1 /* SuperH Ethernet device driver 2 * 3 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 4 * Copyright (C) 2008-2014 Renesas Solutions Corp. 5 * Copyright (C) 2013-2014 Cogent Embedded, Inc. 6 * Copyright (C) 2014 Codethink Limited 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms and conditions of the GNU General Public License, 10 * version 2, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * The full GNU General Public License is included in this distribution in 18 * the file called "COPYING". 19 */ 20 21 #include <linux/module.h> 22 #include <linux/kernel.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/etherdevice.h> 27 #include <linux/delay.h> 28 #include <linux/platform_device.h> 29 #include <linux/mdio-bitbang.h> 30 #include <linux/netdevice.h> 31 #include <linux/of.h> 32 #include <linux/of_device.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_net.h> 35 #include <linux/phy.h> 36 #include <linux/cache.h> 37 #include <linux/io.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/slab.h> 40 #include <linux/ethtool.h> 41 #include <linux/if_vlan.h> 42 #include <linux/clk.h> 43 #include <linux/sh_eth.h> 44 #include <linux/of_mdio.h> 45 46 #include "sh_eth.h" 47 48 #define SH_ETH_DEF_MSG_ENABLE \ 49 (NETIF_MSG_LINK | \ 50 NETIF_MSG_TIMER | \ 51 NETIF_MSG_RX_ERR| \ 52 NETIF_MSG_TX_ERR) 53 54 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 55 [EDSR] = 0x0000, 56 [EDMR] = 0x0400, 57 [EDTRR] = 0x0408, 58 [EDRRR] = 0x0410, 59 [EESR] = 0x0428, 60 [EESIPR] = 0x0430, 61 [TDLAR] = 0x0010, 62 [TDFAR] = 0x0014, 63 [TDFXR] = 0x0018, 64 [TDFFR] = 0x001c, 65 [RDLAR] = 0x0030, 66 [RDFAR] = 0x0034, 67 [RDFXR] = 0x0038, 68 [RDFFR] = 0x003c, 69 [TRSCER] = 0x0438, 70 [RMFCR] = 0x0440, 71 [TFTR] = 0x0448, 72 [FDR] = 0x0450, 73 [RMCR] = 0x0458, 74 [RPADIR] = 0x0460, 75 [FCFTR] = 0x0468, 76 [CSMR] = 0x04E4, 77 78 [ECMR] = 0x0500, 79 [ECSR] = 0x0510, 80 [ECSIPR] = 0x0518, 81 [PIR] = 0x0520, 82 [PSR] = 0x0528, 83 [PIPR] = 0x052c, 84 [RFLR] = 0x0508, 85 [APR] = 0x0554, 86 [MPR] = 0x0558, 87 [PFTCR] = 0x055c, 88 [PFRCR] = 0x0560, 89 [TPAUSER] = 0x0564, 90 [GECMR] = 0x05b0, 91 [BCULR] = 0x05b4, 92 [MAHR] = 0x05c0, 93 [MALR] = 0x05c8, 94 [TROCR] = 0x0700, 95 [CDCR] = 0x0708, 96 [LCCR] = 0x0710, 97 [CEFCR] = 0x0740, 98 [FRECR] = 0x0748, 99 [TSFRCR] = 0x0750, 100 [TLFRCR] = 0x0758, 101 [RFCR] = 0x0760, 102 [CERCR] = 0x0768, 103 [CEECR] = 0x0770, 104 [MAFCR] = 0x0778, 105 [RMII_MII] = 0x0790, 106 107 [ARSTR] = 0x0000, 108 [TSU_CTRST] = 0x0004, 109 [TSU_FWEN0] = 0x0010, 110 [TSU_FWEN1] = 0x0014, 111 [TSU_FCM] = 0x0018, 112 [TSU_BSYSL0] = 0x0020, 113 [TSU_BSYSL1] = 0x0024, 114 [TSU_PRISL0] = 0x0028, 115 [TSU_PRISL1] = 0x002c, 116 [TSU_FWSL0] = 0x0030, 117 [TSU_FWSL1] = 0x0034, 118 [TSU_FWSLC] = 0x0038, 119 [TSU_QTAG0] = 0x0040, 120 [TSU_QTAG1] = 0x0044, 121 [TSU_FWSR] = 0x0050, 122 [TSU_FWINMK] = 0x0054, 123 [TSU_ADQT0] = 0x0048, 124 [TSU_ADQT1] = 0x004c, 125 [TSU_VTAG0] = 0x0058, 126 [TSU_VTAG1] = 0x005c, 127 [TSU_ADSBSY] = 0x0060, 128 [TSU_TEN] = 0x0064, 129 [TSU_POST1] = 0x0070, 130 [TSU_POST2] = 0x0074, 131 [TSU_POST3] = 0x0078, 132 [TSU_POST4] = 0x007c, 133 [TSU_ADRH0] = 0x0100, 134 [TSU_ADRL0] = 0x0104, 135 [TSU_ADRH31] = 0x01f8, 136 [TSU_ADRL31] = 0x01fc, 137 138 [TXNLCR0] = 0x0080, 139 [TXALCR0] = 0x0084, 140 [RXNLCR0] = 0x0088, 141 [RXALCR0] = 0x008c, 142 [FWNLCR0] = 0x0090, 143 [FWALCR0] = 0x0094, 144 [TXNLCR1] = 0x00a0, 145 [TXALCR1] = 0x00a0, 146 [RXNLCR1] = 0x00a8, 147 [RXALCR1] = 0x00ac, 148 [FWNLCR1] = 0x00b0, 149 [FWALCR1] = 0x00b4, 150 }; 151 152 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = { 153 [EDSR] = 0x0000, 154 [EDMR] = 0x0400, 155 [EDTRR] = 0x0408, 156 [EDRRR] = 0x0410, 157 [EESR] = 0x0428, 158 [EESIPR] = 0x0430, 159 [TDLAR] = 0x0010, 160 [TDFAR] = 0x0014, 161 [TDFXR] = 0x0018, 162 [TDFFR] = 0x001c, 163 [RDLAR] = 0x0030, 164 [RDFAR] = 0x0034, 165 [RDFXR] = 0x0038, 166 [RDFFR] = 0x003c, 167 [TRSCER] = 0x0438, 168 [RMFCR] = 0x0440, 169 [TFTR] = 0x0448, 170 [FDR] = 0x0450, 171 [RMCR] = 0x0458, 172 [RPADIR] = 0x0460, 173 [FCFTR] = 0x0468, 174 [CSMR] = 0x04E4, 175 176 [ECMR] = 0x0500, 177 [RFLR] = 0x0508, 178 [ECSR] = 0x0510, 179 [ECSIPR] = 0x0518, 180 [PIR] = 0x0520, 181 [APR] = 0x0554, 182 [MPR] = 0x0558, 183 [PFTCR] = 0x055c, 184 [PFRCR] = 0x0560, 185 [TPAUSER] = 0x0564, 186 [MAHR] = 0x05c0, 187 [MALR] = 0x05c8, 188 [CEFCR] = 0x0740, 189 [FRECR] = 0x0748, 190 [TSFRCR] = 0x0750, 191 [TLFRCR] = 0x0758, 192 [RFCR] = 0x0760, 193 [MAFCR] = 0x0778, 194 195 [ARSTR] = 0x0000, 196 [TSU_CTRST] = 0x0004, 197 [TSU_VTAG0] = 0x0058, 198 [TSU_ADSBSY] = 0x0060, 199 [TSU_TEN] = 0x0064, 200 [TSU_ADRH0] = 0x0100, 201 [TSU_ADRL0] = 0x0104, 202 [TSU_ADRH31] = 0x01f8, 203 [TSU_ADRL31] = 0x01fc, 204 205 [TXNLCR0] = 0x0080, 206 [TXALCR0] = 0x0084, 207 [RXNLCR0] = 0x0088, 208 [RXALCR0] = 0x008C, 209 }; 210 211 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 