1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
56 	[EDSR]		= 0x0000,
57 	[EDMR]		= 0x0400,
58 	[EDTRR]		= 0x0408,
59 	[EDRRR]		= 0x0410,
60 	[EESR]		= 0x0428,
61 	[EESIPR]	= 0x0430,
62 	[TDLAR]		= 0x0010,
63 	[TDFAR]		= 0x0014,
64 	[TDFXR]		= 0x0018,
65 	[TDFFR]		= 0x001c,
66 	[RDLAR]		= 0x0030,
67 	[RDFAR]		= 0x0034,
68 	[RDFXR]		= 0x0038,
69 	[RDFFR]		= 0x003c,
70 	[TRSCER]	= 0x0438,
71 	[RMFCR]		= 0x0440,
72 	[TFTR]		= 0x0448,
73 	[FDR]		= 0x0450,
74 	[RMCR]		= 0x0458,
75 	[RPADIR]	= 0x0460,
76 	[FCFTR]		= 0x0468,
77 	[CSMR]		= 0x04E4,
78 
79 	[ECMR]		= 0x0500,
80 	[ECSR]		= 0x0510,
81 	[ECSIPR]	= 0x0518,
82 	[PIR]		= 0x0520,
83 	[PSR]		= 0x0528,
84 	[PIPR]		= 0x052c,
85 	[RFLR]		= 0x0508,
86 	[APR]		= 0x0554,
87 	[MPR]		= 0x0558,
88 	[PFTCR]		= 0x055c,
89 	[PFRCR]		= 0x0560,
90 	[TPAUSER]	= 0x0564,
91 	[GECMR]		= 0x05b0,
92 	[BCULR]		= 0x05b4,
93 	[MAHR]		= 0x05c0,
94 	[MALR]		= 0x05c8,
95 	[TROCR]		= 0x0700,
96 	[CDCR]		= 0x0708,
97 	[LCCR]		= 0x0710,
98 	[CEFCR]		= 0x0740,
99 	[FRECR]		= 0x0748,
100 	[TSFRCR]	= 0x0750,
101 	[TLFRCR]	= 0x0758,
102 	[RFCR]		= 0x0760,
103 	[CERCR]		= 0x0768,
104 	[CEECR]		= 0x0770,
105 	[MAFCR]		= 0x0778,
106 	[RMII_MII]	= 0x0790,
107 
108 	[ARSTR]		= 0x0000,
109 	[TSU_CTRST]	= 0x0004,
110 	[TSU_FWEN0]	= 0x0010,
111 	[TSU_FWEN1]	= 0x0014,
112 	[TSU_FCM]	= 0x0018,
113 	[TSU_BSYSL0]	= 0x0020,
114 	[TSU_BSYSL1]	= 0x0024,
115 	[TSU_PRISL0]	= 0x0028,
116 	[TSU_PRISL1]	= 0x002c,
117 	[TSU_FWSL0]	= 0x0030,
118 	[TSU_FWSL1]	= 0x0034,
119 	[TSU_FWSLC]	= 0x0038,
120 	[TSU_QTAG0]	= 0x0040,
121 	[TSU_QTAG1]	= 0x0044,
122 	[TSU_FWSR]	= 0x0050,
123 	[TSU_FWINMK]	= 0x0054,
124 	[TSU_ADQT0]	= 0x0048,
125 	[TSU_ADQT1]	= 0x004c,
126 	[TSU_VTAG0]	= 0x0058,
127 	[TSU_VTAG1]	= 0x005c,
128 	[TSU_ADSBSY]	= 0x0060,
129 	[TSU_TEN]	= 0x0064,
130 	[TSU_POST1]	= 0x0070,
131 	[TSU_POST2]	= 0x0074,
132 	[TSU_POST3]	= 0x0078,
133 	[TSU_POST4]	= 0x007c,
134 	[TSU_ADRH0]	= 0x0100,
135 	[TSU_ADRL0]	= 0x0104,
136 	[TSU_ADRH31]	= 0x01f8,
137 	[TSU_ADRL31]	= 0x01fc,
138 
139 	[TXNLCR0]	= 0x0080,
140 	[TXALCR0]	= 0x0084,
141 	[RXNLCR0]	= 0x0088,
142 	[RXALCR0]	= 0x008c,
143 	[FWNLCR0]	= 0x0090,
144 	[FWALCR0]	= 0x0094,
145 	[TXNLCR1]	= 0x00a0,
146 	[TXALCR1]	= 0x00a0,
147 	[RXNLCR1]	= 0x00a8,
148 	[RXALCR1]	= 0x00ac,
149 	[FWNLCR1]	= 0x00b0,
150 	[FWALCR1]	= 0x00b4,
151 };
152 
153 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
154 	[EDSR]		= 0x0000,
155 	[EDMR]		= 0x0400,
156 	[EDTRR]		= 0x0408,
157 	[EDRRR]		= 0x0410,
158 	[EESR]		= 0x0428,
159 	[EESIPR]	= 0x0430,
160 	[TDLAR]		= 0x0010,
161 	[TDFAR]		= 0x0014,
162 	[TDFXR]		= 0x0018,
163 	[TDFFR]		= 0x001c,
164 	[RDLAR]		= 0x0030,
165 	[RDFAR]		= 0x0034,
166 	[RDFXR]		= 0x0038,
167 	[RDFFR]		= 0x003c,
168 	[TRSCER]	= 0x0438,
169 	[RMFCR]		= 0x0440,
170 	[TFTR]		= 0x0448,
171 	[FDR]		= 0x0450,
172 	[RMCR]		= 0x0458,
173 	[RPADIR]	= 0x0460,
174 	[FCFTR]		= 0x0468,
175 	[CSMR]		= 0x04E4,
176 
177 	[ECMR]		= 0x0500,
178 	[RFLR]		= 0x0508,
179 	[ECSR]		= 0x0510,
180 	[ECSIPR]	= 0x0518,
181 	[PIR]		= 0x0520,
182 	[APR]		= 0x0554,
183 	[MPR]		= 0x0558,
184 	[PFTCR]		= 0x055c,
185 	[PFRCR]		= 0x0560,
186 	[TPAUSER]	= 0x0564,
187 	[MAHR]		= 0x05c0,
188 	[MALR]		= 0x05c8,
189 	[CEFCR]		= 0x0740,
190 	[FRECR]		= 0x0748,
191 	[TSFRCR]	= 0x0750,
192 	[TLFRCR]	= 0x0758,
193 	[RFCR]		= 0x0760,
194 	[MAFCR]		= 0x0778,
195 
196 	[ARSTR]		= 0x0000,
197 	[TSU_CTRST]	= 0x0004,
198 	[TSU_VTAG0]	= 0x0058,
199 	[TSU_ADSBSY]	= 0x0060,
200 	[TSU_TEN]	= 0x0064,
201 	[TSU_ADRH0]	= 0x0100,
202 	[TSU_ADRL0]	= 0x0104,
203 	[TSU_ADRH31]	= 0x01f8,
204 	[TSU_ADRL31]	= 0x01fc,
205 
206 	[TXNLCR0]	= 0x0080,
207 	[TXALCR0]	= 0x0084,
208 	[RXNLCR0]	= 0x0088,
209 	[RXALCR0]	= 0x008C,
210 };
211 
212 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
213 	[ECMR]		= 0x0300,
214 	[RFLR]		= 0x0308,
215 	[ECSR]		= 0x0310,
216 	[ECSIPR]	= 0x0318,
217 	[PIR]		= 0x0320,
218 	[PSR]		= 0x0328,
219 	[RDMLR]		= 0x0340,
220 	[IPGR]		= 0x0350,
221 	[APR]		= 0x0354,
222 	[MPR]		= 0x0358,
223 	[RFCF]		= 0x0360,
224 	[TPAUSER]	= 0x0364,
225 	[TPAUSECR]	= 0x0368,
226 	[MAHR]		= 0x03c0,
227 	[MALR]		= 0x03c8,
228 	[TROCR]		= 0x03d0,
229 	[CDCR]		= 0x03d4,
230 	[LCCR]		= 0x03d8,
231 	[CNDCR]		= 0x03dc,
232 	[CEFCR]		= 0x03e4,
233 	[FRECR]		= 0x03e8,
234 	[TSFRCR]	= 0x03ec,
235 	[TLFRCR]	= 0x03f0,
236 	[RFCR]		= 0x03f4,
237 	[MAFCR]		= 0x03f8,
238 
239 	[EDMR]		= 0x0200,
240 	[EDTRR]		= 0x0208,
241 	[EDRRR]		= 0x0210,
242 	[TDLAR]		= 0x0218,
243 	[RDLAR]		= 0x0220,
244 	[EESR]		= 0x0228,
245 	[EESIPR]	= 0x0230,
246 	[TRSCER]	= 0x0238,
247 	[RMFCR]		= 0x0240,
248 	[TFTR]		= 0x0248,
249 	[FDR]		= 0x0250,
250 	[RMCR]		= 0x0258,
251 	[TFUCR]		= 0x0264,
252 	[RFOCR]		= 0x0268,
253 	[RMIIMODE]      = 0x026c,
254 	[FCFTR]		= 0x0270,
255 	[TRIMD]		= 0x027c,
256 };
257 
258 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
259 	[ECMR]		= 0x0100,
260 	[RFLR]		= 0x0108,
261 	[ECSR]		= 0x0110,
262 	[ECSIPR]	= 0x0118,
263 	[PIR]		= 0x0120,
264 	[PSR]		= 0x0128,
265 	[RDMLR]		= 0x0140,
266 	[IPGR]		= 0x0150,
267 	[APR]		= 0x0154,
268 	[MPR]		= 0x0158,
269 	[TPAUSER]	= 0x0164,
270 	[RFCF]		= 0x0160,
271 	[TPAUSECR]	= 0x0168,
272 	[BCFRR]		= 0x016c,
273 	[MAHR]		= 0x01c0,
274 	[MALR]		= 0x01c8,
275 	[TROCR]		= 0x01d0,
276 	[CDCR]		= 0x01d4,
277 	[LCCR]		= 0x01d8,
278 	[CNDCR]		= 0x01dc,
279 	[CEFCR]		= 0x01e4,
280 	[FRECR]		= 0x01e8,
281 	[TSFRCR]	= 0x01ec,
282 	[TLFRCR]	= 0x01f0,
283 	[RFCR]		= 0x01f4,
284 	[MAFCR]		= 0x01f8,
285 	[RTRATE]	= 0x01fc,
286 
287 	[EDMR]		= 0x0000,
288 	[EDTRR]		= 0x0008,
289 	[EDRRR]		= 0x0010,
290 	[TDLAR]		= 0x0018,
291 	[RDLAR]		= 0x0020,
292 	[EESR]		= 0x0028,
293 	[EESIPR]	= 0x0030,
294 	[TRSCER]	= 0x0038,
295 	[RMFCR]		= 0x0040,
296 	[TFTR]		= 0x0048,
297 	[FDR]		= 0x0050,
298 	[RMCR]		= 0x0058,
299 	[TFUCR]		= 0x0064,
300 	[RFOCR]		= 0x0068,
301 	[FCFTR]		= 0x0070,
302 	[RPADIR]	= 0x0078,
303 	[TRIMD]		= 0x007c,
304 	[RBWAR]		= 0x00c8,
305 	[RDFAR]		= 0x00cc,
306 	[TBRAR]		= 0x00d4,
307 	[TDFAR]		= 0x00d8,
308 };
309 
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 	[EDMR]		= 0x0000,
312 	[EDTRR]		= 0x0004,
313 	[EDRRR]		= 0x0008,
314 	[TDLAR]		= 0x000c,
315 	[RDLAR]		= 0x0010,
316 	[EESR]		= 0x0014,
317 	[EESIPR]	= 0x0018,
318 	[TRSCER]	= 0x001c,
319 	[RMFCR]		= 0x0020,
320 	[TFTR]		= 0x0024,
321 	[FDR]		= 0x0028,
322 	[RMCR]		= 0x002c,
323 	[EDOCR]		= 0x0030,
324 	[FCFTR]		= 0x0034,
325 	[RPADIR]	= 0x0038,
326 	[TRIMD]		= 0x003c,
327 	[RBWAR]		= 0x0040,
328 	[RDFAR]		= 0x0044,
329 	[TBRAR]		= 0x004c,
330 	[TDFAR]		= 0x0050,
331 
332 	[ECMR]		= 0x0160,
333 	[ECSR]		= 0x0164,
334 	[ECSIPR]	= 0x0168,
335 	[PIR]		= 0x016c,
336 	[MAHR]		= 0x0170,
337 	[MALR]		= 0x0174,
338 	[RFLR]		= 0x0178,
339 	[PSR]		= 0x017c,
340 	[TROCR]		= 0x0180,
341 	[CDCR]		= 0x0184,
342 	[LCCR]		= 0x0188,
343 	[CNDCR]		= 0x018c,
344 	[CEFCR]		= 0x0194,
345 	[FRECR]		= 0x0198,
346 	[TSFRCR]	= 0x019c,
347 	[TLFRCR]	= 0x01a0,
348 	[RFCR]		= 0x01a4,
349 	[MAFCR]		= 0x01a8,
350 	[IPGR]		= 0x01b4,
351 	[APR]		= 0x01b8,
352 	[MPR]		= 0x01bc,
353 	[TPAUSER]	= 0x01c4,
354 	[BCFR]		= 0x01cc,
355 
356 	[ARSTR]		= 0x0000,
357 	[TSU_CTRST]	= 0x0004,
358 	[TSU_FWEN0]	= 0x0010,
359 	[TSU_FWEN1]	= 0x0014,
360 	[TSU_FCM]	= 0x0018,
361 	[TSU_BSYSL0]	= 0x0020,
362 	[TSU_BSYSL1]	= 0x0024,
363 	[TSU_PRISL0]	= 0x0028,
364 	[TSU_PRISL1]	= 0x002c,
365 	[TSU_FWSL0]	= 0x0030,
366 	[TSU_FWSL1]	= 0x0034,
367 	[TSU_FWSLC]	= 0x0038,
368 	[TSU_QTAGM0]	= 0x0040,
369 	[TSU_QTAGM1]	= 0x0044,
370 	[TSU_ADQT0]	= 0x0048,
371 	[TSU_ADQT1]	= 0x004c,
372 	[TSU_FWSR]	= 0x0050,
373 	[TSU_FWINMK]	= 0x0054,
374 	[TSU_ADSBSY]	= 0x0060,
375 	[TSU_TEN]	= 0x0064,
376 	[TSU_POST1]	= 0x0070,
377 	[TSU_POST2]	= 0x0074,
378 	[TSU_POST3]	= 0x0078,
379 	[TSU_POST4]	= 0x007c,
380 
381 	[TXNLCR0]	= 0x0080,
382 	[TXALCR0]	= 0x0084,
383 	[RXNLCR0]	= 0x0088,
384 	[RXALCR0]	= 0x008c,
385 	[FWNLCR0]	= 0x0090,
386 	[FWALCR0]	= 0x0094,
387 	[TXNLCR1]	= 0x00a0,
388 	[TXALCR1]	= 0x00a0,
389 	[RXNLCR1]	= 0x00a8,
390 	[RXALCR1]	= 0x00ac,
391 	[FWNLCR1]	= 0x00b0,
392 	[FWALCR1]	= 0x00b4,
393 
394 	[TSU_ADRH0]	= 0x0100,
395 	[TSU_ADRL0]	= 0x0104,
396 	[TSU_ADRL31]	= 0x01fc,
397 };
398 
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401 
402 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
403 {
404 	return mdp->reg_offset == sh_eth_offset_gigabit;
405 }
406 
407 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
408 {
409 	return mdp->reg_offset == sh_eth_offset_fast_rz;
410 }
411 
412 static void sh_eth_select_mii(struct net_device *ndev)
413 {
414 	u32 value = 0x0;
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 
417 	switch (mdp->phy_interface) {
418 	case PHY_INTERFACE_MODE_GMII:
419 		value = 0x2;
420 		break;
421 	case PHY_INTERFACE_MODE_MII:
422 		value = 0x1;
423 		break;
424 	case PHY_INTERFACE_MODE_RMII:
425 		value = 0x0;
426 		break;
427 	default:
428 		netdev_warn(ndev,
429 			    "PHY interface mode was not setup. Set to MII.\n");
430 		value = 0x1;
431 		break;
432 	}
433 
434 	sh_eth_write(ndev, value, RMII_MII);
435 }
436 
437 static void sh_eth_set_duplex(struct net_device *ndev)
438 {
439 	struct sh_eth_private *mdp = netdev_priv(ndev);
440 
441 	if (mdp->duplex) /* Full */
442 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
443 	else		/* Half */
444 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
445 }
446 
447 /* There is CPU dependent code */
448 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
449 {
450 	struct sh_eth_private *mdp = netdev_priv(ndev);
451 
452 	switch (mdp->speed) {
453 	case 10: /* 10BASE */
454 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
455 		break;
456 	case 100:/* 100BASE */
457 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
458 		break;
459 	default:
460 		break;
461 	}
462 }
463 
464 /* R8A7778/9 */
465 static struct sh_eth_cpu_data r8a777x_data = {
466 	.set_duplex	= sh_eth_set_duplex,
467 	.set_rate	= sh_eth_set_rate_r8a777x,
468 
469 	.register_type	= SH_ETH_REG_FAST_RCAR,
470 
471 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
