1 // SPDX-License-Identifier: GPL-2.0 2 /* SuperH Ethernet device driver 3 * 4 * Copyright (C) 2014 Renesas Electronics Corporation 5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 6 * Copyright (C) 2008-2014 Renesas Solutions Corp. 7 * Copyright (C) 2013-2017 Cogent Embedded, Inc. 8 * Copyright (C) 2014 Codethink Limited 9 */ 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/etherdevice.h> 17 #include <linux/delay.h> 18 #include <linux/platform_device.h> 19 #include <linux/mdio-bitbang.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_net.h> 25 #include <linux/phy.h> 26 #include <linux/cache.h> 27 #include <linux/io.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/ethtool.h> 31 #include <linux/if_vlan.h> 32 #include <linux/sh_eth.h> 33 #include <linux/of_mdio.h> 34 35 #include "sh_eth.h" 36 37 #define SH_ETH_DEF_MSG_ENABLE \ 38 (NETIF_MSG_LINK | \ 39 NETIF_MSG_TIMER | \ 40 NETIF_MSG_RX_ERR| \ 41 NETIF_MSG_TX_ERR) 42 43 #define SH_ETH_OFFSET_INVALID ((u16)~0) 44 45 #define SH_ETH_OFFSET_DEFAULTS \ 46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID 47 48 /* use some intentionally tricky logic here to initialize the whole struct to 49 * 0xffff, but then override certain fields, requiring us to indicate that we 50 * "know" that there are overrides in this structure, and we'll need to disable 51 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but 52 * the macros available to do this only define GCC 8. 53 */ 54 __diag_push(); 55 __diag_ignore(GCC, 8, "-Woverride-init", 56 "logic to initialize all and then override some is OK"); 57 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 58 SH_ETH_OFFSET_DEFAULTS, 59 60 [EDSR] = 0x0000, 61 [EDMR] = 0x0400, 62 [EDTRR] = 0x0408, 63 [EDRRR] = 0x0410, 64 [EESR] = 0x0428, 65 [EESIPR] = 0x0430, 66 [TDLAR] = 0x0010, 67 [TDFAR] = 0x0014, 68 [TDFXR] = 0x0018, 69 [TDFFR] = 0x001c, 70 [RDLAR] = 0x0030, 71 [RDFAR] = 0x0034, 72 [RDFXR] = 0x0038, 73 [RDFFR] = 0x003c, 74 [TRSCER] = 0x0438, 75 [RMFCR] = 0x0440, 76 [TFTR] = 0x0448, 77 [FDR] = 0x0450, 78 [RMCR] = 0x0458, 79 [RPADIR] = 0x0460, 80 [FCFTR] = 0x0468, 81 [CSMR] = 0x04E4, 82 83 [ECMR] = 0x0500, 84 [ECSR] = 0x0510, 85 [ECSIPR] = 0x0518, 86 [PIR] = 0x0520, 87 [PSR] = 0x0528, 88 [PIPR] = 0x052c, 89 [RFLR] = 0x0508, 90 [APR] = 0x0554, 91 [MPR] = 0x0558, 92 [PFTCR] = 0x055c, 93 [PFRCR] = 0x0560, 94 [TPAUSER] = 0x0564, 95 [GECMR] = 0x05b0, 96 [BCULR] = 0x05b4, 97 [MAHR] = 0x05c0, 98 [MALR] = 0x05c8, 99 [TROCR] = 0x0700, 100 [CDCR] = 0x0708, 101 [LCCR] = 0x0710, 102 [CEFCR] = 0x0740, 103 [FRECR] = 0x0748, 104 [TSFRCR] = 0x0750, 105 [TLFRCR] = 0x0758, 106 [RFCR] = 0x0760, 107 [CERCR] = 0x0768, 108 [CEECR] = 0x0770, 109 [MAFCR] = 0x0778, 110 [RMII_MII] = 0x0790, 111 112 [ARSTR] = 0x0000, 113 [TSU_CTRST] = 0x0004, 114 [TSU_FWEN0] = 0x0010, 115 [TSU_FWEN1] = 0x0014, 116 [TSU_FCM] = 0x0018, 117 [TSU_BSYSL0] = 0x0020, 118 [TSU_BSYSL1] = 0x0024, 119 [TSU_PRISL0] = 0x0028, 120 [TSU_PRISL1] = 0x002c, 121 [TSU_FWSL0] = 0x0030, 122 [TSU_FWSL1] = 0x0034, 123 [TSU_FWSLC] = 0x0038, 124 [TSU_QTAGM0] = 0x0040, 125 [TSU_QTAGM1] = 0x0044, 126 [TSU_FWSR] = 0x0050, 127 [TSU_FWINMK] = 0x0054, 128 [TSU_ADQT0] = 0x0048, 129 [TSU_ADQT1] = 0x004c, 130 [TSU_VTAG0] = 0x0058, 131 [TSU_VTAG1] = 0x005c, 132 [TSU_ADSBSY] = 0x0060, 133 [TSU_TEN] = 0x0064, 134 [TSU_POST1] = 0x0070, 135 [TSU_POST2] = 0x0074, 136 [TSU_POST3] = 0x0078, 137 [TSU_POST4] = 0x007c, 138 [TSU_ADRH0] = 0x0100, 139 140 [TXNLCR0] = 0x0080, 141 [TXALCR0] = 0x0084, 142 [RXNLCR0] = 0x0088, 143 [RXALCR0] = 0x008c, 144 [FWNLCR0] = 0x0090, 145 [FWALCR0] = 0x0094, 146 [TXNLCR1] = 0x00a0, 147 [TXALCR1] = 0x00a4, 148 [RXNLCR1] = 0x00a8, 149 [RXALCR1] = 0x00ac, 150 [FWNLCR1] = 0x00b0, 151 [FWALCR1] = 0x00b4, 152 }; 153 154 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 155 SH_ETH_OFFSET_DEFAULTS, 156 157 [ECMR] = 0x0300, 158 [RFLR] = 0x0308, 159 [ECSR] = 0x0310, 160 [ECSIPR] = 0x0318, 161 [PIR] = 0x0320, 162 [PSR] = 0x0328, 163 [RDMLR] = 0x0340, 164 [IPGR] = 0x0350, 165 [APR] = 0x0354, 166 [MPR] = 0x0358, 167 [RFCF] = 0x0360, 168 [TPAUSER] = 0x0364, 169 [TPAUSECR] = 0x0368, 170 [MAHR] = 0x03c0, 171 [MALR] = 0x03c8, 172 [TROCR] = 0x03d0, 173 [CDCR] = 0x03d4, 174 [LCCR] = 0x03d8, 175 [CNDCR] = 0x03dc, 176 [CEFCR] = 0x03e4, 177 [FRECR] = 0x03e8, 178 [TSFRCR] = 0x03ec, 179 [TLFRCR] = 0x03f0, 180 [RFCR] = 0x03f4, 181 [MAFCR] = 0x03f8, 182 183 [EDMR] = 0x0200, 184 [EDTRR] = 0x0208, 185 [EDRRR] = 0x0210, 186 [TDLAR] = 0x0218, 187 [RDLAR] = 0x0220, 188 [EESR] = 0x0228, 189 [EESIPR] = 0x0230, 190 [TRSCER] = 0x0238, 191 [RMFCR] = 0x0240, 192 [TFTR] = 0x0248, 193 [FDR] = 0x0250, 194 [RMCR] = 0x0258, 195 [TFUCR] = 0x0264, 196 [RFOCR] = 0x0268, 197 [RMIIMODE] = 0x026c, 198 [FCFTR] = 0x0270, 199 [TRIMD] = 0x027c, 200 }; 201 202 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 203 SH_ETH_OFFSET_DEFAULTS, 204 205 [ECMR] = 0x0100, 206 [RFLR] = 0x0108, 207 [ECSR] = 0x0110, 208 [ECSIPR] = 0x0118, 209 [PIR] = 0x0120, 210 [PSR] = 0x0128, 211 [RDMLR] = 0x0140, 212 [IPGR] = 0x0150, 213 [APR] = 0x0154, 214 [MPR] = 0x0158, 215 [TPAUSER] = 0x0164, 216 [RFCF] = 0x0160, 217 [TPAUSECR] = 0x0168, 218 [BCFRR] = 0x016c, 219 [MAHR] = 0x01c0, 220 [MALR] = 0x01c8, 221 [TROCR] = 0x01d0, 222 [CDCR] = 0x01d4, 223 [LCCR] = 0x01d8, 224 [CNDCR] = 0x01dc, 225 [CEFCR] = 0x01e4, 226 [FRECR] = 0x01e8, 227 [TSFRCR] = 0x01ec, 228 [TLFRCR] = 0x01f0, 229 [RFCR] = 0x01f4, 230 [MAFCR] = 0x01f8, 231 [RTRATE] = 0x01fc, 232 233 [EDMR] = 0x0000, 234 [EDTRR] = 0x0008, 235 [EDRRR] = 0x0010, 236 [TDLAR] = 0x0018, 237 [RDLAR] = 0x0020, 238 [EESR] = 0x0028, 239 [EESIPR] = 0x0030, 240 [TRSCER] = 0x0038, 241 [RMFCR] = 0x0040, 242 [TFTR] = 0x0048, 243 [FDR] = 0x0050, 244 [RMCR] = 0x0058, 245 [TFUCR] = 0x0064, 246 [RFOCR] = 0x0068, 247 [FCFTR] = 0x0070, 248 [RPADIR] = 0x0078, 249 [TRIMD] = 0x007c, 250 [RBWAR] = 0x00c8, 251 [RDFAR] = 0x00cc, 252 [TBRAR] = 0x00d4, 253 [TDFAR] = 0x00d8, 254 }; 255 256 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 257 SH_ETH_OFFSET_DEFAULTS, 258 259 [EDMR] = 0x0000, 260 [EDTRR] = 0x0004, 261 [EDRRR] = 0x0008, 262 [TDLAR] = 0x000c, 263 [RDLAR] = 0x0010, 264 [EESR] = 0x0014, 265 [EESIPR] = 0x0018, 266 [TRSCER] = 0x001c, 267 [RMFCR] = 0x0020, 268 [TFTR] = 0x0024, 269 [FDR] = 0x0028, 270 [RMCR] = 0x002c, 271 [EDOCR] = 0x0030, 272 [FCFTR] = 0x0034, 273 [RPADIR] = 0x0038, 274 [TRIMD] = 0x003c, 275 [RBWAR] = 0x0040, 276 [RDFAR] = 0x0044, 277 [TBRAR] = 0x004c, 278 [TDFAR] = 0x0050, 279 280 [ECMR] = 0x0160, 281 [ECSR] = 0x0164, 282 [ECSIPR] = 0x0168, 283 [PIR] = 0x016c, 284 [MAHR] = 0x0170, 285 [MALR] = 0x0174, 286 [RFLR] = 0x0178, 287 [PSR] = 0x017c, 288 [TROCR] = 0x0180, 289 [CDCR] = 0x0184, 290 [LCCR] = 0x0188, 291 [CNDCR] = 0x018c, 292 [CEFCR] = 0x0194, 293 [FRECR] = 0x0198, 294 [TSFRCR] = 0x019c, 295 [TLFRCR] = 0x01a0, 296 [RFCR] = 0x01a4, 297 [MAFCR] = 0x01a8, 298 [IPGR] = 0x01b4, 299 [APR] = 0x01b8, 300 [MPR] = 0x01bc, 301 [TPAUSER] = 0x01c4, 302 [BCFR] = 0x01cc, 303 304 [ARSTR] = 0x0000, 305 [TSU_CTRST] = 0x0004, 306 [TSU_FWEN0] = 0x0010, 307 [TSU_FWEN1] = 0x0014, 308 [TSU_FCM] = 0x0018, 309 [TSU_BSYSL0] = 0x0020, 310 [TSU_BSYSL1] = 0x0024, 311 [TSU_PRISL0] = 0x0028, 312 [TSU_PRISL1] = 0x002c, 313 [TSU_FWSL0] = 0x0030, 314 [TSU_FWSL1] = 0x0034, 315 [TSU_FWSLC] = 0x0038, 316 [TSU_QTAGM0] = 0x0040, 317 [TSU_QTAGM1] = 0x0044, 318 [TSU_ADQT0] = 0x0048, 319 [TSU_ADQT1] = 0x004c, 320 [TSU_FWSR] = 0x0050, 321 [TSU_FWINMK] = 0x0054, 322 [TSU_ADSBSY] = 0x0060, 323 [TSU_TEN] = 0x0064, 324 [TSU_POST1] = 0x0070, 325 [TSU_POST2] = 0x0074, 326 [TSU_POST3] = 0x0078, 327 [TSU_POST4] = 0x007c, 328 329 [TXNLCR0] = 0x0080, 330 [TXALCR0] = 0x0084, 331 [RXNLCR0] = 0x0088, 332 [RXALCR0] = 0x008c, 333 [FWNLCR0] = 0x0090, 334 [FWALCR0] = 0x0094, 335 [TXNLCR1] = 0x00a0, 336 [TXALCR1] = 0x00a4, 337 [RXNLCR1] = 0x00a8, 338 [RXALCR1] = 0x00ac, 339 [FWNLCR1] = 0x00b0, 340 [FWALCR1] = 0x00b4, 341 342 [TSU_ADRH0] = 0x0100, 343 }; 344 __diag_pop(); 345 346 static void sh_eth_rcv_snd_disable(struct net_device *ndev); 347 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); 348 349 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) 350 { 351 struct sh_eth_private *mdp = netdev_priv(ndev); 352 u16 offset = mdp->reg_offset[enum_index]; 353 354 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 355 return; 356 357 iowrite32(data, mdp->addr + offset); 358 } 359 360 static u32 sh_eth_read(struct net_device *ndev, int enum_index) 361 { 362 struct sh_eth_private *mdp = netdev_priv(ndev); 363 u16 offset = mdp->reg_offset[enum_index]; 364 365 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 366 return ~0U; 367 368 return ioread32(mdp->addr + offset); 369 } 370 371 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, 372 u32 set) 373 { 374 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, 375 enum_index); 376 } 377 378 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index) 379 { 380 return mdp->reg_offset[enum_index]; 381 } 382 383 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data, 384 int enum_index) 385 { 386 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 387 388 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 389 return; 390 391 iowrite32(data, mdp->tsu_addr + offset); 392 } 393 394 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index) 395 { 396 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 397 398 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 399 return ~0U; 400 401 return ioread32(mdp->tsu_addr + offset); 402 } 403 404 static void sh_eth_soft_swap(char *src, int len) 405 { 406 #ifdef __LITTLE_ENDIAN 407 u32 *p = (u32 *)src; 408 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32)); 409 410 for (; p < maxp; p++) 411 *p = swab32(*p); 412 #endif 413 } 414 415 static void sh_eth_select_mii(struct net_device *ndev) 416 { 417 struct sh_eth_private *mdp = netdev_priv(ndev); 418 u32 value; 419 420 switch (mdp->phy_interface) { 421 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID: 422 value = 0x3; 423 break; 424 case PHY_INTERFACE_MODE_GMII: 425 value = 0x2; 426 break; 427 case PHY_INTERFACE_MODE_MII: 428 value = 0x1; 429 break; 430 case PHY_INTERFACE_MODE_RMII: 431 value = 0x0; 432 break; 433 default: 434 netdev_warn(ndev, 435 "PHY interface mode was not setup. Set to MII.\n"); 436 value = 0x1; 437 break; 438 } 439 440 sh_eth_write(ndev, value, RMII_MII); 441 } 442 443 static void sh_eth_set_duplex(struct net_device *ndev) 444 { 445 struct sh_eth_private *mdp = netdev_priv(ndev); 446 447 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); 448 } 449 450 static void sh_eth_chip_reset(struct net_device *ndev) 451 { 452 struct sh_eth_private *mdp = netdev_priv(ndev); 453 454 /* reset device */ 455 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR); 456 mdelay(1); 457 } 458 459 static int sh_eth_soft_reset(struct net_device *ndev) 460 { 461 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); 462 mdelay(3); 463 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); 464 465 return 0; 466 } 467 468 static int sh_eth_check_soft_reset(struct net_device *ndev) 469 { 470 int cnt; 471 472 for (cnt = 100; cnt > 0; cnt--) { 473 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER)) 474 return 0; 475 mdelay(1); 476 } 477 478 netdev_err(ndev, "Device reset failed\n"); 479 return -ETIMEDOUT; 480 } 481 482 static int sh_eth_soft_reset_gether(struct net_device *ndev) 483 { 484 struct sh_eth_private *mdp = netdev_priv(ndev); 485 int ret; 486 487 sh_eth_write(ndev, EDSR_ENALL, EDSR); 488 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); 489 490 ret = sh_eth_check_soft_reset(ndev); 491 if (ret) 492 return ret; 493 494 /* Table Init */ 495 sh_eth_write(ndev, 0, TDLAR); 496 sh_eth_write(ndev, 0, TDFAR); 497 sh_eth_write(ndev, 0, TDFXR); 498 sh_eth_write(ndev, 0, TDFFR); 499 sh_eth_write(ndev, 0, RDLAR); 500 sh_eth_write(ndev, 0, RDFAR); 501 sh_eth_write(ndev, 0, RDFXR); 502 sh_eth_write(ndev, 0, RDFFR); 503 504 /* Reset HW CRC register */ 505 if (mdp->cd->csmr) 506 sh_eth_write(ndev, 0, CSMR); 507 508 /* Select MII mode */ 509 if (mdp->cd->select_mii) 510 sh_eth_select_mii(ndev); 511 512 return ret; 513 } 514 515 static void sh_eth_set_rate_gether(struct net_device *ndev) 516 { 517 struct sh_eth_private *mdp = netdev_priv(ndev); 518 519 if (WARN_ON(!mdp->cd->gecmr)) 520 return; 521 522 switch (mdp->speed) { 523 