212 [ECMR] = 0x0300, 213 [RFLR] = 0x0308, 214 [ECSR] = 0x0310, 215 [ECSIPR] = 0x0318, 216 [PIR] = 0x0320, 217 [PSR] = 0x0328, 218 [RDMLR] = 0x0340, 219 [IPGR] = 0x0350, 220 [APR] = 0x0354, 221 [MPR] = 0x0358, 222 [RFCF] = 0x0360, 223 [TPAUSER] = 0x0364, 224 [TPAUSECR] = 0x0368, 225 [MAHR] = 0x03c0, 226 [MALR] = 0x03c8, 227 [TROCR] = 0x03d0, 228 [CDCR] = 0x03d4, 229 [LCCR] = 0x03d8, 230 [CNDCR] = 0x03dc, 231 [CEFCR] = 0x03e4, 232 [FRECR] = 0x03e8, 233 [TSFRCR] = 0x03ec, 234 [TLFRCR] = 0x03f0, 235 [RFCR] = 0x03f4, 236 [MAFCR] = 0x03f8, 237 238 [EDMR] = 0x0200, 239 [EDTRR] = 0x0208, 240 [EDRRR] = 0x0210, 241 [TDLAR] = 0x0218, 242 [RDLAR] = 0x0220, 243 [EESR] = 0x0228, 244 [EESIPR] = 0x0230, 245 [TRSCER] = 0x0238, 246 [RMFCR] = 0x0240, 247 [TFTR] = 0x0248, 248 [FDR] = 0x0250, 249 [RMCR] = 0x0258, 250 [TFUCR] = 0x0264, 251 [RFOCR] = 0x0268, 252 [RMIIMODE] = 0x026c, 253 [FCFTR] = 0x0270, 254 [TRIMD] = 0x027c, 255 }; 256 257 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 258 [ECMR] = 0x0100, 259 [RFLR] = 0x0108, 260 [ECSR] = 0x0110, 261 [ECSIPR] = 0x0118, 262 [PIR] = 0x0120, 263 [PSR] = 0x0128, 264 [RDMLR] = 0x0140, 265 [IPGR] = 0x0150, 266 [APR] = 0x0154, 267 [MPR] = 0x0158, 268 [TPAUSER] = 0x0164, 269 [RFCF] = 0x0160, 270 [TPAUSECR] = 0x0168, 271 [BCFRR] = 0x016c, 272 [MAHR] = 0x01c0, 273 [MALR] = 0x01c8, 274 [TROCR] = 0x01d0, 275 [CDCR] = 0x01d4, 276 [LCCR] = 0x01d8, 277 [CNDCR] = 0x01dc, 278 [CEFCR] = 0x01e4, 279 [FRECR] = 0x01e8, 280 [TSFRCR] = 0x01ec, 281 [TLFRCR] = 0x01f0, 282 [RFCR] = 0x01f4, 283 [MAFCR] = 0x01f8, 284 [RTRATE] = 0x01fc, 285 286 [EDMR] = 0x0000, 287 [EDTRR] = 0x0008, 288 [EDRRR] = 0x0010, 289 [TDLAR] = 0x0018, 290 [RDLAR] = 0x0020, 291 [EESR] = 0x0028, 292 [EESIPR] = 0x0030, 293 [TRSCER] = 0x0038, 294 [RMFCR] = 0x0040, 295 [TFTR] = 0x0048, 296 [FDR] = 0x0050, 297 [RMCR] = 0x0058, 298 [TFUCR] = 0x0064, 299 [RFOCR] = 0x0068, 300 [FCFTR] = 0x0070, 301 [RPADIR] = 0x0078, 302 [TRIMD] = 0x007c, 303 [RBWAR] = 0x00c8, 304 [RDFAR] = 0x00cc, 305 [TBRAR] = 0x00d4, 306 [TDFAR] = 0x00d8, 307 }; 308 309 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 310 [ECMR] = 0x0160, 311 [ECSR] = 0x0164, 312 [ECSIPR] = 0x0168, 313 [PIR] = 0x016c, 314 [MAHR] = 0x0170, 315 [MALR] = 0x0174, 316 [RFLR] = 0x0178, 317 [PSR] = 0x017c, 318 [TROCR] = 0x0180, 319 [CDCR] = 0x0184, 320 [LCCR] = 0x0188, 321 [CNDCR] = 0x018c, 322 [CEFCR] = 0x0194, 323 [FRECR] = 0x0198, 324 [TSFRCR] = 0x019c, 325 [TLFRCR] = 0x01a0, 326 [RFCR] = 0x01a4, 327 [MAFCR] = 0x01a8, 328 [IPGR] = 0x01b4, 329 [APR] = 0x01b8, 330 [MPR] = 0x01bc, 331 [TPAUSER] = 0x01c4, 332 [BCFR] = 0x01cc, 333 334 [ARSTR] = 0x0000, 335 [TSU_CTRST] = 0x0004, 336 [TSU_FWEN0] = 0x0010, 337 [TSU_FWEN1] = 0x0014, 338 [TSU_FCM] = 0x0018, 339 [TSU_BSYSL0] = 0x0020, 340 [TSU_BSYSL1] = 0x0024, 341 [TSU_PRISL0] = 0x0028, 342 [TSU_PRISL1] = 0x002c, 343 [TSU_FWSL0] = 0x0030, 344 [TSU_FWSL1] = 0x0034, 345 [TSU_FWSLC] = 0x0038, 346 [TSU_QTAGM0] = 0x0040, 347 [TSU_QTAGM1] = 0x0044, 348 [TSU_ADQT0] = 0x0048, 349 [TSU_ADQT1] = 0x004c, 350 [TSU_FWSR] = 0x0050, 351 [TSU_FWINMK] = 0x0054, 352 [TSU_ADSBSY] = 0x0060, 353 [TSU_TEN] = 0x0064, 354 [TSU_POST1] = 0x0070, 355 [TSU_POST2] = 0x0074, 356 [TSU_POST3] = 0x0078, 357 [TSU_POST4] = 0x007c, 358 359 [TXNLCR0] = 0x0080, 360 [TXALCR0] = 0x0084, 361 [RXNLCR0] = 0x0088, 362 [RXALCR0] = 0x008c, 363 [FWNLCR0] = 0x0090, 364 [FWALCR0] = 0x0094, 365 [TXNLCR1] = 0x00a0, 366 [TXALCR1] = 0x00a0, 367 [RXNLCR1] = 0x00a8, 368 [RXALCR1] = 0x00ac, 369 [FWNLCR1] = 0x00b0, 370 [FWALCR1] = 0x00b4, 371 372 [TSU_ADRH0] = 0x0100, 373 [TSU_ADRL0] = 0x0104, 374 [TSU_ADRL31] = 0x01fc, 375 }; 376 377 static bool sh_eth_is_gether(struct sh_eth_private *mdp) 378 { 379 return mdp->reg_offset == sh_eth_offset_gigabit; 380 } 381 382 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp) 383 { 384 return mdp->reg_offset == sh_eth_offset_fast_rz; 385 } 386 387 static void sh_eth_select_mii(struct net_device *ndev) 388 { 389 u32 value = 0x0; 390 struct sh_eth_private *mdp = netdev_priv(ndev); 391 392 switch (mdp->phy_interface) { 393 case PHY_INTERFACE_MODE_GMII: 394 value = 0x2; 395 break; 396 case PHY_INTERFACE_MODE_MII: 397 value = 0x1; 398 break; 399 case PHY_INTERFACE_MODE_RMII: 400 value = 0x0; 401 break; 402 default: 403 netdev_warn(ndev, 404 "PHY interface mode was not setup. Set to MII.