472 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
473 	.eesipr_value	= 0x01ff009f,
474 
475 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
476 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
477 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
478 			  EESR_ECI,
479 	.fdr_value	= 0x00000f0f,
480 
481 	.apr		= 1,
482 	.mpr		= 1,
483 	.tpauser	= 1,
484 	.hw_swap	= 1,
485 };
486 
487 /* R8A7790/1 */
488 static struct sh_eth_cpu_data r8a779x_data = {
489 	.set_duplex	= sh_eth_set_duplex,
490 	.set_rate	= sh_eth_set_rate_r8a777x,
491 
492 	.register_type	= SH_ETH_REG_FAST_RCAR,
493 
494 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
495 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
496 	.eesipr_value	= 0x01ff009f,
497 
498 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
499 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
500 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
501 			  EESR_ECI,
502 	.fdr_value	= 0x00000f0f,
503 
504 	.trscer_err_mask = DESC_I_RINT8,
505 
506 	.apr		= 1,
507 	.mpr		= 1,
508 	.tpauser	= 1,
509 	.hw_swap	= 1,
510 	.rmiimode	= 1,
511 	.shift_rd0	= 1,
512 };
513 
514 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
515 {
516 	struct sh_eth_private *mdp = netdev_priv(ndev);
517 
518 	switch (mdp->speed) {
519 	case 10: /* 10BASE */
520 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
521 		break;
522 	case 100:/* 100BASE */
523 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
524 		break;
525 	default:
526 		break;
527 	}
528 }
529 
530 /* SH7724 */
531 static struct sh_eth_cpu_data sh7724_data = {
532 	.set_duplex	= sh_eth_set_duplex,
533 	.set_rate	= sh_eth_set_rate_sh7724,
534 
535 	.register_type	= SH_ETH_REG_FAST_SH4,
536 
537 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
538 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
539 	.eesipr_value	= 0x01ff009f,
540 
541 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
542 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
543 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
544 			  EESR_ECI,
545 
546 	.apr		= 1,
547 	.mpr		= 1,
548 	.tpauser	= 1,
549 	.hw_swap	= 1,
550 	.rpadir		= 1,
551 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
552 };
553 
554 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
555 {
556 	struct sh_eth_private *mdp = netdev_priv(ndev);
557 
558 	switch (mdp->speed) {
559 	case 10: /* 10BASE */
560 		sh_eth_write(ndev, 0, RTRATE);
561 		break;
562 	case 100:/* 100BASE */
563 		sh_eth_write(ndev, 1, RTRATE);
564 		break;
565 	default:
566 		break;
567 	}
568 }
569 
570 /* SH7757 */
571 static struct sh_eth_cpu_data sh7757_data = {
572 	.set_duplex	= sh_eth_set_duplex,
573 	.set_rate	= sh_eth_set_rate_sh7757,
574 
575 	.register_type	= SH_ETH_REG_FAST_SH4,
576 
577 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
578 
579 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
580 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
581 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
582 			  EESR_ECI,
583 
584 	.irq_flags	= IRQF_SHARED,
585 	.apr		= 1,
586 	.mpr		= 1,
587 	.tpauser	= 1,
588 	.hw_swap	= 1,
589 	.no_ade		= 1,
590 	.rpadir		= 1,
591 	.rpadir_value   = 2 << 16,
592 };
593 
594 #define SH_GIGA_ETH_BASE	0xfee00000UL
595 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
596 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
597 static void sh_eth_chip_reset_giga(struct net_device *ndev)
598 {
599 	int i;
600 	unsigned long mahr[2], malr[2];
601 
602 	/* save MAHR and MALR */
603 	for (i = 0; i < 2; i++) {
604 		malr[i] = ioread32((void *)GIGA_MALR(i));
605 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
606 	}
607 
608 	/* reset device */
609 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
610 	mdelay(1);
611 
612 	/* restore MAHR and MALR */
613 	for (i = 0; i < 2; i++) {
614 		iowrite32(malr[i], (void *)GIGA_MALR(i));
615 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
616 	}
617 }
618 
619 static void sh_eth_set_rate_giga(struct net_device *ndev)
620 {
621 	struct sh_eth_private *mdp = netdev_priv(ndev);
622 
623 	switch (mdp->speed) {
624 	case 10: /* 10BASE */
625 		sh_eth_write(ndev, 0x00000000, GECMR);
626 		break;
627 	case 100:/* 100BASE */
628 		sh_eth_write(ndev, 0x00000010, GECMR);
629 		break;
630 	case 1000: /* 1000BASE */
631 		sh_eth_write(ndev, 0x00000020, GECMR);
632 		break;
633 	default:
634 		break;
635 	}
636 }
637 
638 /* SH7757(GETHERC) */
639 static struct sh_eth_cpu_data sh7757_data_giga = {
640 	.chip_reset	= sh_eth_chip_reset_giga,
641 	.set_duplex	= sh_eth_set_duplex,
642 	.set_rate	= sh_eth_set_rate_giga,
643 
644 	.register_type	= SH_ETH_REG_GIGABIT,
645 
646 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
647 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
648 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
649 
650 	.tx_check	= EESR_TC1 | EESR_FTC,
651 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
652 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
653 			  EESR_TDE | EESR_ECI,
654 	.fdr_value	= 0x0000072f,
655 
656 	.irq_flags	= IRQF_SHARED,
657 	.apr		= 1,
658 	.mpr		= 1,
659 	.tpauser	= 1,
660 	.bculr		= 1,
661 	.hw_swap	= 1,
662 	.rpadir		= 1,
663 	.rpadir_value   = 2 << 16,
664 	.no_trimd	= 1,
665 	.no_ade		= 1,
666 	.tsu		= 1,
667 };
668 
669 static void sh_eth_chip_reset(struct net_device *ndev)
670 {
671 	struct sh_eth_private *mdp = netdev_priv(ndev);
672 
673 	/* reset device */
674 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
675 	mdelay(1);
676 }
677 
678 static void sh_eth_set_rate_gether(struct net_device *ndev)
679 {
680 	struct sh_eth_private *mdp = netdev_priv(ndev);
681 
682 	switch (mdp->speed) {
683 	case 10: /* 10BASE */
684 		sh_eth_write(ndev, GECMR_10, GECMR);
685 		break;
686 	case 100:/* 100BASE */
687 		sh_eth_write(ndev, GECMR_100, GECMR);
688 		break;
689 	case 1000: /* 1000BASE */
690 		sh_eth_write(ndev, GECMR_1000, GECMR);
691 		break;
692 	default:
693 		break;
694 	}
695 }
696 
697 /* SH7734 */
698 static struct sh_eth_cpu_data sh7734_data = {
699 	.chip_reset	= sh_eth_chip_reset,
700 	.set_duplex	= sh_eth_set_duplex,
701 	.set_rate	= sh_eth_set_rate_gether,
702 
703 	.register_type	= SH_ETH_REG_GIGABIT,
704 
705 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
706 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
707 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
708 
709 	.tx_check	= EESR_TC1 | EESR_FTC,
710 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
711 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
712 			  EESR_TDE | EESR_ECI,
713 
714 	.apr		= 1,
715 	.mpr		= 1,
716 	.tpauser	= 1,
717 	.bculr		= 1,
718 	.hw_swap	= 1,
719 	.no_trimd	= 1,
720 	.no_ade		= 1,
721 	.tsu		= 1,
722 	.hw_crc		= 1,
723 	.select_mii	= 1,
724 };
725 
726 /* SH7763 */
727 static struct sh_eth_cpu_data sh7763_data = {
728 	.chip_reset	= sh_eth_chip_reset,
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_gether,
731 
732 	.register_type	= SH_ETH_REG_GIGABIT,
733 
734 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
735 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737 
738 	.tx_check	= EESR_TC1 | EESR_FTC,
739 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
741 			  EESR_ECI,
742 
743 	.apr		= 1,
744 	.mpr		= 1,
745 	.tpauser	= 1,
746 	.bculr		= 1,
747 	.hw_swap	= 1,
748 	.no_trimd	= 1,
749 	.no_ade		= 1,
750 	.tsu		= 1,
751 	.irq_flags	= IRQF_SHARED,
752 };
753 
754 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
755 {
756 	struct sh_eth_private *mdp = netdev_priv(ndev);
757 
758 	/* reset device */
759 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
760 	mdelay(1);
761 
762 	sh_eth_select_mii(ndev);
763 }
764 
765 /* R8A7740 */
766 static struct sh_eth_cpu_data r8a7740_data = {
767 	.chip_reset	= sh_eth_chip_reset_r8a7740,
768 	.set_duplex	= sh_eth_set_duplex,
769 	.set_rate	= sh_eth_set_rate_gether,
770 
771 	.register_type	= SH_ETH_REG_GIGABIT,
772 
773 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
774 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
776 
777 	.tx_check	= EESR_TC1 | EESR_FTC,
778 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 			  EESR_TDE | EESR_ECI,
781 	.fdr_value	= 0x0000070f,
782 
783 	.apr		= 1,
784 	.mpr		= 1,
785 	.tpauser	= 1,
786 	.bculr		= 1,
787 	.hw_swap	= 1,
788 	.rpadir		= 1,
789 	.rpadir_value   = 2 << 16,
790 	.no_trimd	= 1,
791 	.no_ade		= 1,
792 	.tsu		= 1,
793 	.select_mii	= 1,
794 	.shift_rd0	= 1,
795 };
796 
797 /* R7S72100 */
798 static struct sh_eth_cpu_data r7s72100_data = {
799 	.chip_reset	= sh_eth_chip_reset,
800 	.set_duplex	= sh_eth_set_duplex,
801 
802 	.register_type	= SH_ETH_REG_FAST_RZ,
803 
804 	.ecsr_value	= ECSR_ICD,
805 	.ecsipr_value	= ECSIPR_ICDIP,
806 	.eesipr_value	= 0xff7f009f,
807 
808 	.tx_check	= EESR_TC1 | EESR_FTC,
809 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 			  EESR_TDE | EESR_ECI,
812 	.fdr_value	= 0x0000070f,
813 
814 	.no_psr		= 1,
815 	.apr		= 1,
816 	.mpr		= 1,
817 	.tpauser	= 1,
818 	.hw_swap	= 1,
819 	.rpadir		= 1,
820 	.rpadir_value   = 2 << 16,
821 	.no_trimd	= 1,
822 	.no_ade		= 1,
823 	.hw_crc		= 1,
824 	.tsu		= 1,
825 	.shift_rd0	= 1,
826 };
827 
828 static struct sh_eth_cpu_data sh7619_data = {
829 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
830 
831 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
832 
833 	.apr		= 1,
834 	.mpr		= 1,
835 	.tpauser	= 1,
836 	.hw_swap	= 1,
837 };
838 
839 static struct sh_eth_cpu_data sh771x_data = {
840 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
841 
842 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
843 	.tsu		= 1,
844 };
845 
846 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
847 {
848 	if (!cd->ecsr_value)
849 		cd->ecsr_value = DEFAULT_ECSR_INIT;
850 
851 	if (!cd->ecsipr_value)
852 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
853 
854 	if (!cd->fcftr_value)
855 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
