708 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 709 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 710 SXGBE_MTL_SFMODE); 711 priv->tx_tc = SXGBE_MTL_SFMODE; 712 713 /* set TC mode for RX QUEUES */ 714 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 715 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 716 SXGBE_MTL_SFMODE); 717 priv->rx_tc = SXGBE_MTL_SFMODE; 718 } else if (unlikely(priv->plat->force_thresh_dma_mode)) { 719 /* set TC mode for TX QUEUES */ 720 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 721 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 722 priv->tx_tc); 723 /* set TC mode for RX QUEUES */ 724 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 725 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 726 priv->rx_tc); 727 } else { 728 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__); 729 } 730 } 731 732 /** 733 * sxgbe_tx_queue_clean: 734 * @priv: driver private structure 735 * Description: it reclaims resources after transmission completes. 736 */ 737 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue) 738 { 739 struct sxgbe_priv_data *priv = tqueue->priv_ptr; 740 unsigned int tx_rsize = priv->dma_tx_size; 741 struct netdev_queue *dev_txq; 742 u8 queue_no = tqueue->queue_no; 743 744 dev_txq = netdev_get_tx_queue(priv->dev, queue_no); 745 746 spin_lock(&tqueue->tx_lock); 747 748 priv->xstats.tx_clean++; 749 while (tqueue->dirty_tx != tqueue->cur_tx) { 750 unsigned int entry = tqueue->dirty_tx % tx_rsize; 751 struct sk_buff *skb = tqueue->tx_skbuff[entry]; 752 struct sxgbe_tx_norm_desc *p; 753 754 p = tqueue->dma_tx + entry; 755 756 /* Check if the descriptor is owned by the DMA. */ 757 if (priv->hw->desc->get_tx_owner(p)) 758 break; 759 760 if (netif_msg_tx_done(priv)) 761 pr_debug("%s: curr %d, dirty %d\n", 762 __func__, tqueue->cur_tx, tqueue->dirty_tx); 763 764 if (likely(tqueue->tx_skbuff_dma[entry])) { 765 dma_unmap_single(priv->device, 766 tqueue->tx_skbuff_dma[entry], 767 priv->hw->desc->get_tx_len(p), 768 DMA_TO_DEVICE); 769 tqueue->tx_skbuff_dma[entry] = 0; 770 } 771 772 if (likely(skb)) { 773 dev_kfree_skb(skb); 774 tqueue->tx_skbuff[entry] = NULL; 775 } 776 777 priv->hw->desc->release_tx_desc(p); 778 779 tqueue->dirty_tx++; 780 } 781 782 /* wake up queue */ 783 if (unlikely(netif_tx_queue_stopped(dev_txq) && 784 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) { 785 netif_tx_lock(priv->dev); 786 if (netif_tx_queue_stopped(dev_txq) && 787 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv)) { 788 if (netif_msg_tx_done(priv)) 789 pr_debug("%s: restart transmit\n", __func__); 790 netif_tx_wake_queue(dev_txq); 791 } 792 netif_tx_unlock(priv->dev); 793 } 794 795 spin_unlock(&tqueue->tx_lock); 796 } 797 798 /** 799 * sxgbe_tx_clean: 800 * @priv: driver private structure 801 * Description: it reclaims resources after transmission completes. 802 */ 803 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv) 804 { 805 u8 queue_num; 806 807 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 808 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 809 810 sxgbe_tx_queue_clean(tqueue); 811 } 812 813 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 814 sxgbe_enable_eee_mode(priv); 815 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 816 } 817 } 818 819 /** 820 * sxgbe_restart_tx_queue: irq tx error mng function 821 * @priv: driver private structure 822 * Description: it cleans the descriptors and restarts the transmission 823 * in case of errors. 824 */ 825 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num) 826 { 827 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num]; 828 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev, 829 queue_num); 830 831 /* stop the queue */ 832 netif_tx_stop_queue(dev_txq); 833 834 /* stop the tx dma */ 835 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num); 836 837 /* free the skbuffs of the ring */ 838 tx_free_ring_skbufs(tx_ring); 839 840 /* initialise counters */ 841 tx_ring->cur_tx = 0; 842 tx_ring->dirty_tx = 0; 843 844 /* start the tx dma */ 845 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num); 846 847 priv->dev->stats.tx_errors++; 848 849 /* wakeup the queue */ 850 netif_tx_wake_queue(dev_txq); 851 } 852 853 /** 854 * sxgbe_reset_all_tx_queues: irq tx error mng function 855 * @priv: driver private structure 856 * Description: it cleans all the descriptors and 857 * restarts the transmission on all queues in case of errors. 858 */ 859 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv) 860 { 861 int queue_num; 862 863 /* On TX timeout of net device, resetting of all queues 864 * may not be proper way, revisit this later if needed 865 */ 866 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 867 sxgbe_restart_tx_queue(priv, queue_num); 868 } 869 870 /** 871 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register. 872 * @priv: driver private structure 873 * Description: 874 * new GMAC chip generations have a new register to indicate the 875 * presence of the optional feature/functions. 876 * This can be also used to override the value passed through the 877 * platform and necessary for old MAC10/100 and GMAC chips. 878 */ 879 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv) 880 { 881 int rval = 0; 882 struct sxgbe_hw_features *features = &priv->hw_cap; 883 884 /* Read First Capability Register CAP[0] */ 885 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0); 886 if (rval) { 887 features->pmt_remote_wake_up = 888 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval); 889 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval); 890 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval); 891 features->tx_csum_offload = 892 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval); 893 features->rx_csum_offload = 894 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval); 895 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval); 896 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval); 897 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval); 898 features->eee = SXGBE_HW_FEAT_EEE(rval); 899 } 900 901 /* Read First Capability Register CAP[1] */ 902 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1); 903 if (rval) { 904 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval); 905 