case 10: /* 10BASE */ 524 sh_eth_write(ndev, GECMR_10, GECMR); 525 break; 526 case 100:/* 100BASE */ 527 sh_eth_write(ndev, GECMR_100, GECMR); 528 break; 529 case 1000: /* 1000BASE */ 530 sh_eth_write(ndev, GECMR_1000, GECMR); 531 break; 532 } 533 } 534 535 #ifdef CONFIG_OF 536 /* R7S72100 */ 537 static struct sh_eth_cpu_data r7s72100_data = { 538 .soft_reset = sh_eth_soft_reset_gether, 539 540 .chip_reset = sh_eth_chip_reset, 541 .set_duplex = sh_eth_set_duplex, 542 543 .register_type = SH_ETH_REG_GIGABIT, 544 545 .edtrr_trns = EDTRR_TRNS_GETHER, 546 .ecsr_value = ECSR_ICD, 547 .ecsipr_value = ECSIPR_ICDIP, 548 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP | 549 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | 550 EESIPR_ECIIP | 551 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 552 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 553 EESIPR_RMAFIP | EESIPR_RRFIP | 554 EESIPR_RTLFIP | EESIPR_RTSFIP | 555 EESIPR_PREIP | EESIPR_CERFIP, 556 557 .tx_check = EESR_TC1 | EESR_FTC, 558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 560 EESR_TDE, 561 .fdr_value = 0x0000070f, 562 563 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 564 565 .no_psr = 1, 566 .apr = 1, 567 .mpr = 1, 568 .tpauser = 1, 569 .hw_swap = 1, 570 .rpadir = 1, 571 .no_trimd = 1, 572 .no_ade = 1, 573 .xdfar_rw = 1, 574 .csmr = 1, 575 .rx_csum = 1, 576 .tsu = 1, 577 .no_tx_cntrs = 1, 578 }; 579 580 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 581 { 582 sh_eth_chip_reset(ndev); 583 584 sh_eth_select_mii(ndev); 585 } 586 587 /* R8A7740 */ 588 static struct sh_eth_cpu_data r8a7740_data = { 589 .soft_reset = sh_eth_soft_reset_gether, 590 591 .chip_reset = sh_eth_chip_reset_r8a7740, 592 .set_duplex = sh_eth_set_duplex, 593 .set_rate = sh_eth_set_rate_gether, 594 595 .register_type = SH_ETH_REG_GIGABIT, 596 597 .edtrr_trns = EDTRR_TRNS_GETHER, 598 .ecsr_value = ECSR_ICD | ECSR_MPD, 599 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 600 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 603 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 604 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 605 EESIPR_CEEFIP | EESIPR_CELFIP | 606 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 607 EESIPR_PREIP | EESIPR_CERFIP, 608 609 .tx_check = EESR_TC1 | EESR_FTC, 610 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 611 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 612 EESR_TDE, 613 .fdr_value = 0x0000070f, 614 615 .apr = 1, 616 .mpr = 1, 617 .tpauser = 1, 618 .gecmr = 1, 619 .bculr = 1, 620 .hw_swap = 1, 621 .rpadir = 1, 622 .no_trimd = 1, 623 .no_ade = 1, 624 .xdfar_rw = 1, 625 .csmr = 1, 626 .rx_csum = 1, 627 .tsu = 1, 628 .select_mii = 1, 629 .magic = 1, 630 .cexcr = 1, 631 }; 632 633 /* There is CPU dependent code */ 634 static void sh_eth_set_rate_rcar(struct net_device *ndev) 635 { 636 struct sh_eth_private *mdp = netdev_priv(ndev); 637 638 switch (mdp->speed) { 639 case 10: /* 10BASE */ 640 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); 641 break; 642 case 100:/* 100BASE */ 643 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); 644 break; 645 } 646 } 647 648 /* R-Car Gen1 */ 649 static struct sh_eth_cpu_data rcar_gen1_data = { 650 .soft_reset = sh_eth_soft_reset, 651 652 .set_duplex = sh_eth_set_duplex, 653 .set_rate = sh_eth_set_rate_rcar, 654 655 .register_type = SH_ETH_REG_FAST_RCAR, 656 657 .edtrr_trns = EDTRR_TRNS_ETHER, 658 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 659 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 660 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 661 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 662 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 663 EESIPR_RMAFIP | EESIPR_RRFIP | 664 EESIPR_RTLFIP | EESIPR_RTSFIP | 665 EESIPR_PREIP | EESIPR_CERFIP, 666 667 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 668 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 669 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 670 .fdr_value = 0x00000f0f, 671 672 .apr = 1, 673 .mpr = 1, 674 .tpauser = 1, 675 .hw_swap = 1, 676 .no_xdfar = 1, 677 }; 678 679 /* R-Car Gen2 and RZ/G1 */ 680 static struct sh_eth_cpu_data rcar_gen2_data = { 681 .soft_reset = sh_eth_soft_reset, 682 683 .set_duplex = sh_eth_set_duplex, 684 .set_rate = sh_eth_set_rate_rcar, 685 686 .register_type = SH_ETH_REG_FAST_RCAR, 687 688 .edtrr_trns = EDTRR_TRNS_ETHER, 689 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 690 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 691 ECSIPR_MPDIP, 692 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 693 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 694 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 695 EESIPR_RMAFIP | EESIPR_RRFIP | 696 EESIPR_RTLFIP | EESIPR_RTSFIP | 697 EESIPR_PREIP | EESIPR_CERFIP, 698 699 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 700 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 701 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 702 .fdr_value = 0x00000f0f, 703 704 .trscer_err_mask = TRSCER_RMAFCE, 705 706 .apr = 1, 707 .mpr = 1, 708 .tpauser = 1, 709 .hw_swap = 1, 710 .no_xdfar = 1, 711 .rmiimode = 1, 712 .magic = 1, 713 }; 714 715 /* R8A77980 */ 716 static struct sh_eth_cpu_data r8a77980_data = { 717 .soft_reset = sh_eth_soft_reset_gether, 718 719 .set_duplex = sh_eth_set_duplex, 720 .set_rate = sh_eth_set_rate_gether, 721 722 .register_type = SH_ETH_REG_GIGABIT, 723 724 .edtrr_trns = EDTRR_TRNS_GETHER, 725 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 726 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 727 ECSIPR_MPDIP, 728 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 729 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 730 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 731 EESIPR_RMAFIP | EESIPR_RRFIP | 732 EESIPR_RTLFIP | EESIPR_RTSFIP | 733 EESIPR_PREIP | EESIPR_CERFIP, 734 735 .tx_check = EESR_FTC | EESR_CD | EESR_TRO, 736 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 737 EESR_RFE | EESR_RDE | EESR_RFRMER | 738 EESR_TFE | EESR_TDE | EESR_ECI, 739 .fdr_value = 0x0000070f, 740 741 .apr = 1, 742 .mpr = 1, 743 .tpauser = 1, 744 .gecmr = 1, 745 .bculr = 1, 746 .hw_swap = 1, 747 .nbst = 1, 748 .rpadir = 1, 749 .no_trimd = 1, 750 .no_ade = 1, 751 .xdfar_rw = 1, 752 .csmr = 1, 753 .rx_csum = 1, 754 .select_mii = 1, 755 .magic = 1, 756 .cexcr = 1, 757 }; 758 759 /* R7S9210 */ 760 static struct sh_eth_cpu_data r7s9210_data = { 761 .soft_reset = sh_eth_soft_reset, 762 763 .set_duplex = sh_eth_set_duplex, 764 .set_rate = sh_eth_set_rate_rcar, 765 766 .register_type = SH_ETH_REG_FAST_SH4, 767 768 .edtrr_trns = EDTRR_TRNS_ETHER, 769 .ecsr_value = ECSR_ICD, 770 .ecsipr_value = ECSIPR_ICDIP, 771 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP | 772 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | 773 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | 774 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP | 775 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 776 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | 777 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, 778 779 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 780 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 781 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 782 783 .fdr_value = 0x0000070f, 784 785 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 786 787 .apr = 1, 788 .mpr = 1, 789 .tpauser = 1, 790 .hw_swap = 1, 791 .rpadir = 1, 792 .no_ade = 1, 793 .xdfar_rw = 1, 794 }; 795 #endif /* CONFIG_OF */ 796 797 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 798 { 799 struct sh_eth_private *mdp = netdev_priv(ndev); 800 801 switch (mdp->speed) { 802 case 10: /* 10BASE */ 803 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); 804 break; 805 case 100:/* 100BASE */ 806 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); 807 break; 808 } 809 } 810 811 /* SH7724 */ 812 static struct sh_eth_cpu_data sh7724_data = { 813 .soft_reset = sh_eth_soft_reset, 814 815 .set_duplex = sh_eth_set_duplex, 816 .set_rate = sh_eth_set_rate_sh7724, 817 818 .register_type = SH_ETH_REG_FAST_SH4, 819 820 .edtrr_trns = EDTRR_TRNS_ETHER, 821 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 822 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 823 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 824 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 825 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 826 EESIPR_RMAFIP | EESIPR_RRFIP | 827 EESIPR_RTLFIP | EESIPR_RTSFIP | 828 EESIPR_PREIP | EESIPR_CERFIP, 829 830 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 831 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 832 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 833 834 .apr = 1, 835 .mpr = 1, 836 .tpauser = 1, 837 .hw_swap = 1, 838 .rpadir = 1, 839 }; 840 841 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 842 { 843 struct sh_eth_private *mdp = netdev_priv(ndev); 844 845 switch (mdp->speed) { 846 case 10: /* 10BASE */ 847 sh_eth_write(ndev, 0, RTRATE); 848 break; 849 case 100:/* 100BASE */ 850 sh_eth_write(ndev, 1, RTRATE); 851 break; 852 } 853 } 854 855 /* SH7757 */ 856 static struct sh_eth_cpu_data sh7757_data = { 857 .soft_reset = sh_eth_soft_reset, 858 859 .set_duplex = sh_eth_set_duplex, 860 .set_rate = sh_eth_set_rate_sh7757, 861 862 .register_type = SH_ETH_REG_FAST_SH4, 863 864 .edtrr_trns = EDTRR_TRNS_ETHER, 865 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 866 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 867 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 868 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 869 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 870 EESIPR_CEEFIP | EESIPR_CELFIP | 871 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 872 EESIPR_PREIP | EESIPR_CERFIP, 873 874 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 875 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 876 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 877 878 .irq_flags = IRQF_SHARED, 879 .apr = 1, 880 .mpr = 1, 881 .tpauser = 1, 882 .hw_swap = 1, 883 .no_ade = 1, 884 .rpadir = 1, 885 .rtrate = 1, 886 .dual_port = 1, 887 }; 888 889 #define SH_GIGA_ETH_BASE 0xfee00000UL 890 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 891 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 892 static void sh_eth_chip_reset_giga(struct net_device *ndev) 893 { 894 u32 mahr[2], malr[2]; 895 int i; 896 897 /* save MAHR and MALR */ 898 for (i = 0; i < 2; i++) { 899 malr[i] = ioread32((void *)GIGA_MALR(i)); 900 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 901 } 902 903 sh_eth_chip_reset(ndev); 904 905 /* restore MAHR and MALR */ 906 for (i = 0; i < 2; i++) { 907 iowrite32(malr[i], (void *)GIGA_MALR(i)); 908 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 909 } 910 } 911 912 static void sh_eth_set_rate_giga(struct net_device *ndev) 913 { 914 struct sh_eth_private *mdp = netdev_priv(ndev); 915 916 if (WARN_ON(!mdp->cd->gecmr)) 917 return; 918 919 switch (mdp->speed) { 920 case 10: /* 10BASE */ 921 sh_eth_write(ndev, 0x00000000, GECMR); 922 break; 923 case 100:/* 100BASE */ 924 sh_eth_write(ndev, 0x00000010, GECMR); 925 break; 926 case 1000: /* 1000BASE */ 927 sh_eth_write(ndev, 0x00000020, GECMR); 928 break; 929 } 930 } 931 932 /* SH7757(GETHERC) */ 933 static struct sh_eth_cpu_data sh7757_data_giga = { 934 .soft_reset = sh_eth_soft_reset_gether, 935 936 .chip_reset = sh_eth_chip_reset_giga, 937 .set_duplex = sh_eth_set_duplex, 938 .set_rate = sh_eth_set_rate_giga, 939 940 .register_type = SH_ETH_REG_GIGABIT, 941 942 .edtrr_trns = EDTRR_TRNS_GETHER, 943 .ecsr_value = ECSR_ICD | ECSR_MPD, 944 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 945 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 946 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 947 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 948 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 949 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 950 EESIPR_CEEFIP | EESIPR_CELFIP | 951 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 952 EESIPR_PREIP | EESIPR_CERFIP, 953 954 .tx_check = EESR_TC1 | EESR_FTC, 955 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 