1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
443 {
444 	return mdp->reg_offset[enum_index];
445 }
446 
447 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
448 			     int enum_index)
449 {
450 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
451 
452 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
453 		return;
454 
455 	iowrite32(data, mdp->tsu_addr + offset);
456 }
457 
458 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
459 {
460 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
461 
462 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
463 		return ~0U;
464 
465 	return ioread32(mdp->tsu_addr + offset);
466 }
467 
468 static void sh_eth_soft_swap(char *src, int len)
469 {
470 #ifdef __LITTLE_ENDIAN
471 	u32 *p = (u32 *)src;
472 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
473 
474 	for (; p < maxp; p++)
475 		*p = swab32(*p);
476 #endif
477 }
478 
479 static void sh_eth_select_mii(struct net_device *ndev)
480 {
481 	struct sh_eth_private *mdp = netdev_priv(ndev);
482 	u32 value;
483 
484 	switch (mdp->phy_interface) {
485 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
486 		value = 0x3;
487 		break;
488 	case PHY_INTERFACE_MODE_GMII:
489 		value = 0x2;
490 		break;
491 	case PHY_INTERFACE_MODE_MII:
492 		value = 0x1;
493 		break;
494 	case PHY_INTERFACE_MODE_RMII:
495 		value = 0x0;
496 		break;
497 	default:
498 		netdev_warn(ndev,
499 			    "PHY interface mode was not setup. Set to MII.\n");
500 		value = 0x1;
501 		break;
502 	}
503 
504 	sh_eth_write(ndev, value, RMII_MII);
505 }
506 
507 static void sh_eth_set_duplex(struct net_device *ndev)
508 {
509 	struct sh_eth_private *mdp = netdev_priv(ndev);
510 
511 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
512 }
513 
514 static void sh_eth_chip_reset(struct net_device *ndev)
515 {
516 	struct sh_eth_private *mdp = netdev_priv(ndev);
517 
518 	/* reset device */
519 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
520 	mdelay(1);
521 }
522 
523 static int sh_eth_soft_reset(struct net_device *ndev)
524 {
525 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
526 	mdelay(3);
527 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
528 
529 	return 0;
530 }
531 
532 static int sh_eth_check_soft_reset(struct net_device *ndev)
533 {
534 	int cnt;
535 
536 	for (cnt = 100; cnt > 0; cnt--) {
537 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
538 			return 0;
539 		mdelay(1);
540 	}
541 
542 	netdev_err(ndev, "Device reset failed\n");
543 	return -ETIMEDOUT;
544 }
545 
546 static int sh_eth_soft_reset_gether(struct net_device *ndev)
547 {
548 	struct sh_eth_private *mdp = netdev_priv(ndev);
549 	int ret;
550 
551 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
552 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
553 
554 	ret = sh_eth_check_soft_reset(ndev);
555 	if (ret)
556 		return ret;
557 
558 	/* Table Init */
559 	sh_eth_write(ndev, 0, TDLAR);
560 	sh_eth_write(ndev, 0, TDFAR);
561 	sh_eth_write(ndev, 0, TDFXR);
562 	sh_eth_write(ndev, 0, TDFFR);
563 	sh_eth_write(ndev, 0, RDLAR);
564 	sh_eth_write(ndev, 0, RDFAR);
565 	sh_eth_write(ndev, 0, RDFXR);
566 	sh_eth_write(ndev, 0, RDFFR);
567 
568 	/* Reset HW CRC register */
569 	if (mdp->cd->hw_checksum)
570 		sh_eth_write(ndev, 0, CSMR);
571 
572 	/* Select MII mode */
573 	if (mdp->cd->select_mii)
574 		sh_eth_select_mii(ndev);
575 
576 	return ret;
577 }
578 
579 static void sh_eth_set_rate_gether(struct net_device *ndev)
580 {
581 	struct sh_eth_private *mdp = netdev_priv(ndev);
582 
583 	switch (mdp->speed) {
584 	case 10: /* 10BASE */
585 		sh_eth_write(ndev, GECMR_10, GECMR);
586 		break;
587 	case 100:/* 100BASE */
588 		sh_eth_write(ndev, GECMR_100, GECMR);
589 		break;
590 	case 1000: /* 1000BASE */
591 		sh_eth_write(ndev, GECMR_1000, GECMR);
592 		break;
593 	}
594 }
595 
596 #ifdef CONFIG_OF
597 /* R7S72100 */
598 static struct sh_eth_cpu_data r7s72100_data = {
599 	.soft_reset	= sh_eth_soft_reset_gether,
600 
601 	.chip_reset	= sh_eth_chip_reset,
602 	.set_duplex	= sh_eth_set_duplex,
603 
604 	.register_type	= SH_ETH_REG_FAST_RZ,
605 
606 	.edtrr_trns	= EDTRR_TRNS_GETHER,
607 	.ecsr_value	= ECSR_ICD,
608 	.ecsipr_value	= ECSIPR_ICDIP,
609 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
610 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
611 			  EESIPR_ECIIP |
612 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
613 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
614 			  EESIPR_RMAFIP | EESIPR_RRFIP |
615 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
616 			  EESIPR_PREIP | EESIPR_CERFIP,
617 
618 	.tx_check	= EESR_TC1 | EESR_FTC,
619 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
620 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
621 			  EESR_TDE,
622 	.fdr_value	= 0x0000070f,
623 
624 	.no_psr		= 1,
625 	.apr		= 1,
626 	.mpr		= 1,
627 	.tpauser	= 1,
628 	.hw_swap	= 1,
629 	.rpadir		= 1,
630 	.no_trimd	= 1,
631 	.no_ade		= 1,
632 	.xdfar_rw	= 1,
633 	.hw_checksum	= 1,
634 	.tsu		= 1,
635 	.no_tx_cntrs	= 1,
636 };
637 
638 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
639 {
640 	sh_eth_chip_reset(ndev);
641 
642 	sh_eth_select_mii(ndev);
643 }
644 
645 /* R8A7740 */
646 static struct sh_eth_cpu_data r8a7740_data = {
647 	.soft_reset	= sh_eth_soft_reset_gether,
648 
649 	.chip_reset	= sh_eth_chip_reset_r8a7740,
650 	.set_duplex	= sh_eth_set_duplex,
651 	.set_rate	= sh_eth_set_rate_gether,
652 
653 	.register_type	= SH_ETH_REG_GIGABIT,
654 
655 	.edtrr_trns	= EDTRR_TRNS_GETHER,
656 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
657 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
658 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
659 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
660 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
661 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
662 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
663 			  EESIPR_CEEFIP | EESIPR_CELFIP |
664 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
665 			  EESIPR_PREIP | EESIPR_CERFIP,
666 
667 	.tx_check	= EESR_TC1 | EESR_FTC,
668 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
669 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
670 			  EESR_TDE,
671 	.fdr_value	= 0x0000070f,
672 
673 	.apr		= 1,
674 	.mpr		= 1,
675 	.tpauser	= 1,
676 	.bculr		= 1,
677 	.hw_swap	= 1,
678 	.rpadir		= 1,
679 	.no_trimd	= 1,
680 	.no_ade		= 1,
681 	.xdfar_rw	= 1,
682 	.hw_checksum	= 1,
683 	.tsu		= 1,
684 	.select_mii	= 1,
685 	.magic		= 1,
686 	.cexcr		= 1,
687 };
688 
689 /* There is CPU dependent code */
690 static void sh_eth_set_rate_rcar(struct net_device *ndev)
691 {
692 	struct sh_eth_private *mdp = netdev_priv(ndev);
693 
694 	switch (mdp->speed) {
695 	case 10: /* 10BASE */
696 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
697 		break;
698 	case 100:/* 100BASE */
699 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
700 		break;
701 	}
702 }
703 
704 /* R-Car Gen1 */
705 static struct sh_eth_cpu_data rcar_gen1_data = {
706 	.soft_reset	= sh_eth_soft_reset,
707 
708 	.set_duplex	= sh_eth_set_duplex,
709 	.set_rate	= sh_eth_set_rate_rcar,
710 
711 	.register_type	= SH_ETH_REG_FAST_RCAR,
712 
713 	.edtrr_trns	= EDTRR_TRNS_ETHER,
714 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
715 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
716 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
717 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
718 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
719 			  EESIPR_RMAFIP | EESIPR_RRFIP |
720 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
721 			  EESIPR_PREIP | EESIPR_CERFIP,
722 
723 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
724 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
725 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
726 	.fdr_value	= 0x00000f0f,
727 
728 	.apr		= 1,
729 	.mpr		= 1,
730 	.tpauser	= 1,
731 	.hw_swap	= 1,
732 	.no_xdfar	= 1,
733 };
734 
735 /* R-Car Gen2 and RZ/G1 */
736 static struct sh_eth_cpu_data rcar_gen2_data = {
737 	.soft_reset	= sh_eth_soft_reset,
738 
739 	.set_duplex	= sh_eth_set_duplex,
740 	.set_rate	= sh_eth_set_rate_rcar,
741 
742 	.register_type	= SH_ETH_REG_FAST_RCAR,
743 
744 	.edtrr_trns	= EDTRR_TRNS_ETHER,
745 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
746 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
747 			  ECSIPR_MPDIP,
748 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
749 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
750 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
751 			  EESIPR_RMAFIP | EESIPR_RRFIP |
752 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
753 			  EESIPR_PREIP | EESIPR_CERFIP,
754 
755 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
756 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
757 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
758 	.fdr_value	= 0x00000f0f,
759 
760 	.trscer_err_mask = DESC_I_RINT8,
761 
762 	.apr		= 1,
763 	.mpr		= 1,
764 	.tpauser	= 1,
765 	.hw_swap	= 1,
766 	.no_xdfar	= 1,
767 	.rmiimode	= 1,
768 	.magic		= 1,
769 };
770 
771 /* R8A77980 */
772 static struct sh_eth_cpu_data r8a77980_data = {
773 	.soft_reset	= sh_eth_soft_reset_gether,
774 
775 	.set_duplex	= sh_eth_set_duplex,
776 	.set_rate	= sh_eth_set_rate_gether,
777 
778 	.register_type  = SH_ETH_REG_GIGABIT,
779 
780 	.edtrr_trns	= EDTRR_TRNS_GETHER,
781 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
782 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
783 			  ECSIPR_MPDIP,
784 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
785 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
786 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
787 			  EESIPR_RMAFIP | EESIPR_RRFIP |
788 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
789 			  EESIPR_PREIP | EESIPR_CERFIP,
790 
791 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
792 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
793 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
794 			  EESR_TFE | EESR_TDE | EESR_ECI,
795 	.fdr_value	= 0x0000070f,
796 
797 	.apr		= 1,
798 	.mpr		= 1,
799 	.tpauser	= 1,
800 	.bculr		= 1,
801 	.hw_swap	= 1,
802 	.nbst		= 1,
803 	.rpadir		= 1,
804 	.no_trimd	= 1,
805 	.no_ade		= 1,
806 	.xdfar_rw	= 1,
807 	.hw_checksum	= 1,
808 	.select_mii	= 1,
809 	.magic		= 1,
810 	.cexcr		= 1,
811 };
812 #endif /* CONFIG_OF */
813 
814 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
815 {
816 	struct sh_eth_private *mdp = netdev_priv(ndev);
817 
818 	switch (mdp->speed) {
