1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6  *  Copyright (C) 2013 Cogent Embedded, Inc.
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *  You should have received a copy of the GNU General Public License along with
17  *  this program; if not, write to the Free Software Foundation, Inc.,
18  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  *  The full GNU General Public License is included in this distribution in
21  *  the file called "COPYING".
22  */
23 
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 
45 #include "sh_eth.h"
46 
47 #define SH_ETH_DEF_MSG_ENABLE \
48 		(NETIF_MSG_LINK	| \
49 		NETIF_MSG_TIMER	| \
50 		NETIF_MSG_RX_ERR| \
51 		NETIF_MSG_TX_ERR)
52 
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 	[EDSR]		= 0x0000,
55 	[EDMR]		= 0x0400,
56 	[EDTRR]		= 0x0408,
57 	[EDRRR]		= 0x0410,
58 	[EESR]		= 0x0428,
59 	[EESIPR]	= 0x0430,
60 	[TDLAR]		= 0x0010,
61 	[TDFAR]		= 0x0014,
62 	[TDFXR]		= 0x0018,
63 	[TDFFR]		= 0x001c,
64 	[RDLAR]		= 0x0030,
65 	[RDFAR]		= 0x0034,
66 	[RDFXR]		= 0x0038,
67 	[RDFFR]		= 0x003c,
68 	[TRSCER]	= 0x0438,
69 	[RMFCR]		= 0x0440,
70 	[TFTR]		= 0x0448,
71 	[FDR]		= 0x0450,
72 	[RMCR]		= 0x0458,
73 	[RPADIR]	= 0x0460,
74 	[FCFTR]		= 0x0468,
75 	[CSMR]		= 0x04E4,
76 
77 	[ECMR]		= 0x0500,
78 	[ECSR]		= 0x0510,
79 	[ECSIPR]	= 0x0518,
80 	[PIR]		= 0x0520,
81 	[PSR]		= 0x0528,
82 	[PIPR]		= 0x052c,
83 	[RFLR]		= 0x0508,
84 	[APR]		= 0x0554,
85 	[MPR]		= 0x0558,
86 	[PFTCR]		= 0x055c,
87 	[PFRCR]		= 0x0560,
88 	[TPAUSER]	= 0x0564,
89 	[GECMR]		= 0x05b0,
90 	[BCULR]		= 0x05b4,
91 	[MAHR]		= 0x05c0,
92 	[MALR]		= 0x05c8,
93 	[TROCR]		= 0x0700,
94 	[CDCR]		= 0x0708,
95 	[LCCR]		= 0x0710,
96 	[CEFCR]		= 0x0740,
97 	[FRECR]		= 0x0748,
98 	[TSFRCR]	= 0x0750,
99 	[TLFRCR]	= 0x0758,
100 	[RFCR]		= 0x0760,
101 	[CERCR]		= 0x0768,
102 	[CEECR]		= 0x0770,
103 	[MAFCR]		= 0x0778,
104 	[RMII_MII]	= 0x0790,
105 
106 	[ARSTR]		= 0x0000,
107 	[TSU_CTRST]	= 0x0004,
108 	[TSU_FWEN0]	= 0x0010,
109 	[TSU_FWEN1]	= 0x0014,
110 	[TSU_FCM]	= 0x0018,
111 	[TSU_BSYSL0]	= 0x0020,
112 	[TSU_BSYSL1]	= 0x0024,
113 	[TSU_PRISL0]	= 0x0028,
114 	[TSU_PRISL1]	= 0x002c,
115 	[TSU_FWSL0]	= 0x0030,
116 	[TSU_FWSL1]	= 0x0034,
117 	[TSU_FWSLC]	= 0x0038,
118 	[TSU_QTAG0]	= 0x0040,
119 	[TSU_QTAG1]	= 0x0044,
120 	[TSU_FWSR]	= 0x0050,
121 	[TSU_FWINMK]	= 0x0054,
122 	[TSU_ADQT0]	= 0x0048,
123 	[TSU_ADQT1]	= 0x004c,
124 	[TSU_VTAG0]	= 0x0058,
125 	[TSU_VTAG1]	= 0x005c,
126 	[TSU_ADSBSY]	= 0x0060,
127 	[TSU_TEN]	= 0x0064,
128 	[TSU_POST1]	= 0x0070,
129 	[TSU_POST2]	= 0x0074,
130 	[TSU_POST3]	= 0x0078,
131 	[TSU_POST4]	= 0x007c,
132 	[TSU_ADRH0]	= 0x0100,
133 	[TSU_ADRL0]	= 0x0104,
134 	[TSU_ADRH31]	= 0x01f8,
135 	[TSU_ADRL31]	= 0x01fc,
136 
137 	[TXNLCR0]	= 0x0080,
138 	[TXALCR0]	= 0x0084,
139 	[RXNLCR0]	= 0x0088,
140 	[RXALCR0]	= 0x008c,
141 	[FWNLCR0]	= 0x0090,
142 	[FWALCR0]	= 0x0094,
143 	[TXNLCR1]	= 0x00a0,
144 	[TXALCR1]	= 0x00a0,
145 	[RXNLCR1]	= 0x00a8,
146 	[RXALCR1]	= 0x00ac,
147 	[FWNLCR1]	= 0x00b0,
148 	[FWALCR1]	= 0x00b4,
149 };
150 
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 	[ECMR]		= 0x0300,
153 	[RFLR]		= 0x0308,
154 	[ECSR]		= 0x0310,
155 	[ECSIPR]	= 0x0318,
156 	[PIR]		= 0x0320,
157 	[PSR]		= 0x0328,
158 	[RDMLR]		= 0x0340,
159 	[IPGR]		= 0x0350,
160 	[APR]		= 0x0354,
161 	[MPR]		= 0x0358,
162 	[RFCF]		= 0x0360,
163 	[TPAUSER]	= 0x0364,
164 	[TPAUSECR]	= 0x0368,
165 	[MAHR]		= 0x03c0,
166 	[MALR]		= 0x03c8,
167 	[TROCR]		= 0x03d0,
168 	[CDCR]		= 0x03d4,
169 	[LCCR]		= 0x03d8,
170 	[CNDCR]		= 0x03dc,
171 	[CEFCR]		= 0x03e4,
172 	[FRECR]		= 0x03e8,
173 	[TSFRCR]	= 0x03ec,
174 	[TLFRCR]	= 0x03f0,
175 	[RFCR]		= 0x03f4,
176 	[MAFCR]		= 0x03f8,
177 
178 	[EDMR]		= 0x0200,
179 	[EDTRR]		= 0x0208,
180 	[EDRRR]		= 0x0210,
181 	[TDLAR]		= 0x0218,
182 	[RDLAR]		= 0x0220,
183 	[EESR]		= 0x0228,
184 	[EESIPR]	= 0x0230,
185 	[TRSCER]	= 0x0238,
186 	[RMFCR]		= 0x0240,
187 	[TFTR]		= 0x0248,
188 	[FDR]		= 0x0250,
189 	[RMCR]		= 0x0258,
190 	[TFUCR]		= 0x0264,
191 	[RFOCR]		= 0x0268,
192 	[FCFTR]		= 0x0270,
193 	[TRIMD]		= 0x027c,
194 };
195 
196 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
197 	[ECMR]		= 0x0100,
198 	[RFLR]		= 0x0108,
199 	[ECSR]		= 0x0110,
200 	[ECSIPR]	= 0x0118,
201 	[PIR]		= 0x0120,
202 	[PSR]		= 0x0128,
203 	[RDMLR]		= 0x0140,
204 	[IPGR]		= 0x0150,
205 	[APR]		= 0x0154,
206 	[MPR]		= 0x0158,
207 	[TPAUSER]	= 0x0164,
208 	[RFCF]		= 0x0160,
209 	[TPAUSECR]	= 0x0168,
210 	[BCFRR]		= 0x016c,
211 	[MAHR]		= 0x01c0,
212 	[MALR]		= 0x01c8,
213 	[TROCR]		= 0x01d0,
214 	[CDCR]		= 0x01d4,
215 	[LCCR]		= 0x01d8,
216 	[CNDCR]		= 0x01dc,
217 	[CEFCR]		= 0x01e4,
218 	[FRECR]		= 0x01e8,
219 	[TSFRCR]	= 0x01ec,
220 	[TLFRCR]	= 0x01f0,
221 	[RFCR]		= 0x01f4,
222 	[MAFCR]		= 0x01f8,
223 	[RTRATE]	= 0x01fc,
224 
225 	[EDMR]		= 0x0000,
226 	[EDTRR]		= 0x0008,
227 	[EDRRR]		= 0x0010,
228 	[TDLAR]		= 0x0018,
229 	[RDLAR]		= 0x0020,
230 	[EESR]		= 0x0028,
231 	[EESIPR]	= 0x0030,
232 	[TRSCER]	= 0x0038,
233 	[RMFCR]		= 0x0040,
234 	[TFTR]		= 0x0048,
235 	[FDR]		= 0x0050,
236 	[RMCR]		= 0x0058,
237 	[TFUCR]		= 0x0064,
238 	[RFOCR]		= 0x0068,
239 	[FCFTR]		= 0x0070,
240 	[RPADIR]	= 0x0078,
241 	[TRIMD]		= 0x007c,
242 	[RBWAR]		= 0x00c8,
243 	[RDFAR]		= 0x00cc,
244 	[TBRAR]		= 0x00d4,
245 	[TDFAR]		= 0x00d8,
246 };
247 
248 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
249 	[ECMR]		= 0x0160,
250 	[ECSR]		= 0x0164,
251 	[ECSIPR]	= 0x0168,
252 	[PIR]		= 0x016c,
253 	[MAHR]		= 0x0170,
254 	[MALR]		= 0x0174,
255 	[RFLR]		= 0x0178,
256 	[PSR]		= 0x017c,
257 	[TROCR]		= 0x0180,
258 	[CDCR]		= 0x0184,
259 	[LCCR]		= 0x0188,
260 	[CNDCR]		= 0x018c,
261 	[CEFCR]		= 0x0194,
262 	[FRECR]		= 0x0198,
263 	[TSFRCR]	= 0x019c,
264 	[TLFRCR]	= 0x01a0,
265 	[RFCR]		= 0x01a4,
266 	[MAFCR]		= 0x01a8,
267 	[IPGR]		= 0x01b4,
268 	[APR]		= 0x01b8,
269 	[MPR]		= 0x01bc,
270 	[TPAUSER]	= 0x01c4,
271 	[BCFR]		= 0x01cc,
272 
273 	[ARSTR]		= 0x0000,
274 	[TSU_CTRST]	= 0x0004,
275 	[TSU_FWEN0]	= 0x0010,
276 	[TSU_FWEN1]	= 0x0014,
277 	[TSU_FCM]	= 0x0018,
278 	[TSU_BSYSL0]	= 0x0020,
279 	[TSU_BSYSL1]	= 0x0024,
280 	[TSU_PRISL0]	= 0x0028,
281 	[TSU_PRISL1]	= 0x002c,
282 	[TSU_FWSL0]	= 0x0030,
283 	[TSU_FWSL1]	= 0x0034,
284 	[TSU_FWSLC]	= 0x0038,
285 	[TSU_QTAGM0]	= 0x0040,
286 	[TSU_QTAGM1]	= 0x0044,
287 	[TSU_ADQT0]	= 0x0048,
288 	[TSU_ADQT1]	= 0x004c,
289 	[TSU_FWSR]	= 0x0050,
290 	[TSU_FWINMK]	= 0x0054,
291 	[TSU_ADSBSY]	= 0x0060,
292 	[TSU_TEN]	= 0x0064,
293 	[TSU_POST1]	= 0x0070,
294 	[TSU_POST2]	= 0x0074,
295 	[TSU_POST3]	= 0x0078,
296 	[TSU_POST4]	= 0x007c,
297 
298 	[TXNLCR0]	= 0x0080,
299 	[TXALCR0]	= 0x0084,
300 	[RXNLCR0]	= 0x0088,
301 	[RXALCR0]	= 0x008c,
302 	[FWNLCR0]	= 0x0090,
303 	[FWALCR0]	= 0x0094,
304 	[TXNLCR1]	= 0x00a0,
305 	[TXALCR1]	= 0x00a0,
306 	[RXNLCR1]	= 0x00a8,
307 	[RXALCR1]	= 0x00ac,
308 	[FWNLCR1]	= 0x00b0,
309 	[FWALCR1]	= 0x00b4,
310 
311 	[TSU_ADRH0]	= 0x0100,
312 	[TSU_ADRL0]	= 0x0104,
313 	[TSU_ADRL31]	= 0x01fc,
314 };
315 
316 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
317 	defined(CONFIG_CPU_SUBTYPE_SH7763) || \
318 	defined(CONFIG_ARCH_R8A7740)
319 static void sh_eth_select_mii(struct net_device *ndev)
320 {
321 	u32 value = 0x0;
322 	struct sh_eth_private *mdp = netdev_priv(ndev);
323 
324 	switch (mdp->phy_interface) {
325 	case PHY_INTERFACE_MODE_GMII:
326 		value = 0x2;
327 		break;
328 	case PHY_INTERFACE_MODE_MII:
329 		value = 0x1;
330 		break;
331 	case PHY_INTERFACE_MODE_RMII:
332 		value = 0x0;
333 		break;
334 	default:
335 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
336 		value = 0x1;
337 		break;
338 	}
339 
340 	sh_eth_write(ndev, value, RMII_MII);
341 }
342 #endif
343 
344 /* There is CPU dependent code */
345 #if defined(CONFIG_ARCH_R8A7778) || defined(CONFIG_ARCH_R8A7779)
346 #define SH_ETH_RESET_DEFAULT	1
347 static void sh_eth_set_duplex(struct net_device *ndev)
348 {
349 	struct sh_eth_private *mdp = netdev_priv(ndev);
350 
351 	if (mdp->duplex) /* Full */
352 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
353 	else		/* Half */
354 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
355 }
356 
357 static void sh_eth_set_rate(struct net_device *ndev)
358 {
359 	struct sh_eth_private *mdp = netdev_priv(ndev);
360 
361 	switch (mdp->speed) {
362 	case 10: /* 10BASE */
363 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