956 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 957 EESR_TDE, 958 .fdr_value = 0x0000072f, 959 960 .irq_flags = IRQF_SHARED, 961 .apr = 1, 962 .mpr = 1, 963 .tpauser = 1, 964 .gecmr = 1, 965 .bculr = 1, 966 .hw_swap = 1, 967 .rpadir = 1, 968 .no_trimd = 1, 969 .no_ade = 1, 970 .xdfar_rw = 1, 971 .tsu = 1, 972 .cexcr = 1, 973 .dual_port = 1, 974 }; 975 976 /* SH7734 */ 977 static struct sh_eth_cpu_data sh7734_data = { 978 .soft_reset = sh_eth_soft_reset_gether, 979 980 .chip_reset = sh_eth_chip_reset, 981 .set_duplex = sh_eth_set_duplex, 982 .set_rate = sh_eth_set_rate_gether, 983 984 .register_type = SH_ETH_REG_GIGABIT, 985 986 .edtrr_trns = EDTRR_TRNS_GETHER, 987 .ecsr_value = ECSR_ICD | ECSR_MPD, 988 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 989 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 990 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 991 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 992 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 993 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 994 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 995 EESIPR_PREIP | EESIPR_CERFIP, 996 997 .tx_check = EESR_TC1 | EESR_FTC, 998 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 999 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 1000 EESR_TDE, 1001 1002 .apr = 1, 1003 .mpr = 1, 1004 .tpauser = 1, 1005 .gecmr = 1, 1006 .bculr = 1, 1007 .hw_swap = 1, 1008 .no_trimd = 1, 1009 .no_ade = 1, 1010 .xdfar_rw = 1, 1011 .tsu = 1, 1012 .csmr = 1, 1013 .rx_csum = 1, 1014 .select_mii = 1, 1015 .magic = 1, 1016 .cexcr = 1, 1017 }; 1018 1019 /* SH7763 */ 1020 static struct sh_eth_cpu_data sh7763_data = { 1021 .soft_reset = sh_eth_soft_reset_gether, 1022 1023 .chip_reset = sh_eth_chip_reset, 1024 .set_duplex = sh_eth_set_duplex, 1025 .set_rate = sh_eth_set_rate_gether, 1026 1027 .register_type = SH_ETH_REG_GIGABIT, 1028 1029 .edtrr_trns = EDTRR_TRNS_GETHER, 1030 .ecsr_value = ECSR_ICD | ECSR_MPD, 1031 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 1032 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1033 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1034 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1035 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 1036 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 1037 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1038 EESIPR_PREIP | EESIPR_CERFIP, 1039 1040 .tx_check = EESR_TC1 | EESR_FTC, 1041 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 1042 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 1043 1044 .apr = 1, 1045 .mpr = 1, 1046 .tpauser = 1, 1047 .gecmr = 1, 1048 .bculr = 1, 1049 .hw_swap = 1, 1050 .no_trimd = 1, 1051 .no_ade = 1, 1052 .xdfar_rw = 1, 1053 .tsu = 1, 1054 .irq_flags = IRQF_SHARED, 1055 .magic = 1, 1056 .cexcr = 1, 1057 .rx_csum = 1, 1058 .dual_port = 1, 1059 }; 1060 1061 static struct sh_eth_cpu_data sh7619_data = { 1062 .soft_reset = sh_eth_soft_reset, 1063 1064 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1065 1066 .edtrr_trns = EDTRR_TRNS_ETHER, 1067 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1068 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1069 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1070 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1071 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1072 EESIPR_CEEFIP | EESIPR_CELFIP | 1073 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1074 EESIPR_PREIP | EESIPR_CERFIP, 1075 1076 .apr = 1, 1077 .mpr = 1, 1078 .tpauser = 1, 1079 .hw_swap = 1, 1080 }; 1081 1082 static struct sh_eth_cpu_data sh771x_data = { 1083 .soft_reset = sh_eth_soft_reset, 1084 1085 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1086 1087 .edtrr_trns = EDTRR_TRNS_ETHER, 1088 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1089 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1090 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1091 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1092 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1093 EESIPR_CEEFIP | EESIPR_CELFIP | 1094 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1095 EESIPR_PREIP | EESIPR_CERFIP, 1096 1097 .trscer_err_mask = TRSCER_RMAFCE, 1098 1099 .tsu = 1, 1100 .dual_port = 1, 1101 }; 1102 1103 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 1104 { 1105 if (!cd->ecsr_value) 1106 cd->ecsr_value = DEFAULT_ECSR_INIT; 1107 1108 if (!cd->ecsipr_value) 1109 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 1110 1111 if (!cd->fcftr_value) 1112 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 1113 DEFAULT_FIFO_F_D_RFD; 1114 1115 if (!cd->fdr_value) 1116 cd->fdr_value = DEFAULT_FDR_INIT; 1117 1118 if (!cd->tx_check) 1119 cd->tx_check = DEFAULT_TX_CHECK; 1120 1121 if (!cd->eesr_err_check) 1122 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 1123 1124 if (!cd->trscer_err_mask) 1125 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; 1126 } 1127 1128 static void sh_eth_set_receive_align(struct sk_buff *skb) 1129 { 1130 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); 1131 1132 if (reserve) 1133 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); 1134 } 1135 1136 /* Program the hardware MAC address from dev->dev_addr. */ 1137 static void update_mac_address(struct net_device *ndev) 1138 { 1139 sh_eth_write(ndev, 1140 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 1141 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 1142 sh_eth_write(ndev, 1143 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 1144 } 1145 1146 /* Get MAC address from SuperH MAC address register 1147 * 1148 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 1149 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 1150 * When you want use this device, you must set MAC address in bootloader. 1151 * 1152 */ 1153 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 1154 { 1155 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 1156 eth_hw_addr_set(ndev, mac); 1157 } else { 1158 u32 mahr = sh_eth_read(ndev, MAHR); 1159 u32 malr = sh_eth_read(ndev, MALR); 1160 u8 addr[ETH_ALEN]; 1161 1162 addr[0] = (mahr >> 24) & 0xFF; 1163 addr[1] = (mahr >> 16) & 0xFF; 1164 addr[2] = (mahr >> 8) & 0xFF; 1165 addr[3] = (mahr >> 0) & 0xFF; 1166 addr[4] = (malr >> 8) & 0xFF; 1167 addr[5] = (malr >> 0) & 0xFF; 1168 eth_hw_addr_set(ndev, addr); 1169 } 1170 } 1171 1172 struct bb_info { 1173 void (*set_gate)(void *addr); 1174 struct mdiobb_ctrl ctrl; 1175 void *addr; 1176 }; 1177 1178 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 1179 { 1180 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1181 u32 pir; 1182 1183 if (bitbang->set_gate) 1184 bitbang->set_gate(bitbang->addr); 1185 1186 pir = ioread32(bitbang->addr); 1187 if (set) 1188 pir |= mask; 1189 else 1190 pir &= ~mask; 1191 iowrite32(pir, bitbang->addr); 1192 } 1193 1194 /* Data I/O pin control */ 1195 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1196 { 1197 sh_mdio_ctrl(ctrl, PIR_MMD, bit); 1198 } 1199 1200 /* Set bit data*/ 1201 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1202 { 1203 sh_mdio_ctrl(ctrl, PIR_MDO, bit); 1204 } 1205 1206 /* Get bit data*/ 1207 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1208 { 1209 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1210 1211 if (bitbang->set_gate) 1212 bitbang->set_gate(bitbang->addr); 1213 1214 return (ioread32(bitbang->addr) & PIR_MDI) != 0; 1215 } 1216 1217 /* MDC pin control */ 1218 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1219 { 1220 sh_mdio_ctrl(ctrl, PIR_MDC, bit); 1221 } 1222 1223 /* mdio bus control struct */ 1224 static const struct mdiobb_ops bb_ops = { 1225 .owner = THIS_MODULE, 1226 .set_mdc = sh_mdc_ctrl, 1227 .set_mdio_dir = sh_mmd_ctrl, 1228 .set_mdio_data = sh_set_mdio, 1229 .get_mdio_data = sh_get_mdio, 1230 }; 1231 1232 /* free Tx skb function */ 1233 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only) 1234 { 1235 struct sh_eth_private *mdp = netdev_priv(ndev); 1236 struct sh_eth_txdesc *txdesc; 1237 int free_num = 0; 1238 int entry; 1239 bool sent; 1240 1241 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1242 entry = mdp->dirty_tx % mdp->num_tx_ring; 1243 txdesc = &mdp->tx_ring[entry]; 1244 sent = !(txdesc->status & cpu_to_le32(TD_TACT)); 1245 if (sent_only && !sent) 1246 break; 1247 /* TACT bit must be checked before all the following reads */ 1248 dma_rmb(); 1249 netif_info(mdp, tx_done, ndev, 1250 "tx entry %d status 0x%08x\n", 1251 entry, le32_to_cpu(txdesc->status)); 1252 /* Free the original skb. */ 1253 if (mdp->tx_skbuff[entry]) { 1254 dma_unmap_single(&mdp->pdev->dev, 1255 le32_to_cpu(txdesc->addr), 1256 le32_to_cpu(txdesc->len) >> 16, 1257 DMA_TO_DEVICE); 1258 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1259 mdp->tx_skbuff[entry] = NULL; 1260 free_num++; 1261 } 1262 txdesc->status = cpu_to_le32(TD_TFP); 1263 if (entry >= mdp->num_tx_ring - 1) 1264 txdesc->status |= cpu_to_le32(TD_TDLE); 1265 1266 if (sent) { 1267 ndev->stats.tx_packets++; 1268 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; 1269 } 1270 } 1271 return free_num; 1272 } 1273 1274 /* free skb and descriptor buffer */ 1275 static void sh_eth_ring_free(struct net_device *ndev) 1276 { 1277 struct sh_eth_private *mdp = netdev_priv(ndev); 1278 int ringsize, i; 1279 1280 if (mdp->rx_ring) { 1281 for (i = 0; i < mdp->num_rx_ring; i++) { 1282 if (mdp->rx_skbuff[i]) { 1283 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i]; 1284 1285 dma_unmap_single(&mdp->pdev->dev, 1286 le32_to_cpu(rxdesc->addr), 1287 ALIGN(mdp->rx_buf_sz, 32), 1288 DMA_FROM_DEVICE); 1289 } 1290 } 1291 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1292 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring, 1293 mdp->rx_desc_dma); 1294 mdp->rx_ring = NULL; 1295 } 1296 1297 /* Free Rx skb ringbuffer */ 1298 if (mdp->rx_skbuff) { 1299 for (i = 0; i < mdp->num_rx_ring; i++) 1300 dev_kfree_skb(mdp->rx_skbuff[i]); 1301 } 1302 kfree(mdp->rx_skbuff); 1303 mdp->rx_skbuff = NULL; 1304 1305 if (mdp->tx_ring) { 1306 sh_eth_tx_free(ndev, false); 1307 1308 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1309 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring, 1310 mdp->tx_desc_dma); 1311 mdp->tx_ring = NULL; 1312 } 1313 1314 /* Free Tx skb ringbuffer */ 1315 kfree(mdp->tx_skbuff); 1316 mdp->tx_skbuff = NULL; 1317 } 1318 1319 /* format skb and descriptor buffer */ 1320 static void sh_eth_ring_format(struct net_device *ndev) 1321 { 1322 struct sh_eth_private *mdp = netdev_priv(ndev); 1323 int i; 1324 struct sk_buff *skb; 1325 struct sh_eth_rxdesc *rxdesc = NULL; 1326 struct sh_eth_txdesc *txdesc = NULL; 1327 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1328 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1329 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1330 dma_addr_t dma_addr; 1331 u32 buf_len; 1332 1333 mdp->cur_rx = 0; 1334 mdp->cur_tx = 0; 1335 mdp->dirty_rx = 0; 1336 mdp->dirty_tx = 0; 1337 1338 memset(mdp->rx_ring, 0, rx_ringsize); 1339 1340 /* build Rx ring buffer */ 1341 for (i = 0; i < mdp->num_rx_ring; i++) { 1342 /* skb */ 1343 mdp->rx_skbuff[i] = NULL; 1344 skb = netdev_alloc_skb(ndev, skbuff_size); 1345 if (skb == NULL) 1346 break; 1347 sh_eth_set_receive_align(skb); 1348 1349 /* The size of the buffer is a multiple of 32 bytes. */ 1350 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1351 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len, 1352 DMA_FROM_DEVICE); 1353 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1354 kfree_skb(skb); 1355 break; 1356 } 1357 mdp->rx_skbuff[i] = skb; 1358 1359 /* RX descriptor */ 1360 rxdesc = &mdp->rx_ring[i]; 1361 rxdesc->len = cpu_to_le32(buf_len << 16); 1362 rxdesc->addr = cpu_to_le32(dma_addr); 1363 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); 1364 1365 /* Rx descriptor address set */ 1366 if (i == 0) { 1367 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1368 if (mdp->cd->xdfar_rw) 1369 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1370 } 1371 } 1372 1373 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1374 1375 /* Mark the last entry as wrapping the ring. */ 1376 if (rxdesc) 1377 rxdesc->status |= cpu_to_le32(RD_RDLE); 1378 1379 memset(mdp->tx_ring, 0, tx_ringsize); 1380 1381 /* build Tx ring buffer */ 1382 for (i = 0; i < mdp->num_tx_ring; i++) { 1383 mdp->tx_skbuff[i] = NULL; 1384 txdesc = &mdp->tx_ring[i]; 1385 txdesc->status = cpu_to_le32(TD_TFP); 1386 txdesc->len = cpu_to_le32(0); 1387 if (i == 0) { 1388 /* Tx descriptor address set */ 1389 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1390 if (mdp->cd->xdfar_rw) 1391 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1392 } 1393 } 1394 1395 txdesc->status |= cpu_to_le32(TD_TDLE); 1396 } 1397 1398 /* Get skb and descriptor buffer */ 1399 static int sh_eth_ring_init(struct net_device *ndev) 1400 { 1401 struct sh_eth_private *mdp = netdev_priv(ndev); 1402 int rx_ringsize, tx_ringsize; 1403 1404 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1405 * card needs room to do 8 byte alignment, +2 so we can reserve 1406 * the first 2 bytes, and +16 gets room for the status word from the 1407 * card. 1408 */ 1409 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1410 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1411 if (mdp->cd->rpadir) 1412 mdp->rx_buf_sz += NET_IP_ALIGN; 1413 1414 /* Allocate RX and TX skb rings */ 1415 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), 1416 GFP_KERNEL); 1417 if (!mdp->rx_skbuff) 1418 return -ENOMEM; 1419 1420 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), 1421 GFP_KERNEL); 1422 if (!mdp->tx_skbuff) 1423 goto ring_free; 1424 1425 /* Allocate all Rx descriptors. */ 1426 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1427 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize, 1428 &mdp->rx_desc_dma, GFP_KERNEL); 1429 if (!mdp->rx_ring) 1430 goto ring_free; 1431 1432 mdp->dirty_rx = 0; 1433 1434 /* Allocate all Tx descriptors. */ 1435 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1436 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize, 1437 &mdp->tx_desc_dma, GFP_KERNEL); 1438 if (!mdp->tx_ring) 1439 goto ring_free; 1440 return 0; 1441 1442 ring_free: 1443 /* Free Rx and Tx skb ring buffer and DMA buffer */ 1444 sh_eth_ring_free(ndev); 1445 1446 return -ENOMEM; 1447 } 1448 1449 static int sh_eth_dev_init(struct net_device *ndev) 1450 { 1451 struct sh_eth_private *mdp = netdev_priv(ndev); 1452 int ret; 1453 1454 /* Soft Reset */ 1455 ret = mdp->cd->soft_reset(ndev); 1456 if (ret) 1457 return ret; 1458 1459 if (mdp->cd->rmiimode) 1460 sh_eth_write(ndev, 0x1, RMIIMODE); 1461 1462 /* Descriptor format */ 1463 sh_eth_ring_format(ndev); 1464 if (mdp->cd->rpadir) 1465 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR); 1466 1467 /* all sh_eth int mask */ 1468 sh_eth_write(ndev, 0, EESIPR); 1469 1470 #if defined(__LITTLE_ENDIAN) 1471 if (mdp->cd->hw_swap) 1472 sh_eth_write(ndev, EDMR_EL, EDMR); 1473 else 1474 #endif 1475 sh_eth_write(ndev, 0, EDMR); 1476 1477 /* FIFO size set */ 1478 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1479 sh_eth_write(ndev, 0, TFTR); 1480 1481 /* Frame recv control (enable multiple-packets per rx irq) */ 1482 sh_eth_write(ndev, RMCR_RNC, RMCR); 1483 1484 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); 1485 1486 /* DMA transfer burst mode */ 1487 if (mdp->cd->nbst) 1488 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST); 1489 1490 /* Burst cycle count upper-limit */ 1491 if (mdp->cd->bculr) 1492 sh_eth_write(ndev, 0x800, BCULR); 1493 1494 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1495 1496 if (!mdp->cd->no_trimd) 1497 sh_eth_write(ndev, 0, TRIMD); 1498 1499 /* Recv frame limit set register */ 1500 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1501 RFLR); 1502 1503 sh_eth_modify(ndev, EESR, 0, 0); 1504 mdp->irq_enabled = true; 1505 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1506 1507 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ 1508 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | 1509 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | 1510 ECMR_TE | ECMR_RE, ECMR); 1511 1512 if (mdp->cd->set_rate) 1513 mdp->cd->set_rate(ndev); 1514 1515 /* E-MAC Status Register clear */ 1516 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1517 1518 /* E-MAC Interrupt Enable register */ 1519 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1520 1521 /* Set MAC address */ 1522 update_mac_address(ndev); 1523 1524 /* mask reset */ 1525 if (mdp->cd->apr) 1526 sh_eth_write(ndev, 1, APR); 1527 if (mdp->cd->mpr) 1528 sh_eth_write(ndev, 1, MPR); 1529 if (mdp->cd->tpauser) 1530 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1531 1532 /* Setting the Rx mode will start the Rx process. */ 1533 sh_eth_write(ndev, EDRRR_R, EDRRR); 1534 1535 return ret; 1536 } 1537 1538 static void sh_eth_dev_exit(struct net_device *ndev) 1539 { 1540 struct sh_eth_private *mdp = netdev_priv(ndev); 1541 int i; 1542 1543 /* Deactivate all TX descriptors, so DMA should stop at next 1544 * packet boundary if it's currently running 1545 */ 1546 for (i = 0; i < mdp->num_tx_ring; i++) 1547 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); 1548 1549 /* Disable TX FIFO egress to MAC */ 1550 sh_eth_rcv_snd_disable(ndev); 1551 1552 /* Stop RX DMA at next packet boundary */ 1553 sh_eth_write(ndev, 0, EDRRR); 1554 1555 /* Aside from TX DMA, we can't tell when the hardware is 1556 * really stopped, so we need to reset to make sure. 1557 * Before doing that, wait for long enough to *probably* 1558 * finish transmitting the last packet and poll stats. 1559 */ 1560 msleep(2); /* max frame time at 10 Mbps < 1250 us */ 1561 sh_eth_get_stats(ndev); 1562 mdp->cd->soft_reset(ndev); 1563 1564 /* Set the RMII mode again if required */ 1565 if (mdp->cd->rmiimode) 1566 sh_eth_write(ndev, 0x1, RMIIMODE); 1567 1568 /* Set MAC address again */ 1569 update_mac_address(ndev); 1570 } 1571 1572 static void sh_eth_rx_csum(struct sk_buff *skb) 1573 { 1574 u8 *hw_csum; 1575 1576 /* The hardware checksum is 2 bytes appended to packet data */ 1577 if (unlikely(skb->len < sizeof(__sum16))) 1578 return; 1579 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); 1580 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); 1581 skb->ip_summed = CHECKSUM_COMPLETE; 1582 skb_trim(skb, skb->len - sizeof(__sum16)); 1583 } 1584 1585 /* Packet receive function */ 1586 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1587 { 1588 struct sh_eth_private *mdp = netdev_priv(ndev); 1589 struct sh_eth_rxdesc *rxdesc; 1590 1591 int entry = mdp->cur_rx % mdp->num_rx_ring; 1592 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1593 int limit; 1594 struct sk_buff *skb; 1595 u32 desc_status; 1596 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1597 dma_addr_t dma_addr; 1598 u16 pkt_len; 1599 u32 buf_len; 1600 1601 boguscnt = min(boguscnt, *quota); 1602 limit = boguscnt; 1603 rxdesc = &mdp->rx_ring[entry]; 1604 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { 1605 /* RACT bit must be checked before all the following reads */ 1606 dma_rmb(); 1607 desc_status = le32_to_cpu(rxdesc->status); 1608 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; 1609 1610 if (--boguscnt < 0) 1611 break; 1612 1613 netif_info(mdp, rx_status, ndev, 1614 "rx entry %d status 0x%08x len %d\n", 1615 entry, desc_status, pkt_len); 1616 1617 if (!(desc_status & RDFEND)) 1618 ndev->stats.rx_length_errors++; 1619 1620 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1621 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1622 * bit 0. However, in case of the R8A7740 and R7S72100 1623 * the RFS bits are from bit 25 to bit 16. So, the 1624 * driver needs right shifting by 16. 1625 */ 1626 if (mdp->cd->csmr) 1627 desc_status >>= 16; 1628 1629 skb = mdp->rx_skbuff[entry]; 1630 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1631 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1632 ndev->stats.rx_errors++; 1633 if (desc_status & RD_RFS1) 1634 ndev->stats.rx_crc_errors++; 1635 if (desc_status & RD_RFS2) 1636 ndev->stats.rx_frame_errors++; 1637 if (desc_status & RD_RFS3) 1638 ndev->stats.rx_length_errors++; 1639 if (desc_status & RD_RFS4) 1640 ndev->stats.rx_length_errors++; 1641 if (desc_status & RD_RFS6) 1642 ndev->stats.rx_missed_errors++; 1643 if (desc_status & RD_RFS10) 1644 ndev->stats.rx_over_errors++; 1645 } else if (skb) { 1646 dma_addr = le32_to_cpu(rxdesc->addr); 1647 if (!mdp->cd->hw_swap) 1648 sh_eth_soft_swap( 1649 phys_to_virt(ALIGN(dma_addr, 4)), 1650 pkt_len + 2); 1651 mdp->rx_skbuff[entry] = NULL; 1652 if (mdp->cd->rpadir) 1653 skb_reserve(skb, NET_IP_ALIGN); 1654 dma_unmap_single(&mdp->pdev->dev, dma_addr, 1655 ALIGN(mdp->rx_buf_sz, 32), 1656 DMA_FROM_DEVICE); 1657 skb_put(skb, pkt_len); 1658 skb->protocol = eth_type_trans(skb, ndev); 1659 if (ndev->features & NETIF_F_RXCSUM) 1660 sh_eth_rx_csum(skb); 1661 netif_receive_skb(skb); 1662 ndev->stats.rx_packets++; 1663 ndev->stats.rx_bytes += pkt_len; 1664 if (desc_status & RD_RFS8) 1665 ndev->stats.multicast++; 1666 } 1667 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1668 rxdesc = &mdp->rx_ring[entry]; 1669 } 1670 1671 /* Refill the Rx ring buffers. */ 1672 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1673 entry = mdp->dirty_rx % mdp->num_rx_ring; 1674 rxdesc = &mdp->rx_ring[entry]; 1675 /* The size of the buffer is 32 byte boundary. */ 1676 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1677 rxdesc->len = cpu_to_le32(buf_len << 16); 1678 1679 if (mdp->rx_skbuff[entry] == NULL) { 1680 skb = netdev_alloc_skb(ndev, skbuff_size); 1681 if (skb == NULL) 1682 break; /* Better luck next round. */ 1683 sh_eth_set_receive_align(skb); 1684 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, 1685 buf_len, DMA_FROM_DEVICE); 1686 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1687 kfree_skb(skb); 1688 break; 1689 } 1690 mdp->rx_skbuff[entry] = skb; 1691 1692 skb_checksum_none_assert(skb); 1693 rxdesc->addr = cpu_to_le32(dma_addr); 1694 } 1695 dma_wmb(); /* RACT bit must be set after all the above writes */ 1696 if (entry >= mdp->num_rx_ring - 1) 1697 rxdesc->status |= 1698 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); 1699 else 1700 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); 1701 } 1702 1703 /* Restart Rx engine if stopped. */ 1704 /* If we don't need to check status, don't. -KDU */ 1705 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1706 /* fix the values for the next receiving if RDE is set */ 1707 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) { 1708 u32 count = (sh_eth_read(ndev, RDFAR) - 1709 sh_eth_read(ndev, RDLAR)) >> 4; 1710 1711 mdp->cur_rx = count; 1712 mdp->dirty_rx = count; 1713 } 1714 sh_eth_write(ndev, EDRRR_R, EDRRR); 1715 } 1716 1717 *quota -= limit - boguscnt - 1; 1718 1719 return *quota <= 0; 1720 } 1721 1722 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1723 { 1724 /* disable tx and rx */ 1725 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1726 } 1727 1728 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1729 { 1730 /* enable tx and rx */ 1731 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1732 } 1733 1734 /* E-MAC interrupt handler */ 1735 static void sh_eth_emac_interrupt(struct net_device *ndev) 1736 { 1737 struct sh_eth_private *mdp = netdev_priv(ndev); 1738 u32 felic_stat; 1739 u32 link_stat; 1740 1741 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR); 1742 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1743 if (felic_stat & ECSR_ICD) 1744 ndev->stats.tx_carrier_errors++; 1745 if (felic_stat & ECSR_MPD) 1746 pm_wakeup_event(&mdp->pdev->dev, 0); 1747 if (felic_stat & ECSR_LCHNG) { 1748 /* Link Changed */ 1749 if (mdp->cd->no_psr || mdp->no_ether_link) 1750 return; 1751 link_stat = sh_eth_read(ndev, PSR); 1752 if (mdp->ether_link_active_low) 1753 link_stat = ~link_stat; 1754 if (!