1 /* 10G controller driver for Samsung SoCs 2 * 3 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/delay.h> 13 #include <linux/export.h> 14 #include <linux/io.h> 15 #include <linux/netdevice.h> 16 #include <linux/phy.h> 17 18 #include "sxgbe_common.h" 19 #include "sxgbe_dma.h" 20 #include "sxgbe_reg.h" 21 #include "sxgbe_desc.h" 22 23 /* DMA core initialization */ 24 static int sxgbe_dma_init(void __iomem *ioaddr, int fix_burst, int burst_map) 25 { 26 int retry_count = 10; 27 u32 reg_val; 28 29 /* reset the DMA */ 30 writel(SXGBE_DMA_SOFT_RESET, ioaddr + SXGBE_DMA_MODE_REG); 31 while (retry_count--) { 32 if (!(readl(ioaddr + SXGBE_DMA_MODE_REG) & 33 SXGBE_DMA_SOFT_RESET)) 34 break; 35 mdelay(10); 36 } 37 38 if (retry_count < 0) 39 return -EBUSY; 40 41 reg_val = readl(ioaddr + SXGBE_DMA_SYSBUS_MODE_REG); 42 43 /* if fix_burst = 0, Set UNDEF = 1 of DMA_Sys_Mode Register. 44 * if fix_burst = 1, Set UNDEF = 0 of DMA_Sys_Mode Register. 45 * burst_map is bitmap for BLEN[4, 8, 16, 32, 64, 128 and 256]. 46 * Set burst_map irrespective of fix_burst value. 47 */ 48 if (!fix_burst) 49 reg_val |= SXGBE_DMA_AXI_UNDEF_BURST; 50 51 /* write burst len map */ 52 reg_val |= (burst_map << SXGBE_DMA_BLENMAP_LSHIFT); 53 54 writel(reg_val, ioaddr + SXGBE_DMA_SYSBUS_MODE_REG); 55 56 return 0; 57 } 58 59 static void sxgbe_dma_channel_init(void __iomem *ioaddr, int cha_num, 60 int fix_burst, int pbl, dma_addr_t dma_tx, 61 dma_addr_t dma_rx, int t_rsize, int r_rsize) 62 { 63 u32 reg_val; 64 dma_addr_t dma_addr; 65 66 reg_val = readl(ioaddr + SXGBE_DMA_CHA_CTL_REG(cha_num)); 67 /* set the pbl */ 68 if (fix_burst) { 69 reg_val |= SXGBE_DMA_PBL_X8MODE; 70 writel(reg_val, ioaddr + SXGBE_DMA_CHA_CTL_REG(cha_num)); 71 /* program the TX pbl */ 72 reg_val = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num)); 73 reg_val |= (pbl << SXGBE_DMA_TXPBL_LSHIFT); 74 writel(reg_val, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num)); 75 /* program the RX pbl */ 76 reg_val = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cha_num)); 77 reg_val |= (pbl << SXGBE_DMA_RXPBL_LSHIFT); 78 writel(reg_val, ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cha_num)); 79 } 80 81 /* program desc registers */ 82 writel(upper_32_bits(dma_tx), 83 ioaddr + SXGBE_DMA_CHA_TXDESC_HADD_REG(cha_num)); 84 writel(lower_32_bits(dma_tx), 85 ioaddr + SXGBE_DMA_CHA_TXDESC_LADD_REG(cha_num)); 86 87 writel(upper_32_bits(dma_rx), 88 ioaddr + SXGBE_DMA_CHA_RXDESC_HADD_REG(cha_num)); 89 writel(lower_32_bits(dma_rx), 90 ioaddr + SXGBE_DMA_CHA_RXDESC_LADD_REG(cha_num)); 91 92 /* program tail pointers */ 93 /* assumption: upper 32 bits are constant and 94 * same as TX/RX desc list 95 */ 96 dma_addr = dma_tx + ((t_rsize - 1) * SXGBE_DESC_SIZE_BYTES); 97 writel(lower_32_bits(dma_addr), 98 ioaddr + SXGBE_DMA_CHA_TXDESC_TAILPTR_REG(cha_num)); 99 100 dma_addr = dma_rx + ((r_rsize - 1) * SXGBE_DESC_SIZE_BYTES); 101 writel(lower_32_bits(dma_addr), 102 ioaddr + SXGBE_DMA_CHA_RXDESC_LADD_REG(cha_num)); 103 /* program the ring sizes */ 104 writel(t_rsize - 1, ioaddr + SXGBE_DMA_CHA_TXDESC_RINGLEN_REG(cha_num)); 105 writel(r_rsize - 1, ioaddr + SXGBE_DMA_CHA_RXDESC_RINGLEN_REG(cha_num)); 106 107 /* Enable TX/RX interrupts */ 108 writel(SXGBE_DMA_ENA_INT, 109 ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(cha_num)); 110 } 111 112 static void sxgbe_enable_dma_transmission(void __iomem *ioaddr, int cha_num) 113 { 114 u32 tx_config; 115 116 tx_config = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num)); 117 tx_config |= SXGBE_TX_START_DMA; 118 writel(tx_config, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num)); 119 } 120 121 static void sxgbe_enable_dma_irq(void __iomem *ioaddr, int dma_cnum) 122 { 123 /* Enable TX/RX interrupts */ 124 writel(SXGBE_DMA_ENA_INT, 125 ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(dma_cnum)); 126 } 127 128 static void sxgbe_disable_dma_irq(void __iomem *ioaddr, int dma_cnum) 129 { 130 /* Disable TX/RX interrupts */ 131 writel(0, ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(dma_cnum)); 132 } 133 134 static void sxgbe_dma_start_tx(void __iomem *ioaddr, int tchannels) 135 { 136 int cnum; 137 u32 tx_ctl_reg; 138 139 for (cnum = 0; cnum < tchannels; cnum++) { 140 tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum)); 141 tx_ctl_reg |= SXGBE_TX_ENABLE; 142 writel(tx_ctl_reg, 143 ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum)); 144 } 145 } 146 147 static void sxgbe_dma_start_tx_queue(void __iomem *ioaddr, int dma_cnum) 148 { 149 u32 tx_ctl_reg; 150 151 tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum)); 152 tx_ctl_reg |= SXGBE_TX_ENABLE; 153 writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum)); 154 } 155 156 static void sxgbe_dma_stop_tx_queue(void __iomem *ioaddr, int dma_cnum) 157 { 158 u32 tx_ctl_reg; 159 160 tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum)); 161 tx_ctl_reg &= ~(SXGBE_TX_ENABLE); 162 writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum)); 163 } 164 165 static void sxgbe_dma_stop_tx(void __iomem *ioaddr, int tchannels) 166 { 167 int cnum; 168 u32 tx_ctl_reg; 169 170 for (cnum = 0; cnum < tchannels; cnum++) { 171 tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum)); 172 tx_ctl_reg &= ~(SXGBE_TX_ENABLE); 173 writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum)); 174 } 175 } 176 177 static void sxgbe_dma_start_rx(void __iomem *ioaddr, int rchannels) 178 { 179 int cnum; 180 u32 rx_ctl_reg; 181 182 for (cnum = 0; cnum < rchannels; cnum++) { 183 rx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum)); 184 rx_ctl_reg |= SXGBE_RX_ENABLE; 185 writel(rx_ctl_reg, 186 ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum)); 187 } 188 } 189 190 static void sxgbe_dma_stop_rx(void __iomem *ioaddr, int rchannels) 191 { 192 int cnum; 193 u32 rx_ctl_reg; 194 195 for (cnum = 0; cnum < rchannels; cnum++) { 196 rx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum)); 197 rx_ctl_reg &= ~(SXGBE_RX_ENABLE); 198 writel(rx_ctl_reg, ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum)); 199 } 200 } 201 202 static int sxgbe_tx_dma_int_status(void __iomem *ioaddr, int channel_no, 203 struct sxgbe_extra_stats *x) 204 { 205 u32 int_status = readl(ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no)); 206 u32 clear_val = 0; 207 u32 ret_val = 0; 208 209 /* TX Normal Interrupt Summary */ 210 if (likely(int_status & SXGBE_DMA_INT_STATUS_NIS)) { 211 x->normal_irq_n++; 212 if (int_status & SXGBE_DMA_INT_STATUS_TI) { 213 ret_val |= handle_tx; 214 x->tx_normal_irq_n++; 215 clear_val |= SXGBE_DMA_INT_STATUS_TI; 216 } 217 218 if (int_status & SXGBE_DMA_INT_STATUS_TBU) { 219 x->tx_underflow_irq++; 220 ret_val |= tx_bump_tc; 221 clear_val |= SXGBE_DMA_INT_STATUS_TBU; 222 } 223 } else if (unlikely(int_status & SXGBE_DMA_INT_STATUS_AIS)) { 224 /* TX Abnormal Interrupt Summary */ 225 if (int_status & SXGBE_DMA_INT_STATUS_TPS) { 226 ret_val |= tx_hard_error; 227 clear_val |= SXGBE_DMA_INT_STATUS_TPS; 228 x->tx_process_stopped_irq++; 229 } 230 231 if (int_status & SXGBE_DMA_INT_STATUS_FBE) { 232 ret_val |= tx_hard_error; 233 x->fatal_bus_error_irq++; 234 235 /* Assumption: FBE bit is the combination of 236 * all the bus access erros and cleared when 237 * the respective error bits cleared 238 */ 239 240 /* check for actual cause */ 241 if (int_status & SXGBE_DMA_INT_STATUS_TEB0) { 242 x->tx_read_transfer_err++; 243 clear_val |= SXGBE_DMA_INT_STATUS_TEB0; 244 } else { 245 x->tx_write_transfer_err++; 246 } 247 248 if (int_status & SXGBE_DMA_INT_STATUS_TEB1) { 249 x->tx_desc_access_err++; 250 clear_val |= SXGBE_DMA_INT_STATUS_TEB1; 