856 				  DEFAULT_FIFO_F_D_RFD;
857 
858 	if (!cd->fdr_value)
859 		cd->fdr_value = DEFAULT_FDR_INIT;
860 
861 	if (!cd->tx_check)
862 		cd->tx_check = DEFAULT_TX_CHECK;
863 
864 	if (!cd->eesr_err_check)
865 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
866 
867 	if (!cd->trscer_err_mask)
868 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
869 }
870 
871 static int sh_eth_check_reset(struct net_device *ndev)
872 {
873 	int ret = 0;
874 	int cnt = 100;
875 
876 	while (cnt > 0) {
877 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
878 			break;
879 		mdelay(1);
880 		cnt--;
881 	}
882 	if (cnt <= 0) {
883 		netdev_err(ndev, "Device reset failed\n");
884 		ret = -ETIMEDOUT;
885 	}
886 	return ret;
887 }
888 
889 static int sh_eth_reset(struct net_device *ndev)
890 {
891 	struct sh_eth_private *mdp = netdev_priv(ndev);
892 	int ret = 0;
893 
894 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
895 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
896 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
897 			     EDMR);
898 
899 		ret = sh_eth_check_reset(ndev);
900 		if (ret)
901 			return ret;
902 
903 		/* Table Init */
904 		sh_eth_write(ndev, 0x0, TDLAR);
905 		sh_eth_write(ndev, 0x0, TDFAR);
906 		sh_eth_write(ndev, 0x0, TDFXR);
907 		sh_eth_write(ndev, 0x0, TDFFR);
908 		sh_eth_write(ndev, 0x0, RDLAR);
909 		sh_eth_write(ndev, 0x0, RDFAR);
910 		sh_eth_write(ndev, 0x0, RDFXR);
911 		sh_eth_write(ndev, 0x0, RDFFR);
912 
913 		/* Reset HW CRC register */
914 		if (mdp->cd->hw_crc)
915 			sh_eth_write(ndev, 0x0, CSMR);
916 
917 		/* Select MII mode */
918 		if (mdp->cd->select_mii)
919 			sh_eth_select_mii(ndev);
920 	} else {
921 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
922 			     EDMR);
923 		mdelay(3);
924 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
925 			     EDMR);
926 	}
927 
928 	return ret;
929 }
930 
931 static void sh_eth_set_receive_align(struct sk_buff *skb)
932 {
933 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
934 
935 	if (reserve)
936 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
937 }
938 
939 
940 /* CPU <-> EDMAC endian convert */
941 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
942 {
943 	switch (mdp->edmac_endian) {
944 	case EDMAC_LITTLE_ENDIAN:
945 		return cpu_to_le32(x);
946 	case EDMAC_BIG_ENDIAN:
947 		return cpu_to_be32(x);
948 	}
949 	return x;
950 }
951 
952 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
953 {
954 	switch (mdp->edmac_endian) {
955 	case EDMAC_LITTLE_ENDIAN:
956 		return le32_to_cpu(x);
957 	case EDMAC_BIG_ENDIAN:
958 		return be32_to_cpu(x);
959 	}
960 	return x;
961 }
962 
963 /* Program the hardware MAC address from dev->dev_addr. */
964 static void update_mac_address(struct net_device *ndev)
965 {
966 	sh_eth_write(ndev,
967 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
968 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
969 	sh_eth_write(ndev,
970 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
971 }
972 
973 /* Get MAC address from SuperH MAC address register
974  *
975  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
976  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
977  * When you want use this device, you must set MAC address in bootloader.
978  *
979  */
980 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
981 {
982 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
983 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
984 	} else {
985 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
986 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
987 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
988 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
989 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
990 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
991 	}
992 }
993 
994 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
995 {
996 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
997 		return EDTRR_TRNS_GETHER;
998 	else
999 		return EDTRR_TRNS_ETHER;
1000 }
1001 
1002 struct bb_info {
1003 	void (*set_gate)(void *addr);
1004 	struct mdiobb_ctrl ctrl;
1005 	void *addr;
1006 	u32 mmd_msk;/* MMD */
1007 	u32 mdo_msk;
1008 	u32 mdi_msk;
1009 	u32 mdc_msk;
1010 };
1011 
1012 /* PHY bit set */
1013 static void bb_set(void *addr, u32 msk)
1014 {
1015 	iowrite32(ioread32(addr) | msk, addr);
1016 }
1017 
1018 /* PHY bit clear */
1019 static void bb_clr(void *addr, u32 msk)
1020 {
1021 	iowrite32((ioread32(addr) & ~msk), addr);
1022 }
1023 
1024 /* PHY bit read */
1025 static int bb_read(void *addr, u32 msk)
1026 {
1027 	return (ioread32(addr) & msk) != 0;
1028 }
1029 
1030 /* Data I/O pin control */
1031 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1032 {
1033 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1034 
1035 	if (bitbang->set_gate)
1036 		bitbang->set_gate(bitbang->addr);
1037 
1038 	if (bit)
1039 		bb_set(bitbang->addr, bitbang->mmd_msk);
1040 	else
1041 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1042 }
1043 
1044 /* Set bit data*/
1045 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1046 {
1047 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1048 
1049 	if (bitbang->set_gate)
1050 		bitbang->set_gate(bitbang->addr);
1051 
1052 	if (bit)
1053 		bb_set(bitbang->addr, bitbang->mdo_msk);
1054 	else
1055 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1056 }
1057 
1058 /* Get bit data*/
1059 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1060 {
1061 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1062 
1063 	if (bitbang->set_gate)
1064 		bitbang->set_gate(bitbang->addr);
1065 
1066 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1067 }
1068 
1069 /* MDC pin control */
1070 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1071 {
1072 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1073 
1074 	if (bitbang->set_gate)
1075 		bitbang->set_gate(bitbang->addr);
1076 
1077 	if (bit)
1078 		bb_set(bitbang->addr, bitbang->mdc_msk);
1079 	else
1080 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1081 }
1082 
1083 /* mdio bus control struct */
1084 static struct mdiobb_ops bb_ops = {
1085 	.owner = THIS_MODULE,
1086 	.set_mdc = sh_mdc_ctrl,
1087 	.set_mdio_dir = sh_mmd_ctrl,
1088 	.set_mdio_data = sh_set_mdio,
1089 	.get_mdio_data = sh_get_mdio,
1090 };
1091 
1092 /* free skb and descriptor buffer */
1093 static void sh_eth_ring_free(struct net_device *ndev)
1094 {
1095 	struct sh_eth_private *mdp = netdev_priv(ndev);
1096 	int i;
1097 
1098 	/* Free Rx skb ringbuffer */
1099 	if (mdp->rx_skbuff) {
1100 		for (i = 0; i < mdp->num_rx_ring; i++)
1101 			dev_kfree_skb(mdp->rx_skbuff[i]);
1102 	}
1103 	kfree(mdp->rx_skbuff);
1104 	mdp->rx_skbuff = NULL;
1105 
1106 	/* Free Tx skb ringbuffer */
1107 	if (mdp->tx_skbuff) {
1108 		for (i = 0; i < mdp->num_tx_ring; i++)
1109 			dev_kfree_skb(mdp->tx_skbuff[i]);
1110 	}
1111 	kfree(mdp->tx_skbuff);
1112 	mdp->tx_skbuff = NULL;
1113 }
1114 
1115 /* format skb and descriptor buffer */
1116 static void sh_eth_ring_format(struct net_device *ndev)
1117 {
1118 	struct sh_eth_private *mdp = netdev_priv(ndev);
1119 	int i;
1120 	struct sk_buff *skb;
1121 	struct sh_eth_rxdesc *rxdesc = NULL;
1122 	struct sh_eth_txdesc *txdesc = NULL;
1123 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1124 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1125 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1126 	dma_addr_t dma_addr;
1127 
1128 	mdp->cur_rx = 0;
1129 	mdp->cur_tx = 0;
1130 	mdp->dirty_rx = 0;
1131 	mdp->dirty_tx = 0;
1132 
1133 	memset(mdp->rx_ring, 0, rx_ringsize);
1134 
1135 	/* build Rx ring buffer */
1136 	for (i = 0; i < mdp->num_rx_ring; i++) {
1137 		/* skb */
1138 		mdp->rx_skbuff[i] = NULL;
1139 		skb = netdev_alloc_skb(ndev, skbuff_size);
1140 		if (skb == NULL)
1141 			break;
1142 		sh_eth_set_receive_align(skb);
1143 
1144 		/* RX descriptor */
1145 		rxdesc = &mdp->rx_ring[i];
1146 		/* The size of the buffer is a multiple of 16 bytes. */
1147 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1148 		dma_addr = dma_map_single(&ndev->dev, skb->data,
1149 					  rxdesc->buffer_length,
1150 					  DMA_FROM_DEVICE);
1151 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1152 			kfree_skb(skb);
1153 			break;
1154 		}
1155 		mdp->rx_skbuff[i] = skb;
1156 		rxdesc->addr = dma_addr;
1157 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1158 
1159 		/* Rx descriptor address set */
1160 		if (i == 0) {
1161 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1162 			if (sh_eth_is_gether(mdp) ||
1163 			    sh_eth_is_rz_fast_ether(mdp))
1164 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1165 		}
1166 	}
1167 
1168 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1169 
1170 	/* Mark the last entry as wrapping the ring. */
1171 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1172 
1173 	memset(mdp->tx_ring, 0, tx_ringsize);
1174 
1175 	/* build Tx ring buffer */
1176 	for (i = 0; i < mdp->num_tx_ring; i++) {
1177 		mdp->tx_skbuff[i] = NULL;
1178 		txdesc = &mdp->tx_ring[i];
1179 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1180 		txdesc->buffer_length = 0;
1181 		if (i == 0) {
1182 			/* Tx descriptor address set */
1183 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1184 			if (sh_eth_is_gether(mdp) ||
1185 			    sh_eth_is_rz_fast_ether(mdp))
1186 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1187 		}
1188 	}
1189 
1190 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1191 }
1192 
1193 /* Get skb and descriptor buffer */
1194 static int sh_eth_ring_init(struct net_device *ndev)
1195 {
1196 	struct sh_eth_private *mdp = netdev_priv(ndev);
1197 	int rx_ringsize, tx_ringsize, ret = 0;
1198 
1199 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1200 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1201 	 * the first 2 bytes, and +16 gets room for the status word from the
1202 	 * card.
