xref: /openbmc/linux/drivers/net/ethernet/renesas/sh_eth.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34 
35 #include "sh_eth.h"
36 
37 #define SH_ETH_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	| \
39 		NETIF_MSG_TIMER	| \
40 		NETIF_MSG_RX_ERR| \
41 		NETIF_MSG_TX_ERR)
42 
43 #define SH_ETH_OFFSET_INVALID	((u16)~0)
44 
45 #define SH_ETH_OFFSET_DEFAULTS			\
46 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47 
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 	SH_ETH_OFFSET_DEFAULTS,
50 
51 	[EDSR]		= 0x0000,
52 	[EDMR]		= 0x0400,
53 	[EDTRR]		= 0x0408,
54 	[EDRRR]		= 0x0410,
55 	[EESR]		= 0x0428,
56 	[EESIPR]	= 0x0430,
57 	[TDLAR]		= 0x0010,
58 	[TDFAR]		= 0x0014,
59 	[TDFXR]		= 0x0018,
60 	[TDFFR]		= 0x001c,
61 	[RDLAR]		= 0x0030,
62 	[RDFAR]		= 0x0034,
63 	[RDFXR]		= 0x0038,
64 	[RDFFR]		= 0x003c,
65 	[TRSCER]	= 0x0438,
66 	[RMFCR]		= 0x0440,
67 	[TFTR]		= 0x0448,
68 	[FDR]		= 0x0450,
69 	[RMCR]		= 0x0458,
70 	[RPADIR]	= 0x0460,
71 	[FCFTR]		= 0x0468,
72 	[CSMR]		= 0x04E4,
73 
74 	[ECMR]		= 0x0500,
75 	[ECSR]		= 0x0510,
76 	[ECSIPR]	= 0x0518,
77 	[PIR]		= 0x0520,
78 	[PSR]		= 0x0528,
79 	[PIPR]		= 0x052c,
80 	[RFLR]		= 0x0508,
81 	[APR]		= 0x0554,
82 	[MPR]		= 0x0558,
83 	[PFTCR]		= 0x055c,
84 	[PFRCR]		= 0x0560,
85 	[TPAUSER]	= 0x0564,
86 	[GECMR]		= 0x05b0,
87 	[BCULR]		= 0x05b4,
88 	[MAHR]		= 0x05c0,
89 	[MALR]		= 0x05c8,
90 	[TROCR]		= 0x0700,
91 	[CDCR]		= 0x0708,
92 	[LCCR]		= 0x0710,
93 	[CEFCR]		= 0x0740,
94 	[FRECR]		= 0x0748,
95 	[TSFRCR]	= 0x0750,
96 	[TLFRCR]	= 0x0758,
97 	[RFCR]		= 0x0760,
98 	[CERCR]		= 0x0768,
99 	[CEECR]		= 0x0770,
100 	[MAFCR]		= 0x0778,
101 	[RMII_MII]	= 0x0790,
102 
103 	[ARSTR]		= 0x0000,
104 	[TSU_CTRST]	= 0x0004,
105 	[TSU_FWEN0]	= 0x0010,
106 	[TSU_FWEN1]	= 0x0014,
107 	[TSU_FCM]	= 0x0018,
108 	[TSU_BSYSL0]	= 0x0020,
109 	[TSU_BSYSL1]	= 0x0024,
110 	[TSU_PRISL0]	= 0x0028,
111 	[TSU_PRISL1]	= 0x002c,
112 	[TSU_FWSL0]	= 0x0030,
113 	[TSU_FWSL1]	= 0x0034,
114 	[TSU_FWSLC]	= 0x0038,
115 	[TSU_QTAGM0]	= 0x0040,
116 	[TSU_QTAGM1]	= 0x0044,
117 	[TSU_FWSR]	= 0x0050,
118 	[TSU_FWINMK]	= 0x0054,
119 	[TSU_ADQT0]	= 0x0048,
120 	[TSU_ADQT1]	= 0x004c,
121 	[TSU_VTAG0]	= 0x0058,
122 	[TSU_VTAG1]	= 0x005c,
123 	[TSU_ADSBSY]	= 0x0060,
124 	[TSU_TEN]	= 0x0064,
125 	[TSU_POST1]	= 0x0070,
126 	[TSU_POST2]	= 0x0074,
127 	[TSU_POST3]	= 0x0078,
128 	[TSU_POST4]	= 0x007c,
129 	[TSU_ADRH0]	= 0x0100,
130 
131 	[TXNLCR0]	= 0x0080,
132 	[TXALCR0]	= 0x0084,
133 	[RXNLCR0]	= 0x0088,
134 	[RXALCR0]	= 0x008c,
135 	[FWNLCR0]	= 0x0090,
136 	[FWALCR0]	= 0x0094,
137 	[TXNLCR1]	= 0x00a0,
138 	[TXALCR1]	= 0x00a4,
139 	[RXNLCR1]	= 0x00a8,
140 	[RXALCR1]	= 0x00ac,
141 	[FWNLCR1]	= 0x00b0,
142 	[FWALCR1]	= 0x00b4,
143 };
144 
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 	SH_ETH_OFFSET_DEFAULTS,
147 
148 	[EDSR]		= 0x0000,
149 	[EDMR]		= 0x0400,
150 	[EDTRR]		= 0x0408,
151 	[EDRRR]		= 0x0410,
152 	[EESR]		= 0x0428,
153 	[EESIPR]	= 0x0430,
154 	[TDLAR]		= 0x0010,
155 	[TDFAR]		= 0x0014,
156 	[TDFXR]		= 0x0018,
157 	[TDFFR]		= 0x001c,
158 	[RDLAR]		= 0x0030,
159 	[RDFAR]		= 0x0034,
160 	[RDFXR]		= 0x0038,
161 	[RDFFR]		= 0x003c,
162 	[TRSCER]	= 0x0438,
163 	[RMFCR]		= 0x0440,
164 	[TFTR]		= 0x0448,
165 	[FDR]		= 0x0450,
166 	[RMCR]		= 0x0458,
167 	[RPADIR]	= 0x0460,
168 	[FCFTR]		= 0x0468,
169 	[CSMR]		= 0x04E4,
170 
171 	[ECMR]		= 0x0500,
172 	[RFLR]		= 0x0508,
173 	[ECSR]		= 0x0510,
174 	[ECSIPR]	= 0x0518,
175 	[PIR]		= 0x0520,
176 	[APR]		= 0x0554,
177 	[MPR]		= 0x0558,
178 	[PFTCR]		= 0x055c,
179 	[PFRCR]		= 0x0560,
180 	[TPAUSER]	= 0x0564,
181 	[MAHR]		= 0x05c0,
182 	[MALR]		= 0x05c8,
183 	[CEFCR]		= 0x0740,
184 	[FRECR]		= 0x0748,
185 	[TSFRCR]	= 0x0750,
186 	[TLFRCR]	= 0x0758,
187 	[RFCR]		= 0x0760,
188 	[MAFCR]		= 0x0778,
189 
190 	[ARSTR]		= 0x0000,
191 	[TSU_CTRST]	= 0x0004,
192 	[TSU_FWSLC]	= 0x0038,
193 	[TSU_VTAG0]	= 0x0058,
194 	[TSU_ADSBSY]	= 0x0060,
195 	[TSU_TEN]	= 0x0064,
196 	[TSU_POST1]	= 0x0070,
197 	[TSU_POST2]	= 0x0074,
198 	[TSU_POST3]	= 0x0078,
199 	[TSU_POST4]	= 0x007c,
200 	[TSU_ADRH0]	= 0x0100,
201 
202 	[TXNLCR0]	= 0x0080,
203 	[TXALCR0]	= 0x0084,
204 	[RXNLCR0]	= 0x0088,
205 	[RXALCR0]	= 0x008C,
206 };
207 
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 	SH_ETH_OFFSET_DEFAULTS,
210 
211 	[ECMR]		= 0x0300,
212 	[RFLR]		= 0x0308,
213 	[ECSR]		= 0x0310,
214 	[ECSIPR]	= 0x0318,
215 	[PIR]		= 0x0320,
216 	[PSR]		= 0x0328,
217 	[RDMLR]		= 0x0340,
218 	[IPGR]		= 0x0350,
219 	[APR]		= 0x0354,
220 	[MPR]		= 0x0358,
221 	[RFCF]		= 0x0360,
222 	[TPAUSER]	= 0x0364,
223 	[TPAUSECR]	= 0x0368,
224 	[MAHR]		= 0x03c0,
225 	[MALR]		= 0x03c8,
226 	[TROCR]		= 0x03d0,
227 	[CDCR]		= 0x03d4,
228 	[LCCR]		= 0x03d8,
229 	[CNDCR]		= 0x03dc,
230 	[CEFCR]		= 0x03e4,
231 	[FRECR]		= 0x03e8,
232 	[TSFRCR]	= 0x03ec,
233 	[TLFRCR]	= 0x03f0,
234 	[RFCR]		= 0x03f4,
235 	[MAFCR]		= 0x03f8,
236 
237 	[EDMR]		= 0x0200,
238 	[EDTRR]		= 0x0208,
239 	[EDRRR]		= 0x0210,
240 	[TDLAR]		= 0x0218,
241 	[RDLAR]		= 0x0220,
242 	[EESR]		= 0x0228,
243 	[EESIPR]	= 0x0230,
244 	[TRSCER]	= 0x0238,
245 	[RMFCR]		= 0x0240,
246 	[TFTR]		= 0x0248,
247 	[FDR]		= 0x0250,
248 	[RMCR]		= 0x0258,
249 	[TFUCR]		= 0x0264,
250 	[RFOCR]		= 0x0268,
251 	[RMIIMODE]      = 0x026c,
252 	[FCFTR]		= 0x0270,
253 	[TRIMD]		= 0x027c,
254 };
255 
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 	SH_ETH_OFFSET_DEFAULTS,
258 
259 	[ECMR]		= 0x0100,
260 	[RFLR]		= 0x0108,
261 	[ECSR]		= 0x0110,
262 	[ECSIPR]	= 0x0118,
263 	[PIR]		= 0x0120,
264 	[PSR]		= 0x0128,
265 	[RDMLR]		= 0x0140,
266 	[IPGR]		= 0x0150,
267 	[APR]		= 0x0154,
268 	[MPR]		= 0x0158,
269 	[TPAUSER]	= 0x0164,
270 	[RFCF]		= 0x0160,
271 	[TPAUSECR]	= 0x0168,
272 	[BCFRR]		= 0x016c,
273 	[MAHR]		= 0x01c0,
274 	[MALR]		= 0x01c8,
275 	[TROCR]		= 0x01d0,
276 	[CDCR]		= 0x01d4,
277 	[LCCR]		= 0x01d8,
278 	[CNDCR]		= 0x01dc,
279 	[CEFCR]		= 0x01e4,
280 	[FRECR]		= 0x01e8,
281 	[TSFRCR]	= 0x01ec,
282 	[TLFRCR]	= 0x01f0,
283 	[RFCR]		= 0x01f4,
284 	[MAFCR]		= 0x01f8,
285 	[RTRATE]	= 0x01fc,
286 
287 	[EDMR]		= 0x0000,
288 	[EDTRR]		= 0x0008,
289 	[EDRRR]		= 0x0010,
290 	[TDLAR]		= 0x0018,
291 	[RDLAR]		= 0x0020,
292 	[EESR]		= 0x0028,
293 	[EESIPR]	= 0x0030,
294 	[TRSCER]	= 0x0038,
295 	[RMFCR]		= 0x0040,
296 	[TFTR]		= 0x0048,
297 	[FDR]		= 0x0050,
298 	[RMCR]		= 0x0058,
299 	[TFUCR]		= 0x0064,
300 	[RFOCR]		= 0x0068,
301 	[FCFTR]		= 0x0070,
302 	[RPADIR]	= 0x0078,
303 	[TRIMD]		= 0x007c,
304 	[RBWAR]		= 0x00c8,
305 	[RDFAR]		= 0x00cc,
306 	[TBRAR]		= 0x00d4,
307 	[TDFAR]		= 0x00d8,
308 };
309 
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 	SH_ETH_OFFSET_DEFAULTS,
312 
313 	[EDMR]		= 0x0000,
314 	[EDTRR]		= 0x0004,
315 	[EDRRR]		= 0x0008,
316 	[TDLAR]		= 0x000c,
317 	[RDLAR]		= 0x0010,
318 	[EESR]		= 0x0014,
319 	[EESIPR]	= 0x0018,
320 	[TRSCER]	= 0x001c,
321 	[RMFCR]		= 0x0020,
322 	[TFTR]		= 0x0024,
323 	[FDR]		= 0x0028,
324 	[RMCR]		= 0x002c,
325 	[EDOCR]		= 0x0030,
326 	[FCFTR]		= 0x0034,
327 	[RPADIR]	= 0x0038,
328 	[TRIMD]		= 0x003c,
329 	[RBWAR]		= 0x0040,
330 	[RDFAR]		= 0x0044,
331 	[TBRAR]		= 0x004c,
332 	[TDFAR]		= 0x0050,
333 
334 	[ECMR]		= 0x0160,
335 	[ECSR]		= 0x0164,
336 	[ECSIPR]	= 0x0168,
337 	[PIR]		= 0x016c,
338 	[MAHR]		= 0x0170,
339 	[MALR]		= 0x0174,
340 	[RFLR]		= 0x0178,
341 	[PSR]		= 0x017c,
342 	[TROCR]		= 0x0180,
343 	[CDCR]		= 0x0184,
344 	[LCCR]		= 0x0188,
345 	[CNDCR]		= 0x018c,
346 	[CEFCR]		= 0x0194,
347 	[FRECR]		= 0x0198,
348 	[TSFRCR]	= 0x019c,
349 	[TLFRCR]	= 0x01a0,
350 	[RFCR]		= 0x01a4,
351 	[MAFCR]		= 0x01a8,
352 	[IPGR]		= 0x01b4,
353 	[APR]		= 0x01b8,
354 	[MPR]		= 0x01bc,
355 	[TPAUSER]	= 0x01c4,
356 	[BCFR]		= 0x01cc,
357 
358 	[ARSTR]		= 0x0000,
359 	[TSU_CTRST]	= 0x0004,
360 	[TSU_FWEN0]	= 0x0010,
361 	[TSU_FWEN1]	= 0x0014,
362 	[TSU_FCM]	= 0x0018,
363 	[TSU_BSYSL0]	= 0x0020,
364 	[TSU_BSYSL1]	= 0x0024,
365 	[TSU_PRISL0]	= 0x0028,
366 	[TSU_PRISL1]	= 0x002c,
367 	[TSU_FWSL0]	= 0x0030,
368 	[TSU_FWSL1]	= 0x0034,
369 	[TSU_FWSLC]	= 0x0038,
370 	[TSU_QTAGM0]	= 0x0040,
371 	[TSU_QTAGM1]	= 0x0044,
372 	[TSU_ADQT0]	= 0x0048,
373 	[TSU_ADQT1]	= 0x004c,
374 	[TSU_FWSR]	= 0x0050,
375 	[TSU_FWINMK]	= 0x0054,
376 	[TSU_ADSBSY]	= 0x0060,
377 	[TSU_TEN]	= 0x0064,
378 	[TSU_POST1]	= 0x0070,
379 	[TSU_POST2]	= 0x0074,
380 	[TSU_POST3]	= 0x0078,
381 	[TSU_POST4]	= 0x007c,
382 
383 	[TXNLCR0]	= 0x0080,
384 	[TXALCR0]	= 0x0084,
385 	[RXNLCR0]	= 0x0088,
386 	[RXALCR0]	= 0x008c,
387 	[FWNLCR0]	= 0x0090,
388 	[FWALCR0]	= 0x0094,
389 	[TXNLCR1]	= 0x00a0,
390 	[TXALCR1]	= 0x00a4,
391 	[RXNLCR1]	= 0x00a8,
392 	[RXALCR1]	= 0x00ac,
393 	[FWNLCR1]	= 0x00b0,
394 	[FWALCR1]	= 0x00b4,
395 
396 	[TSU_ADRH0]	= 0x0100,
397 };
398 
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401 
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
403 {
404 	struct sh_eth_private *mdp = netdev_priv(ndev);
405 	u16 offset = mdp->reg_offset[enum_index];
406 
407 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 		return;
409 
410 	iowrite32(data, mdp->addr + offset);
411 }
412 
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return ~0U;
420 
421 	return ioread32(mdp->addr + offset);
422 }
423 
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 			  u32 set)
426 {
427 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 		     enum_index);
429 }
430 
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
432 {
433 	return mdp->reg_offset[enum_index];
434 }
435 
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 			     int enum_index)
438 {
439 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
440 
441 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 		return;
443 
444 	iowrite32(data, mdp->tsu_addr + offset);
445 }
446 
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
448 {
449 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
450 
451 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 		return ~0U;
453 
454 	return ioread32(mdp->tsu_addr + offset);
455 }
456 
457 static void sh_eth_soft_swap(char *src, int len)
458 {
459 #ifdef __LITTLE_ENDIAN
460 	u32 *p = (u32 *)src;
461 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
462 
463 	for (; p < maxp; p++)
464 		*p = swab32(*p);
465 #endif
466 }
467 
468 static void sh_eth_select_mii(struct net_device *ndev)
469 {
470 	struct sh_eth_private *mdp = netdev_priv(ndev);
471 	u32 value;
472 
473 	switch (mdp->phy_interface) {
474 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 		value = 0x3;
476 		break;
477 	case PHY_INTERFACE_MODE_GMII:
478 		value = 0x2;
