1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	u16 offset = mdp->reg_offset[enum_index];
446 
447 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
448 		return;
449 
450 	iowrite32(data, mdp->tsu_addr + offset);
451 }
452 
453 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
454 {
455 	u16 offset = mdp->reg_offset[enum_index];
456 
457 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
458 		return ~0U;
459 
460 	return ioread32(mdp->tsu_addr + offset);
461 }
462 
463 static void sh_eth_select_mii(struct net_device *ndev)
464 {
465 	struct sh_eth_private *mdp = netdev_priv(ndev);
466 	u32 value;
467 
468 	switch (mdp->phy_interface) {
469 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
470 		value = 0x3;
471 		break;
472 	case PHY_INTERFACE_MODE_GMII:
473 		value = 0x2;
474 		break;
475 	case PHY_INTERFACE_MODE_MII:
476 		value = 0x1;
477 		break;
478 	case PHY_INTERFACE_MODE_RMII:
479 		value = 0x0;
480 		break;
481 	default:
482 		netdev_warn(ndev,
483 			    "PHY interface mode was not setup. Set to MII.\n");
484 		value = 0x1;
485 		break;
486 	}
487 
488 	sh_eth_write(ndev, value, RMII_MII);
489 }
490 
491 static void sh_eth_set_duplex(struct net_device *ndev)
492 {
493 	struct sh_eth_private *mdp = netdev_priv(ndev);
494 
495 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
496 }
497 
498 static void sh_eth_chip_reset(struct net_device *ndev)
499 {
500 	struct sh_eth_private *mdp = netdev_priv(ndev);
501 
502 	/* reset device */
503 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
504 	mdelay(1);
505 }
506 
507 static int sh_eth_soft_reset(struct net_device *ndev)
508 {
509 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
510 	mdelay(3);
511 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
512 
513 	return 0;
514 }
515 
516 static int sh_eth_check_soft_reset(struct net_device *ndev)
517 {
518 	int cnt;
519 
520 	for (cnt = 100; cnt > 0; cnt--) {
521 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
522 			return 0;
523 		mdelay(1);
524 	}
525 
526 	netdev_err(ndev, "Device reset failed\n");
527 	return -ETIMEDOUT;
528 }
529 
530 static int sh_eth_soft_reset_gether(struct net_device *ndev)
531 {
532 	struct sh_eth_private *mdp = netdev_priv(ndev);
533 	int ret;
534 
535 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
536 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
537 
538 	ret = sh_eth_check_soft_reset(ndev);
539 	if (ret)
540 		return ret;
541 
542 	/* Table Init */
543 	sh_eth_write(ndev, 0, TDLAR);
544 	sh_eth_write(ndev, 0, TDFAR);
545 	sh_eth_write(ndev, 0, TDFXR);
546 	sh_eth_write(ndev, 0, TDFFR);
547 	sh_eth_write(ndev, 0, RDLAR);
548 	sh_eth_write(ndev, 0, RDFAR);
549 	sh_eth_write(ndev, 0, RDFXR);
550 	sh_eth_write(ndev, 0, RDFFR);
551 
552 	/* Reset HW CRC register */
553 	if (mdp->cd->hw_checksum)
554 		sh_eth_write(ndev, 0, CSMR);
555 
556 	/* Select MII mode */
557 	if (mdp->cd->select_mii)
558 		sh_eth_select_mii(ndev);
559 
560 	return ret;
561 }
562 
563 static void sh_eth_set_rate_gether(struct net_device *ndev)
564 {
565 	struct sh_eth_private *mdp = netdev_priv(ndev);
566 
567 	switch (mdp->speed) {
568 	case 10: /* 10BASE */
569 		sh_eth_write(ndev, GECMR_10, GECMR);
570 		break;
571 	case 100:/* 100BASE */
572 		sh_eth_write(ndev, GECMR_100, GECMR);
573 		break;
574 	case 1000: /* 1000BASE */
575 		sh_eth_write(ndev, GECMR_1000, GECMR);
576 		break;
577 	}
578 }
579 
580 #ifdef CONFIG_OF
581 /* R7S72100 */
582 static struct sh_eth_cpu_data r7s72100_data = {
583 	.soft_reset	= sh_eth_soft_reset_gether,
584 
585 	.chip_reset	= sh_eth_chip_reset,
586 	.set_duplex	= sh_eth_set_duplex,
587 
588 	.register_type	= SH_ETH_REG_FAST_RZ,
589 
590 	.edtrr_trns	= EDTRR_TRNS_GETHER,
591 	.ecsr_value	= ECSR_ICD,
592 	.ecsipr_value	= ECSIPR_ICDIP,
593 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
594 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
595 			  EESIPR_ECIIP |
596 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
597 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
598 			  EESIPR_RMAFIP | EESIPR_RRFIP |
599 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
600 			  EESIPR_PREIP | EESIPR_CERFIP,
601 
602 	.tx_check	= EESR_TC1 | EESR_FTC,
603 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
604 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
605 			  EESR_TDE,
606 	.fdr_value	= 0x0000070f,
607 
608 	.no_psr		= 1,
609 	.apr		= 1,
610 	.mpr		= 1,
611 	.tpauser	= 1,
612 	.hw_swap	= 1,
613 	.rpadir		= 1,
614 	.rpadir_value   = 2 << 16,
615 	.no_trimd	= 1,
616 	.no_ade		= 1,
617 	.xdfar_rw	= 1,
618 	.hw_checksum	= 1,
619 	.tsu		= 1,
620 	.no_tx_cntrs	= 1,
621 };
622 
623 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
624 {
625 	sh_eth_chip_reset(ndev);
626 
627 	sh_eth_select_mii(ndev);
628 }
629 
630 /* R8A7740 */
631 static struct sh_eth_cpu_data r8a7740_data = {
632 	.soft_reset	= sh_eth_soft_reset_gether,
633 
634 	.chip_reset	= sh_eth_chip_reset_r8a7740,
635 	.set_duplex	= sh_eth_set_duplex,
636 	.set_rate	= sh_eth_set_rate_gether,
637 
638 	.register_type	= SH_ETH_REG_GIGABIT,
639 
640 	.edtrr_trns	= EDTRR_TRNS_GETHER,
641 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
642 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
643 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
644 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
645 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
646 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
647 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
648 			  EESIPR_CEEFIP | EESIPR_CELFIP |
649 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
650 			  EESIPR_PREIP | EESIPR_CERFIP,
651 
652 	.tx_check	= EESR_TC1 | EESR_FTC,
653 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
654 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
655 			  EESR_TDE,
656 	.fdr_value	= 0x0000070f,
657 
658 	.apr		= 1,
659 	.mpr		= 1,
660 	.tpauser	= 1,
661 	.bculr		= 1,
662 	.hw_swap	= 1,
663 	.rpadir		= 1,
664 	.rpadir_value   = 2 << 16,
665 	.no_trimd	= 1,
666 	.no_ade		= 1,
667 	.xdfar_rw	= 1,
668 	.hw_checksum	= 1,
669 	.tsu		= 1,
670 	.select_mii	= 1,
671 	.magic		= 1,
672 	.cexcr		= 1,
673 };
674 
675 /* There is CPU dependent code */
676 static void sh_eth_set_rate_rcar(struct net_device *ndev)
677 {
678 	struct sh_eth_private *mdp = netdev_priv(ndev);
679 
680 	switch (mdp->speed) {
681 	case 10: /* 10BASE */
682 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
683 		break;
684 	case 100:/* 100BASE */
685 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
686 		break;
687 	}
688 }
689 
690 /* R-Car Gen1 */
691 static struct sh_eth_cpu_data rcar_gen1_data = {
692 	.soft_reset	= sh_eth_soft_reset,
693 
694 	.set_duplex	= sh_eth_set_duplex,
695 	.set_rate	= sh_eth_set_rate_rcar,
696 
697 	.register_type	= SH_ETH_REG_FAST_RCAR,
698 
699 	.edtrr_trns	= EDTRR_TRNS_ETHER,
700 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
701 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
702 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
703 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
704 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
705 			  EESIPR_RMAFIP | EESIPR_RRFIP |
706 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
707 			  EESIPR_PREIP | EESIPR_CERFIP,
708 
709 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
710 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
711 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
712 	.fdr_value	= 0x00000f0f,
713 
714 	.apr		= 1,
715 	.mpr		= 1,
716 	.tpauser	= 1,
717 	.hw_swap	= 1,
718 	.no_xdfar	= 1,
719 };
720 
721 /* R-Car Gen2 and RZ/G1 */
722 static struct sh_eth_cpu_data rcar_gen2_data = {
723 	.soft_reset	= sh_eth_soft_reset,
724 
725 	.set_duplex	= sh_eth_set_duplex,
726 	.set_rate	= sh_eth_set_rate_rcar,
727 
728 	.register_type	= SH_ETH_REG_FAST_RCAR,
729 
730 	.edtrr_trns	= EDTRR_TRNS_ETHER,
731 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
732 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
733 			  ECSIPR_MPDIP,
734 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
735 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 			  EESIPR_RMAFIP | EESIPR_RRFIP |
738 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
739 			  EESIPR_PREIP | EESIPR_CERFIP,
740 
741 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
742 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
743 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
744 	.fdr_value	= 0x00000f0f,
745 
746 	.trscer_err_mask = DESC_I_RINT8,
747 
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.hw_swap	= 1,
752 	.no_xdfar	= 1,
753 	.rmiimode	= 1,
754 	.magic		= 1,
755 };
756 
757 /* R8A77980 */
758 static struct sh_eth_cpu_data r8a77980_data = {
759 	.soft_reset	= sh_eth_soft_reset_gether,
760 
761 	.set_duplex	= sh_eth_set_duplex,
762 	.set_rate	= sh_eth_set_rate_gether,
763 
764 	.register_type  = SH_ETH_REG_GIGABIT,
765 
766 	.edtrr_trns	= EDTRR_TRNS_GETHER,
767 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
768 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
769 			  ECSIPR_MPDIP,
770 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
771 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
772 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
773 			  EESIPR_RMAFIP | EESIPR_RRFIP |
774 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
775 			  EESIPR_PREIP | EESIPR_CERFIP,
776 
777 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
778 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
780 			  EESR_TFE | EESR_TDE | EESR_ECI,
781 	.fdr_value	= 0x0000070f,
782 
783 	.apr		= 1,
784 	.mpr		= 1,
785 	.tpauser	= 1,
786 	.bculr		= 1,
787 	.hw_swap	= 1,
788 	.nbst		= 1,
789 	.rpadir		= 1,
790 	.rpadir_value   = 2 << 16,
791 	.no_trimd	= 1,
792 	.no_ade		= 1,
793 	.xdfar_rw	= 1,
794 	.hw_checksum	= 1,
795 	.select_mii	= 1,
796 	.magic		= 1,
797 	.cexcr		= 1,
798 };
799 #endif /* CONFIG_OF */
800 
801 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
802 {
803 	struct sh_eth_private *mdp = netdev_priv(ndev);
804 
805 	switch (mdp->speed) {
806 	case 10: /* 10BASE */
807 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
808 		break;
809 	case 100:/* 100BASE */
810 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
811 		break;
812 	}
813 }
814 
815 /* SH7724 */
816 static struct sh_eth_cpu_data sh7724_data = {
817 	.soft_reset	= sh_eth_soft_reset,
818 