1203 	 */
1204 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1205 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1206 	if (mdp->cd->rpadir)
1207 		mdp->rx_buf_sz += NET_IP_ALIGN;
1208 
1209 	/* Allocate RX and TX skb rings */
1210 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1211 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1212 	if (!mdp->rx_skbuff) {
1213 		ret = -ENOMEM;
1214 		return ret;
1215 	}
1216 
1217 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1218 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1219 	if (!mdp->tx_skbuff) {
1220 		ret = -ENOMEM;
1221 		goto skb_ring_free;
1222 	}
1223 
1224 	/* Allocate all Rx descriptors. */
1225 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1226 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1227 					  GFP_KERNEL);
1228 	if (!mdp->rx_ring) {
1229 		ret = -ENOMEM;
1230 		goto desc_ring_free;
1231 	}
1232 
1233 	mdp->dirty_rx = 0;
1234 
1235 	/* Allocate all Tx descriptors. */
1236 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1237 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1238 					  GFP_KERNEL);
1239 	if (!mdp->tx_ring) {
1240 		ret = -ENOMEM;
1241 		goto desc_ring_free;
1242 	}
1243 	return ret;
1244 
1245 desc_ring_free:
1246 	/* free DMA buffer */
1247 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1248 
1249 skb_ring_free:
1250 	/* Free Rx and Tx skb ring buffer */
1251 	sh_eth_ring_free(ndev);
1252 	mdp->tx_ring = NULL;
1253 	mdp->rx_ring = NULL;
1254 
1255 	return ret;
1256 }
1257 
1258 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1259 {
1260 	int ringsize;
1261 
1262 	if (mdp->rx_ring) {
1263 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1264 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1265 				  mdp->rx_desc_dma);
1266 		mdp->rx_ring = NULL;
1267 	}
1268 
1269 	if (mdp->tx_ring) {
1270 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1271 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1272 				  mdp->tx_desc_dma);
1273 		mdp->tx_ring = NULL;
1274 	}
1275 }
1276 
1277 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1278 {
1279 	int ret = 0;
1280 	struct sh_eth_private *mdp = netdev_priv(ndev);
1281 	u32 val;
1282 
1283 	/* Soft Reset */
1284 	ret = sh_eth_reset(ndev);
1285 	if (ret)
1286 		return ret;
1287 
1288 	if (mdp->cd->rmiimode)
1289 		sh_eth_write(ndev, 0x1, RMIIMODE);
1290 
1291 	/* Descriptor format */
1292 	sh_eth_ring_format(ndev);
1293 	if (mdp->cd->rpadir)
1294 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1295 
1296 	/* all sh_eth int mask */
1297 	sh_eth_write(ndev, 0, EESIPR);
1298 
1299 #if defined(__LITTLE_ENDIAN)
1300 	if (mdp->cd->hw_swap)
1301 		sh_eth_write(ndev, EDMR_EL, EDMR);
1302 	else
1303 #endif
1304 		sh_eth_write(ndev, 0, EDMR);
1305 
1306 	/* FIFO size set */
1307 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1308 	sh_eth_write(ndev, 0, TFTR);
1309 
1310 	/* Frame recv control (enable multiple-packets per rx irq) */
1311 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1312 
1313 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1314 
1315 	if (mdp->cd->bculr)
1316 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1317 
1318 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1319 
1320 	if (!mdp->cd->no_trimd)
1321 		sh_eth_write(ndev, 0, TRIMD);
1322 
1323 	/* Recv frame limit set register */
1324 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1325 		     RFLR);
1326 
1327 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1328 	if (start) {
1329 		mdp->irq_enabled = true;
1330 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1331 	}
1332 
1333 	/* PAUSE Prohibition */
1334 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1335 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1336 
1337 	sh_eth_write(ndev, val, ECMR);
1338 
1339 	if (mdp->cd->set_rate)
1340 		mdp->cd->set_rate(ndev);
1341 
1342 	/* E-MAC Status Register clear */
1343 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1344 
1345 	/* E-MAC Interrupt Enable register */
1346 	if (start)
1347 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1348 
1349 	/* Set MAC address */
1350 	update_mac_address(ndev);
1351 
1352 	/* mask reset */
1353 	if (mdp->cd->apr)
1354 		sh_eth_write(ndev, APR_AP, APR);
1355 	if (mdp->cd->mpr)
1356 		sh_eth_write(ndev, MPR_MP, MPR);
1357 	if (mdp->cd->tpauser)
1358 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1359 
1360 	if (start) {
1361 		/* Setting the Rx mode will start the Rx process. */
1362 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1363 
1364 		netif_start_queue(ndev);
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 static void sh_eth_dev_exit(struct net_device *ndev)
1371 {
1372 	struct sh_eth_private *mdp = netdev_priv(ndev);
1373 	int i;
1374 
1375 	/* Deactivate all TX descriptors, so DMA should stop at next
1376 	 * packet boundary if it's currently running
1377 	 */
1378 	for (i = 0; i < mdp->num_tx_ring; i++)
1379 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1380 
1381 	/* Disable TX FIFO egress to MAC */
1382 	sh_eth_rcv_snd_disable(ndev);
1383 
1384 	/* Stop RX DMA at next packet boundary */
1385 	sh_eth_write(ndev, 0, EDRRR);
1386 
1387 	/* Aside from TX DMA, we can't tell when the hardware is
1388 	 * really stopped, so we need to reset to make sure.
1389 	 * Before doing that, wait for long enough to *probably*
1390 	 * finish transmitting the last packet and poll stats.
1391 	 */
1392 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1393 	sh_eth_get_stats(ndev);
1394 	sh_eth_reset(ndev);
1395 }
1396 
1397 /* free Tx skb function */
1398 static int sh_eth_txfree(struct net_device *ndev)
1399 {
1400 	struct sh_eth_private *mdp = netdev_priv(ndev);
1401 	struct sh_eth_txdesc *txdesc;
1402 	int free_num = 0;
1403 	int entry = 0;
1404 
1405 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1406 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1407 		txdesc = &mdp->tx_ring[entry];
1408 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1409 			break;
1410 		/* Free the original skb. */
1411 		if (mdp->tx_skbuff[entry]) {
1412 			dma_unmap_single(&ndev->dev, txdesc->addr,
1413 					 txdesc->buffer_length, DMA_TO_DEVICE);
1414 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1415 			mdp->tx_skbuff[entry] = NULL;
1416 			free_num++;
1417 		}
1418 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1419 		if (entry >= mdp->num_tx_ring - 1)
1420 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1421 
1422 		ndev->stats.tx_packets++;
1423 		ndev->stats.tx_bytes += txdesc->buffer_length;
1424 	}
1425 	return free_num;
1426 }
1427 
1428 /* Packet receive function */
1429 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1430 {
1431 	struct sh_eth_private *mdp = netdev_priv(ndev);
1432 	struct sh_eth_rxdesc *rxdesc;
1433 
1434 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1435 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1436 	int limit;
1437 	struct sk_buff *skb;
1438 	u16 pkt_len = 0;
1439 	u32 desc_status;
1440 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1441 	dma_addr_t dma_addr;
1442 
1443 	boguscnt = min(boguscnt, *quota);
1444 	limit = boguscnt;
1445 	rxdesc = &mdp->rx_ring[entry];
1446 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1447 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1448 		pkt_len = rxdesc->frame_length;
1449 
1450 		if (--boguscnt < 0)
1451 			break;
1452 
1453 		if (!(desc_status & RDFEND))
1454 			ndev->stats.rx_length_errors++;
1455 
1456 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1457 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1458 		 * bit 0. However, in case of the R8A7740, R8A779x, and
1459 		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1460 		 * driver needs right shifting by 16.