819 	case 10: /* 10BASE */
820 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
821 		break;
822 	case 100:/* 100BASE */
823 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
824 		break;
825 	}
826 }
827 
828 /* SH7724 */
829 static struct sh_eth_cpu_data sh7724_data = {
830 	.soft_reset	= sh_eth_soft_reset,
831 
832 	.set_duplex	= sh_eth_set_duplex,
833 	.set_rate	= sh_eth_set_rate_sh7724,
834 
835 	.register_type	= SH_ETH_REG_FAST_SH4,
836 
837 	.edtrr_trns	= EDTRR_TRNS_ETHER,
838 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
839 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
840 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
841 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
842 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
843 			  EESIPR_RMAFIP | EESIPR_RRFIP |
844 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
845 			  EESIPR_PREIP | EESIPR_CERFIP,
846 
847 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
848 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
849 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
850 
851 	.apr		= 1,
852 	.mpr		= 1,
853 	.tpauser	= 1,
854 	.hw_swap	= 1,
855 	.rpadir		= 1,
856 };
857 
858 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
859 {
860 	struct sh_eth_private *mdp = netdev_priv(ndev);
861 
862 	switch (mdp->speed) {
863 	case 10: /* 10BASE */
864 		sh_eth_write(ndev, 0, RTRATE);
865 		break;
866 	case 100:/* 100BASE */
867 		sh_eth_write(ndev, 1, RTRATE);
868 		break;
869 	}
870 }
871 
872 /* SH7757 */
873 static struct sh_eth_cpu_data sh7757_data = {
874 	.soft_reset	= sh_eth_soft_reset,
875 
876 	.set_duplex	= sh_eth_set_duplex,
877 	.set_rate	= sh_eth_set_rate_sh7757,
878 
879 	.register_type	= SH_ETH_REG_FAST_SH4,
880 
881 	.edtrr_trns	= EDTRR_TRNS_ETHER,
882 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
883 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
886 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
887 			  EESIPR_CEEFIP | EESIPR_CELFIP |
888 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
889 			  EESIPR_PREIP | EESIPR_CERFIP,
890 
891 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
892 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
893 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
894 
895 	.irq_flags	= IRQF_SHARED,
896 	.apr		= 1,
897 	.mpr		= 1,
898 	.tpauser	= 1,
899 	.hw_swap	= 1,
900 	.no_ade		= 1,
901 	.rpadir		= 1,
902 	.rtrate		= 1,
903 	.dual_port	= 1,
904 };
905 
906 #define SH_GIGA_ETH_BASE	0xfee00000UL
907 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
908 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
909 static void sh_eth_chip_reset_giga(struct net_device *ndev)
910 {
911 	u32 mahr[2], malr[2];
912 	int i;
913 
914 	/* save MAHR and MALR */
915 	for (i = 0; i < 2; i++) {
916 		malr[i] = ioread32((void *)GIGA_MALR(i));
917 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
918 	}
919 
920 	sh_eth_chip_reset(ndev);
921 
922 	/* restore MAHR and MALR */
923 	for (i = 0; i < 2; i++) {
924 		iowrite32(malr[i], (void *)GIGA_MALR(i));
925 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
926 	}
927 }
928 
929 static void sh_eth_set_rate_giga(struct net_device *ndev)
930 {
931 	struct sh_eth_private *mdp = netdev_priv(ndev);
932 
933 	switch (mdp->speed) {
934 	case 10: /* 10BASE */
935 		sh_eth_write(ndev, 0x00000000, GECMR);
936 		break;
937 	case 100:/* 100BASE */
938 		sh_eth_write(ndev, 0x00000010, GECMR);
939 		break;
940 	case 1000: /* 1000BASE */
941 		sh_eth_write(ndev, 0x00000020, GECMR);
942 		break;
943 	}
944 }
945 
946 /* SH7757(GETHERC) */
947 static struct sh_eth_cpu_data sh7757_data_giga = {
948 	.soft_reset	= sh_eth_soft_reset_gether,
949 
950 	.chip_reset	= sh_eth_chip_reset_giga,
951 	.set_duplex	= sh_eth_set_duplex,
952 	.set_rate	= sh_eth_set_rate_giga,
953 
954 	.register_type	= SH_ETH_REG_GIGABIT,
955 
956 	.edtrr_trns	= EDTRR_TRNS_GETHER,
957 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
958 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
959 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
960 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
961 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
962 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
963 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
964 			  EESIPR_CEEFIP | EESIPR_CELFIP |
965 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
966 			  EESIPR_PREIP | EESIPR_CERFIP,
967 
968 	.tx_check	= EESR_TC1 | EESR_FTC,
969 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
970 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
971 			  EESR_TDE,
972 	.fdr_value	= 0x0000072f,
973 
974 	.irq_flags	= IRQF_SHARED,
975 	.apr		= 1,
976 	.mpr		= 1,
977 	.tpauser	= 1,
978 	.bculr		= 1,
979 	.hw_swap	= 1,
980 	.rpadir		= 1,
981 	.no_trimd	= 1,
982 	.no_ade		= 1,
983 	.xdfar_rw	= 1,
984 	.tsu		= 1,
985 	.cexcr		= 1,
986 	.dual_port	= 1,
987 };
988 
989 /* SH7734 */
990 static struct sh_eth_cpu_data sh7734_data = {
991 	.soft_reset	= sh_eth_soft_reset_gether,
992 
993 	.chip_reset	= sh_eth_chip_reset,
994 	.set_duplex	= sh_eth_set_duplex,
995 	.set_rate	= sh_eth_set_rate_gether,
996 
997 	.register_type	= SH_ETH_REG_GIGABIT,
998 
999 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1000 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1001 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1002 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1003 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1004 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1005 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1006 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1007 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1008 			  EESIPR_PREIP | EESIPR_CERFIP,
1009 
1010 	.tx_check	= EESR_TC1 | EESR_FTC,
1011 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1012 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1013 			  EESR_TDE,
1014 
1015 	.apr		= 1,
1016 	.mpr		= 1,
1017 	.tpauser	= 1,
1018 	.bculr		= 1,
1019 	.hw_swap	= 1,
1020 	.no_trimd	= 1,
1021 	.no_ade		= 1,
1022 	.xdfar_rw	= 1,
1023 	.tsu		= 1,
1024 	.hw_checksum	= 1,
1025 	.select_mii	= 1,
1026 	.magic		= 1,
1027 	.cexcr		= 1,
1028 };
1029 
1030 /* SH7763 */
1031 static struct sh_eth_cpu_data sh7763_data = {
1032 	.soft_reset	= sh_eth_soft_reset_gether,
1033 
1034 	.chip_reset	= sh_eth_chip_reset,
1035 	.set_duplex	= sh_eth_set_duplex,
1036 	.set_rate	= sh_eth_set_rate_gether,
1037 
1038 	.register_type	= SH_ETH_REG_GIGABIT,
1039 
1040 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1041 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1042 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1043 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1044 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1045 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1046 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1047 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1048 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1049 			  EESIPR_PREIP | EESIPR_CERFIP,
1050 
1051 	.tx_check	= EESR_TC1 | EESR_FTC,
1052 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1053 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1054 
1055 	.apr		= 1,
1056 	.mpr		= 1,
1057 	.tpauser	= 1,
1058 	.bculr		= 1,
1059 	.hw_swap	= 1,
1060 	.no_trimd	= 1,
1061 	.no_ade		= 1,
1062 	.xdfar_rw	= 1,
1063 	.tsu		= 1,
1064 	.irq_flags	= IRQF_SHARED,
1065 	.magic		= 1,
1066 	.cexcr		= 1,
1067 	.dual_port	= 1,
1068 };
1069 
1070 static struct sh_eth_cpu_data sh7619_data = {
1071 	.soft_reset	= sh_eth_soft_reset,
1072 
1073 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1074 
1075 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1076 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1077 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1078 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1079 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1080 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1081 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1082 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1083 			  EESIPR_PREIP | EESIPR_CERFIP,
1084 
1085 	.apr		= 1,
1086 	.mpr		= 1,
1087 	.tpauser	= 1,
1088 	.hw_swap	= 1,
1089 };
1090 
1091 static struct sh_eth_cpu_data sh771x_data = {
1092 	.soft_reset	= sh_eth_soft_reset,
1093 
1094 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1095 
1096 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1097 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1098 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1099 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1100 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1101 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1102 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1103 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1104 			  EESIPR_PREIP | EESIPR_CERFIP,
1105 	.tsu		= 1,
1106 	.dual_port	= 1,
1107 };
1108 
1109 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1110 {
1111 	if (!cd->ecsr_value)
1112 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1113 
1114 	if (!cd->ecsipr_value)
1115 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1116 
1117 	if (!cd->fcftr_value)
1118 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1119 				  DEFAULT_FIFO_F_D_RFD;
1120 
1121 	if (!cd->fdr_value)
1122 		cd->fdr_value = DEFAULT_FDR_INIT;
1123 
1124 	if (!cd->tx_check)
1125 		cd->tx_check = DEFAULT_TX_CHECK;
1126 
1127 	if (!cd->eesr_err_check)
1128 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1129 
1130 	if (!cd->trscer_err_mask)
1131 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1132 }
1133 
1134 static void sh_eth_set_receive_align(struct sk_buff *skb)
1135 {
1136 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1137 
1138 	if (reserve)
1139 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1140 }
1141 
1142 /* Program the hardware MAC address from dev->dev_addr. */
1143 static void update_mac_address(struct net_device *ndev)
1144 {
1145 	sh_eth_write(ndev,
1146 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1147 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1148 	sh_eth_write(ndev,
1149 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1150 }
1151 
1152 /* Get MAC address from SuperH MAC address register
1153  *
1154  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1155  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1156  * When you want use this device, you must set MAC address in bootloader.