819 	.set_duplex	= sh_eth_set_duplex,
820 	.set_rate	= sh_eth_set_rate_sh7724,
821 
822 	.register_type	= SH_ETH_REG_FAST_SH4,
823 
824 	.edtrr_trns	= EDTRR_TRNS_ETHER,
825 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
826 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
827 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
828 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
829 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
830 			  EESIPR_RMAFIP | EESIPR_RRFIP |
831 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
832 			  EESIPR_PREIP | EESIPR_CERFIP,
833 
834 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
835 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
836 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
837 
838 	.apr		= 1,
839 	.mpr		= 1,
840 	.tpauser	= 1,
841 	.hw_swap	= 1,
842 	.rpadir		= 1,
843 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
844 };
845 
846 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
847 {
848 	struct sh_eth_private *mdp = netdev_priv(ndev);
849 
850 	switch (mdp->speed) {
851 	case 10: /* 10BASE */
852 		sh_eth_write(ndev, 0, RTRATE);
853 		break;
854 	case 100:/* 100BASE */
855 		sh_eth_write(ndev, 1, RTRATE);
856 		break;
857 	}
858 }
859 
860 /* SH7757 */
861 static struct sh_eth_cpu_data sh7757_data = {
862 	.soft_reset	= sh_eth_soft_reset,
863 
864 	.set_duplex	= sh_eth_set_duplex,
865 	.set_rate	= sh_eth_set_rate_sh7757,
866 
867 	.register_type	= SH_ETH_REG_FAST_SH4,
868 
869 	.edtrr_trns	= EDTRR_TRNS_ETHER,
870 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
871 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
872 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
873 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
874 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
875 			  EESIPR_CEEFIP | EESIPR_CELFIP |
876 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
877 			  EESIPR_PREIP | EESIPR_CERFIP,
878 
879 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
880 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
881 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
882 
883 	.irq_flags	= IRQF_SHARED,
884 	.apr		= 1,
885 	.mpr		= 1,
886 	.tpauser	= 1,
887 	.hw_swap	= 1,
888 	.no_ade		= 1,
889 	.rpadir		= 1,
890 	.rpadir_value   = 2 << 16,
891 	.rtrate		= 1,
892 	.dual_port	= 1,
893 };
894 
895 #define SH_GIGA_ETH_BASE	0xfee00000UL
896 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
897 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
898 static void sh_eth_chip_reset_giga(struct net_device *ndev)
899 {
900 	u32 mahr[2], malr[2];
901 	int i;
902 
903 	/* save MAHR and MALR */
904 	for (i = 0; i < 2; i++) {
905 		malr[i] = ioread32((void *)GIGA_MALR(i));
906 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
907 	}
908 
909 	sh_eth_chip_reset(ndev);
910 
911 	/* restore MAHR and MALR */
912 	for (i = 0; i < 2; i++) {
913 		iowrite32(malr[i], (void *)GIGA_MALR(i));
914 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
915 	}
916 }
917 
918 static void sh_eth_set_rate_giga(struct net_device *ndev)
919 {
920 	struct sh_eth_private *mdp = netdev_priv(ndev);
921 
922 	switch (mdp->speed) {
923 	case 10: /* 10BASE */
924 		sh_eth_write(ndev, 0x00000000, GECMR);
925 		break;
926 	case 100:/* 100BASE */
927 		sh_eth_write(ndev, 0x00000010, GECMR);
928 		break;
929 	case 1000: /* 1000BASE */
930 		sh_eth_write(ndev, 0x00000020, GECMR);
931 		break;
932 	}
933 }
934 
935 /* SH7757(GETHERC) */
936 static struct sh_eth_cpu_data sh7757_data_giga = {
937 	.soft_reset	= sh_eth_soft_reset_gether,
938 
939 	.chip_reset	= sh_eth_chip_reset_giga,
940 	.set_duplex	= sh_eth_set_duplex,
941 	.set_rate	= sh_eth_set_rate_giga,
942 
943 	.register_type	= SH_ETH_REG_GIGABIT,
944 
945 	.edtrr_trns	= EDTRR_TRNS_GETHER,
946 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
947 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
948 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
949 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
950 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
951 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
952 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
953 			  EESIPR_CEEFIP | EESIPR_CELFIP |
954 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
955 			  EESIPR_PREIP | EESIPR_CERFIP,
956 
957 	.tx_check	= EESR_TC1 | EESR_FTC,
958 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
959 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
960 			  EESR_TDE,
961 	.fdr_value	= 0x0000072f,
962 
963 	.irq_flags	= IRQF_SHARED,
964 	.apr		= 1,
965 	.mpr		= 1,
966 	.tpauser	= 1,
967 	.bculr		= 1,
968 	.hw_swap	= 1,
969 	.rpadir		= 1,
970 	.rpadir_value   = 2 << 16,
971 	.no_trimd	= 1,
972 	.no_ade		= 1,
973 	.xdfar_rw	= 1,
974 	.tsu		= 1,
975 	.cexcr		= 1,
976 	.dual_port	= 1,
977 };
978 
979 /* SH7734 */
980 static struct sh_eth_cpu_data sh7734_data = {
981 	.soft_reset	= sh_eth_soft_reset_gether,
982 
983 	.chip_reset	= sh_eth_chip_reset,
984 	.set_duplex	= sh_eth_set_duplex,
985 	.set_rate	= sh_eth_set_rate_gether,
986 
987 	.register_type	= SH_ETH_REG_GIGABIT,
988 
989 	.edtrr_trns	= EDTRR_TRNS_GETHER,
990 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
991 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
992 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
993 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
994 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
995 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
996 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
997 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
998 			  EESIPR_PREIP | EESIPR_CERFIP,
999 
1000 	.tx_check	= EESR_TC1 | EESR_FTC,
1001 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1002 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1003 			  EESR_TDE,
1004 
1005 	.apr		= 1,
1006 	.mpr		= 1,
1007 	.tpauser	= 1,
1008 	.bculr		= 1,
1009 	.hw_swap	= 1,
1010 	.no_trimd	= 1,
1011 	.no_ade		= 1,
1012 	.xdfar_rw	= 1,
1013 	.tsu		= 1,
1014 	.hw_checksum	= 1,
1015 	.select_mii	= 1,
1016 	.magic		= 1,
1017 	.cexcr		= 1,
1018 };
1019 
1020 /* SH7763 */
1021 static struct sh_eth_cpu_data sh7763_data = {
1022 	.soft_reset	= sh_eth_soft_reset_gether,
1023 
1024 	.chip_reset	= sh_eth_chip_reset,
1025 	.set_duplex	= sh_eth_set_duplex,
1026 	.set_rate	= sh_eth_set_rate_gether,
1027 
1028 	.register_type	= SH_ETH_REG_GIGABIT,
1029 
1030 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1031 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1032 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1033 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1034 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1035 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1036 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1037 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1038 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1039 			  EESIPR_PREIP | EESIPR_CERFIP,
1040 
1041 	.tx_check	= EESR_TC1 | EESR_FTC,
1042 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1043 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1044 
1045 	.apr		= 1,
1046 	.mpr		= 1,
1047 	.tpauser	= 1,
1048 	.bculr		= 1,
1049 	.hw_swap	= 1,
1050 	.no_trimd	= 1,
1051 	.no_ade		= 1,
1052 	.xdfar_rw	= 1,
1053 	.tsu		= 1,
1054 	.irq_flags	= IRQF_SHARED,
1055 	.magic		= 1,
1056 	.cexcr		= 1,
1057 	.dual_port	= 1,
1058 };
1059 
1060 static struct sh_eth_cpu_data sh7619_data = {
1061 	.soft_reset	= sh_eth_soft_reset,
1062 
1063 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1064 
1065 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1066 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1067 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1068 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1069 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1070 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1071 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1072 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1073 			  EESIPR_PREIP | EESIPR_CERFIP,
1074 
1075 	.apr		= 1,
1076 	.mpr		= 1,
1077 	.tpauser	= 1,
1078 	.hw_swap	= 1,
1079 };
1080 
1081 static struct sh_eth_cpu_data sh771x_data = {
1082 	.soft_reset	= sh_eth_soft_reset,
1083 
1084 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1085 
1086 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1087 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1088 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1089 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1090 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1091 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1092 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1093 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1094 			  EESIPR_PREIP | EESIPR_CERFIP,
1095 	.tsu		= 1,
1096 	.dual_port	= 1,
1097 };
1098 
1099 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1100 {
1101 	if (!cd->ecsr_value)
1102 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1103 
1104 	if (!cd->ecsipr_value)
1105 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1106 
1107 	if (!cd->fcftr_value)
1108 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1109 				  DEFAULT_FIFO_F_D_RFD;
1110 
1111 	if (!cd->fdr_value)
1112 		cd->fdr_value = DEFAULT_FDR_INIT;
1113 
1114 	if (!cd->tx_check)
1115 		cd->tx_check = DEFAULT_TX_CHECK;
1116 
1117 	if (!cd->eesr_err_check)
1118 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1119 
1120 	if (!cd->trscer_err_mask)
1121 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1122 }
1123 
1124 static void sh_eth_set_receive_align(struct sk_buff *skb)
1125 {
1126 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1127 
1128 	if (reserve)
1129 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1130 }
1131 
1132 /* Program the hardware MAC address from dev->dev_addr. */
1133 static void update_mac_address(struct net_device *ndev)
1134 {
1135 	sh_eth_write(ndev,
1136 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1137 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1138 	sh_eth_write(ndev,
1139 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1140 }
1141 
1142 /* Get MAC address from SuperH MAC address register
1143  *
1144  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1145  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1146  * When you want use this device, you must set MAC address in bootloader.