479 		break;
480 	case PHY_INTERFACE_MODE_MII:
481 		value = 0x1;
482 		break;
483 	case PHY_INTERFACE_MODE_RMII:
484 		value = 0x0;
485 		break;
486 	default:
487 		netdev_warn(ndev,
488 			    "PHY interface mode was not setup. Set to MII.\n");
489 		value = 0x1;
490 		break;
491 	}
492 
493 	sh_eth_write(ndev, value, RMII_MII);
494 }
495 
496 static void sh_eth_set_duplex(struct net_device *ndev)
497 {
498 	struct sh_eth_private *mdp = netdev_priv(ndev);
499 
500 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
501 }
502 
503 static void sh_eth_chip_reset(struct net_device *ndev)
504 {
505 	struct sh_eth_private *mdp = netdev_priv(ndev);
506 
507 	/* reset device */
508 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 	mdelay(1);
510 }
511 
512 static int sh_eth_soft_reset(struct net_device *ndev)
513 {
514 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 	mdelay(3);
516 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
517 
518 	return 0;
519 }
520 
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
522 {
523 	int cnt;
524 
525 	for (cnt = 100; cnt > 0; cnt--) {
526 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 			return 0;
528 		mdelay(1);
529 	}
530 
531 	netdev_err(ndev, "Device reset failed\n");
532 	return -ETIMEDOUT;
533 }
534 
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
536 {
537 	struct sh_eth_private *mdp = netdev_priv(ndev);
538 	int ret;
539 
540 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
542 
543 	ret = sh_eth_check_soft_reset(ndev);
544 	if (ret)
545 		return ret;
546 
547 	/* Table Init */
548 	sh_eth_write(ndev, 0, TDLAR);
549 	sh_eth_write(ndev, 0, TDFAR);
550 	sh_eth_write(ndev, 0, TDFXR);
551 	sh_eth_write(ndev, 0, TDFFR);
552 	sh_eth_write(ndev, 0, RDLAR);
553 	sh_eth_write(ndev, 0, RDFAR);
554 	sh_eth_write(ndev, 0, RDFXR);
555 	sh_eth_write(ndev, 0, RDFFR);
556 
557 	/* Reset HW CRC register */
558 	if (mdp->cd->hw_checksum)
559 		sh_eth_write(ndev, 0, CSMR);
560 
561 	/* Select MII mode */
562 	if (mdp->cd->select_mii)
563 		sh_eth_select_mii(ndev);
564 
565 	return ret;
566 }
567 
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
569 {
570 	struct sh_eth_private *mdp = netdev_priv(ndev);
571 
572 	switch (mdp->speed) {
573 	case 10: /* 10BASE */
574 		sh_eth_write(ndev, GECMR_10, GECMR);
575 		break;
576 	case 100:/* 100BASE */
577 		sh_eth_write(ndev, GECMR_100, GECMR);
578 		break;
579 	case 1000: /* 1000BASE */
580 		sh_eth_write(ndev, GECMR_1000, GECMR);
581 		break;
582 	}
583 }
584 
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 	.soft_reset	= sh_eth_soft_reset_gether,
589 
590 	.chip_reset	= sh_eth_chip_reset,
591 	.set_duplex	= sh_eth_set_duplex,
592 
593 	.register_type	= SH_ETH_REG_FAST_RZ,
594 
595 	.edtrr_trns	= EDTRR_TRNS_GETHER,
596 	.ecsr_value	= ECSR_ICD,
597 	.ecsipr_value	= ECSIPR_ICDIP,
598 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 			  EESIPR_ECIIP |
601 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 			  EESIPR_RMAFIP | EESIPR_RRFIP |
604 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
605 			  EESIPR_PREIP | EESIPR_CERFIP,
606 
607 	.tx_check	= EESR_TC1 | EESR_FTC,
608 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 			  EESR_TDE,
611 	.fdr_value	= 0x0000070f,
612 
613 	.no_psr		= 1,
614 	.apr		= 1,
615 	.mpr		= 1,
616 	.tpauser	= 1,
617 	.hw_swap	= 1,
618 	.rpadir		= 1,
619 	.no_trimd	= 1,
620 	.no_ade		= 1,
621 	.xdfar_rw	= 1,
622 	.hw_checksum	= 1,
623 	.tsu		= 1,
624 	.no_tx_cntrs	= 1,
625 };
626 
627 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
628 {
629 	sh_eth_chip_reset(ndev);
630 
631 	sh_eth_select_mii(ndev);
632 }
633 
634 /* R8A7740 */
635 static struct sh_eth_cpu_data r8a7740_data = {
636 	.soft_reset	= sh_eth_soft_reset_gether,
637 
638 	.chip_reset	= sh_eth_chip_reset_r8a7740,
639 	.set_duplex	= sh_eth_set_duplex,
640 	.set_rate	= sh_eth_set_rate_gether,
641 
642 	.register_type	= SH_ETH_REG_GIGABIT,
643 
644 	.edtrr_trns	= EDTRR_TRNS_GETHER,
645 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
647 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
648 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
649 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
650 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
651 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
652 			  EESIPR_CEEFIP | EESIPR_CELFIP |
653 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
654 			  EESIPR_PREIP | EESIPR_CERFIP,
655 
656 	.tx_check	= EESR_TC1 | EESR_FTC,
657 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
658 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
659 			  EESR_TDE,
660 	.fdr_value	= 0x0000070f,
661 
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.bculr		= 1,
666 	.hw_swap	= 1,
667 	.rpadir		= 1,
668 	.no_trimd	= 1,
669 	.no_ade		= 1,
670 	.xdfar_rw	= 1,
671 	.hw_checksum	= 1,
672 	.tsu		= 1,
673 	.select_mii	= 1,
674 	.magic		= 1,
675 	.cexcr		= 1,
676 };
677 
678 /* There is CPU dependent code */
679 static void sh_eth_set_rate_rcar(struct net_device *ndev)
680 {
681 	struct sh_eth_private *mdp = netdev_priv(ndev);
682 
683 	switch (mdp->speed) {
684 	case 10: /* 10BASE */
685 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
686 		break;
687 	case 100:/* 100BASE */
688 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
689 		break;
690 	}
691 }
692 
693 /* R-Car Gen1 */
694 static struct sh_eth_cpu_data rcar_gen1_data = {
695 	.soft_reset	= sh_eth_soft_reset,
696 
697 	.set_duplex	= sh_eth_set_duplex,
698 	.set_rate	= sh_eth_set_rate_rcar,
699 
700 	.register_type	= SH_ETH_REG_FAST_RCAR,
701 
702 	.edtrr_trns	= EDTRR_TRNS_ETHER,
703 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
704 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
705 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
706 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
707 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
708 			  EESIPR_RMAFIP | EESIPR_RRFIP |
709 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
710 			  EESIPR_PREIP | EESIPR_CERFIP,
711 
712 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
713 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
714 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
715 	.fdr_value	= 0x00000f0f,
716 
717 	.apr		= 1,
718 	.mpr		= 1,
719 	.tpauser	= 1,
720 	.hw_swap	= 1,
721 	.no_xdfar	= 1,
722 };
723 
724 /* R-Car Gen2 and RZ/G1 */
725 static struct sh_eth_cpu_data rcar_gen2_data = {
726 	.soft_reset	= sh_eth_soft_reset,
727 
728 	.set_duplex	= sh_eth_set_duplex,
729 	.set_rate	= sh_eth_set_rate_rcar,
730 
731 	.register_type	= SH_ETH_REG_FAST_RCAR,
732 
733 	.edtrr_trns	= EDTRR_TRNS_ETHER,
734 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
735 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
736 			  ECSIPR_MPDIP,
737 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
738 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
739 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
740 			  EESIPR_RMAFIP | EESIPR_RRFIP |
741 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
742 			  EESIPR_PREIP | EESIPR_CERFIP,
743 
744 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
745 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
746 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
747 	.fdr_value	= 0x00000f0f,
748 
749 	.trscer_err_mask = DESC_I_RINT8,
750 
751 	.apr		= 1,
752 	.mpr		= 1,
753 	.tpauser	= 1,
754 	.hw_swap	= 1,
755 	.no_xdfar	= 1,
756 	.rmiimode	= 1,
757 	.magic		= 1,
758 };
759 
760 /* R8A77980 */
761 static struct sh_eth_cpu_data r8a77980_data = {
762 	.soft_reset	= sh_eth_soft_reset_gether,
763 
764 	.set_duplex	= sh_eth_set_duplex,
765 	.set_rate	= sh_eth_set_rate_gether,
766 
767 	.register_type  = SH_ETH_REG_GIGABIT,
768 
769 	.edtrr_trns	= EDTRR_TRNS_GETHER,
770 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
771 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
772 			  ECSIPR_MPDIP,
773 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
774 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
775 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
776 			  EESIPR_RMAFIP | EESIPR_RRFIP |
777 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
778 			  EESIPR_PREIP | EESIPR_CERFIP,
779 
780 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
781 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
782 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
783 			  EESR_TFE | EESR_TDE | EESR_ECI,
784 	.fdr_value	= 0x0000070f,
785 
786 	.apr		= 1,
787 	.mpr		= 1,
788 	.tpauser	= 1,
789 	.bculr		= 1,
790 	.hw_swap	= 1,
791 	.nbst		= 1,
792 	.rpadir		= 1,
793 	.no_trimd	= 1,
794 	.no_ade		= 1,
795 	.xdfar_rw	= 1,
796 	.hw_checksum	= 1,
797 	.select_mii	= 1,
798 	.magic		= 1,
799 	.cexcr		= 1,
800 };
801 
802 /* R7S9210 */
803 static struct sh_eth_cpu_data r7s9210_data = {
804 	.soft_reset	= sh_eth_soft_reset,
805 
806 	.set_duplex	= sh_eth_set_duplex,
807 	.set_rate	= sh_eth_set_rate_rcar,
808 
809 	.register_type	= SH_ETH_REG_FAST_SH4,
810 
811 	.edtrr_trns	= EDTRR_TRNS_ETHER,
812 	.ecsr_value	= ECSR_ICD,
813 	.ecsipr_value	= ECSIPR_ICDIP,
814 	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
815 			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
816 			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
817 			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
818 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
819 			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
820 			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
821 
822 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
823 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
824 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
825 
826 	.fdr_value	= 0x0000070f,
827 
828 	.apr		= 1,
829 	.mpr		= 1,
830 	.tpauser	= 1,
831 	.hw_swap	= 1,
832 	.rpadir		= 1,
833 	.no_ade		= 1,
834 	.xdfar_rw	= 1,
835 };
836 #endif /* CONFIG_OF */
837 
838 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
839 {
840 	struct sh_eth_private *mdp = netdev_priv(ndev);
841 
842 	switch (mdp->speed) {
843 	case 10: /* 10BASE */
844 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
845 		break;
846 	case 100:/* 100BASE */
847 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
848 		break;
849 	}
850 }
851 
852 /* SH7724 */
853 static struct sh_eth_cpu_data sh7724_data = {
854 	.soft_reset	= sh_eth_soft_reset,
855 