(link_stat & PSR_LMON)) { 1755 sh_eth_rcv_snd_disable(ndev); 1756 } else { 1757 /* Link Up */ 1758 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0); 1759 /* clear int */ 1760 sh_eth_modify(ndev, ECSR, 0, 0); 1761 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP); 1762 /* enable tx and rx */ 1763 sh_eth_rcv_snd_enable(ndev); 1764 } 1765 } 1766 } 1767 1768 /* error control function */ 1769 static void sh_eth_error(struct net_device *ndev, u32 intr_status) 1770 { 1771 struct sh_eth_private *mdp = netdev_priv(ndev); 1772 u32 mask; 1773 1774 if (intr_status & EESR_TWB) { 1775 /* Unused write back interrupt */ 1776 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1777 ndev->stats.tx_aborted_errors++; 1778 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1779 } 1780 } 1781 1782 if (intr_status & EESR_RABT) { 1783 /* Receive Abort int */ 1784 if (intr_status & EESR_RFRMER) { 1785 /* Receive Frame Overflow int */ 1786 ndev->stats.rx_frame_errors++; 1787 } 1788 } 1789 1790 if (intr_status & EESR_TDE) { 1791 /* Transmit Descriptor Empty int */ 1792 ndev->stats.tx_fifo_errors++; 1793 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1794 } 1795 1796 if (intr_status & EESR_TFE) { 1797 /* FIFO under flow */ 1798 ndev->stats.tx_fifo_errors++; 1799 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1800 } 1801 1802 if (intr_status & EESR_RDE) { 1803 /* Receive Descriptor Empty int */ 1804 ndev->stats.rx_over_errors++; 1805 } 1806 1807 if (intr_status & EESR_RFE) { 1808 /* Receive FIFO Overflow int */ 1809 ndev->stats.rx_fifo_errors++; 1810 } 1811 1812 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1813 /* Address Error */ 1814 ndev->stats.tx_fifo_errors++; 1815 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1816 } 1817 1818 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1819 if (mdp->cd->no_ade) 1820 mask &= ~EESR_ADE; 1821 if (intr_status & mask) { 1822 /* Tx error */ 1823 u32 edtrr = sh_eth_read(ndev, EDTRR); 1824 1825 /* dmesg */ 1826 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1827 intr_status, mdp->cur_tx, mdp->dirty_tx, 1828 (u32)ndev->state, edtrr); 1829 /* dirty buffer free */ 1830 sh_eth_tx_free(ndev, true); 1831 1832 /* SH7712 BUG */ 1833 if (edtrr ^ mdp->cd->edtrr_trns) { 1834 /* tx dma start */ 1835 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 1836 } 1837 /* wakeup */ 1838 netif_wake_queue(ndev); 1839 } 1840 } 1841 1842 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1843 { 1844 struct net_device *ndev = netdev; 1845 struct sh_eth_private *mdp = netdev_priv(ndev); 1846 struct sh_eth_cpu_data *cd = mdp->cd; 1847 irqreturn_t ret = IRQ_NONE; 1848 u32 intr_status, intr_enable; 1849 1850 spin_lock(&mdp->lock); 1851 1852 /* Get interrupt status */ 1853 intr_status = sh_eth_read(ndev, EESR); 1854 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1855 * enabled since it's the one that comes thru regardless of the mask, 1856 * and we need to fully handle it in sh_eth_emac_interrupt() in order 1857 * to quench it as it doesn't get cleared by just writing 1 to the ECI 1858 * bit... 1859 */ 1860 intr_enable = sh_eth_read(ndev, EESIPR); 1861 intr_status &= intr_enable | EESIPR_ECIIP; 1862 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI | 1863 cd->eesr_err_check)) 1864 ret = IRQ_HANDLED; 1865 else 1866 goto out; 1867 1868 if (unlikely(!mdp->irq_enabled)) { 1869 sh_eth_write(ndev, 0, EESIPR); 1870 goto out; 1871 } 1872 1873 if (intr_status & EESR_RX_CHECK) { 1874 if (napi_schedule_prep(&mdp->napi)) { 1875 /* Mask Rx interrupts */ 1876 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1877 EESIPR); 1878 __napi_schedule(&mdp->napi); 1879 } else { 1880 netdev_warn(ndev, 1881 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", 1882 intr_status, intr_enable); 1883 } 1884 } 1885 1886 /* Tx Check */ 1887 if (intr_status & cd->tx_check) { 1888 /* Clear Tx interrupts */ 1889 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1890 1891 sh_eth_tx_free(ndev, true); 1892 netif_wake_queue(ndev); 1893 } 1894 1895 /* E-MAC interrupt */ 1896 if (intr_status & EESR_ECI) 1897 sh_eth_emac_interrupt(ndev); 1898 1899 if (intr_status & cd->eesr_err_check) { 1900 /* Clear error interrupts */ 1901 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1902 1903 sh_eth_error(ndev, intr_status); 1904 } 1905 1906 out: 1907 spin_unlock(&mdp->lock); 1908 1909 return ret; 1910 } 1911 1912 static int sh_eth_poll(struct napi_struct *napi, int budget) 1913 { 1914 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1915 napi); 1916 struct net_device *ndev = napi->dev; 1917 int quota = budget; 1918 u32 intr_status; 1919 1920 for (;;) { 1921 intr_status = sh_eth_read(ndev, EESR); 1922 if (!(intr_status & EESR_RX_CHECK)) 1923 break; 1924 /* Clear Rx interrupts */ 1925 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1926 1927 if (sh_eth_rx(ndev, intr_status, "a)) 1928 goto out; 1929 } 1930 1931 napi_complete(napi); 1932 1933 /* Reenable Rx interrupts */ 1934 if (mdp->irq_enabled) 1935 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1936 out: 1937 return budget - quota; 1938 } 1939 1940 /* PHY state control function */ 1941 static void sh_eth_adjust_link(struct net_device *ndev) 1942 { 1943 struct sh_eth_private *mdp = netdev_priv(ndev); 1944 struct phy_device *phydev = ndev->phydev; 1945 unsigned long flags; 1946 int new_state = 0; 1947 1948 spin_lock_irqsave(&mdp->lock, flags); 1949 1950 /* Disable TX and RX right over here, if E-MAC change is ignored */ 1951 if (mdp->cd->no_psr || mdp->no_ether_link) 1952 sh_eth_rcv_snd_disable(ndev); 1953 1954 if (phydev->link) { 1955 if (phydev->duplex != mdp->duplex) { 1956 new_state = 1; 1957 mdp->duplex = phydev->duplex; 1958 if (mdp->cd->set_duplex) 1959 mdp->cd->set_duplex(ndev); 1960 } 1961 1962 if (phydev->speed != mdp->speed) { 1963 new_state = 1; 1964 mdp->speed = phydev->speed; 1965 if (mdp->cd->set_rate) 1966 mdp->cd->set_rate(ndev); 1967 } 1968 if (!mdp->link) { 1969 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); 1970 new_state = 1; 1971 mdp->link = phydev->link; 1972 } 1973 } else if (mdp->link) { 1974 new_state = 1; 1975 mdp->link = 0; 1976 mdp->speed = 0; 1977 mdp->duplex = -1; 1978 } 1979 1980 /* Enable TX and RX right over here, if E-MAC change is ignored */ 1981 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link) 1982 sh_eth_rcv_snd_enable(ndev); 1983 1984 spin_unlock_irqrestore(&mdp->lock, flags); 1985 1986 if (new_state && netif_msg_link(mdp)) 1987 phy_print_status(phydev); 1988 } 1989 1990 /* PHY init function */ 1991 static int sh_eth_phy_init(struct net_device *ndev) 1992 { 1993 struct device_node *np = ndev->dev.parent->of_node; 1994 struct sh_eth_private *mdp = netdev_priv(ndev); 1995 struct phy_device *phydev; 1996 1997 mdp->link = 0; 1998 mdp->speed = 0; 1999 mdp->duplex = -1; 2000 2001 /* Try connect to PHY */ 2002 if (np) { 2003 struct device_node *pn; 2004 2005 pn = of_parse_phandle(np, "phy-handle", 0); 2006 phydev = of_phy_connect(ndev, pn, 2007 sh_eth_adjust_link, 0, 2008 mdp->phy_interface); 2009 2010 of_node_put(pn); 2011 if (!phydev) 2012 phydev = ERR_PTR(-ENOENT); 2013 } else { 2014 char phy_id[MII_BUS_ID_SIZE + 3]; 2015 2016 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 2017 mdp->mii_bus->id, mdp->phy_id); 2018 2019 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 2020 mdp->phy_interface); 2021 } 2022 2023 if (IS_ERR(phydev)) { 2024 netdev_err(ndev, "failed to connect PHY\n"); 2025 return PTR_ERR(phydev); 2026 } 2027 2028 /* mask with MAC supported features */ 2029 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) { 2030 int err = phy_set_max_speed(phydev, SPEED_100); 2031 if (err) { 2032 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n"); 2033 phy_disconnect(phydev); 2034 return err; 2035 } 2036 } 2037 2038 phy_attached_info(phydev); 2039 2040 return 0; 2041 } 2042 2043 /* PHY control start function */ 2044 static int sh_eth_phy_start(struct net_device *ndev) 2045 { 2046 int ret; 2047 2048 ret = sh_eth_phy_init(ndev); 2049 if (ret) 2050 return ret; 2051 2052 phy_start(ndev->phydev); 2053 2054 return 0; 2055 } 2056 2057 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the 2058 * version must be bumped as well. Just adding registers up to that 2059 * limit is fine, as long as the existing register indices don't 2060 * change. 2061 */ 2062 #define SH_ETH_REG_DUMP_VERSION 1 2063 #define SH_ETH_REG_DUMP_MAX_REGS 256 2064 2065 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) 2066 { 2067 struct sh_eth_private *mdp = netdev_priv(ndev); 2068 struct sh_eth_cpu_data *cd = mdp->cd; 2069 u32 *valid_map; 2070 size_t len; 2071 2072 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); 2073 2074 /* Dump starts with a bitmap that tells ethtool which 2075 * registers are defined for this chip. 2076 */ 2077 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); 2078 if (buf) { 2079 valid_map = buf; 2080 buf += len; 2081 } else { 2082 valid_map = NULL; 2083 } 2084 2085 /* Add a register to the dump, if it has a defined offset. 2086 * This automatically skips most undefined registers, but for 2087 * some it is also necessary to check a capability flag in 2088 * struct sh_eth_cpu_data. 2089 */ 2090 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) 2091 #define add_reg_from(reg, read_expr) do { \ 2092 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ 2093 if (buf) { \ 2094 mark_reg_valid(reg); \ 2095 *buf++ = read_expr; \ 2096 } \ 2097 ++len; \ 2098 } \ 2099 } while (0) 2100 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) 2101 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) 2102 2103 add_reg(EDSR); 2104 add_reg(EDMR); 2105 add_reg(EDTRR); 2106 add_reg(EDRRR); 2107 add_reg(EESR); 2108 add_reg(EESIPR); 2109 add_reg(TDLAR); 2110 if (!cd->no_xdfar) 2111 add_reg(TDFAR); 2112 add_reg(TDFXR); 2113 add_reg(TDFFR); 2114 add_reg(RDLAR); 2115 if (!cd->no_xdfar) 2116 add_reg(RDFAR); 2117 add_reg(RDFXR); 2118 add_reg(RDFFR); 2119 add_reg(TRSCER); 2120 add_reg(RMFCR); 2121 add_reg(TFTR); 2122 add_reg(FDR); 2123 add_reg(RMCR); 2124 add_reg(TFUCR); 2125 add_reg(RFOCR); 2126 if (cd->rmiimode) 2127 add_reg(RMIIMODE); 2128 add_reg(FCFTR); 2129 if (cd->rpadir) 2130 add_reg(RPADIR); 2131 if (!cd->no_trimd) 2132 add_reg(TRIMD); 2133 add_reg(ECMR); 2134 add_reg(ECSR); 2135 add_reg(ECSIPR); 2136 add_reg(PIR); 2137 if (!cd->no_psr) 2138 add_reg(PSR); 2139 add_reg(RDMLR); 2140 add_reg(RFLR); 2141 add_reg(IPGR); 2142 if (cd->apr) 2143 add_reg(APR); 2144 if (cd->mpr) 2145 add_reg(MPR); 2146 add_reg(RFCR); 2147 add_reg(RFCF); 2148 if (cd->tpauser) 2149 add_reg(TPAUSER); 2150 add_reg(TPAUSECR); 2151 if (cd->gecmr) 2152 add_reg(GECMR); 2153 if (cd->bculr) 2154 add_reg(BCULR); 2155 add_reg(MAHR); 2156 add_reg(MALR); 2157 if (!cd->no_tx_cntrs) { 2158 add_reg(TROCR); 2159 add_reg(CDCR); 2160 add_reg(LCCR); 2161 add_reg(CNDCR); 2162 } 2163 add_reg(CEFCR); 2164 add_reg(FRECR); 2165 add_reg(TSFRCR); 2166 add_reg(TLFRCR); 2167 if (cd->cexcr) { 2168 add_reg(CERCR); 2169 add_reg(CEECR); 2170 } 2171 add_reg(MAFCR); 2172 if (cd->rtrate) 2173 add_reg(RTRATE); 2174 if (cd->csmr) 2175 add_reg(CSMR); 2176 if (cd->select_mii) 2177 add_reg(RMII_MII); 2178 if (cd->tsu) { 2179 add_tsu_reg(ARSTR); 2180 add_tsu_reg(TSU_CTRST); 2181 if (cd->dual_port) { 2182 add_tsu_reg(TSU_FWEN0); 2183 add_tsu_reg(TSU_FWEN1); 2184 add_tsu_reg(TSU_FCM); 2185 add_tsu_reg(TSU_BSYSL0); 2186 add_tsu_reg(TSU_BSYSL1); 2187 add_tsu_reg(TSU_PRISL0); 2188 add_tsu_reg(TSU_PRISL1); 2189 add_tsu_reg(TSU_FWSL0); 2190 add_tsu_reg(TSU_FWSL1); 2191 } 2192 add_tsu_reg(TSU_FWSLC); 2193 if (cd->dual_port) { 2194 add_tsu_reg(TSU_QTAGM0); 2195 add_tsu_reg(TSU_QTAGM1); 2196 add_tsu_reg(TSU_FWSR); 2197 add_tsu_reg(TSU_FWINMK); 2198 add_tsu_reg(TSU_ADQT0); 2199 add_tsu_reg(TSU_ADQT1); 2200 add_tsu_reg(TSU_VTAG0); 2201 add_tsu_reg(TSU_VTAG1); 2202 } 2203 add_tsu_reg(TSU_ADSBSY); 2204 add_tsu_reg(TSU_TEN); 2205 add_tsu_reg(TSU_POST1); 2206 add_tsu_reg(TSU_POST2); 2207 add_tsu_reg(TSU_POST3); 2208 add_tsu_reg(TSU_POST4); 2209 /* This is the start of a table, not just a single register. */ 2210 if (buf) { 2211 unsigned int i; 2212 2213 mark_reg_valid(TSU_ADRH0); 2214 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) 2215 *buf++ = ioread32(mdp->tsu_addr + 2216 mdp->reg_offset[TSU_ADRH0] + 2217 i * 4); 2218 } 2219 len += SH_ETH_TSU_CAM_ENTRIES * 2; 2220 } 2221 2222 #undef mark_reg_valid 2223 #undef add_reg_from 2224 #undef add_reg 2225 #undef add_tsu_reg 2226 2227 return len * 4; 2228 } 2229 2230 static int sh_eth_get_regs_len(struct net_device *ndev) 2231 { 2232 return __sh_eth_get_regs(ndev, NULL); 2233 } 2234 2235 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, 2236 void *buf) 2237 { 2238 struct sh_eth_private *mdp = netdev_priv(ndev); 2239 2240 regs->version = SH_ETH_REG_DUMP_VERSION; 2241 2242 pm_runtime_get_sync(&mdp->pdev->dev); 2243 __sh_eth_get_regs(ndev, buf); 2244 pm_runtime_put_sync(&mdp->pdev->dev); 2245 } 2246 2247 static u32 sh_eth_get_msglevel(struct