1147  *
1148  */
1149 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1150 {
1151 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1152 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1153 	} else {
1154 		u32 mahr = sh_eth_read(ndev, MAHR);
1155 		u32 malr = sh_eth_read(ndev, MALR);
1156 
1157 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1158 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1159 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1160 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1161 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1162 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1163 	}
1164 }
1165 
1166 struct bb_info {
1167 	void (*set_gate)(void *addr);
1168 	struct mdiobb_ctrl ctrl;
1169 	void *addr;
1170 };
1171 
1172 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1173 {
1174 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1175 	u32 pir;
1176 
1177 	if (bitbang->set_gate)
1178 		bitbang->set_gate(bitbang->addr);
1179 
1180 	pir = ioread32(bitbang->addr);
1181 	if (set)
1182 		pir |=  mask;
1183 	else
1184 		pir &= ~mask;
1185 	iowrite32(pir, bitbang->addr);
1186 }
1187 
1188 /* Data I/O pin control */
1189 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1190 {
1191 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1192 }
1193 
1194 /* Set bit data*/
1195 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1196 {
1197 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1198 }
1199 
1200 /* Get bit data*/
1201 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1202 {
1203 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1204 
1205 	if (bitbang->set_gate)
1206 		bitbang->set_gate(bitbang->addr);
1207 
1208 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1209 }
1210 
1211 /* MDC pin control */
1212 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1213 {
1214 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1215 }
1216 
1217 /* mdio bus control struct */
1218 static struct mdiobb_ops bb_ops = {
1219 	.owner = THIS_MODULE,
1220 	.set_mdc = sh_mdc_ctrl,
1221 	.set_mdio_dir = sh_mmd_ctrl,
1222 	.set_mdio_data = sh_set_mdio,
1223 	.get_mdio_data = sh_get_mdio,
1224 };
1225 
1226 /* free Tx skb function */
1227 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1228 {
1229 	struct sh_eth_private *mdp = netdev_priv(ndev);
1230 	struct sh_eth_txdesc *txdesc;
1231 	int free_num = 0;
1232 	int entry;
1233 	bool sent;
1234 
1235 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1236 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1237 		txdesc = &mdp->tx_ring[entry];
1238 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1239 		if (sent_only && !sent)
1240 			break;
1241 		/* TACT bit must be checked before all the following reads */
1242 		dma_rmb();
1243 		netif_info(mdp, tx_done, ndev,
1244 			   "tx entry %d status 0x%08x\n",
1245 			   entry, le32_to_cpu(txdesc->status));
1246 		/* Free the original skb. */
1247 		if (mdp->tx_skbuff[entry]) {
1248 			dma_unmap_single(&mdp->pdev->dev,
1249 					 le32_to_cpu(txdesc->addr),
1250 					 le32_to_cpu(txdesc->len) >> 16,
1251 					 DMA_TO_DEVICE);
1252 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1253 			mdp->tx_skbuff[entry] = NULL;
1254 			free_num++;
1255 		}
1256 		txdesc->status = cpu_to_le32(TD_TFP);
1257 		if (entry >= mdp->num_tx_ring - 1)
1258 			txdesc->status |= cpu_to_le32(TD_TDLE);
1259 
1260 		if (sent) {
1261 			ndev->stats.tx_packets++;
1262 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1263 		}
1264 	}
1265 	return free_num;
1266 }
1267 
1268 /* free skb and descriptor buffer */
1269 static void sh_eth_ring_free(struct net_device *ndev)
1270 {
1271 	struct sh_eth_private *mdp = netdev_priv(ndev);
1272 	int ringsize, i;
1273 
1274 	if (mdp->rx_ring) {
1275 		for (i = 0; i < mdp->num_rx_ring; i++) {
1276 			if (mdp->rx_skbuff[i]) {
1277 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1278 
1279 				dma_unmap_single(&mdp->pdev->dev,
1280 						 le32_to_cpu(rxdesc->addr),
1281 						 ALIGN(mdp->rx_buf_sz, 32),
1282 						 DMA_FROM_DEVICE);
1283 			}
1284 		}
1285 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1286 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1287 				  mdp->rx_desc_dma);
1288 		mdp->rx_ring = NULL;
1289 	}
1290 
1291 	/* Free Rx skb ringbuffer */
1292 	if (mdp->rx_skbuff) {
1293 		for (i = 0; i < mdp->num_rx_ring; i++)
1294 			dev_kfree_skb(mdp->rx_skbuff[i]);
1295 	}
1296 	kfree(mdp->rx_skbuff);
1297 	mdp->rx_skbuff = NULL;
1298 
1299 	if (mdp->tx_ring) {
1300 		sh_eth_tx_free(ndev, false);
1301 
1302 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1303 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1304 				  mdp->tx_desc_dma);
1305 		mdp->tx_ring = NULL;
1306 	}
1307 
1308 	/* Free Tx skb ringbuffer */
1309 	kfree(mdp->tx_skbuff);
1310 	mdp->tx_skbuff = NULL;
1311 }
1312 
1313 /* format skb and descriptor buffer */
1314 static void sh_eth_ring_format(struct net_device *ndev)
1315 {
1316 	struct sh_eth_private *mdp = netdev_priv(ndev);
1317 	int i;
1318 	struct sk_buff *skb;
1319 	struct sh_eth_rxdesc *rxdesc = NULL;
1320 	struct sh_eth_txdesc *txdesc = NULL;
1321 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1322 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1323 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1324 	dma_addr_t dma_addr;
1325 	u32 buf_len;
1326 
1327 	mdp->cur_rx = 0;
1328 	mdp->cur_tx = 0;
1329 	mdp->dirty_rx = 0;
1330 	mdp->dirty_tx = 0;
1331 
1332 	memset(mdp->rx_ring, 0, rx_ringsize);
1333 
1334 	/* build Rx ring buffer */
1335 	for (i = 0; i < mdp->num_rx_ring; i++) {
1336 		/* skb */
1337 		mdp->rx_skbuff[i] = NULL;
1338 		skb = netdev_alloc_skb(ndev, skbuff_size);
1339 		if (skb == NULL)
1340 			break;
1341 		sh_eth_set_receive_align(skb);
1342 
1343 		/* The size of the buffer is a multiple of 32 bytes. */
1344 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1345 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1346 					  DMA_FROM_DEVICE);
1347 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1348 			kfree_skb(skb);
1349 			break;
1350 		}
1351 		mdp->rx_skbuff[i] = skb;
1352 
1353 		/* RX descriptor */
1354 		rxdesc = &mdp->rx_ring[i];
1355 		rxdesc->len = cpu_to_le32(buf_len << 16);
1356 		rxdesc->addr = cpu_to_le32(dma_addr);
1357 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1358 
1359 		/* Rx descriptor address set */
1360 		if (i == 0) {
1361 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1362 			if (mdp->cd->xdfar_rw)
1363 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1364 		}
1365 	}
1366 
1367 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1368 
1369 	/* Mark the last entry as wrapping the ring. */
1370 	if (rxdesc)
1371 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1372 
1373 	memset(mdp->tx_ring, 0, tx_ringsize);
1374 
1375 	/* build Tx ring buffer */
1376 	for (i = 0; i < mdp->num_tx_ring; i++) {
1377 		mdp->tx_skbuff[i] = NULL;
1378 		txdesc = &mdp->tx_ring[i];
1379 		txdesc->status = cpu_to_le32(TD_TFP);
1380 		txdesc->len = cpu_to_le32(0);
1381 		if (i == 0) {
1382 			/* Tx descriptor address set */
1383 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1384 			if (mdp->cd->xdfar_rw)
1385 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1386 		}
1387 	}
1388 
1389 	txdesc->status |= cpu_to_le32(TD_TDLE);
1390 }
1391 
1392 /* Get skb and descriptor buffer */
1393 static int sh_eth_ring_init(struct net_device *ndev)
1394 {
1395 	struct sh_eth_private *mdp = netdev_priv(ndev);
1396 	int rx_ringsize, tx_ringsize;
1397 
1398 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1399 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1400 	 * the first 2 bytes, and +16 gets room for the status word from the
1401 	 * card.
1402 	 */
1403 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1404 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1405 	if (mdp->cd->rpadir)
1406 		mdp->rx_buf_sz += NET_IP_ALIGN;
1407 
1408 	/* Allocate RX and TX skb rings */
1409 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1410 				 GFP_KERNEL);
1411 	if (!mdp->rx_skbuff)
1412 		return -ENOMEM;
1413 
1414 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1415 				 GFP_KERNEL);
1416 	if (!mdp->tx_skbuff)
1417 		goto ring_free;
1418 
1419 	/* Allocate all Rx descriptors. */
1420 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1421 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1422 					  &mdp->rx_desc_dma, GFP_KERNEL);
1423 	if (!mdp->rx_ring)
1424 		goto ring_free;
1425 
1426 	mdp->dirty_rx = 0;
1427 
1428 	/* Allocate all Tx descriptors. */
1429 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1430 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1431 					  &mdp->tx_desc_dma, GFP_KERNEL);
1432 	if (!mdp->tx_ring)
1433 		goto ring_free;
1434 	return 0;
1435 
1436 ring_free:
1437 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1438 	sh_eth_ring_free(ndev);
1439 
1440 	return -ENOMEM;
1441 }
1442 
1443 static int sh_eth_dev_init(struct net_device *ndev)
1444 {
1445 	struct sh_eth_private *mdp = netdev_priv(ndev);
1446 	int ret;
1447 
1448 	/* Soft Reset */
1449 	ret = mdp->cd->soft_reset(ndev);
1450 	if (ret)
1451 		return ret;
1452 
1453 	if (mdp->cd->rmiimode)
1454 		sh_eth_write(ndev, 0x1, RMIIMODE);
1455 
1456 	/* Descriptor format */
1457 	sh_eth_ring_format(ndev);
1458 	if (mdp->cd->rpadir)
1459 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1460 
1461 	/* all sh_eth int mask */
1462 	sh_eth_write(ndev, 0, EESIPR);
1463 
1464 #if defined(__LITTLE_ENDIAN)
1465 	if (mdp->cd->hw_swap)
1466 		sh_eth_write(ndev, EDMR_EL, EDMR);
1467 	else
1468 #endif
1469 		sh_eth_write(ndev, 0, EDMR);
1470 
1471 	/* FIFO size set */
1472 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1473 	sh_eth_write(ndev, 0, TFTR);
1474 
1475 	/* Frame recv control (enable multiple-packets per rx irq) */
1476 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1477 
1478 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1479 
1480 	/* DMA transfer burst mode */
1481 	if (mdp->cd->nbst)
1482 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1483 
1484 	/* Burst cycle count upper-limit */
1485 	if (mdp->cd->bculr)
1486 		sh_eth_write(ndev, 0x800, BCULR);
1487 
1488 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1489 
1490 	if (!mdp->cd->no_trimd)
1491 		sh_eth_write(ndev, 0, TRIMD);
1492 
1493 	/* Recv frame limit set register */
1494 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1495 		     RFLR);
1496 
1497 	sh_eth_modify(ndev, EESR, 0, 0);
1498 	mdp->irq_enabled = true;
1499 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1500 
1501 	/* PAUSE Prohibition */
1502 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1503 		     ECMR_TE | ECMR_RE, ECMR);
1504 
1505 	if (mdp->cd->set_rate)
1506 		mdp->cd->set_rate(ndev);
1507 
1508 	/* E-MAC Status Register clear */
1509 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1510 
1511 	/* E-MAC Interrupt Enable register */
1512 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1513 
1514 	/* Set MAC address */
1515 	update_mac_address(ndev);
1516 
1517 	/* mask reset */
1518 	if (mdp->cd->apr)
1519 		sh_eth_write(ndev, APR_AP, APR);
1520 	if (mdp->cd->mpr)
1521 		sh_eth_write(ndev, MPR_MP, MPR);
1522 	if (mdp->cd->tpauser)
1523 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1524 
1525 	/* Setting the Rx mode will start the Rx process. */
1526 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1527 
1528 	return ret;
1529 }
1530 
1531 static void sh_eth_dev_exit(struct net_device *ndev)
1532 {
1533 	struct sh_eth_private *mdp = netdev_priv(ndev);
1534 	int i;
1535 
1536 	/* Deactivate all TX descriptors, so DMA should stop at next
1537 	 * packet boundary if it's currently running
1538 	 */
1539 	for (i = 0; i < mdp->num_tx_ring; i++)
1540 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1541 
1542 	/* Disable TX FIFO egress to MAC */
1543 	sh_eth_rcv_snd_disable(ndev);
1544 
1545 	/* Stop RX DMA at next packet boundary */
1546 	sh_eth_write(ndev, 0, EDRRR);
1547 
1548 	/* Aside from TX DMA, we can't tell when the hardware is
1549 	 * really stopped, so we need to reset to make sure.
1550 	 * Before doing that, wait for long enough to *probably*
1551 	 * finish transmitting the last packet and poll stats.
1552 	 */
1553 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1554 	sh_eth_get_stats(ndev);
1555 	mdp->cd->soft_reset(ndev);
1556 
1557 	/* Set MAC address again */
1558 	update_mac_address(ndev);
1559 }
1560 
1561 /* Packet receive function */
1562 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1563 {
1564 	struct sh_eth_private *mdp = netdev_priv(ndev);
1565 	struct sh_eth_rxdesc *rxdesc;
1566 
1567 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1568 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1569 	int limit;
1570 	struct sk_buff *skb;
1571 	u32 desc_status;
1572 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1573 	dma_addr_t dma_addr;
1574 	u16 pkt_len;
1575 	u32 buf_len;
1576 
1577 	boguscnt = min(boguscnt, *quota);
1578 	limit = boguscnt;
1579 	rxdesc = &mdp->rx_ring[entry];
1580 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1581 		/* RACT bit must be checked before all the following reads */
1582 		dma_rmb();
1583 		desc_status = le32_to_cpu(rxdesc->status);
1584 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1585 
1586 		if (--boguscnt < 0)
1587 			break;
1588 
1589 		netif_info(mdp, rx_status, ndev,
1590 			   "rx entry %d status 0x%08x len %d\n",
1591 			   entry, desc_status, pkt_len);
1592 
1593 		if (!(desc_status & RDFEND))
1594 			ndev->stats.rx_length_errors++;
1595 
1596 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1597 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1598 		 * bit 0. However, in case of the R8A7740 and R7S72100
1599 		 * the RFS bits are from bit 25 to bit 16. So, the
1600 		 * driver needs right shifting by 16.