856 	.set_duplex	= sh_eth_set_duplex,
857 	.set_rate	= sh_eth_set_rate_sh7724,
858 
859 	.register_type	= SH_ETH_REG_FAST_SH4,
860 
861 	.edtrr_trns	= EDTRR_TRNS_ETHER,
862 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
863 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
864 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
865 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
866 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
867 			  EESIPR_RMAFIP | EESIPR_RRFIP |
868 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
869 			  EESIPR_PREIP | EESIPR_CERFIP,
870 
871 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
872 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
873 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
874 
875 	.apr		= 1,
876 	.mpr		= 1,
877 	.tpauser	= 1,
878 	.hw_swap	= 1,
879 	.rpadir		= 1,
880 };
881 
882 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
883 {
884 	struct sh_eth_private *mdp = netdev_priv(ndev);
885 
886 	switch (mdp->speed) {
887 	case 10: /* 10BASE */
888 		sh_eth_write(ndev, 0, RTRATE);
889 		break;
890 	case 100:/* 100BASE */
891 		sh_eth_write(ndev, 1, RTRATE);
892 		break;
893 	}
894 }
895 
896 /* SH7757 */
897 static struct sh_eth_cpu_data sh7757_data = {
898 	.soft_reset	= sh_eth_soft_reset,
899 
900 	.set_duplex	= sh_eth_set_duplex,
901 	.set_rate	= sh_eth_set_rate_sh7757,
902 
903 	.register_type	= SH_ETH_REG_FAST_SH4,
904 
905 	.edtrr_trns	= EDTRR_TRNS_ETHER,
906 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
907 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
908 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
909 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
910 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
911 			  EESIPR_CEEFIP | EESIPR_CELFIP |
912 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
913 			  EESIPR_PREIP | EESIPR_CERFIP,
914 
915 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
916 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
917 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
918 
919 	.irq_flags	= IRQF_SHARED,
920 	.apr		= 1,
921 	.mpr		= 1,
922 	.tpauser	= 1,
923 	.hw_swap	= 1,
924 	.no_ade		= 1,
925 	.rpadir		= 1,
926 	.rtrate		= 1,
927 	.dual_port	= 1,
928 };
929 
930 #define SH_GIGA_ETH_BASE	0xfee00000UL
931 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
932 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
933 static void sh_eth_chip_reset_giga(struct net_device *ndev)
934 {
935 	u32 mahr[2], malr[2];
936 	int i;
937 
938 	/* save MAHR and MALR */
939 	for (i = 0; i < 2; i++) {
940 		malr[i] = ioread32((void *)GIGA_MALR(i));
941 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
942 	}
943 
944 	sh_eth_chip_reset(ndev);
945 
946 	/* restore MAHR and MALR */
947 	for (i = 0; i < 2; i++) {
948 		iowrite32(malr[i], (void *)GIGA_MALR(i));
949 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
950 	}
951 }
952 
953 static void sh_eth_set_rate_giga(struct net_device *ndev)
954 {
955 	struct sh_eth_private *mdp = netdev_priv(ndev);
956 
957 	switch (mdp->speed) {
958 	case 10: /* 10BASE */
959 		sh_eth_write(ndev, 0x00000000, GECMR);
960 		break;
961 	case 100:/* 100BASE */
962 		sh_eth_write(ndev, 0x00000010, GECMR);
963 		break;
964 	case 1000: /* 1000BASE */
965 		sh_eth_write(ndev, 0x00000020, GECMR);
966 		break;
967 	}
968 }
969 
970 /* SH7757(GETHERC) */
971 static struct sh_eth_cpu_data sh7757_data_giga = {
972 	.soft_reset	= sh_eth_soft_reset_gether,
973 
974 	.chip_reset	= sh_eth_chip_reset_giga,
975 	.set_duplex	= sh_eth_set_duplex,
976 	.set_rate	= sh_eth_set_rate_giga,
977 
978 	.register_type	= SH_ETH_REG_GIGABIT,
979 
980 	.edtrr_trns	= EDTRR_TRNS_GETHER,
981 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
982 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
983 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
984 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
985 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
986 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
987 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
988 			  EESIPR_CEEFIP | EESIPR_CELFIP |
989 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
990 			  EESIPR_PREIP | EESIPR_CERFIP,
991 
992 	.tx_check	= EESR_TC1 | EESR_FTC,
993 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
994 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
995 			  EESR_TDE,
996 	.fdr_value	= 0x0000072f,
997 
998 	.irq_flags	= IRQF_SHARED,
999 	.apr		= 1,
1000 	.mpr		= 1,
1001 	.tpauser	= 1,
1002 	.bculr		= 1,
1003 	.hw_swap	= 1,
1004 	.rpadir		= 1,
1005 	.no_trimd	= 1,
1006 	.no_ade		= 1,
1007 	.xdfar_rw	= 1,
1008 	.tsu		= 1,
1009 	.cexcr		= 1,
1010 	.dual_port	= 1,
1011 };
1012 
1013 /* SH7734 */
1014 static struct sh_eth_cpu_data sh7734_data = {
1015 	.soft_reset	= sh_eth_soft_reset_gether,
1016 
1017 	.chip_reset	= sh_eth_chip_reset,
1018 	.set_duplex	= sh_eth_set_duplex,
1019 	.set_rate	= sh_eth_set_rate_gether,
1020 
1021 	.register_type	= SH_ETH_REG_GIGABIT,
1022 
1023 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1024 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1025 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1026 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1027 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1028 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1029 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1030 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1031 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1032 			  EESIPR_PREIP | EESIPR_CERFIP,
1033 
1034 	.tx_check	= EESR_TC1 | EESR_FTC,
1035 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1036 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1037 			  EESR_TDE,
1038 
1039 	.apr		= 1,
1040 	.mpr		= 1,
1041 	.tpauser	= 1,
1042 	.bculr		= 1,
1043 	.hw_swap	= 1,
1044 	.no_trimd	= 1,
1045 	.no_ade		= 1,
1046 	.xdfar_rw	= 1,
1047 	.tsu		= 1,
1048 	.hw_checksum	= 1,
1049 	.select_mii	= 1,
1050 	.magic		= 1,
1051 	.cexcr		= 1,
1052 };
1053 
1054 /* SH7763 */
1055 static struct sh_eth_cpu_data sh7763_data = {
1056 	.soft_reset	= sh_eth_soft_reset_gether,
1057 
1058 	.chip_reset	= sh_eth_chip_reset,
1059 	.set_duplex	= sh_eth_set_duplex,
1060 	.set_rate	= sh_eth_set_rate_gether,
1061 
1062 	.register_type	= SH_ETH_REG_GIGABIT,
1063 
1064 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1065 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1066 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1067 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1068 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1069 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1070 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1071 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1072 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1073 			  EESIPR_PREIP | EESIPR_CERFIP,
1074 
1075 	.tx_check	= EESR_TC1 | EESR_FTC,
1076 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1077 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1078 
1079 	.apr		= 1,
1080 	.mpr		= 1,
1081 	.tpauser	= 1,
1082 	.bculr		= 1,
1083 	.hw_swap	= 1,
1084 	.no_trimd	= 1,
1085 	.no_ade		= 1,
1086 	.xdfar_rw	= 1,
1087 	.tsu		= 1,
1088 	.irq_flags	= IRQF_SHARED,
1089 	.magic		= 1,
1090 	.cexcr		= 1,
1091 	.dual_port	= 1,
1092 };
1093 
1094 static struct sh_eth_cpu_data sh7619_data = {
1095 	.soft_reset	= sh_eth_soft_reset,
1096 
1097 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1098 
1099 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1100 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1101 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1102 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1103 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1104 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1105 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1106 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1107 			  EESIPR_PREIP | EESIPR_CERFIP,
1108 
1109 	.apr		= 1,
1110 	.mpr		= 1,
1111 	.tpauser	= 1,
1112 	.hw_swap	= 1,
1113 };
1114 
1115 static struct sh_eth_cpu_data sh771x_data = {
1116 	.soft_reset	= sh_eth_soft_reset,
1117 
1118 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1119 
1120 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1121 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1122 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1123 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1124 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1125 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1126 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1127 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1128 			  EESIPR_PREIP | EESIPR_CERFIP,
1129 	.tsu		= 1,
1130 	.dual_port	= 1,
1131 };
1132 
1133 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1134 {
1135 	if (!cd->ecsr_value)
1136 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1137 
1138 	if (!cd->ecsipr_value)
1139 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1140 
1141 	if (!cd->fcftr_value)
1142 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1143 				  DEFAULT_FIFO_F_D_RFD;
1144 
1145 	if (!cd->fdr_value)
1146 		cd->fdr_value = DEFAULT_FDR_INIT;
1147 
1148 	if (!cd->tx_check)
1149 		cd->tx_check = DEFAULT_TX_CHECK;
1150 
1151 	if (!cd->eesr_err_check)
1152 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1153 
1154 	if (!cd->trscer_err_mask)
1155 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1156 }
1157 
1158 static void sh_eth_set_receive_align(struct sk_buff *skb)
1159 {
1160 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1161 
1162 	if (reserve)
1163 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1164 }
1165 
1166 /* Program the hardware MAC address from dev->dev_addr. */
1167 static void update_mac_address(struct net_device *ndev)
1168 {
1169 	sh_eth_write(ndev,
1170 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1171 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1172 	sh_eth_write(ndev,
1173 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1174 }
1175 
1176 /* Get MAC address from SuperH MAC address register
1177  *
1178  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1179  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1180  * When you want use this device, you must set MAC address in bootloader.