1157  *
1158  */
1159 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1160 {
1161 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1162 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1163 	} else {
1164 		u32 mahr = sh_eth_read(ndev, MAHR);
1165 		u32 malr = sh_eth_read(ndev, MALR);
1166 
1167 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1168 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1169 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1170 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1171 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1172 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1173 	}
1174 }
1175 
1176 struct bb_info {
1177 	void (*set_gate)(void *addr);
1178 	struct mdiobb_ctrl ctrl;
1179 	void *addr;
1180 };
1181 
1182 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1183 {
1184 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1185 	u32 pir;
1186 
1187 	if (bitbang->set_gate)
1188 		bitbang->set_gate(bitbang->addr);
1189 
1190 	pir = ioread32(bitbang->addr);
1191 	if (set)
1192 		pir |=  mask;
1193 	else
1194 		pir &= ~mask;
1195 	iowrite32(pir, bitbang->addr);
1196 }
1197 
1198 /* Data I/O pin control */
1199 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1200 {
1201 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1202 }
1203 
1204 /* Set bit data*/
1205 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1206 {
1207 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1208 }
1209 
1210 /* Get bit data*/
1211 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1212 {
1213 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1214 
1215 	if (bitbang->set_gate)
1216 		bitbang->set_gate(bitbang->addr);
1217 
1218 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1219 }
1220 
1221 /* MDC pin control */
1222 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1223 {
1224 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1225 }
1226 
1227 /* mdio bus control struct */
1228 static struct mdiobb_ops bb_ops = {
1229 	.owner = THIS_MODULE,
1230 	.set_mdc = sh_mdc_ctrl,
1231 	.set_mdio_dir = sh_mmd_ctrl,
1232 	.set_mdio_data = sh_set_mdio,
1233 	.get_mdio_data = sh_get_mdio,
1234 };
1235 
1236 /* free Tx skb function */
1237 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1238 {
1239 	struct sh_eth_private *mdp = netdev_priv(ndev);
1240 	struct sh_eth_txdesc *txdesc;
1241 	int free_num = 0;
1242 	int entry;
1243 	bool sent;
1244 
1245 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1246 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1247 		txdesc = &mdp->tx_ring[entry];
1248 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1249 		if (sent_only && !sent)
1250 			break;
1251 		/* TACT bit must be checked before all the following reads */
1252 		dma_rmb();
1253 		netif_info(mdp, tx_done, ndev,
1254 			   "tx entry %d status 0x%08x\n",
1255 			   entry, le32_to_cpu(txdesc->status));
1256 		/* Free the original skb. */
1257 		if (mdp->tx_skbuff[entry]) {
1258 			dma_unmap_single(&mdp->pdev->dev,
1259 					 le32_to_cpu(txdesc->addr),
1260 					 le32_to_cpu(txdesc->len) >> 16,
1261 					 DMA_TO_DEVICE);
1262 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1263 			mdp->tx_skbuff[entry] = NULL;
1264 			free_num++;
1265 		}
1266 		txdesc->status = cpu_to_le32(TD_TFP);
1267 		if (entry >= mdp->num_tx_ring - 1)
1268 			txdesc->status |= cpu_to_le32(TD_TDLE);
1269 
1270 		if (sent) {
1271 			ndev->stats.tx_packets++;
1272 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1273 		}
1274 	}
1275 	return free_num;
1276 }
1277 
1278 /* free skb and descriptor buffer */
1279 static void sh_eth_ring_free(struct net_device *ndev)
1280 {
1281 	struct sh_eth_private *mdp = netdev_priv(ndev);
1282 	int ringsize, i;
1283 
1284 	if (mdp->rx_ring) {
1285 		for (i = 0; i < mdp->num_rx_ring; i++) {
1286 			if (mdp->rx_skbuff[i]) {
1287 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1288 
1289 				dma_unmap_single(&mdp->pdev->dev,
1290 						 le32_to_cpu(rxdesc->addr),
1291 						 ALIGN(mdp->rx_buf_sz, 32),
1292 						 DMA_FROM_DEVICE);
1293 			}
1294 		}
1295 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1296 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1297 				  mdp->rx_desc_dma);
1298 		mdp->rx_ring = NULL;
1299 	}
1300 
1301 	/* Free Rx skb ringbuffer */
1302 	if (mdp->rx_skbuff) {
1303 		for (i = 0; i < mdp->num_rx_ring; i++)
1304 			dev_kfree_skb(mdp->rx_skbuff[i]);
1305 	}
1306 	kfree(mdp->rx_skbuff);
1307 	mdp->rx_skbuff = NULL;
1308 
1309 	if (mdp->tx_ring) {
1310 		sh_eth_tx_free(ndev, false);
1311 
1312 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1313 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1314 				  mdp->tx_desc_dma);
1315 		mdp->tx_ring = NULL;
1316 	}
1317 
1318 	/* Free Tx skb ringbuffer */
1319 	kfree(mdp->tx_skbuff);
1320 	mdp->tx_skbuff = NULL;
1321 }
1322 
1323 /* format skb and descriptor buffer */
1324 static void sh_eth_ring_format(struct net_device *ndev)
1325 {
1326 	struct sh_eth_private *mdp = netdev_priv(ndev);
1327 	int i;
1328 	struct sk_buff *skb;
1329 	struct sh_eth_rxdesc *rxdesc = NULL;
1330 	struct sh_eth_txdesc *txdesc = NULL;
1331 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1332 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1333 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1334 	dma_addr_t dma_addr;
1335 	u32 buf_len;
1336 
1337 	mdp->cur_rx = 0;
1338 	mdp->cur_tx = 0;
1339 	mdp->dirty_rx = 0;
1340 	mdp->dirty_tx = 0;
1341 
1342 	memset(mdp->rx_ring, 0, rx_ringsize);
1343 
1344 	/* build Rx ring buffer */
1345 	for (i = 0; i < mdp->num_rx_ring; i++) {
1346 		/* skb */
1347 		mdp->rx_skbuff[i] = NULL;
1348 		skb = netdev_alloc_skb(ndev, skbuff_size);
1349 		if (skb == NULL)
1350 			break;
1351 		sh_eth_set_receive_align(skb);
1352 
1353 		/* The size of the buffer is a multiple of 32 bytes. */
1354 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1355 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1356 					  DMA_FROM_DEVICE);
1357 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1358 			kfree_skb(skb);
1359 			break;
1360 		}
1361 		mdp->rx_skbuff[i] = skb;
1362 
1363 		/* RX descriptor */
1364 		rxdesc = &mdp->rx_ring[i];
1365 		rxdesc->len = cpu_to_le32(buf_len << 16);
1366 		rxdesc->addr = cpu_to_le32(dma_addr);
1367 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1368 
1369 		/* Rx descriptor address set */
1370 		if (i == 0) {
1371 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1372 			if (mdp->cd->xdfar_rw)
1373 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1374 		}
1375 	}
1376 
1377 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1378 
1379 	/* Mark the last entry as wrapping the ring. */
1380 	if (rxdesc)
1381 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1382 
1383 	memset(mdp->tx_ring, 0, tx_ringsize);
1384 
1385 	/* build Tx ring buffer */
1386 	for (i = 0; i < mdp->num_tx_ring; i++) {
1387 		mdp->tx_skbuff[i] = NULL;
1388 		txdesc = &mdp->tx_ring[i];
1389 		txdesc->status = cpu_to_le32(TD_TFP);
1390 		txdesc->len = cpu_to_le32(0);
1391 		if (i == 0) {
1392 			/* Tx descriptor address set */
1393 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1394 			if (mdp->cd->xdfar_rw)
1395 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1396 		}
1397 	}
1398 
1399 	txdesc->status |= cpu_to_le32(TD_TDLE);
1400 }
1401 
1402 /* Get skb and descriptor buffer */
1403 static int sh_eth_ring_init(struct net_device *ndev)
1404 {
1405 	struct sh_eth_private *mdp = netdev_priv(ndev);
1406 	int rx_ringsize, tx_ringsize;
1407 
1408 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1409 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1410 	 * the first 2 bytes, and +16 gets room for the status word from the
1411 	 * card.
1412 	 */
1413 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1414 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1415 	if (mdp->cd->rpadir)
1416 		mdp->rx_buf_sz += NET_IP_ALIGN;
1417 
1418 	/* Allocate RX and TX skb rings */
1419 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1420 				 GFP_KERNEL);
1421 	if (!mdp->rx_skbuff)
1422 		return -ENOMEM;
1423 
1424 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1425 				 GFP_KERNEL);
1426 	if (!mdp->tx_skbuff)
1427 		goto ring_free;
1428 
1429 	/* Allocate all Rx descriptors. */
1430 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1431 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1432 					  &mdp->rx_desc_dma, GFP_KERNEL);
1433 	if (!mdp->rx_ring)
1434 		goto ring_free;
1435 
1436 	mdp->dirty_rx = 0;
1437 
1438 	/* Allocate all Tx descriptors. */
1439 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1440 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1441 					  &mdp->tx_desc_dma, GFP_KERNEL);
1442 	if (!mdp->tx_ring)
1443 		goto ring_free;
1444 	return 0;
1445 
1446 ring_free:
1447 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1448 	sh_eth_ring_free(ndev);
1449 
1450 	return -ENOMEM;
1451 }
1452 
1453 static int sh_eth_dev_init(struct net_device *ndev)
1454 {
1455 	struct sh_eth_private *mdp = netdev_priv(ndev);
1456 	int ret;
1457 
1458 	/* Soft Reset */
1459 	ret = mdp->cd->soft_reset(ndev);
1460 	if (ret)
1461 		return ret;
1462 
1463 	if (mdp->cd->rmiimode)
1464 		sh_eth_write(ndev, 0x1, RMIIMODE);
1465 
1466 	/* Descriptor format */
1467 	sh_eth_ring_format(ndev);
1468 	if (mdp->cd->rpadir)
1469 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1470 
1471 	/* all sh_eth int mask */
1472 	sh_eth_write(ndev, 0, EESIPR);
1473 
1474 #if defined(__LITTLE_ENDIAN)
1475 	if (mdp->cd->hw_swap)
1476 		sh_eth_write(ndev, EDMR_EL, EDMR);
1477 	else
1478 #endif
1479 		sh_eth_write(ndev, 0, EDMR);
1480 
1481 	/* FIFO size set */
1482 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1483 	sh_eth_write(ndev, 0, TFTR);
1484 
1485 	/* Frame recv control (enable multiple-packets per rx irq) */
1486 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1487 
1488 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1489 
1490 	/* DMA transfer burst mode */
1491 	if (mdp->cd->nbst)
1492 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1493 
1494 	/* Burst cycle count upper-limit */
1495 	if (mdp->cd->bculr)
1496 		sh_eth_write(ndev, 0x800, BCULR);
1497 
1498 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1499 
1500 	if (!mdp->cd->no_trimd)
1501 		sh_eth_write(ndev, 0, TRIMD);
1502 
1503 	/* Recv frame limit set register */
1504 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1505 		     RFLR);
1506 
1507 	sh_eth_modify(ndev, EESR, 0, 0);
1508 	mdp->irq_enabled = true;
1509 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1510 
1511 	/* PAUSE Prohibition */
1512 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1513 		     ECMR_TE | ECMR_RE, ECMR);
1514 
1515 	if (mdp->cd->set_rate)
1516 		mdp->cd->set_rate(ndev);
1517 
1518 	/* E-MAC Status Register clear */
1519 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1520 
1521 	/* E-MAC Interrupt Enable register */
1522 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1523 
1524 	/* Set MAC address */
1525 	update_mac_address(ndev);
1526 
1527 	/* mask reset */
1528 	if (mdp->cd->apr)
1529 		sh_eth_write(ndev, 1, APR);
1530 	if (mdp->cd->mpr)
1531 		sh_eth_write(ndev, 1, MPR);
1532 	if (mdp->cd->tpauser)
1533 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1534 
1535 	/* Setting the Rx mode will start the Rx process. */
1536 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1537 
1538 	return ret;
1539 }
1540 
1541 static void sh_eth_dev_exit(struct net_device *ndev)
1542 {
1543 	struct sh_eth_private *mdp = netdev_priv(ndev);
1544 	int i;
1545 
1546 	/* Deactivate all TX descriptors, so DMA should stop at next
1547 	 * packet boundary if it's currently running
1548 	 */
1549 	for (i = 0; i < mdp->num_tx_ring; i++)
1550 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1551 
1552 	/* Disable TX FIFO egress to MAC */
1553 	sh_eth_rcv_snd_disable(ndev);
1554 
1555 	/* Stop RX DMA at next packet boundary */
1556 	sh_eth_write(ndev, 0, EDRRR);
1557 
1558 	/* Aside from TX DMA, we can't tell when the hardware is
1559 	 * really stopped, so we need to reset to make sure.
1560 	 * Before doing that, wait for long enough to *probably*
1561 	 * finish transmitting the last packet and poll stats.
1562 	 */
1563 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1564 	sh_eth_get_stats(ndev);
1565 	mdp->cd->soft_reset(ndev);
1566 
1567 	/* Set MAC address again */
1568 	update_mac_address(ndev);
1569 }
1570 
1571 /* Packet receive function */
1572 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1573 {
1574 	struct sh_eth_private *mdp = netdev_priv(ndev);
1575 	struct sh_eth_rxdesc *rxdesc;
1576 
1577 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1578 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1579 	int limit;
1580 	struct sk_buff *skb;
1581 	u32 desc_status;
1582 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1583 	dma_addr_t dma_addr;
1584 	u16 pkt_len;
1585 	u32 buf_len;
1586 
1587 	boguscnt = min(boguscnt, *quota);
1588 	limit = boguscnt;
1589 	rxdesc = &mdp->rx_ring[entry];
1590 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1591 		/* RACT bit must be checked before all the following reads */
1592 		dma_rmb();
1593 		desc_status = le32_to_cpu(rxdesc->status);
1594 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1595 
1596 		if (--boguscnt < 0)
1597 			break;
1598 
1599 		netif_info(mdp, rx_status, ndev,
1600 			   "rx entry %d status 0x%08x len %d\n",
1601 			   entry, desc_status, pkt_len);
1602 
1603 		if (!(desc_status & RDFEND))
1604 			ndev->stats.rx_length_errors++;
1605 
1606 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1607 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1608 		 * bit 0. However, in case of the R8A7740 and R7S72100
1609 		 * the RFS bits are from bit 25 to bit 16. So, the
1610 		 * driver needs right shifting by 16.