1601 		 */
1602 		if (mdp->cd->hw_checksum)
1603 			desc_status >>= 16;
1604 
1605 		skb = mdp->rx_skbuff[entry];
1606 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1607 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1608 			ndev->stats.rx_errors++;
1609 			if (desc_status & RD_RFS1)
1610 				ndev->stats.rx_crc_errors++;
1611 			if (desc_status & RD_RFS2)
1612 				ndev->stats.rx_frame_errors++;
1613 			if (desc_status & RD_RFS3)
1614 				ndev->stats.rx_length_errors++;
1615 			if (desc_status & RD_RFS4)
1616 				ndev->stats.rx_length_errors++;
1617 			if (desc_status & RD_RFS6)
1618 				ndev->stats.rx_missed_errors++;
1619 			if (desc_status & RD_RFS10)
1620 				ndev->stats.rx_over_errors++;
1621 		} else	if (skb) {
1622 			dma_addr = le32_to_cpu(rxdesc->addr);
1623 			if (!mdp->cd->hw_swap)
1624 				sh_eth_soft_swap(
1625 					phys_to_virt(ALIGN(dma_addr, 4)),
1626 					pkt_len + 2);
1627 			mdp->rx_skbuff[entry] = NULL;
1628 			if (mdp->cd->rpadir)
1629 				skb_reserve(skb, NET_IP_ALIGN);
1630 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1631 					 ALIGN(mdp->rx_buf_sz, 32),
1632 					 DMA_FROM_DEVICE);
1633 			skb_put(skb, pkt_len);
1634 			skb->protocol = eth_type_trans(skb, ndev);
1635 			netif_receive_skb(skb);
1636 			ndev->stats.rx_packets++;
1637 			ndev->stats.rx_bytes += pkt_len;
1638 			if (desc_status & RD_RFS8)
1639 				ndev->stats.multicast++;
1640 		}
1641 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1642 		rxdesc = &mdp->rx_ring[entry];
1643 	}
1644 
1645 	/* Refill the Rx ring buffers. */
1646 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1647 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1648 		rxdesc = &mdp->rx_ring[entry];
1649 		/* The size of the buffer is 32 byte boundary. */
1650 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1651 		rxdesc->len = cpu_to_le32(buf_len << 16);
1652 
1653 		if (mdp->rx_skbuff[entry] == NULL) {
1654 			skb = netdev_alloc_skb(ndev, skbuff_size);
1655 			if (skb == NULL)
1656 				break;	/* Better luck next round. */
1657 			sh_eth_set_receive_align(skb);
1658 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1659 						  buf_len, DMA_FROM_DEVICE);
1660 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1661 				kfree_skb(skb);
1662 				break;
1663 			}
1664 			mdp->rx_skbuff[entry] = skb;
1665 
1666 			skb_checksum_none_assert(skb);
1667 			rxdesc->addr = cpu_to_le32(dma_addr);
1668 		}
1669 		dma_wmb(); /* RACT bit must be set after all the above writes */
1670 		if (entry >= mdp->num_rx_ring - 1)
1671 			rxdesc->status |=
1672 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1673 		else
1674 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1675 	}
1676 
1677 	/* Restart Rx engine if stopped. */
1678 	/* If we don't need to check status, don't. -KDU */
1679 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1680 		/* fix the values for the next receiving if RDE is set */
1681 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1682 			u32 count = (sh_eth_read(ndev, RDFAR) -
1683 				     sh_eth_read(ndev, RDLAR)) >> 4;
1684 
1685 			mdp->cur_rx = count;
1686 			mdp->dirty_rx = count;
1687 		}
1688 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1689 	}
1690 
1691 	*quota -= limit - boguscnt - 1;
1692 
1693 	return *quota <= 0;
1694 }
1695 
1696 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1697 {
1698 	/* disable tx and rx */
1699 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1700 }
1701 
1702 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1703 {
1704 	/* enable tx and rx */
1705 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1706 }
1707 
1708 /* E-MAC interrupt handler */
1709 static void sh_eth_emac_interrupt(struct net_device *ndev)
1710 {
1711 	struct sh_eth_private *mdp = netdev_priv(ndev);
1712 	u32 felic_stat;
1713 	u32 link_stat;
1714 
1715 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1716 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1717 	if (felic_stat & ECSR_ICD)
1718 		ndev->stats.tx_carrier_errors++;
1719 	if (felic_stat & ECSR_MPD)
1720 		pm_wakeup_event(&mdp->pdev->dev, 0);
1721 	if (felic_stat & ECSR_LCHNG) {
1722 		/* Link Changed */
1723 		if (mdp->cd->no_psr || mdp->no_ether_link)
1724 			return;
1725 		link_stat = sh_eth_read(ndev, PSR);
1726 		if (mdp->ether_link_active_low)
1727 			link_stat = ~link_stat;
1728 		if (!(link_stat & PHY_ST_LINK)) {
1729 			sh_eth_rcv_snd_disable(ndev);
1730 		} else {
1731 			/* Link Up */
1732 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1733 			/* clear int */
1734 			sh_eth_modify(ndev, ECSR, 0, 0);
1735 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1736 			/* enable tx and rx */
1737 			sh_eth_rcv_snd_enable(ndev);
1738 		}
1739 	}
1740 }
1741 
1742 /* error control function */
1743 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1744 {
1745 	struct sh_eth_private *mdp = netdev_priv(ndev);
1746 	u32 mask;
1747 
1748 	if (intr_status & EESR_TWB) {
1749 		/* Unused write back interrupt */
1750 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1751 			ndev->stats.tx_aborted_errors++;
1752 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1753 		}
1754 	}
1755 
1756 	if (intr_status & EESR_RABT) {
1757 		/* Receive Abort int */
1758 		if (intr_status & EESR_RFRMER) {
1759 			/* Receive Frame Overflow int */
1760 			ndev->stats.rx_frame_errors++;
1761 		}
1762 	}
1763 
1764 	if (intr_status & EESR_TDE) {
1765 		/* Transmit Descriptor Empty int */
1766 		ndev->stats.tx_fifo_errors++;
1767 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1768 	}
1769 
1770 	if (intr_status & EESR_TFE) {
1771 		/* FIFO under flow */
1772 		ndev->stats.tx_fifo_errors++;
1773 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1774 	}
1775 
1776 	if (intr_status & EESR_RDE) {
1777 		/* Receive Descriptor Empty int */
1778 		ndev->stats.rx_over_errors++;
1779 	}
1780 
1781 	if (intr_status & EESR_RFE) {
1782 		/* Receive FIFO Overflow int */
1783 		ndev->stats.rx_fifo_errors++;
1784 	}
1785 
1786 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1787 		/* Address Error */
1788 		ndev->stats.tx_fifo_errors++;
1789 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1790 	}
1791 
1792 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1793 	if (mdp->cd->no_ade)
1794 		mask &= ~EESR_ADE;
1795 	if (intr_status & mask) {
1796 		/* Tx error */
1797 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1798 
1799 		/* dmesg */
1800 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1801 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1802 			   (u32)ndev->state, edtrr);
1803 		/* dirty buffer free */
1804 		sh_eth_tx_free(ndev, true);
1805 
1806 		/* SH7712 BUG */
1807 		if (edtrr ^ mdp->cd->edtrr_trns) {
1808 			/* tx dma start */
1809 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1810 		}
1811 		/* wakeup */
1812 		netif_wake_queue(ndev);
1813 	}
1814 }
1815 
1816 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1817 {
1818 	struct net_device *ndev = netdev;
1819 	struct sh_eth_private *mdp = netdev_priv(ndev);
1820 	struct sh_eth_cpu_data *cd = mdp->cd;
1821 	irqreturn_t ret = IRQ_NONE;
1822 	u32 intr_status, intr_enable;
1823 
1824 	spin_lock(&mdp->lock);
1825 
1826 	/* Get interrupt status */
1827 	intr_status = sh_eth_read(ndev, EESR);
1828 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1829 	 * enabled since it's the one that  comes  thru regardless of the mask,
1830 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1831 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1832 	 * bit...
1833 	 */
1834 	intr_enable = sh_eth_read(ndev, EESIPR);
1835 	intr_status &= intr_enable | EESIPR_ECIIP;
1836 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1837 			   cd->eesr_err_check))
1838 		ret = IRQ_HANDLED;
1839 	else
1840 		goto out;
1841 
1842 	if (unlikely(!mdp->irq_enabled)) {
1843 		sh_eth_write(ndev, 0, EESIPR);
1844 		goto out;
1845 	}
1846 
1847 	if (intr_status & EESR_RX_CHECK) {
1848 		if (napi_schedule_prep(&mdp->napi)) {
1849 			/* Mask Rx interrupts */
1850 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1851 				     EESIPR);
1852 			__napi_schedule(&mdp->napi);
1853 		} else {
1854 			netdev_warn(ndev,
1855 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1856 				    intr_status, intr_enable);
1857 		}
1858 	}
1859 
1860 	/* Tx Check */
1861 	if (intr_status & cd->tx_check) {
1862 		/* Clear Tx interrupts */
1863 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1864 
1865 		sh_eth_tx_free(ndev, true);
1866 		netif_wake_queue(ndev);
1867 	}
1868 
1869 	/* E-MAC interrupt */
1870 	if (intr_status & EESR_ECI)
1871 		sh_eth_emac_interrupt(ndev);
1872 
1873 	if (intr_status & cd->eesr_err_check) {
1874 		/* Clear error interrupts */
1875 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1876 
1877 		sh_eth_error(ndev, intr_status);
1878 	}
1879 
1880 out:
1881 	spin_unlock(&mdp->lock);
1882 
1883 	return ret;
1884 }
1885 
1886 static int sh_eth_poll(struct napi_struct *napi, int budget)
1887 {
1888 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1889 						  napi);
1890 	struct net_device *ndev = napi->dev;
1891 	int quota = budget;
1892 	u32 intr_status;
1893 
1894 	for (;;) {
1895 		intr_status = sh_eth_read(ndev, EESR);
1896 		if (!(intr_status & EESR_RX_CHECK))
1897 			break;
1898 		/* Clear Rx interrupts */
1899 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1900 
1901 		if (sh_eth_rx(ndev, intr_status, &quota))
1902 			goto out;
1903 	}
1904 
1905 	napi_complete(napi);
1906 
1907 	/* Reenable Rx interrupts */
1908 	if (mdp->irq_enabled)
1909 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1910 out:
1911 	return budget - quota;
1912 }
1913 
1914 /* PHY state control function */
1915 static void sh_eth_adjust_link(struct net_device *ndev)
1916 {
1917 	struct sh_eth_private *mdp = netdev_priv(ndev);
1918 	struct phy_device *phydev = ndev->phydev;
1919 	int new_state = 0;
1920 
1921 	if (phydev->link) {
1922 		if (phydev->duplex != mdp->duplex) {
1923 			new_state = 1;
1924 			mdp->duplex = phydev->duplex;
1925 			if (mdp->cd->set_duplex)
1926 				mdp->cd->set_duplex(ndev);
1927 		}
1928 
1929 		if (phydev->speed != mdp->speed) {
1930 			new_state = 1;
1931 			mdp->speed = phydev->speed;
1932 			if (mdp->cd->set_rate)
1933 				mdp->cd->set_rate(ndev);
1934 		}
1935 		if (!mdp->link) {
1936 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1937 			new_state = 1;
1938 			mdp->link = phydev->link;
1939 			if (mdp->cd->no_psr || mdp->no_ether_link)
1940 				sh_eth_rcv_snd_enable(ndev);
1941 		}
1942 	} else if (mdp->link) {
1943 		new_state = 1;
1944 		mdp->link = 0;
1945 		mdp->speed = 0;
1946 		mdp->duplex = -1;
1947 		if (mdp->cd->no_psr || mdp->no_ether_link)
1948 			sh_eth_rcv_snd_disable(ndev);
1949 	}
1950 
1951 	if (new_state && netif_msg_link(mdp))
1952 		phy_print_status(phydev);
1953 }
1954 
1955 /* PHY init function */
1956 static int sh_eth_phy_init(struct net_device *ndev)
1957 {
1958 	struct device_node *np = ndev->dev.parent->of_node;
1959 	struct sh_eth_private *mdp = netdev_priv(ndev);
1960 	struct phy_device *phydev;
1961 
1962 	mdp->link = 0;
1963 	mdp->speed = 0;
1964 	mdp->duplex = -1;
1965 
1966 	/* Try connect to PHY */
1967 	if (np) {
1968 		struct device_node *pn;
1969 
1970 		pn = of_parse_phandle(np, "phy-handle", 0);
1971 		phydev = of_phy_connect(ndev, pn,
1972 					sh_eth_adjust_link, 0,
1973 					mdp->phy_interface);
1974 
1975 		of_node_put(pn);
1976 		if (!phydev)
1977 			phydev = ERR_PTR(-ENOENT);
1978 	} else {
1979 		char phy_id[MII_BUS_ID_SIZE + 3];
1980 
1981 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1982 			 mdp->mii_bus->id, mdp->phy_id);
1983 
1984 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1985 				     mdp->phy_interface);
1986 	}
1987 
1988 	if (IS_ERR(phydev)) {
1989 		netdev_err(ndev, "failed to connect PHY\n");
1990 		return PTR_ERR(phydev);
1991 	}
1992 
1993 	/* mask with MAC supported features */
1994 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1995 		int err = phy_set_max_speed(phydev, SPEED_100);
1996 		if (err) {
1997 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1998 			phy_disconnect(phydev);
1999 			return err;
2000 		}
2001 	}
2002 
2003 	phy_attached_info(phydev);
2004 
2005 	return 0;
2006 }
2007 
2008 /* PHY control start function */
2009 static int sh_eth_phy_start(struct net_device *ndev)
2010 {
2011 	int ret;
2012 
2013 	ret = sh_eth_phy_init(ndev);
2014 	if (ret)
2015 		return ret;
2016 
2017 	phy_start(ndev->phydev);
2018 
2019 	return 0;
2020 }
2021 
2022 static int sh_eth_get_link_ksettings(struct net_device *ndev,
2023 				     struct ethtool_link_ksettings *cmd)
2024 {
2025 	struct sh_eth_private *mdp = netdev_priv(ndev);
2026 	unsigned long flags;
2027 
2028 	if (!ndev->phydev)
2029 		return -ENODEV;
2030 
2031 	spin_lock_irqsave(&mdp->lock, flags);
2032 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
2033 	spin_unlock_irqrestore(&mdp->lock, flags);
2034 
2035 	return 0;
2036 }
2037 
2038 static int sh_eth_set_link_ksettings(struct net_device *ndev,
2039 				     const struct ethtool_link_ksettings *cmd)
2040 {
2041 	struct sh_eth_private *mdp = netdev_priv(ndev);
2042 	unsigned long flags;
2043 	int ret;
2044 
2045 	if (!ndev->phydev)
2046 		return -ENODEV;
2047 
2048 	spin_lock_irqsave(&mdp->lock, flags);
2049 
2050 	/* disable tx and rx */
2051 	sh_eth_rcv_snd_disable(ndev);
2052 
2053 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
2054 	if (ret)
2055 		goto error_exit;
2056 
2057 	if (cmd->base.duplex == DUPLEX_FULL)
2058 		mdp->duplex = 1;
2059 	else
2060 		mdp->duplex = 0;
2061 
2062 	if (mdp->cd->set_duplex)
2063 		mdp->cd->set_duplex(ndev);
2064 
2065 error_exit:
2066 	mdelay(1);
2067 
2068 	/* enable tx and rx */
2069 	sh_eth_rcv_snd_enable(ndev);
2070 
2071 	spin_unlock_irqrestore(&mdp->lock, flags);
2072 
2073 	return ret;
2074 }
2075 
2076 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2077  * version must be bumped as well.  Just adding registers up to that
2078  * limit is fine, as long as the existing register indices don't
2079  * change.