\n"); 405 value = 0x1; 406 break; 407 } 408 409 sh_eth_write(ndev, value, RMII_MII); 410 } 411 412 static void sh_eth_set_duplex(struct net_device *ndev) 413 { 414 struct sh_eth_private *mdp = netdev_priv(ndev); 415 416 if (mdp->duplex) /* Full */ 417 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR); 418 else /* Half */ 419 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR); 420 } 421 422 /* There is CPU dependent code */ 423 static void sh_eth_set_rate_r8a777x(struct net_device *ndev) 424 { 425 struct sh_eth_private *mdp = netdev_priv(ndev); 426 427 switch (mdp->speed) { 428 case 10: /* 10BASE */ 429 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR); 430 break; 431 case 100:/* 100BASE */ 432 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR); 433 break; 434 default: 435 break; 436 } 437 } 438 439 /* R8A7778/9 */ 440 static struct sh_eth_cpu_data r8a777x_data = { 441 .set_duplex = sh_eth_set_duplex, 442 .set_rate = sh_eth_set_rate_r8a777x, 443 444 .register_type = SH_ETH_REG_FAST_RCAR, 445 446 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 447 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 448 .eesipr_value = 0x01ff009f, 449 450 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 451 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 452 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 453 EESR_ECI, 454 455 .apr = 1, 456 .mpr = 1, 457 .tpauser = 1, 458 .hw_swap = 1, 459 }; 460 461 /* R8A7790/1 */ 462 static struct sh_eth_cpu_data r8a779x_data = { 463 .set_duplex = sh_eth_set_duplex, 464 .set_rate = sh_eth_set_rate_r8a777x, 465 466 .register_type = SH_ETH_REG_FAST_RCAR, 467 468 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 469 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 470 .eesipr_value = 0x01ff009f, 471 472 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 473 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 474 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 475 EESR_ECI, 476 477 .apr = 1, 478 .mpr = 1, 479 .tpauser = 1, 480 .hw_swap = 1, 481 .rmiimode = 1, 482 .shift_rd0 = 1, 483 }; 484 485 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 486 { 487 struct sh_eth_private *mdp = netdev_priv(ndev); 488 489 switch (mdp->speed) { 490 case 10: /* 10BASE */ 491 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR); 492 break; 493 case 100:/* 100BASE */ 494 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR); 495 break; 496 default: 497 break; 498 } 499 } 500 501 /* SH7724 */ 502 static struct sh_eth_cpu_data sh7724_data = { 503 .set_duplex = sh_eth_set_duplex, 504 .set_rate = sh_eth_set_rate_sh7724, 505 506 .register_type = SH_ETH_REG_FAST_SH4, 507 508 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 509 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 510 .eesipr_value = 0x01ff009f, 511 512 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 513 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 514 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 515 EESR_ECI, 516 517 .apr = 1, 518 .mpr = 1, 519 .tpauser = 1, 520 .hw_swap = 1, 521 .rpadir = 1, 522 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */ 523 }; 524 525 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 526 { 527 struct sh_eth_private *mdp = netdev_priv(ndev); 528 529 switch (mdp->speed) { 530 case 10: /* 10BASE */ 531 sh_eth_write(ndev, 0, RTRATE); 532 break; 533 case 100:/* 100BASE */ 534 sh_eth_write(ndev, 1, RTRATE); 535 break; 536 default: 537 break; 538 } 539 } 540 541 /* SH7757 */ 542 static struct sh_eth_cpu_data sh7757_data = { 543 .set_duplex = sh_eth_set_duplex, 544 .set_rate = sh_eth_set_rate_sh7757, 545 546 .register_type = SH_ETH_REG_FAST_SH4, 547 548 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 549 .rmcr_value = RMCR_RNC, 550 551 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 552 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 553 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 554 EESR_ECI, 555 556 .irq_flags = IRQF_SHARED, 557 .apr = 1, 558 .mpr = 1, 559 .tpauser = 1, 560 .hw_swap = 1, 561 .no_ade = 1, 562 .rpadir = 1, 563 .rpadir_value = 2 << 16, 564 }; 565 566 #define SH_GIGA_ETH_BASE 0xfee00000UL 567 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 568 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 569 static void sh_eth_chip_reset_giga(struct net_device *ndev) 570 { 571 int i; 572 unsigned long mahr[2], malr[2]; 573 574 /* save MAHR and MALR */ 575 for (i = 0; i < 2; i++) { 576 malr[i] = ioread32((void *)GIGA_MALR(i)); 577 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 578 } 579 580 /* reset device */ 581 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800)); 582 mdelay(1); 583 584 /* restore MAHR and MALR */ 585 for (i = 0; i < 2; i++) { 586 iowrite32(malr[i], (void *)GIGA_MALR(i)); 587 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 588 } 589 } 590 591 static void sh_eth_set_rate_giga(struct net_device *ndev) 592 { 593 struct sh_eth_private *mdp = netdev_priv(ndev); 594 595 switch (mdp->speed) { 596 case 10: /* 10BASE */ 597 sh_eth_write(ndev, 0x00000000, GECMR); 598 break; 599 case 100:/* 100BASE */ 600 sh_eth_write(ndev, 0x00000010, GECMR); 601 break; 602 case 1000: /* 1000BASE */ 603 sh_eth_write(ndev, 0x00000020, GECMR); 604 break; 605 default: 606 break; 607 } 608 } 609 610 /* SH7757(GETHERC) */ 611 static struct