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 906 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 907 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval); 908 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval); 909 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval); 910 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval); 911 features->rss_enable = SXGBE_HW_FEAT_RSS(rval); 912 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval); 913 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval); 914 } 915 916 /* Read First Capability Register CAP[2] */ 917 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2); 918 if (rval) { 919 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval); 920 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval); 921 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval); 922 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval); 923 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval); 924 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval); 925 } 926 927 return rval; 928 } 929 930 /** 931 * sxgbe_check_ether_addr: check if the MAC addr is valid 932 * @priv: driver private structure 933 * Description: 934 * it is to verify if the MAC address is valid, in case of failures it 935 * generates a random MAC address 936 */ 937 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv) 938 { 939 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 940 priv->hw->mac->get_umac_addr((void __iomem *) 941 priv->ioaddr, 942 priv->dev->dev_addr, 0); 943 if (!is_valid_ether_addr(priv->dev->dev_addr)) 944 eth_hw_addr_random(priv->dev); 945 } 946 dev_info(priv->device, "device MAC address %pM\n", 947 priv->dev->dev_addr); 948 } 949 950 /** 951 * sxgbe_init_dma_engine: DMA init. 952 * @priv: driver private structure 953 * Description: 954 * It inits the DMA invoking the specific SXGBE callback. 955 * Some DMA parameters can be passed from the platform; 956 * in case of these are not passed a default is kept for the MAC or GMAC. 957 */ 958 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv) 959 { 960 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0; 961 int queue_num; 962 963 if (priv->plat->dma_cfg) { 964 pbl = priv->plat->dma_cfg->pbl; 965 fixed_burst = priv->plat->dma_cfg->fixed_burst; 966 burst_map = priv->plat->dma_cfg->burst_map; 967 } 968 969 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 970 priv->hw->dma->cha_init(priv->ioaddr, queue_num, 971 fixed_burst, pbl, 972 (priv->txq[queue_num])->dma_tx_phy, 973 (priv->rxq[queue_num])->dma_rx_phy, 974 priv->dma_tx_size, priv->dma_rx_size); 975 976 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map); 977 } 978 979 /** 980 * sxgbe_init_mtl_engine: MTL init. 981 * @priv: driver private structure 982 * Description: 983 * It inits the MTL invoking the specific SXGBE callback. 984 */ 985 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv) 986 { 987 int queue_num; 988 989 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 990 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num, 991 priv->hw_cap.tx_mtl_qsize); 992 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num); 993 } 994 } 995 996 /** 997 * sxgbe_disable_mtl_engine: MTL disable. 998 * @priv: driver private structure 999 * Description: 1000 * It disables the MTL queues by invoking the specific SXGBE callback. 1001 */ 1002 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv) 1003 { 1004 int queue_num; 1005 1006 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 1007 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num); 1008 } 1009 1010 1011 /** 1012 * sxgbe_tx_timer: mitigation sw timer for tx. 1013 * @data: data pointer 1014 * Description: 1015 * This is the timer handler to directly invoke the sxgbe_tx_clean. 1016 */ 1017 static void sxgbe_tx_timer(unsigned long data) 1018 { 1019 struct sxgbe_tx_queue *p = (struct sxgbe_tx_queue *)data; 1020 sxgbe_tx_queue_clean(p); 1021 } 1022 1023 /** 1024 * sxgbe_init_tx_coalesce: init tx mitigation options. 1025 * @priv: driver private structure 1026 * Description: 1027 * This inits the transmit coalesce parameters: i.e. timer rate, 1028 * timer handler and default threshold used for enabling the 1029 * interrupt on completion bit. 1030 */ 1031 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv) 1032 { 1033 u8 queue_num; 1034 1035 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1036 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1037 p->tx_coal_frames = SXGBE_TX_FRAMES; 1038 p->tx_coal_timer = SXGBE_COAL_TX_TIMER; 1039 setup_timer(&p->txtimer, sxgbe_tx_timer, 1040 (unsigned long)&priv->txq[queue_num]); 1041 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer); 1042 add_timer(&p->txtimer); 1043 } 1044 } 1045 1046 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv) 1047 { 1048 u8 queue_num; 1049 1050 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1051 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1052 del_timer_sync(&p->txtimer); 1053 } 1054 } 1055 1056 /** 1057 * sxgbe_open - open entry point of the driver 1058 * @dev : pointer to the device structure. 1059 * Description: 1060 * This function is the open entry point of the driver. 1061 * Return value: 1062 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1063 * file on failure. 1064 */ 1065 static int sxgbe_open(struct net_device *dev) 1066 { 1067 struct sxgbe_priv_data *priv = netdev_priv(dev); 1068 int ret, queue_num; 1069 1070 clk_prepare_enable(priv->sxgbe_clk); 1071 1072 sxgbe_check_ether_addr(priv); 1073 1074 /* Init the phy */ 1075 ret = sxgbe_init_phy(dev); 1076 if (ret) { 1077 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n", 1078 __func__, ret); 1079 goto phy_error; 1080 } 1081 1082 /* Create and initialize the TX/RX descriptors chains. */ 1083 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE); 1084 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE); 1085 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE); 1086 priv->tx_tc = TC_DEFAULT; 1087 priv->rx_tc = TC_DEFAULT; 1088 init_dma_desc_rings(dev); 1089 1090 /* DMA initialization and SW reset */ 1091 ret = sxgbe_init_dma_engine(priv); 1092 if (ret < 0) { 1093 netdev_err(dev, "%s: DMA initialization failed\n", __func__); 1094 goto init_error; 1095 } 1096 1097 /* MTL initialization */ 1098 sxgbe_init_mtl_engine(priv); 1099 1100 /* Copy the MAC addr into the HW */ 1101 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); 1102 1103 /* Initialize the MAC Core */ 1104 priv->hw->mac->core_init(priv->ioaddr); 1105 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1106 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num); 1107 } 1108 1109 /* Request the IRQ lines */ 1110 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt, 1111 IRQF_SHARED, dev->name, dev); 1112 if (unlikely(ret < 0)) { 1113 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", 1114 __func__, priv->irq, ret); 1115 goto init_error; 1116 } 1117 1118 /* If the LPI irq is different from the mac irq 1119 * register a dedicated handler 1120 */ 1121 if (priv->lpi_irq != dev->irq) { 1122 ret = devm_request_irq(priv->device, priv->lpi_irq, 1123 sxgbe_common_interrupt, 1124 IRQF_SHARED, dev->name, dev); 1125 if (unlikely(ret < 0)) { 1126 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1127 __func__, priv->lpi_irq, ret); 1128 goto init_error; 1129 } 1130 } 1131 1132 /* Request TX DMA irq lines */ 1133 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1134 ret = devm_request_irq(priv->device, 1135 (priv->txq[queue_num])->irq_no, 1136 sxgbe_tx_interrupt, 0, 1137 dev->name, priv->txq[queue_num]); 1138 if (unlikely(ret < 0)) { 1139 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1140 __func__, priv->irq, ret); 1141 goto init_error; 1142 } 1143 } 1144 1145 /* Request RX DMA irq lines */ 1146 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1147 ret = devm_request_irq(priv->device, 1148 (priv->rxq[queue_num])->irq_no, 1149 sxgbe_rx_interrupt, 0, 1150 dev->name, priv->rxq[queue_num]); 1151 if (unlikely(ret < 0)) { 1152 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1153 __func__, priv->irq, ret); 1154 goto init_error; 1155 } 1156 } 1157 1158 /* Enable the MAC Rx/Tx */ 1159 priv->hw->mac->enable_tx(priv->ioaddr, true); 1160 priv->hw->mac->enable_rx(priv->ioaddr, true); 1161 1162 /* Set the HW DMA mode and the COE */ 1163 sxgbe_mtl_operation_mode(priv); 1164 1165 /* Extra statistics */ 1166 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats)); 1167 1168 priv->xstats.tx_threshold = priv->tx_tc; 1169 priv->xstats.rx_threshold = priv->rx_tc; 1170 1171 /* Start the ball rolling... */ 1172 netdev_dbg(dev, "DMA RX/TX processes started...\n"); 1173 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1174 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1175 1176 if (priv->phydev) 1177 phy_start(priv->phydev); 1178 1179 /* initialise TX coalesce parameters */ 1180 sxgbe_tx_init_coalesce(priv); 1181 1182 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1183 priv->rx_riwt = SXGBE_MAX_DMA_RIWT; 1184 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT); 1185 } 1186 1187 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER; 1188 priv->eee_enabled = sxgbe_eee_init(priv); 1189 1190 napi_enable(&priv->napi); 1191 netif_start_queue(dev); 1192 1193 return 0; 1194 1195 init_error: 1196 free_dma_desc_resources(priv); 1197 if (priv->phydev) 1198 phy_disconnect(priv->phydev); 1199 phy_error: 1200 clk_disable_unprepare(priv->sxgbe_clk); 1201 1202 return ret; 1203 } 1204 1205 /** 1206 * sxgbe_release - close entry point of the driver 1207 * @dev : device pointer. 1208 * Description: 1209 * This is the stop entry point of the driver. 1210 */ 1211 static int sxgbe_release(struct net_device *dev) 1212 { 1213 struct sxgbe_priv_data *priv = netdev_priv(dev); 1214 1215 if (priv->eee_enabled) 1216 del_timer_sync(&priv->eee_ctrl_timer); 1217 1218 /* Stop and disconnect the PHY */ 1219 if (priv->phydev) { 1220 phy_stop(priv->phydev); 1221 phy_disconnect(priv->phydev); 1222 priv->phydev = NULL; 1223 } 1224 1225 netif_tx_stop_all_queues(dev); 1226 1227 napi_disable(&priv->napi); 1228 1229 /* delete TX timers */ 1230 sxgbe_tx_del_timer(priv); 1231 1232 /* Stop TX/RX DMA and clear the descriptors */ 1233 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1234 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1235 1236 /* disable MTL queue */ 1237 sxgbe_disable_mtl_engine(priv); 1238 1239 /* Release and free the Rx/Tx resources */ 1240 free_dma_desc_resources(priv); 1241 1242 /* Disable the MAC Rx/Tx */ 1243 priv->hw->mac->enable_tx(priv->ioaddr, false); 1244 priv->hw->mac->enable_rx(priv->ioaddr, false); 1245 1246 clk_disable_unprepare(priv->sxgbe_clk); 1247 1248 return 0; 1249 } 1250 /* Prepare first Tx descriptor for doing TSO operation */ 1251 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv, 1252 struct sxgbe_tx_norm_desc *first_desc, 1253 struct sk_buff *skb) 1254 { 1255 unsigned int total_hdr_len, tcp_hdr_len; 1256 1257 /* Write first Tx descriptor with appropriate value */ 1258 tcp_hdr_len = tcp_hdrlen(skb); 1259 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len; 1260 1261 first_desc->tdes01 = dma_map_single(priv->device, skb->data, 1262 total_hdr_len, DMA_TO_DEVICE); 1263 if (dma_mapping_error(priv->device, first_desc->tdes01)) 1264 pr_err("%s: TX dma mapping failed!!\n", __func__); 1265 1266 first_desc->tdes23.tx_rd_des23.first_desc = 1; 1267 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len, 1268 tcp_hdr_len, 1269 skb->len - total_hdr_len); 1270 } 1271 1272 /** 1273 * sxgbe_xmit: Tx entry point of the driver 1274 * @skb : the socket buffer 1275 * @dev : device pointer 1276 * Description : this is the tx entry point of the driver. 1277 * It programs the chain or the ring and supports oversized frames 1278 * and SG feature. 