1611 		 */
1612 		if (mdp->cd->hw_checksum)
1613 			desc_status >>= 16;
1614 
1615 		skb = mdp->rx_skbuff[entry];
1616 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1617 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1618 			ndev->stats.rx_errors++;
1619 			if (desc_status & RD_RFS1)
1620 				ndev->stats.rx_crc_errors++;
1621 			if (desc_status & RD_RFS2)
1622 				ndev->stats.rx_frame_errors++;
1623 			if (desc_status & RD_RFS3)
1624 				ndev->stats.rx_length_errors++;
1625 			if (desc_status & RD_RFS4)
1626 				ndev->stats.rx_length_errors++;
1627 			if (desc_status & RD_RFS6)
1628 				ndev->stats.rx_missed_errors++;
1629 			if (desc_status & RD_RFS10)
1630 				ndev->stats.rx_over_errors++;
1631 		} else	if (skb) {
1632 			dma_addr = le32_to_cpu(rxdesc->addr);
1633 			if (!mdp->cd->hw_swap)
1634 				sh_eth_soft_swap(
1635 					phys_to_virt(ALIGN(dma_addr, 4)),
1636 					pkt_len + 2);
1637 			mdp->rx_skbuff[entry] = NULL;
1638 			if (mdp->cd->rpadir)
1639 				skb_reserve(skb, NET_IP_ALIGN);
1640 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1641 					 ALIGN(mdp->rx_buf_sz, 32),
1642 					 DMA_FROM_DEVICE);
1643 			skb_put(skb, pkt_len);
1644 			skb->protocol = eth_type_trans(skb, ndev);
1645 			netif_receive_skb(skb);
1646 			ndev->stats.rx_packets++;
1647 			ndev->stats.rx_bytes += pkt_len;
1648 			if (desc_status & RD_RFS8)
1649 				ndev->stats.multicast++;
1650 		}
1651 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1652 		rxdesc = &mdp->rx_ring[entry];
1653 	}
1654 
1655 	/* Refill the Rx ring buffers. */
1656 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1657 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1658 		rxdesc = &mdp->rx_ring[entry];
1659 		/* The size of the buffer is 32 byte boundary. */
1660 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1661 		rxdesc->len = cpu_to_le32(buf_len << 16);
1662 
1663 		if (mdp->rx_skbuff[entry] == NULL) {
1664 			skb = netdev_alloc_skb(ndev, skbuff_size);
1665 			if (skb == NULL)
1666 				break;	/* Better luck next round. */
1667 			sh_eth_set_receive_align(skb);
1668 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1669 						  buf_len, DMA_FROM_DEVICE);
1670 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1671 				kfree_skb(skb);
1672 				break;
1673 			}
1674 			mdp->rx_skbuff[entry] = skb;
1675 
1676 			skb_checksum_none_assert(skb);
1677 			rxdesc->addr = cpu_to_le32(dma_addr);
1678 		}
1679 		dma_wmb(); /* RACT bit must be set after all the above writes */
1680 		if (entry >= mdp->num_rx_ring - 1)
1681 			rxdesc->status |=
1682 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1683 		else
1684 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1685 	}
1686 
1687 	/* Restart Rx engine if stopped. */
1688 	/* If we don't need to check status, don't. -KDU */
1689 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1690 		/* fix the values for the next receiving if RDE is set */
1691 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1692 			u32 count = (sh_eth_read(ndev, RDFAR) -
1693 				     sh_eth_read(ndev, RDLAR)) >> 4;
1694 
1695 			mdp->cur_rx = count;
1696 			mdp->dirty_rx = count;
1697 		}
1698 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1699 	}
1700 
1701 	*quota -= limit - boguscnt - 1;
1702 
1703 	return *quota <= 0;
1704 }
1705 
1706 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1707 {
1708 	/* disable tx and rx */
1709 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1710 }
1711 
1712 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1713 {
1714 	/* enable tx and rx */
1715 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1716 }
1717 
1718 /* E-MAC interrupt handler */
1719 static void sh_eth_emac_interrupt(struct net_device *ndev)
1720 {
1721 	struct sh_eth_private *mdp = netdev_priv(ndev);
1722 	u32 felic_stat;
1723 	u32 link_stat;
1724 
1725 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1726 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1727 	if (felic_stat & ECSR_ICD)
1728 		ndev->stats.tx_carrier_errors++;
1729 	if (felic_stat & ECSR_MPD)
1730 		pm_wakeup_event(&mdp->pdev->dev, 0);
1731 	if (felic_stat & ECSR_LCHNG) {
1732 		/* Link Changed */
1733 		if (mdp->cd->no_psr || mdp->no_ether_link)
1734 			return;
1735 		link_stat = sh_eth_read(ndev, PSR);
1736 		if (mdp->ether_link_active_low)
1737 			link_stat = ~link_stat;
1738 		if (!(link_stat & PHY_ST_LINK)) {
1739 			sh_eth_rcv_snd_disable(ndev);
1740 		} else {
1741 			/* Link Up */
1742 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1743 			/* clear int */
1744 			sh_eth_modify(ndev, ECSR, 0, 0);
1745 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1746 			/* enable tx and rx */
1747 			sh_eth_rcv_snd_enable(ndev);
1748 		}
1749 	}
1750 }
1751 
1752 /* error control function */
1753 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1754 {
1755 	struct sh_eth_private *mdp = netdev_priv(ndev);
1756 	u32 mask;
1757 
1758 	if (intr_status & EESR_TWB) {
1759 		/* Unused write back interrupt */
1760 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1761 			ndev->stats.tx_aborted_errors++;
1762 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1763 		}
1764 	}
1765 
1766 	if (intr_status & EESR_RABT) {
1767 		/* Receive Abort int */
1768 		if (intr_status & EESR_RFRMER) {
1769 			/* Receive Frame Overflow int */
1770 			ndev->stats.rx_frame_errors++;
1771 		}
1772 	}
1773 
1774 	if (intr_status & EESR_TDE) {
1775 		/* Transmit Descriptor Empty int */
1776 		ndev->stats.tx_fifo_errors++;
1777 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1778 	}
1779 
1780 	if (intr_status & EESR_TFE) {
1781 		/* FIFO under flow */
1782 		ndev->stats.tx_fifo_errors++;
1783 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1784 	}
1785 
1786 	if (intr_status & EESR_RDE) {
1787 		/* Receive Descriptor Empty int */
1788 		ndev->stats.rx_over_errors++;
1789 	}
1790 
1791 	if (intr_status & EESR_RFE) {
1792 		/* Receive FIFO Overflow int */
1793 		ndev->stats.rx_fifo_errors++;
1794 	}
1795 
1796 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1797 		/* Address Error */
1798 		ndev->stats.tx_fifo_errors++;
1799 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1800 	}
1801 
1802 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1803 	if (mdp->cd->no_ade)
1804 		mask &= ~EESR_ADE;
1805 	if (intr_status & mask) {
1806 		/* Tx error */
1807 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1808 
1809 		/* dmesg */
1810 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1811 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1812 			   (u32)ndev->state, edtrr);
1813 		/* dirty buffer free */
1814 		sh_eth_tx_free(ndev, true);
1815 
1816 		/* SH7712 BUG */
1817 		if (edtrr ^ mdp->cd->edtrr_trns) {
1818 			/* tx dma start */
1819 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1820 		}
1821 		/* wakeup */
1822 		netif_wake_queue(ndev);
1823 	}
1824 }
1825 
1826 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1827 {
1828 	struct net_device *ndev = netdev;
1829 	struct sh_eth_private *mdp = netdev_priv(ndev);
1830 	struct sh_eth_cpu_data *cd = mdp->cd;
1831 	irqreturn_t ret = IRQ_NONE;
1832 	u32 intr_status, intr_enable;
1833 
1834 	spin_lock(&mdp->lock);
1835 
1836 	/* Get interrupt status */
1837 	intr_status = sh_eth_read(ndev, EESR);
1838 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1839 	 * enabled since it's the one that  comes  thru regardless of the mask,
1840 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1841 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1842 	 * bit...
1843 	 */
1844 	intr_enable = sh_eth_read(ndev, EESIPR);
1845 	intr_status &= intr_enable | EESIPR_ECIIP;
1846 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1847 			   cd->eesr_err_check))
1848 		ret = IRQ_HANDLED;
1849 	else
1850 		goto out;
1851 
1852 	if (unlikely(!mdp->irq_enabled)) {
1853 		sh_eth_write(ndev, 0, EESIPR);
1854 		goto out;
1855 	}
1856 
1857 	if (intr_status & EESR_RX_CHECK) {
1858 		if (napi_schedule_prep(&mdp->napi)) {
1859 			/* Mask Rx interrupts */
1860 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1861 				     EESIPR);
1862 			__napi_schedule(&mdp->napi);
1863 		} else {
1864 			netdev_warn(ndev,
1865 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1866 				    intr_status, intr_enable);
1867 		}
1868 	}
1869 
1870 	/* Tx Check */
1871 	if (intr_status & cd->tx_check) {
1872 		/* Clear Tx interrupts */
1873 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1874 
1875 		sh_eth_tx_free(ndev, true);
1876 		netif_wake_queue(ndev);
1877 	}
1878 
1879 	/* E-MAC interrupt */
1880 	if (intr_status & EESR_ECI)
1881 		sh_eth_emac_interrupt(ndev);
1882 
1883 	if (intr_status & cd->eesr_err_check) {
1884 		/* Clear error interrupts */
1885 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1886 
1887 		sh_eth_error(ndev, intr_status);
1888 	}
1889 
1890 out:
1891 	spin_unlock(&mdp->lock);
1892 
1893 	return ret;
1894 }
1895 
1896 static int sh_eth_poll(struct napi_struct *napi, int budget)
1897 {
1898 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1899 						  napi);
1900 	struct net_device *ndev = napi->dev;
1901 	int quota = budget;
1902 	u32 intr_status;
1903 
1904 	for (;;) {
1905 		intr_status = sh_eth_read(ndev, EESR);
1906 		if (!(intr_status & EESR_RX_CHECK))
1907 			break;
1908 		/* Clear Rx interrupts */
1909 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1910 
1911 		if (sh_eth_rx(ndev, intr_status, &quota))
1912 			goto out;
1913 	}
1914 
1915 	napi_complete(napi);
1916 
1917 	/* Reenable Rx interrupts */
1918 	if (mdp->irq_enabled)
1919 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1920 out:
1921 	return budget - quota;
1922 }
1923 
1924 /* PHY state control function */
1925 static void sh_eth_adjust_link(struct net_device *ndev)
1926 {
1927 	struct sh_eth_private *mdp = netdev_priv(ndev);
1928 	struct phy_device *phydev = ndev->phydev;
1929 	unsigned long flags;
1930 	int new_state = 0;
1931 
1932 	spin_lock_irqsave(&mdp->lock, flags);
1933 
1934 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1935 	if (mdp->cd->no_psr || mdp->no_ether_link)
1936 		sh_eth_rcv_snd_disable(ndev);
1937 
1938 	if (phydev->link) {
1939 		if (phydev->duplex != mdp->duplex) {
1940 			new_state = 1;
1941 			mdp->duplex = phydev->duplex;
1942 			if (mdp->cd->set_duplex)
1943 				mdp->cd->set_duplex(ndev);
1944 		}
1945 
1946 		if (phydev->speed != mdp->speed) {
1947 			new_state = 1;
1948 			mdp->speed = phydev->speed;
1949 			if (mdp->cd->set_rate)
1950 				mdp->cd->set_rate(ndev);
1951 		}
1952 		if (!mdp->link) {
1953 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1954 			new_state = 1;
1955 			mdp->link = phydev->link;
1956 		}
1957 	} else if (mdp->link) {
1958 		new_state = 1;
1959 		mdp->link = 0;
1960 		mdp->speed = 0;
1961 		mdp->duplex = -1;
1962 	}
1963 
1964 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1965 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1966 		sh_eth_rcv_snd_enable(ndev);
1967 
1968 	mmiowb();
1969 	spin_unlock_irqrestore(&mdp->lock, flags);
1970 
1971 	if (new_state && netif_msg_link(mdp))
1972 		phy_print_status(phydev);
1973 }
1974 
1975 /* PHY init function */
1976 static int sh_eth_phy_init(struct net_device *ndev)
1977 {
1978 	struct device_node *np = ndev->dev.parent->of_node;
1979 	struct sh_eth_private *mdp = netdev_priv(ndev);
1980 	struct phy_device *phydev;
1981 
1982 	mdp->link = 0;
1983 	mdp->speed = 0;
1984 	mdp->duplex = -1;
1985 
1986 	/* Try connect to PHY */
1987 	if (np) {
1988 		struct device_node *pn;
1989 
1990 		pn = of_parse_phandle(np, "phy-handle", 0);
1991 		phydev = of_phy_connect(ndev, pn,
1992 					sh_eth_adjust_link, 0,
1993 					mdp->phy_interface);
1994 
1995 		of_node_put(pn);
1996 		if (!phydev)
1997 			phydev = ERR_PTR(-ENOENT);
1998 	} else {
1999 		char phy_id[MII_BUS_ID_SIZE + 3];
2000 
2001 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2002 			 mdp->mii_bus->id, mdp->phy_id);
2003 
2004 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2005 				     mdp->phy_interface);
2006 	}
2007 
2008 	if (IS_ERR(phydev)) {
2009 		netdev_err(ndev, "failed to connect PHY\n");
2010 		return PTR_ERR(phydev);
2011 	}
2012 
2013 	/* mask with MAC supported features */
2014 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2015 		int err = phy_set_max_speed(phydev, SPEED_100);
2016 		if (err) {
2017 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2018 			phy_disconnect(phydev);
2019 			return err;
2020 		}
2021 	}
2022 
2023 	phy_attached_info(phydev);
2024 
2025 	return 0;
2026 }
2027 
2028 /* PHY control start function */
2029 static int sh_eth_phy_start(struct net_device *ndev)
2030 {
2031 	int ret;
2032 
2033 	ret = sh_eth_phy_init(ndev);
2034 	if (ret)
2035 		return ret;
2036 
2037 	phy_start(ndev->phydev);
2038 
2039 	return 0;
2040 }
2041 
2042 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2043  * version must be bumped as well.  Just adding registers up to that
2044  * limit is fine, as long as the existing register indices don't
2045  * change.