1181  *
1182  */
1183 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1184 {
1185 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1186 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1187 	} else {
1188 		u32 mahr = sh_eth_read(ndev, MAHR);
1189 		u32 malr = sh_eth_read(ndev, MALR);
1190 
1191 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1192 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1193 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1194 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1195 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1196 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1197 	}
1198 }
1199 
1200 struct bb_info {
1201 	void (*set_gate)(void *addr);
1202 	struct mdiobb_ctrl ctrl;
1203 	void *addr;
1204 };
1205 
1206 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1207 {
1208 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1209 	u32 pir;
1210 
1211 	if (bitbang->set_gate)
1212 		bitbang->set_gate(bitbang->addr);
1213 
1214 	pir = ioread32(bitbang->addr);
1215 	if (set)
1216 		pir |=  mask;
1217 	else
1218 		pir &= ~mask;
1219 	iowrite32(pir, bitbang->addr);
1220 }
1221 
1222 /* Data I/O pin control */
1223 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1224 {
1225 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1226 }
1227 
1228 /* Set bit data*/
1229 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1230 {
1231 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1232 }
1233 
1234 /* Get bit data*/
1235 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1236 {
1237 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1238 
1239 	if (bitbang->set_gate)
1240 		bitbang->set_gate(bitbang->addr);
1241 
1242 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1243 }
1244 
1245 /* MDC pin control */
1246 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1247 {
1248 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1249 }
1250 
1251 /* mdio bus control struct */
1252 static struct mdiobb_ops bb_ops = {
1253 	.owner = THIS_MODULE,
1254 	.set_mdc = sh_mdc_ctrl,
1255 	.set_mdio_dir = sh_mmd_ctrl,
1256 	.set_mdio_data = sh_set_mdio,
1257 	.get_mdio_data = sh_get_mdio,
1258 };
1259 
1260 /* free Tx skb function */
1261 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1262 {
1263 	struct sh_eth_private *mdp = netdev_priv(ndev);
1264 	struct sh_eth_txdesc *txdesc;
1265 	int free_num = 0;
1266 	int entry;
1267 	bool sent;
1268 
1269 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1270 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1271 		txdesc = &mdp->tx_ring[entry];
1272 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1273 		if (sent_only && !sent)
1274 			break;
1275 		/* TACT bit must be checked before all the following reads */
1276 		dma_rmb();
1277 		netif_info(mdp, tx_done, ndev,
1278 			   "tx entry %d status 0x%08x\n",
1279 			   entry, le32_to_cpu(txdesc->status));
1280 		/* Free the original skb. */
1281 		if (mdp->tx_skbuff[entry]) {
1282 			dma_unmap_single(&mdp->pdev->dev,
1283 					 le32_to_cpu(txdesc->addr),
1284 					 le32_to_cpu(txdesc->len) >> 16,
1285 					 DMA_TO_DEVICE);
1286 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1287 			mdp->tx_skbuff[entry] = NULL;
1288 			free_num++;
1289 		}
1290 		txdesc->status = cpu_to_le32(TD_TFP);
1291 		if (entry >= mdp->num_tx_ring - 1)
1292 			txdesc->status |= cpu_to_le32(TD_TDLE);
1293 
1294 		if (sent) {
1295 			ndev->stats.tx_packets++;
1296 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1297 		}
1298 	}
1299 	return free_num;
1300 }
1301 
1302 /* free skb and descriptor buffer */
1303 static void sh_eth_ring_free(struct net_device *ndev)
1304 {
1305 	struct sh_eth_private *mdp = netdev_priv(ndev);
1306 	int ringsize, i;
1307 
1308 	if (mdp->rx_ring) {
1309 		for (i = 0; i < mdp->num_rx_ring; i++) {
1310 			if (mdp->rx_skbuff[i]) {
1311 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1312 
1313 				dma_unmap_single(&mdp->pdev->dev,
1314 						 le32_to_cpu(rxdesc->addr),
1315 						 ALIGN(mdp->rx_buf_sz, 32),
1316 						 DMA_FROM_DEVICE);
1317 			}
1318 		}
1319 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1320 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1321 				  mdp->rx_desc_dma);
1322 		mdp->rx_ring = NULL;
1323 	}
1324 
1325 	/* Free Rx skb ringbuffer */
1326 	if (mdp->rx_skbuff) {
1327 		for (i = 0; i < mdp->num_rx_ring; i++)
1328 			dev_kfree_skb(mdp->rx_skbuff[i]);
1329 	}
1330 	kfree(mdp->rx_skbuff);
1331 	mdp->rx_skbuff = NULL;
1332 
1333 	if (mdp->tx_ring) {
1334 		sh_eth_tx_free(ndev, false);
1335 
1336 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1337 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1338 				  mdp->tx_desc_dma);
1339 		mdp->tx_ring = NULL;
1340 	}
1341 
1342 	/* Free Tx skb ringbuffer */
1343 	kfree(mdp->tx_skbuff);
1344 	mdp->tx_skbuff = NULL;
1345 }
1346 
1347 /* format skb and descriptor buffer */
1348 static void sh_eth_ring_format(struct net_device *ndev)
1349 {
1350 	struct sh_eth_private *mdp = netdev_priv(ndev);
1351 	int i;
1352 	struct sk_buff *skb;
1353 	struct sh_eth_rxdesc *rxdesc = NULL;
1354 	struct sh_eth_txdesc *txdesc = NULL;
1355 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1356 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1357 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1358 	dma_addr_t dma_addr;
1359 	u32 buf_len;
1360 
1361 	mdp->cur_rx = 0;
1362 	mdp->cur_tx = 0;
1363 	mdp->dirty_rx = 0;
1364 	mdp->dirty_tx = 0;
1365 
1366 	memset(mdp->rx_ring, 0, rx_ringsize);
1367 
1368 	/* build Rx ring buffer */
1369 	for (i = 0; i < mdp->num_rx_ring; i++) {
1370 		/* skb */
1371 		mdp->rx_skbuff[i] = NULL;
1372 		skb = netdev_alloc_skb(ndev, skbuff_size);
1373 		if (skb == NULL)
1374 			break;
1375 		sh_eth_set_receive_align(skb);
1376 
1377 		/* The size of the buffer is a multiple of 32 bytes. */
1378 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1379 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1380 					  DMA_FROM_DEVICE);
1381 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1382 			kfree_skb(skb);
1383 			break;
1384 		}
1385 		mdp->rx_skbuff[i] = skb;
1386 
1387 		/* RX descriptor */
1388 		rxdesc = &mdp->rx_ring[i];
1389 		rxdesc->len = cpu_to_le32(buf_len << 16);
1390 		rxdesc->addr = cpu_to_le32(dma_addr);
1391 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1392 
1393 		/* Rx descriptor address set */
1394 		if (i == 0) {
1395 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1396 			if (mdp->cd->xdfar_rw)
1397 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1398 		}
1399 	}
1400 
1401 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1402 
1403 	/* Mark the last entry as wrapping the ring. */
1404 	if (rxdesc)
1405 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1406 
1407 	memset(mdp->tx_ring, 0, tx_ringsize);
1408 
1409 	/* build Tx ring buffer */
1410 	for (i = 0; i < mdp->num_tx_ring; i++) {
1411 		mdp->tx_skbuff[i] = NULL;
1412 		txdesc = &mdp->tx_ring[i];
1413 		txdesc->status = cpu_to_le32(TD_TFP);
1414 		txdesc->len = cpu_to_le32(0);
1415 		if (i == 0) {
1416 			/* Tx descriptor address set */
1417 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1418 			if (mdp->cd->xdfar_rw)
1419 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1420 		}
1421 	}
1422 
1423 	txdesc->status |= cpu_to_le32(TD_TDLE);
1424 }
1425 
1426 /* Get skb and descriptor buffer */
1427 static int sh_eth_ring_init(struct net_device *ndev)
1428 {
1429 	struct sh_eth_private *mdp = netdev_priv(ndev);
1430 	int rx_ringsize, tx_ringsize;
1431 
1432 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1433 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1434 	 * the first 2 bytes, and +16 gets room for the status word from the
1435 	 * card.
1436 	 */
1437 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1438 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1439 	if (mdp->cd->rpadir)
1440 		mdp->rx_buf_sz += NET_IP_ALIGN;
1441 
1442 	/* Allocate RX and TX skb rings */
1443 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1444 				 GFP_KERNEL);
1445 	if (!mdp->rx_skbuff)
1446 		return -ENOMEM;
1447 
1448 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1449 				 GFP_KERNEL);
1450 	if (!mdp->tx_skbuff)
1451 		goto ring_free;
1452 
1453 	/* Allocate all Rx descriptors. */
1454 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1455 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1456 					  &mdp->rx_desc_dma, GFP_KERNEL);
1457 	if (!mdp->rx_ring)
1458 		goto ring_free;
1459 
1460 	mdp->dirty_rx = 0;
1461 
1462 	/* Allocate all Tx descriptors. */
1463 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1464 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1465 					  &mdp->tx_desc_dma, GFP_KERNEL);
1466 	if (!mdp->tx_ring)
1467 		goto ring_free;
1468 	return 0;
1469 
1470 ring_free:
1471 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1472 	sh_eth_ring_free(ndev);
1473 
1474 	return -ENOMEM;
1475 }
1476 
1477 static int sh_eth_dev_init(struct net_device *ndev)
1478 {
1479 	struct sh_eth_private *mdp = netdev_priv(ndev);
1480 	int ret;
1481 
1482 	/* Soft Reset */
1483 	ret = mdp->cd->soft_reset(ndev);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (mdp->cd->rmiimode)
1488 		sh_eth_write(ndev, 0x1, RMIIMODE);
1489 
1490 	/* Descriptor format */
1491 	sh_eth_ring_format(ndev);
1492 	if (mdp->cd->rpadir)
1493 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1494 
1495 	/* all sh_eth int mask */
1496 	sh_eth_write(ndev, 0, EESIPR);
1497 
1498 #if defined(__LITTLE_ENDIAN)
1499 	if (mdp->cd->hw_swap)
1500 		sh_eth_write(ndev, EDMR_EL, EDMR);
1501 	else
1502 #endif
1503 		sh_eth_write(ndev, 0, EDMR);
1504 
1505 	/* FIFO size set */
1506 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1507 	sh_eth_write(ndev, 0, TFTR);
1508 
1509 	/* Frame recv control (enable multiple-packets per rx irq) */
1510 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1511 
1512 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1513 
1514 	/* DMA transfer burst mode */
1515 	if (mdp->cd->nbst)
1516 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1517 
1518 	/* Burst cycle count upper-limit */
1519 	if (mdp->cd->bculr)
1520 		sh_eth_write(ndev, 0x800, BCULR);
1521 
1522 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1523 
1524 	if (!mdp->cd->no_trimd)
1525 		sh_eth_write(ndev, 0, TRIMD);
1526 
1527 	/* Recv frame limit set register */
1528 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1529 		     RFLR);
1530 
1531 	sh_eth_modify(ndev, EESR, 0, 0);
1532 	mdp->irq_enabled = true;
1533 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1534 
1535 	/* PAUSE Prohibition */
1536 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1537 		     ECMR_TE | ECMR_RE, ECMR);
1538 
1539 	if (mdp->cd->set_rate)
1540 		mdp->cd->set_rate(ndev);
1541 
1542 	/* E-MAC Status Register clear */
1543 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1544 
1545 	/* E-MAC Interrupt Enable register */
1546 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1547 
1548 	/* Set MAC address */
1549 	update_mac_address(ndev);
1550 
1551 	/* mask reset */
1552 	if (mdp->cd->apr)
1553 		sh_eth_write(ndev, 1, APR);
1554 	if (mdp->cd->mpr)
1555 		sh_eth_write(ndev, 1, MPR);
1556 	if (mdp->cd->tpauser)
1557 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1558 
1559 	/* Setting the Rx mode will start the Rx process. */
1560 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1561 
1562 	return ret;
1563 }
1564 
1565 static void sh_eth_dev_exit(struct net_device *ndev)
1566 {
1567 	struct sh_eth_private *mdp = netdev_priv(ndev);
1568 	int i;
1569 
1570 	/* Deactivate all TX descriptors, so DMA should stop at next
1571 	 * packet boundary if it's currently running
1572 	 */
1573 	for (i = 0; i < mdp->num_tx_ring; i++)
1574 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1575 
1576 	/* Disable TX FIFO egress to MAC */
1577 	sh_eth_rcv_snd_disable(ndev);
1578 
1579 	/* Stop RX DMA at next packet boundary */
1580 	sh_eth_write(ndev, 0, EDRRR);
1581 
1582 	/* Aside from TX DMA, we can't tell when the hardware is
1583 	 * really stopped, so we need to reset to make sure.
1584 	 * Before doing that, wait for long enough to *probably*
1585 	 * finish transmitting the last packet and poll stats.
1586 	 */
1587 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1588 	sh_eth_get_stats(ndev);
1589 	mdp->cd->soft_reset(ndev);
1590 
1591 	/* Set MAC address again */
1592 	update_mac_address(ndev);
1593 }
1594 
1595 /* Packet receive function */
1596 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1597 {
1598 	struct sh_eth_private *mdp = netdev_priv(ndev);
1599 	struct sh_eth_rxdesc *rxdesc;
1600 
1601 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1602 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1603 	int limit;
1604 	struct sk_buff *skb;
1605 	u32 desc_status;
1606 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1607 	dma_addr_t dma_addr;
1608 	u16 pkt_len;
1609 	u32 buf_len;
1610 
1611 	boguscnt = min(boguscnt, *quota);
1612 	limit = boguscnt;
1613 	rxdesc = &mdp->rx_ring[entry];
1614 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1615 		/* RACT bit must be checked before all the following reads */
1616 		dma_rmb();
1617 		desc_status = le32_to_cpu(rxdesc->status);
1618 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1619 
1620 		if (--boguscnt < 0)
1621 			break;
1622 
1623 		netif_info(mdp, rx_status, ndev,
1624 			   "rx entry %d status 0x%08x len %d\n",
1625 			   entry, desc_status, pkt_len);
1626 
1627 		if (!(desc_status & RDFEND))
1628 			ndev->stats.rx_length_errors++;
1629 
1630 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1631 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1632 		 * bit 0. However, in case of the R8A7740 and R7S72100
1633 		 * the RFS bits are from bit 25 to bit 16. So, the
1634 		 * driver needs right shifting by 16.