1279 */ 1280 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev) 1281 { 1282 unsigned int entry, frag_num; 1283 int cksum_flag = 0; 1284 struct netdev_queue *dev_txq; 1285 unsigned txq_index = skb_get_queue_mapping(skb); 1286 struct sxgbe_priv_data *priv = netdev_priv(dev); 1287 unsigned int tx_rsize = priv->dma_tx_size; 1288 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index]; 1289 struct sxgbe_tx_norm_desc *tx_desc, *first_desc; 1290 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL; 1291 int nr_frags = skb_shinfo(skb)->nr_frags; 1292 int no_pagedlen = skb_headlen(skb); 1293 int is_jumbo = 0; 1294 u16 cur_mss = skb_shinfo(skb)->gso_size; 1295 u32 ctxt_desc_req = 0; 1296 1297 /* get the TX queue handle */ 1298 dev_txq = netdev_get_tx_queue(dev, txq_index); 1299 1300 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss)) 1301 ctxt_desc_req = 1; 1302 1303 if (unlikely(skb_vlan_tag_present(skb) || 1304 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1305 tqueue->hwts_tx_en))) 1306 ctxt_desc_req = 1; 1307 1308 /* get the spinlock */ 1309 spin_lock(&tqueue->tx_lock); 1310 1311 if (priv->tx_path_in_lpi_mode) 1312 sxgbe_disable_eee_mode(priv); 1313 1314 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) { 1315 if (!netif_tx_queue_stopped(dev_txq)) { 1316 netif_tx_stop_queue(dev_txq); 1317 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n", 1318 __func__, txq_index); 1319 } 1320 /* release the spin lock in case of BUSY */ 1321 spin_unlock(&tqueue->tx_lock); 1322 return NETDEV_TX_BUSY; 1323 } 1324 1325 entry = tqueue->cur_tx % tx_rsize; 1326 tx_desc = tqueue->dma_tx + entry; 1327 1328 first_desc = tx_desc; 1329 if (ctxt_desc_req) 1330 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc; 1331 1332 /* save the skb address */ 1333 tqueue->tx_skbuff[entry] = skb; 1334 1335 if (!is_jumbo) { 1336 if (likely(skb_is_gso(skb))) { 1337 /* TSO support */ 1338 if (unlikely(tqueue->prev_mss != cur_mss)) { 1339 priv->hw->desc->tx_ctxt_desc_set_mss( 1340 ctxt_desc, cur_mss); 1341 priv->hw->desc->tx_ctxt_desc_set_tcmssv( 1342 ctxt_desc); 1343 priv->hw->desc->tx_ctxt_desc_reset_ostc( 1344 ctxt_desc); 1345 priv->hw->desc->tx_ctxt_desc_set_ctxt( 1346 ctxt_desc); 1347 priv->hw->desc->tx_ctxt_desc_set_owner( 1348 ctxt_desc); 1349 1350 entry = (++tqueue->cur_tx) % tx_rsize; 1351 first_desc = tqueue->dma_tx + entry; 1352 1353 tqueue->prev_mss = cur_mss; 1354 } 1355 sxgbe_tso_prepare(priv, first_desc, skb); 1356 } else { 1357 tx_desc->tdes01 = dma_map_single(priv->device, 1358 skb->data, no_pagedlen, DMA_TO_DEVICE); 1359 if (dma_mapping_error(priv->device, tx_desc->tdes01)) 1360 netdev_err(dev, "%s: TX dma mapping failed!!\n", 1361 __func__); 1362 1363 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen, 1364 no_pagedlen, cksum_flag); 1365 } 1366 } 1367 1368 for (frag_num = 0; frag_num < nr_frags; frag_num++) { 1369 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; 1370 int len = skb_frag_size(frag); 1371 1372 entry = (++tqueue->cur_tx) % tx_rsize; 1373 tx_desc = tqueue->dma_tx + entry; 1374 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len, 1375 DMA_TO_DEVICE); 1376 1377 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01; 1378 tqueue->tx_skbuff[entry] = NULL; 1379 1380 /* prepare the descriptor */ 1381 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len, 1382 len, cksum_flag); 1383 /* memory barrier to flush descriptor */ 1384 wmb(); 1385 1386 /* set the owner */ 1387 priv->hw->desc->set_tx_owner(tx_desc); 1388 } 1389 1390 /* close the descriptors */ 1391 priv->hw->desc->close_tx_desc(tx_desc); 1392 1393 /* memory barrier to flush descriptor */ 1394 wmb(); 1395 1396 tqueue->tx_count_frames += nr_frags + 1; 1397 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) { 1398 priv->hw->desc->clear_tx_ic(tx_desc); 1399 priv->xstats.tx_reset_ic_bit++; 1400 mod_timer(&tqueue->txtimer, 1401 SXGBE_COAL_TIMER(tqueue->tx_coal_timer)); 1402 } else { 1403 tqueue->tx_count_frames = 0; 1404 } 1405 1406 /* set owner for first desc */ 1407 priv->hw->desc->set_tx_owner(first_desc); 1408 1409 /* memory barrier to flush descriptor */ 1410 wmb(); 1411 1412 tqueue->cur_tx++; 1413 1414 /* display current ring */ 1415 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n", 1416 __func__, tqueue->cur_tx % tx_rsize, 1417 tqueue->dirty_tx % tx_rsize, entry, 1418 first_desc, nr_frags); 1419 1420 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) { 1421 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n", 1422 __func__); 1423 netif_tx_stop_queue(dev_txq); 1424 } 1425 1426 dev->stats.tx_bytes += skb->len; 1427 1428 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1429 tqueue->hwts_tx_en)) { 1430 /* declare that device is doing timestamping */ 1431 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1432 priv->hw->desc->tx_enable_tstamp(first_desc); 1433 } 1434 1435 if (!tqueue->hwts_tx_en) 1436 skb_tx_timestamp(skb); 1437 1438 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index); 1439 1440 spin_unlock(&tqueue->tx_lock); 1441 1442 return NETDEV_TX_OK; 1443 } 1444 1445 /** 1446 * sxgbe_rx_refill: refill used skb preallocated buffers 1447 * @priv: driver private structure 1448 * Description : this is to reallocate the skb for the reception process 1449 * that is based on zero-copy. 1450 */ 1451 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv) 1452 { 1453 unsigned int rxsize = priv->dma_rx_size; 1454 int bfsize = priv->dma_buf_sz; 1455 u8 qnum = priv->cur_rx_qnum; 1456 1457 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0; 1458 priv->rxq[qnum]->dirty_rx++) { 1459 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize; 1460 struct sxgbe_rx_norm_desc *p; 1461 1462 p = priv->rxq[qnum]->dma_rx + entry; 1463 1464 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) { 1465 struct sk_buff *skb; 1466 1467 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 1468 1469 if (unlikely(skb == NULL)) 1470 break; 1471 1472 priv->rxq[qnum]->rx_skbuff[entry] = skb; 1473 priv->rxq[qnum]->rx_skbuff_dma[entry] = 1474 dma_map_single(priv->device, skb->data, bfsize, 1475 DMA_FROM_DEVICE); 1476 1477 p->rdes23.rx_rd_des23.buf2_addr = 1478 priv->rxq[qnum]->rx_skbuff_dma[entry]; 1479 } 1480 1481 /* Added memory barrier for RX descriptor modification */ 1482 wmb(); 1483 priv->hw->desc->set_rx_owner(p); 1484 priv->hw->desc->set_rx_int_on_com(p); 1485 /* Added memory barrier for RX descriptor modification */ 1486 wmb(); 1487 } 1488 } 1489 1490 /** 1491 * sxgbe_rx: receive the frames from the remote host 1492 * @priv: driver private structure 1493 * @limit: napi bugget. 1494 * Description : this the function called by the napi poll method. 