1461 		 */
1462 		if (mdp->cd->shift_rd0)
1463 			desc_status >>= 16;
1464 
1465 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1466 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1467 			ndev->stats.rx_errors++;
1468 			if (desc_status & RD_RFS1)
1469 				ndev->stats.rx_crc_errors++;
1470 			if (desc_status & RD_RFS2)
1471 				ndev->stats.rx_frame_errors++;
1472 			if (desc_status & RD_RFS3)
1473 				ndev->stats.rx_length_errors++;
1474 			if (desc_status & RD_RFS4)
1475 				ndev->stats.rx_length_errors++;
1476 			if (desc_status & RD_RFS6)
1477 				ndev->stats.rx_missed_errors++;
1478 			if (desc_status & RD_RFS10)
1479 				ndev->stats.rx_over_errors++;
1480 		} else {
1481 			if (!mdp->cd->hw_swap)
1482 				sh_eth_soft_swap(
1483 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1484 					pkt_len + 2);
1485 			skb = mdp->rx_skbuff[entry];
1486 			mdp->rx_skbuff[entry] = NULL;
1487 			if (mdp->cd->rpadir)
1488 				skb_reserve(skb, NET_IP_ALIGN);
1489 			dma_unmap_single(&ndev->dev, rxdesc->addr,
1490 					 ALIGN(mdp->rx_buf_sz, 16),
1491 					 DMA_FROM_DEVICE);
1492 			skb_put(skb, pkt_len);
1493 			skb->protocol = eth_type_trans(skb, ndev);
1494 			netif_receive_skb(skb);
1495 			ndev->stats.rx_packets++;
1496 			ndev->stats.rx_bytes += pkt_len;
1497 		}
1498 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1499 		rxdesc = &mdp->rx_ring[entry];
1500 	}
1501 
1502 	/* Refill the Rx ring buffers. */
1503 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1504 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1505 		rxdesc = &mdp->rx_ring[entry];
1506 		/* The size of the buffer is 16 byte boundary. */
1507 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1508 
1509 		if (mdp->rx_skbuff[entry] == NULL) {
1510 			skb = netdev_alloc_skb(ndev, skbuff_size);
1511 			if (skb == NULL)
1512 				break;	/* Better luck next round. */
1513 			sh_eth_set_receive_align(skb);
1514 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1515 						  rxdesc->buffer_length,
1516 						  DMA_FROM_DEVICE);
1517 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1518 				kfree_skb(skb);
1519 				break;
1520 			}
1521 			mdp->rx_skbuff[entry] = skb;
1522 
1523 			skb_checksum_none_assert(skb);
1524 			rxdesc->addr = dma_addr;
1525 		}
1526 		if (entry >= mdp->num_rx_ring - 1)
1527 			rxdesc->status |=
1528 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1529 		else
1530 			rxdesc->status |=
1531 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1532 	}
1533 
1534 	/* Restart Rx engine if stopped. */
1535 	/* If we don't need to check status, don't. -KDU */
1536 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1537 		/* fix the values for the next receiving if RDE is set */
1538 		if (intr_status & EESR_RDE) {
1539 			u32 count = (sh_eth_read(ndev, RDFAR) -
1540 				     sh_eth_read(ndev, RDLAR)) >> 4;
1541 
1542 			mdp->cur_rx = count;
1543 			mdp->dirty_rx = count;
1544 		}
1545 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1546 	}
1547 
1548 	*quota -= limit - boguscnt - 1;
1549 
1550 	return *quota <= 0;
1551 }
1552 
1553 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1554 {
1555 	/* disable tx and rx */
1556 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1557 		~(ECMR_RE | ECMR_TE), ECMR);
1558 }
1559 
1560 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1561 {
1562 	/* enable tx and rx */
1563 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1564 		(ECMR_RE | ECMR_TE), ECMR);
1565 }
1566 
1567 /* error control function */
1568 static void sh_eth_error(struct net_device *ndev, int intr_status)
1569 {
1570 	struct sh_eth_private *mdp = netdev_priv(ndev);
1571 	u32 felic_stat;
1572 	u32 link_stat;
1573 	u32 mask;
1574 
1575 	if (intr_status & EESR_ECI) {
1576 		felic_stat = sh_eth_read(ndev, ECSR);
1577 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1578 		if (felic_stat & ECSR_ICD)
1579 			ndev->stats.tx_carrier_errors++;
1580 		if (felic_stat & ECSR_LCHNG) {
1581 			/* Link Changed */
1582 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1583 				goto ignore_link;
1584 			} else {
1585 				link_stat = (sh_eth_read(ndev, PSR));
1586 				if (mdp->ether_link_active_low)
1587 					link_stat = ~link_stat;
1588 			}
1589 			if (!(link_stat & PHY_ST_LINK)) {
1590 				sh_eth_rcv_snd_disable(ndev);
1591 			} else {
1592 				/* Link Up */
1593 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1594 						   ~DMAC_M_ECI, EESIPR);
1595 				/* clear int */
1596 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1597 					     ECSR);
1598 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1599 						   DMAC_M_ECI, EESIPR);
1600 				/* enable tx and rx */
1601 				sh_eth_rcv_snd_enable(ndev);
1602 			}
1603 		}
1604 	}
1605 
1606 ignore_link:
1607 	if (intr_status & EESR_TWB) {
1608 		/* Unused write back interrupt */
1609 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1610 			ndev->stats.tx_aborted_errors++;
1611 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1612 		}
1613 	}
1614 
1615 	if (intr_status & EESR_RABT) {
1616 		/* Receive Abort int */
1617 		if (intr_status & EESR_RFRMER) {
1618 			/* Receive Frame Overflow int */
1619 			ndev->stats.rx_frame_errors++;
1620 		}
1621 	}
1622 
1623 	if (intr_status & EESR_TDE) {
1624 		/* Transmit Descriptor Empty int */
1625 		ndev->stats.tx_fifo_errors++;
1626 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1627 	}
1628 
1629 	if (intr_status & EESR_TFE) {
1630 		/* FIFO under flow */
1631 		ndev->stats.tx_fifo_errors++;
1632 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1633 	}
1634 
1635 	if (intr_status & EESR_RDE) {
1636 		/* Receive Descriptor Empty int */
1637 		ndev->stats.rx_over_errors++;
1638 	}
1639 
1640 	if (intr_status & EESR_RFE) {
1641 		/* Receive FIFO Overflow int */
1642 		ndev->stats.rx_fifo_errors++;
1643 	}
1644 
1645 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1646 		/* Address Error */
1647 		ndev->stats.tx_fifo_errors++;
1648 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1649 	}
1650 
1651 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1652 	if (mdp->cd->no_ade)
1653 		mask &= ~EESR_ADE;
1654 	if (intr_status & mask) {
1655 		/* Tx error */
1656 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1657 
1658 		/* dmesg */
1659 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1660 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1661 			   (u32)ndev->state, edtrr);
1662 		/* dirty buffer free */
1663 		sh_eth_txfree(ndev);
1664 
1665 		/* SH7712 BUG */
1666 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1667 			/* tx dma start */
1668 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1669 		}
1670 		/* wakeup */
1671 		netif_wake_queue(ndev);
1672 	}
1673 }
1674 
1675 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1676 {
1677 	struct net_device *ndev = netdev;
1678 	struct sh_eth_private *mdp = netdev_priv(ndev);
1679 	struct sh_eth_cpu_data *cd = mdp->cd;
1680 	irqreturn_t ret = IRQ_NONE;
1681 	unsigned long intr_status, intr_enable;
1682 
1683 	spin_lock(&mdp->lock);
1684 
1685 	/* Get interrupt status */
1686 	intr_status = sh_eth_read(ndev, EESR);
1687 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1688 	 * enabled since it's the one that  comes thru regardless of the mask,
1689 	 * and we need to fully handle it in sh_eth_error() in order to quench
1690 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1691 	 */
1692 	intr_enable = sh_eth_read(ndev, EESIPR);
1693 	intr_status &= intr_enable | DMAC_M_ECI;
1694 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1695 		ret = IRQ_HANDLED;
1696 	else
1697 		goto out;
1698 
1699 	if (!likely(mdp->irq_enabled)) {
1700 		sh_eth_write(ndev, 0, EESIPR);
1701 		goto out;
1702 	}
1703 
1704 	if (intr_status & EESR_RX_CHECK) {
1705 		if (napi_schedule_prep(&mdp->napi)) {
1706 			/* Mask Rx interrupts */
1707 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1708 				     EESIPR);
1709 			__napi_schedule(&mdp->napi);
1710 		} else {
1711 			netdev_warn(ndev,
1712 				    "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1713 				    intr_status, intr_enable);
1714 		}
1715 	}
1716 
1717 	/* Tx Check */
1718 	if (intr_status & cd->tx_check) {
1719 		/* Clear Tx interrupts */
1720 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1721 
1722 		sh_eth_txfree(ndev);
1723 		netif_wake_queue(ndev);
1724 	}
1725 
1726 	if (intr_status & cd->eesr_err_check) {
1727 		/* Clear error interrupts */
1728 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1729 
1730 		sh_eth_error(ndev, intr_status);
1731 	}
1732 
1733 out:
1734 	spin_unlock(&mdp->lock);
1735 
1736 	return ret;
1737 }
1738 
1739 static int sh_eth_poll(struct napi_struct *napi, int budget)
1740 {
1741 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1742 						  napi);
1743 	struct net_device *ndev = napi->dev;
1744 	int quota = budget;
1745 	unsigned long intr_status;
1746 
1747 	for (;;) {
1748 		intr_status = sh_eth_read(ndev, EESR);
1749 		if (!(intr_status & EESR_RX_CHECK))
1750 			break;
1751 		/* Clear Rx interrupts */
1752 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1753 
1754 		if (sh_eth_rx(ndev, intr_status, &quota))
1755 			goto out;
1756 	}
1757 
1758 	napi_complete(napi);
1759 
1760 	/* Reenable Rx interrupts */
1761 	if (mdp->irq_enabled)
1762 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1763 out:
1764 	return budget - quota;
1765 }
1766 
1767 /* PHY state control function */
1768 static void sh_eth_adjust_link(struct net_device *ndev)
1769 {
1770 	struct sh_eth_private *mdp = netdev_priv(ndev);
1771 	struct phy_device *phydev = mdp->phydev;
1772 	int new_state = 0;
1773 
1774 	if (phydev->link) {
1775 		if (phydev->duplex != mdp->duplex) {
1776 			new_state = 1;
1777 			mdp->duplex = phydev->duplex;
1778 			if (mdp->cd->set_duplex)
1779 				mdp->cd->set_duplex(ndev);
1780 		}
1781 
1782 		if (phydev->speed != mdp->speed) {
1783 			new_state = 1;
1784 			mdp->speed = phydev->speed;
1785 			if (mdp->cd->set_rate)
1786 				mdp->cd->set_rate(ndev);
1787 		}
1788 		if (!mdp->link) {
1789 			sh_eth_write(ndev,
1790 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1791 				     ECMR);
1792 			new_state = 1;
1793 			mdp->link = phydev->link;
1794 			if (mdp->cd->no_psr || mdp->no_ether_link)
1795 				sh_eth_rcv_snd_enable(ndev);
1796 		}
1797 	} else if (mdp->link) {
1798 		new_state = 1;
1799 		mdp->link = 0;
1800 		mdp->speed = 0;
1801 		mdp->duplex = -1;
1802 		if (mdp->cd->no_psr || mdp->no_ether_link)
1803 			sh_eth_rcv_snd_disable(ndev);
1804 	}
1805 
1806 	if (new_state && netif_msg_link(mdp))
1807 		phy_print_status(phydev);
1808 }
1809 
1810 /* PHY init function */
1811 static int sh_eth_phy_init(struct net_device *ndev)
1812 {
1813 	struct device_node *np = ndev->dev.parent->of_node;
1814 	struct sh_eth_private *mdp = netdev_priv(ndev);
1815 	struct phy_device *phydev = NULL;
1816 
1817 	mdp->link = 0;
1818 	mdp->speed = 0;
1819 	mdp->duplex = -1;
1820 
1821 	/* Try connect to PHY */
1822 	if (np) {
1823 		struct device_node *pn;
1824 
1825 		pn = of_parse_phandle(np, "phy-handle", 0);
1826 		phydev = of_phy_connect(ndev, pn,
1827 					sh_eth_adjust_link, 0,
1828 					mdp->phy_interface);
1829 
1830 		if (!phydev)
1831 			phydev = ERR_PTR(-ENOENT);
1832 	} else {
1833 		char phy_id[MII_BUS_ID_SIZE + 3];
1834 
1835 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1836 			 mdp->mii_bus->id, mdp->phy_id);
1837 
1838 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1839 				     mdp->phy_interface);