net_device *ndev) 2248 { 2249 struct sh_eth_private *mdp = netdev_priv(ndev); 2250 return mdp->msg_enable; 2251 } 2252 2253 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 2254 { 2255 struct sh_eth_private *mdp = netdev_priv(ndev); 2256 mdp->msg_enable = value; 2257 } 2258 2259 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 2260 "rx_current", "tx_current", 2261 "rx_dirty", "tx_dirty", 2262 }; 2263 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 2264 2265 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 2266 { 2267 switch (sset) { 2268 case ETH_SS_STATS: 2269 return SH_ETH_STATS_LEN; 2270 default: 2271 return -EOPNOTSUPP; 2272 } 2273 } 2274 2275 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 2276 struct ethtool_stats *stats, u64 *data) 2277 { 2278 struct sh_eth_private *mdp = netdev_priv(ndev); 2279 int i = 0; 2280 2281 /* device-specific stats */ 2282 data[i++] = mdp->cur_rx; 2283 data[i++] = mdp->cur_tx; 2284 data[i++] = mdp->dirty_rx; 2285 data[i++] = mdp->dirty_tx; 2286 } 2287 2288 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 2289 { 2290 switch (stringset) { 2291 case ETH_SS_STATS: 2292 memcpy(data, sh_eth_gstrings_stats, 2293 sizeof(sh_eth_gstrings_stats)); 2294 break; 2295 } 2296 } 2297 2298 static void sh_eth_get_ringparam(struct net_device *ndev, 2299 struct ethtool_ringparam *ring) 2300 { 2301 struct sh_eth_private *mdp = netdev_priv(ndev); 2302 2303 ring->rx_max_pending = RX_RING_MAX; 2304 ring->tx_max_pending = TX_RING_MAX; 2305 ring->rx_pending = mdp->num_rx_ring; 2306 ring->tx_pending = mdp->num_tx_ring; 2307 } 2308 2309 static int sh_eth_set_ringparam(struct net_device *ndev, 2310 struct ethtool_ringparam *ring) 2311 { 2312 struct sh_eth_private *mdp = netdev_priv(ndev); 2313 int ret; 2314 2315 if (ring->tx_pending > TX_RING_MAX || 2316 ring->rx_pending > RX_RING_MAX || 2317 ring->tx_pending < TX_RING_MIN || 2318 ring->rx_pending < RX_RING_MIN) 2319 return -EINVAL; 2320 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 2321 return -EINVAL; 2322 2323 if (netif_running(ndev)) { 2324 netif_device_detach(ndev); 2325 netif_tx_disable(ndev); 2326 2327 /* Serialise with the interrupt handler and NAPI, then 2328 * disable interrupts. We have to clear the 2329 * irq_enabled flag first to ensure that interrupts 2330 * won't be re-enabled. 2331 */ 2332 mdp->irq_enabled = false; 2333 synchronize_irq(ndev->irq); 2334 napi_synchronize(&mdp->napi); 2335 sh_eth_write(ndev, 0x0000, EESIPR); 2336 2337 sh_eth_dev_exit(ndev); 2338 2339 /* Free all the skbuffs in the Rx queue and the DMA buffers. */ 2340 sh_eth_ring_free(ndev); 2341 } 2342 2343 /* Set new parameters */ 2344 mdp->num_rx_ring = ring->rx_pending; 2345 mdp->num_tx_ring = ring->tx_pending; 2346 2347 if (netif_running(ndev)) { 2348 ret = sh_eth_ring_init(ndev); 2349 if (ret < 0) { 2350 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", 2351 __func__); 2352 return ret; 2353 } 2354 ret = sh_eth_dev_init(ndev); 2355 if (ret < 0) { 2356 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", 2357 __func__); 2358 return ret; 2359 } 2360 2361 netif_device_attach(ndev); 2362 } 2363 2364 return 0; 2365 } 2366 2367 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2368 { 2369 struct sh_eth_private *mdp = netdev_priv(ndev); 2370 2371 wol->supported = 0; 2372 wol->wolopts = 0; 2373 2374 if (mdp->cd->magic) { 2375 wol->supported = WAKE_MAGIC; 2376 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0; 2377 } 2378 } 2379 2380 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2381 { 2382 struct sh_eth_private *mdp = netdev_priv(ndev); 2383 2384 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC) 2385 return -EOPNOTSUPP; 2386 2387 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); 2388 2389 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled); 2390 2391 return 0; 2392 } 2393 2394 static const struct ethtool_ops sh_eth_ethtool_ops = { 2395 .get_regs_len = sh_eth_get_regs_len, 2396 .get_regs = sh_eth_get_regs, 2397 .nway_reset = phy_ethtool_nway_reset, 2398 .get_msglevel = sh_eth_get_msglevel, 2399 .set_msglevel = sh_eth_set_msglevel, 2400 .get_link = ethtool_op_get_link, 2401 .get_strings = sh_eth_get_strings, 2402 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2403 .get_sset_count = sh_eth_get_sset_count, 2404 .get_ringparam = sh_eth_get_ringparam, 2405 .set_ringparam = sh_eth_set_ringparam, 2406 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2407 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2408 .get_wol = sh_eth_get_wol, 2409 .set_wol = sh_eth_set_wol, 2410 }; 2411 2412 /* network device open function */ 2413 static int sh_eth_open(struct net_device *ndev) 2414 { 2415 struct sh_eth_private *mdp = netdev_priv(ndev); 2416 int ret; 2417 2418 pm_runtime_get_sync(&mdp->pdev->dev); 2419 2420 napi_enable(&mdp->napi); 2421 2422 ret = request_irq(ndev->irq, sh_eth_interrupt, 2423 mdp->cd->irq_flags, ndev->name, ndev); 2424 if (ret) { 2425 netdev_err(ndev, "Can not assign IRQ number\n"); 2426 goto out_napi_off; 2427 } 2428 2429 /* Descriptor set */ 2430 ret = sh_eth_ring_init(ndev); 2431 if (ret) 2432 goto out_free_irq; 2433 2434 /* device init */ 2435 ret = sh_eth_dev_init(ndev); 2436 if (ret) 2437 goto out_free_irq; 2438 2439 /* PHY control start*/ 2440 ret = sh_eth_phy_start(ndev); 2441 if (ret) 2442 goto out_free_irq; 2443 2444 netif_start_queue(ndev); 2445 2446 mdp->is_opened = 1; 2447 2448 return ret; 2449 2450 out_free_irq: 2451 free_irq(ndev->irq, ndev); 2452 out_napi_off: 2453 napi_disable(&mdp->napi); 2454 pm_runtime_put_sync(&mdp->pdev->dev); 2455 return ret; 2456 } 2457 2458 /* Timeout function */ 2459 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue) 2460 { 2461 struct sh_eth_private *mdp = netdev_priv(ndev); 2462 struct sh_eth_rxdesc *rxdesc; 2463 int i; 2464 2465 netif_stop_queue(ndev); 2466 2467 netif_err(mdp, timer, ndev, 2468 "transmit timed out, status %8.8x, resetting...\n", 2469 sh_eth_read(ndev, EESR)); 2470 2471 /* tx_errors count up */ 2472 ndev->stats.tx_errors++; 2473 2474 /* Free all the skbuffs in the Rx queue. */ 2475 for (i = 0; i < mdp->num_rx_ring; i++) { 2476 rxdesc = &mdp->rx_ring[i]; 2477 rxdesc->status = cpu_to_le32(0); 2478 rxdesc->addr = cpu_to_le32(0xBADF00D0); 2479 dev_kfree_skb(mdp->rx_skbuff[i]); 2480 mdp->rx_skbuff[i] = NULL; 2481 } 2482 for (i = 0; i < mdp->num_tx_ring; i++) { 2483 dev_kfree_skb(mdp->tx_skbuff[i]); 2484 mdp->tx_skbuff[i] = NULL; 2485 } 2486 2487 /* device init */ 2488 sh_eth_dev_init(ndev); 2489 2490 netif_start_queue(ndev); 2491 } 2492 2493 /* Packet transmit function */ 2494 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb, 2495 struct net_device *ndev) 2496 { 2497 struct sh_eth_private *mdp = netdev_priv(ndev); 2498 struct sh_eth_txdesc *txdesc; 2499 dma_addr_t dma_addr; 2500 u32 entry; 2501 unsigned long flags; 2502 2503 spin_lock_irqsave(&mdp->lock, flags); 2504 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2505 if (!sh_eth_tx_free(ndev, true)) { 2506 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2507 netif_stop_queue(ndev); 2508 spin_unlock_irqrestore(&mdp->lock, flags); 2509 return NETDEV_TX_BUSY; 2510 } 2511 } 2512 spin_unlock_irqrestore(&mdp->lock, flags); 2513 2514 if (skb_put_padto(skb, ETH_ZLEN)) 2515 return NETDEV_TX_OK; 2516 2517 entry = mdp->cur_tx % mdp->num_tx_ring; 2518 mdp->tx_skbuff[entry] = skb; 2519 txdesc = &mdp->tx_ring[entry]; 2520 /* soft swap. */ 2521 if (!mdp->cd->hw_swap) 2522 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); 2523 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len, 2524 DMA_TO_DEVICE); 2525 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 2526 kfree_skb(skb); 2527 return NETDEV_TX_OK; 2528 } 2529 txdesc->addr = cpu_to_le32(dma_addr); 2530 txdesc->len = cpu_to_le32(skb->len << 16); 2531 2532 dma_wmb(); /* TACT bit must be set after all the above writes */ 2533 if (entry >= mdp->num_tx_ring - 1) 2534 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); 2535 else 2536 txdesc->status |= cpu_to_le32(TD_TACT); 2537 2538 wmb(); /* cur_tx must be incremented after TACT bit was set */ 2539 mdp->cur_tx++; 2540 2541 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns)) 2542 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 2543 2544 return NETDEV_TX_OK; 2545 } 2546 2547 /* The statistics registers have write-clear behaviour, which means we 2548 * will lose any increment between the read and write. We mitigate 2549 * this by only clearing when we read a non-zero value, so we will 2550 * never falsely report a total of zero. 2551 */ 2552 static void 2553 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) 2554 { 2555 u32 delta = sh_eth_read(ndev, reg); 2556 2557 if (delta) { 2558 *stat += delta; 2559 sh_eth_write(ndev, 0, reg); 2560 } 2561 } 2562 2563 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2564 { 2565 struct sh_eth_private *mdp = netdev_priv(ndev); 2566 2567 if (mdp->cd->no_tx_cntrs) 2568 return &ndev->stats; 2569 2570 if (!mdp->is_opened) 2571 return &ndev->stats; 2572 2573 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); 2574 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); 2575 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); 2576 2577 if (mdp->cd->cexcr) { 2578 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2579 CERCR); 2580 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2581 CEECR); 2582 } else { 2583 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2584 CNDCR); 2585 } 2586 2587 return &ndev->stats; 2588 } 2589 2590 /* device close function */ 2591 static int sh_eth_close(struct net_device *ndev) 2592 { 2593 struct sh_eth_private *mdp = netdev_priv(ndev); 2594 2595 netif_stop_queue(ndev); 2596 2597 /* Serialise with the interrupt handler and NAPI, then disable 2598 * interrupts. We have to clear the irq_enabled flag first to 2599 * ensure that interrupts won't be re-enabled. 2600 */ 2601 mdp->irq_enabled = false; 2602 synchronize_irq(ndev->irq); 2603 napi_disable(&mdp->napi); 2604 sh_eth_write(ndev, 0x0000, EESIPR); 2605 2606 sh_eth_dev_exit(ndev); 2607 2608 /* PHY Disconnect */ 2609 if (ndev->phydev) { 2610 phy_stop(ndev->phydev); 2611 phy_disconnect(ndev->phydev); 2612 } 2613 2614 free_irq(ndev->irq, ndev); 2615 2616 /* Free all the skbuffs in the Rx queue and the DMA buffer. */ 2617 sh_eth_ring_free(ndev); 2618 2619 mdp->is_opened = 0; 2620 2621 pm_runtime_put(&mdp->pdev->dev); 2622 2623 return 0; 2624 } 2625 2626 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu) 2627 { 2628 if (netif_running(ndev)) 2629 return -EBUSY; 2630 2631 ndev->mtu = new_mtu; 2632 netdev_update_features(ndev); 2633 2634 return 0; 2635 } 2636 2637 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2638 static u32 sh_eth_tsu_get_post_mask(int entry) 2639 { 2640 return 0x0f << (28 - ((entry % 8) * 4)); 2641 } 2642 2643 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2644 { 2645 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2646 } 2647 2648 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2649 int entry) 2650 { 2651 struct sh_eth_private *mdp = netdev_priv(ndev); 2652 int reg = TSU_POST1 + entry / 8; 2653 u32 tmp; 2654 2655 tmp = sh_eth_tsu_read(mdp, reg); 2656 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg); 2657 } 2658 2659 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2660 int entry) 2661 { 2662 struct sh_eth_private *mdp = netdev_priv(ndev); 2663 int reg = TSU_POST1 + entry / 8; 2664 u32 post_mask, ref_mask, tmp; 2665 2666 post_mask = sh_eth_tsu_get_post_mask(entry); 2667 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2668 2669 tmp = sh_eth_tsu_read(mdp, reg); 2670 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg); 2671 2672 /* If other port enables, the function returns "true" */ 2673 return tmp & ref_mask; 2674 } 2675 2676 static int sh_eth_tsu_busy(struct net_device *ndev) 2677 { 2678 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2679 struct sh_eth_private *mdp = netdev_priv(ndev); 2680 2681 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2682 udelay(10); 2683 timeout--; 2684 if (timeout <= 0) { 2685 netdev_err(ndev, "%s: timeout\n", __func__); 2686 return -ETIMEDOUT; 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset, 2694 const u8 *addr) 2695 { 2696 struct sh_eth_private *mdp = netdev_priv(ndev); 2697 u32 val; 2698 2699 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2700 iowrite32(val, mdp->tsu_addr + offset); 2701 if (sh_eth_tsu_busy(ndev) < 0) 2702 return -EBUSY; 2703 2704 val = addr[4] << 8 | addr[5]; 2705 iowrite32(val, mdp->tsu_addr + offset + 4); 2706 if (sh_eth_tsu_busy(ndev) < 0) 2707 return -EBUSY; 2708 2709 return 0; 2710 } 2711 2712 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr) 2713 { 2714 struct sh_eth_private *mdp = netdev_priv(ndev); 2715 u32 val; 2716 2717 val = ioread32(mdp->tsu_addr + offset); 2718 addr[0] = (val >> 24) & 0xff; 2719 addr[1] = (val >> 16) & 0xff; 2720 addr[2] = (val >> 8) & 0xff; 2721 addr[3] = val & 0xff; 2722 val = ioread32(mdp->tsu_addr + offset + 4); 2723 addr[4] = (val >> 8) & 0xff; 2724 addr[5] = val & 0xff; 2725 } 2726 2727 2728 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2729 { 2730 struct sh_eth_private *mdp = netdev_priv(ndev); 2731 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2732 int i; 2733 u8 c_addr[ETH_ALEN]; 2734 2735 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2736 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr); 2737 if (ether_addr_equal(addr, c_addr)) 2738 return i; 2739 } 2740 2741 return -ENOENT; 2742 } 2743 2744 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2745 { 2746 u8 blank[ETH_ALEN]; 2747 int entry; 2748 2749 memset(blank, 0, sizeof(blank)); 2750 entry = sh_eth_tsu_find_entry(ndev, blank); 2751 return (entry < 0) ? -ENOMEM : entry; 2752 } 2753 2754 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2755 int entry) 2756 { 2757 struct sh_eth_private *mdp = netdev_priv(ndev); 2758 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2759 int ret; 2760 u8 blank[ETH_ALEN]; 2761 2762 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2763 ~(1 << (31 - entry)), TSU_TEN); 2764 2765 memset(blank, 0, sizeof(blank)); 2766 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2767 if (ret < 0) 2768 return ret; 2769 return 0; 2770 } 2771 2772 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2773 { 2774 struct sh_eth_private *mdp = netdev_priv(ndev); 2775 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2776 int i, ret; 2777 2778 if (!mdp->cd->tsu) 2779 return 0; 2780 2781 i = sh_eth_tsu_find_entry(ndev, addr); 2782 if (i < 0) { 2783 /* No entry found, create one */ 2784 i = sh_eth_tsu_find_empty(ndev); 2785 if (i < 0) 2786 return -ENOMEM; 2787 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2788 if (ret < 0) 2789 return ret; 2790 2791 /* Enable the entry */ 2792 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2793 (1 << (31 - i)), TSU_TEN); 2794 } 2795 2796 /* Entry found or created, enable POST */ 2797 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2798 2799 return 0; 2800 } 2801 2802 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2803 { 2804 struct sh_eth_private *mdp = netdev_priv(ndev); 2805 int i, ret; 2806 2807 if (!mdp->cd->tsu) 2808 return 0; 2809 2810 i = sh_eth_tsu_find_entry(ndev, addr); 2811 if (i) { 2812 /* Entry found */ 2813 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2814 goto done; 2815 2816 /* Disable the entry if both ports was disabled */ 2817 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2818 if (ret < 0) 2819 return ret; 2820 } 2821 done: 2822 return 0; 2823 } 2824 2825 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2826 { 2827 struct sh_eth_private *mdp = netdev_priv(ndev); 2828 int i, ret; 2829 2830 if (!mdp->cd->tsu) 2831 return 0; 2832 2833 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2834 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2835 continue; 2836 2837 /* Disable the entry if both ports was disabled */ 2838 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2839 if (ret < 0) 2840 return ret; 2841 } 2842 2843 return 0; 2844 } 2845 2846 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2847 { 2848 struct sh_eth_private *mdp = netdev_priv(ndev); 2849 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2850 u8 addr[ETH_ALEN]; 2851 int i; 2852 2853 if (!mdp->cd->tsu) 2854 return; 2855 2856 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2857 sh_eth_tsu_read_entry(ndev, reg_offset, addr); 2858 if (is_multicast_ether_addr(addr)) 2859 sh_eth_tsu_del_entry(ndev, addr); 2860 } 2861 } 2862 2863 /* Update promiscuous flag and multicast filter */ 2864 static void sh_eth_set_rx_mode(struct net_device *ndev) 2865 { 2866 struct sh_eth_private *mdp = netdev_priv(ndev); 2867 u32 ecmr_bits; 2868 int mcast_all = 0; 2869 unsigned long flags; 2870 2871 spin_lock_irqsave(&mdp->lock, flags); 2872 /* Initial condition is MCT = 1, PRM = 0. 2873 * Depending on ndev->flags, set PRM or clear MCT 2874 */ 2875 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; 2876 if (mdp->cd->tsu) 2877 ecmr_bits |= ECMR_MCT; 2878 2879 if (!(ndev->flags & IFF_MULTICAST)) { 2880 sh_eth_tsu_purge_mcast(ndev); 2881 mcast_all = 1; 2882 } 2883 if (ndev->flags & IFF_ALLMULTI) { 2884 sh_eth_tsu_purge_mcast(ndev); 2885 ecmr_bits &= ~ECMR_MCT; 2886 mcast_all = 1; 2887 } 2888 2889 if (ndev->flags & IFF_PROMISC) { 2890 sh_eth_tsu_purge_all(ndev); 2891 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2892 } else if (mdp->cd->tsu) { 2893 struct netdev_hw_addr *ha; 2894 netdev_for_each_mc_addr(ha, ndev) { 2895 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2896 continue; 2897 2898 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2899 if (!mcast_all) { 2900 sh_eth_tsu_purge_mcast(ndev); 2901 ecmr_bits &= ~ECMR_MCT; 2902 mcast_all = 1; 2903 } 2904 } 2905 } 2906 } 2907 2908 /* update the ethernet mode */ 2909 sh_eth_write(ndev, ecmr_bits, ECMR); 2910 2911 spin_unlock_irqrestore(&mdp->lock, flags); 2912 } 2913 2914 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable) 2915 { 2916 struct sh_eth_private *mdp = netdev_priv(ndev); 2917 unsigned long flags; 2918 2919 spin_lock_irqsave(&mdp->lock, flags); 2920 2921 /* Disable TX and RX */ 2922 sh_eth_rcv_snd_disable(ndev); 2923 2924 /* Modify RX Checksum setting */ 2925 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); 2926 2927 /* Enable TX and RX */ 2928 sh_eth_rcv_snd_enable(ndev); 2929 2930 spin_unlock_irqrestore(&mdp->lock, flags); 2931 } 2932 2933 static int sh_eth_set_features(struct net_device *ndev, 2934 netdev_features_t features) 2935 { 2936 netdev_features_t changed = ndev->features ^ features; 2937 struct sh_eth_private *mdp = netdev_priv(ndev); 2938 2939 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum) 2940 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM); 2941 2942 ndev->features = features; 2943 2944 return 0; 2945 } 2946 2947 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2948 { 2949 if (!mdp->port) 2950 return TSU_VTAG0; 2951 else 2952 return TSU_VTAG1; 2953 } 2954 2955 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2956 __be16 proto, u16 vid) 2957 { 2958 struct sh_eth_private *mdp = netdev_priv(ndev); 2959 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2960 2961 if (unlikely(!mdp->cd->tsu)) 2962 return -EPERM; 2963 2964 /* No filtering if vid = 0 */ 2965 if (!vid) 2966 return 0; 2967 2968 mdp->vlan_num_ids++; 2969 2970 /* The controller has one VLAN tag HW filter. So, if the filter is 2971 * already enabled, the driver disables it and the filte 2972 */ 2973 if (mdp->vlan_num_ids > 1) { 2974 /* disable VLAN filter */ 2975 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2976 return 0; 2977 } 2978 2979 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2980 vtag_reg_index); 2981 2982 return 0; 2983 } 2984 2985 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2986 __be16 proto, u16 vid) 2987 { 2988 struct sh_eth_private *mdp = netdev_priv(ndev); 2989 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2990 2991 if (unlikely(!mdp->cd->tsu)) 2992 return -EPERM; 2993 2994 /* No filtering if vid = 0 */ 2995 if (!vid) 2996 return 0; 2997 2998 mdp->vlan_num_ids--; 2999 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 3000 3001 return 0; 3002 } 3003 3004 /* SuperH's TSU register init function */ 3005 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 3006 { 3007 if (!mdp->cd->dual_port) { 3008 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3009 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, 3010 TSU_FWSLC); /* Enable POST registers */ 3011 return; 3012 } 3013 3014 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 3015 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 3016 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 3017 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 3018 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 3019 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 3020 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 3021 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 3022 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 3023 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 3024 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 3025 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 3026 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 3027 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 3028 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3029 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 3030 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 3031 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 3032 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 3033 } 3034 3035 /* MDIO bus release function */ 3036 static int sh_mdio_release(struct sh_eth_private *mdp) 3037 { 3038 /* unregister mdio bus */ 3039 mdiobus_unregister(mdp->mii_bus); 3040 3041 /* free bitbang info */ 3042 free_mdio_bitbang(mdp->mii_bus); 3043 3044 return 0; 3045 } 3046 3047 static int sh_mdiobb_read(struct mii_bus *bus, int phy, int reg) 3048 { 3049 int res; 3050 3051 pm_runtime_get_sync(bus->parent); 3052 res = mdiobb_read(bus, phy, reg); 3053 pm_runtime_put(bus->parent); 3054 3055 return res; 3056 } 3057 3058 static int sh_mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val) 3059 { 3060 int res; 3061 3062 pm_runtime_get_sync(bus->parent); 3063 res = mdiobb_write(bus, phy, reg, val); 3064 pm_runtime_put(bus->parent); 3065 3066 return res; 3067 } 3068 3069 /* MDIO bus init function */ 3070 static int sh_mdio_init(struct sh_eth_private *mdp, 3071 struct sh_eth_plat_data *pd) 3072 { 3073 int ret; 3074 struct bb_info *bitbang; 3075 struct platform_device *pdev = mdp->pdev; 3076 struct device *dev = &mdp->pdev->dev; 3077 3078 /* create bit control struct for PHY */ 3079 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 3080 if (!bitbang) 3081 return -ENOMEM; 3082 3083 /* bitbang init */ 3084 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 3085 bitbang->set_gate = pd->set_mdio_gate; 3086 bitbang->ctrl.ops = &bb_ops; 3087 3088 /* MII controller setting */ 3089 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 3090 if (!mdp->mii_bus) 3091 return -ENOMEM; 3092 3093 /* Wrap accessors with Runtime PM-aware ops */ 3094 mdp->mii_bus->read = sh_mdiobb_read; 3095 mdp->mii_bus->write = sh_mdiobb_write; 3096 3097 /* Hook up MII support for ethtool */ 3098 mdp->mii_bus->name = "sh_mii"; 3099 mdp->mii_bus->parent = dev; 3100 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 3101 pdev->name, pdev->id); 3102 3103 /* register MDIO bus */ 3104 if (pd->phy_irq > 0) 3105 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 3106 3107 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 3108 if (ret) 3109 goto out_free_bus; 3110 3111 return 0; 3112 3113 out_free_bus: 3114 free_mdio_bitbang(mdp->mii_bus); 3115 return ret; 3116 } 3117 3118 static const u16 *sh_eth_get_register_offset(int register_type) 3119 { 3120 const u16 *reg_offset = NULL; 3121 3122 switch (register_type) { 3123 case SH_ETH_REG_GIGABIT: 3124 reg_offset = sh_eth_offset_gigabit; 3125 break; 3126 case SH_ETH_REG_FAST_RCAR: 3127 reg_offset = sh_eth_offset_fast_rcar; 3128 break; 3129 case SH_ETH_REG_FAST_SH4: 3130 reg_offset = sh_eth_offset_fast_sh4; 3131 break; 3132 case SH_ETH_REG_FAST_SH3_SH2: 3133 reg_offset = sh_eth_offset_fast_sh3_sh2; 3134 break; 3135 } 3136 3137 return reg_offset; 3138 } 3139 3140 static const struct net_device_ops sh_eth_netdev_ops = { 3141 .ndo_open = sh_eth_open, 3142 .ndo_stop = sh_eth_close, 