1495 * It gets all the frames inside the ring. 1496 */ 1497 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit) 1498 { 1499 u8 qnum = priv->cur_rx_qnum; 1500 unsigned int rxsize = priv->dma_rx_size; 1501 unsigned int entry = priv->rxq[qnum]->cur_rx; 1502 unsigned int next_entry = 0; 1503 unsigned int count = 0; 1504 int checksum; 1505 int status; 1506 1507 while (count < limit) { 1508 struct sxgbe_rx_norm_desc *p; 1509 struct sk_buff *skb; 1510 int frame_len; 1511 1512 p = priv->rxq[qnum]->dma_rx + entry; 1513 1514 if (priv->hw->desc->get_rx_owner(p)) 1515 break; 1516 1517 count++; 1518 1519 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize; 1520 prefetch(priv->rxq[qnum]->dma_rx + next_entry); 1521 1522 /* Read the status of the incoming frame and also get checksum 1523 * value based on whether it is enabled in SXGBE hardware or 1524 * not. 1525 */ 1526 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats, 1527 &checksum); 1528 if (unlikely(status < 0)) { 1529 entry = next_entry; 1530 continue; 1531 } 1532 if (unlikely(!priv->rxcsum_insertion)) 1533 checksum = CHECKSUM_NONE; 1534 1535 skb = priv->rxq[qnum]->rx_skbuff[entry]; 1536 1537 if (unlikely(!skb)) 1538 netdev_err(priv->dev, "rx descriptor is not consistent\n"); 1539 1540 prefetch(skb->data - NET_IP_ALIGN); 1541 priv->rxq[qnum]->rx_skbuff[entry] = NULL; 1542 1543 frame_len = priv->hw->desc->get_rx_frame_len(p); 1544 1545 skb_put(skb, frame_len); 1546 1547 skb->ip_summed = checksum; 1548 if (checksum == CHECKSUM_NONE) 1549 netif_receive_skb(skb); 1550 else 1551 napi_gro_receive(&priv->napi, skb); 1552 1553 entry = next_entry; 1554 } 1555 1556 sxgbe_rx_refill(priv); 1557 1558 return count; 1559 } 1560 1561 /** 1562 * sxgbe_poll - sxgbe poll method (NAPI) 1563 * @napi : pointer to the napi structure. 1564 * @budget : maximum number of packets that the current CPU can receive from 1565 * all interfaces. 1566 * Description : 1567 * To look at the incoming frames and clear the tx resources. 1568 */ 1569 static int sxgbe_poll(struct napi_struct *napi, int budget) 1570 { 1571 struct sxgbe_priv_data *priv = container_of(napi, 1572 struct sxgbe_priv_data, napi); 1573 int work_done = 0; 1574 u8 qnum = priv->cur_rx_qnum; 1575 1576 priv->xstats.napi_poll++; 1577 /* first, clean the tx queues */ 1578 sxgbe_tx_all_clean(priv); 1579 1580 work_done = sxgbe_rx(priv, budget); 1581 if (work_done < budget) { 1582 napi_complete(napi); 1583 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum); 1584 } 1585 1586 return work_done; 1587 } 1588 1589 /** 1590 * sxgbe_tx_timeout 1591 * @dev : Pointer to net device structure 1592 * Description: this function is called when a packet transmission fails to 1593 * complete within a reasonable time. The driver will mark the error in the 1594 * netdev structure and arrange for the device to be reset to a sane state 1595 * in order to transmit a new packet. 1596 */ 1597 static void sxgbe_tx_timeout(struct net_device *dev) 1598 { 1599 struct sxgbe_priv_data *priv = netdev_priv(dev); 1600 1601 sxgbe_reset_all_tx_queues(priv); 1602 } 1603 1604 /** 1605 * sxgbe_common_interrupt - main ISR 1606 * @irq: interrupt number. 1607 * @dev_id: to pass the net device pointer. 1608 * Description: this is the main driver interrupt service routine. 1609 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI 1610 * interrupts. 1611 */ 1612 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id) 1613 { 1614 struct net_device *netdev = (struct net_device *)dev_id; 1615 struct sxgbe_priv_data *priv = netdev_priv(netdev); 1616 int status; 1617 1618 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats); 1619 /* For LPI we need to save the tx status */ 1620 if (status & TX_ENTRY_LPI_MODE) { 1621 priv->xstats.tx_lpi_entry_n++; 1622 priv->tx_path_in_lpi_mode = true; 1623 } 1624 if (status & TX_EXIT_LPI_MODE) { 1625 priv->xstats.tx_lpi_exit_n++; 1626 priv->tx_path_in_lpi_mode = false; 1627 } 1628 if (status & RX_ENTRY_LPI_MODE) 1629 priv->xstats.rx_lpi_entry_n++; 1630 if (status & RX_EXIT_LPI_MODE) 1631 priv->xstats.rx_lpi_exit_n++; 1632 1633 return IRQ_HANDLED; 1634 } 1635 1636 /** 1637 * sxgbe_tx_interrupt - TX DMA ISR 1638 * @irq: interrupt number. 1639 * @dev_id: to pass the net device pointer. 1640 * Description: this is the tx dma interrupt service routine. 1641 */ 1642 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id) 1643 { 1644 int status; 1645 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id; 1646 struct sxgbe_priv_data *priv = txq->priv_ptr; 1647 1648 /* get the channel status */ 1649 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no, 1650 &priv->xstats); 1651 /* check for normal path */ 1652 if (likely((status & handle_tx))) 1653 napi_schedule(&priv->napi); 1654 1655 /* check for unrecoverable error */ 1656 if (unlikely((status & tx_hard_error))) 1657 sxgbe_restart_tx_queue(priv, txq->queue_no); 1658 1659 /* check for TC configuration change */ 1660 if (unlikely((status & tx_bump_tc) && 1661 (priv->tx_tc != SXGBE_MTL_SFMODE) && 1662 (priv->tx_tc < 512))) { 1663 /* step of TX TC is 32 till 128, otherwise 64 */ 1664 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64; 1665 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, 1666 txq->queue_no, priv->tx_tc); 1667 priv->xstats.tx_threshold = priv->tx_tc; 1668 } 1669 1670 return IRQ_HANDLED; 1671 } 1672 1673 /** 1674 * sxgbe_rx_interrupt - RX DMA ISR 1675 * @irq: interrupt number. 1676 * @dev_id: to pass the net device pointer. 1677 * Description: this is the rx dma interrupt service routine. 1678 */ 1679 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id) 1680 { 1681 int status; 1682 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id; 1683 struct sxgbe_priv_data *priv = rxq->priv_ptr; 1684 1685 /* get the channel status */ 1686 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no, 1687 &priv->xstats); 1688 1689 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) { 1690 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no); 1691 __napi_schedule(&priv->napi); 1692 } 1693 1694 /* check for TC configuration change */ 1695 if (unlikely((status & rx_bump_tc) && 1696 (priv->rx_tc != SXGBE_MTL_SFMODE) && 1697 (priv->rx_tc < 128))) { 1698 /* step of TC is 32 */ 1699 priv->rx_tc += 32; 1700 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, 1701 rxq->queue_no, priv->rx_tc); 1702 priv->xstats.rx_threshold = priv->rx_tc; 1703 } 1704 1705 return IRQ_HANDLED; 1706 } 1707 1708 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi) 1709 { 1710 u64 val = readl(ioaddr + reg_lo); 1711 1712 val |= ((u64)readl(ioaddr + reg_hi)) << 32; 1713 1714 return val; 1715 } 1716 1717 1718 /* sxgbe_get_stats64 - entry point to see statistical information of device 1719 * @dev : device pointer. 