2080  */
2081 #define SH_ETH_REG_DUMP_VERSION		1
2082 #define SH_ETH_REG_DUMP_MAX_REGS	256
2083 
2084 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2085 {
2086 	struct sh_eth_private *mdp = netdev_priv(ndev);
2087 	struct sh_eth_cpu_data *cd = mdp->cd;
2088 	u32 *valid_map;
2089 	size_t len;
2090 
2091 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2092 
2093 	/* Dump starts with a bitmap that tells ethtool which
2094 	 * registers are defined for this chip.
2095 	 */
2096 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2097 	if (buf) {
2098 		valid_map = buf;
2099 		buf += len;
2100 	} else {
2101 		valid_map = NULL;
2102 	}
2103 
2104 	/* Add a register to the dump, if it has a defined offset.
2105 	 * This automatically skips most undefined registers, but for
2106 	 * some it is also necessary to check a capability flag in
2107 	 * struct sh_eth_cpu_data.
2108 	 */
2109 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2110 #define add_reg_from(reg, read_expr) do {				\
2111 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2112 			if (buf) {					\
2113 				mark_reg_valid(reg);			\
2114 				*buf++ = read_expr;			\
2115 			}						\
2116 			++len;						\
2117 		}							\
2118 	} while (0)
2119 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2120 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2121 
2122 	add_reg(EDSR);
2123 	add_reg(EDMR);
2124 	add_reg(EDTRR);
2125 	add_reg(EDRRR);
2126 	add_reg(EESR);
2127 	add_reg(EESIPR);
2128 	add_reg(TDLAR);
2129 	add_reg(TDFAR);
2130 	add_reg(TDFXR);
2131 	add_reg(TDFFR);
2132 	add_reg(RDLAR);
2133 	add_reg(RDFAR);
2134 	add_reg(RDFXR);
2135 	add_reg(RDFFR);
2136 	add_reg(TRSCER);
2137 	add_reg(RMFCR);
2138 	add_reg(TFTR);
2139 	add_reg(FDR);
2140 	add_reg(RMCR);
2141 	add_reg(TFUCR);
2142 	add_reg(RFOCR);
2143 	if (cd->rmiimode)
2144 		add_reg(RMIIMODE);
2145 	add_reg(FCFTR);
2146 	if (cd->rpadir)
2147 		add_reg(RPADIR);
2148 	if (!cd->no_trimd)
2149 		add_reg(TRIMD);
2150 	add_reg(ECMR);
2151 	add_reg(ECSR);
2152 	add_reg(ECSIPR);
2153 	add_reg(PIR);
2154 	if (!cd->no_psr)
2155 		add_reg(PSR);
2156 	add_reg(RDMLR);
2157 	add_reg(RFLR);
2158 	add_reg(IPGR);
2159 	if (cd->apr)
2160 		add_reg(APR);
2161 	if (cd->mpr)
2162 		add_reg(MPR);
2163 	add_reg(RFCR);
2164 	add_reg(RFCF);
2165 	if (cd->tpauser)
2166 		add_reg(TPAUSER);
2167 	add_reg(TPAUSECR);
2168 	add_reg(GECMR);
2169 	if (cd->bculr)
2170 		add_reg(BCULR);
2171 	add_reg(MAHR);
2172 	add_reg(MALR);
2173 	add_reg(TROCR);
2174 	add_reg(CDCR);
2175 	add_reg(LCCR);
2176 	add_reg(CNDCR);
2177 	add_reg(CEFCR);
2178 	add_reg(FRECR);
2179 	add_reg(TSFRCR);
2180 	add_reg(TLFRCR);
2181 	add_reg(CERCR);
2182 	add_reg(CEECR);
2183 	add_reg(MAFCR);
2184 	if (cd->rtrate)
2185 		add_reg(RTRATE);
2186 	if (cd->hw_checksum)
2187 		add_reg(CSMR);
2188 	if (cd->select_mii)
2189 		add_reg(RMII_MII);
2190 	if (cd->tsu) {
2191 		add_tsu_reg(ARSTR);
2192 		add_tsu_reg(TSU_CTRST);
2193 		add_tsu_reg(TSU_FWEN0);
2194 		add_tsu_reg(TSU_FWEN1);
2195 		add_tsu_reg(TSU_FCM);
2196 		add_tsu_reg(TSU_BSYSL0);
2197 		add_tsu_reg(TSU_BSYSL1);
2198 		add_tsu_reg(TSU_PRISL0);
2199 		add_tsu_reg(TSU_PRISL1);
2200 		add_tsu_reg(TSU_FWSL0);
2201 		add_tsu_reg(TSU_FWSL1);
2202 		add_tsu_reg(TSU_FWSLC);
2203 		add_tsu_reg(TSU_QTAGM0);
2204 		add_tsu_reg(TSU_QTAGM1);
2205 		add_tsu_reg(TSU_FWSR);
2206 		add_tsu_reg(TSU_FWINMK);
2207 		add_tsu_reg(TSU_ADQT0);
2208 		add_tsu_reg(TSU_ADQT1);
2209 		add_tsu_reg(TSU_VTAG0);
2210 		add_tsu_reg(TSU_VTAG1);
2211 		add_tsu_reg(TSU_ADSBSY);
2212 		add_tsu_reg(TSU_TEN);
2213 		add_tsu_reg(TSU_POST1);
2214 		add_tsu_reg(TSU_POST2);
2215 		add_tsu_reg(TSU_POST3);
2216 		add_tsu_reg(TSU_POST4);
2217 		/* This is the start of a table, not just a single register. */
2218 		if (buf) {
2219 			unsigned int i;
2220 
2221 			mark_reg_valid(TSU_ADRH0);
2222 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2223 				*buf++ = ioread32(mdp->tsu_addr +
2224 						  mdp->reg_offset[TSU_ADRH0] +
2225 						  i * 4);
2226 		}
2227 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2228 	}
2229 
2230 #undef mark_reg_valid
2231 #undef add_reg_from
2232 #undef add_reg
2233 #undef add_tsu_reg
2234 
2235 	return len * 4;
2236 }
2237 
2238 static int sh_eth_get_regs_len(struct net_device *ndev)
2239 {
2240 	return __sh_eth_get_regs(ndev, NULL);
2241 }
2242 
2243 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2244 			    void *buf)
2245 {
2246 	struct sh_eth_private *mdp = netdev_priv(ndev);
2247 
2248 	regs->version = SH_ETH_REG_DUMP_VERSION;
2249 
2250 	pm_runtime_get_sync(&mdp->pdev->dev);
2251 	__sh_eth_get_regs(ndev, buf);
2252 	pm_runtime_put_sync(&mdp->pdev->dev);
2253 }
2254 
2255 static int sh_eth_nway_reset(struct net_device *ndev)
2256 {
2257 	struct sh_eth_private *mdp = netdev_priv(ndev);
2258 	unsigned long flags;
2259 	int ret;
2260 
2261 	if (!ndev->phydev)
2262 		return -ENODEV;
2263 
2264 	spin_lock_irqsave(&mdp->lock, flags);
2265 	ret = phy_start_aneg(ndev->phydev);
2266 	spin_unlock_irqrestore(&mdp->lock, flags);
2267 
2268 	return ret;
2269 }
2270 
2271 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2272 {
2273 	struct sh_eth_private *mdp = netdev_priv(ndev);
2274 	return mdp->msg_enable;
2275 }
2276 
2277 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2278 {
2279 	struct sh_eth_private *mdp = netdev_priv(ndev);
2280 	mdp->msg_enable = value;
2281 }
2282 
2283 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2284 	"rx_current", "tx_current",
2285 	"rx_dirty", "tx_dirty",
2286 };
2287 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2288 
2289 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2290 {
2291 	switch (sset) {
2292 	case ETH_SS_STATS:
2293 		return SH_ETH_STATS_LEN;
2294 	default:
2295 		return -EOPNOTSUPP;
2296 	}
2297 }
2298 
2299 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2300 				     struct ethtool_stats *stats, u64 *data)
2301 {
2302 	struct sh_eth_private *mdp = netdev_priv(ndev);
2303 	int i = 0;
2304 
2305 	/* device-specific stats */
2306 	data[i++] = mdp->cur_rx;
2307 	data[i++] = mdp->cur_tx;
2308 	data[i++] = mdp->dirty_rx;
2309 	data[i++] = mdp->dirty_tx;
2310 }
2311 
2312 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2313 {
2314 	switch (stringset) {
2315 	case ETH_SS_STATS:
2316 		memcpy(data, *sh_eth_gstrings_stats,
2317 		       sizeof(sh_eth_gstrings_stats));
2318 		break;
2319 	}
2320 }
2321 
2322 static void sh_eth_get_ringparam(struct net_device *ndev,
2323 				 struct ethtool_ringparam *ring)
2324 {
2325 	struct sh_eth_private *mdp = netdev_priv(ndev);
2326 
2327 	ring->rx_max_pending = RX_RING_MAX;
2328 	ring->tx_max_pending = TX_RING_MAX;
2329 	ring->rx_pending = mdp->num_rx_ring;
2330 	ring->tx_pending = mdp->num_tx_ring;
2331 }
2332 
2333 static int sh_eth_set_ringparam(struct net_device *ndev,
2334 				struct ethtool_ringparam *ring)
2335 {
2336 	struct sh_eth_private *mdp = netdev_priv(ndev);
2337 	int ret;
2338 
2339 	if (ring->tx_pending > TX_RING_MAX ||
2340 	    ring->rx_pending > RX_RING_MAX ||
2341 	    ring->tx_pending < TX_RING_MIN ||
2342 	    ring->rx_pending < RX_RING_MIN)
2343 		return -EINVAL;
2344 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2345 		return -EINVAL;
2346 
2347 	if (netif_running(ndev)) {
2348 		netif_device_detach(ndev);
2349 		netif_tx_disable(ndev);
2350 
2351 		/* Serialise with the interrupt handler and NAPI, then
2352 		 * disable interrupts.  We have to clear the
2353 		 * irq_enabled flag first to ensure that interrupts
2354 		 * won't be re-enabled.