3143 .ndo_start_xmit = sh_eth_start_xmit, 3144 .ndo_get_stats = sh_eth_get_stats, 3145 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3146 .ndo_tx_timeout = sh_eth_tx_timeout, 3147 .ndo_eth_ioctl = phy_do_ioctl_running, 3148 .ndo_change_mtu = sh_eth_change_mtu, 3149 .ndo_validate_addr = eth_validate_addr, 3150 .ndo_set_mac_address = eth_mac_addr, 3151 .ndo_set_features = sh_eth_set_features, 3152 }; 3153 3154 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 3155 .ndo_open = sh_eth_open, 3156 .ndo_stop = sh_eth_close, 3157 .ndo_start_xmit = sh_eth_start_xmit, 3158 .ndo_get_stats = sh_eth_get_stats, 3159 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3160 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 3161 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 3162 .ndo_tx_timeout = sh_eth_tx_timeout, 3163 .ndo_eth_ioctl = phy_do_ioctl_running, 3164 .ndo_change_mtu = sh_eth_change_mtu, 3165 .ndo_validate_addr = eth_validate_addr, 3166 .ndo_set_mac_address = eth_mac_addr, 3167 .ndo_set_features = sh_eth_set_features, 3168 }; 3169 3170 #ifdef CONFIG_OF 3171 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3172 { 3173 struct device_node *np = dev->of_node; 3174 struct sh_eth_plat_data *pdata; 3175 phy_interface_t interface; 3176 int ret; 3177 3178 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3179 if (!pdata) 3180 return NULL; 3181 3182 ret = of_get_phy_mode(np, &interface); 3183 if (ret) 3184 return NULL; 3185 pdata->phy_interface = interface; 3186 3187 of_get_mac_address(np, pdata->mac_addr); 3188 3189 pdata->no_ether_link = 3190 of_property_read_bool(np, "renesas,no-ether-link"); 3191 pdata->ether_link_active_low = 3192 of_property_read_bool(np, "renesas,ether-link-active-low"); 3193 3194 return pdata; 3195 } 3196 3197 static const struct of_device_id sh_eth_match_table[] = { 3198 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 3199 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data }, 3200 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data }, 3201 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data }, 3202 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data }, 3203 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data }, 3204 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data }, 3205 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data }, 3206 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data }, 3207 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data }, 3208 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 3209 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data }, 3210 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data }, 3211 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data }, 3212 { } 3213 }; 3214 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 3215 #else 3216 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3217 { 3218 return NULL; 3219 } 3220 #endif 3221 3222 static int sh_eth_drv_probe(struct platform_device *pdev) 3223 { 3224 struct resource *res; 3225 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 3226 const struct platform_device_id *id = platform_get_device_id(pdev); 3227 struct sh_eth_private *mdp; 3228 struct net_device *ndev; 3229 int ret; 3230 3231 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 3232 if (!ndev) 3233 return -ENOMEM; 3234 3235 pm_runtime_enable(&pdev->dev); 3236 pm_runtime_get_sync(&pdev->dev); 3237 3238 ret = platform_get_irq(pdev, 0); 3239 if (ret < 0) 3240 goto out_release; 3241 ndev->irq = ret; 3242 3243 SET_NETDEV_DEV(ndev, &pdev->dev); 3244 3245 mdp = netdev_priv(ndev); 3246 mdp->num_tx_ring = TX_RING_SIZE; 3247 mdp->num_rx_ring = RX_RING_SIZE; 3248 mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 3249 if (IS_ERR(mdp->addr)) { 3250 ret = PTR_ERR(mdp->addr); 3251 goto out_release; 3252 } 3253 3254 ndev->base_addr = res->start; 3255 3256 spin_lock_init(&mdp->lock); 3257 mdp->pdev = pdev; 3258 3259 if (pdev->dev.of_node) 3260 pd = sh_eth_parse_dt(&pdev->dev); 3261 if (!pd) { 3262 dev_err(&pdev->dev, "no platform data\n"); 3263 ret = -EINVAL; 3264 goto out_release; 3265 } 3266 3267 /* get PHY ID */ 3268 mdp->phy_id = pd->phy; 3269 mdp->phy_interface = pd->phy_interface; 3270 mdp->no_ether_link = pd->no_ether_link; 3271 mdp->ether_link_active_low = pd->ether_link_active_low; 3272 3273 /* set cpu data */ 3274 if (id) 3275 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 3276 else 3277 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); 3278 3279 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 3280 if (!mdp->reg_offset) { 3281 dev_err(&pdev->dev, "Unknown register type (%d)\n", 3282 mdp->cd->register_type); 3283 ret = -EINVAL; 3284 goto out_release; 3285 } 3286 sh_eth_set_default_cpu_data(mdp->cd); 3287 3288 /* User's manual states max MTU should be 2048 but due to the 3289 * alignment calculations in sh_eth_ring_init() the practical 3290 * MTU is a bit less. Maybe this can be optimized some more. 3291 */ 3292 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); 3293 ndev->min_mtu = ETH_MIN_MTU; 3294 3295 if (mdp->cd->rx_csum) { 3296 ndev->features = NETIF_F_RXCSUM; 3297 ndev->hw_features = NETIF_F_RXCSUM; 3298 } 3299 3300 /* set function */ 3301 if (mdp->cd->tsu) 3302 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 3303 else 3304 ndev->netdev_ops = &sh_eth_netdev_ops; 3305 ndev->ethtool_ops = &sh_eth_ethtool_ops; 3306 ndev->watchdog_timeo = TX_TIMEOUT; 3307 3308 /* debug message level */ 3309 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 3310 3311 /* read and set MAC address */ 3312 read_mac_address(ndev, pd->mac_addr); 3313 if (!is_valid_ether_addr(ndev->dev_addr)) { 3314 dev_warn(&pdev->dev, 3315 "no valid MAC address supplied, using a random one.\n"); 3316 eth_hw_addr_random(ndev); 3317 } 3318 3319 if (mdp->cd->tsu) { 3320 int port = pdev->id < 0 ? 0 : pdev->id % 2; 3321 struct resource *rtsu; 3322 3323 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3324 if (!rtsu) { 3325 dev_err(&pdev->dev, "no TSU resource\n"); 3326 ret = -ENODEV; 3327 goto out_release; 3328 } 3329 /* We can only request the TSU region for the first port 3330 * of the two sharing this TSU for the probe to succeed... 3331 */ 3332 if (port == 0 && 3333 !devm_request_mem_region(&pdev->dev, rtsu->start, 3334 resource_size(rtsu), 3335 dev_name(&pdev->dev))) { 3336 dev_err(&pdev->dev, "can't request TSU resource.\n"); 3337 ret = -EBUSY; 3338 goto out_release; 3339 } 3340 /* ioremap the TSU registers */ 3341 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start, 3342 resource_size(rtsu)); 3343 if (!mdp->tsu_addr) { 3344 dev_err(&pdev->dev, "TSU region ioremap() failed.\n"); 3345 ret = -ENOMEM; 3346 goto out_release; 3347 } 3348 mdp->port = port; 3349 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3350 3351 /* Need to init only the first port of the two sharing a TSU */ 3352 if (port == 0) { 3353 if (mdp->cd->chip_reset) 3354 mdp->cd->chip_reset(ndev); 3355 3356 /* TSU init (Init only)*/ 3357 sh_eth_tsu_init(mdp); 3358 } 3359 } 3360 3361 if (mdp->cd->rmiimode) 3362 sh_eth_write(ndev, 0x1, RMIIMODE); 3363 3364 /* MDIO bus init */ 3365 ret = sh_mdio_init(mdp, pd); 3366 if (ret) { 3367 if (ret != -EPROBE_DEFER) 3368 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret); 3369 goto out_release; 3370 } 3371 3372 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 3373 3374 /* network device register */ 3375 ret = register_netdev(ndev); 3376 if (ret) 3377 goto out_napi_del; 3378 3379 if (mdp->cd->magic) 3380 device_set_wakeup_capable(&pdev->dev, 1); 3381 3382 /* print device information */ 3383 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 3384 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 3385 3386 pm_runtime_put(&pdev->dev); 3387 platform_set_drvdata(pdev, ndev); 3388 3389 return ret; 3390 3391 out_napi_del: 3392 netif_napi_del(&mdp->napi); 3393 sh_mdio_release(mdp); 3394 3395 out_release: 3396 /* net_dev free */ 3397 free_netdev(ndev); 3398 3399 pm_runtime_put(&pdev->dev); 3400 pm_runtime_disable(&pdev->dev); 3401 return ret; 3402 } 3403 3404 static int sh_eth_drv_remove(struct platform_device *pdev) 3405 { 3406 struct net_device *ndev = platform_get_drvdata(pdev); 3407 struct sh_eth_private *mdp = netdev_priv(ndev); 3408 3409 unregister_netdev(ndev); 3410 netif_napi_del(&mdp->napi); 3411 sh_mdio_release(mdp); 3412 pm_runtime_disable(&pdev->dev); 3413 free_netdev(ndev); 3414 3415 return 0; 3416 } 3417 3418 #ifdef CONFIG_PM 3419 #ifdef CONFIG_PM_SLEEP 3420 static int sh_eth_wol_setup(struct net_device *ndev) 3421 { 3422 struct sh_eth_private *mdp = netdev_priv(ndev); 3423 3424 /* Only allow ECI interrupts */ 3425 synchronize_irq(ndev->irq); 3426 napi_disable(&mdp->napi); 3427 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR); 3428 3429 /* Enable MagicPacket */ 3430 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); 3431 3432 return enable_irq_wake(ndev->irq); 3433 } 3434 3435 static int sh_eth_wol_restore(struct net_device *ndev) 3436 { 3437 struct sh_eth_private *mdp = netdev_priv(ndev); 3438 int ret; 3439 3440 napi_enable(&mdp->napi); 3441 3442 /* Disable MagicPacket */ 3443 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0); 3444 3445 /* The device needs to be reset to restore MagicPacket logic 3446 * for next wakeup. If we close and open the device it will 3447 * both be reset and all registers restored. This is what 3448 * happens during suspend and resume without WoL enabled. 3449 */ 3450 ret = sh_eth_close(ndev); 3451 if (ret < 0) 3452 return ret; 3453 ret = sh_eth_open(ndev); 3454 if (ret < 0) 3455 return ret; 3456 3457 return disable_irq_wake(ndev->irq); 3458 } 3459 3460 static int sh_eth_suspend(struct device *dev) 3461 { 3462 struct net_device *ndev = dev_get_drvdata(dev); 3463 struct sh_eth_private *mdp = netdev_priv(ndev); 3464 int ret = 0; 3465 3466 if (!netif_running(ndev)) 3467 return 0; 3468 3469 netif_device_detach(ndev); 3470 3471 if (mdp->wol_enabled) 3472 ret = sh_eth_wol_setup(ndev); 3473 else 3474 ret = sh_eth_close(ndev); 3475 3476 return ret; 3477 } 3478 3479 static int sh_eth_resume(struct device *dev) 3480 { 3481 struct net_device *ndev = dev_get_drvdata(dev); 3482 struct sh_eth_private *mdp = netdev_priv(ndev); 3483 int ret = 0; 3484 3485 if (!netif_running(ndev)) 3486 return 0; 3487 3488 if (mdp->wol_enabled) 3489 ret = sh_eth_wol_restore(ndev); 3490 else 3491 ret = sh_eth_open(ndev); 3492 3493 if (ret < 0) 3494 return ret; 3495 3496 netif_device_attach(ndev); 3497 3498 return ret; 3499 } 3500 #endif 3501 3502 static int sh_eth_runtime_nop(struct device *dev) 3503 { 3504 /* Runtime PM callback shared between ->runtime_suspend() 3505 * and ->runtime_resume(). Simply returns success. 3506 * 3507 * This driver re-initializes all registers after 3508 * pm_runtime_get_sync() anyway so there is no need 3509 * to save and restore registers here. 3510 */ 3511 return 0; 3512 } 3513 3514 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 3515 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) 3516 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) 3517 }; 3518 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 3519 #else 3520 #define SH_ETH_PM_OPS NULL 3521 #endif 3522 3523 static const struct platform_device_id sh_eth_id_table[] = { 3524 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 3525 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 3526 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 3527 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 3528 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 3529 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 3530 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 3531 { } 3532 }; 3533 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 3534 3535 static struct platform_driver sh_eth_driver = { 3536 .probe = sh_eth_drv_probe, 3537 .remove = sh_eth_drv_remove, 3538 .id_table = sh_eth_id_table, 3539 .driver = { 3540 .name = CARDNAME, 3541 .pm = SH_ETH_PM_OPS, 3542 .of_match_table = of_match_ptr(sh_eth_match_table), 3543 }, 3544 }; 3545 3546 module_platform_driver(sh_eth_driver); 3547 3548 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 3549 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 3550 MODULE_LICENSE("GPL v2"); 3551