1635 		 */
1636 		if (mdp->cd->hw_checksum)
1637 			desc_status >>= 16;
1638 
1639 		skb = mdp->rx_skbuff[entry];
1640 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1641 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1642 			ndev->stats.rx_errors++;
1643 			if (desc_status & RD_RFS1)
1644 				ndev->stats.rx_crc_errors++;
1645 			if (desc_status & RD_RFS2)
1646 				ndev->stats.rx_frame_errors++;
1647 			if (desc_status & RD_RFS3)
1648 				ndev->stats.rx_length_errors++;
1649 			if (desc_status & RD_RFS4)
1650 				ndev->stats.rx_length_errors++;
1651 			if (desc_status & RD_RFS6)
1652 				ndev->stats.rx_missed_errors++;
1653 			if (desc_status & RD_RFS10)
1654 				ndev->stats.rx_over_errors++;
1655 		} else	if (skb) {
1656 			dma_addr = le32_to_cpu(rxdesc->addr);
1657 			if (!mdp->cd->hw_swap)
1658 				sh_eth_soft_swap(
1659 					phys_to_virt(ALIGN(dma_addr, 4)),
1660 					pkt_len + 2);
1661 			mdp->rx_skbuff[entry] = NULL;
1662 			if (mdp->cd->rpadir)
1663 				skb_reserve(skb, NET_IP_ALIGN);
1664 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1665 					 ALIGN(mdp->rx_buf_sz, 32),
1666 					 DMA_FROM_DEVICE);
1667 			skb_put(skb, pkt_len);
1668 			skb->protocol = eth_type_trans(skb, ndev);
1669 			netif_receive_skb(skb);
1670 			ndev->stats.rx_packets++;
1671 			ndev->stats.rx_bytes += pkt_len;
1672 			if (desc_status & RD_RFS8)
1673 				ndev->stats.multicast++;
1674 		}
1675 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1676 		rxdesc = &mdp->rx_ring[entry];
1677 	}
1678 
1679 	/* Refill the Rx ring buffers. */
1680 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1681 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1682 		rxdesc = &mdp->rx_ring[entry];
1683 		/* The size of the buffer is 32 byte boundary. */
1684 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1685 		rxdesc->len = cpu_to_le32(buf_len << 16);
1686 
1687 		if (mdp->rx_skbuff[entry] == NULL) {
1688 			skb = netdev_alloc_skb(ndev, skbuff_size);
1689 			if (skb == NULL)
1690 				break;	/* Better luck next round. */
1691 			sh_eth_set_receive_align(skb);
1692 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1693 						  buf_len, DMA_FROM_DEVICE);
1694 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1695 				kfree_skb(skb);
1696 				break;
1697 			}
1698 			mdp->rx_skbuff[entry] = skb;
1699 
1700 			skb_checksum_none_assert(skb);
1701 			rxdesc->addr = cpu_to_le32(dma_addr);
1702 		}
1703 		dma_wmb(); /* RACT bit must be set after all the above writes */
1704 		if (entry >= mdp->num_rx_ring - 1)
1705 			rxdesc->status |=
1706 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1707 		else
1708 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1709 	}
1710 
1711 	/* Restart Rx engine if stopped. */
1712 	/* If we don't need to check status, don't. -KDU */
1713 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1714 		/* fix the values for the next receiving if RDE is set */
1715 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1716 			u32 count = (sh_eth_read(ndev, RDFAR) -
1717 				     sh_eth_read(ndev, RDLAR)) >> 4;
1718 
1719 			mdp->cur_rx = count;
1720 			mdp->dirty_rx = count;
1721 		}
1722 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1723 	}
1724 
1725 	*quota -= limit - boguscnt - 1;
1726 
1727 	return *quota <= 0;
1728 }
1729 
1730 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1731 {
1732 	/* disable tx and rx */
1733 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1734 }
1735 
1736 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1737 {
1738 	/* enable tx and rx */
1739 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1740 }
1741 
1742 /* E-MAC interrupt handler */
1743 static void sh_eth_emac_interrupt(struct net_device *ndev)
1744 {
1745 	struct sh_eth_private *mdp = netdev_priv(ndev);
1746 	u32 felic_stat;
1747 	u32 link_stat;
1748 
1749 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1750 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1751 	if (felic_stat & ECSR_ICD)
1752 		ndev->stats.tx_carrier_errors++;
1753 	if (felic_stat & ECSR_MPD)
1754 		pm_wakeup_event(&mdp->pdev->dev, 0);
1755 	if (felic_stat & ECSR_LCHNG) {
1756 		/* Link Changed */
1757 		if (mdp->cd->no_psr || mdp->no_ether_link)
1758 			return;
1759 		link_stat = sh_eth_read(ndev, PSR);
1760 		if (mdp->ether_link_active_low)
1761 			link_stat = ~link_stat;
1762 		if (!(link_stat & PHY_ST_LINK)) {
1763 			sh_eth_rcv_snd_disable(ndev);
1764 		} else {
1765 			/* Link Up */
1766 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1767 			/* clear int */
1768 			sh_eth_modify(ndev, ECSR, 0, 0);
1769 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1770 			/* enable tx and rx */
1771 			sh_eth_rcv_snd_enable(ndev);
1772 		}
1773 	}
1774 }
1775 
1776 /* error control function */
1777 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1778 {
1779 	struct sh_eth_private *mdp = netdev_priv(ndev);
1780 	u32 mask;
1781 
1782 	if (intr_status & EESR_TWB) {
1783 		/* Unused write back interrupt */
1784 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1785 			ndev->stats.tx_aborted_errors++;
1786 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1787 		}
1788 	}
1789 
1790 	if (intr_status & EESR_RABT) {
1791 		/* Receive Abort int */
1792 		if (intr_status & EESR_RFRMER) {
1793 			/* Receive Frame Overflow int */
1794 			ndev->stats.rx_frame_errors++;
1795 		}
1796 	}
1797 
1798 	if (intr_status & EESR_TDE) {
1799 		/* Transmit Descriptor Empty int */
1800 		ndev->stats.tx_fifo_errors++;
1801 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1802 	}
1803 
1804 	if (intr_status & EESR_TFE) {
1805 		/* FIFO under flow */
1806 		ndev->stats.tx_fifo_errors++;
1807 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1808 	}
1809 
1810 	if (intr_status & EESR_RDE) {
1811 		/* Receive Descriptor Empty int */
1812 		ndev->stats.rx_over_errors++;
1813 	}
1814 
1815 	if (intr_status & EESR_RFE) {
1816 		/* Receive FIFO Overflow int */
1817 		ndev->stats.rx_fifo_errors++;
1818 	}
1819 
1820 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1821 		/* Address Error */
1822 		ndev->stats.tx_fifo_errors++;
1823 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1824 	}
1825 
1826 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1827 	if (mdp->cd->no_ade)
1828 		mask &= ~EESR_ADE;
1829 	if (intr_status & mask) {
1830 		/* Tx error */
1831 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1832 
1833 		/* dmesg */
1834 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1835 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1836 			   (u32)ndev->state, edtrr);
1837 		/* dirty buffer free */
1838 		sh_eth_tx_free(ndev, true);
1839 
1840 		/* SH7712 BUG */
1841 		if (edtrr ^ mdp->cd->edtrr_trns) {
1842 			/* tx dma start */
1843 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1844 		}
1845 		/* wakeup */
1846 		netif_wake_queue(ndev);
1847 	}
1848 }
1849 
1850 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1851 {
1852 	struct net_device *ndev = netdev;
1853 	struct sh_eth_private *mdp = netdev_priv(ndev);
1854 	struct sh_eth_cpu_data *cd = mdp->cd;
1855 	irqreturn_t ret = IRQ_NONE;
1856 	u32 intr_status, intr_enable;
1857 
1858 	spin_lock(&mdp->lock);
1859 
1860 	/* Get interrupt status */
1861 	intr_status = sh_eth_read(ndev, EESR);
1862 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1863 	 * enabled since it's the one that  comes  thru regardless of the mask,
1864 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1865 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1866 	 * bit...
1867 	 */
1868 	intr_enable = sh_eth_read(ndev, EESIPR);
1869 	intr_status &= intr_enable | EESIPR_ECIIP;
1870 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1871 			   cd->eesr_err_check))
1872 		ret = IRQ_HANDLED;
1873 	else
1874 		goto out;
1875 
1876 	if (unlikely(!mdp->irq_enabled)) {
1877 		sh_eth_write(ndev, 0, EESIPR);
1878 		goto out;
1879 	}
1880 
1881 	if (intr_status & EESR_RX_CHECK) {
1882 		if (napi_schedule_prep(&mdp->napi)) {
1883 			/* Mask Rx interrupts */
1884 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1885 				     EESIPR);
1886 			__napi_schedule(&mdp->napi);
1887 		} else {
1888 			netdev_warn(ndev,
1889 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1890 				    intr_status, intr_enable);
1891 		}
1892 	}
1893 
1894 	/* Tx Check */
1895 	if (intr_status & cd->tx_check) {
1896 		/* Clear Tx interrupts */
1897 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1898 
1899 		sh_eth_tx_free(ndev, true);
1900 		netif_wake_queue(ndev);
1901 	}
1902 
1903 	/* E-MAC interrupt */
1904 	if (intr_status & EESR_ECI)
1905 		sh_eth_emac_interrupt(ndev);
1906 
1907 	if (intr_status & cd->eesr_err_check) {
1908 		/* Clear error interrupts */
1909 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1910 
1911 		sh_eth_error(ndev, intr_status);
1912 	}
1913 
1914 out:
1915 	spin_unlock(&mdp->lock);
1916 
1917 	return ret;
1918 }
1919 
1920 static int sh_eth_poll(struct napi_struct *napi, int budget)
1921 {
1922 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1923 						  napi);
1924 	struct net_device *ndev = napi->dev;
1925 	int quota = budget;
1926 	u32 intr_status;
1927 
1928 	for (;;) {
1929 		intr_status = sh_eth_read(ndev, EESR);
1930 		if (!(intr_status & EESR_RX_CHECK))
1931 			break;
1932 		/* Clear Rx interrupts */
1933 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1934 
1935 		if (sh_eth_rx(ndev, intr_status, &quota))
1936 			goto out;
1937 	}
1938 
1939 	napi_complete(napi);
1940 
1941 	/* Reenable Rx interrupts */
1942 	if (mdp->irq_enabled)
1943 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1944 out:
1945 	return budget - quota;
1946 }
1947 
1948 /* PHY state control function */
1949 static void sh_eth_adjust_link(struct net_device *ndev)
1950 {
1951 	struct sh_eth_private *mdp = netdev_priv(ndev);
1952 	struct phy_device *phydev = ndev->phydev;
1953 	unsigned long flags;
1954 	int new_state = 0;
1955 
1956 	spin_lock_irqsave(&mdp->lock, flags);
1957 
1958 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1959 	if (mdp->cd->no_psr || mdp->no_ether_link)
1960 		sh_eth_rcv_snd_disable(ndev);
1961 
1962 	if (phydev->link) {
1963 		if (phydev->duplex != mdp->duplex) {
1964 			new_state = 1;
1965 			mdp->duplex = phydev->duplex;
1966 			if (mdp->cd->set_duplex)
1967 				mdp->cd->set_duplex(ndev);
1968 		}
1969 
1970 		if (phydev->speed != mdp->speed) {
1971 			new_state = 1;
1972 			mdp->speed = phydev->speed;
1973 			if (mdp->cd->set_rate)
1974 				mdp->cd->set_rate(ndev);
1975 		}
1976 		if (!mdp->link) {
1977 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1978 			new_state = 1;
1979 			mdp->link = phydev->link;
1980 		}
1981 	} else if (mdp->link) {
1982 		new_state = 1;
1983 		mdp->link = 0;
1984 		mdp->speed = 0;
1985 		mdp->duplex = -1;
1986 	}
1987 
1988 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1989 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1990 		sh_eth_rcv_snd_enable(ndev);
1991 
1992 	mmiowb();
1993 	spin_unlock_irqrestore(&mdp->lock, flags);
1994 
1995 	if (new_state && netif_msg_link(mdp))
1996 		phy_print_status(phydev);
1997 }
1998 
1999 /* PHY init function */
2000 static int sh_eth_phy_init(struct net_device *ndev)
2001 {
2002 	struct device_node *np = ndev->dev.parent->of_node;
2003 	struct sh_eth_private *mdp = netdev_priv(ndev);
2004 	struct phy_device *phydev;
2005 
2006 	mdp->link = 0;
2007 	mdp->speed = 0;
2008 	mdp->duplex = -1;
2009 
2010 	/* Try connect to PHY */
2011 	if (np) {
2012 		struct device_node *pn;
2013 
2014 		pn = of_parse_phandle(np, "phy-handle", 0);
2015 		phydev = of_phy_connect(ndev, pn,
2016 					sh_eth_adjust_link, 0,
2017 					mdp->phy_interface);
2018 
2019 		of_node_put(pn);
2020 		if (!phydev)
2021 			phydev = ERR_PTR(-ENOENT);
2022 	} else {
2023 		char phy_id[MII_BUS_ID_SIZE + 3];
2024 
2025 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2026 			 mdp->mii_bus->id, mdp->phy_id);
2027 
2028 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2029 				     mdp->phy_interface);
2030 	}
2031 
2032 	if (IS_ERR(phydev)) {
2033 		netdev_err(ndev, "failed to connect PHY\n");
2034 		return PTR_ERR(phydev);
2035 	}
2036 
2037 	/* mask with MAC supported features */
2038 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2039 		int err = phy_set_max_speed(phydev, SPEED_100);
2040 		if (err) {
2041 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2042 			phy_disconnect(phydev);
2043 			return err;
2044 		}
2045 	}
2046 
2047 	phy_attached_info(phydev);
2048 
2049 	return 0;
2050 }
2051 
2052 /* PHY control start function */
2053 static int sh_eth_phy_start(struct net_device *ndev)
2054 {
2055 	int ret;
2056 
2057 	ret = sh_eth_phy_init(ndev);
2058 	if (ret)
2059 		return ret;
2060 
2061 	phy_start(ndev->phydev);
2062 
2063 	return 0;
2064 }
2065 
2066 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2067  * version must be bumped as well.  Just adding registers up to that
2068  * limit is fine, as long as the existing register indices don't
2069  * change.
2070  */
2071 #define SH_ETH_REG_DUMP_VERSION		1
2072 #define SH_ETH_REG_DUMP_MAX_REGS	256
2073 
2074 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2075 {
2076 	struct sh_eth_private *mdp = netdev_priv(ndev);
2077 	struct sh_eth_cpu_data *cd = mdp->cd;
2078 	u32 *valid_map;
2079 	size_t len;
2080 
2081 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2082 
2083 	/* Dump starts with a bitmap that tells ethtool which
2084 	 * registers are defined for this chip.
2085 	 */
2086 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2087 	if (buf) {
2088 		valid_map = buf;
2089 		buf += len;
2090 	} else {
2091 		valid_map = NULL;
2092 	}
2093 
2094 	/* Add a register to the dump, if it has a defined offset.
2095 	 * This automatically skips most undefined registers, but for
2096 	 * some it is also necessary to check a capability flag in
2097 	 * struct sh_eth_cpu_data.