sh_eth_cpu_data sh7757_data_giga = { 612 .chip_reset = sh_eth_chip_reset_giga, 613 .set_duplex = sh_eth_set_duplex, 614 .set_rate = sh_eth_set_rate_giga, 615 616 .register_type = SH_ETH_REG_GIGABIT, 617 618 .ecsr_value = ECSR_ICD | ECSR_MPD, 619 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 620 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 621 622 .tx_check = EESR_TC1 | EESR_FTC, 623 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 624 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 625 EESR_TDE | EESR_ECI, 626 .fdr_value = 0x0000072f, 627 .rmcr_value = RMCR_RNC, 628 629 .irq_flags = IRQF_SHARED, 630 .apr = 1, 631 .mpr = 1, 632 .tpauser = 1, 633 .bculr = 1, 634 .hw_swap = 1, 635 .rpadir = 1, 636 .rpadir_value = 2 << 16, 637 .no_trimd = 1, 638 .no_ade = 1, 639 .tsu = 1, 640 }; 641 642 static void sh_eth_chip_reset(struct net_device *ndev) 643 { 644 struct sh_eth_private *mdp = netdev_priv(ndev); 645 646 /* reset device */ 647 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR); 648 mdelay(1); 649 } 650 651 static void sh_eth_set_rate_gether(struct net_device *ndev) 652 { 653 struct sh_eth_private *mdp = netdev_priv(ndev); 654 655 switch (mdp->speed) { 656 case 10: /* 10BASE */ 657 sh_eth_write(ndev, GECMR_10, GECMR); 658 break; 659 case 100:/* 100BASE */ 660 sh_eth_write(ndev, GECMR_100, GECMR); 661 break; 662 case 1000: /* 1000BASE */ 663 sh_eth_write(ndev, GECMR_1000, GECMR); 664 break; 665 default: 666 break; 667 } 668 } 669 670 /* SH7734 */ 671 static struct sh_eth_cpu_data sh7734_data = { 672 .chip_reset = sh_eth_chip_reset, 673 .set_duplex = sh_eth_set_duplex, 674 .set_rate = sh_eth_set_rate_gether, 675 676 .register_type = SH_ETH_REG_GIGABIT, 677 678 .ecsr_value = ECSR_ICD | ECSR_MPD, 679 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 680 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 681 682 .tx_check = EESR_TC1 | EESR_FTC, 683 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 684 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 685 EESR_TDE | EESR_ECI, 686 687 .apr = 1, 688 .mpr = 1, 689 .tpauser = 1, 690 .bculr = 1, 691 .hw_swap = 1, 692 .no_trimd = 1, 693 .no_ade = 1, 694 .tsu = 1, 695 .hw_crc = 1, 696 .select_mii = 1, 697 }; 698 699 /* SH7763 */ 700 static struct sh_eth_cpu_data sh7763_data = { 701 .chip_reset = sh_eth_chip_reset, 702 .set_duplex = sh_eth_set_duplex, 703 .set_rate = sh_eth_set_rate_gether, 704 705 .register_type = SH_ETH_REG_GIGABIT, 706 707 .ecsr_value = ECSR_ICD | ECSR_MPD, 708 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 709 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 710 711 .tx_check = EESR_TC1 | EESR_FTC, 712 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 713 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 714 EESR_ECI, 715 716 .apr = 1, 717 .mpr = 1, 718 .tpauser = 1, 719 .bculr = 1, 720 .hw_swap = 1, 721 .no_trimd = 1, 722 .no_ade = 1, 723 .tsu = 1, 724 .irq_flags = IRQF_SHARED, 725 }; 726 727 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 728 { 729 struct sh_eth_private *mdp = netdev_priv(ndev); 730 731 /* reset device */ 732 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR); 733 mdelay(1); 734 735 sh_eth_select_mii(ndev); 736 } 737 738 /* R8A7740 */ 739 static struct sh_eth_cpu_data r8a7740_data = { 740 .chip_reset = sh_eth_chip_reset_r8a7740, 741 .set_duplex = sh_eth_set_duplex, 742 .set_rate = sh_eth_set_rate_gether, 743 744 .register_type = SH_ETH_REG_GIGABIT, 745 746 .ecsr_value = ECSR_ICD | ECSR_MPD, 747 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 748 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 749 750 .tx_check = EESR_TC1 | EESR_FTC, 751 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 752 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 753 EESR_TDE | EESR_ECI, 754 .fdr_value = 0x0000070f, 755 .rmcr_value = RMCR_RNC, 756 757 .apr = 1, 758 .mpr = 1, 759 .tpauser = 1, 760 .bculr = 1, 761 .hw_swap = 1, 762 .rpadir = 1, 763 .rpadir_value = 2 << 16, 764 .no_trimd = 1, 765 .no_ade = 1, 766 .tsu = 1, 767 .select_mii = 1, 768 .shift_rd0 = 1, 769 }; 770 771 /* R7S72100 */ 772 static struct sh_eth_cpu_data r7s72100_data = { 773 .chip_reset = sh_eth_chip_reset, 774 .set_duplex = sh_eth_set_duplex, 775 776 .register_type = SH_ETH_REG_FAST_RZ, 777 778 .ecsr_value = ECSR_ICD, 779 .ecsipr_value = ECSIPR_ICDIP, 780 .eesipr_value = 0xff7f009f, 781 782 .tx_check = EESR_TC1 | EESR_FTC, 783 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 784 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 785 EESR_TDE | EESR_ECI, 786 .fdr_value = 0x0000070f, 787 .rmcr_value = RMCR_RNC, 788 789 .no_psr = 1, 790 .apr = 1, 791 .mpr = 1, 792 .tpauser = 1, 793 .hw_swap = 1, 794 .rpadir = 1, 795 .rpadir_value = 2 << 16, 796 .no_trimd = 1, 797 .no_ade = 1, 798 .hw_crc = 1, 799 .tsu = 1, 800 .shift_rd0 = 1, 801 }; 802 803 static