364 		break;
365 	case 100:/* 100BASE */
366 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
367 		break;
368 	default:
369 		break;
370 	}
371 }
372 
373 /* R8A7778/9 */
374 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
375 	.set_duplex	= sh_eth_set_duplex,
376 	.set_rate	= sh_eth_set_rate,
377 
378 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
379 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
380 	.eesipr_value	= 0x01ff009f,
381 
382 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
383 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
384 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
385 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
386 
387 	.apr		= 1,
388 	.mpr		= 1,
389 	.tpauser	= 1,
390 	.hw_swap	= 1,
391 };
392 #elif defined(CONFIG_CPU_SUBTYPE_SH7724)
393 #define SH_ETH_RESET_DEFAULT	1
394 static void sh_eth_set_duplex(struct net_device *ndev)
395 {
396 	struct sh_eth_private *mdp = netdev_priv(ndev);
397 
398 	if (mdp->duplex) /* Full */
399 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
400 	else		/* Half */
401 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
402 }
403 
404 static void sh_eth_set_rate(struct net_device *ndev)
405 {
406 	struct sh_eth_private *mdp = netdev_priv(ndev);
407 
408 	switch (mdp->speed) {
409 	case 10: /* 10BASE */
410 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
411 		break;
412 	case 100:/* 100BASE */
413 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
414 		break;
415 	default:
416 		break;
417 	}
418 }
419 
420 /* SH7724 */
421 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
422 	.set_duplex	= sh_eth_set_duplex,
423 	.set_rate	= sh_eth_set_rate,
424 
425 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
426 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
427 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
428 
429 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
430 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
431 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
432 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
433 
434 	.apr		= 1,
435 	.mpr		= 1,
436 	.tpauser	= 1,
437 	.hw_swap	= 1,
438 	.rpadir		= 1,
439 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
440 };
441 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
442 #define SH_ETH_HAS_BOTH_MODULES	1
443 #define SH_ETH_HAS_TSU	1
444 static int sh_eth_check_reset(struct net_device *ndev);
445 
446 static void sh_eth_set_duplex(struct net_device *ndev)
447 {
448 	struct sh_eth_private *mdp = netdev_priv(ndev);
449 
450 	if (mdp->duplex) /* Full */
451 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
452 	else		/* Half */
453 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
454 }
455 
456 static void sh_eth_set_rate(struct net_device *ndev)
457 {
458 	struct sh_eth_private *mdp = netdev_priv(ndev);
459 
460 	switch (mdp->speed) {
461 	case 10: /* 10BASE */
462 		sh_eth_write(ndev, 0, RTRATE);
463 		break;
464 	case 100:/* 100BASE */
465 		sh_eth_write(ndev, 1, RTRATE);
466 		break;
467 	default:
468 		break;
469 	}
470 }
471 
472 /* SH7757 */
473 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
474 	.set_duplex		= sh_eth_set_duplex,
475 	.set_rate		= sh_eth_set_rate,
476 
477 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
478 	.rmcr_value	= 0x00000001,
479 
480 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
481 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
482 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
483 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
484 
485 	.apr		= 1,
486 	.mpr		= 1,
487 	.tpauser	= 1,
488 	.hw_swap	= 1,
489 	.no_ade		= 1,
490 	.rpadir		= 1,
491 	.rpadir_value   = 2 << 16,
492 };
493 
494 #define SH_GIGA_ETH_BASE	0xfee00000
495 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
496 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
497 static void sh_eth_chip_reset_giga(struct net_device *ndev)
498 {
499 	int i;
500 	unsigned long mahr[2], malr[2];
501 
502 	/* save MAHR and MALR */
503 	for (i = 0; i < 2; i++) {
504 		malr[i] = ioread32((void *)GIGA_MALR(i));
505 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
506 	}
507 
508 	/* reset device */
509 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
510 	mdelay(1);
511 
512 	/* restore MAHR and MALR */
513 	for (i = 0; i < 2; i++) {
514 		iowrite32(malr[i], (void *)GIGA_MALR(i));
515 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
516 	}
517 }
518 
519 static int sh_eth_is_gether(struct sh_eth_private *mdp);
520 static int sh_eth_reset(struct net_device *ndev)
521 {
522 	struct sh_eth_private *mdp = netdev_priv(ndev);
523 	int ret = 0;
524 
525 	if (sh_eth_is_gether(mdp)) {
526 		sh_eth_write(ndev, 0x03, EDSR);
527 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
528 				EDMR);
529 
530 		ret = sh_eth_check_reset(ndev);
531 		if (ret)
532 			goto out;
533 
534 		/* Table Init */
535 		sh_eth_write(ndev, 0x0, TDLAR);
536 		sh_eth_write(ndev, 0x0, TDFAR);
537 		sh_eth_write(ndev, 0x0, TDFXR);
538 		sh_eth_write(ndev, 0x0, TDFFR);
539 		sh_eth_write(ndev, 0x0, RDLAR);
540 		sh_eth_write(ndev, 0x0, RDFAR);
541 		sh_eth_write(ndev, 0x0, RDFXR);
542 		sh_eth_write(ndev, 0x0, RDFFR);
543 	} else {
544 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
545 				EDMR);
546 		mdelay(3);
547 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
548 				EDMR);
549 	}
550 
551 out:
552 	return ret;
553 }
554 
555 static void sh_eth_set_duplex_giga(struct net_device *ndev)
556 {
557 	struct sh_eth_private *mdp = netdev_priv(ndev);
558 
559 	if (mdp->duplex) /* Full */
560 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
561 	else		/* Half */
562 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
563 }
564 
565 static void sh_eth_set_rate_giga(struct net_device *ndev)
566 {
567 	struct sh_eth_private *mdp = netdev_priv(ndev);
568 
569 	switch (mdp->speed) {
570 	case 10: /* 10BASE */
571 		sh_eth_write(ndev, 0x00000000, GECMR);
572 		break;
573 	case 100:/* 100BASE */
574 		sh_eth_write(ndev, 0x00000010, GECMR);
575 		break;
576 	case 1000: /* 1000BASE */
577 		sh_eth_write(ndev, 0x00000020, GECMR);
578 		break;
579 	default:
580 		break;
581 	}
582 }
583 
584 /* SH7757(GETHERC) */
585 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
586 	.chip_reset	= sh_eth_chip_reset_giga,
587 	.set_duplex	= sh_eth_set_duplex_giga,
588 	.set_rate	= sh_eth_set_rate_giga,
589 
590 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
591 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
592 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
593 
594 	.tx_check	= EESR_TC1 | EESR_FTC,
595 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
596 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
597 			  EESR_ECI,
598 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
599 			  EESR_TFE,
600 	.fdr_value	= 0x0000072f,
601 	.rmcr_value	= 0x00000001,
602 
603 	.apr		= 1,
604 	.mpr		= 1,
605 	.tpauser	= 1,
606 	.bculr		= 1,
607 	.hw_swap	= 1,
608 	.rpadir		= 1,
609 	.rpadir_value   = 2 << 16,
610 	.no_trimd	= 1,
611 	.no_ade		= 1,
612 	.tsu		= 1,
613 };
614 
615 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
616 {
617 	if (sh_eth_is_gether(mdp))
618 		return &sh_eth_my_cpu_data_giga;
619 	else
620 		return &sh_eth_my_cpu_data;
621 }
622 
623 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
624 #define SH_ETH_HAS_TSU	1
625 static int sh_eth_check_reset(struct net_device *ndev);
626 static void sh_eth_reset_hw_crc(struct net_device *ndev);
627 
628 static void sh_eth_chip_reset(struct net_device *ndev)
629 {
630 	struct sh_eth_private *mdp = netdev_priv(ndev);
631 
632 	/* reset device */
633 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
634 	mdelay(1);
635 }
636 
637 static void sh_eth_set_duplex(struct net_device *ndev)
638 {
639 	struct sh_eth_private *mdp = netdev_priv(ndev);
640 
641 	if (mdp->duplex) /* Full */
642 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
643 	else		/* Half */
644 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
645 }
646 
647 static void sh_eth_set_rate(struct net_device *ndev)
648 {
649 	struct sh_eth_private *mdp = netdev_priv(ndev);
650 
651 	switch (mdp->speed) {
652 	case 10: /* 10BASE */