2098 	 */
2099 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2100 #define add_reg_from(reg, read_expr) do {				\
2101 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2102 			if (buf) {					\
2103 				mark_reg_valid(reg);			\
2104 				*buf++ = read_expr;			\
2105 			}						\
2106 			++len;						\
2107 		}							\
2108 	} while (0)
2109 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2110 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2111 
2112 	add_reg(EDSR);
2113 	add_reg(EDMR);
2114 	add_reg(EDTRR);
2115 	add_reg(EDRRR);
2116 	add_reg(EESR);
2117 	add_reg(EESIPR);
2118 	add_reg(TDLAR);
2119 	add_reg(TDFAR);
2120 	add_reg(TDFXR);
2121 	add_reg(TDFFR);
2122 	add_reg(RDLAR);
2123 	add_reg(RDFAR);
2124 	add_reg(RDFXR);
2125 	add_reg(RDFFR);
2126 	add_reg(TRSCER);
2127 	add_reg(RMFCR);
2128 	add_reg(TFTR);
2129 	add_reg(FDR);
2130 	add_reg(RMCR);
2131 	add_reg(TFUCR);
2132 	add_reg(RFOCR);
2133 	if (cd->rmiimode)
2134 		add_reg(RMIIMODE);
2135 	add_reg(FCFTR);
2136 	if (cd->rpadir)
2137 		add_reg(RPADIR);
2138 	if (!cd->no_trimd)
2139 		add_reg(TRIMD);
2140 	add_reg(ECMR);
2141 	add_reg(ECSR);
2142 	add_reg(ECSIPR);
2143 	add_reg(PIR);
2144 	if (!cd->no_psr)
2145 		add_reg(PSR);
2146 	add_reg(RDMLR);
2147 	add_reg(RFLR);
2148 	add_reg(IPGR);
2149 	if (cd->apr)
2150 		add_reg(APR);
2151 	if (cd->mpr)
2152 		add_reg(MPR);
2153 	add_reg(RFCR);
2154 	add_reg(RFCF);
2155 	if (cd->tpauser)
2156 		add_reg(TPAUSER);
2157 	add_reg(TPAUSECR);
2158 	add_reg(GECMR);
2159 	if (cd->bculr)
2160 		add_reg(BCULR);
2161 	add_reg(MAHR);
2162 	add_reg(MALR);
2163 	add_reg(TROCR);
2164 	add_reg(CDCR);
2165 	add_reg(LCCR);
2166 	add_reg(CNDCR);
2167 	add_reg(CEFCR);
2168 	add_reg(FRECR);
2169 	add_reg(TSFRCR);
2170 	add_reg(TLFRCR);
2171 	add_reg(CERCR);
2172 	add_reg(CEECR);
2173 	add_reg(MAFCR);
2174 	if (cd->rtrate)
2175 		add_reg(RTRATE);
2176 	if (cd->hw_checksum)
2177 		add_reg(CSMR);
2178 	if (cd->select_mii)
2179 		add_reg(RMII_MII);
2180 	if (cd->tsu) {
2181 		add_tsu_reg(ARSTR);
2182 		add_tsu_reg(TSU_CTRST);
2183 		add_tsu_reg(TSU_FWEN0);
2184 		add_tsu_reg(TSU_FWEN1);
2185 		add_tsu_reg(TSU_FCM);
2186 		add_tsu_reg(TSU_BSYSL0);
2187 		add_tsu_reg(TSU_BSYSL1);
2188 		add_tsu_reg(TSU_PRISL0);
2189 		add_tsu_reg(TSU_PRISL1);
2190 		add_tsu_reg(TSU_FWSL0);
2191 		add_tsu_reg(TSU_FWSL1);
2192 		add_tsu_reg(TSU_FWSLC);
2193 		add_tsu_reg(TSU_QTAGM0);
2194 		add_tsu_reg(TSU_QTAGM1);
2195 		add_tsu_reg(TSU_FWSR);
2196 		add_tsu_reg(TSU_FWINMK);
2197 		add_tsu_reg(TSU_ADQT0);
2198 		add_tsu_reg(TSU_ADQT1);
2199 		add_tsu_reg(TSU_VTAG0);
2200 		add_tsu_reg(TSU_VTAG1);
2201 		add_tsu_reg(TSU_ADSBSY);
2202 		add_tsu_reg(TSU_TEN);
2203 		add_tsu_reg(TSU_POST1);
2204 		add_tsu_reg(TSU_POST2);
2205 		add_tsu_reg(TSU_POST3);
2206 		add_tsu_reg(TSU_POST4);
2207 		/* This is the start of a table, not just a single register. */
2208 		if (buf) {
2209 			unsigned int i;
2210 
2211 			mark_reg_valid(TSU_ADRH0);
2212 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2213 				*buf++ = ioread32(mdp->tsu_addr +
2214 						  mdp->reg_offset[TSU_ADRH0] +
2215 						  i * 4);
2216 		}
2217 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2218 	}
2219 
2220 #undef mark_reg_valid
2221 #undef add_reg_from
2222 #undef add_reg
2223 #undef add_tsu_reg
2224 
2225 	return len * 4;
2226 }
2227 
2228 static int sh_eth_get_regs_len(struct net_device *ndev)
2229 {
2230 	return __sh_eth_get_regs(ndev, NULL);
2231 }
2232 
2233 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2234 			    void *buf)
2235 {
2236 	struct sh_eth_private *mdp = netdev_priv(ndev);
2237 
2238 	regs->version = SH_ETH_REG_DUMP_VERSION;
2239 
2240 	pm_runtime_get_sync(&mdp->pdev->dev);
2241 	__sh_eth_get_regs(ndev, buf);
2242 	pm_runtime_put_sync(&mdp->pdev->dev);
2243 }
2244 
2245 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2246 {
2247 	struct sh_eth_private *mdp = netdev_priv(ndev);
2248 	return mdp->msg_enable;
2249 }
2250 
2251 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2252 {
2253 	struct sh_eth_private *mdp = netdev_priv(ndev);
2254 	mdp->msg_enable = value;
2255 }
2256 
2257 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2258 	"rx_current", "tx_current",
2259 	"rx_dirty", "tx_dirty",
2260 };
2261 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2262 
2263 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2264 {
2265 	switch (sset) {
2266 	case ETH_SS_STATS:
2267 		return SH_ETH_STATS_LEN;
2268 	default:
2269 		return -EOPNOTSUPP;
2270 	}
2271 }
2272 
2273 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2274 				     struct ethtool_stats *stats, u64 *data)
2275 {
2276 	struct sh_eth_private *mdp = netdev_priv(ndev);
2277 	int i = 0;
2278 
2279 	/* device-specific stats */
2280 	data[i++] = mdp->cur_rx;
2281 	data[i++] = mdp->cur_tx;
2282 	data[i++] = mdp->dirty_rx;
2283 	data[i++] = mdp->dirty_tx;
2284 }
2285 
2286 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2287 {
2288 	switch (stringset) {
2289 	case ETH_SS_STATS:
2290 		memcpy(data, *sh_eth_gstrings_stats,
2291 		       sizeof(sh_eth_gstrings_stats));
2292 		break;
2293 	}
2294 }
2295 
2296 static void sh_eth_get_ringparam(struct net_device *ndev,
2297 				 struct ethtool_ringparam *ring)
2298 {
2299 	struct sh_eth_private *mdp = netdev_priv(ndev);
2300 
2301 	ring->rx_max_pending = RX_RING_MAX;
2302 	ring->tx_max_pending = TX_RING_MAX;
2303 	ring->rx_pending = mdp->num_rx_ring;
2304 	ring->tx_pending = mdp->num_tx_ring;
2305 }
2306 
2307 static int sh_eth_set_ringparam(struct net_device *ndev,
2308 				struct ethtool_ringparam *ring)
2309 {
2310 	struct sh_eth_private *mdp = netdev_priv(ndev);
2311 	int ret;
2312 
2313 	if (ring->tx_pending > TX_RING_MAX ||
2314 	    ring->rx_pending > RX_RING_MAX ||
2315 	    ring->tx_pending < TX_RING_MIN ||
2316 	    ring->rx_pending < RX_RING_MIN)
2317 		return -EINVAL;
2318 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2319 		return -EINVAL;
2320 
2321 	if (netif_running(ndev)) {
2322 		netif_device_detach(ndev);
2323 		netif_tx_disable(ndev);
2324 
2325 		/* Serialise with the interrupt handler and NAPI, then
2326 		 * disable interrupts.  We have to clear the
2327 		 * irq_enabled flag first to ensure that interrupts
2328 		 * won't be re-enabled.
2329 		 */
2330 		mdp->irq_enabled = false;
2331 		synchronize_irq(ndev->irq);
2332 		napi_synchronize(&mdp->napi);
2333 		sh_eth_write(ndev, 0x0000, EESIPR);
2334 
2335 		sh_eth_dev_exit(ndev);
2336 
2337 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2338 		sh_eth_ring_free(ndev);
2339 	}
2340 
2341 	/* Set new parameters */
2342 	mdp->num_rx_ring = ring->rx_pending;
2343 	mdp->num_tx_ring = ring->tx_pending;
2344 
2345 	if (netif_running(ndev)) {
2346 		ret = sh_eth_ring_init(ndev);
2347 		if (ret < 0) {
2348 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2349 				   __func__);
2350 			return ret;
2351 		}
2352 		ret = sh_eth_dev_init(ndev);
2353 		if (ret < 0) {
2354 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2355 				   __func__);
2356 			return ret;
2357 		}
2358 
2359 		netif_device_attach(ndev);
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2366 {
2367 	struct sh_eth_private *mdp = netdev_priv(ndev);
2368 
2369 	wol->supported = 0;
2370 	wol->wolopts = 0;
2371 
2372 	if (mdp->cd->magic) {
2373 		wol->supported = WAKE_MAGIC;
2374 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2375 	}
2376 }
2377 
2378 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2379 {
2380 	struct sh_eth_private *mdp = netdev_priv(ndev);
2381 
2382 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2383 		return -EOPNOTSUPP;
2384 
2385 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2386 
2387 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2388 
2389 	return 0;
2390 }
2391 
2392 static const struct ethtool_ops sh_eth_ethtool_ops = {
2393 	.get_regs_len	= sh_eth_get_regs_len,
2394 	.get_regs	= sh_eth_get_regs,
2395 	.nway_reset	= phy_ethtool_nway_reset,
2396 	.get_msglevel	= sh_eth_get_msglevel,
2397 	.set_msglevel	= sh_eth_set_msglevel,
2398 	.get_link	= ethtool_op_get_link,
2399 	.get_strings	= sh_eth_get_strings,
2400 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2401 	.get_sset_count     = sh_eth_get_sset_count,
2402 	.get_ringparam	= sh_eth_get_ringparam,
2403 	.set_ringparam	= sh_eth_set_ringparam,
2404 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2405 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2406 	.get_wol	= sh_eth_get_wol,
2407 	.set_wol	= sh_eth_set_wol,
2408 };
2409 
2410 /* network device open function */
2411 static int sh_eth_open(struct net_device *ndev)
2412 {
2413 	struct sh_eth_private *mdp = netdev_priv(ndev);
2414 	int ret;
2415 
2416 	pm_runtime_get_sync(&mdp->pdev->dev);
2417 
2418 	napi_enable(&mdp->napi);
2419 
2420 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2421 			  mdp->cd->irq_flags, ndev->name, ndev);
2422 	if (ret) {
2423 		netdev_err(ndev, "Can not assign IRQ number\n");
2424 		goto out_napi_off;
2425 	}
2426 
2427 	/* Descriptor set */
2428 	ret = sh_eth_ring_init(ndev);
2429 	if (ret)
2430 		goto out_free_irq;
2431 
2432 	/* device init */
2433 	ret = sh_eth_dev_init(ndev);
2434 	if (ret)
2435 		goto out_free_irq;
2436 
2437 	/* PHY control start*/
2438 	ret = sh_eth_phy_start(ndev);
2439 	if (ret)
2440 		goto out_free_irq;
2441 
2442 	netif_start_queue(ndev);
2443 
2444 	mdp->is_opened = 1;
2445 
2446 	return ret;
2447 
2448 out_free_irq:
2449 	free_irq(ndev->irq, ndev);
2450 out_napi_off:
2451 	napi_disable(&mdp->napi);
2452 	pm_runtime_put_sync(&mdp->pdev->dev);
2453 	return ret;
2454 }
2455 
2456 /* Timeout function */
2457 static void sh_eth_tx_timeout(struct net_device *ndev)
2458 {
2459 	struct sh_eth_private *mdp = netdev_priv(ndev);
2460 	struct sh_eth_rxdesc *rxdesc;
2461 	int i;
2462 
2463 	netif_stop_queue(ndev);
2464 
2465 	netif_err(mdp, timer, ndev,
2466 		  "transmit timed out, status %8.8x, resetting...\n",
2467 		  sh_eth_read(ndev, EESR));
2468 
2469 	/* tx_errors count up */
2470 	ndev->stats.tx_errors++;
2471 
2472 	/* Free all the skbuffs in the Rx queue. */
2473 	for (i = 0; i < mdp->num_rx_ring; i++) {
2474 		rxdesc = &mdp->rx_ring[i];
2475 		rxdesc->status = cpu_to_le32(0);
2476 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2477 		dev_kfree_skb(mdp->rx_skbuff[i]);
2478 		mdp->rx_skbuff[i] = NULL;
2479 	}
2480 	for (i = 0; i < mdp->num_tx_ring; i++) {
2481 		dev_kfree_skb(mdp->tx_skbuff[i]);
2482 		mdp->tx_skbuff[i] = NULL;
2483 	}
2484 
2485 	/* device init */
2486 	sh_eth_dev_init(ndev);
2487 
2488 	netif_start_queue(ndev);
2489 }
2490 
2491 /* Packet transmit function */
2492 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2493 {
2494 	struct sh_eth_private *mdp = netdev_priv(ndev);
2495 	struct sh_eth_txdesc *txdesc;
2496 	dma_addr_t dma_addr;
2497 	u32 entry;
2498 	unsigned long flags;
2499 
2500 	spin_lock_irqsave(&mdp->lock, flags);
2501 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2502 		if (!sh_eth_tx_free(ndev, true)) {
2503 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2504 			netif_stop_queue(ndev);
2505 			spin_unlock_irqrestore(&mdp->lock, flags);
2506 			return NETDEV_TX_BUSY;
2507 		}
2508 	}
2509 	spin_unlock_irqrestore(&mdp->lock, flags);
2510 
2511 	if (skb_put_padto(skb, ETH_ZLEN))
2512 		return NETDEV_TX_OK;
2513 
2514 	entry = mdp->cur_tx % mdp->num_tx_ring;
2515 	mdp->tx_skbuff[entry] = skb;
2516 	txdesc = &mdp->tx_ring[entry];
2517 	/* soft swap. */
2518 	if (!mdp->cd->hw_swap)
2519 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2520 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2521 				  DMA_TO_DEVICE);
2522 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2523 		kfree_skb(skb);
2524 		return NETDEV_TX_OK;
2525 	}
2526 	txdesc->addr = cpu_to_le32(dma_addr);
2527 	txdesc->len  = cpu_to_le32(skb->len << 16);
2528 
2529 	dma_wmb(); /* TACT bit must be set after all the above writes */
2530 	if (entry >= mdp->num_tx_ring - 1)
2531 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2532 	else
2533 		txdesc->status |= cpu_to_le32(TD_TACT);
2534 
2535 	mdp->cur_tx++;
2536 
2537 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2538 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2539 
2540 	return NETDEV_TX_OK;
2541 }
2542 
2543 /* The statistics registers have write-clear behaviour, which means we
2544  * will lose any increment between the read and write.  We mitigate
2545  * this by only clearing when we read a non-zero value, so we will
2546  * never falsely report a total of zero.