1840 	}
1841 
1842 	if (IS_ERR(phydev)) {
1843 		netdev_err(ndev, "failed to connect PHY\n");
1844 		return PTR_ERR(phydev);
1845 	}
1846 
1847 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1848 		    phydev->addr, phydev->irq, phydev->drv->name);
1849 
1850 	mdp->phydev = phydev;
1851 
1852 	return 0;
1853 }
1854 
1855 /* PHY control start function */
1856 static int sh_eth_phy_start(struct net_device *ndev)
1857 {
1858 	struct sh_eth_private *mdp = netdev_priv(ndev);
1859 	int ret;
1860 
1861 	ret = sh_eth_phy_init(ndev);
1862 	if (ret)
1863 		return ret;
1864 
1865 	phy_start(mdp->phydev);
1866 
1867 	return 0;
1868 }
1869 
1870 static int sh_eth_get_settings(struct net_device *ndev,
1871 			       struct ethtool_cmd *ecmd)
1872 {
1873 	struct sh_eth_private *mdp = netdev_priv(ndev);
1874 	unsigned long flags;
1875 	int ret;
1876 
1877 	if (!mdp->phydev)
1878 		return -ENODEV;
1879 
1880 	spin_lock_irqsave(&mdp->lock, flags);
1881 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1882 	spin_unlock_irqrestore(&mdp->lock, flags);
1883 
1884 	return ret;
1885 }
1886 
1887 static int sh_eth_set_settings(struct net_device *ndev,
1888 			       struct ethtool_cmd *ecmd)
1889 {
1890 	struct sh_eth_private *mdp = netdev_priv(ndev);
1891 	unsigned long flags;
1892 	int ret;
1893 
1894 	if (!mdp->phydev)
1895 		return -ENODEV;
1896 
1897 	spin_lock_irqsave(&mdp->lock, flags);
1898 
1899 	/* disable tx and rx */
1900 	sh_eth_rcv_snd_disable(ndev);
1901 
1902 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1903 	if (ret)
1904 		goto error_exit;
1905 
1906 	if (ecmd->duplex == DUPLEX_FULL)
1907 		mdp->duplex = 1;
1908 	else
1909 		mdp->duplex = 0;
1910 
1911 	if (mdp->cd->set_duplex)
1912 		mdp->cd->set_duplex(ndev);
1913 
1914 error_exit:
1915 	mdelay(1);
1916 
1917 	/* enable tx and rx */
1918 	sh_eth_rcv_snd_enable(ndev);
1919 
1920 	spin_unlock_irqrestore(&mdp->lock, flags);
1921 
1922 	return ret;
1923 }
1924 
1925 static int sh_eth_nway_reset(struct net_device *ndev)
1926 {
1927 	struct sh_eth_private *mdp = netdev_priv(ndev);
1928 	unsigned long flags;
1929 	int ret;
1930 
1931 	if (!mdp->phydev)
1932 		return -ENODEV;
1933 
1934 	spin_lock_irqsave(&mdp->lock, flags);
1935 	ret = phy_start_aneg(mdp->phydev);
1936 	spin_unlock_irqrestore(&mdp->lock, flags);
1937 
1938 	return ret;
1939 }
1940 
1941 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1942 {
1943 	struct sh_eth_private *mdp = netdev_priv(ndev);
1944 	return mdp->msg_enable;
1945 }
1946 
1947 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1948 {
1949 	struct sh_eth_private *mdp = netdev_priv(ndev);
1950 	mdp->msg_enable = value;
1951 }
1952 
1953 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1954 	"rx_current", "tx_current",
1955 	"rx_dirty", "tx_dirty",
1956 };
1957 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1958 
1959 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1960 {
1961 	switch (sset) {
1962 	case ETH_SS_STATS:
1963 		return SH_ETH_STATS_LEN;
1964 	default:
1965 		return -EOPNOTSUPP;
1966 	}
1967 }
1968 
1969 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1970 				     struct ethtool_stats *stats, u64 *data)
1971 {
1972 	struct sh_eth_private *mdp = netdev_priv(ndev);
1973 	int i = 0;
1974 
1975 	/* device-specific stats */
1976 	data[i++] = mdp->cur_rx;
1977 	data[i++] = mdp->cur_tx;
1978 	data[i++] = mdp->dirty_rx;
1979 	data[i++] = mdp->dirty_tx;
1980 }
1981 
1982 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1983 {
1984 	switch (stringset) {
1985 	case ETH_SS_STATS:
1986 		memcpy(data, *sh_eth_gstrings_stats,
1987 		       sizeof(sh_eth_gstrings_stats));
1988 		break;
1989 	}
1990 }
1991 
1992 static void sh_eth_get_ringparam(struct net_device *ndev,
1993 				 struct ethtool_ringparam *ring)
1994 {
1995 	struct sh_eth_private *mdp = netdev_priv(ndev);
1996 
1997 	ring->rx_max_pending = RX_RING_MAX;
1998 	ring->tx_max_pending = TX_RING_MAX;
1999 	ring->rx_pending = mdp->num_rx_ring;
2000 	ring->tx_pending = mdp->num_tx_ring;
2001 }
2002 
2003 static int sh_eth_set_ringparam(struct net_device *ndev,
2004 				struct ethtool_ringparam *ring)
2005 {
2006 	struct sh_eth_private *mdp = netdev_priv(ndev);
2007 	int ret;
2008 
2009 	if (ring->tx_pending > TX_RING_MAX ||
2010 	    ring->rx_pending > RX_RING_MAX ||
2011 	    ring->tx_pending < TX_RING_MIN ||
2012 	    ring->rx_pending < RX_RING_MIN)
2013 		return -EINVAL;
2014 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2015 		return -EINVAL;
2016 
2017 	if (netif_running(ndev)) {
2018 		netif_device_detach(ndev);
2019 		netif_tx_disable(ndev);
2020 
2021 		/* Serialise with the interrupt handler and NAPI, then
2022 		 * disable interrupts.  We have to clear the
2023 		 * irq_enabled flag first to ensure that interrupts
2024 		 * won't be re-enabled.
2025 		 */
2026 		mdp->irq_enabled = false;
2027 		synchronize_irq(ndev->irq);
2028 		napi_synchronize(&mdp->napi);
2029 		sh_eth_write(ndev, 0x0000, EESIPR);
2030 
2031 		sh_eth_dev_exit(ndev);
2032 
2033 		/* Free all the skbuffs in the Rx queue. */
2034 		sh_eth_ring_free(ndev);
2035 		/* Free DMA buffer */
2036 		sh_eth_free_dma_buffer(mdp);
2037 	}
2038 
2039 	/* Set new parameters */
2040 	mdp->num_rx_ring = ring->rx_pending;
2041 	mdp->num_tx_ring = ring->tx_pending;
2042 
2043 	if (netif_running(ndev)) {
2044 		ret = sh_eth_ring_init(ndev);
2045 		if (ret < 0) {
2046 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2047 				   __func__);
2048 			return ret;
2049 		}
2050 		ret = sh_eth_dev_init(ndev, false);
2051 		if (ret < 0) {
2052 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2053 				   __func__);
2054 			return ret;
2055 		}
2056 
2057 		mdp->irq_enabled = true;
2058 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2059 		/* Setting the Rx mode will start the Rx process. */
2060 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2061 		netif_device_attach(ndev);
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static const struct ethtool_ops sh_eth_ethtool_ops = {
2068 	.get_settings	= sh_eth_get_settings,
2069 	.set_settings	= sh_eth_set_settings,
2070 	.nway_reset	= sh_eth_nway_reset,
2071 	.get_msglevel	= sh_eth_get_msglevel,
2072 	.set_msglevel	= sh_eth_set_msglevel,
2073 	.get_link	= ethtool_op_get_link,
2074 	.get_strings	= sh_eth_get_strings,
2075 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2076 	.get_sset_count     = sh_eth_get_sset_count,
2077 	.get_ringparam	= sh_eth_get_ringparam,
2078 	.set_ringparam	= sh_eth_set_ringparam,
2079 };
2080 
2081 /* network device open function */
2082 static int sh_eth_open(struct net_device *ndev)
2083 {
2084 	int ret = 0;
2085 	struct sh_eth_private *mdp = netdev_priv(ndev);
2086 
2087 	pm_runtime_get_sync(&mdp->pdev->dev);
2088 
2089 	napi_enable(&mdp->napi);
2090 
2091 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2092 			  mdp->cd->irq_flags, ndev->name, ndev);
2093 	if (ret) {
2094 		netdev_err(ndev, "Can not assign IRQ number\n");
2095 		goto out_napi_off;
2096 	}
2097 
2098 	/* Descriptor set */
2099 	ret = sh_eth_ring_init(ndev);
2100 	if (ret)
2101 		goto out_free_irq;
2102 
2103 	/* device init */
2104 	ret = sh_eth_dev_init(ndev, true);
2105 	if (ret)
2106 		goto out_free_irq;
2107 
2108 	/* PHY control start*/
2109 	ret = sh_eth_phy_start(ndev);
2110 	if (ret)
2111 		goto out_free_irq;
2112 
2113 	mdp->is_opened = 1;
2114 
2115 	return ret;
2116 
2117 out_free_irq:
2118 	free_irq(ndev->irq, ndev);
2119 out_napi_off:
2120 	napi_disable(&mdp->napi);
2121 	pm_runtime_put_sync(&mdp->pdev->dev);
2122 	return ret;
2123 }
2124 
2125 /* Timeout function */
2126 static void sh_eth_tx_timeout(struct net_device *ndev)
2127 {
2128 	struct sh_eth_private *mdp = netdev_priv(ndev);
2129 	struct sh_eth_rxdesc *rxdesc;
2130 	int i;
2131 
2132 	netif_stop_queue(ndev);
2133 
2134 	netif_err(mdp, timer, ndev,
2135 		  "transmit timed out, status %8.8x, resetting...\n",
2136 		  (int)sh_eth_read(ndev, EESR));
2137 
2138 	/* tx_errors count up */
2139 	ndev->stats.tx_errors++;
2140 
2141 	/* Free all the skbuffs in the Rx queue. */
2142 	for (i = 0; i < mdp->num_rx_ring; i++) {
2143 		rxdesc = &mdp->rx_ring[i];
2144 		rxdesc->status = 0;
2145 		rxdesc->addr = 0xBADF00D0;
2146 		dev_kfree_skb(mdp->rx_skbuff[i]);
2147 		mdp->rx_skbuff[i] = NULL;
2148 	}
2149 	for (i = 0; i < mdp->num_tx_ring; i++) {
2150 		dev_kfree_skb(mdp->tx_skbuff[i]);
2151 		mdp->tx_skbuff[i] = NULL;
2152 	}
2153 
2154 	/* device init */
2155 	sh_eth_dev_init(ndev, true);
2156 }
2157 
2158 /* Packet transmit function */
2159 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2160 {
2161 	struct sh_eth_private *mdp = netdev_priv(ndev);
2162 	struct sh_eth_txdesc *txdesc;
2163 	u32 entry;
2164 	unsigned long flags;
2165 
2166 	spin_lock_irqsave(&mdp->lock, flags);
2167 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2168 		if (!sh_eth_txfree(ndev)) {
2169 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2170 			netif_stop_queue(ndev);
2171 			spin_unlock_irqrestore(&mdp->lock, flags);
2172 			return NETDEV_TX_BUSY;
2173 		}
2174 	}
2175 	spin_unlock_irqrestore(&mdp->lock, flags);
2176 
2177 	if (skb_padto(skb, ETH_ZLEN))
2178 		return NETDEV_TX_OK;
2179 
2180 	entry = mdp->cur_tx % mdp->num_tx_ring;
2181 	mdp->tx_skbuff[entry] = skb;
2182 	txdesc = &mdp->tx_ring[entry];
2183 	/* soft swap. */
2184 	if (!mdp->cd->hw_swap)
2185 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2186 				 skb->len + 2);
2187 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2188 				      DMA_TO_DEVICE);
2189 	if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2190 		kfree_skb(skb);
2191 		return NETDEV_TX_OK;
2192 	}
2193 	txdesc->buffer_length = skb->len;
2194 
2195 	if (entry >= mdp->num_tx_ring - 1)
2196 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2197 	else
2198 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2199 
2200 	mdp->cur_tx++;
2201 
2202 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2203 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2204 
2205 	return NETDEV_TX_OK;
2206 }
2207 
2208 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2209 {
2210 	struct sh_eth_private *mdp = netdev_priv(ndev);
2211 
2212 	if (sh_eth_is_rz_fast_ether(mdp))
2213 		return &ndev->stats;
2214 
2215 	if (!mdp->is_opened)
2216 		return &ndev->stats;
2217 
2218 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2219 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2220 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2221 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2222 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2223 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2224 
2225 	if (sh_eth_is_gether(mdp)) {
2226 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2227 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2228 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2229 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2230 	} else {
2231 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2232 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2233 	}
2234 
2235 	return &ndev->stats;
2236 }
2237 
2238 /* device close function */
2239 static int sh_eth_close(struct net_device *ndev)
2240 {
2241 	struct sh_eth_private *mdp = netdev_priv(ndev);
2242 
2243 	netif_stop_queue(ndev);
2244 
2245 	/* Serialise with the interrupt handler and NAPI, then disable
2246 	 * interrupts.  We have to clear the irq_enabled flag first to
2247 	 * ensure that interrupts won't be re-enabled.