653 		sh_eth_write(ndev, GECMR_10, GECMR);
654 		break;
655 	case 100:/* 100BASE */
656 		sh_eth_write(ndev, GECMR_100, GECMR);
657 		break;
658 	case 1000: /* 1000BASE */
659 		sh_eth_write(ndev, GECMR_1000, GECMR);
660 		break;
661 	default:
662 		break;
663 	}
664 }
665 
666 /* sh7763 */
667 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
668 	.chip_reset	= sh_eth_chip_reset,
669 	.set_duplex	= sh_eth_set_duplex,
670 	.set_rate	= sh_eth_set_rate,
671 
672 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
673 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
674 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
675 
676 	.tx_check	= EESR_TC1 | EESR_FTC,
677 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
678 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
679 			  EESR_ECI,
680 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
681 			  EESR_TFE,
682 
683 	.apr		= 1,
684 	.mpr		= 1,
685 	.tpauser	= 1,
686 	.bculr		= 1,
687 	.hw_swap	= 1,
688 	.no_trimd	= 1,
689 	.no_ade		= 1,
690 	.tsu		= 1,
691 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
692 	.hw_crc     = 1,
693 	.select_mii = 1,
694 #endif
695 };
696 
697 static int sh_eth_reset(struct net_device *ndev)
698 {
699 	int ret = 0;
700 
701 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
702 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
703 
704 	ret = sh_eth_check_reset(ndev);
705 	if (ret)
706 		goto out;
707 
708 	/* Table Init */
709 	sh_eth_write(ndev, 0x0, TDLAR);
710 	sh_eth_write(ndev, 0x0, TDFAR);
711 	sh_eth_write(ndev, 0x0, TDFXR);
712 	sh_eth_write(ndev, 0x0, TDFFR);
713 	sh_eth_write(ndev, 0x0, RDLAR);
714 	sh_eth_write(ndev, 0x0, RDFAR);
715 	sh_eth_write(ndev, 0x0, RDFXR);
716 	sh_eth_write(ndev, 0x0, RDFFR);
717 
718 	/* Reset HW CRC register */
719 	sh_eth_reset_hw_crc(ndev);
720 
721 	/* Select MII mode */
722 	if (sh_eth_my_cpu_data.select_mii)
723 		sh_eth_select_mii(ndev);
724 out:
725 	return ret;
726 }
727 
728 static void sh_eth_reset_hw_crc(struct net_device *ndev)
729 {
730 	if (sh_eth_my_cpu_data.hw_crc)
731 		sh_eth_write(ndev, 0x0, CSMR);
732 }
733 
734 #elif defined(CONFIG_ARCH_R8A7740)
735 #define SH_ETH_HAS_TSU	1
736 static int sh_eth_check_reset(struct net_device *ndev);
737 
738 static void sh_eth_chip_reset(struct net_device *ndev)
739 {
740 	struct sh_eth_private *mdp = netdev_priv(ndev);
741 
742 	/* reset device */
743 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
744 	mdelay(1);
745 
746 	sh_eth_select_mii(ndev);
747 }
748 
749 static int sh_eth_reset(struct net_device *ndev)
750 {
751 	int ret = 0;
752 
753 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
754 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
755 
756 	ret = sh_eth_check_reset(ndev);
757 	if (ret)
758 		goto out;
759 
760 	/* Table Init */
761 	sh_eth_write(ndev, 0x0, TDLAR);
762 	sh_eth_write(ndev, 0x0, TDFAR);
763 	sh_eth_write(ndev, 0x0, TDFXR);
764 	sh_eth_write(ndev, 0x0, TDFFR);
765 	sh_eth_write(ndev, 0x0, RDLAR);
766 	sh_eth_write(ndev, 0x0, RDFAR);
767 	sh_eth_write(ndev, 0x0, RDFXR);
768 	sh_eth_write(ndev, 0x0, RDFFR);
769 
770 out:
771 	return ret;
772 }
773 
774 static void sh_eth_set_duplex(struct net_device *ndev)
775 {
776 	struct sh_eth_private *mdp = netdev_priv(ndev);
777 
778 	if (mdp->duplex) /* Full */
779 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
780 	else		/* Half */
781 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
782 }
783 
784 static void sh_eth_set_rate(struct net_device *ndev)
785 {
786 	struct sh_eth_private *mdp = netdev_priv(ndev);
787 
788 	switch (mdp->speed) {
789 	case 10: /* 10BASE */
790 		sh_eth_write(ndev, GECMR_10, GECMR);
791 		break;
792 	case 100:/* 100BASE */
793 		sh_eth_write(ndev, GECMR_100, GECMR);
794 		break;
795 	case 1000: /* 1000BASE */
796 		sh_eth_write(ndev, GECMR_1000, GECMR);
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 /* R8A7740 */
804 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
805 	.chip_reset	= sh_eth_chip_reset,
806 	.set_duplex	= sh_eth_set_duplex,
807 	.set_rate	= sh_eth_set_rate,
808 
809 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
810 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
811 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
812 
813 	.tx_check	= EESR_TC1 | EESR_FTC,
814 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
815 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
816 			  EESR_ECI,
817 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
818 			  EESR_TFE,
819 
820 	.apr		= 1,
821 	.mpr		= 1,
822 	.tpauser	= 1,
823 	.bculr		= 1,
824 	.hw_swap	= 1,
825 	.no_trimd	= 1,
826 	.no_ade		= 1,
827 	.tsu		= 1,
828 	.select_mii	= 1,
829 };
830 
831 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
832 #define SH_ETH_RESET_DEFAULT	1
833 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
834 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835 
836 	.apr		= 1,
837 	.mpr		= 1,
838 	.tpauser	= 1,
839 	.hw_swap	= 1,
840 };
841 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
842 #define SH_ETH_RESET_DEFAULT	1
843 #define SH_ETH_HAS_TSU	1
844 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
845 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
846 	.tsu		= 1,
847 };
848 #endif
849 
850 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
851 {
852 	if (!cd->ecsr_value)
853 		cd->ecsr_value = DEFAULT_ECSR_INIT;
854 
855 	if (!cd->ecsipr_value)
856 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
857 
858 	if (!cd->fcftr_value)
859 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
860 				  DEFAULT_FIFO_F_D_RFD;
861 
862 	if (!cd->fdr_value)
863 		cd->fdr_value = DEFAULT_FDR_INIT;
864 
865 	if (!cd->rmcr_value)
866 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
867 
868 	if (!cd->tx_check)
869 		cd->tx_check = DEFAULT_TX_CHECK;
870 
871 	if (!cd->eesr_err_check)
872 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
873 
874 	if (!cd->tx_error_check)
875 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
876 }
877 
878 #if defined(SH_ETH_RESET_DEFAULT)
879 /* Chip Reset */
880 static int  sh_eth_reset(struct net_device *ndev)
881 {
882 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
883 	mdelay(3);
884 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
885 
886 	return 0;
887 }
888 #else
889 static int sh_eth_check_reset(struct net_device *ndev)
890 {
891 	int ret = 0;
892 	int cnt = 100;
893 
894 	while (cnt > 0) {
895 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
896 			break;
897 		mdelay(1);
898 		cnt--;
899 	}
900 	if (cnt < 0) {
901 		pr_err("Device reset fail\n");
902 		ret = -ETIMEDOUT;
903 	}
904 	return ret;
905 }
906 #endif
907 
908 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
909 static void sh_eth_set_receive_align(struct sk_buff *skb)
910 {
911 	int reserve;
912 
913 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
914 	if (reserve)
915 		skb_reserve(skb, reserve);
916 }
917 #else
918 static void sh_eth_set_receive_align(struct sk_buff *skb)
919 {
920 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
921 }
922 #endif
923 
924 
925 /* CPU <-> EDMAC endian convert */
926 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
927 {
928 	switch (mdp->edmac_endian) {
929 	case EDMAC_LITTLE_ENDIAN:
930 		return cpu_to_le32(x);
931 	case EDMAC_BIG_ENDIAN:
932 		return cpu_to_be32(x);
933 	}
934 	return x;
935 }
936 
937 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
938 {
939 	switch (mdp->edmac_endian) {
940 	case EDMAC_LITTLE_ENDIAN:
941 		return le32_to_cpu(x);
942 	case EDMAC_BIG_ENDIAN:
943 		return be32_to_cpu(x);
944 	}
945 	return x;
946 }
947 
948 /*
949  * Program the hardware MAC address from dev->dev_addr.
950  */
951 static void update_mac_address(struct net_device *ndev)
952 {
953 	sh_eth_write(ndev,
954 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
955 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
956 	sh_eth_write(ndev,
957 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
958 }
959 
960 /*
961  * Get MAC address from SuperH MAC address register
962  *
963  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
964  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
965  * When you want use this device, you must set MAC address in bootloader.