struct sh_eth_cpu_data sh7619_data = { 804 .register_type = SH_ETH_REG_FAST_SH3_SH2, 805 806 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 807 808 .apr = 1, 809 .mpr = 1, 810 .tpauser = 1, 811 .hw_swap = 1, 812 }; 813 814 static struct sh_eth_cpu_data sh771x_data = { 815 .register_type = SH_ETH_REG_FAST_SH3_SH2, 816 817 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 818 .tsu = 1, 819 }; 820 821 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 822 { 823 if (!cd->ecsr_value) 824 cd->ecsr_value = DEFAULT_ECSR_INIT; 825 826 if (!cd->ecsipr_value) 827 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 828 829 if (!cd->fcftr_value) 830 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 831 DEFAULT_FIFO_F_D_RFD; 832 833 if (!cd->fdr_value) 834 cd->fdr_value = DEFAULT_FDR_INIT; 835 836 if (!cd->rmcr_value) 837 cd->rmcr_value = DEFAULT_RMCR_VALUE; 838 839 if (!cd->tx_check) 840 cd->tx_check = DEFAULT_TX_CHECK; 841 842 if (!cd->eesr_err_check) 843 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 844 } 845 846 static int sh_eth_check_reset(struct net_device *ndev) 847 { 848 int ret = 0; 849 int cnt = 100; 850 851 while (cnt > 0) { 852 if (!(sh_eth_read(ndev, EDMR) & 0x3)) 853 break; 854 mdelay(1); 855 cnt--; 856 } 857 if (cnt <= 0) { 858 netdev_err(ndev, "Device reset failed\n"); 859 ret = -ETIMEDOUT; 860 } 861 return ret; 862 } 863 864 static int sh_eth_reset(struct net_device *ndev) 865 { 866 struct sh_eth_private *mdp = netdev_priv(ndev); 867 int ret = 0; 868 869 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) { 870 sh_eth_write(ndev, EDSR_ENALL, EDSR); 871 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, 872 EDMR); 873 874 ret = sh_eth_check_reset(ndev); 875 if (ret) 876 return ret; 877 878 /* Table Init */ 879 sh_eth_write(ndev, 0x0, TDLAR); 880 sh_eth_write(ndev, 0x0, TDFAR); 881 sh_eth_write(ndev, 0x0, TDFXR); 882 sh_eth_write(ndev, 0x0, TDFFR); 883 sh_eth_write(ndev, 0x0, RDLAR); 884 sh_eth_write(ndev, 0x0, RDFAR); 885 sh_eth_write(ndev, 0x0, RDFXR); 886 sh_eth_write(ndev, 0x0, RDFFR); 887 888 /* Reset HW CRC register */ 889 if (mdp->cd->hw_crc) 890 sh_eth_write(ndev, 0x0, CSMR); 891 892 /* Select MII mode */ 893 if (mdp->cd->select_mii) 894 sh_eth_select_mii(ndev); 895 } else { 896 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, 897 EDMR); 898 mdelay(3); 899 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, 900 EDMR); 901 } 902 903 return ret; 904 } 905 906 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE) 907 static void sh_eth_set_receive_align(struct sk_buff *skb) 908 { 909 int reserve; 910 911 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1)); 912 if (reserve) 913 skb_reserve(skb, reserve); 914 } 915 #else 916 static void sh_eth_set_receive_align(struct sk_buff *skb) 917 { 918 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN); 919 } 920 #endif 921 922 923 /* CPU <-> EDMAC endian convert */ 924 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x) 925 { 926 switch (mdp->edmac_endian) { 927 case EDMAC_LITTLE_ENDIAN: 928 return cpu_to_le32(x); 929 case EDMAC_BIG_ENDIAN: 930 return cpu_to_be32(x); 931 } 932 return x; 933 } 934 935 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x) 936 { 937 switch (mdp->edmac_endian) { 938 case EDMAC_LITTLE_ENDIAN: 939 return le32_to_cpu(x); 940 case EDMAC_BIG_ENDIAN: 941 return be32_to_cpu(x); 942 } 943 return x; 944 } 945 946 /* Program the hardware MAC address from dev->dev_addr. */ 947 static void update_mac_address(struct net_device *ndev) 948 { 949 sh_eth_write(ndev, 950 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 951 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 952 sh_eth_write(ndev, 953 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 954 } 955 956 /* Get MAC address from SuperH MAC address register 957 * 958 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 959 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 960 * When you want use this device, you must set MAC address in bootloader. 961 * 962 */ 963 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 964 { 965 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 966 memcpy(ndev->dev_addr, mac, ETH_ALEN); 967 } else { 968 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24); 969 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF; 970 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF; 971 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF); 972 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF; 973 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF); 974 } 975 } 976 977 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp) 978 { 979 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) 980 return EDTRR_TRNS_GETHER; 981 else 982 return EDTRR_TRNS_ETHER; 983 } 984 985 struct bb_info { 986 void (*set_gate)(void *addr); 987 struct