2248 	 */
2249 	mdp->irq_enabled = false;
2250 	synchronize_irq(ndev->irq);
2251 	napi_disable(&mdp->napi);
2252 	sh_eth_write(ndev, 0x0000, EESIPR);
2253 
2254 	sh_eth_dev_exit(ndev);
2255 
2256 	/* PHY Disconnect */
2257 	if (mdp->phydev) {
2258 		phy_stop(mdp->phydev);
2259 		phy_disconnect(mdp->phydev);
2260 		mdp->phydev = NULL;
2261 	}
2262 
2263 	free_irq(ndev->irq, ndev);
2264 
2265 	/* Free all the skbuffs in the Rx queue. */
2266 	sh_eth_ring_free(ndev);
2267 
2268 	/* free DMA buffer */
2269 	sh_eth_free_dma_buffer(mdp);
2270 
2271 	pm_runtime_put_sync(&mdp->pdev->dev);
2272 
2273 	mdp->is_opened = 0;
2274 
2275 	return 0;
2276 }
2277 
2278 /* ioctl to device function */
2279 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2280 {
2281 	struct sh_eth_private *mdp = netdev_priv(ndev);
2282 	struct phy_device *phydev = mdp->phydev;
2283 
2284 	if (!netif_running(ndev))
2285 		return -EINVAL;
2286 
2287 	if (!phydev)
2288 		return -ENODEV;
2289 
2290 	return phy_mii_ioctl(phydev, rq, cmd);
2291 }
2292 
2293 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2294 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2295 					    int entry)
2296 {
2297 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2298 }
2299 
2300 static u32 sh_eth_tsu_get_post_mask(int entry)
2301 {
2302 	return 0x0f << (28 - ((entry % 8) * 4));
2303 }
2304 
2305 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2306 {
2307 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2308 }
2309 
2310 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2311 					     int entry)
2312 {
2313 	struct sh_eth_private *mdp = netdev_priv(ndev);
2314 	u32 tmp;
2315 	void *reg_offset;
2316 
2317 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2318 	tmp = ioread32(reg_offset);
2319 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2320 }
2321 
2322 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2323 					      int entry)
2324 {
2325 	struct sh_eth_private *mdp = netdev_priv(ndev);
2326 	u32 post_mask, ref_mask, tmp;
2327 	void *reg_offset;
2328 
2329 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2330 	post_mask = sh_eth_tsu_get_post_mask(entry);
2331 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2332 
2333 	tmp = ioread32(reg_offset);
2334 	iowrite32(tmp & ~post_mask, reg_offset);
2335 
2336 	/* If other port enables, the function returns "true" */
2337 	return tmp & ref_mask;
2338 }
2339 
2340 static int sh_eth_tsu_busy(struct net_device *ndev)
2341 {
2342 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2343 	struct sh_eth_private *mdp = netdev_priv(ndev);
2344 
2345 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2346 		udelay(10);
2347 		timeout--;
2348 		if (timeout <= 0) {
2349 			netdev_err(ndev, "%s: timeout\n", __func__);
2350 			return -ETIMEDOUT;
2351 		}
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2358 				  const u8 *addr)
2359 {
2360 	u32 val;
2361 
2362 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2363 	iowrite32(val, reg);
2364 	if (sh_eth_tsu_busy(ndev) < 0)
2365 		return -EBUSY;
2366 
2367 	val = addr[4] << 8 | addr[5];
2368 	iowrite32(val, reg + 4);
2369 	if (sh_eth_tsu_busy(ndev) < 0)
2370 		return -EBUSY;
2371 
2372 	return 0;
2373 }
2374 
2375 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2376 {
2377 	u32 val;
2378 
2379 	val = ioread32(reg);
2380 	addr[0] = (val >> 24) & 0xff;
2381 	addr[1] = (val >> 16) & 0xff;
2382 	addr[2] = (val >> 8) & 0xff;
2383 	addr[3] = val & 0xff;
2384 	val = ioread32(reg + 4);
2385 	addr[4] = (val >> 8) & 0xff;
2386 	addr[5] = val & 0xff;
2387 }
2388 
2389 
2390 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2391 {
2392 	struct sh_eth_private *mdp = netdev_priv(ndev);
2393 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2394 	int i;
2395 	u8 c_addr[ETH_ALEN];
2396 
2397 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2398 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2399 		if (ether_addr_equal(addr, c_addr))
2400 			return i;
2401 	}
2402 
2403 	return -ENOENT;
2404 }
2405 
2406 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2407 {
2408 	u8 blank[ETH_ALEN];
2409 	int entry;
2410 
2411 	memset(blank, 0, sizeof(blank));
2412 	entry = sh_eth_tsu_find_entry(ndev, blank);
2413 	return (entry < 0) ? -ENOMEM : entry;
2414 }
2415 
2416 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2417 					      int entry)
2418 {
2419 	struct sh_eth_private *mdp = netdev_priv(ndev);
2420 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2421 	int ret;
2422 	u8 blank[ETH_ALEN];
2423 
2424 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2425 			 ~(1 << (31 - entry)), TSU_TEN);
2426 
2427 	memset(blank, 0, sizeof(blank));
2428 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2429 	if (ret < 0)
2430 		return ret;
2431 	return 0;
2432 }
2433 
2434 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2435 {
2436 	struct sh_eth_private *mdp = netdev_priv(ndev);
2437 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2438 	int i, ret;
2439 
2440 	if (!mdp->cd->tsu)
2441 		return 0;
2442 
2443 	i = sh_eth_tsu_find_entry(ndev, addr);
2444 	if (i < 0) {
2445 		/* No entry found, create one */
2446 		i = sh_eth_tsu_find_empty(ndev);
2447 		if (i < 0)
2448 			return -ENOMEM;
2449 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2450 		if (ret < 0)
2451 			return ret;
2452 
2453 		/* Enable the entry */
2454 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2455 				 (1 << (31 - i)), TSU_TEN);
2456 	}
2457 
2458 	/* Entry found or created, enable POST */
2459 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2460 
2461 	return 0;
2462 }
2463 
2464 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2465 {
2466 	struct sh_eth_private *mdp = netdev_priv(ndev);
2467 	int i, ret;
2468 
2469 	if (!mdp->cd->tsu)
2470 		return 0;
2471 
2472 	i = sh_eth_tsu_find_entry(ndev, addr);
2473 	if (i) {
2474 		/* Entry found */
2475 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2476 			goto done;
2477 
2478 		/* Disable the entry if both ports was disabled */
2479 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2480 		if (ret < 0)
2481 			return ret;
2482 	}
2483 done:
2484 	return 0;
2485 }
2486 
2487 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2488 {
2489 	struct sh_eth_private *mdp = netdev_priv(ndev);
2490 	int i, ret;
2491 
2492 	if (!mdp->cd->tsu)
2493 		return 0;
2494 
2495 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2496 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2497 			continue;
2498 
2499 		/* Disable the entry if both ports was disabled */
2500 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2501 		if (ret < 0)
2502 			return ret;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2509 {
2510 	struct sh_eth_private *mdp = netdev_priv(ndev);
2511 	u8 addr[ETH_ALEN];
2512 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2513 	int i;
2514 
2515 	if (!mdp->cd->tsu)
2516 		return;
2517 
2518 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2519 		sh_eth_tsu_read_entry(reg_offset, addr);
2520 		if (is_multicast_ether_addr(addr))
2521 			sh_eth_tsu_del_entry(ndev, addr);
2522 	}
2523 }
2524 
2525 /* Update promiscuous flag and multicast filter */
2526 static void sh_eth_set_rx_mode(struct net_device *ndev)
2527 {
2528 	struct sh_eth_private *mdp = netdev_priv(ndev);
2529 	u32 ecmr_bits;
2530 	int mcast_all = 0;
2531 	unsigned long flags;
2532 
2533 	spin_lock_irqsave(&mdp->lock, flags);
2534 	/* Initial condition is MCT = 1, PRM = 0.
2535 	 * Depending on ndev->flags, set PRM or clear MCT
2536 	 */
2537 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2538 	if (mdp->cd->tsu)
2539 		ecmr_bits |= ECMR_MCT;
2540 
2541 	if (!(ndev->flags & IFF_MULTICAST)) {
2542 		sh_eth_tsu_purge_mcast(ndev);
2543 		mcast_all = 1;
2544 	}
2545 	if (ndev->flags & IFF_ALLMULTI) {
2546 		sh_eth_tsu_purge_mcast(ndev);
2547 		ecmr_bits &= ~ECMR_MCT;
2548 		mcast_all = 1;
2549 	}
2550 
2551 	if (ndev->flags & IFF_PROMISC) {
2552 		sh_eth_tsu_purge_all(ndev);
2553 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2554 	} else if (mdp->cd->tsu) {
2555 		struct netdev_hw_addr *ha;
2556 		netdev_for_each_mc_addr(ha, ndev) {
2557 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2558 				continue;
2559 
2560 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2561 				if (!mcast_all) {
2562 					sh_eth_tsu_purge_mcast(ndev);
2563 					ecmr_bits &= ~ECMR_MCT;
2564 					mcast_all = 1;
2565 				}
2566 			}
2567 		}
2568 	}
2569 
2570 	/* update the ethernet mode */
2571 	sh_eth_write(ndev, ecmr_bits, ECMR);
2572 
2573 	spin_unlock_irqrestore(&mdp->lock, flags);
2574 }
2575 
2576 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2577 {
2578 	if (!mdp->port)
2579 		return TSU_VTAG0;
2580 	else
2581 		return TSU_VTAG1;
2582 }
2583 
2584 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2585 				  __be16 proto, u16 vid)
2586 {
2587 	struct sh_eth_private *mdp = netdev_priv(ndev);
2588 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2589 
2590 	if (unlikely(!mdp->cd->tsu))
2591 		return -EPERM;
2592 
2593 	/* No filtering if vid = 0 */
2594 	if (!vid)
2595 		return 0;
2596 
2597 	mdp->vlan_num_ids++;
2598 
2599 	/* The controller has one VLAN tag HW filter. So, if the filter is
2600 	 * already enabled, the driver disables it and the filte
2601 	 */
2602 	if (mdp->vlan_num_ids > 1) {
2603 		/* disable VLAN filter */
2604 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2605 		return 0;
2606 	}
2607 
2608 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2609 			 vtag_reg_index);
2610 
2611 	return 0;
2612 }
2613 
2614 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2615 				   __be16 proto, u16 vid)
2616 {
2617 	struct sh_eth_private *mdp = netdev_priv(ndev);
2618 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2619 
2620 	if (unlikely(!mdp->cd->tsu))
2621 		return -EPERM;
2622 
2623 	/* No filtering if vid = 0 */
2624 	if (!vid)
2625 		return 0;
2626 
2627 	mdp->vlan_num_ids--;
2628 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2629 
2630 	return 0;
2631 }
2632 
2633 /* SuperH's TSU register init function */
2634 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2635 {
2636 	if (sh_eth_is_rz_fast_ether(mdp)) {
2637 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2638 		return;
2639 	}
2640 
2641 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2642 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2643 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2644 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2645 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2646 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2647 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2648 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2649 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2650 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2651 	if (sh_eth_is_gether(mdp)) {
2652 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2653 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2654 	} else {
2655 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2656 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2657 	}
2658 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2659 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2660 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2661 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2662 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2663 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2664 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2665 }
2666 
2667 /* MDIO bus release function */
2668 static int sh_mdio_release(struct sh_eth_private *mdp)
2669 {
2670 	/* unregister mdio bus */
2671 	mdiobus_unregister(mdp->mii_bus);
2672 
2673 	/* free bitbang info */
2674 	free_mdio_bitbang(mdp->mii_bus);
2675 
2676 	return 0;
2677 }
2678 
2679 /* MDIO bus init function */
2680 static int sh_mdio_init(struct sh_eth_private *mdp,
2681 			struct sh_eth_plat_data *pd)
2682 {
2683 	int ret, i;
2684 	struct bb_info *bitbang;