966  *
967  */
968 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
969 {
970 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
971 		memcpy(ndev->dev_addr, mac, 6);
972 	} else {
973 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
974 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
975 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
976 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
977 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
978 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
979 	}
980 }
981 
982 static int sh_eth_is_gether(struct sh_eth_private *mdp)
983 {
984 	if (mdp->reg_offset == sh_eth_offset_gigabit)
985 		return 1;
986 	else
987 		return 0;
988 }
989 
990 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
991 {
992 	if (sh_eth_is_gether(mdp))
993 		return EDTRR_TRNS_GETHER;
994 	else
995 		return EDTRR_TRNS_ETHER;
996 }
997 
998 struct bb_info {
999 	void (*set_gate)(void *addr);
1000 	struct mdiobb_ctrl ctrl;
1001 	void *addr;
1002 	u32 mmd_msk;/* MMD */
1003 	u32 mdo_msk;
1004 	u32 mdi_msk;
1005 	u32 mdc_msk;
1006 };
1007 
1008 /* PHY bit set */
1009 static void bb_set(void *addr, u32 msk)
1010 {
1011 	iowrite32(ioread32(addr) | msk, addr);
1012 }
1013 
1014 /* PHY bit clear */
1015 static void bb_clr(void *addr, u32 msk)
1016 {
1017 	iowrite32((ioread32(addr) & ~msk), addr);
1018 }
1019 
1020 /* PHY bit read */
1021 static int bb_read(void *addr, u32 msk)
1022 {
1023 	return (ioread32(addr) & msk) != 0;
1024 }
1025 
1026 /* Data I/O pin control */
1027 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1028 {
1029 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1030 
1031 	if (bitbang->set_gate)
1032 		bitbang->set_gate(bitbang->addr);
1033 
1034 	if (bit)
1035 		bb_set(bitbang->addr, bitbang->mmd_msk);
1036 	else
1037 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1038 }
1039 
1040 /* Set bit data*/
1041 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1042 {
1043 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1044 
1045 	if (bitbang->set_gate)
1046 		bitbang->set_gate(bitbang->addr);
1047 
1048 	if (bit)
1049 		bb_set(bitbang->addr, bitbang->mdo_msk);
1050 	else
1051 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1052 }
1053 
1054 /* Get bit data*/
1055 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1056 {
1057 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1058 
1059 	if (bitbang->set_gate)
1060 		bitbang->set_gate(bitbang->addr);
1061 
1062 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1063 }
1064 
1065 /* MDC pin control */
1066 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1067 {
1068 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1069 
1070 	if (bitbang->set_gate)
1071 		bitbang->set_gate(bitbang->addr);
1072 
1073 	if (bit)
1074 		bb_set(bitbang->addr, bitbang->mdc_msk);
1075 	else
1076 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1077 }
1078 
1079 /* mdio bus control struct */
1080 static struct mdiobb_ops bb_ops = {
1081 	.owner = THIS_MODULE,
1082 	.set_mdc = sh_mdc_ctrl,
1083 	.set_mdio_dir = sh_mmd_ctrl,
1084 	.set_mdio_data = sh_set_mdio,
1085 	.get_mdio_data = sh_get_mdio,
1086 };
1087 
1088 /* free skb and descriptor buffer */
1089 static void sh_eth_ring_free(struct net_device *ndev)
1090 {
1091 	struct sh_eth_private *mdp = netdev_priv(ndev);
1092 	int i;
1093 
1094 	/* Free Rx skb ringbuffer */
1095 	if (mdp->rx_skbuff) {
1096 		for (i = 0; i < mdp->num_rx_ring; i++) {
1097 			if (mdp->rx_skbuff[i])
1098 				dev_kfree_skb(mdp->rx_skbuff[i]);
1099 		}
1100 	}
1101 	kfree(mdp->rx_skbuff);
1102 	mdp->rx_skbuff = NULL;
1103 
1104 	/* Free Tx skb ringbuffer */
1105 	if (mdp->tx_skbuff) {
1106 		for (i = 0; i < mdp->num_tx_ring; i++) {
1107 			if (mdp->tx_skbuff[i])
1108 				dev_kfree_skb(mdp->tx_skbuff[i]);
1109 		}
1110 	}
1111 	kfree(mdp->tx_skbuff);
1112 	mdp->tx_skbuff = NULL;
1113 }
1114 
1115 /* format skb and descriptor buffer */
1116 static void sh_eth_ring_format(struct net_device *ndev)
1117 {
1118 	struct sh_eth_private *mdp = netdev_priv(ndev);
1119 	int i;
1120 	struct sk_buff *skb;
1121 	struct sh_eth_rxdesc *rxdesc = NULL;
1122 	struct sh_eth_txdesc *txdesc = NULL;
1123 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1124 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1125 
1126 	mdp->cur_rx = mdp->cur_tx = 0;
1127 	mdp->dirty_rx = mdp->dirty_tx = 0;
1128 
1129 	memset(mdp->rx_ring, 0, rx_ringsize);
1130 
1131 	/* build Rx ring buffer */
1132 	for (i = 0; i < mdp->num_rx_ring; i++) {
1133 		/* skb */
1134 		mdp->rx_skbuff[i] = NULL;
1135 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1136 		mdp->rx_skbuff[i] = skb;
1137 		if (skb == NULL)
1138 			break;
1139 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1140 				DMA_FROM_DEVICE);
1141 		sh_eth_set_receive_align(skb);
1142 
1143 		/* RX descriptor */
1144 		rxdesc = &mdp->rx_ring[i];
1145 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1146 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1147 
1148 		/* The size of the buffer is 16 byte boundary. */
1149 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1150 		/* Rx descriptor address set */
1151 		if (i == 0) {
1152 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1153 			if (sh_eth_is_gether(mdp))
1154 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1155 		}
1156 	}
1157 
1158 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1159 
1160 	/* Mark the last entry as wrapping the ring. */
1161 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1162 
1163 	memset(mdp->tx_ring, 0, tx_ringsize);
1164 
1165 	/* build Tx ring buffer */
1166 	for (i = 0; i < mdp->num_tx_ring; i++) {
1167 		mdp->tx_skbuff[i] = NULL;
1168 		txdesc = &mdp->tx_ring[i];
1169 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1170 		txdesc->buffer_length = 0;
1171 		if (i == 0) {
1172 			/* Tx descriptor address set */
1173 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1174 			if (sh_eth_is_gether(mdp))
1175 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1176 		}
1177 	}
1178 
1179 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1180 }
1181 
1182 /* Get skb and descriptor buffer */
1183 static int sh_eth_ring_init(struct net_device *ndev)
1184 {
1185 	struct sh_eth_private *mdp = netdev_priv(ndev);
1186 	int rx_ringsize, tx_ringsize, ret = 0;
1187 
1188 	/*
1189 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1190 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1191 	 * the first 2 bytes, and +16 gets room for the status word from the
1192 	 * card.
1193 	 */
1194 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1195 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1196 	if (mdp->cd->rpadir)
1197 		mdp->rx_buf_sz += NET_IP_ALIGN;
1198 
1199 	/* Allocate RX and TX skb rings */
1200 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1201 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1202 	if (!mdp->rx_skbuff) {
1203 		ret = -ENOMEM;
1204 		return ret;
1205 	}
1206 
1207 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1208 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1209 	if (!mdp->tx_skbuff) {
1210 		ret = -ENOMEM;
1211 		goto skb_ring_free;
1212 	}
1213 
1214 	/* Allocate all Rx descriptors. */
1215 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1216 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1217 					  GFP_KERNEL);
1218 	if (!mdp->rx_ring) {
1219 		ret = -ENOMEM;
1220 		goto desc_ring_free;
1221 	}
1222 
1223 	mdp->dirty_rx = 0;
1224 
1225 	/* Allocate all Tx descriptors. */
1226 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1227 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1228 					  GFP_KERNEL);
1229 	if (!mdp->tx_ring) {
1230 		ret = -ENOMEM;
1231 		goto desc_ring_free;
1232 	}
1233 	return ret;
1234 
1235 desc_ring_free:
1236 	/* free DMA buffer */
1237 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1238 
1239 skb_ring_free:
1240 	/* Free Rx and Tx skb ring buffer */
1241 	sh_eth_ring_free(ndev);
1242 	mdp->tx_ring = NULL;
1243 	mdp->rx_ring = NULL;
1244 
1245 	return ret;
1246 }
1247 
1248 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1249 {
1250 	int ringsize;
1251 
1252 	if (mdp->rx_ring) {
1253 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1254 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1255 				  mdp->rx_desc_dma);
1256 		mdp->rx_ring = NULL;
1257 	}
1258 
1259 	if (mdp->tx_ring) {
1260 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1261 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1262 				  mdp->tx_desc_dma);
1263 		mdp->tx_ring = NULL;
1264 	}
1265 }
1266 
1267 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1268 {
1269 	int ret = 0;
1270 	struct sh_eth_private *mdp = netdev_priv(ndev);
1271 	u32 val;
1272 
1273 	/* Soft Reset */
1274 	ret = sh_eth_reset(ndev);
1275 	if (ret)
1276 		goto out;
1277 
1278 	/* Descriptor format */
1279 	sh_eth_ring_format(ndev);
1280 	if (mdp->cd->rpadir)
1281 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1282 
1283 	/* all sh_eth int mask */
1284 	sh_eth_write(ndev, 0, EESIPR);
1285 
1286 #if defined(__LITTLE_ENDIAN)
1287 	if (mdp->cd->hw_swap)
1288 		sh_eth_write(ndev, EDMR_EL, EDMR);
1289 	else
1290 #endif
1291 		sh_eth_write(ndev, 0, EDMR);
1292 
1293 	/* FIFO size set */
1294 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1295 	sh_eth_write(ndev, 0, TFTR);
1296 
1297 	/* Frame recv control */
1298 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1299 
1300 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1301 
1302 	if (mdp->cd->bculr)
1303 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1304 
1305 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1306 
1307 	if (!mdp->cd->no_trimd)
1308 		sh_eth_write(ndev, 0, TRIMD);
1309 
1310 	/* Recv frame limit set register */
1311 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1312 		     RFLR);
1313 
1314 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1315 	if (start)
1316 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1317 
1318 	/* PAUSE Prohibition */
1319 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1320 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1321 
1322 	sh_eth_write(ndev, val, ECMR);
1323 
1324 	if (mdp->cd->set_rate)
1325 		mdp->cd->set_rate(ndev);
1326 
1327 	/* E-MAC Status Register clear */
1328 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1329 