mdiobb_ctrl ctrl; 988 void *addr; 989 u32 mmd_msk;/* MMD */ 990 u32 mdo_msk; 991 u32 mdi_msk; 992 u32 mdc_msk; 993 }; 994 995 /* PHY bit set */ 996 static void bb_set(void *addr, u32 msk) 997 { 998 iowrite32(ioread32(addr) | msk, addr); 999 } 1000 1001 /* PHY bit clear */ 1002 static void bb_clr(void *addr, u32 msk) 1003 { 1004 iowrite32((ioread32(addr) & ~msk), addr); 1005 } 1006 1007 /* PHY bit read */ 1008 static int bb_read(void *addr, u32 msk) 1009 { 1010 return (ioread32(addr) & msk) != 0; 1011 } 1012 1013 /* Data I/O pin control */ 1014 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1015 { 1016 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1017 1018 if (bitbang->set_gate) 1019 bitbang->set_gate(bitbang->addr); 1020 1021 if (bit) 1022 bb_set(bitbang->addr, bitbang->mmd_msk); 1023 else 1024 bb_clr(bitbang->addr, bitbang->mmd_msk); 1025 } 1026 1027 /* Set bit data*/ 1028 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1029 { 1030 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1031 1032 if (bitbang->set_gate) 1033 bitbang->set_gate(bitbang->addr); 1034 1035 if (bit) 1036 bb_set(bitbang->addr, bitbang->mdo_msk); 1037 else 1038 bb_clr(bitbang->addr, bitbang->mdo_msk); 1039 } 1040 1041 /* Get bit data*/ 1042 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1043 { 1044 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1045 1046 if (bitbang->set_gate) 1047 bitbang->set_gate(bitbang->addr); 1048 1049 return bb_read(bitbang->addr, bitbang->mdi_msk); 1050 } 1051 1052 /* MDC pin control */ 1053 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1054 { 1055 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1056 1057 if (bitbang->set_gate) 1058 bitbang->set_gate(bitbang->addr); 1059 1060 if (bit) 1061 bb_set(bitbang->addr, bitbang->mdc_msk); 1062 else 1063 bb_clr(bitbang->addr, bitbang->mdc_msk); 1064 } 1065 1066 /* mdio bus control struct */ 1067 static struct mdiobb_ops bb_ops = { 1068 .owner = THIS_MODULE, 1069 .set_mdc = sh_mdc_ctrl, 1070 .set_mdio_dir = sh_mmd_ctrl, 1071 .set_mdio_data = sh_set_mdio, 1072 .get_mdio_data = sh_get_mdio, 1073 }; 1074 1075 /* free skb and descriptor buffer */ 1076 static void sh_eth_ring_free(struct net_device *ndev) 1077 { 1078 struct sh_eth_private *mdp = netdev_priv(ndev); 1079 int i; 1080 1081 /* Free Rx skb ringbuffer */ 1082 if (mdp->rx_skbuff) { 1083 for (i = 0; i < mdp->num_rx_ring; i++) { 1084 if (mdp->rx_skbuff[i]) 1085 dev_kfree_skb(mdp->rx_skbuff[i]); 1086 } 1087 } 1088 kfree(mdp->rx_skbuff); 1089 mdp->rx_skbuff = NULL; 1090 1091 /* Free Tx skb ringbuffer */ 1092 if (mdp->tx_skbuff) { 1093 for (i = 0; i < mdp->num_tx_ring; i++) { 1094 if (mdp->tx_skbuff[i]) 1095 dev_kfree_skb(mdp->tx_skbuff[i]); 1096 } 1097 } 1098 kfree(mdp->tx_skbuff); 1099 mdp->tx_skbuff = NULL; 1100 } 1101 1102 /* format skb and descriptor buffer */ 1103 static void sh_eth_ring_format(struct net_device *ndev) 1104 { 1105 struct sh_eth_private *mdp = netdev_priv(ndev); 1106 int i; 1107 struct sk_buff *skb; 1108 struct sh_eth_rxdesc *rxdesc = NULL; 1109 struct sh_eth_txdesc *txdesc = NULL; 1110 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1111 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1112 1113 mdp->cur_rx = 0; 1114 mdp->cur_tx = 0; 1115 mdp->dirty_rx = 0; 1116 mdp->dirty_tx = 0; 1117 1118 memset(mdp->rx_ring, 0, rx_ringsize); 1119 1120 /* build Rx ring buffer */ 1121 for (i = 0; i < mdp->num_rx_ring; i++) { 1122 /* skb */ 1123 mdp->rx_skbuff[i] = NULL; 1124 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz); 1125 mdp->rx_skbuff[i] = skb; 1126 if (skb == NULL) 1127 break; 1128 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz, 1129 DMA_FROM_DEVICE); 1130 sh_eth_set_receive_align(skb); 1131 1132 /* RX descriptor */ 1133 rxdesc = &mdp->rx_ring[i]; 1134 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); 1135 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP); 1136 1137 /* The size of the buffer is 16 byte boundary. */ 1138 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); 1139 /* Rx descriptor address set */ 1140 if (i == 0) { 1141 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1142 if (sh_eth_is_gether(mdp) || 1143 sh_eth_is_rz_fast_ether(mdp)) 1144 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1145 } 1146 } 1147 1148 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1149 1150 /* Mark the last entry as wrapping the ring. */ 1151 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL); 1152 1153 memset(mdp->tx_ring, 0, tx_ringsize); 1154 1155 /* build Tx ring buffer */ 1156 for (i = 0; i < mdp->num_tx_ring; i++) { 1157 mdp->tx_skbuff[i] = NULL; 1158 txdesc = &mdp->tx_ring[i]; 1159 txdesc->status = cpu_to_edmac(mdp, TD_TFP); 1160 txdesc->buffer_length = 0; 1161 if (i == 0) { 1162 /* Tx descriptor address set */ 1163 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1164 