2046  */
2047 #define SH_ETH_REG_DUMP_VERSION		1
2048 #define SH_ETH_REG_DUMP_MAX_REGS	256
2049 
2050 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2051 {
2052 	struct sh_eth_private *mdp = netdev_priv(ndev);
2053 	struct sh_eth_cpu_data *cd = mdp->cd;
2054 	u32 *valid_map;
2055 	size_t len;
2056 
2057 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2058 
2059 	/* Dump starts with a bitmap that tells ethtool which
2060 	 * registers are defined for this chip.
2061 	 */
2062 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2063 	if (buf) {
2064 		valid_map = buf;
2065 		buf += len;
2066 	} else {
2067 		valid_map = NULL;
2068 	}
2069 
2070 	/* Add a register to the dump, if it has a defined offset.
2071 	 * This automatically skips most undefined registers, but for
2072 	 * some it is also necessary to check a capability flag in
2073 	 * struct sh_eth_cpu_data.
2074 	 */
2075 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2076 #define add_reg_from(reg, read_expr) do {				\
2077 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2078 			if (buf) {					\
2079 				mark_reg_valid(reg);			\
2080 				*buf++ = read_expr;			\
2081 			}						\
2082 			++len;						\
2083 		}							\
2084 	} while (0)
2085 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2086 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2087 
2088 	add_reg(EDSR);
2089 	add_reg(EDMR);
2090 	add_reg(EDTRR);
2091 	add_reg(EDRRR);
2092 	add_reg(EESR);
2093 	add_reg(EESIPR);
2094 	add_reg(TDLAR);
2095 	add_reg(TDFAR);
2096 	add_reg(TDFXR);
2097 	add_reg(TDFFR);
2098 	add_reg(RDLAR);
2099 	add_reg(RDFAR);
2100 	add_reg(RDFXR);
2101 	add_reg(RDFFR);
2102 	add_reg(TRSCER);
2103 	add_reg(RMFCR);
2104 	add_reg(TFTR);
2105 	add_reg(FDR);
2106 	add_reg(RMCR);
2107 	add_reg(TFUCR);
2108 	add_reg(RFOCR);
2109 	if (cd->rmiimode)
2110 		add_reg(RMIIMODE);
2111 	add_reg(FCFTR);
2112 	if (cd->rpadir)
2113 		add_reg(RPADIR);
2114 	if (!cd->no_trimd)
2115 		add_reg(TRIMD);
2116 	add_reg(ECMR);
2117 	add_reg(ECSR);
2118 	add_reg(ECSIPR);
2119 	add_reg(PIR);
2120 	if (!cd->no_psr)
2121 		add_reg(PSR);
2122 	add_reg(RDMLR);
2123 	add_reg(RFLR);
2124 	add_reg(IPGR);
2125 	if (cd->apr)
2126 		add_reg(APR);
2127 	if (cd->mpr)
2128 		add_reg(MPR);
2129 	add_reg(RFCR);
2130 	add_reg(RFCF);
2131 	if (cd->tpauser)
2132 		add_reg(TPAUSER);
2133 	add_reg(TPAUSECR);
2134 	add_reg(GECMR);
2135 	if (cd->bculr)
2136 		add_reg(BCULR);
2137 	add_reg(MAHR);
2138 	add_reg(MALR);
2139 	add_reg(TROCR);
2140 	add_reg(CDCR);
2141 	add_reg(LCCR);
2142 	add_reg(CNDCR);
2143 	add_reg(CEFCR);
2144 	add_reg(FRECR);
2145 	add_reg(TSFRCR);
2146 	add_reg(TLFRCR);
2147 	add_reg(CERCR);
2148 	add_reg(CEECR);
2149 	add_reg(MAFCR);
2150 	if (cd->rtrate)
2151 		add_reg(RTRATE);
2152 	if (cd->hw_checksum)
2153 		add_reg(CSMR);
2154 	if (cd->select_mii)
2155 		add_reg(RMII_MII);
2156 	if (cd->tsu) {
2157 		add_tsu_reg(ARSTR);
2158 		add_tsu_reg(TSU_CTRST);
2159 		add_tsu_reg(TSU_FWEN0);
2160 		add_tsu_reg(TSU_FWEN1);
2161 		add_tsu_reg(TSU_FCM);
2162 		add_tsu_reg(TSU_BSYSL0);
2163 		add_tsu_reg(TSU_BSYSL1);
2164 		add_tsu_reg(TSU_PRISL0);
2165 		add_tsu_reg(TSU_PRISL1);
2166 		add_tsu_reg(TSU_FWSL0);
2167 		add_tsu_reg(TSU_FWSL1);
2168 		add_tsu_reg(TSU_FWSLC);
2169 		add_tsu_reg(TSU_QTAGM0);
2170 		add_tsu_reg(TSU_QTAGM1);
2171 		add_tsu_reg(TSU_FWSR);
2172 		add_tsu_reg(TSU_FWINMK);
2173 		add_tsu_reg(TSU_ADQT0);
2174 		add_tsu_reg(TSU_ADQT1);
2175 		add_tsu_reg(TSU_VTAG0);
2176 		add_tsu_reg(TSU_VTAG1);
2177 		add_tsu_reg(TSU_ADSBSY);
2178 		add_tsu_reg(TSU_TEN);
2179 		add_tsu_reg(TSU_POST1);
2180 		add_tsu_reg(TSU_POST2);
2181 		add_tsu_reg(TSU_POST3);
2182 		add_tsu_reg(TSU_POST4);
2183 		/* This is the start of a table, not just a single register. */
2184 		if (buf) {
2185 			unsigned int i;
2186 
2187 			mark_reg_valid(TSU_ADRH0);
2188 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2189 				*buf++ = ioread32(mdp->tsu_addr +
2190 						  mdp->reg_offset[TSU_ADRH0] +
2191 						  i * 4);
2192 		}
2193 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2194 	}
2195 
2196 #undef mark_reg_valid
2197 #undef add_reg_from
2198 #undef add_reg
2199 #undef add_tsu_reg
2200 
2201 	return len * 4;
2202 }
2203 
2204 static int sh_eth_get_regs_len(struct net_device *ndev)
2205 {
2206 	return __sh_eth_get_regs(ndev, NULL);
2207 }
2208 
2209 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2210 			    void *buf)
2211 {
2212 	struct sh_eth_private *mdp = netdev_priv(ndev);
2213 
2214 	regs->version = SH_ETH_REG_DUMP_VERSION;
2215 
2216 	pm_runtime_get_sync(&mdp->pdev->dev);
2217 	__sh_eth_get_regs(ndev, buf);
2218 	pm_runtime_put_sync(&mdp->pdev->dev);
2219 }
2220 
2221 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2222 {
2223 	struct sh_eth_private *mdp = netdev_priv(ndev);
2224 	return mdp->msg_enable;
2225 }
2226 
2227 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2228 {
2229 	struct sh_eth_private *mdp = netdev_priv(ndev);
2230 	mdp->msg_enable = value;
2231 }
2232 
2233 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2234 	"rx_current", "tx_current",
2235 	"rx_dirty", "tx_dirty",
2236 };
2237 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2238 
2239 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2240 {
2241 	switch (sset) {
2242 	case ETH_SS_STATS:
2243 		return SH_ETH_STATS_LEN;
2244 	default:
2245 		return -EOPNOTSUPP;
2246 	}
2247 }
2248 
2249 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2250 				     struct ethtool_stats *stats, u64 *data)
2251 {
2252 	struct sh_eth_private *mdp = netdev_priv(ndev);
2253 	int i = 0;
2254 
2255 	/* device-specific stats */
2256 	data[i++] = mdp->cur_rx;
2257 	data[i++] = mdp->cur_tx;
2258 	data[i++] = mdp->dirty_rx;
2259 	data[i++] = mdp->dirty_tx;
2260 }
2261 
2262 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2263 {
2264 	switch (stringset) {
2265 	case ETH_SS_STATS:
2266 		memcpy(data, *sh_eth_gstrings_stats,
2267 		       sizeof(sh_eth_gstrings_stats));
2268 		break;
2269 	}
2270 }
2271 
2272 static void sh_eth_get_ringparam(struct net_device *ndev,
2273 				 struct ethtool_ringparam *ring)
2274 {
2275 	struct sh_eth_private *mdp = netdev_priv(ndev);
2276 
2277 	ring->rx_max_pending = RX_RING_MAX;
2278 	ring->tx_max_pending = TX_RING_MAX;
2279 	ring->rx_pending = mdp->num_rx_ring;
2280 	ring->tx_pending = mdp->num_tx_ring;
2281 }
2282 
2283 static int sh_eth_set_ringparam(struct net_device *ndev,
2284 				struct ethtool_ringparam *ring)
2285 {
2286 	struct sh_eth_private *mdp = netdev_priv(ndev);
2287 	int ret;
2288 
2289 	if (ring->tx_pending > TX_RING_MAX ||
2290 	    ring->rx_pending > RX_RING_MAX ||
2291 	    ring->tx_pending < TX_RING_MIN ||
2292 	    ring->rx_pending < RX_RING_MIN)
2293 		return -EINVAL;
2294 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2295 		return -EINVAL;
2296 
2297 	if (netif_running(ndev)) {
2298 		netif_device_detach(ndev);
2299 		netif_tx_disable(ndev);
2300 
2301 		/* Serialise with the interrupt handler and NAPI, then
2302 		 * disable interrupts.  We have to clear the
2303 		 * irq_enabled flag first to ensure that interrupts
2304 		 * won't be re-enabled.