1330 	/* E-MAC Interrupt Enable register */
1331 	if (start)
1332 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1333 
1334 	/* Set MAC address */
1335 	update_mac_address(ndev);
1336 
1337 	/* mask reset */
1338 	if (mdp->cd->apr)
1339 		sh_eth_write(ndev, APR_AP, APR);
1340 	if (mdp->cd->mpr)
1341 		sh_eth_write(ndev, MPR_MP, MPR);
1342 	if (mdp->cd->tpauser)
1343 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1344 
1345 	if (start) {
1346 		/* Setting the Rx mode will start the Rx process. */
1347 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1348 
1349 		netif_start_queue(ndev);
1350 	}
1351 
1352 out:
1353 	return ret;
1354 }
1355 
1356 /* free Tx skb function */
1357 static int sh_eth_txfree(struct net_device *ndev)
1358 {
1359 	struct sh_eth_private *mdp = netdev_priv(ndev);
1360 	struct sh_eth_txdesc *txdesc;
1361 	int freeNum = 0;
1362 	int entry = 0;
1363 
1364 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1365 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1366 		txdesc = &mdp->tx_ring[entry];
1367 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1368 			break;
1369 		/* Free the original skb. */
1370 		if (mdp->tx_skbuff[entry]) {
1371 			dma_unmap_single(&ndev->dev, txdesc->addr,
1372 					 txdesc->buffer_length, DMA_TO_DEVICE);
1373 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1374 			mdp->tx_skbuff[entry] = NULL;
1375 			freeNum++;
1376 		}
1377 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1378 		if (entry >= mdp->num_tx_ring - 1)
1379 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1380 
1381 		ndev->stats.tx_packets++;
1382 		ndev->stats.tx_bytes += txdesc->buffer_length;
1383 	}
1384 	return freeNum;
1385 }
1386 
1387 /* Packet receive function */
1388 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1389 {
1390 	struct sh_eth_private *mdp = netdev_priv(ndev);
1391 	struct sh_eth_rxdesc *rxdesc;
1392 
1393 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1394 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1395 	struct sk_buff *skb;
1396 	u16 pkt_len = 0;
1397 	u32 desc_status;
1398 
1399 	rxdesc = &mdp->rx_ring[entry];
1400 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1401 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1402 		pkt_len = rxdesc->frame_length;
1403 
1404 #if defined(CONFIG_ARCH_R8A7740)
1405 		desc_status >>= 16;
1406 #endif
1407 
1408 		if (--boguscnt < 0)
1409 			break;
1410 
1411 		if (!(desc_status & RDFEND))
1412 			ndev->stats.rx_length_errors++;
1413 
1414 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1415 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1416 			ndev->stats.rx_errors++;
1417 			if (desc_status & RD_RFS1)
1418 				ndev->stats.rx_crc_errors++;
1419 			if (desc_status & RD_RFS2)
1420 				ndev->stats.rx_frame_errors++;
1421 			if (desc_status & RD_RFS3)
1422 				ndev->stats.rx_length_errors++;
1423 			if (desc_status & RD_RFS4)
1424 				ndev->stats.rx_length_errors++;
1425 			if (desc_status & RD_RFS6)
1426 				ndev->stats.rx_missed_errors++;
1427 			if (desc_status & RD_RFS10)
1428 				ndev->stats.rx_over_errors++;
1429 		} else {
1430 			if (!mdp->cd->hw_swap)
1431 				sh_eth_soft_swap(
1432 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1433 					pkt_len + 2);
1434 			skb = mdp->rx_skbuff[entry];
1435 			mdp->rx_skbuff[entry] = NULL;
1436 			if (mdp->cd->rpadir)
1437 				skb_reserve(skb, NET_IP_ALIGN);
1438 			skb_put(skb, pkt_len);
1439 			skb->protocol = eth_type_trans(skb, ndev);
1440 			netif_rx(skb);
1441 			ndev->stats.rx_packets++;
1442 			ndev->stats.rx_bytes += pkt_len;
1443 		}
1444 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1445 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1446 		rxdesc = &mdp->rx_ring[entry];
1447 	}
1448 
1449 	/* Refill the Rx ring buffers. */
1450 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1451 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1452 		rxdesc = &mdp->rx_ring[entry];
1453 		/* The size of the buffer is 16 byte boundary. */
1454 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1455 
1456 		if (mdp->rx_skbuff[entry] == NULL) {
1457 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1458 			mdp->rx_skbuff[entry] = skb;
1459 			if (skb == NULL)
1460 				break;	/* Better luck next round. */
1461 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1462 					DMA_FROM_DEVICE);
1463 			sh_eth_set_receive_align(skb);
1464 
1465 			skb_checksum_none_assert(skb);
1466 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1467 		}
1468 		if (entry >= mdp->num_rx_ring - 1)
1469 			rxdesc->status |=
1470 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1471 		else
1472 			rxdesc->status |=
1473 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1474 	}
1475 
1476 	/* Restart Rx engine if stopped. */
1477 	/* If we don't need to check status, don't. -KDU */
1478 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1479 		/* fix the values for the next receiving if RDE is set */
1480 		if (intr_status & EESR_RDE)
1481 			mdp->cur_rx = mdp->dirty_rx =
1482 				(sh_eth_read(ndev, RDFAR) -
1483 				 sh_eth_read(ndev, RDLAR)) >> 4;
1484 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1491 {
1492 	/* disable tx and rx */
1493 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1494 		~(ECMR_RE | ECMR_TE), ECMR);
1495 }
1496 
1497 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1498 {
1499 	/* enable tx and rx */
1500 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1501 		(ECMR_RE | ECMR_TE), ECMR);
1502 }
1503 
1504 /* error control function */
1505 static void sh_eth_error(struct net_device *ndev, int intr_status)
1506 {
1507 	struct sh_eth_private *mdp = netdev_priv(ndev);
1508 	u32 felic_stat;
1509 	u32 link_stat;
1510 	u32 mask;
1511 
1512 	if (intr_status & EESR_ECI) {
1513 		felic_stat = sh_eth_read(ndev, ECSR);
1514 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1515 		if (felic_stat & ECSR_ICD)
1516 			ndev->stats.tx_carrier_errors++;
1517 		if (felic_stat & ECSR_LCHNG) {
1518 			/* Link Changed */
1519 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1520 				goto ignore_link;
1521 			} else {
1522 				link_stat = (sh_eth_read(ndev, PSR));
1523 				if (mdp->ether_link_active_low)
1524 					link_stat = ~link_stat;
1525 			}
1526 			if (!(link_stat & PHY_ST_LINK))
1527 				sh_eth_rcv_snd_disable(ndev);
1528 			else {
1529 				/* Link Up */
1530 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1531 					  ~DMAC_M_ECI, EESIPR);
1532 				/*clear int */
1533 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1534 					  ECSR);
1535 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1536 					  DMAC_M_ECI, EESIPR);
1537 				/* enable tx and rx */
1538 				sh_eth_rcv_snd_enable(ndev);
1539 			}
1540 		}
1541 	}
1542 
1543 ignore_link:
1544 	if (intr_status & EESR_TWB) {
1545 		/* Write buck end. unused write back interrupt */
1546 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1547 			ndev->stats.tx_aborted_errors++;
1548 			if (netif_msg_tx_err(mdp))
1549 				dev_err(&ndev->dev, "Transmit Abort\n");
1550 	}
1551 
1552 	if (intr_status & EESR_RABT) {
1553 		/* Receive Abort int */
1554 		if (intr_status & EESR_RFRMER) {
1555 			/* Receive Frame Overflow int */
1556 			ndev->stats.rx_frame_errors++;
1557 			if (netif_msg_rx_err(mdp))
1558 				dev_err(&ndev->dev, "Receive Abort\n");
1559 		}
1560 	}
1561 
1562 	if (intr_status & EESR_TDE) {
1563 		/* Transmit Descriptor Empty int */
1564 		ndev->stats.tx_fifo_errors++;
1565 		if (netif_msg_tx_err(mdp))
1566 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1567 	}
1568 
1569 	if (intr_status & EESR_TFE) {
1570 		/* FIFO under flow */
1571 		ndev->stats.tx_fifo_errors++;
1572 		if (netif_msg_tx_err(mdp))
1573 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1574 	}
1575 
1576 	if (intr_status & EESR_RDE) {
1577 		/* Receive Descriptor Empty int */
1578 		ndev->stats.rx_over_errors++;
1579 
1580 		if (netif_msg_rx_err(mdp))
1581 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1582 	}
1583 
1584 	if (intr_status & EESR_RFE) {
1585 		/* Receive FIFO Overflow int */
1586 		ndev->stats.rx_fifo_errors++;
1587 		if (netif_msg_rx_err(mdp))
1588 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1589 	}
1590 
1591 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1592 		/* Address Error */
1593 		ndev->stats.tx_fifo_errors++;
1594 		if (netif_msg_tx_err(mdp))
1595 			dev_err(&ndev->dev, "Address Error\n");
1596 	}
1597 
1598 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1599 	if (mdp->cd->no_ade)
1600 		mask &= ~EESR_ADE;
1601 	if (intr_status & mask) {
1602 		/* Tx error */
1603 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1604 		/* dmesg */
1605 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1606 				intr_status, mdp->cur_tx);
1607 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1608 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1609 		/* dirty buffer free */
1610 		sh_eth_txfree(ndev);
1611 
1612 		/* SH7712 BUG */
1613 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1614 			/* tx dma start */
1615 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1616 		}
1617 		/* wakeup */
1618 		netif_wake_queue(ndev);
1619 	}
1620 }
1621 
1622 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1623 {
1624 	struct net_device *ndev = netdev;
1625 	struct sh_eth_private *mdp = netdev_priv(ndev);
1626 	struct sh_eth_cpu_data *cd = mdp->cd;
1627 	irqreturn_t ret = IRQ_NONE;
1628 	unsigned long intr_status;
1629 
1630 	spin_lock(&mdp->lock);
1631 
1632 	/* Get interrupt status */
1633 	intr_status = sh_eth_read(ndev, EESR);
1634 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1635 	 * enabled since it's the one that  comes thru regardless of the mask,
1636 	 * and we need to fully handle it in sh_eth_error() in order to quench
1637 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1638 	 */
1639 	intr_status &= sh_eth_read(ndev, EESIPR) | DMAC_M_ECI;
1640 	/* Clear interrupt */
1641 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1642 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1643 			cd->tx_check | cd->eesr_err_check)) {
1644 		sh_eth_write(ndev, intr_status, EESR);
1645 		ret = IRQ_HANDLED;
1646 	} else
1647 		goto other_irq;
1648 
1649 	if (intr_status & (EESR_FRC | /* Frame recv*/
1650 			EESR_RMAF | /* Multi cast address recv*/
1651 			EESR_RRF  | /* Bit frame recv */