1720 * @stats : pointer to hold all the statistical information of device. 1721 * Description: 1722 * This function is a driver entry point whenever ifconfig command gets 1723 * executed to see device statistics. Statistics are number of 1724 * bytes sent or received, errors occurred etc. 1725 * Return value: 1726 * This function returns various statistical information of device. 1727 */ 1728 static struct rtnl_link_stats64 *sxgbe_get_stats64(struct net_device *dev, 1729 struct rtnl_link_stats64 *stats) 1730 { 1731 struct sxgbe_priv_data *priv = netdev_priv(dev); 1732 void __iomem *ioaddr = priv->ioaddr; 1733 u64 count; 1734 1735 spin_lock(&priv->stats_lock); 1736 /* Freeze the counter registers before reading value otherwise it may 1737 * get updated by hardware while we are reading them 1738 */ 1739 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG); 1740 1741 stats->rx_bytes = sxgbe_get_stat64(ioaddr, 1742 SXGBE_MMC_RXOCTETLO_GCNT_REG, 1743 SXGBE_MMC_RXOCTETHI_GCNT_REG); 1744 1745 stats->rx_packets = sxgbe_get_stat64(ioaddr, 1746 SXGBE_MMC_RXFRAMELO_GBCNT_REG, 1747 SXGBE_MMC_RXFRAMEHI_GBCNT_REG); 1748 1749 stats->multicast = sxgbe_get_stat64(ioaddr, 1750 SXGBE_MMC_RXMULTILO_GCNT_REG, 1751 SXGBE_MMC_RXMULTIHI_GCNT_REG); 1752 1753 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr, 1754 SXGBE_MMC_RXCRCERRLO_REG, 1755 SXGBE_MMC_RXCRCERRHI_REG); 1756 1757 stats->rx_length_errors = sxgbe_get_stat64(ioaddr, 1758 SXGBE_MMC_RXLENERRLO_REG, 1759 SXGBE_MMC_RXLENERRHI_REG); 1760 1761 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr, 1762 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG, 1763 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG); 1764 1765 stats->tx_bytes = sxgbe_get_stat64(ioaddr, 1766 SXGBE_MMC_TXOCTETLO_GCNT_REG, 1767 SXGBE_MMC_TXOCTETHI_GCNT_REG); 1768 1769 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG, 1770 SXGBE_MMC_TXFRAMEHI_GBCNT_REG); 1771 1772 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG, 1773 SXGBE_MMC_TXFRAMEHI_GCNT_REG); 1774 stats->tx_errors = count - stats->tx_errors; 1775 stats->tx_packets = count; 1776 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG, 1777 SXGBE_MMC_TXUFLWHI_GBCNT_REG); 1778 writel(0, ioaddr + SXGBE_MMC_CTL_REG); 1779 spin_unlock(&priv->stats_lock); 1780 1781 return stats; 1782 } 1783 1784 /* sxgbe_set_features - entry point to set offload features of the device. 1785 * @dev : device pointer. 1786 * @features : features which are required to be set. 1787 * Description: 1788 * This function is a driver entry point and called by Linux kernel whenever 1789 * any device features are set or reset by user. 1790 * Return value: 1791 * This function returns 0 after setting or resetting device features. 1792 */ 1793 static int sxgbe_set_features(struct net_device *dev, 1794 netdev_features_t features) 1795 { 1796 struct sxgbe_priv_data *priv = netdev_priv(dev); 1797 netdev_features_t changed = dev->features ^ features; 1798 1799 if (changed & NETIF_F_RXCSUM) { 1800 if (features & NETIF_F_RXCSUM) { 1801 priv->hw->mac->enable_rx_csum(priv->ioaddr); 1802 priv->rxcsum_insertion = true; 1803 } else { 1804 priv->hw->mac->disable_rx_csum(priv->ioaddr); 1805 priv->rxcsum_insertion = false; 1806 } 1807 } 1808 1809 return 0; 1810 } 1811 1812 /* sxgbe_change_mtu - entry point to change MTU size for the device. 1813 * @dev : device pointer. 1814 * @new_mtu : the new MTU size for the device. 1815 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 1816 * to drive packet transmission. Ethernet has an MTU of 1500 octets 1817 * (ETH_DATA_LEN). This value can be changed with ifconfig. 1818 * Return value: 1819 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1820 * file on failure. 1821 */ 1822 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu) 1823 { 1824 /* RFC 791, page 25, "Every internet module must be able to forward 1825 * a datagram of 68 octets without further fragmentation." 1826 */ 1827 if (new_mtu < MIN_MTU || (new_mtu > MAX_MTU)) { 1828 netdev_err(dev, "invalid MTU, MTU should be in between %d and %d\n", 1829 MIN_MTU, MAX_MTU); 1830 return -EINVAL; 1831 } 1832 1833 /* Return if the buffer sizes will not change */ 1834 if (dev->mtu == new_mtu) 1835 return 0; 1836 1837 dev->mtu = new_mtu; 1838 1839 if (!netif_running(dev)) 1840 return 0; 1841 1842 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is 1843 * changed then reinitilisation of the receive ring buffers need to be 1844 * done. Hence bring interface down and bring interface back up 1845 */ 1846 sxgbe_release(dev); 1847 return sxgbe_open(dev); 1848 } 1849 1850 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr, 1851 unsigned int reg_n) 1852 { 1853 unsigned long data; 1854 1855 data = (addr[5] << 8) | addr[4]; 1856 /* For MAC Addr registers se have to set the Address Enable (AE) 1857 * bit that has no effect on the High Reg 0 where the bit 31 (MO) 1858 * is RO. 1859 */ 1860 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n)); 1861 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 1862 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n)); 1863 } 1864 1865 /** 1866 * sxgbe_set_rx_mode - entry point for setting different receive mode of 1867 * a device. unicast, multicast addressing 1868 * @dev : pointer to the device structure 1869 * Description: 1870 * This function is a driver entry point which gets called by the kernel 1871 * whenever different receive mode like unicast, multicast and promiscuous 1872 * must be enabled/disabled. 1873 * Return value: 1874 * void. 1875 */ 1876 static void sxgbe_set_rx_mode(struct net_device *dev) 1877 { 1878 struct sxgbe_priv_data *priv = netdev_priv(dev); 1879 void __iomem *ioaddr = (void __iomem *)priv->ioaddr; 1880 unsigned int value = 0; 1881 u32 mc_filter[2]; 1882 struct netdev_hw_addr *ha; 1883 int reg = 1; 1884 1885 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n", 1886 __func__, netdev_mc_count(dev), netdev_uc_count(dev)); 1887 1888 if (dev->flags & IFF_PROMISC) { 1889 value = SXGBE_FRAME_FILTER_PR; 1890 1891 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) || 1892 (dev->flags & IFF_ALLMULTI)) { 1893 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */ 1894 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH); 1895 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW); 1896 1897 } else if (!netdev_mc_empty(dev)) { 1898 /* Hash filter for multicast */ 1899 value = SXGBE_FRAME_FILTER_HMC; 1900 1901 memset(mc_filter, 0, sizeof(mc_filter)); 1902 netdev_for_each_mc_addr(ha, dev) { 1903 /* The upper 6 bits of the calculated CRC are used to 1904 * index the contens of the hash table 1905 */ 1906 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; 1907 1908 /* The most significant bit determines the register to 1909 * use (H/L) while the other 5 bits determine the bit 1910 * within the register. 