2305 		 */
2306 		mdp->irq_enabled = false;
2307 		synchronize_irq(ndev->irq);
2308 		napi_synchronize(&mdp->napi);
2309 		sh_eth_write(ndev, 0x0000, EESIPR);
2310 
2311 		sh_eth_dev_exit(ndev);
2312 
2313 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2314 		sh_eth_ring_free(ndev);
2315 	}
2316 
2317 	/* Set new parameters */
2318 	mdp->num_rx_ring = ring->rx_pending;
2319 	mdp->num_tx_ring = ring->tx_pending;
2320 
2321 	if (netif_running(ndev)) {
2322 		ret = sh_eth_ring_init(ndev);
2323 		if (ret < 0) {
2324 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2325 				   __func__);
2326 			return ret;
2327 		}
2328 		ret = sh_eth_dev_init(ndev);
2329 		if (ret < 0) {
2330 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2331 				   __func__);
2332 			return ret;
2333 		}
2334 
2335 		netif_device_attach(ndev);
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2342 {
2343 	struct sh_eth_private *mdp = netdev_priv(ndev);
2344 
2345 	wol->supported = 0;
2346 	wol->wolopts = 0;
2347 
2348 	if (mdp->cd->magic) {
2349 		wol->supported = WAKE_MAGIC;
2350 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2351 	}
2352 }
2353 
2354 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2355 {
2356 	struct sh_eth_private *mdp = netdev_priv(ndev);
2357 
2358 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2359 		return -EOPNOTSUPP;
2360 
2361 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2362 
2363 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2364 
2365 	return 0;
2366 }
2367 
2368 static const struct ethtool_ops sh_eth_ethtool_ops = {
2369 	.get_regs_len	= sh_eth_get_regs_len,
2370 	.get_regs	= sh_eth_get_regs,
2371 	.nway_reset	= phy_ethtool_nway_reset,
2372 	.get_msglevel	= sh_eth_get_msglevel,
2373 	.set_msglevel	= sh_eth_set_msglevel,
2374 	.get_link	= ethtool_op_get_link,
2375 	.get_strings	= sh_eth_get_strings,
2376 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2377 	.get_sset_count     = sh_eth_get_sset_count,
2378 	.get_ringparam	= sh_eth_get_ringparam,
2379 	.set_ringparam	= sh_eth_set_ringparam,
2380 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2381 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2382 	.get_wol	= sh_eth_get_wol,
2383 	.set_wol	= sh_eth_set_wol,
2384 };
2385 
2386 /* network device open function */
2387 static int sh_eth_open(struct net_device *ndev)
2388 {
2389 	struct sh_eth_private *mdp = netdev_priv(ndev);
2390 	int ret;
2391 
2392 	pm_runtime_get_sync(&mdp->pdev->dev);
2393 
2394 	napi_enable(&mdp->napi);
2395 
2396 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2397 			  mdp->cd->irq_flags, ndev->name, ndev);
2398 	if (ret) {
2399 		netdev_err(ndev, "Can not assign IRQ number\n");
2400 		goto out_napi_off;
2401 	}
2402 
2403 	/* Descriptor set */
2404 	ret = sh_eth_ring_init(ndev);
2405 	if (ret)
2406 		goto out_free_irq;
2407 
2408 	/* device init */
2409 	ret = sh_eth_dev_init(ndev);
2410 	if (ret)
2411 		goto out_free_irq;
2412 
2413 	/* PHY control start*/
2414 	ret = sh_eth_phy_start(ndev);
2415 	if (ret)
2416 		goto out_free_irq;
2417 
2418 	netif_start_queue(ndev);
2419 
2420 	mdp->is_opened = 1;
2421 
2422 	return ret;
2423 
2424 out_free_irq:
2425 	free_irq(ndev->irq, ndev);
2426 out_napi_off:
2427 	napi_disable(&mdp->napi);
2428 	pm_runtime_put_sync(&mdp->pdev->dev);
2429 	return ret;
2430 }
2431 
2432 /* Timeout function */
2433 static void sh_eth_tx_timeout(struct net_device *ndev)
2434 {
2435 	struct sh_eth_private *mdp = netdev_priv(ndev);
2436 	struct sh_eth_rxdesc *rxdesc;
2437 	int i;
2438 
2439 	netif_stop_queue(ndev);
2440 
2441 	netif_err(mdp, timer, ndev,
2442 		  "transmit timed out, status %8.8x, resetting...\n",
2443 		  sh_eth_read(ndev, EESR));
2444 
2445 	/* tx_errors count up */
2446 	ndev->stats.tx_errors++;
2447 
2448 	/* Free all the skbuffs in the Rx queue. */
2449 	for (i = 0; i < mdp->num_rx_ring; i++) {
2450 		rxdesc = &mdp->rx_ring[i];
2451 		rxdesc->status = cpu_to_le32(0);
2452 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2453 		dev_kfree_skb(mdp->rx_skbuff[i]);
2454 		mdp->rx_skbuff[i] = NULL;
2455 	}
2456 	for (i = 0; i < mdp->num_tx_ring; i++) {
2457 		dev_kfree_skb(mdp->tx_skbuff[i]);
2458 		mdp->tx_skbuff[i] = NULL;
2459 	}
2460 
2461 	/* device init */
2462 	sh_eth_dev_init(ndev);
2463 
2464 	netif_start_queue(ndev);
2465 }
2466 
2467 /* Packet transmit function */
2468 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2469 {
2470 	struct sh_eth_private *mdp = netdev_priv(ndev);
2471 	struct sh_eth_txdesc *txdesc;
2472 	dma_addr_t dma_addr;
2473 	u32 entry;
2474 	unsigned long flags;
2475 
2476 	spin_lock_irqsave(&mdp->lock, flags);
2477 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2478 		if (!sh_eth_tx_free(ndev, true)) {
2479 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2480 			netif_stop_queue(ndev);
2481 			spin_unlock_irqrestore(&mdp->lock, flags);
2482 			return NETDEV_TX_BUSY;
2483 		}
2484 	}
2485 	spin_unlock_irqrestore(&mdp->lock, flags);
2486 
2487 	if (skb_put_padto(skb, ETH_ZLEN))
2488 		return NETDEV_TX_OK;
2489 
2490 	entry = mdp->cur_tx % mdp->num_tx_ring;
2491 	mdp->tx_skbuff[entry] = skb;
2492 	txdesc = &mdp->tx_ring[entry];
2493 	/* soft swap. */
2494 	if (!mdp->cd->hw_swap)
2495 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2496 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2497 				  DMA_TO_DEVICE);
2498 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2499 		kfree_skb(skb);
2500 		return NETDEV_TX_OK;
2501 	}
2502 	txdesc->addr = cpu_to_le32(dma_addr);
2503 	txdesc->len  = cpu_to_le32(skb->len << 16);
2504 
2505 	dma_wmb(); /* TACT bit must be set after all the above writes */
2506 	if (entry >= mdp->num_tx_ring - 1)
2507 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2508 	else
2509 		txdesc->status |= cpu_to_le32(TD_TACT);
2510 
2511 	mdp->cur_tx++;
2512 
2513 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2514 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2515 
2516 	return NETDEV_TX_OK;
2517 }
2518 
2519 /* The statistics registers have write-clear behaviour, which means we
2520  * will lose any increment between the read and write.  We mitigate
2521  * this by only clearing when we read a non-zero value, so we will
2522  * never falsely report a total of zero.
2523  */
2524 static void
2525 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2526 {
2527 	u32 delta = sh_eth_read(ndev, reg);
2528 
2529 	if (delta) {
2530 		*stat += delta;
2531 		sh_eth_write(ndev, 0, reg);
2532 	}
2533 }
2534 
2535 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2536 {
2537 	struct sh_eth_private *mdp = netdev_priv(ndev);
2538 
2539 	if (mdp->cd->no_tx_cntrs)
2540 		return &ndev->stats;
2541 
2542 	if (!mdp->is_opened)
2543 		return &ndev->stats;
2544 
2545 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2546 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2547 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2548 
2549 	if (mdp->cd->cexcr) {
2550 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2551 				   CERCR);
2552 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2553 				   CEECR);
2554 	} else {
2555 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2556 				   CNDCR);
2557 	}
2558 
2559 	return &ndev->stats;
2560 }
2561 
2562 /* device close function */
2563 static int sh_eth_close(struct net_device *ndev)
2564 {
2565 	struct sh_eth_private *mdp = netdev_priv(ndev);
2566 
2567 	netif_stop_queue(ndev);
2568 
2569 	/* Serialise with the interrupt handler and NAPI, then disable
2570 	 * interrupts.  We have to clear the irq_enabled flag first to
2571 	 * ensure that interrupts won't be re-enabled.