1652 			EESR_RTLF | /* Long frame recv*/
1653 			EESR_RTSF | /* short frame recv */
1654 			EESR_PRE  | /* PHY-LSI recv error */
1655 			EESR_CERF)){ /* recv frame CRC error */
1656 		sh_eth_rx(ndev, intr_status);
1657 	}
1658 
1659 	/* Tx Check */
1660 	if (intr_status & cd->tx_check) {
1661 		sh_eth_txfree(ndev);
1662 		netif_wake_queue(ndev);
1663 	}
1664 
1665 	if (intr_status & cd->eesr_err_check)
1666 		sh_eth_error(ndev, intr_status);
1667 
1668 other_irq:
1669 	spin_unlock(&mdp->lock);
1670 
1671 	return ret;
1672 }
1673 
1674 /* PHY state control function */
1675 static void sh_eth_adjust_link(struct net_device *ndev)
1676 {
1677 	struct sh_eth_private *mdp = netdev_priv(ndev);
1678 	struct phy_device *phydev = mdp->phydev;
1679 	int new_state = 0;
1680 
1681 	if (phydev->link) {
1682 		if (phydev->duplex != mdp->duplex) {
1683 			new_state = 1;
1684 			mdp->duplex = phydev->duplex;
1685 			if (mdp->cd->set_duplex)
1686 				mdp->cd->set_duplex(ndev);
1687 		}
1688 
1689 		if (phydev->speed != mdp->speed) {
1690 			new_state = 1;
1691 			mdp->speed = phydev->speed;
1692 			if (mdp->cd->set_rate)
1693 				mdp->cd->set_rate(ndev);
1694 		}
1695 		if (!mdp->link) {
1696 			sh_eth_write(ndev,
1697 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1698 			new_state = 1;
1699 			mdp->link = phydev->link;
1700 			if (mdp->cd->no_psr || mdp->no_ether_link)
1701 				sh_eth_rcv_snd_enable(ndev);
1702 		}
1703 	} else if (mdp->link) {
1704 		new_state = 1;
1705 		mdp->link = 0;
1706 		mdp->speed = 0;
1707 		mdp->duplex = -1;
1708 		if (mdp->cd->no_psr || mdp->no_ether_link)
1709 			sh_eth_rcv_snd_disable(ndev);
1710 	}
1711 
1712 	if (new_state && netif_msg_link(mdp))
1713 		phy_print_status(phydev);
1714 }
1715 
1716 /* PHY init function */
1717 static int sh_eth_phy_init(struct net_device *ndev)
1718 {
1719 	struct sh_eth_private *mdp = netdev_priv(ndev);
1720 	char phy_id[MII_BUS_ID_SIZE + 3];
1721 	struct phy_device *phydev = NULL;
1722 
1723 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1724 		mdp->mii_bus->id , mdp->phy_id);
1725 
1726 	mdp->link = 0;
1727 	mdp->speed = 0;
1728 	mdp->duplex = -1;
1729 
1730 	/* Try connect to PHY */
1731 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1732 			     mdp->phy_interface);
1733 	if (IS_ERR(phydev)) {
1734 		dev_err(&ndev->dev, "phy_connect failed\n");
1735 		return PTR_ERR(phydev);
1736 	}
1737 
1738 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1739 		phydev->addr, phydev->drv->name);
1740 
1741 	mdp->phydev = phydev;
1742 
1743 	return 0;
1744 }
1745 
1746 /* PHY control start function */
1747 static int sh_eth_phy_start(struct net_device *ndev)
1748 {
1749 	struct sh_eth_private *mdp = netdev_priv(ndev);
1750 	int ret;
1751 
1752 	ret = sh_eth_phy_init(ndev);
1753 	if (ret)
1754 		return ret;
1755 
1756 	/* reset phy - this also wakes it from PDOWN */
1757 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1758 	phy_start(mdp->phydev);
1759 
1760 	return 0;
1761 }
1762 
1763 static int sh_eth_get_settings(struct net_device *ndev,
1764 			struct ethtool_cmd *ecmd)
1765 {
1766 	struct sh_eth_private *mdp = netdev_priv(ndev);
1767 	unsigned long flags;
1768 	int ret;
1769 
1770 	spin_lock_irqsave(&mdp->lock, flags);
1771 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1772 	spin_unlock_irqrestore(&mdp->lock, flags);
1773 
1774 	return ret;
1775 }
1776 
1777 static int sh_eth_set_settings(struct net_device *ndev,
1778 		struct ethtool_cmd *ecmd)
1779 {
1780 	struct sh_eth_private *mdp = netdev_priv(ndev);
1781 	unsigned long flags;
1782 	int ret;
1783 
1784 	spin_lock_irqsave(&mdp->lock, flags);
1785 
1786 	/* disable tx and rx */
1787 	sh_eth_rcv_snd_disable(ndev);
1788 
1789 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1790 	if (ret)
1791 		goto error_exit;
1792 
1793 	if (ecmd->duplex == DUPLEX_FULL)
1794 		mdp->duplex = 1;
1795 	else
1796 		mdp->duplex = 0;
1797 
1798 	if (mdp->cd->set_duplex)
1799 		mdp->cd->set_duplex(ndev);
1800 
1801 error_exit:
1802 	mdelay(1);
1803 
1804 	/* enable tx and rx */
1805 	sh_eth_rcv_snd_enable(ndev);
1806 
1807 	spin_unlock_irqrestore(&mdp->lock, flags);
1808 
1809 	return ret;
1810 }
1811 
1812 static int sh_eth_nway_reset(struct net_device *ndev)
1813 {
1814 	struct sh_eth_private *mdp = netdev_priv(ndev);
1815 	unsigned long flags;
1816 	int ret;
1817 
1818 	spin_lock_irqsave(&mdp->lock, flags);
1819 	ret = phy_start_aneg(mdp->phydev);
1820 	spin_unlock_irqrestore(&mdp->lock, flags);
1821 
1822 	return ret;
1823 }
1824 
1825 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1826 {
1827 	struct sh_eth_private *mdp = netdev_priv(ndev);
1828 	return mdp->msg_enable;
1829 }
1830 
1831 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1832 {
1833 	struct sh_eth_private *mdp = netdev_priv(ndev);
1834 	mdp->msg_enable = value;
1835 }
1836 
1837 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1838 	"rx_current", "tx_current",
1839 	"rx_dirty", "tx_dirty",
1840 };
1841 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1842 
1843 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1844 {
1845 	switch (sset) {
1846 	case ETH_SS_STATS:
1847 		return SH_ETH_STATS_LEN;
1848 	default:
1849 		return -EOPNOTSUPP;
1850 	}
1851 }
1852 
1853 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1854 			struct ethtool_stats *stats, u64 *data)
1855 {
1856 	struct sh_eth_private *mdp = netdev_priv(ndev);
1857 	int i = 0;
1858 
1859 	/* device-specific stats */
1860 	data[i++] = mdp->cur_rx;
1861 	data[i++] = mdp->cur_tx;
1862 	data[i++] = mdp->dirty_rx;
1863 	data[i++] = mdp->dirty_tx;
1864 }
1865 
1866 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1867 {
1868 	switch (stringset) {
1869 	case ETH_SS_STATS:
1870 		memcpy(data, *sh_eth_gstrings_stats,
1871 					sizeof(sh_eth_gstrings_stats));
1872 		break;
1873 	}
1874 }
1875 
1876 static void sh_eth_get_ringparam(struct net_device *ndev,
1877 				 struct ethtool_ringparam *ring)
1878 {
1879 	struct sh_eth_private *mdp = netdev_priv(ndev);
1880 
1881 	ring->rx_max_pending = RX_RING_MAX;
1882 	ring->tx_max_pending = TX_RING_MAX;
1883 	ring->rx_pending = mdp->num_rx_ring;
1884 	ring->tx_pending = mdp->num_tx_ring;
1885 }
1886 
1887 static int sh_eth_set_ringparam(struct net_device *ndev,
1888 				struct ethtool_ringparam *ring)
1889 {
1890 	struct sh_eth_private *mdp = netdev_priv(ndev);
1891 	int ret;
1892 
1893 	if (ring->tx_pending > TX_RING_MAX ||
1894 	    ring->rx_pending > RX_RING_MAX ||
1895 	    ring->tx_pending < TX_RING_MIN ||
1896 	    ring->rx_pending < RX_RING_MIN)
1897 		return -EINVAL;
1898 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1899 		return -EINVAL;
1900 
1901 	if (netif_running(ndev)) {
1902 		netif_tx_disable(ndev);
1903 		/* Disable interrupts by clearing the interrupt mask. */
1904 		sh_eth_write(ndev, 0x0000, EESIPR);
1905 		/* Stop the chip's Tx and Rx processes. */
1906 		sh_eth_write(ndev, 0, EDTRR);
1907 		sh_eth_write(ndev, 0, EDRRR);
1908 		synchronize_irq(ndev->irq);
1909 	}
1910 
1911 	/* Free all the skbuffs in the Rx queue. */
1912 	sh_eth_ring_free(ndev);
1913 	/* Free DMA buffer */
1914 	sh_eth_free_dma_buffer(mdp);
1915 
1916 	/* Set new parameters */
1917 	mdp->num_rx_ring = ring->rx_pending;
1918 	mdp->num_tx_ring = ring->tx_pending;
1919 
1920 	ret = sh_eth_ring_init(ndev);
1921 	if (ret < 0) {
1922 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1923 		return ret;
1924 	}
1925 	ret = sh_eth_dev_init(ndev, false);
1926 	if (ret < 0) {
1927 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1928 		return ret;
1929 	}
1930 
1931 	if (netif_running(ndev)) {
1932 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1933 		/* Setting the Rx mode will start the Rx process. */
1934 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1935 		netif_wake_queue(ndev);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static const struct ethtool_ops sh_eth_ethtool_ops = {
1942 	.get_settings	= sh_eth_get_settings,
1943 	.set_settings	= sh_eth_set_settings,
1944 	.nway_reset	= sh_eth_nway_reset,
1945 	.get_msglevel	= sh_eth_get_msglevel,
1946 	.set_msglevel	= sh_eth_set_msglevel,
1947 	.get_link	= ethtool_op_get_link,
1948 	.get_strings	= sh_eth_get_strings,
1949 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1950 	.get_sset_count     = sh_eth_get_sset_count,
1951 	.get_ringparam	= sh_eth_get_ringparam,
1952 	.set_ringparam	= sh_eth_set_ringparam,
1953 };
1954 
1955 /* network device open function */
1956 static int sh_eth_open(struct net_device *ndev)
1957 {
1958 	int ret = 0;
1959 	struct sh_eth_private *mdp = netdev_priv(ndev);
1960 
1961 	pm_runtime_get_sync(&mdp->pdev->dev);
1962 
1963 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1964 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1965 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1966 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1967 				IRQF_SHARED,
1968 #else
1969 				0,
1970 #endif
1971 				ndev->name, ndev);
1972 	if (ret) {
1973 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1974 		return ret;
1975 	}
1976 
1977 	/* Descriptor set */
1978 	ret = sh_eth_ring_init(ndev);
1979 	if (ret)
1980 		goto out_free_irq;
1981 
1982 	/* device init */
1983 	ret = sh_eth_dev_init(ndev, true);
1984 	if (ret)
1985 		goto out_free_irq;
1986 
1987 	/* PHY control start*/
1988 	ret = sh_eth_phy_start(ndev);
1989 	if (ret)
1990 		goto out_free_irq;
1991 
1992 	return ret;
1993 
1994 out_free_irq:
1995 	free_irq(ndev->irq, ndev);
1996 	pm_runtime_put_sync(&mdp->pdev->dev);
1997 	return ret;
1998 }
1999 
2000 /* Timeout function */
2001 static void sh_eth_tx_timeout(struct net_device *ndev)
2002 {
2003 	struct sh_eth_private *mdp = netdev_priv(ndev);
2004 	struct sh_eth_rxdesc *rxdesc;
2005 	int i;
2006 
2007 	netif_stop_queue(ndev);
2008 
2009 	if (netif_msg_timer(mdp))
2010 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
2011 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
2012 
2013 	/* tx_errors count up */
2014 	ndev->stats.tx_errors++;
2015 
2016 	/* Free all the skbuffs in the Rx queue. */
2017 	for (i = 0; i < mdp->num_rx_ring; i++) {
2018 		rxdesc = &mdp->rx_ring[i];
2019 		rxdesc->status = 0;
2020 		rxdesc->addr = 0xBADF00D0;
2021 		if (mdp->rx_skbuff[i])
2022 			dev_kfree_skb(mdp->rx_skbuff[i]);
2023 		mdp->rx_skbuff[i] = NULL;
2024 	}
2025 	for (i = 0; i < mdp->num_tx_ring; i++) {
2026 		if (mdp->tx_skbuff[i])
2027 			dev_kfree_skb(mdp->tx_skbuff[i]);