if (sh_eth_is_gether(mdp) || 1165 sh_eth_is_rz_fast_ether(mdp)) 1166 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1167 } 1168 } 1169 1170 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); 1171 } 1172 1173 /* Get skb and descriptor buffer */ 1174 static int sh_eth_ring_init(struct net_device *ndev) 1175 { 1176 struct sh_eth_private *mdp = netdev_priv(ndev); 1177 int rx_ringsize, tx_ringsize, ret = 0; 1178 1179 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1180 * card needs room to do 8 byte alignment, +2 so we can reserve 1181 * the first 2 bytes, and +16 gets room for the status word from the 1182 * card. 1183 */ 1184 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1185 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1186 if (mdp->cd->rpadir) 1187 mdp->rx_buf_sz += NET_IP_ALIGN; 1188 1189 /* Allocate RX and TX skb rings */ 1190 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring, 1191 sizeof(*mdp->rx_skbuff), GFP_KERNEL); 1192 if (!mdp->rx_skbuff) { 1193 ret = -ENOMEM; 1194 return ret; 1195 } 1196 1197 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring, 1198 sizeof(*mdp->tx_skbuff), GFP_KERNEL); 1199 if (!mdp->tx_skbuff) { 1200 ret = -ENOMEM; 1201 goto skb_ring_free; 1202 } 1203 1204 /* Allocate all Rx descriptors. */ 1205 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1206 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma, 1207 GFP_KERNEL); 1208 if (!mdp->rx_ring) { 1209 ret = -ENOMEM; 1210 goto desc_ring_free; 1211 } 1212 1213 mdp->dirty_rx = 0; 1214 1215 /* Allocate all Tx descriptors. */ 1216 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1217 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma, 1218 GFP_KERNEL); 1219 if (!mdp->tx_ring) { 1220 ret = -ENOMEM; 1221 goto desc_ring_free; 1222 } 1223 return ret; 1224 1225 desc_ring_free: 1226 /* free DMA buffer */ 1227 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma); 1228 1229 skb_ring_free: 1230 /* Free Rx and Tx skb ring buffer */ 1231 sh_eth_ring_free(ndev); 1232 mdp->tx_ring = NULL; 1233 mdp->rx_ring = NULL; 1234 1235 return ret; 1236 } 1237 1238 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp) 1239 { 1240 int ringsize; 1241 1242 if (mdp->rx_ring) { 1243 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1244 dma_free_coherent(NULL, ringsize, mdp->rx_ring, 1245 mdp->rx_desc_dma); 1246 mdp->rx_ring = NULL; 1247 } 1248 1249 if (mdp->tx_ring) { 1250 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1251 dma_free_coherent(NULL, ringsize, mdp->tx_ring, 1252 mdp->tx_desc_dma); 1253 mdp->tx_ring = NULL; 1254 } 1255 } 1256 1257 static int sh_eth_dev_init(struct net_device *ndev, bool start) 1258 { 1259 int ret = 0; 1260 struct sh_eth_private *mdp = netdev_priv(ndev); 1261 u32 val; 1262 1263 /* Soft Reset */ 1264 ret = sh_eth_reset(ndev); 1265 if (ret) 1266 return ret; 1267 1268 if (mdp->cd->rmiimode) 1269 sh_eth_write(ndev, 0x1, RMIIMODE); 1270 1271 /* Descriptor format */ 1272 sh_eth_ring_format(ndev); 1273 if (mdp->cd->rpadir) 1274 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR); 1275 1276 /* all sh_eth int mask */ 1277 sh_eth_write(ndev, 0, EESIPR); 1278 1279 #if defined(__LITTLE_ENDIAN) 1280 if (mdp->cd->hw_swap) 1281 sh_eth_write(ndev, EDMR_EL, EDMR); 1282 else 1283 #endif 1284 sh_eth_write(ndev, 0, EDMR); 1285 1286 /* FIFO size set */ 1287 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1288 sh_eth_write(ndev, 0, TFTR); 1289 1290 /* Frame recv control */ 1291 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR); 1292 1293 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER); 1294 1295 if (mdp->cd->bculr) 1296 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */ 1297 1298 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1299 1300 if (!mdp->cd->no_trimd) 1301 sh_eth_write(ndev, 0, TRIMD); 1302 1303 /* Recv frame limit set register */ 1304 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1305 RFLR); 1306 1307 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR); 1308 if (start) 1309 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1310 1311 /* PAUSE Prohibition */ 1312 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) | 1313 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE; 1314 1315 sh_eth_write(ndev, val, ECMR); 1316 1317 if (mdp->cd->set_rate) 1318 mdp->cd->set_rate(ndev); 1319 1320 /* E-MAC Status Register clear */ 1321 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1322 1323 /* E-MAC Interrupt Enable register */ 1324 if (start) 1325 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1326 1327 /* Set MAC address */ 1328 update_mac_address(ndev); 1329 1330 /* mask reset */ 1331 if (mdp->cd->apr) 1332 sh_eth_write(ndev, APR_AP, APR); 1333 if (mdp->cd->mpr) 1334 sh_eth_write(ndev, MPR_MP, MPR); 1335 if (mdp->cd->tpauser) 1336 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1337 