2355 		 */
2356 		mdp->irq_enabled = false;
2357 		synchronize_irq(ndev->irq);
2358 		napi_synchronize(&mdp->napi);
2359 		sh_eth_write(ndev, 0x0000, EESIPR);
2360 
2361 		sh_eth_dev_exit(ndev);
2362 
2363 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2364 		sh_eth_ring_free(ndev);
2365 	}
2366 
2367 	/* Set new parameters */
2368 	mdp->num_rx_ring = ring->rx_pending;
2369 	mdp->num_tx_ring = ring->tx_pending;
2370 
2371 	if (netif_running(ndev)) {
2372 		ret = sh_eth_ring_init(ndev);
2373 		if (ret < 0) {
2374 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2375 				   __func__);
2376 			return ret;
2377 		}
2378 		ret = sh_eth_dev_init(ndev);
2379 		if (ret < 0) {
2380 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2381 				   __func__);
2382 			return ret;
2383 		}
2384 
2385 		netif_device_attach(ndev);
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2392 {
2393 	struct sh_eth_private *mdp = netdev_priv(ndev);
2394 
2395 	wol->supported = 0;
2396 	wol->wolopts = 0;
2397 
2398 	if (mdp->cd->magic) {
2399 		wol->supported = WAKE_MAGIC;
2400 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2401 	}
2402 }
2403 
2404 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2405 {
2406 	struct sh_eth_private *mdp = netdev_priv(ndev);
2407 
2408 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2409 		return -EOPNOTSUPP;
2410 
2411 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2412 
2413 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2414 
2415 	return 0;
2416 }
2417 
2418 static const struct ethtool_ops sh_eth_ethtool_ops = {
2419 	.get_regs_len	= sh_eth_get_regs_len,
2420 	.get_regs	= sh_eth_get_regs,
2421 	.nway_reset	= sh_eth_nway_reset,
2422 	.get_msglevel	= sh_eth_get_msglevel,
2423 	.set_msglevel	= sh_eth_set_msglevel,
2424 	.get_link	= ethtool_op_get_link,
2425 	.get_strings	= sh_eth_get_strings,
2426 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2427 	.get_sset_count     = sh_eth_get_sset_count,
2428 	.get_ringparam	= sh_eth_get_ringparam,
2429 	.set_ringparam	= sh_eth_set_ringparam,
2430 	.get_link_ksettings = sh_eth_get_link_ksettings,
2431 	.set_link_ksettings = sh_eth_set_link_ksettings,
2432 	.get_wol	= sh_eth_get_wol,
2433 	.set_wol	= sh_eth_set_wol,
2434 };
2435 
2436 /* network device open function */
2437 static int sh_eth_open(struct net_device *ndev)
2438 {
2439 	struct sh_eth_private *mdp = netdev_priv(ndev);
2440 	int ret;
2441 
2442 	pm_runtime_get_sync(&mdp->pdev->dev);
2443 
2444 	napi_enable(&mdp->napi);
2445 
2446 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2447 			  mdp->cd->irq_flags, ndev->name, ndev);
2448 	if (ret) {
2449 		netdev_err(ndev, "Can not assign IRQ number\n");
2450 		goto out_napi_off;
2451 	}
2452 
2453 	/* Descriptor set */
2454 	ret = sh_eth_ring_init(ndev);
2455 	if (ret)
2456 		goto out_free_irq;
2457 
2458 	/* device init */
2459 	ret = sh_eth_dev_init(ndev);
2460 	if (ret)
2461 		goto out_free_irq;
2462 
2463 	/* PHY control start*/
2464 	ret = sh_eth_phy_start(ndev);
2465 	if (ret)
2466 		goto out_free_irq;
2467 
2468 	netif_start_queue(ndev);
2469 
2470 	mdp->is_opened = 1;
2471 
2472 	return ret;
2473 
2474 out_free_irq:
2475 	free_irq(ndev->irq, ndev);
2476 out_napi_off:
2477 	napi_disable(&mdp->napi);
2478 	pm_runtime_put_sync(&mdp->pdev->dev);
2479 	return ret;
2480 }
2481 
2482 /* Timeout function */
2483 static void sh_eth_tx_timeout(struct net_device *ndev)
2484 {
2485 	struct sh_eth_private *mdp = netdev_priv(ndev);
2486 	struct sh_eth_rxdesc *rxdesc;
2487 	int i;
2488 
2489 	netif_stop_queue(ndev);
2490 
2491 	netif_err(mdp, timer, ndev,
2492 		  "transmit timed out, status %8.8x, resetting...\n",
2493 		  sh_eth_read(ndev, EESR));
2494 
2495 	/* tx_errors count up */
2496 	ndev->stats.tx_errors++;
2497 
2498 	/* Free all the skbuffs in the Rx queue. */
2499 	for (i = 0; i < mdp->num_rx_ring; i++) {
2500 		rxdesc = &mdp->rx_ring[i];
2501 		rxdesc->status = cpu_to_le32(0);
2502 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2503 		dev_kfree_skb(mdp->rx_skbuff[i]);
2504 		mdp->rx_skbuff[i] = NULL;
2505 	}
2506 	for (i = 0; i < mdp->num_tx_ring; i++) {
2507 		dev_kfree_skb(mdp->tx_skbuff[i]);
2508 		mdp->tx_skbuff[i] = NULL;
2509 	}
2510 
2511 	/* device init */
2512 	sh_eth_dev_init(ndev);
2513 
2514 	netif_start_queue(ndev);
2515 }
2516 
2517 /* Packet transmit function */
2518 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2519 {
2520 	struct sh_eth_private *mdp = netdev_priv(ndev);
2521 	struct sh_eth_txdesc *txdesc;
2522 	dma_addr_t dma_addr;
2523 	u32 entry;
2524 	unsigned long flags;
2525 
2526 	spin_lock_irqsave(&mdp->lock, flags);
2527 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2528 		if (!sh_eth_tx_free(ndev, true)) {
2529 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2530 			netif_stop_queue(ndev);
2531 			spin_unlock_irqrestore(&mdp->lock, flags);
2532 			return NETDEV_TX_BUSY;
2533 		}
2534 	}
2535 	spin_unlock_irqrestore(&mdp->lock, flags);
2536 
2537 	if (skb_put_padto(skb, ETH_ZLEN))
2538 		return NETDEV_TX_OK;
2539 
2540 	entry = mdp->cur_tx % mdp->num_tx_ring;
2541 	mdp->tx_skbuff[entry] = skb;
2542 	txdesc = &mdp->tx_ring[entry];
2543 	/* soft swap. */
2544 	if (!mdp->cd->hw_swap)
2545 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2546 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2547 				  DMA_TO_DEVICE);
2548 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2549 		kfree_skb(skb);
2550 		return NETDEV_TX_OK;
2551 	}
2552 	txdesc->addr = cpu_to_le32(dma_addr);
2553 	txdesc->len  = cpu_to_le32(skb->len << 16);
2554 
2555 	dma_wmb(); /* TACT bit must be set after all the above writes */
2556 	if (entry >= mdp->num_tx_ring - 1)
2557 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2558 	else
2559 		txdesc->status |= cpu_to_le32(TD_TACT);
2560 
2561 	mdp->cur_tx++;
2562 
2563 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2564 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2565 
2566 	return NETDEV_TX_OK;
2567 }
2568 
2569 /* The statistics registers have write-clear behaviour, which means we
2570  * will lose any increment between the read and write.  We mitigate
2571  * this by only clearing when we read a non-zero value, so we will
2572  * never falsely report a total of zero.
2573  */
2574 static void
2575 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2576 {
2577 	u32 delta = sh_eth_read(ndev, reg);
2578 
2579 	if (delta) {
2580 		*stat += delta;
2581 		sh_eth_write(ndev, 0, reg);
2582 	}
2583 }
2584 
2585 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2586 {
2587 	struct sh_eth_private *mdp = netdev_priv(ndev);
2588 
2589 	if (mdp->cd->no_tx_cntrs)
2590 		return &ndev->stats;
2591 
2592 	if (!mdp->is_opened)
2593 		return &ndev->stats;
2594 
2595 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2596 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2597 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2598 
2599 	if (mdp->cd->cexcr) {
2600 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2601 				   CERCR);
2602 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2603 				   CEECR);
2604 	} else {
2605 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2606 				   CNDCR);
2607 	}
2608 
2609 	return &ndev->stats;
2610 }
2611 
2612 /* device close function */
2613 static int sh_eth_close(struct net_device *ndev)
2614 {
2615 	struct sh_eth_private *mdp = netdev_priv(ndev);
2616 
2617 	netif_stop_queue(ndev);
2618 
2619 	/* Serialise with the interrupt handler and NAPI, then disable
2620 	 * interrupts.  We have to clear the irq_enabled flag first to
2621 	 * ensure that interrupts won't be re-enabled.