2572 	 */
2573 	mdp->irq_enabled = false;
2574 	synchronize_irq(ndev->irq);
2575 	napi_disable(&mdp->napi);
2576 	sh_eth_write(ndev, 0x0000, EESIPR);
2577 
2578 	sh_eth_dev_exit(ndev);
2579 
2580 	/* PHY Disconnect */
2581 	if (ndev->phydev) {
2582 		phy_stop(ndev->phydev);
2583 		phy_disconnect(ndev->phydev);
2584 	}
2585 
2586 	free_irq(ndev->irq, ndev);
2587 
2588 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2589 	sh_eth_ring_free(ndev);
2590 
2591 	pm_runtime_put_sync(&mdp->pdev->dev);
2592 
2593 	mdp->is_opened = 0;
2594 
2595 	return 0;
2596 }
2597 
2598 /* ioctl to device function */
2599 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2600 {
2601 	struct phy_device *phydev = ndev->phydev;
2602 
2603 	if (!netif_running(ndev))
2604 		return -EINVAL;
2605 
2606 	if (!phydev)
2607 		return -ENODEV;
2608 
2609 	return phy_mii_ioctl(phydev, rq, cmd);
2610 }
2611 
2612 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2613 {
2614 	if (netif_running(ndev))
2615 		return -EBUSY;
2616 
2617 	ndev->mtu = new_mtu;
2618 	netdev_update_features(ndev);
2619 
2620 	return 0;
2621 }
2622 
2623 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2624 static u32 sh_eth_tsu_get_post_mask(int entry)
2625 {
2626 	return 0x0f << (28 - ((entry % 8) * 4));
2627 }
2628 
2629 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2630 {
2631 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2632 }
2633 
2634 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2635 					     int entry)
2636 {
2637 	struct sh_eth_private *mdp = netdev_priv(ndev);
2638 	int reg = TSU_POST1 + entry / 8;
2639 	u32 tmp;
2640 
2641 	tmp = sh_eth_tsu_read(mdp, reg);
2642 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2643 }
2644 
2645 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2646 					      int entry)
2647 {
2648 	struct sh_eth_private *mdp = netdev_priv(ndev);
2649 	int reg = TSU_POST1 + entry / 8;
2650 	u32 post_mask, ref_mask, tmp;
2651 
2652 	post_mask = sh_eth_tsu_get_post_mask(entry);
2653 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2654 
2655 	tmp = sh_eth_tsu_read(mdp, reg);
2656 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2657 
2658 	/* If other port enables, the function returns "true" */
2659 	return tmp & ref_mask;
2660 }
2661 
2662 static int sh_eth_tsu_busy(struct net_device *ndev)
2663 {
2664 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2665 	struct sh_eth_private *mdp = netdev_priv(ndev);
2666 
2667 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2668 		udelay(10);
2669 		timeout--;
2670 		if (timeout <= 0) {
2671 			netdev_err(ndev, "%s: timeout\n", __func__);
2672 			return -ETIMEDOUT;
2673 		}
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2680 				  const u8 *addr)
2681 {
2682 	struct sh_eth_private *mdp = netdev_priv(ndev);
2683 	u32 val;
2684 
2685 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2686 	iowrite32(val, mdp->tsu_addr + offset);
2687 	if (sh_eth_tsu_busy(ndev) < 0)
2688 		return -EBUSY;
2689 
2690 	val = addr[4] << 8 | addr[5];
2691 	iowrite32(val, mdp->tsu_addr + offset + 4);
2692 	if (sh_eth_tsu_busy(ndev) < 0)
2693 		return -EBUSY;
2694 
2695 	return 0;
2696 }
2697 
2698 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2699 {
2700 	struct sh_eth_private *mdp = netdev_priv(ndev);
2701 	u32 val;
2702 
2703 	val = ioread32(mdp->tsu_addr + offset);
2704 	addr[0] = (val >> 24) & 0xff;
2705 	addr[1] = (val >> 16) & 0xff;
2706 	addr[2] = (val >> 8) & 0xff;
2707 	addr[3] = val & 0xff;
2708 	val = ioread32(mdp->tsu_addr + offset + 4);
2709 	addr[4] = (val >> 8) & 0xff;
2710 	addr[5] = val & 0xff;
2711 }
2712 
2713 
2714 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2715 {
2716 	struct sh_eth_private *mdp = netdev_priv(ndev);
2717 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2718 	int i;
2719 	u8 c_addr[ETH_ALEN];
2720 
2721 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2722 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2723 		if (ether_addr_equal(addr, c_addr))
2724 			return i;
2725 	}
2726 
2727 	return -ENOENT;
2728 }
2729 
2730 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2731 {
2732 	u8 blank[ETH_ALEN];
2733 	int entry;
2734 
2735 	memset(blank, 0, sizeof(blank));
2736 	entry = sh_eth_tsu_find_entry(ndev, blank);
2737 	return (entry < 0) ? -ENOMEM : entry;
2738 }
2739 
2740 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2741 					      int entry)
2742 {
2743 	struct sh_eth_private *mdp = netdev_priv(ndev);
2744 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2745 	int ret;
2746 	u8 blank[ETH_ALEN];
2747 
2748 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2749 			 ~(1 << (31 - entry)), TSU_TEN);
2750 
2751 	memset(blank, 0, sizeof(blank));
2752 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2753 	if (ret < 0)
2754 		return ret;
2755 	return 0;
2756 }
2757 
2758 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2759 {
2760 	struct sh_eth_private *mdp = netdev_priv(ndev);
2761 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2762 	int i, ret;
2763 
2764 	if (!mdp->cd->tsu)
2765 		return 0;
2766 
2767 	i = sh_eth_tsu_find_entry(ndev, addr);
2768 	if (i < 0) {
2769 		/* No entry found, create one */
2770 		i = sh_eth_tsu_find_empty(ndev);
2771 		if (i < 0)
2772 			return -ENOMEM;
2773 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2774 		if (ret < 0)
2775 			return ret;
2776 
2777 		/* Enable the entry */
2778 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2779 				 (1 << (31 - i)), TSU_TEN);
2780 	}
2781 
2782 	/* Entry found or created, enable POST */
2783 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2784 
2785 	return 0;
2786 }
2787 
2788 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2789 {
2790 	struct sh_eth_private *mdp = netdev_priv(ndev);
2791 	int i, ret;
2792 
2793 	if (!mdp->cd->tsu)
2794 		return 0;
2795 
2796 	i = sh_eth_tsu_find_entry(ndev, addr);
2797 	if (i) {
2798 		/* Entry found */
2799 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2800 			goto done;
2801 
2802 		/* Disable the entry if both ports was disabled */
2803 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2804 		if (ret < 0)
2805 			return ret;
2806 	}
2807 done:
2808 	return 0;
2809 }
2810 
2811 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2812 {
2813 	struct sh_eth_private *mdp = netdev_priv(ndev);
2814 	int i, ret;
2815 
2816 	if (!mdp->cd->tsu)
2817 		return 0;
2818 
2819 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2820 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2821 			continue;
2822 
2823 		/* Disable the entry if both ports was disabled */
2824 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2825 		if (ret < 0)
2826 			return ret;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2833 {
2834 	struct sh_eth_private *mdp = netdev_priv(ndev);
2835 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2836 	u8 addr[ETH_ALEN];
2837 	int i;
2838 
2839 	if (!mdp->cd->tsu)
2840 		return;
2841 
2842 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2843 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2844 		if (is_multicast_ether_addr(addr))
2845 			sh_eth_tsu_del_entry(ndev, addr);
2846 	}
2847 }
2848 
2849 /* Update promiscuous flag and multicast filter */
2850 static void sh_eth_set_rx_mode(struct net_device *ndev)
2851 {
2852 	struct sh_eth_private *mdp = netdev_priv(ndev);
2853 	u32 ecmr_bits;
2854 	int mcast_all = 0;
2855 	unsigned long flags;
2856 
2857 	spin_lock_irqsave(&mdp->lock, flags);
2858 	/* Initial condition is MCT = 1, PRM = 0.
2859 	 * Depending on ndev->flags, set PRM or clear MCT
2860 	 */
2861 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2862 	if (mdp->cd->tsu)
2863 		ecmr_bits |= ECMR_MCT;
2864 
2865 	if (!(ndev->flags & IFF_MULTICAST)) {
2866 		sh_eth_tsu_purge_mcast(ndev);
2867 		mcast_all = 1;
2868 	}
2869 	if (ndev->flags & IFF_ALLMULTI) {
2870 		sh_eth_tsu_purge_mcast(ndev);
2871 		ecmr_bits &= ~ECMR_MCT;
2872 		mcast_all = 1;
2873 	}
2874 
2875 	if (ndev->flags & IFF_PROMISC) {
2876 		sh_eth_tsu_purge_all(ndev);
2877 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2878 	} else if (mdp->cd->tsu) {
2879 		struct netdev_hw_addr *ha;
2880 		netdev_for_each_mc_addr(ha, ndev) {
2881 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2882 				continue;
2883 
2884 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2885 				if (!mcast_all) {
2886 					sh_eth_tsu_purge_mcast(ndev);
2887 					ecmr_bits &= ~ECMR_MCT;
2888 					mcast_all = 1;
2889 				}
2890 			}
2891 		}
2892 	}
2893 
2894 	/* update the ethernet mode */
2895 	sh_eth_write(ndev, ecmr_bits, ECMR);
2896 
2897 	spin_unlock_irqrestore(&mdp->lock, flags);
2898 }
2899 
2900 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2901 {
2902 	if (!mdp->port)
2903 		return TSU_VTAG0;
2904 	else
2905 		return TSU_VTAG1;
2906 }
2907 
2908 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2909 				  __be16 proto, u16 vid)
2910 {
2911 	struct sh_eth_private *mdp = netdev_priv(ndev);
2912 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2913 
2914 	if (unlikely(!mdp->cd->tsu))
2915 		return -EPERM;
2916 
2917 	/* No filtering if vid = 0 */
2918 	if (!vid)
2919 		return 0;
2920 
2921 	mdp->vlan_num_ids++;
2922 
2923 	/* The controller has one VLAN tag HW filter. So, if the filter is
2924 	 * already enabled, the driver disables it and the filte
2925 	 */
2926 	if (mdp->vlan_num_ids > 1) {
2927 		/* disable VLAN filter */
2928 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2929 		return 0;
2930 	}
2931 
2932 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2933 			 vtag_reg_index);
2934 
2935 	return 0;
2936 }
2937 
2938 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2939 				   __be16 proto, u16 vid)
2940 {
2941 	struct sh_eth_private *mdp = netdev_priv(ndev);
2942 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2943 
2944 	if (unlikely(!mdp->cd->tsu))
2945 		return -EPERM;
2946 
2947 	/* No filtering if vid = 0 */
2948 	if (!vid)
2949 		return 0;
2950 
2951 	mdp->vlan_num_ids--;
2952 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2953 
2954 	return 0;
2955 }
2956 
2957 /* SuperH's TSU register init function */
2958 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2959 {
2960 	if (!mdp->cd->dual_port) {
2961 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2962 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2963 				 TSU_FWSLC);	/* Enable POST registers */
2964 		return;
2965 	}
2966 
2967 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2968 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2969 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2970 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2971 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2972 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2973 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2974 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2975 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2976 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2977 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2978 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2979 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2980 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2981 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2982 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2983 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2984 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2985 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2986 }
2987 
2988 /* MDIO bus release function */
2989 static int sh_mdio_release(struct sh_eth_private *mdp)
2990 {
2991 	/* unregister mdio bus */
2992 	mdiobus_unregister(mdp->mii_bus);
2993 
2994 	/* free bitbang info */
2995 	free_mdio_bitbang(mdp->mii_bus);
2996 
2997 	return 0;
2998 }
2999 
3000 /* MDIO bus init function */
3001 static int sh_mdio_init(struct sh_eth_private *mdp,
3002 			struct sh_eth_plat_data *pd)
3003 {
3004 	int ret;
3005 	struct bb_info *bitbang;
3006 	struct platform_device *pdev = mdp->pdev;
3007 	struct device *dev = &mdp->pdev->dev;
3008 
3009 	/* create bit control struct for PHY */
3010 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3011 	if (!bitbang)
3012 		return -ENOMEM;
3013 
3014 	/* bitbang init */
3015 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3016 	bitbang->set_gate = pd->set_mdio_gate;
3017 	bitbang->ctrl.ops = &bb_ops;
3018 
3019 	/* MII controller setting */
3020 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3021 	if (!mdp->mii_bus)
3022 		return -ENOMEM;
3023 
3024 	/* Hook up MII support for ethtool */
3025 	mdp->mii_bus->name = "sh_mii";
3026 	mdp->mii_bus->parent = dev;
3027 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3028 		 pdev->name, pdev->id);
3029 
3030 	/* register MDIO bus */
3031 	if (pd->phy_irq > 0)
3032 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3033 
3034 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3035 	if (ret)
3036 		goto out_free_bus;
3037 
3038 	return 0;
3039 
3040 out_free_bus:
3041 	free_mdio_bitbang(mdp->mii_bus);
3042 	return ret;
3043 }
3044 