2547  */
2548 static void
2549 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2550 {
2551 	u32 delta = sh_eth_read(ndev, reg);
2552 
2553 	if (delta) {
2554 		*stat += delta;
2555 		sh_eth_write(ndev, 0, reg);
2556 	}
2557 }
2558 
2559 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2560 {
2561 	struct sh_eth_private *mdp = netdev_priv(ndev);
2562 
2563 	if (mdp->cd->no_tx_cntrs)
2564 		return &ndev->stats;
2565 
2566 	if (!mdp->is_opened)
2567 		return &ndev->stats;
2568 
2569 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2570 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2571 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2572 
2573 	if (mdp->cd->cexcr) {
2574 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2575 				   CERCR);
2576 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577 				   CEECR);
2578 	} else {
2579 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2580 				   CNDCR);
2581 	}
2582 
2583 	return &ndev->stats;
2584 }
2585 
2586 /* device close function */
2587 static int sh_eth_close(struct net_device *ndev)
2588 {
2589 	struct sh_eth_private *mdp = netdev_priv(ndev);
2590 
2591 	netif_stop_queue(ndev);
2592 
2593 	/* Serialise with the interrupt handler and NAPI, then disable
2594 	 * interrupts.  We have to clear the irq_enabled flag first to
2595 	 * ensure that interrupts won't be re-enabled.
2596 	 */
2597 	mdp->irq_enabled = false;
2598 	synchronize_irq(ndev->irq);
2599 	napi_disable(&mdp->napi);
2600 	sh_eth_write(ndev, 0x0000, EESIPR);
2601 
2602 	sh_eth_dev_exit(ndev);
2603 
2604 	/* PHY Disconnect */
2605 	if (ndev->phydev) {
2606 		phy_stop(ndev->phydev);
2607 		phy_disconnect(ndev->phydev);
2608 	}
2609 
2610 	free_irq(ndev->irq, ndev);
2611 
2612 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613 	sh_eth_ring_free(ndev);
2614 
2615 	pm_runtime_put_sync(&mdp->pdev->dev);
2616 
2617 	mdp->is_opened = 0;
2618 
2619 	return 0;
2620 }
2621 
2622 /* ioctl to device function */
2623 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2624 {
2625 	struct phy_device *phydev = ndev->phydev;
2626 
2627 	if (!netif_running(ndev))
2628 		return -EINVAL;
2629 
2630 	if (!phydev)
2631 		return -ENODEV;
2632 
2633 	return phy_mii_ioctl(phydev, rq, cmd);
2634 }
2635 
2636 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2637 {
2638 	if (netif_running(ndev))
2639 		return -EBUSY;
2640 
2641 	ndev->mtu = new_mtu;
2642 	netdev_update_features(ndev);
2643 
2644 	return 0;
2645 }
2646 
2647 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2648 static u32 sh_eth_tsu_get_post_mask(int entry)
2649 {
2650 	return 0x0f << (28 - ((entry % 8) * 4));
2651 }
2652 
2653 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2654 {
2655 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2656 }
2657 
2658 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2659 					     int entry)
2660 {
2661 	struct sh_eth_private *mdp = netdev_priv(ndev);
2662 	int reg = TSU_POST1 + entry / 8;
2663 	u32 tmp;
2664 
2665 	tmp = sh_eth_tsu_read(mdp, reg);
2666 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2667 }
2668 
2669 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2670 					      int entry)
2671 {
2672 	struct sh_eth_private *mdp = netdev_priv(ndev);
2673 	int reg = TSU_POST1 + entry / 8;
2674 	u32 post_mask, ref_mask, tmp;
2675 
2676 	post_mask = sh_eth_tsu_get_post_mask(entry);
2677 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2678 
2679 	tmp = sh_eth_tsu_read(mdp, reg);
2680 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2681 
2682 	/* If other port enables, the function returns "true" */
2683 	return tmp & ref_mask;
2684 }
2685 
2686 static int sh_eth_tsu_busy(struct net_device *ndev)
2687 {
2688 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2689 	struct sh_eth_private *mdp = netdev_priv(ndev);
2690 
2691 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2692 		udelay(10);
2693 		timeout--;
2694 		if (timeout <= 0) {
2695 			netdev_err(ndev, "%s: timeout\n", __func__);
2696 			return -ETIMEDOUT;
2697 		}
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2704 				  const u8 *addr)
2705 {
2706 	struct sh_eth_private *mdp = netdev_priv(ndev);
2707 	u32 val;
2708 
2709 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2710 	iowrite32(val, mdp->tsu_addr + offset);
2711 	if (sh_eth_tsu_busy(ndev) < 0)
2712 		return -EBUSY;
2713 
2714 	val = addr[4] << 8 | addr[5];
2715 	iowrite32(val, mdp->tsu_addr + offset + 4);
2716 	if (sh_eth_tsu_busy(ndev) < 0)
2717 		return -EBUSY;
2718 
2719 	return 0;
2720 }
2721 
2722 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2723 {
2724 	struct sh_eth_private *mdp = netdev_priv(ndev);
2725 	u32 val;
2726 
2727 	val = ioread32(mdp->tsu_addr + offset);
2728 	addr[0] = (val >> 24) & 0xff;
2729 	addr[1] = (val >> 16) & 0xff;
2730 	addr[2] = (val >> 8) & 0xff;
2731 	addr[3] = val & 0xff;
2732 	val = ioread32(mdp->tsu_addr + offset + 4);
2733 	addr[4] = (val >> 8) & 0xff;
2734 	addr[5] = val & 0xff;
2735 }
2736 
2737 
2738 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2739 {
2740 	struct sh_eth_private *mdp = netdev_priv(ndev);
2741 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2742 	int i;
2743 	u8 c_addr[ETH_ALEN];
2744 
2745 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2746 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2747 		if (ether_addr_equal(addr, c_addr))
2748 			return i;
2749 	}
2750 
2751 	return -ENOENT;
2752 }
2753 
2754 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2755 {
2756 	u8 blank[ETH_ALEN];
2757 	int entry;
2758 
2759 	memset(blank, 0, sizeof(blank));
2760 	entry = sh_eth_tsu_find_entry(ndev, blank);
2761 	return (entry < 0) ? -ENOMEM : entry;
2762 }
2763 
2764 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2765 					      int entry)
2766 {
2767 	struct sh_eth_private *mdp = netdev_priv(ndev);
2768 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2769 	int ret;
2770 	u8 blank[ETH_ALEN];
2771 
2772 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2773 			 ~(1 << (31 - entry)), TSU_TEN);
2774 
2775 	memset(blank, 0, sizeof(blank));
2776 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2777 	if (ret < 0)
2778 		return ret;
2779 	return 0;
2780 }
2781 
2782 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2783 {
2784 	struct sh_eth_private *mdp = netdev_priv(ndev);
2785 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2786 	int i, ret;
2787 
2788 	if (!mdp->cd->tsu)
2789 		return 0;
2790 
2791 	i = sh_eth_tsu_find_entry(ndev, addr);
2792 	if (i < 0) {
2793 		/* No entry found, create one */
2794 		i = sh_eth_tsu_find_empty(ndev);
2795 		if (i < 0)
2796 			return -ENOMEM;
2797 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2798 		if (ret < 0)
2799 			return ret;
2800 
2801 		/* Enable the entry */
2802 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2803 				 (1 << (31 - i)), TSU_TEN);
2804 	}
2805 
2806 	/* Entry found or created, enable POST */
2807 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2808 
2809 	return 0;
2810 }
2811 
2812 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2813 {
2814 	struct sh_eth_private *mdp = netdev_priv(ndev);
2815 	int i, ret;
2816 
2817 	if (!mdp->cd->tsu)
2818 		return 0;
2819 
2820 	i = sh_eth_tsu_find_entry(ndev, addr);
2821 	if (i) {
2822 		/* Entry found */
2823 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2824 			goto done;
2825 
2826 		/* Disable the entry if both ports was disabled */
2827 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2828 		if (ret < 0)
2829 			return ret;
2830 	}
2831 done:
2832 	return 0;
2833 }
2834 
2835 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2836 {
2837 	struct sh_eth_private *mdp = netdev_priv(ndev);
2838 	int i, ret;
2839 
2840 	if (!mdp->cd->tsu)
2841 		return 0;
2842 
2843 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2844 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2845 			continue;
2846 
2847 		/* Disable the entry if both ports was disabled */
2848 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2849 		if (ret < 0)
2850 			return ret;
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2857 {
2858 	struct sh_eth_private *mdp = netdev_priv(ndev);
2859 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2860 	u8 addr[ETH_ALEN];
2861 	int i;
2862 
2863 	if (!mdp->cd->tsu)
2864 		return;
2865 
2866 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2867 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2868 		if (is_multicast_ether_addr(addr))
2869 			sh_eth_tsu_del_entry(ndev, addr);
2870 	}
2871 }
2872 
2873 /* Update promiscuous flag and multicast filter */
2874 static void sh_eth_set_rx_mode(struct net_device *ndev)
2875 {
2876 	struct sh_eth_private *mdp = netdev_priv(ndev);
2877 	u32 ecmr_bits;
2878 	int mcast_all = 0;
2879 	unsigned long flags;
2880 
2881 	spin_lock_irqsave(&mdp->lock, flags);
2882 	/* Initial condition is MCT = 1, PRM = 0.
2883 	 * Depending on ndev->flags, set PRM or clear MCT
2884 	 */
2885 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2886 	if (mdp->cd->tsu)
2887 		ecmr_bits |= ECMR_MCT;
2888 
2889 	if (!(ndev->flags & IFF_MULTICAST)) {
2890 		sh_eth_tsu_purge_mcast(ndev);
2891 		mcast_all = 1;
2892 	}
2893 	if (ndev->flags & IFF_ALLMULTI) {
2894 		sh_eth_tsu_purge_mcast(ndev);
2895 		ecmr_bits &= ~ECMR_MCT;
2896 		mcast_all = 1;
2897 	}
2898 
2899 	if (ndev->flags & IFF_PROMISC) {
2900 		sh_eth_tsu_purge_all(ndev);
2901 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2902 	} else if (mdp->cd->tsu) {
2903 		struct netdev_hw_addr *ha;
2904 		netdev_for_each_mc_addr(ha, ndev) {
2905 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2906 				continue;
2907 
2908 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2909 				if (!mcast_all) {
2910 					sh_eth_tsu_purge_mcast(ndev);
2911 					ecmr_bits &= ~ECMR_MCT;
2912 					mcast_all = 1;
2913 				}
2914 			}
2915 		}
2916 	}
2917 
2918 	/* update the ethernet mode */
2919 	sh_eth_write(ndev, ecmr_bits, ECMR);
2920 
2921 	spin_unlock_irqrestore(&mdp->lock, flags);
2922 }
2923 
2924 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2925 {
2926 	if (!mdp->port)
2927 		return TSU_VTAG0;
2928 	else
2929 		return TSU_VTAG1;
2930 }
2931 
2932 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2933 				  __be16 proto, u16 vid)
2934 {
2935 	struct sh_eth_private *mdp = netdev_priv(ndev);
2936 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2937 
2938 	if (unlikely(!mdp->cd->tsu))
2939 		return -EPERM;
2940 
2941 	/* No filtering if vid = 0 */
2942 	if (!vid)
2943 		return 0;
2944 
2945 	mdp->vlan_num_ids++;
2946 
2947 	/* The controller has one VLAN tag HW filter. So, if the filter is
2948 	 * already enabled, the driver disables it and the filte
2949 	 */
2950 	if (mdp->vlan_num_ids > 1) {
2951 		/* disable VLAN filter */
2952 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2953 		return 0;
2954 	}
2955 
2956 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2957 			 vtag_reg_index);
2958 
2959 	return 0;
2960 }
2961 
2962 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2963 				   __be16 proto, u16 vid)
2964 {
2965 	struct sh_eth_private *mdp = netdev_priv(ndev);
2966 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2967 
2968 	if (unlikely(!mdp->cd->tsu))
2969 		return -EPERM;
2970 
2971 	/* No filtering if vid = 0 */
2972 	if (!vid)
2973 		return 0;
2974 
2975 	mdp->vlan_num_ids--;
2976 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2977 
2978 	return 0;
2979 }
2980 
2981 /* SuperH's TSU register init function */
2982 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2983 {
2984 	if (!mdp->cd->dual_port) {
2985 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2986 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2987 				 TSU_FWSLC);	/* Enable POST registers */
2988 		return;
2989 	}
2990 
2991 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2992 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2993 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2994 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2995 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2996 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2997 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2998 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2999 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3000 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3001 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3002 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3003 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3004 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3005 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3006 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3007 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3008 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3009 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3010 }
3011 
3012 /* MDIO bus release function */
3013 static int sh_mdio_release(struct sh_eth_private *mdp)
3014 {
3015 	/* unregister mdio bus */
3016 	mdiobus_unregister(mdp->mii_bus);
3017 
3018 	/* free bitbang info */
3019 	free_mdio_bitbang(mdp->mii_bus);
3020 
3021 	return 0;
3022 }
3023 
3024 /* MDIO bus init function */
3025 static int sh_mdio_init(struct sh_eth_private *mdp,
3026 			struct sh_eth_plat_data *pd)
3027 {
3028 	int ret;
3029 	struct bb_info *bitbang;
3030 	struct platform_device *pdev = mdp->pdev;
3031 	struct device *dev = &mdp->pdev->dev;
3032 
3033 	/* create bit control struct for PHY */
3034 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3035 	if (!bitbang)
3036 		return -ENOMEM;
3037 
3038 	/* bitbang init */
3039 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3040 	bitbang->set_gate = pd->set_mdio_gate;
3041 	bitbang->ctrl.ops = &bb_ops;
3042 
3043 	/* MII controller setting */