2028 		mdp->tx_skbuff[i] = NULL;
2029 	}
2030 
2031 	/* device init */
2032 	sh_eth_dev_init(ndev, true);
2033 }
2034 
2035 /* Packet transmit function */
2036 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2037 {
2038 	struct sh_eth_private *mdp = netdev_priv(ndev);
2039 	struct sh_eth_txdesc *txdesc;
2040 	u32 entry;
2041 	unsigned long flags;
2042 
2043 	spin_lock_irqsave(&mdp->lock, flags);
2044 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2045 		if (!sh_eth_txfree(ndev)) {
2046 			if (netif_msg_tx_queued(mdp))
2047 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
2048 			netif_stop_queue(ndev);
2049 			spin_unlock_irqrestore(&mdp->lock, flags);
2050 			return NETDEV_TX_BUSY;
2051 		}
2052 	}
2053 	spin_unlock_irqrestore(&mdp->lock, flags);
2054 
2055 	entry = mdp->cur_tx % mdp->num_tx_ring;
2056 	mdp->tx_skbuff[entry] = skb;
2057 	txdesc = &mdp->tx_ring[entry];
2058 	/* soft swap. */
2059 	if (!mdp->cd->hw_swap)
2060 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2061 				 skb->len + 2);
2062 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2063 				      DMA_TO_DEVICE);
2064 	if (skb->len < ETHERSMALL)
2065 		txdesc->buffer_length = ETHERSMALL;
2066 	else
2067 		txdesc->buffer_length = skb->len;
2068 
2069 	if (entry >= mdp->num_tx_ring - 1)
2070 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2071 	else
2072 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2073 
2074 	mdp->cur_tx++;
2075 
2076 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2077 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2078 
2079 	return NETDEV_TX_OK;
2080 }
2081 
2082 /* device close function */
2083 static int sh_eth_close(struct net_device *ndev)
2084 {
2085 	struct sh_eth_private *mdp = netdev_priv(ndev);
2086 
2087 	netif_stop_queue(ndev);
2088 
2089 	/* Disable interrupts by clearing the interrupt mask. */
2090 	sh_eth_write(ndev, 0x0000, EESIPR);
2091 
2092 	/* Stop the chip's Tx and Rx processes. */
2093 	sh_eth_write(ndev, 0, EDTRR);
2094 	sh_eth_write(ndev, 0, EDRRR);
2095 
2096 	/* PHY Disconnect */
2097 	if (mdp->phydev) {
2098 		phy_stop(mdp->phydev);
2099 		phy_disconnect(mdp->phydev);
2100 	}
2101 
2102 	free_irq(ndev->irq, ndev);
2103 
2104 	/* Free all the skbuffs in the Rx queue. */
2105 	sh_eth_ring_free(ndev);
2106 
2107 	/* free DMA buffer */
2108 	sh_eth_free_dma_buffer(mdp);
2109 
2110 	pm_runtime_put_sync(&mdp->pdev->dev);
2111 
2112 	return 0;
2113 }
2114 
2115 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2116 {
2117 	struct sh_eth_private *mdp = netdev_priv(ndev);
2118 
2119 	pm_runtime_get_sync(&mdp->pdev->dev);
2120 
2121 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2122 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2123 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2124 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2125 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2126 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2127 	if (sh_eth_is_gether(mdp)) {
2128 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2129 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2130 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2131 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2132 	} else {
2133 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2134 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2135 	}
2136 	pm_runtime_put_sync(&mdp->pdev->dev);
2137 
2138 	return &ndev->stats;
2139 }
2140 
2141 /* ioctl to device function */
2142 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2143 				int cmd)
2144 {
2145 	struct sh_eth_private *mdp = netdev_priv(ndev);
2146 	struct phy_device *phydev = mdp->phydev;
2147 
2148 	if (!netif_running(ndev))
2149 		return -EINVAL;
2150 
2151 	if (!phydev)
2152 		return -ENODEV;
2153 
2154 	return phy_mii_ioctl(phydev, rq, cmd);
2155 }
2156 
2157 #if defined(SH_ETH_HAS_TSU)
2158 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2159 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2160 					    int entry)
2161 {
2162 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2163 }
2164 
2165 static u32 sh_eth_tsu_get_post_mask(int entry)
2166 {
2167 	return 0x0f << (28 - ((entry % 8) * 4));
2168 }
2169 
2170 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2171 {
2172 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2173 }
2174 
2175 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2176 					     int entry)
2177 {
2178 	struct sh_eth_private *mdp = netdev_priv(ndev);
2179 	u32 tmp;
2180 	void *reg_offset;
2181 
2182 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2183 	tmp = ioread32(reg_offset);
2184 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2185 }
2186 
2187 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2188 					      int entry)
2189 {
2190 	struct sh_eth_private *mdp = netdev_priv(ndev);
2191 	u32 post_mask, ref_mask, tmp;
2192 	void *reg_offset;
2193 
2194 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2195 	post_mask = sh_eth_tsu_get_post_mask(entry);
2196 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2197 
2198 	tmp = ioread32(reg_offset);
2199 	iowrite32(tmp & ~post_mask, reg_offset);
2200 
2201 	/* If other port enables, the function returns "true" */
2202 	return tmp & ref_mask;
2203 }
2204 
2205 static int sh_eth_tsu_busy(struct net_device *ndev)
2206 {
2207 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2208 	struct sh_eth_private *mdp = netdev_priv(ndev);
2209 
2210 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2211 		udelay(10);
2212 		timeout--;
2213 		if (timeout <= 0) {
2214 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2215 			return -ETIMEDOUT;
2216 		}
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2223 				  const u8 *addr)
2224 {
2225 	u32 val;
2226 
2227 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2228 	iowrite32(val, reg);
2229 	if (sh_eth_tsu_busy(ndev) < 0)
2230 		return -EBUSY;
2231 
2232 	val = addr[4] << 8 | addr[5];
2233 	iowrite32(val, reg + 4);
2234 	if (sh_eth_tsu_busy(ndev) < 0)
2235 		return -EBUSY;
2236 
2237 	return 0;
2238 }
2239 
2240 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2241 {
2242 	u32 val;
2243 
2244 	val = ioread32(reg);
2245 	addr[0] = (val >> 24) & 0xff;
2246 	addr[1] = (val >> 16) & 0xff;
2247 	addr[2] = (val >> 8) & 0xff;
2248 	addr[3] = val & 0xff;
2249 	val = ioread32(reg + 4);
2250 	addr[4] = (val >> 8) & 0xff;
2251 	addr[5] = val & 0xff;
2252 }
2253 
2254 
2255 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2256 {
2257 	struct sh_eth_private *mdp = netdev_priv(ndev);
2258 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2259 	int i;
2260 	u8 c_addr[ETH_ALEN];
2261 
2262 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2263 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2264 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2265 			return i;
2266 	}
2267 
2268 	return -ENOENT;
2269 }
2270 
2271 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2272 {
2273 	u8 blank[ETH_ALEN];
2274 	int entry;
2275 
2276 	memset(blank, 0, sizeof(blank));
2277 	entry = sh_eth_tsu_find_entry(ndev, blank);
2278 	return (entry < 0) ? -ENOMEM : entry;
2279 }
2280 
2281 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2282 					      int entry)
2283 {
2284 	struct sh_eth_private *mdp = netdev_priv(ndev);
2285 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2286 	int ret;
2287 	u8 blank[ETH_ALEN];
2288 
2289 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2290 			 ~(1 << (31 - entry)), TSU_TEN);
2291 
2292 	memset(blank, 0, sizeof(blank));
2293 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2294 	if (ret < 0)
2295 		return ret;
2296 	return 0;
2297 }
2298 
2299 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2300 {
2301 	struct sh_eth_private *mdp = netdev_priv(ndev);
2302 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2303 	int i, ret;
2304 
2305 	if (!mdp->cd->tsu)
2306 		return 0;
2307 
2308 	i = sh_eth_tsu_find_entry(ndev, addr);
2309 	if (i < 0) {
2310 		/* No entry found, create one */
2311 		i = sh_eth_tsu_find_empty(ndev);
2312 		if (i < 0)
2313 			return -ENOMEM;
2314 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2315 		if (ret < 0)
2316 			return ret;
2317 
2318 		/* Enable the entry */
2319 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2320 				 (1 << (31 - i)), TSU_TEN);
2321 	}
2322 
2323 	/* Entry found or created, enable POST */
2324 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2325 
2326 	return 0;
2327 }
2328 
2329 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2330 {
2331 	struct sh_eth_private *mdp = netdev_priv(ndev);
2332 	int i, ret;
2333 
2334 	if (!mdp->cd->tsu)
2335 		return 0;
2336 
2337 	i = sh_eth_tsu_find_entry(ndev, addr);
2338 	if (i) {
2339 		/* Entry found */
2340 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2341 			goto done;
2342 
2343 		/* Disable the entry if both ports was disabled */
2344 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2345 		if (ret < 0)
2346 			return ret;
2347 	}
2348 done:
2349 	return 0;
2350 }
2351 
2352 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2353 {
2354 	struct sh_eth_private *mdp = netdev_priv(ndev);
2355 	int i, ret;
2356 
2357 	if (unlikely(!mdp->cd->tsu))
2358 		return 0;
2359 
2360 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2361 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2362 			continue;
2363 
2364 		/* Disable the entry if both ports was disabled */
2365 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2366 		if (ret < 0)
2367 			return ret;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2374 {
2375 	struct sh_eth_private *mdp = netdev_priv(ndev);
2376 	u8 addr[ETH_ALEN];
2377 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2378 	int i;
2379 
2380 	if (unlikely(!mdp->cd->tsu))
2381 		return;
2382 
2383 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2384 		sh_eth_tsu_read_entry(reg_offset, addr);
2385 		if (is_multicast_ether_addr(addr))
2386 			sh_eth_tsu_del_entry(ndev, addr);
2387 	}
2388 }
2389 
2390 /* Multicast reception directions set */
2391 static void sh_eth_set_multicast_list(struct net_device *ndev)
2392 {
2393 	struct sh_eth_private *mdp = netdev_priv(ndev);
2394 	u32 ecmr_bits;
2395 	int mcast_all = 0;
2396 	unsigned long flags;
2397 
2398 	spin_lock_irqsave(&mdp->lock, flags);
2399 	/*
2400 	 * Initial condition is MCT = 1, PRM = 0.