2622 	 */
2623 	mdp->irq_enabled = false;
2624 	synchronize_irq(ndev->irq);
2625 	napi_disable(&mdp->napi);
2626 	sh_eth_write(ndev, 0x0000, EESIPR);
2627 
2628 	sh_eth_dev_exit(ndev);
2629 
2630 	/* PHY Disconnect */
2631 	if (ndev->phydev) {
2632 		phy_stop(ndev->phydev);
2633 		phy_disconnect(ndev->phydev);
2634 	}
2635 
2636 	free_irq(ndev->irq, ndev);
2637 
2638 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2639 	sh_eth_ring_free(ndev);
2640 
2641 	pm_runtime_put_sync(&mdp->pdev->dev);
2642 
2643 	mdp->is_opened = 0;
2644 
2645 	return 0;
2646 }
2647 
2648 /* ioctl to device function */
2649 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2650 {
2651 	struct phy_device *phydev = ndev->phydev;
2652 
2653 	if (!netif_running(ndev))
2654 		return -EINVAL;
2655 
2656 	if (!phydev)
2657 		return -ENODEV;
2658 
2659 	return phy_mii_ioctl(phydev, rq, cmd);
2660 }
2661 
2662 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2663 {
2664 	if (netif_running(ndev))
2665 		return -EBUSY;
2666 
2667 	ndev->mtu = new_mtu;
2668 	netdev_update_features(ndev);
2669 
2670 	return 0;
2671 }
2672 
2673 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2674 static u32 sh_eth_tsu_get_post_mask(int entry)
2675 {
2676 	return 0x0f << (28 - ((entry % 8) * 4));
2677 }
2678 
2679 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2680 {
2681 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2682 }
2683 
2684 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2685 					     int entry)
2686 {
2687 	struct sh_eth_private *mdp = netdev_priv(ndev);
2688 	int reg = TSU_POST1 + entry / 8;
2689 	u32 tmp;
2690 
2691 	tmp = sh_eth_tsu_read(mdp, reg);
2692 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2693 }
2694 
2695 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2696 					      int entry)
2697 {
2698 	struct sh_eth_private *mdp = netdev_priv(ndev);
2699 	int reg = TSU_POST1 + entry / 8;
2700 	u32 post_mask, ref_mask, tmp;
2701 
2702 	post_mask = sh_eth_tsu_get_post_mask(entry);
2703 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2704 
2705 	tmp = sh_eth_tsu_read(mdp, reg);
2706 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2707 
2708 	/* If other port enables, the function returns "true" */
2709 	return tmp & ref_mask;
2710 }
2711 
2712 static int sh_eth_tsu_busy(struct net_device *ndev)
2713 {
2714 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2715 	struct sh_eth_private *mdp = netdev_priv(ndev);
2716 
2717 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2718 		udelay(10);
2719 		timeout--;
2720 		if (timeout <= 0) {
2721 			netdev_err(ndev, "%s: timeout\n", __func__);
2722 			return -ETIMEDOUT;
2723 		}
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2730 				  const u8 *addr)
2731 {
2732 	u32 val;
2733 
2734 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2735 	iowrite32(val, reg);
2736 	if (sh_eth_tsu_busy(ndev) < 0)
2737 		return -EBUSY;
2738 
2739 	val = addr[4] << 8 | addr[5];
2740 	iowrite32(val, reg + 4);
2741 	if (sh_eth_tsu_busy(ndev) < 0)
2742 		return -EBUSY;
2743 
2744 	return 0;
2745 }
2746 
2747 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2748 {
2749 	u32 val;
2750 
2751 	val = ioread32(reg);
2752 	addr[0] = (val >> 24) & 0xff;
2753 	addr[1] = (val >> 16) & 0xff;
2754 	addr[2] = (val >> 8) & 0xff;
2755 	addr[3] = val & 0xff;
2756 	val = ioread32(reg + 4);
2757 	addr[4] = (val >> 8) & 0xff;
2758 	addr[5] = val & 0xff;
2759 }
2760 
2761 
2762 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2763 {
2764 	struct sh_eth_private *mdp = netdev_priv(ndev);
2765 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2766 	int i;
2767 	u8 c_addr[ETH_ALEN];
2768 
2769 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2770 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2771 		if (ether_addr_equal(addr, c_addr))
2772 			return i;
2773 	}
2774 
2775 	return -ENOENT;
2776 }
2777 
2778 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2779 {
2780 	u8 blank[ETH_ALEN];
2781 	int entry;
2782 
2783 	memset(blank, 0, sizeof(blank));
2784 	entry = sh_eth_tsu_find_entry(ndev, blank);
2785 	return (entry < 0) ? -ENOMEM : entry;
2786 }
2787 
2788 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2789 					      int entry)
2790 {
2791 	struct sh_eth_private *mdp = netdev_priv(ndev);
2792 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2793 	int ret;
2794 	u8 blank[ETH_ALEN];
2795 
2796 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2797 			 ~(1 << (31 - entry)), TSU_TEN);
2798 
2799 	memset(blank, 0, sizeof(blank));
2800 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2801 	if (ret < 0)
2802 		return ret;
2803 	return 0;
2804 }
2805 
2806 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2807 {
2808 	struct sh_eth_private *mdp = netdev_priv(ndev);
2809 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2810 	int i, ret;
2811 
2812 	if (!mdp->cd->tsu)
2813 		return 0;
2814 
2815 	i = sh_eth_tsu_find_entry(ndev, addr);
2816 	if (i < 0) {
2817 		/* No entry found, create one */
2818 		i = sh_eth_tsu_find_empty(ndev);
2819 		if (i < 0)
2820 			return -ENOMEM;
2821 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2822 		if (ret < 0)
2823 			return ret;
2824 
2825 		/* Enable the entry */
2826 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2827 				 (1 << (31 - i)), TSU_TEN);
2828 	}
2829 
2830 	/* Entry found or created, enable POST */
2831 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2832 
2833 	return 0;
2834 }
2835 
2836 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2837 {
2838 	struct sh_eth_private *mdp = netdev_priv(ndev);
2839 	int i, ret;
2840 
2841 	if (!mdp->cd->tsu)
2842 		return 0;
2843 
2844 	i = sh_eth_tsu_find_entry(ndev, addr);
2845 	if (i) {
2846 		/* Entry found */
2847 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2848 			goto done;
2849 
2850 		/* Disable the entry if both ports was disabled */
2851 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2852 		if (ret < 0)
2853 			return ret;
2854 	}
2855 done:
2856 	return 0;
2857 }
2858 
2859 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2860 {
2861 	struct sh_eth_private *mdp = netdev_priv(ndev);
2862 	int i, ret;
2863 
2864 	if (!mdp->cd->tsu)
2865 		return 0;
2866 
2867 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2868 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2869 			continue;
2870 
2871 		/* Disable the entry if both ports was disabled */
2872 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2873 		if (ret < 0)
2874 			return ret;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2881 {
2882 	struct sh_eth_private *mdp = netdev_priv(ndev);
2883 	u8 addr[ETH_ALEN];
2884 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2885 	int i;
2886 
2887 	if (!mdp->cd->tsu)
2888 		return;
2889 
2890 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2891 		sh_eth_tsu_read_entry(reg_offset, addr);
2892 		if (is_multicast_ether_addr(addr))
2893 			sh_eth_tsu_del_entry(ndev, addr);
2894 	}
2895 }
2896 
2897 /* Update promiscuous flag and multicast filter */
2898 static void sh_eth_set_rx_mode(struct net_device *ndev)
2899 {
2900 	struct sh_eth_private *mdp = netdev_priv(ndev);
2901 	u32 ecmr_bits;
2902 	int mcast_all = 0;
2903 	unsigned long flags;
2904 
2905 	spin_lock_irqsave(&mdp->lock, flags);
2906 	/* Initial condition is MCT = 1, PRM = 0.
2907 	 * Depending on ndev->flags, set PRM or clear MCT
2908 	 */
2909 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2910 	if (mdp->cd->tsu)
2911 		ecmr_bits |= ECMR_MCT;
2912 
2913 	if (!(ndev->flags & IFF_MULTICAST)) {
2914 		sh_eth_tsu_purge_mcast(ndev);
2915 		mcast_all = 1;
2916 	}
2917 	if (ndev->flags & IFF_ALLMULTI) {
2918 		sh_eth_tsu_purge_mcast(ndev);
2919 		ecmr_bits &= ~ECMR_MCT;
2920 		mcast_all = 1;
2921 	}
2922 
2923 	if (ndev->flags & IFF_PROMISC) {
2924 		sh_eth_tsu_purge_all(ndev);
2925 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2926 	} else if (mdp->cd->tsu) {
2927 		struct netdev_hw_addr *ha;
2928 		netdev_for_each_mc_addr(ha, ndev) {
2929 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2930 				continue;
2931 
2932 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2933 				if (!mcast_all) {
2934 					sh_eth_tsu_purge_mcast(ndev);
2935 					ecmr_bits &= ~ECMR_MCT;
2936 					mcast_all = 1;
2937 				}
2938 			}
2939 		}
2940 	}
2941 
2942 	/* update the ethernet mode */
2943 	sh_eth_write(ndev, ecmr_bits, ECMR);
2944 
2945 	spin_unlock_irqrestore(&mdp->lock, flags);
2946 }
2947 
2948 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2949 {
2950 	if (!mdp->port)
2951 		return TSU_VTAG0;
2952 	else
2953 		return TSU_VTAG1;
2954 }
2955 
2956 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2957 				  __be16 proto, u16 vid)
2958 {
2959 	struct sh_eth_private *mdp = netdev_priv(ndev);
2960 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2961 
2962 	if (unlikely(!mdp->cd->tsu))
2963 		return -EPERM;
2964 
2965 	/* No filtering if vid = 0 */
2966 	if (!vid)
2967 		return 0;
2968 
2969 	mdp->vlan_num_ids++;
2970 
2971 	/* The controller has one VLAN tag HW filter. So, if the filter is
2972 	 * already enabled, the driver disables it and the filte
2973 	 */
2974 	if (mdp->vlan_num_ids > 1) {
2975 		/* disable VLAN filter */
2976 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2977 		return 0;
2978 	}
2979 
2980 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2981 			 vtag_reg_index);
2982 
2983 	return 0;
2984 }
2985 
2986 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2987 				   __be16 proto, u16 vid)
2988 {
2989 	struct sh_eth_private *mdp = netdev_priv(ndev);
2990 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2991 
2992 	if (unlikely(!mdp->cd->tsu))
2993 		return -EPERM;
2994 
2995 	/* No filtering if vid = 0 */
2996 	if (!vid)
2997 		return 0;
2998 
2999 	mdp->vlan_num_ids--;
3000 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3001 
3002 	return 0;
3003 }
3004 
3005 /* SuperH's TSU register init function */
3006 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3007 {
3008 	if (!mdp->cd->dual_port) {
3009 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3010 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3011 				 TSU_FWSLC);	/* Enable POST registers */
3012 		return;
3013 	}
3014 
3015 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3016 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3017 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3018 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3019 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3020 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3021 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3022 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3023 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3024 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3025 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3026 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3027 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3028 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3029 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3030 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3031 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3032 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3033 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3034 }
3035 
3036 /* MDIO bus release function */
3037 static int sh_mdio_release(struct sh_eth_private *mdp)
3038 {
3039 	/* unregister mdio bus */
3040 	mdiobus_unregister(mdp->mii_bus);
3041 
3042 	/* free bitbang info */
3043 	free_mdio_bitbang(mdp->mii_bus);
3044 
3045 	return 0;
3046 }
3047 
3048 /* MDIO bus init function */
3049 static int sh_mdio_init(struct sh_eth_private *mdp,
3050 			struct sh_eth_plat_data *pd)
3051 {
3052 	int ret;
3053 	struct bb_info *bitbang;
3054 	struct platform_device *pdev = mdp->pdev;
3055 	struct device *dev = &mdp->pdev->dev;
3056 
3057 	/* create bit control struct for PHY */
3058 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3059 	if (!bitbang)
3060 		return -ENOMEM;
3061 
3062 	/* bitbang init */
3063 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3064 	bitbang->set_gate = pd->set_mdio_gate;
3065 	bitbang->ctrl.ops = &bb_ops;
3066 
3067 	/* MII controller setting */
3068 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3069 	if (!mdp->mii_bus)
3070 		return -ENOMEM;
3071 
3072 	/* Hook up MII support for ethtool */
3073 	mdp->mii_bus->name = "sh_mii";
3074 	mdp->mii_bus->parent = dev;
3075 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3076 		 pdev->name, pdev->id);
3077 
3078 	/* register MDIO bus */
3079 	if (pd->phy_irq > 0)
3080 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3081 
3082 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3083 	if (ret)
3084 		goto out_free_bus;
3085 
3086 	return 0;
3087 
3088 out_free_bus:
3089 	free_mdio_bitbang(mdp->mii_bus);
3090 	return ret;
3091 }
3092 
3093 static const u16 *sh_eth_get_register_offset(int register_type)
3094 {
3095 	const u16 *reg_offset = NULL;
3096 