2685 	struct platform_device *pdev = mdp->pdev;
2686 	struct device *dev = &mdp->pdev->dev;
2687 
2688 	/* create bit control struct for PHY */
2689 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2690 	if (!bitbang)
2691 		return -ENOMEM;
2692 
2693 	/* bitbang init */
2694 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2695 	bitbang->set_gate = pd->set_mdio_gate;
2696 	bitbang->mdi_msk = PIR_MDI;
2697 	bitbang->mdo_msk = PIR_MDO;
2698 	bitbang->mmd_msk = PIR_MMD;
2699 	bitbang->mdc_msk = PIR_MDC;
2700 	bitbang->ctrl.ops = &bb_ops;
2701 
2702 	/* MII controller setting */
2703 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2704 	if (!mdp->mii_bus)
2705 		return -ENOMEM;
2706 
2707 	/* Hook up MII support for ethtool */
2708 	mdp->mii_bus->name = "sh_mii";
2709 	mdp->mii_bus->parent = dev;
2710 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2711 		 pdev->name, pdev->id);
2712 
2713 	/* PHY IRQ */
2714 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2715 					       GFP_KERNEL);
2716 	if (!mdp->mii_bus->irq) {
2717 		ret = -ENOMEM;
2718 		goto out_free_bus;
2719 	}
2720 
2721 	/* register MDIO bus */
2722 	if (dev->of_node) {
2723 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2724 	} else {
2725 		for (i = 0; i < PHY_MAX_ADDR; i++)
2726 			mdp->mii_bus->irq[i] = PHY_POLL;
2727 		if (pd->phy_irq > 0)
2728 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2729 
2730 		ret = mdiobus_register(mdp->mii_bus);
2731 	}
2732 
2733 	if (ret)
2734 		goto out_free_bus;
2735 
2736 	return 0;
2737 
2738 out_free_bus:
2739 	free_mdio_bitbang(mdp->mii_bus);
2740 	return ret;
2741 }
2742 
2743 static const u16 *sh_eth_get_register_offset(int register_type)
2744 {
2745 	const u16 *reg_offset = NULL;
2746 
2747 	switch (register_type) {
2748 	case SH_ETH_REG_GIGABIT:
2749 		reg_offset = sh_eth_offset_gigabit;
2750 		break;
2751 	case SH_ETH_REG_FAST_RZ:
2752 		reg_offset = sh_eth_offset_fast_rz;
2753 		break;
2754 	case SH_ETH_REG_FAST_RCAR:
2755 		reg_offset = sh_eth_offset_fast_rcar;
2756 		break;
2757 	case SH_ETH_REG_FAST_SH4:
2758 		reg_offset = sh_eth_offset_fast_sh4;
2759 		break;
2760 	case SH_ETH_REG_FAST_SH3_SH2:
2761 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2762 		break;
2763 	default:
2764 		break;
2765 	}
2766 
2767 	return reg_offset;
2768 }
2769 
2770 static const struct net_device_ops sh_eth_netdev_ops = {
2771 	.ndo_open		= sh_eth_open,
2772 	.ndo_stop		= sh_eth_close,
2773 	.ndo_start_xmit		= sh_eth_start_xmit,
2774 	.ndo_get_stats		= sh_eth_get_stats,
2775 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2776 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2777 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2778 	.ndo_validate_addr	= eth_validate_addr,
2779 	.ndo_set_mac_address	= eth_mac_addr,
2780 	.ndo_change_mtu		= eth_change_mtu,
2781 };
2782 
2783 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2784 	.ndo_open		= sh_eth_open,
2785 	.ndo_stop		= sh_eth_close,
2786 	.ndo_start_xmit		= sh_eth_start_xmit,
2787 	.ndo_get_stats		= sh_eth_get_stats,
2788 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2789 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2790 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2791 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2792 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2793 	.ndo_validate_addr	= eth_validate_addr,
2794 	.ndo_set_mac_address	= eth_mac_addr,
2795 	.ndo_change_mtu		= eth_change_mtu,
2796 };
2797 
2798 #ifdef CONFIG_OF
2799 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2800 {
2801 	struct device_node *np = dev->of_node;
2802 	struct sh_eth_plat_data *pdata;
2803 	const char *mac_addr;
2804 
2805 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2806 	if (!pdata)
2807 		return NULL;
2808 
2809 	pdata->phy_interface = of_get_phy_mode(np);
2810 
2811 	mac_addr = of_get_mac_address(np);
2812 	if (mac_addr)
2813 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2814 
2815 	pdata->no_ether_link =
2816 		of_property_read_bool(np, "renesas,no-ether-link");
2817 	pdata->ether_link_active_low =
2818 		of_property_read_bool(np, "renesas,ether-link-active-low");
2819 
2820 	return pdata;
2821 }
2822 
2823 static const struct of_device_id sh_eth_match_table[] = {
2824 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2825 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2826 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2827 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2828 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2829 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2830 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2831 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2832 	{ }
2833 };
2834 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2835 #else
2836 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2837 {
2838 	return NULL;
2839 }
2840 #endif
2841 
2842 static int sh_eth_drv_probe(struct platform_device *pdev)
2843 {
2844 	int ret, devno = 0;
2845 	struct resource *res;
2846 	struct net_device *ndev = NULL;
2847 	struct sh_eth_private *mdp = NULL;
2848 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2849 	const struct platform_device_id *id = platform_get_device_id(pdev);
2850 
2851 	/* get base addr */
2852 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2853 
2854 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2855 	if (!ndev)
2856 		return -ENOMEM;
2857 
2858 	pm_runtime_enable(&pdev->dev);
2859 	pm_runtime_get_sync(&pdev->dev);
2860 
2861 	devno = pdev->id;
2862 	if (devno < 0)
2863 		devno = 0;
2864 
2865 	ndev->dma = -1;
2866 	ret = platform_get_irq(pdev, 0);
2867 	if (ret < 0) {
2868 		ret = -ENODEV;
2869 		goto out_release;
2870 	}
2871 	ndev->irq = ret;
2872 
2873 	SET_NETDEV_DEV(ndev, &pdev->dev);
2874 
2875 	mdp = netdev_priv(ndev);
2876 	mdp->num_tx_ring = TX_RING_SIZE;
2877 	mdp->num_rx_ring = RX_RING_SIZE;
2878 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2879 	if (IS_ERR(mdp->addr)) {
2880 		ret = PTR_ERR(mdp->addr);
2881 		goto out_release;
2882 	}
2883 
2884 	ndev->base_addr = res->start;
2885 
2886 	spin_lock_init(&mdp->lock);
2887 	mdp->pdev = pdev;
2888 
2889 	if (pdev->dev.of_node)
2890 		pd = sh_eth_parse_dt(&pdev->dev);
2891 	if (!pd) {
2892 		dev_err(&pdev->dev, "no platform data\n");
2893 		ret = -EINVAL;
2894 		goto out_release;
2895 	}
2896 
2897 	/* get PHY ID */
2898 	mdp->phy_id = pd->phy;
2899 	mdp->phy_interface = pd->phy_interface;
2900 	/* EDMAC endian */
2901 	mdp->edmac_endian = pd->edmac_endian;
2902 	mdp->no_ether_link = pd->no_ether_link;
2903 	mdp->ether_link_active_low = pd->ether_link_active_low;
2904 
2905 	/* set cpu data */
2906 	if (id) {
2907 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2908 	} else	{
2909 		const struct of_device_id *match;
2910 
2911 		match = of_match_device(of_match_ptr(sh_eth_match_table),
2912 					&pdev->dev);
2913 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2914 	}
2915 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2916 	if (!mdp->reg_offset) {
2917 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2918 			mdp->cd->register_type);
2919 		ret = -EINVAL;
2920 		goto out_release;
2921 	}
2922 	sh_eth_set_default_cpu_data(mdp->cd);
2923 
2924 	/* set function */
2925 	if (mdp->cd->tsu)
2926 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2927 	else
2928 		ndev->netdev_ops = &sh_eth_netdev_ops;
2929 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2930 	ndev->watchdog_timeo = TX_TIMEOUT;
2931 
2932 	/* debug message level */
2933 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2934 
2935 	/* read and set MAC address */
2936 	read_mac_address(ndev, pd->mac_addr);
2937 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2938 		dev_warn(&pdev->dev,
2939 			 "no valid MAC address supplied, using a random one.\n");
2940 		eth_hw_addr_random(ndev);
2941 	}
2942 
2943 	/* ioremap the TSU registers */
2944 	if (mdp->cd->tsu) {
2945 		struct resource *rtsu;
2946 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2947 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2948 		if (IS_ERR(mdp->tsu_addr)) {
2949 			ret = PTR_ERR(mdp->tsu_addr);
2950 			goto out_release;
2951 		}
2952 		mdp->port = devno % 2;
2953 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2954 	}
2955 
2956 	/* initialize first or needed device */
2957 	if (!devno || pd->needs_init) {
2958 		if (mdp->cd->chip_reset)
2959 			mdp->cd->chip_reset(ndev);
2960 
2961 		if (mdp->cd->tsu) {
2962 			/* TSU init (Init only)*/
2963 			sh_eth_tsu_init(mdp);
2964 		}
2965 	}
2966 
2967 	if (mdp->cd->rmiimode)
2968 		sh_eth_write(ndev, 0x1, RMIIMODE);
2969 
2970 	/* MDIO bus init */
2971 	ret = sh_mdio_init(mdp, pd);
2972 	if (ret) {
2973 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2974 		goto out_release;
2975 	}
2976 
2977 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2978 
2979 	/* network device register */
2980 	ret = register_netdev(ndev);
2981 	if (ret)
2982 		goto out_napi_del;
2983 
2984 	/* print device information */
2985 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2986 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2987 
2988 	pm_runtime_put(&pdev->dev);
2989 	platform_set_drvdata(pdev, ndev);
2990 
2991 	return ret;
2992 
2993 out_napi_del:
2994 	netif_napi_del(&mdp->napi);
2995 	sh_mdio_release(mdp);
2996 
2997 out_release:
2998 	/* net_dev free */
2999 	if (ndev)
3000 		free_netdev(ndev);
3001 
3002 	pm_runtime_put(&pdev->dev);
3003 	pm_runtime_disable(&pdev->dev);
3004 	return ret;
3005 }
3006 
3007 static int sh_eth_drv_remove(struct platform_device *pdev)
3008 {
3009 	struct net_device *ndev = platform_get_drvdata(pdev);
3010 	struct sh_eth_private *mdp = netdev_priv(ndev);
3011 
3012 	unregister_netdev(ndev);
3013 	netif_napi_del(&mdp->napi);
3014 	sh_mdio_release(mdp);
3015 	pm_runtime_disable(&pdev->dev);
3016 	free_netdev(ndev);
3017 
3018 	return 0;
3019 }
3020 
3021 #ifdef CONFIG_PM
3022 static int sh_eth_runtime_nop(struct device *dev)
3023 {
3024 	/* Runtime PM callback shared between ->runtime_suspend()
3025 	 * and ->runtime_resume(). Simply returns success.
3026 	 *
3027 	 * This driver re-initializes all registers after
3028 	 * pm_runtime_get_sync() anyway so there is no need
3029 	 * to save and restore registers here.
3030 	 */
3031 	return 0;
3032 }
3033 
3034 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3035 	.runtime_suspend = sh_eth_runtime_nop,
3036 	.runtime_resume = sh_eth_runtime_nop,
3037 };
3038 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3039 #else
3040 #define SH_ETH_PM_OPS NULL
3041 #endif
3042 
3043 static struct platform_device_id sh_eth_id_table[] = {
3044 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3045 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3046 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3047 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3048 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3049 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3050 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3051 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3052 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3053 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3054 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3055 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3056 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3057 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3058 	{ }
3059 };
3060 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3061 
3062 static struct platform_driver sh_eth_driver = {
3063 	.probe = sh_eth_drv_probe,
3064 	.remove = sh_eth_drv_remove,
3065 	.id_table = sh_eth_id_table,
3066 	.driver = {
3067 		   .name = CARDNAME,
3068 		   .pm = SH_ETH_PM_OPS,
3069 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3070 	},
3071 };
3072 
3073 module_platform_driver(sh_eth_driver);
3074 
3075 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3076 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3077 MODULE_LICENSE("GPL v2");
3078