2401 	 * Depending on ndev->flags, set PRM or clear MCT
2402 	 */
2403 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2404 
2405 	if (!(ndev->flags & IFF_MULTICAST)) {
2406 		sh_eth_tsu_purge_mcast(ndev);
2407 		mcast_all = 1;
2408 	}
2409 	if (ndev->flags & IFF_ALLMULTI) {
2410 		sh_eth_tsu_purge_mcast(ndev);
2411 		ecmr_bits &= ~ECMR_MCT;
2412 		mcast_all = 1;
2413 	}
2414 
2415 	if (ndev->flags & IFF_PROMISC) {
2416 		sh_eth_tsu_purge_all(ndev);
2417 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2418 	} else if (mdp->cd->tsu) {
2419 		struct netdev_hw_addr *ha;
2420 		netdev_for_each_mc_addr(ha, ndev) {
2421 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2422 				continue;
2423 
2424 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2425 				if (!mcast_all) {
2426 					sh_eth_tsu_purge_mcast(ndev);
2427 					ecmr_bits &= ~ECMR_MCT;
2428 					mcast_all = 1;
2429 				}
2430 			}
2431 		}
2432 	} else {
2433 		/* Normal, unicast/broadcast-only mode. */
2434 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2435 	}
2436 
2437 	/* update the ethernet mode */
2438 	sh_eth_write(ndev, ecmr_bits, ECMR);
2439 
2440 	spin_unlock_irqrestore(&mdp->lock, flags);
2441 }
2442 
2443 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2444 {
2445 	if (!mdp->port)
2446 		return TSU_VTAG0;
2447 	else
2448 		return TSU_VTAG1;
2449 }
2450 
2451 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2452 				  __be16 proto, u16 vid)
2453 {
2454 	struct sh_eth_private *mdp = netdev_priv(ndev);
2455 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2456 
2457 	if (unlikely(!mdp->cd->tsu))
2458 		return -EPERM;
2459 
2460 	/* No filtering if vid = 0 */
2461 	if (!vid)
2462 		return 0;
2463 
2464 	mdp->vlan_num_ids++;
2465 
2466 	/*
2467 	 * The controller has one VLAN tag HW filter. So, if the filter is
2468 	 * already enabled, the driver disables it and the filte
2469 	 */
2470 	if (mdp->vlan_num_ids > 1) {
2471 		/* disable VLAN filter */
2472 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2473 		return 0;
2474 	}
2475 
2476 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2477 			 vtag_reg_index);
2478 
2479 	return 0;
2480 }
2481 
2482 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2483 				   __be16 proto, u16 vid)
2484 {
2485 	struct sh_eth_private *mdp = netdev_priv(ndev);
2486 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2487 
2488 	if (unlikely(!mdp->cd->tsu))
2489 		return -EPERM;
2490 
2491 	/* No filtering if vid = 0 */
2492 	if (!vid)
2493 		return 0;
2494 
2495 	mdp->vlan_num_ids--;
2496 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2497 
2498 	return 0;
2499 }
2500 #endif /* SH_ETH_HAS_TSU */
2501 
2502 /* SuperH's TSU register init function */
2503 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2504 {
2505 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2506 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2507 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2508 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2509 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2510 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2511 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2512 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2513 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2514 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2515 	if (sh_eth_is_gether(mdp)) {
2516 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2517 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2518 	} else {
2519 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2520 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2521 	}
2522 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2523 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2524 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2525 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2526 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2527 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2528 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2529 }
2530 
2531 /* MDIO bus release function */
2532 static int sh_mdio_release(struct net_device *ndev)
2533 {
2534 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2535 
2536 	/* unregister mdio bus */
2537 	mdiobus_unregister(bus);
2538 
2539 	/* remove mdio bus info from net_device */
2540 	dev_set_drvdata(&ndev->dev, NULL);
2541 
2542 	/* free bitbang info */
2543 	free_mdio_bitbang(bus);
2544 
2545 	return 0;
2546 }
2547 
2548 /* MDIO bus init function */
2549 static int sh_mdio_init(struct net_device *ndev, int id,
2550 			struct sh_eth_plat_data *pd)
2551 {
2552 	int ret, i;
2553 	struct bb_info *bitbang;
2554 	struct sh_eth_private *mdp = netdev_priv(ndev);
2555 
2556 	/* create bit control struct for PHY */
2557 	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2558 			       GFP_KERNEL);
2559 	if (!bitbang) {
2560 		ret = -ENOMEM;
2561 		goto out;
2562 	}
2563 
2564 	/* bitbang init */
2565 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2566 	bitbang->set_gate = pd->set_mdio_gate;
2567 	bitbang->mdi_msk = PIR_MDI;
2568 	bitbang->mdo_msk = PIR_MDO;
2569 	bitbang->mmd_msk = PIR_MMD;
2570 	bitbang->mdc_msk = PIR_MDC;
2571 	bitbang->ctrl.ops = &bb_ops;
2572 
2573 	/* MII controller setting */
2574 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2575 	if (!mdp->mii_bus) {
2576 		ret = -ENOMEM;
2577 		goto out;
2578 	}
2579 
2580 	/* Hook up MII support for ethtool */
2581 	mdp->mii_bus->name = "sh_mii";
2582 	mdp->mii_bus->parent = &ndev->dev;
2583 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2584 		mdp->pdev->name, id);
2585 
2586 	/* PHY IRQ */
2587 	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2588 					 sizeof(int) * PHY_MAX_ADDR,
2589 					 GFP_KERNEL);
2590 	if (!mdp->mii_bus->irq) {
2591 		ret = -ENOMEM;
2592 		goto out_free_bus;
2593 	}
2594 
2595 	for (i = 0; i < PHY_MAX_ADDR; i++)
2596 		mdp->mii_bus->irq[i] = PHY_POLL;
2597 
2598 	/* register mdio bus */
2599 	ret = mdiobus_register(mdp->mii_bus);
2600 	if (ret)
2601 		goto out_free_bus;
2602 
2603 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2604 
2605 	return 0;
2606 
2607 out_free_bus:
2608 	free_mdio_bitbang(mdp->mii_bus);
2609 
2610 out:
2611 	return ret;
2612 }
2613 
2614 static const u16 *sh_eth_get_register_offset(int register_type)
2615 {
2616 	const u16 *reg_offset = NULL;
2617 
2618 	switch (register_type) {
2619 	case SH_ETH_REG_GIGABIT:
2620 		reg_offset = sh_eth_offset_gigabit;
2621 		break;
2622 	case SH_ETH_REG_FAST_RCAR:
2623 		reg_offset = sh_eth_offset_fast_rcar;
2624 		break;
2625 	case SH_ETH_REG_FAST_SH4:
2626 		reg_offset = sh_eth_offset_fast_sh4;
2627 		break;
2628 	case SH_ETH_REG_FAST_SH3_SH2:
2629 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2630 		break;
2631 	default:
2632 		pr_err("Unknown register type (%d)\n", register_type);
2633 		break;
2634 	}
2635 
2636 	return reg_offset;
2637 }
2638 
2639 static const struct net_device_ops sh_eth_netdev_ops = {
2640 	.ndo_open		= sh_eth_open,
2641 	.ndo_stop		= sh_eth_close,
2642 	.ndo_start_xmit		= sh_eth_start_xmit,
2643 	.ndo_get_stats		= sh_eth_get_stats,
2644 #if defined(SH_ETH_HAS_TSU)
2645 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2646 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2647 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2648 #endif
2649 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2650 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2651 	.ndo_validate_addr	= eth_validate_addr,
2652 	.ndo_set_mac_address	= eth_mac_addr,
2653 	.ndo_change_mtu		= eth_change_mtu,
2654 };
2655 
2656 static int sh_eth_drv_probe(struct platform_device *pdev)
2657 {
2658 	int ret, devno = 0;
2659 	struct resource *res;
2660 	struct net_device *ndev = NULL;
2661 	struct sh_eth_private *mdp = NULL;
2662 	struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2663 
2664 	/* get base addr */
2665 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2666 	if (unlikely(res == NULL)) {
2667 		dev_err(&pdev->dev, "invalid resource\n");
2668 		ret = -EINVAL;
2669 		goto out;
2670 	}
2671 
2672 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2673 	if (!ndev) {
2674 		ret = -ENOMEM;
2675 		goto out;
2676 	}
2677 
2678 	/* The sh Ether-specific entries in the device structure. */
2679 	ndev->base_addr = res->start;
2680 	devno = pdev->id;
2681 	if (devno < 0)
2682 		devno = 0;
2683 
2684 	ndev->dma = -1;
2685 	ret = platform_get_irq(pdev, 0);
2686 	if (ret < 0) {
2687 		ret = -ENODEV;
2688 		goto out_release;
2689 	}
2690 	ndev->irq = ret;
2691 
2692 	SET_NETDEV_DEV(ndev, &pdev->dev);
2693 
2694 	/* Fill in the fields of the device structure with ethernet values. */
2695 	ether_setup(ndev);
2696 
2697 	mdp = netdev_priv(ndev);
2698 	mdp->num_tx_ring = TX_RING_SIZE;
2699 	mdp->num_rx_ring = RX_RING_SIZE;
2700 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2701 	if (IS_ERR(mdp->addr)) {
2702 		ret = PTR_ERR(mdp->addr);
2703 		goto out_release;
2704 	}
2705 
2706 	spin_lock_init(&mdp->lock);
2707 	mdp->pdev = pdev;
2708 	pm_runtime_enable(&pdev->dev);
2709 	pm_runtime_resume(&pdev->dev);
2710 
2711 	/* get PHY ID */
2712 	mdp->phy_id = pd->phy;
2713 	mdp->phy_interface = pd->phy_interface;
2714 	/* EDMAC endian */
2715 	mdp->edmac_endian = pd->edmac_endian;
2716 	mdp->no_ether_link = pd->no_ether_link;
2717 	mdp->ether_link_active_low = pd->ether_link_active_low;
2718 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2719 
2720 	/* set cpu data */
2721 #if defined(SH_ETH_HAS_BOTH_MODULES)
2722 	mdp->cd = sh_eth_get_cpu_data(mdp);
2723 #else
2724 	mdp->cd = &sh_eth_my_cpu_data;
2725 #endif
2726 	sh_eth_set_default_cpu_data(mdp->cd);
2727 
2728 	/* set function */
2729 	ndev->netdev_ops = &sh_eth_netdev_ops;
2730 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2731 	ndev->watchdog_timeo = TX_TIMEOUT;
2732 
2733 	/* debug message level */
2734 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2735 
2736 	/* read and set MAC address */
2737 	read_mac_address(ndev, pd->mac_addr);
2738 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2739 		dev_warn(&pdev->dev,
2740 			 "no valid MAC address supplied, using a random one.\n");
2741 		eth_hw_addr_random(ndev);
2742 	}
2743 
2744 	/* ioremap the TSU registers */
2745 	if (mdp->cd->tsu) {
2746 		struct resource *rtsu;
2747 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2748 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2749 		if (IS_ERR(mdp->tsu_addr)) {
2750 			ret = PTR_ERR(mdp->tsu_addr);
2751 			goto out_release;
2752 		}
2753 		mdp->port = devno % 2;
2754 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2755 	}
2756 
2757 	/* initialize first or needed device */
2758 	if (!devno || pd->needs_init) {
2759 		if (mdp->cd->chip_reset)
2760 			mdp->cd->chip_reset(ndev);
2761 
2762 		if (mdp->cd->tsu) {
2763 			/* TSU init (Init only)*/
2764 			sh_eth_tsu_init(mdp);
2765 		}
2766 	}
2767 
2768 	/* network device register */
2769 	ret = register_netdev(ndev);
2770 	if (ret)
2771 		goto out_release;
2772 
2773 	/* mdio bus init */
2774 	ret = sh_mdio_init(ndev, pdev->id, pd);
2775 	if (ret)
2776 		goto out_unregister;
2777 
2778 	/* print device information */
2779 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2780 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2781 
2782 	platform_set_drvdata(pdev, ndev);
2783 
2784 	return ret;
2785 
2786 out_unregister:
2787 	unregister_netdev(ndev);
2788 
2789 out_release:
2790 	/* net_dev free */
2791 	if (ndev)
2792 		free_netdev(ndev);
2793 
2794 out:
2795 	return ret;
2796 }
2797 
2798 static int sh_eth_drv_remove(struct platform_device *pdev)
2799 {
2800 	struct net_device *ndev = platform_get_drvdata(pdev);
2801 
2802 	sh_mdio_release(ndev);
2803 	unregister_netdev(ndev);
2804 	pm_runtime_disable(&pdev->dev);
2805 	free_netdev(ndev);
2806 	platform_set_drvdata(pdev, NULL);
2807 
2808 	return 0;
2809 }
2810 
2811 static int sh_eth_runtime_nop(struct device *dev)
2812 {
2813 	/*
2814 	 * Runtime PM callback shared between ->runtime_suspend()
2815 	 * and ->runtime_resume(). Simply returns success.
2816 	 *
2817 	 * This driver re-initializes all registers after
2818 	 * pm_runtime_get_sync() anyway so there is no need
2819 	 * to save and restore registers here.
2820 	 */
2821 	return 0;
2822 }
2823 
2824 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2825 	.runtime_suspend = sh_eth_runtime_nop,
2826 	.runtime_resume = sh_eth_runtime_nop,
2827 };
2828 
2829 static struct platform_driver sh_eth_driver = {
2830 	.probe = sh_eth_drv_probe,
2831 	.remove = sh_eth_drv_remove,
2832 	.driver = {
2833 		   .name = CARDNAME,
2834 		   .pm = &sh_eth_dev_pm_ops,
2835 	},
2836 };
2837 
2838 module_platform_driver(sh_eth_driver);
2839 
2840 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2841 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2842 MODULE_LICENSE("GPL v2");
2843