3045 static const u16 *sh_eth_get_register_offset(int register_type)
3046 {
3047 	const u16 *reg_offset = NULL;
3048 
3049 	switch (register_type) {
3050 	case SH_ETH_REG_GIGABIT:
3051 		reg_offset = sh_eth_offset_gigabit;
3052 		break;
3053 	case SH_ETH_REG_FAST_RZ:
3054 		reg_offset = sh_eth_offset_fast_rz;
3055 		break;
3056 	case SH_ETH_REG_FAST_RCAR:
3057 		reg_offset = sh_eth_offset_fast_rcar;
3058 		break;
3059 	case SH_ETH_REG_FAST_SH4:
3060 		reg_offset = sh_eth_offset_fast_sh4;
3061 		break;
3062 	case SH_ETH_REG_FAST_SH3_SH2:
3063 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3064 		break;
3065 	}
3066 
3067 	return reg_offset;
3068 }
3069 
3070 static const struct net_device_ops sh_eth_netdev_ops = {
3071 	.ndo_open		= sh_eth_open,
3072 	.ndo_stop		= sh_eth_close,
3073 	.ndo_start_xmit		= sh_eth_start_xmit,
3074 	.ndo_get_stats		= sh_eth_get_stats,
3075 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3076 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3077 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3078 	.ndo_change_mtu		= sh_eth_change_mtu,
3079 	.ndo_validate_addr	= eth_validate_addr,
3080 	.ndo_set_mac_address	= eth_mac_addr,
3081 };
3082 
3083 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3084 	.ndo_open		= sh_eth_open,
3085 	.ndo_stop		= sh_eth_close,
3086 	.ndo_start_xmit		= sh_eth_start_xmit,
3087 	.ndo_get_stats		= sh_eth_get_stats,
3088 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3089 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3090 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3091 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3092 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3093 	.ndo_change_mtu		= sh_eth_change_mtu,
3094 	.ndo_validate_addr	= eth_validate_addr,
3095 	.ndo_set_mac_address	= eth_mac_addr,
3096 };
3097 
3098 #ifdef CONFIG_OF
3099 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3100 {
3101 	struct device_node *np = dev->of_node;
3102 	struct sh_eth_plat_data *pdata;
3103 	const char *mac_addr;
3104 
3105 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3106 	if (!pdata)
3107 		return NULL;
3108 
3109 	pdata->phy_interface = of_get_phy_mode(np);
3110 
3111 	mac_addr = of_get_mac_address(np);
3112 	if (mac_addr)
3113 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3114 
3115 	pdata->no_ether_link =
3116 		of_property_read_bool(np, "renesas,no-ether-link");
3117 	pdata->ether_link_active_low =
3118 		of_property_read_bool(np, "renesas,ether-link-active-low");
3119 
3120 	return pdata;
3121 }
3122 
3123 static const struct of_device_id sh_eth_match_table[] = {
3124 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3125 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3126 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3127 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3128 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3129 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3130 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3131 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3132 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3133 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3134 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3135 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3136 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3137 	{ }
3138 };
3139 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3140 #else
3141 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3142 {
3143 	return NULL;
3144 }
3145 #endif
3146 
3147 static int sh_eth_drv_probe(struct platform_device *pdev)
3148 {
3149 	struct resource *res;
3150 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3151 	const struct platform_device_id *id = platform_get_device_id(pdev);
3152 	struct sh_eth_private *mdp;
3153 	struct net_device *ndev;
3154 	int ret;
3155 
3156 	/* get base addr */
3157 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3158 
3159 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3160 	if (!ndev)
3161 		return -ENOMEM;
3162 
3163 	pm_runtime_enable(&pdev->dev);
3164 	pm_runtime_get_sync(&pdev->dev);
3165 
3166 	ret = platform_get_irq(pdev, 0);
3167 	if (ret < 0)
3168 		goto out_release;
3169 	ndev->irq = ret;
3170 
3171 	SET_NETDEV_DEV(ndev, &pdev->dev);
3172 
3173 	mdp = netdev_priv(ndev);
3174 	mdp->num_tx_ring = TX_RING_SIZE;
3175 	mdp->num_rx_ring = RX_RING_SIZE;
3176 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3177 	if (IS_ERR(mdp->addr)) {
3178 		ret = PTR_ERR(mdp->addr);
3179 		goto out_release;
3180 	}
3181 
3182 	ndev->base_addr = res->start;
3183 
3184 	spin_lock_init(&mdp->lock);
3185 	mdp->pdev = pdev;
3186 
3187 	if (pdev->dev.of_node)
3188 		pd = sh_eth_parse_dt(&pdev->dev);
3189 	if (!pd) {
3190 		dev_err(&pdev->dev, "no platform data\n");
3191 		ret = -EINVAL;
3192 		goto out_release;
3193 	}
3194 
3195 	/* get PHY ID */
3196 	mdp->phy_id = pd->phy;
3197 	mdp->phy_interface = pd->phy_interface;
3198 	mdp->no_ether_link = pd->no_ether_link;
3199 	mdp->ether_link_active_low = pd->ether_link_active_low;
3200 
3201 	/* set cpu data */
3202 	if (id)
3203 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3204 	else
3205 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3206 
3207 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3208 	if (!mdp->reg_offset) {
3209 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3210 			mdp->cd->register_type);
3211 		ret = -EINVAL;
3212 		goto out_release;
3213 	}
3214 	sh_eth_set_default_cpu_data(mdp->cd);
3215 
3216 	/* User's manual states max MTU should be 2048 but due to the
3217 	 * alignment calculations in sh_eth_ring_init() the practical
3218 	 * MTU is a bit less. Maybe this can be optimized some more.
3219 	 */
3220 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3221 	ndev->min_mtu = ETH_MIN_MTU;
3222 
3223 	/* set function */
3224 	if (mdp->cd->tsu)
3225 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3226 	else
3227 		ndev->netdev_ops = &sh_eth_netdev_ops;
3228 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3229 	ndev->watchdog_timeo = TX_TIMEOUT;
3230 
3231 	/* debug message level */
3232 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3233 
3234 	/* read and set MAC address */
3235 	read_mac_address(ndev, pd->mac_addr);
3236 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3237 		dev_warn(&pdev->dev,
3238 			 "no valid MAC address supplied, using a random one.\n");
3239 		eth_hw_addr_random(ndev);
3240 	}
3241 
3242 	if (mdp->cd->tsu) {
3243 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3244 		struct resource *rtsu;
3245 
3246 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3247 		if (!rtsu) {
3248 			dev_err(&pdev->dev, "no TSU resource\n");
3249 			ret = -ENODEV;
3250 			goto out_release;
3251 		}
3252 		/* We can only request the  TSU region  for the first port
3253 		 * of the two  sharing this TSU for the probe to succeed...
3254 		 */
3255 		if (port == 0 &&
3256 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3257 					     resource_size(rtsu),
3258 					     dev_name(&pdev->dev))) {
3259 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3260 			ret = -EBUSY;
3261 			goto out_release;
3262 		}
3263 		/* ioremap the TSU registers */
3264 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3265 					     resource_size(rtsu));
3266 		if (!mdp->tsu_addr) {
3267 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3268 			ret = -ENOMEM;
3269 			goto out_release;
3270 		}
3271 		mdp->port = port;
3272 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3273 
3274 		/* Need to init only the first port of the two sharing a TSU */
3275 		if (port == 0) {
3276 			if (mdp->cd->chip_reset)
3277 				mdp->cd->chip_reset(ndev);
3278 
3279 			/* TSU init (Init only)*/
3280 			sh_eth_tsu_init(mdp);
3281 		}
3282 	}
3283 
3284 	if (mdp->cd->rmiimode)
3285 		sh_eth_write(ndev, 0x1, RMIIMODE);
3286 
3287 	/* MDIO bus init */
3288 	ret = sh_mdio_init(mdp, pd);
3289 	if (ret) {
3290 		if (ret != -EPROBE_DEFER)
3291 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3292 		goto out_release;
3293 	}
3294 
3295 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3296 
3297 	/* network device register */
3298 	ret = register_netdev(ndev);
3299 	if (ret)
3300 		goto out_napi_del;
3301 
3302 	if (mdp->cd->magic)
3303 		device_set_wakeup_capable(&pdev->dev, 1);
3304 
3305 	/* print device information */
3306 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3307 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3308 
3309 	pm_runtime_put(&pdev->dev);
3310 	platform_set_drvdata(pdev, ndev);
3311 
3312 	return ret;
3313 
3314 out_napi_del:
3315 	netif_napi_del(&mdp->napi);
3316 	sh_mdio_release(mdp);
3317 
3318 out_release:
3319 	/* net_dev free */
3320 	free_netdev(ndev);
3321 
3322 	pm_runtime_put(&pdev->dev);
3323 	pm_runtime_disable(&pdev->dev);
3324 	return ret;
3325 }
3326 
3327 static int sh_eth_drv_remove(struct platform_device *pdev)
3328 {
3329 	struct net_device *ndev = platform_get_drvdata(pdev);
3330 	struct sh_eth_private *mdp = netdev_priv(ndev);
3331 
3332 	unregister_netdev(ndev);
3333 	netif_napi_del(&mdp->napi);
3334 	sh_mdio_release(mdp);
3335 	pm_runtime_disable(&pdev->dev);
3336 	free_netdev(ndev);
3337 
3338 	return 0;
3339 }
3340 
3341 #ifdef CONFIG_PM
3342 #ifdef CONFIG_PM_SLEEP
3343 static int sh_eth_wol_setup(struct net_device *ndev)
3344 {
3345 	struct sh_eth_private *mdp = netdev_priv(ndev);
3346 
3347 	/* Only allow ECI interrupts */
3348 	synchronize_irq(ndev->irq);
3349 	napi_disable(&mdp->napi);
3350 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3351 
3352 	/* Enable MagicPacket */
3353 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3354 
3355 	return enable_irq_wake(ndev->irq);
3356 }
3357 
3358 static int sh_eth_wol_restore(struct net_device *ndev)
3359 {
3360 	struct sh_eth_private *mdp = netdev_priv(ndev);
3361 	int ret;
3362 
3363 	napi_enable(&mdp->napi);
3364 
3365 	/* Disable MagicPacket */
3366 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3367 
3368 	/* The device needs to be reset to restore MagicPacket logic
3369 	 * for next wakeup. If we close and open the device it will
3370 	 * both be reset and all registers restored. This is what
3371 	 * happens during suspend and resume without WoL enabled.
3372 	 */
3373 	ret = sh_eth_close(ndev);
3374 	if (ret < 0)
3375 		return ret;
3376 	ret = sh_eth_open(ndev);
3377 	if (ret < 0)
3378 		return ret;
3379 
3380 	return disable_irq_wake(ndev->irq);
3381 }
3382 
3383 static int sh_eth_suspend(struct device *dev)
3384 {
3385 	struct net_device *ndev = dev_get_drvdata(dev);
3386 	struct sh_eth_private *mdp = netdev_priv(ndev);
3387 	int ret = 0;
3388 
3389 	if (!netif_running(ndev))
3390 		return 0;
3391 
3392 	netif_device_detach(ndev);
3393 
3394 	if (mdp->wol_enabled)
3395 		ret = sh_eth_wol_setup(ndev);
3396 	else
3397 		ret = sh_eth_close(ndev);
3398 
3399 	return ret;
3400 }
3401 
3402 static int sh_eth_resume(struct device *dev)
3403 {
3404 	struct net_device *ndev = dev_get_drvdata(dev);
3405 	struct sh_eth_private *mdp = netdev_priv(ndev);
3406 	int ret = 0;
3407 
3408 	if (!netif_running(ndev))
3409 		return 0;
3410 
3411 	if (mdp->wol_enabled)
3412 		ret = sh_eth_wol_restore(ndev);
3413 	else
3414 		ret = sh_eth_open(ndev);
3415 
3416 	if (ret < 0)
3417 		return ret;
3418 
3419 	netif_device_attach(ndev);
3420 
3421 	return ret;
3422 }
3423 #endif
3424 
3425 static int sh_eth_runtime_nop(struct device *dev)
3426 {
3427 	/* Runtime PM callback shared between ->runtime_suspend()
3428 	 * and ->runtime_resume(). Simply returns success.
3429 	 *
3430 	 * This driver re-initializes all registers after
3431 	 * pm_runtime_get_sync() anyway so there is no need
3432 	 * to save and restore registers here.
3433 	 */
3434 	return 0;
3435 }
3436 
3437 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3438 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3439 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3440 };
3441 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3442 #else
3443 #define SH_ETH_PM_OPS NULL
3444 #endif
3445 
3446 static const struct platform_device_id sh_eth_id_table[] = {
3447 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3448 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3449 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3450 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3451 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3452 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3453 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3454 	{ }
3455 };
3456 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3457 
3458 static struct platform_driver sh_eth_driver = {
3459 	.probe = sh_eth_drv_probe,
3460 	.remove = sh_eth_drv_remove,
3461 	.id_table = sh_eth_id_table,
3462 	.driver = {
3463 		   .name = CARDNAME,
3464 		   .pm = SH_ETH_PM_OPS,
3465 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3466 	},
3467 };
3468 
3469 module_platform_driver(sh_eth_driver);
3470 
3471 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3472 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3473 MODULE_LICENSE("GPL v2");
3474