1911 */ 1912 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 1913 } 1914 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW); 1915 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH); 1916 } 1917 1918 /* Handle multiple unicast addresses (perfect filtering) */ 1919 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES) 1920 /* Switch to promiscuous mode if more than 16 addrs 1921 * are required 1922 */ 1923 value |= SXGBE_FRAME_FILTER_PR; 1924 else { 1925 netdev_for_each_uc_addr(ha, dev) { 1926 sxgbe_set_umac_addr(ioaddr, ha->addr, reg); 1927 reg++; 1928 } 1929 } 1930 #ifdef FRAME_FILTER_DEBUG 1931 /* Enable Receive all mode (to debug filtering_fail errors) */ 1932 value |= SXGBE_FRAME_FILTER_RA; 1933 #endif 1934 writel(value, ioaddr + SXGBE_FRAME_FILTER); 1935 1936 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n", 1937 readl(ioaddr + SXGBE_FRAME_FILTER), 1938 readl(ioaddr + SXGBE_HASH_HIGH), 1939 readl(ioaddr + SXGBE_HASH_LOW)); 1940 } 1941 1942 #ifdef CONFIG_NET_POLL_CONTROLLER 1943 /** 1944 * sxgbe_poll_controller - entry point for polling receive by device 1945 * @dev : pointer to the device structure 1946 * Description: 1947 * This function is used by NETCONSOLE and other diagnostic tools 1948 * to allow network I/O with interrupts disabled. 1949 * Return value: 1950 * Void. 1951 */ 1952 static void sxgbe_poll_controller(struct net_device *dev) 1953 { 1954 struct sxgbe_priv_data *priv = netdev_priv(dev); 1955 1956 disable_irq(priv->irq); 1957 sxgbe_rx_interrupt(priv->irq, dev); 1958 enable_irq(priv->irq); 1959 } 1960 #endif 1961 1962 /* sxgbe_ioctl - Entry point for the Ioctl 1963 * @dev: Device pointer. 1964 * @rq: An IOCTL specefic structure, that can contain a pointer to 1965 * a proprietary structure used to pass information to the driver. 1966 * @cmd: IOCTL command 1967 * Description: 1968 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 1969 */ 1970 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1971 { 1972 struct sxgbe_priv_data *priv = netdev_priv(dev); 1973 int ret = -EOPNOTSUPP; 1974 1975 if (!netif_running(dev)) 1976 return -EINVAL; 1977 1978 switch (cmd) { 1979 case SIOCGMIIPHY: 1980 case SIOCGMIIREG: 1981 case SIOCSMIIREG: 1982 if (!priv->phydev) 1983 return -EINVAL; 1984 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 1985 break; 1986 default: 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static const struct net_device_ops sxgbe_netdev_ops = { 1994 .ndo_open = sxgbe_open, 1995 .ndo_start_xmit = sxgbe_xmit, 1996 .ndo_stop = sxgbe_release, 1997 .ndo_get_stats64 = sxgbe_get_stats64, 1998 .ndo_change_mtu = sxgbe_change_mtu, 1999 .ndo_set_features = sxgbe_set_features, 2000 .ndo_set_rx_mode = sxgbe_set_rx_mode, 2001 .ndo_tx_timeout = sxgbe_tx_timeout, 2002 .ndo_do_ioctl = sxgbe_ioctl, 2003 #ifdef CONFIG_NET_POLL_CONTROLLER 2004 .ndo_poll_controller = sxgbe_poll_controller, 2005 #endif 2006 .ndo_set_mac_address = eth_mac_addr, 2007 }; 2008 2009 /* Get the hardware ops */ 2010 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr) 2011 { 2012 ops_ptr->mac = sxgbe_get_core_ops(); 2013 ops_ptr->desc = sxgbe_get_desc_ops(); 2014 ops_ptr->dma = sxgbe_get_dma_ops(); 2015 ops_ptr->mtl = sxgbe_get_mtl_ops(); 2016 2017 /* set the MDIO communication Address/Data regisers */ 2018 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG; 2019 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG; 2020 2021 /* Assigning the default link settings 2022 * no SXGBE defined default values to be set in registers, 2023 * so assigning as 0 for port and duplex 2024 */ 2025 ops_ptr->link.port = 0; 2026 ops_ptr->link.duplex = 0; 2027 ops_ptr->link.speed = SXGBE_SPEED_10G; 2028 } 2029 2030 /** 2031 * sxgbe_hw_init - Init the GMAC device 2032 * @priv: driver private structure 2033 * Description: this function checks the HW capability 2034 * (if supported) and sets the driver's features. 2035 */ 2036 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv) 2037 { 2038 u32 ctrl_ids; 2039 2040 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL); 2041 if(!priv->hw) 2042 return -ENOMEM; 2043 2044 /* get the hardware ops */ 2045 sxgbe_get_ops(priv->hw); 2046 2047 /* get the controller id */ 2048 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr); 2049 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16; 2050 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff); 2051 pr_info("user ID: 0x%x, Controller ID: 0x%x\n", 2052 priv->hw->ctrl_uid, priv->hw->ctrl_id); 2053 2054 /* get the H/W features */ 2055 if (!sxgbe_get_hw_features(priv)) 2056 pr_info("Hardware features not found\n"); 2057 2058 if (priv->hw_cap.tx_csum_offload) 2059 pr_info("TX Checksum offload supported\n"); 2060 2061 if (priv->hw_cap.rx_csum_offload) 2062 pr_info("RX Checksum offload supported\n"); 2063 2064 return 0; 2065 } 2066 2067 static int sxgbe_sw_reset(void __iomem *addr) 2068 { 2069 int retry_count = 10; 2070 2071 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG); 2072 while (retry_count--) { 2073 if (!(readl(addr + SXGBE_DMA_MODE_REG) & 2074 SXGBE_DMA_SOFT_RESET)) 2075 break; 2076 mdelay(10); 2077 } 2078 2079 if (retry_count < 0) 2080 return -EBUSY; 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * sxgbe_drv_probe 2087 * @device: device pointer 2088 * @plat_dat: platform data pointer 2089 * @addr: iobase memory address 2090 * Description: this is the main probe function used to 2091 * call the alloc_etherdev, allocate the priv structure. 