3097 	switch (register_type) {
3098 	case SH_ETH_REG_GIGABIT:
3099 		reg_offset = sh_eth_offset_gigabit;
3100 		break;
3101 	case SH_ETH_REG_FAST_RZ:
3102 		reg_offset = sh_eth_offset_fast_rz;
3103 		break;
3104 	case SH_ETH_REG_FAST_RCAR:
3105 		reg_offset = sh_eth_offset_fast_rcar;
3106 		break;
3107 	case SH_ETH_REG_FAST_SH4:
3108 		reg_offset = sh_eth_offset_fast_sh4;
3109 		break;
3110 	case SH_ETH_REG_FAST_SH3_SH2:
3111 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3112 		break;
3113 	}
3114 
3115 	return reg_offset;
3116 }
3117 
3118 static const struct net_device_ops sh_eth_netdev_ops = {
3119 	.ndo_open		= sh_eth_open,
3120 	.ndo_stop		= sh_eth_close,
3121 	.ndo_start_xmit		= sh_eth_start_xmit,
3122 	.ndo_get_stats		= sh_eth_get_stats,
3123 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3124 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3125 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3126 	.ndo_change_mtu		= sh_eth_change_mtu,
3127 	.ndo_validate_addr	= eth_validate_addr,
3128 	.ndo_set_mac_address	= eth_mac_addr,
3129 };
3130 
3131 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3132 	.ndo_open		= sh_eth_open,
3133 	.ndo_stop		= sh_eth_close,
3134 	.ndo_start_xmit		= sh_eth_start_xmit,
3135 	.ndo_get_stats		= sh_eth_get_stats,
3136 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3137 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3138 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3139 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3140 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3141 	.ndo_change_mtu		= sh_eth_change_mtu,
3142 	.ndo_validate_addr	= eth_validate_addr,
3143 	.ndo_set_mac_address	= eth_mac_addr,
3144 };
3145 
3146 #ifdef CONFIG_OF
3147 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3148 {
3149 	struct device_node *np = dev->of_node;
3150 	struct sh_eth_plat_data *pdata;
3151 	const char *mac_addr;
3152 
3153 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3154 	if (!pdata)
3155 		return NULL;
3156 
3157 	pdata->phy_interface = of_get_phy_mode(np);
3158 
3159 	mac_addr = of_get_mac_address(np);
3160 	if (mac_addr)
3161 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3162 
3163 	pdata->no_ether_link =
3164 		of_property_read_bool(np, "renesas,no-ether-link");
3165 	pdata->ether_link_active_low =
3166 		of_property_read_bool(np, "renesas,ether-link-active-low");
3167 
3168 	return pdata;
3169 }
3170 
3171 static const struct of_device_id sh_eth_match_table[] = {
3172 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3173 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3174 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3175 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3176 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3177 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3178 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3179 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3180 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3181 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3182 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3183 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3184 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3185 	{ }
3186 };
3187 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3188 #else
3189 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3190 {
3191 	return NULL;
3192 }
3193 #endif
3194 
3195 static int sh_eth_drv_probe(struct platform_device *pdev)
3196 {
3197 	struct resource *res;
3198 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3199 	const struct platform_device_id *id = platform_get_device_id(pdev);
3200 	struct sh_eth_private *mdp;
3201 	struct net_device *ndev;
3202 	int ret;
3203 
3204 	/* get base addr */
3205 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3206 
3207 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3208 	if (!ndev)
3209 		return -ENOMEM;
3210 
3211 	pm_runtime_enable(&pdev->dev);
3212 	pm_runtime_get_sync(&pdev->dev);
3213 
3214 	ret = platform_get_irq(pdev, 0);
3215 	if (ret < 0)
3216 		goto out_release;
3217 	ndev->irq = ret;
3218 
3219 	SET_NETDEV_DEV(ndev, &pdev->dev);
3220 
3221 	mdp = netdev_priv(ndev);
3222 	mdp->num_tx_ring = TX_RING_SIZE;
3223 	mdp->num_rx_ring = RX_RING_SIZE;
3224 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3225 	if (IS_ERR(mdp->addr)) {
3226 		ret = PTR_ERR(mdp->addr);
3227 		goto out_release;
3228 	}
3229 
3230 	ndev->base_addr = res->start;
3231 
3232 	spin_lock_init(&mdp->lock);
3233 	mdp->pdev = pdev;
3234 
3235 	if (pdev->dev.of_node)
3236 		pd = sh_eth_parse_dt(&pdev->dev);
3237 	if (!pd) {
3238 		dev_err(&pdev->dev, "no platform data\n");
3239 		ret = -EINVAL;
3240 		goto out_release;
3241 	}
3242 
3243 	/* get PHY ID */
3244 	mdp->phy_id = pd->phy;
3245 	mdp->phy_interface = pd->phy_interface;
3246 	mdp->no_ether_link = pd->no_ether_link;
3247 	mdp->ether_link_active_low = pd->ether_link_active_low;
3248 
3249 	/* set cpu data */
3250 	if (id)
3251 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3252 	else
3253 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3254 
3255 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3256 	if (!mdp->reg_offset) {
3257 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3258 			mdp->cd->register_type);
3259 		ret = -EINVAL;
3260 		goto out_release;
3261 	}
3262 	sh_eth_set_default_cpu_data(mdp->cd);
3263 
3264 	/* User's manual states max MTU should be 2048 but due to the
3265 	 * alignment calculations in sh_eth_ring_init() the practical
3266 	 * MTU is a bit less. Maybe this can be optimized some more.
3267 	 */
3268 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3269 	ndev->min_mtu = ETH_MIN_MTU;
3270 
3271 	/* set function */
3272 	if (mdp->cd->tsu)
3273 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3274 	else
3275 		ndev->netdev_ops = &sh_eth_netdev_ops;
3276 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3277 	ndev->watchdog_timeo = TX_TIMEOUT;
3278 
3279 	/* debug message level */
3280 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3281 
3282 	/* read and set MAC address */
3283 	read_mac_address(ndev, pd->mac_addr);
3284 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3285 		dev_warn(&pdev->dev,
3286 			 "no valid MAC address supplied, using a random one.\n");
3287 		eth_hw_addr_random(ndev);
3288 	}
3289 
3290 	if (mdp->cd->tsu) {
3291 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3292 		struct resource *rtsu;
3293 
3294 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3295 		if (!rtsu) {
3296 			dev_err(&pdev->dev, "no TSU resource\n");
3297 			ret = -ENODEV;
3298 			goto out_release;
3299 		}
3300 		/* We can only request the  TSU region  for the first port
3301 		 * of the two  sharing this TSU for the probe to succeed...
3302 		 */
3303 		if (port == 0 &&
3304 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3305 					     resource_size(rtsu),
3306 					     dev_name(&pdev->dev))) {
3307 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3308 			ret = -EBUSY;
3309 			goto out_release;
3310 		}
3311 		/* ioremap the TSU registers */
3312 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3313 					     resource_size(rtsu));
3314 		if (!mdp->tsu_addr) {
3315 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3316 			ret = -ENOMEM;
3317 			goto out_release;
3318 		}
3319 		mdp->port = port;
3320 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3321 
3322 		/* Need to init only the first port of the two sharing a TSU */
3323 		if (port == 0) {
3324 			if (mdp->cd->chip_reset)
3325 				mdp->cd->chip_reset(ndev);
3326 
3327 			/* TSU init (Init only)*/
3328 			sh_eth_tsu_init(mdp);
3329 		}
3330 	}
3331 
3332 	if (mdp->cd->rmiimode)
3333 		sh_eth_write(ndev, 0x1, RMIIMODE);
3334 
3335 	/* MDIO bus init */
3336 	ret = sh_mdio_init(mdp, pd);
3337 	if (ret) {
3338 		if (ret != -EPROBE_DEFER)
3339 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3340 		goto out_release;
3341 	}
3342 
3343 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3344 
3345 	/* network device register */
3346 	ret = register_netdev(ndev);
3347 	if (ret)
3348 		goto out_napi_del;
3349 
3350 	if (mdp->cd->magic)
3351 		device_set_wakeup_capable(&pdev->dev, 1);
3352 
3353 	/* print device information */
3354 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3355 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3356 
3357 	pm_runtime_put(&pdev->dev);
3358 	platform_set_drvdata(pdev, ndev);
3359 
3360 	return ret;
3361 
3362 out_napi_del:
3363 	netif_napi_del(&mdp->napi);
3364 	sh_mdio_release(mdp);
3365 
3366 out_release:
3367 	/* net_dev free */
3368 	free_netdev(ndev);
3369 
3370 	pm_runtime_put(&pdev->dev);
3371 	pm_runtime_disable(&pdev->dev);
3372 	return ret;
3373 }
3374 
3375 static int sh_eth_drv_remove(struct platform_device *pdev)
3376 {
3377 	struct net_device *ndev = platform_get_drvdata(pdev);
3378 	struct sh_eth_private *mdp = netdev_priv(ndev);
3379 
3380 	unregister_netdev(ndev);
3381 	netif_napi_del(&mdp->napi);
3382 	sh_mdio_release(mdp);
3383 	pm_runtime_disable(&pdev->dev);
3384 	free_netdev(ndev);
3385 
3386 	return 0;
3387 }
3388 
3389 #ifdef CONFIG_PM
3390 #ifdef CONFIG_PM_SLEEP
3391 static int sh_eth_wol_setup(struct net_device *ndev)
3392 {
3393 	struct sh_eth_private *mdp = netdev_priv(ndev);
3394 
3395 	/* Only allow ECI interrupts */
3396 	synchronize_irq(ndev->irq);
3397 	napi_disable(&mdp->napi);
3398 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3399 
3400 	/* Enable MagicPacket */
3401 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3402 
3403 	return enable_irq_wake(ndev->irq);
3404 }
3405 
3406 static int sh_eth_wol_restore(struct net_device *ndev)
3407 {
3408 	struct sh_eth_private *mdp = netdev_priv(ndev);
3409 	int ret;
3410 
3411 	napi_enable(&mdp->napi);
3412 
3413 	/* Disable MagicPacket */
3414 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3415 
3416 	/* The device needs to be reset to restore MagicPacket logic
3417 	 * for next wakeup. If we close and open the device it will
3418 	 * both be reset and all registers restored. This is what
3419 	 * happens during suspend and resume without WoL enabled.
3420 	 */
3421 	ret = sh_eth_close(ndev);
3422 	if (ret < 0)
3423 		return ret;
3424 	ret = sh_eth_open(ndev);
3425 	if (ret < 0)
3426 		return ret;
3427 
3428 	return disable_irq_wake(ndev->irq);
3429 }
3430 
3431 static int sh_eth_suspend(struct device *dev)
3432 {
3433 	struct net_device *ndev = dev_get_drvdata(dev);
3434 	struct sh_eth_private *mdp = netdev_priv(ndev);
3435 	int ret = 0;
3436 
3437 	if (!netif_running(ndev))
3438 		return 0;
3439 
3440 	netif_device_detach(ndev);
3441 
3442 	if (mdp->wol_enabled)
3443 		ret = sh_eth_wol_setup(ndev);
3444 	else
3445 		ret = sh_eth_close(ndev);
3446 
3447 	return ret;
3448 }
3449 
3450 static int sh_eth_resume(struct device *dev)
3451 {
3452 	struct net_device *ndev = dev_get_drvdata(dev);
3453 	struct sh_eth_private *mdp = netdev_priv(ndev);
3454 	int ret = 0;
3455 
3456 	if (!netif_running(ndev))
3457 		return 0;
3458 
3459 	if (mdp->wol_enabled)
3460 		ret = sh_eth_wol_restore(ndev);
3461 	else
3462 		ret = sh_eth_open(ndev);
3463 
3464 	if (ret < 0)
3465 		return ret;
3466 
3467 	netif_device_attach(ndev);
3468 
3469 	return ret;
3470 }
3471 #endif
3472 
3473 static int sh_eth_runtime_nop(struct device *dev)
3474 {
3475 	/* Runtime PM callback shared between ->runtime_suspend()
3476 	 * and ->runtime_resume(). Simply returns success.
3477 	 *
3478 	 * This driver re-initializes all registers after
3479 	 * pm_runtime_get_sync() anyway so there is no need
3480 	 * to save and restore registers here.
3481 	 */
3482 	return 0;
3483 }
3484 
3485 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3486 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3487 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3488 };
3489 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3490 #else
3491 #define SH_ETH_PM_OPS NULL
3492 #endif
3493 
3494 static const struct platform_device_id sh_eth_id_table[] = {
3495 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3496 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3497 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3498 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3499 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3500 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3501 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3502 	{ }
3503 };
3504 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3505 
3506 static struct platform_driver sh_eth_driver = {
3507 	.probe = sh_eth_drv_probe,
3508 	.remove = sh_eth_drv_remove,
3509 	.id_table = sh_eth_id_table,
3510 	.driver = {
3511 		   .name = CARDNAME,
3512 		   .pm = SH_ETH_PM_OPS,
3513 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3514 	},
3515 };
3516 
3517 module_platform_driver(sh_eth_driver);
3518 
3519 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3520 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3521 MODULE_LICENSE("GPL v2");
3522