251 } else { 252 x->tx_buffer_access_err++; 253 } 254 255 if (int_status & SXGBE_DMA_INT_STATUS_TEB2) { 256 x->tx_data_transfer_err++; 257 clear_val |= SXGBE_DMA_INT_STATUS_TEB2; 258 } 259 } 260 261 /* context descriptor error */ 262 if (int_status & SXGBE_DMA_INT_STATUS_CTXTERR) { 263 x->tx_ctxt_desc_err++; 264 clear_val |= SXGBE_DMA_INT_STATUS_CTXTERR; 265 } 266 } 267 268 /* clear the served bits */ 269 writel(clear_val, ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no)); 270 271 return ret_val; 272 } 273 274 static int sxgbe_rx_dma_int_status(void __iomem *ioaddr, int channel_no, 275 struct sxgbe_extra_stats *x) 276 { 277 u32 int_status = readl(ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no)); 278 u32 clear_val = 0; 279 u32 ret_val = 0; 280 281 /* RX Normal Interrupt Summary */ 282 if (likely(int_status & SXGBE_DMA_INT_STATUS_NIS)) { 283 x->normal_irq_n++; 284 if (int_status & SXGBE_DMA_INT_STATUS_RI) { 285 ret_val |= handle_rx; 286 x->rx_normal_irq_n++; 287 clear_val |= SXGBE_DMA_INT_STATUS_RI; 288 } 289 } else if (unlikely(int_status & SXGBE_DMA_INT_STATUS_AIS)) { 290 /* RX Abnormal Interrupt Summary */ 291 if (int_status & SXGBE_DMA_INT_STATUS_RBU) { 292 ret_val |= rx_bump_tc; 293 clear_val |= SXGBE_DMA_INT_STATUS_RBU; 294 x->rx_underflow_irq++; 295 } 296 297 if (int_status & SXGBE_DMA_INT_STATUS_RPS) { 298 ret_val |= rx_hard_error; 299 clear_val |= SXGBE_DMA_INT_STATUS_RPS; 300 x->rx_process_stopped_irq++; 301 } 302 303 if (int_status & SXGBE_DMA_INT_STATUS_FBE) { 304 ret_val |= rx_hard_error; 305 x->fatal_bus_error_irq++; 306 307 /* Assumption: FBE bit is the combination of 308 * all the bus access erros and cleared when 309 * the respective error bits cleared 310 */ 311 312 /* check for actual cause */ 313 if (int_status & SXGBE_DMA_INT_STATUS_REB0) { 314 x->rx_read_transfer_err++; 315 clear_val |= SXGBE_DMA_INT_STATUS_REB0; 316 } else { 317 x->rx_write_transfer_err++; 318 } 319 320 if (int_status & SXGBE_DMA_INT_STATUS_REB1) { 321 x->rx_desc_access_err++; 322 clear_val |= SXGBE_DMA_INT_STATUS_REB1; 323 } else { 324 x->rx_buffer_access_err++; 325 } 326 327 if (int_status & SXGBE_DMA_INT_STATUS_REB2) { 328 x->rx_data_transfer_err++; 329 clear_val |= SXGBE_DMA_INT_STATUS_REB2; 330 } 331 } 332 } 333 334 /* clear the served bits */ 335 writel(clear_val, ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no)); 336 337 return ret_val; 338 } 339 340 /* Program the HW RX Watchdog */ 341 static void sxgbe_dma_rx_watchdog(void __iomem *ioaddr, u32 riwt) 342 { 343 u32 que_num; 344 345 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, que_num) { 346 writel(riwt, 347 ioaddr + SXGBE_DMA_CHA_INT_RXWATCHTMR_REG(que_num)); 348 } 349 } 350 351 static void sxgbe_enable_tso(void __iomem *ioaddr, u8 chan_num) 352 { 353 u32 ctrl; 354 355 ctrl = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(chan_num)); 356 ctrl |= SXGBE_DMA_CHA_TXCTL_TSE_ENABLE; 357 writel(ctrl, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(chan_num)); 358 } 359 360 static const struct sxgbe_dma_ops sxgbe_dma_ops = { 361 .init = sxgbe_dma_init, 362 .cha_init = sxgbe_dma_channel_init, 363 .enable_dma_transmission = sxgbe_enable_dma_transmission, 364 .enable_dma_irq = sxgbe_enable_dma_irq, 365 .disable_dma_irq = sxgbe_disable_dma_irq, 366 .start_tx = sxgbe_dma_start_tx, 367 .start_tx_queue = sxgbe_dma_start_tx_queue, 368 .stop_tx = sxgbe_dma_stop_tx, 369 .stop_tx_queue = sxgbe_dma_stop_tx_queue, 370 .start_rx = sxgbe_dma_start_rx, 371 .stop_rx = sxgbe_dma_stop_rx, 372 .tx_dma_int_status = sxgbe_tx_dma_int_status, 373 .rx_dma_int_status = sxgbe_rx_dma_int_status, 374 .rx_watchdog = sxgbe_dma_rx_watchdog, 375 .enable_tso = sxgbe_enable_tso, 376 }; 377 378 const struct sxgbe_dma_ops *sxgbe_get_dma_ops(void) 379 { 380 return &sxgbe_dma_ops; 381 } 382