2092 */ 2093 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device, 2094 struct sxgbe_plat_data *plat_dat, 2095 void __iomem *addr) 2096 { 2097 struct sxgbe_priv_data *priv; 2098 struct net_device *ndev; 2099 int ret; 2100 u8 queue_num; 2101 2102 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data), 2103 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES); 2104 if (!ndev) 2105 return NULL; 2106 2107 SET_NETDEV_DEV(ndev, device); 2108 2109 priv = netdev_priv(ndev); 2110 priv->device = device; 2111 priv->dev = ndev; 2112 2113 sxgbe_set_ethtool_ops(ndev); 2114 priv->plat = plat_dat; 2115 priv->ioaddr = addr; 2116 2117 ret = sxgbe_sw_reset(priv->ioaddr); 2118 if (ret) 2119 goto error_free_netdev; 2120 2121 /* Verify driver arguments */ 2122 sxgbe_verify_args(); 2123 2124 /* Init MAC and get the capabilities */ 2125 ret = sxgbe_hw_init(priv); 2126 if (ret) 2127 goto error_free_netdev; 2128 2129 /* allocate memory resources for Descriptor rings */ 2130 ret = txring_mem_alloc(priv); 2131 if (ret) 2132 goto error_free_hw; 2133 2134 ret = rxring_mem_alloc(priv); 2135 if (ret) 2136 goto error_free_hw; 2137 2138 ndev->netdev_ops = &sxgbe_netdev_ops; 2139 2140 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2141 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 | 2142 NETIF_F_GRO; 2143 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2144 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO); 2145 2146 /* assign filtering support */ 2147 ndev->priv_flags |= IFF_UNICAST_FLT; 2148 2149 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2150 2151 /* Enable TCP segmentation offload for all DMA channels */ 2152 if (priv->hw_cap.tcpseg_offload) { 2153 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 2154 priv->hw->dma->enable_tso(priv->ioaddr, queue_num); 2155 } 2156 } 2157 2158 /* Enable Rx checksum offload */ 2159 if (priv->hw_cap.rx_csum_offload) { 2160 priv->hw->mac->enable_rx_csum(priv->ioaddr); 2161 priv->rxcsum_insertion = true; 2162 } 2163 2164 /* Initialise pause frame settings */ 2165 priv->rx_pause = 1; 2166 priv->tx_pause = 1; 2167 2168 /* Rx Watchdog is available, enable depend on platform data */ 2169 if (!priv->plat->riwt_off) { 2170 priv->use_riwt = 1; 2171 pr_info("Enable RX Mitigation via HW Watchdog Timer\n"); 2172 } 2173 2174 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64); 2175 2176 spin_lock_init(&priv->stats_lock); 2177 2178 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME); 2179 if (IS_ERR(priv->sxgbe_clk)) { 2180 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n", 2181 __func__); 2182 goto error_napi_del; 2183 } 2184 2185 /* If a specific clk_csr value is passed from the platform 2186 * this means that the CSR Clock Range selection cannot be 2187 * changed at run-time and it is fixed. Viceversa the driver'll try to 2188 * set the MDC clock dynamically according to the csr actual 2189 * clock input. 2190 */ 2191 if (!priv->plat->clk_csr) 2192 sxgbe_clk_csr_set(priv); 2193 else 2194 priv->clk_csr = priv->plat->clk_csr; 2195 2196 /* MDIO bus Registration */ 2197 ret = sxgbe_mdio_register(ndev); 2198 if (ret < 0) { 2199 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n", 2200 __func__, priv->plat->bus_id); 2201 goto error_clk_put; 2202 } 2203 2204 ret = register_netdev(ndev); 2205 if (ret) { 2206 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2207 goto error_mdio_unregister; 2208 } 2209 2210 sxgbe_check_ether_addr(priv); 2211 2212 return priv; 2213 2214 error_mdio_unregister: 2215 sxgbe_mdio_unregister(ndev); 2216 error_clk_put: 2217 clk_put(priv->sxgbe_clk); 2218 error_napi_del: 2219 netif_napi_del(&priv->napi); 2220 error_free_hw: 2221 kfree(priv->hw); 2222 error_free_netdev: 2223 free_netdev(ndev); 2224 2225 return NULL; 2226 } 2227 2228 /** 2229 * sxgbe_drv_remove 2230 * @ndev: net device pointer 2231 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2232 * changes the link status, releases the DMA descriptor rings. 2233 */ 2234 int sxgbe_drv_remove(struct net_device *ndev) 2235 { 2236 struct sxgbe_priv_data *priv = netdev_priv(ndev); 2237 u8 queue_num; 2238 2239 netdev_info(ndev, "%s: removing driver\n", __func__); 2240 2241 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 2242 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num); 2243 } 2244 2245 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 2246 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 2247 2248 priv->hw->mac->enable_tx(priv->ioaddr, false); 2249 priv->hw->mac->enable_rx(priv->ioaddr, false); 2250 2251 unregister_netdev(ndev); 2252 2253 sxgbe_mdio_unregister(ndev); 2254 2255 clk_put(priv->sxgbe_clk); 2256 2257 netif_napi_del(&priv->napi); 2258 2259 kfree(priv->hw); 2260 2261 free_netdev(ndev); 2262 2263 return 0; 2264 } 2265 2266 #ifdef CONFIG_PM 2267 int sxgbe_suspend(struct net_device *ndev) 2268 { 2269 return 0; 2270 } 2271 2272 int sxgbe_resume(struct net_device *ndev) 2273 { 2274 return 0; 2275 } 2276 2277 int sxgbe_freeze(struct net_device *ndev) 2278 { 2279 return -ENOSYS; 2280 } 2281 2282 int sxgbe_restore(struct net_device *ndev) 2283 { 2284 return -ENOSYS; 2285 } 2286 #endif /* CONFIG_PM */ 2287 2288 /* Driver is configured as Platform driver */ 2289 static int __init sxgbe_init(void) 2290 { 2291 int ret; 2292 2293 ret = sxgbe_register_platform(); 2294 if (ret) 2295 goto err; 2296 return 0; 2297 err: 2298 pr_err("driver registration failed\n"); 2299 return ret; 2300 } 2301 2302 static void __exit sxgbe_exit(void) 2303 { 2304 sxgbe_unregister_platform(); 2305 } 2306 2307 module_init(sxgbe_init); 2308 module_exit(sxgbe_exit); 2309 2310 #ifndef MODULE 2311 static int __init sxgbe_cmdline_opt(char *str) 2312 { 2313 char *opt; 2314 2315 if (!str || !*str) 2316 return -EINVAL; 2317 while ((opt = strsep(&str, ",")) != NULL) { 2318 if (!strncmp(opt, "eee_timer:", 6)) { 2319 if (kstrtoint(opt + 10, 0, &eee_timer)) 2320 goto err; 2321 } 2322 } 2323 return 0; 2324 2325 err: 2326 pr_err("%s: ERROR broken module parameter conversion\n", __func__); 2327 return -EINVAL; 2328 } 2329 2330 __setup("sxgbeeth=", sxgbe_cmdline_opt); 2331 #endif /* MODULE */ 2332 2333 2334 2335 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver"); 2336 2337 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 2338 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value"); 2339 2340 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>"); 2341 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>"); 2342 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>"); 2343 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>"); 2344 2345 MODULE_LICENSE("GPL"); 2346