3044 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3045 	if (!mdp->mii_bus)
3046 		return -ENOMEM;
3047 
3048 	/* Hook up MII support for ethtool */
3049 	mdp->mii_bus->name = "sh_mii";
3050 	mdp->mii_bus->parent = dev;
3051 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3052 		 pdev->name, pdev->id);
3053 
3054 	/* register MDIO bus */
3055 	if (pd->phy_irq > 0)
3056 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3057 
3058 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3059 	if (ret)
3060 		goto out_free_bus;
3061 
3062 	return 0;
3063 
3064 out_free_bus:
3065 	free_mdio_bitbang(mdp->mii_bus);
3066 	return ret;
3067 }
3068 
3069 static const u16 *sh_eth_get_register_offset(int register_type)
3070 {
3071 	const u16 *reg_offset = NULL;
3072 
3073 	switch (register_type) {
3074 	case SH_ETH_REG_GIGABIT:
3075 		reg_offset = sh_eth_offset_gigabit;
3076 		break;
3077 	case SH_ETH_REG_FAST_RZ:
3078 		reg_offset = sh_eth_offset_fast_rz;
3079 		break;
3080 	case SH_ETH_REG_FAST_RCAR:
3081 		reg_offset = sh_eth_offset_fast_rcar;
3082 		break;
3083 	case SH_ETH_REG_FAST_SH4:
3084 		reg_offset = sh_eth_offset_fast_sh4;
3085 		break;
3086 	case SH_ETH_REG_FAST_SH3_SH2:
3087 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3088 		break;
3089 	}
3090 
3091 	return reg_offset;
3092 }
3093 
3094 static const struct net_device_ops sh_eth_netdev_ops = {
3095 	.ndo_open		= sh_eth_open,
3096 	.ndo_stop		= sh_eth_close,
3097 	.ndo_start_xmit		= sh_eth_start_xmit,
3098 	.ndo_get_stats		= sh_eth_get_stats,
3099 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3100 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3101 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3102 	.ndo_change_mtu		= sh_eth_change_mtu,
3103 	.ndo_validate_addr	= eth_validate_addr,
3104 	.ndo_set_mac_address	= eth_mac_addr,
3105 };
3106 
3107 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3108 	.ndo_open		= sh_eth_open,
3109 	.ndo_stop		= sh_eth_close,
3110 	.ndo_start_xmit		= sh_eth_start_xmit,
3111 	.ndo_get_stats		= sh_eth_get_stats,
3112 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3113 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3114 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3115 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3116 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3117 	.ndo_change_mtu		= sh_eth_change_mtu,
3118 	.ndo_validate_addr	= eth_validate_addr,
3119 	.ndo_set_mac_address	= eth_mac_addr,
3120 };
3121 
3122 #ifdef CONFIG_OF
3123 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3124 {
3125 	struct device_node *np = dev->of_node;
3126 	struct sh_eth_plat_data *pdata;
3127 	const char *mac_addr;
3128 
3129 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3130 	if (!pdata)
3131 		return NULL;
3132 
3133 	pdata->phy_interface = of_get_phy_mode(np);
3134 
3135 	mac_addr = of_get_mac_address(np);
3136 	if (mac_addr)
3137 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3138 
3139 	pdata->no_ether_link =
3140 		of_property_read_bool(np, "renesas,no-ether-link");
3141 	pdata->ether_link_active_low =
3142 		of_property_read_bool(np, "renesas,ether-link-active-low");
3143 
3144 	return pdata;
3145 }
3146 
3147 static const struct of_device_id sh_eth_match_table[] = {
3148 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3149 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3150 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3151 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3152 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3153 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3154 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3155 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3156 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3157 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3158 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3159 	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3160 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3161 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3162 	{ }
3163 };
3164 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3165 #else
3166 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3167 {
3168 	return NULL;
3169 }
3170 #endif
3171 
3172 static int sh_eth_drv_probe(struct platform_device *pdev)
3173 {
3174 	struct resource *res;
3175 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3176 	const struct platform_device_id *id = platform_get_device_id(pdev);
3177 	struct sh_eth_private *mdp;
3178 	struct net_device *ndev;
3179 	int ret;
3180 
3181 	/* get base addr */
3182 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3183 
3184 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3185 	if (!ndev)
3186 		return -ENOMEM;
3187 
3188 	pm_runtime_enable(&pdev->dev);
3189 	pm_runtime_get_sync(&pdev->dev);
3190 
3191 	ret = platform_get_irq(pdev, 0);
3192 	if (ret < 0)
3193 		goto out_release;
3194 	ndev->irq = ret;
3195 
3196 	SET_NETDEV_DEV(ndev, &pdev->dev);
3197 
3198 	mdp = netdev_priv(ndev);
3199 	mdp->num_tx_ring = TX_RING_SIZE;
3200 	mdp->num_rx_ring = RX_RING_SIZE;
3201 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3202 	if (IS_ERR(mdp->addr)) {
3203 		ret = PTR_ERR(mdp->addr);
3204 		goto out_release;
3205 	}
3206 
3207 	ndev->base_addr = res->start;
3208 
3209 	spin_lock_init(&mdp->lock);
3210 	mdp->pdev = pdev;
3211 
3212 	if (pdev->dev.of_node)
3213 		pd = sh_eth_parse_dt(&pdev->dev);
3214 	if (!pd) {
3215 		dev_err(&pdev->dev, "no platform data\n");
3216 		ret = -EINVAL;
3217 		goto out_release;
3218 	}
3219 
3220 	/* get PHY ID */
3221 	mdp->phy_id = pd->phy;
3222 	mdp->phy_interface = pd->phy_interface;
3223 	mdp->no_ether_link = pd->no_ether_link;
3224 	mdp->ether_link_active_low = pd->ether_link_active_low;
3225 
3226 	/* set cpu data */
3227 	if (id)
3228 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3229 	else
3230 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3231 
3232 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3233 	if (!mdp->reg_offset) {
3234 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3235 			mdp->cd->register_type);
3236 		ret = -EINVAL;
3237 		goto out_release;
3238 	}
3239 	sh_eth_set_default_cpu_data(mdp->cd);
3240 
3241 	/* User's manual states max MTU should be 2048 but due to the
3242 	 * alignment calculations in sh_eth_ring_init() the practical
3243 	 * MTU is a bit less. Maybe this can be optimized some more.
3244 	 */
3245 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3246 	ndev->min_mtu = ETH_MIN_MTU;
3247 
3248 	/* set function */
3249 	if (mdp->cd->tsu)
3250 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3251 	else
3252 		ndev->netdev_ops = &sh_eth_netdev_ops;
3253 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3254 	ndev->watchdog_timeo = TX_TIMEOUT;
3255 
3256 	/* debug message level */
3257 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3258 
3259 	/* read and set MAC address */
3260 	read_mac_address(ndev, pd->mac_addr);
3261 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3262 		dev_warn(&pdev->dev,
3263 			 "no valid MAC address supplied, using a random one.\n");
3264 		eth_hw_addr_random(ndev);
3265 	}
3266 
3267 	if (mdp->cd->tsu) {
3268 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3269 		struct resource *rtsu;
3270 
3271 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3272 		if (!rtsu) {
3273 			dev_err(&pdev->dev, "no TSU resource\n");
3274 			ret = -ENODEV;
3275 			goto out_release;
3276 		}
3277 		/* We can only request the  TSU region  for the first port
3278 		 * of the two  sharing this TSU for the probe to succeed...
3279 		 */
3280 		if (port == 0 &&
3281 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3282 					     resource_size(rtsu),
3283 					     dev_name(&pdev->dev))) {
3284 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3285 			ret = -EBUSY;
3286 			goto out_release;
3287 		}
3288 		/* ioremap the TSU registers */
3289 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3290 					     resource_size(rtsu));
3291 		if (!mdp->tsu_addr) {
3292 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3293 			ret = -ENOMEM;
3294 			goto out_release;
3295 		}
3296 		mdp->port = port;
3297 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3298 
3299 		/* Need to init only the first port of the two sharing a TSU */
3300 		if (port == 0) {
3301 			if (mdp->cd->chip_reset)
3302 				mdp->cd->chip_reset(ndev);
3303 
3304 			/* TSU init (Init only)*/
3305 			sh_eth_tsu_init(mdp);
3306 		}
3307 	}
3308 
3309 	if (mdp->cd->rmiimode)
3310 		sh_eth_write(ndev, 0x1, RMIIMODE);
3311 
3312 	/* MDIO bus init */
3313 	ret = sh_mdio_init(mdp, pd);
3314 	if (ret) {
3315 		if (ret != -EPROBE_DEFER)
3316 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3317 		goto out_release;
3318 	}
3319 
3320 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3321 
3322 	/* network device register */
3323 	ret = register_netdev(ndev);
3324 	if (ret)
3325 		goto out_napi_del;
3326 
3327 	if (mdp->cd->magic)
3328 		device_set_wakeup_capable(&pdev->dev, 1);
3329 
3330 	/* print device information */
3331 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3332 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3333 
3334 	pm_runtime_put(&pdev->dev);
3335 	platform_set_drvdata(pdev, ndev);
3336 
3337 	return ret;
3338 
3339 out_napi_del:
3340 	netif_napi_del(&mdp->napi);
3341 	sh_mdio_release(mdp);
3342 
3343 out_release:
3344 	/* net_dev free */
3345 	free_netdev(ndev);
3346 
3347 	pm_runtime_put(&pdev->dev);
3348 	pm_runtime_disable(&pdev->dev);
3349 	return ret;
3350 }
3351 
3352 static int sh_eth_drv_remove(struct platform_device *pdev)
3353 {
3354 	struct net_device *ndev = platform_get_drvdata(pdev);
3355 	struct sh_eth_private *mdp = netdev_priv(ndev);
3356 
3357 	unregister_netdev(ndev);
3358 	netif_napi_del(&mdp->napi);
3359 	sh_mdio_release(mdp);
3360 	pm_runtime_disable(&pdev->dev);
3361 	free_netdev(ndev);
3362 
3363 	return 0;
3364 }
3365 
3366 #ifdef CONFIG_PM
3367 #ifdef CONFIG_PM_SLEEP
3368 static int sh_eth_wol_setup(struct net_device *ndev)
3369 {
3370 	struct sh_eth_private *mdp = netdev_priv(ndev);
3371 
3372 	/* Only allow ECI interrupts */
3373 	synchronize_irq(ndev->irq);
3374 	napi_disable(&mdp->napi);
3375 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3376 
3377 	/* Enable MagicPacket */
3378 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3379 
3380 	return enable_irq_wake(ndev->irq);
3381 }
3382 
3383 static int sh_eth_wol_restore(struct net_device *ndev)
3384 {
3385 	struct sh_eth_private *mdp = netdev_priv(ndev);
3386 	int ret;
3387 
3388 	napi_enable(&mdp->napi);
3389 
3390 	/* Disable MagicPacket */
3391 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3392 
3393 	/* The device needs to be reset to restore MagicPacket logic
3394 	 * for next wakeup. If we close and open the device it will
3395 	 * both be reset and all registers restored. This is what
3396 	 * happens during suspend and resume without WoL enabled.
3397 	 */
3398 	ret = sh_eth_close(ndev);
3399 	if (ret < 0)
3400 		return ret;
3401 	ret = sh_eth_open(ndev);
3402 	if (ret < 0)
3403 		return ret;
3404 
3405 	return disable_irq_wake(ndev->irq);
3406 }
3407 
3408 static int sh_eth_suspend(struct device *dev)
3409 {
3410 	struct net_device *ndev = dev_get_drvdata(dev);
3411 	struct sh_eth_private *mdp = netdev_priv(ndev);
3412 	int ret = 0;
3413 
3414 	if (!netif_running(ndev))
3415 		return 0;
3416 
3417 	netif_device_detach(ndev);
3418 
3419 	if (mdp->wol_enabled)
3420 		ret = sh_eth_wol_setup(ndev);
3421 	else
3422 		ret = sh_eth_close(ndev);
3423 
3424 	return ret;
3425 }
3426 
3427 static int sh_eth_resume(struct device *dev)
3428 {
3429 	struct net_device *ndev = dev_get_drvdata(dev);
3430 	struct sh_eth_private *mdp = netdev_priv(ndev);
3431 	int ret = 0;
3432 
3433 	if (!netif_running(ndev))
3434 		return 0;
3435 
3436 	if (mdp->wol_enabled)
3437 		ret = sh_eth_wol_restore(ndev);
3438 	else
3439 		ret = sh_eth_open(ndev);
3440 
3441 	if (ret < 0)
3442 		return ret;
3443 
3444 	netif_device_attach(ndev);
3445 
3446 	return ret;
3447 }
3448 #endif
3449 
3450 static int sh_eth_runtime_nop(struct device *dev)
3451 {
3452 	/* Runtime PM callback shared between ->runtime_suspend()
3453 	 * and ->runtime_resume(). Simply returns success.
3454 	 *
3455 	 * This driver re-initializes all registers after
3456 	 * pm_runtime_get_sync() anyway so there is no need
3457 	 * to save and restore registers here.
3458 	 */
3459 	return 0;
3460 }
3461 
3462 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3463 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3464 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3465 };
3466 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3467 #else
3468 #define SH_ETH_PM_OPS NULL
3469 #endif
3470 
3471 static const struct platform_device_id sh_eth_id_table[] = {
3472 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3473 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3474 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3475 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3476 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3477 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3478 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3479 	{ }
3480 };
3481 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3482 
3483 static struct platform_driver sh_eth_driver = {
3484 	.probe = sh_eth_drv_probe,
3485 	.remove = sh_eth_drv_remove,
3486 	.id_table = sh_eth_id_table,
3487 	.driver = {
3488 		   .name = CARDNAME,
3489 		   .pm = SH_ETH_PM_OPS,
3490 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3491 	},
3492 };
3493 
3494 module_platform_driver(sh_eth_driver);
3495 
3496 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3497 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3498 MODULE_LICENSE("GPL v2");
3499