1338 if (start) { 1339 /* Setting the Rx mode will start the Rx process. */ 1340 sh_eth_write(ndev, EDRRR_R, EDRRR); 1341 1342 netif_start_queue(ndev); 1343 } 1344 1345 return ret; 1346 } 1347 1348 /* free Tx skb function */ 1349 static int sh_eth_txfree(struct net_device *ndev) 1350 { 1351 struct sh_eth_private *mdp = netdev_priv(ndev); 1352 struct sh_eth_txdesc *txdesc; 1353 int free_num = 0; 1354 int entry = 0; 1355 1356 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1357 entry = mdp->dirty_tx % mdp->num_tx_ring; 1358 txdesc = &mdp->tx_ring[entry]; 1359 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT)) 1360 break; 1361 /* Free the original skb. */ 1362 if (mdp->tx_skbuff[entry]) { 1363 dma_unmap_single(&ndev->dev, txdesc->addr, 1364 txdesc->buffer_length, DMA_TO_DEVICE); 1365 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1366 mdp->tx_skbuff[entry] = NULL; 1367 free_num++; 1368 } 1369 txdesc->status = cpu_to_edmac(mdp, TD_TFP); 1370 if (entry >= mdp->num_tx_ring - 1) 1371 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); 1372 1373 ndev->stats.tx_packets++; 1374 ndev->stats.tx_bytes += txdesc->buffer_length; 1375 } 1376 return free_num; 1377 } 1378 1379 /* Packet receive function */ 1380 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1381 { 1382 struct sh_eth_private *mdp = netdev_priv(ndev); 1383 struct sh_eth_rxdesc *rxdesc; 1384 1385 int entry = mdp->cur_rx % mdp->num_rx_ring; 1386 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1387 struct sk_buff *skb; 1388 int exceeded = 0; 1389 u16 pkt_len = 0; 1390 u32 desc_status; 1391 1392 rxdesc = &mdp->rx_ring[entry]; 1393 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) { 1394 desc_status = edmac_to_cpu(mdp, rxdesc->status); 1395 pkt_len = rxdesc->frame_length; 1396 1397 if (--boguscnt < 0) 1398 break; 1399 1400 if (*quota <= 0) { 1401 exceeded = 1; 1402 break; 1403 } 1404 (*quota)--; 1405 1406 if (!(desc_status & RDFEND)) 1407 ndev->stats.rx_length_errors++; 1408 1409 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1410 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1411 * bit 0. However, in case of the R8A7740, R8A779x, and 1412 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the 1413 * driver needs right shifting by 16. 1414 */ 1415 if (mdp->cd->shift_rd0) 1416 desc_status >>= 16; 1417 1418 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1419 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1420 ndev->stats.rx_errors++; 1421 if (desc_status & RD_RFS1) 1422 ndev->stats.rx_crc_errors++; 1423 if (desc_status & RD_RFS2) 1424 ndev->stats.rx_frame_errors++; 1425 if (desc_status & RD_RFS3) 1426 ndev->stats.rx_length_errors++; 1427 if (desc_status & RD_RFS4) 1428 ndev->stats.rx_length_errors++; 1429 if (desc_status & RD_RFS6) 1430 ndev->stats.rx_missed_errors++; 1431 if (desc_status & RD_RFS10) 1432 ndev->stats.rx_over_errors++; 1433 } else { 1434 if (!mdp->cd->hw_swap) 1435 sh_eth_soft_swap( 1436 phys_to_virt(ALIGN(rxdesc->addr, 4)), 1437 pkt_len + 2); 1438 skb = mdp->rx_skbuff[entry]; 1439 mdp->rx_skbuff[entry] = NULL; 1440 if (mdp->cd->rpadir) 1441 skb_reserve(skb, NET_IP_ALIGN); 1442 dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr, 1443 mdp->rx_buf_sz, 1444 DMA_FROM_DEVICE); 1445 skb_put(skb, pkt_len); 1446 skb->protocol = eth_type_trans(skb, ndev); 1447 netif_receive_skb(skb); 1448 ndev->stats.rx_packets++; 1449 ndev->stats.rx_bytes += pkt_len; 1450 } 1451 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT); 1452 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1453 rxdesc = &mdp->rx_ring[entry]; 1454 } 1455 1456 /* Refill the Rx ring buffers. */ 1457 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1458 entry = mdp->dirty_rx % mdp->num_rx_ring; 1459 rxdesc = &mdp->rx_ring[entry]; 1460 /* The size of the buffer is 16 byte boundary. */ 1461 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); 1462 1463 if (mdp->rx_skbuff[entry] == NULL) { 1464 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz); 1465 mdp->rx_skbuff[entry] = skb; 1466 if (skb == NULL) 1467 break; /* Better luck next round. */ 1468 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz, 1469 DMA_FROM_DEVICE); 1470 sh_eth_set_receive_align(skb); 1471 1472 skb_checksum_none_assert(skb); 1473 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); 1474 } 1475 if (entry >= mdp->num_rx_ring - 1) 1476 rxdesc->status |= 1477 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL); 1478 else 1479 rxdesc->status |= 1480 cpu_to_edmac(mdp, RD_RACT | RD_RFP); 1481 } 1482 1483 /* Restart Rx engine if stopped. */ 1484 /* If we don't need to check status, don't. -KDU */ 1485 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1486 /* fix the values for the next receiving if RDE is set */ 1487 if (intr_status & EESR_RDE) { 1488 u32 count = (sh_eth_read(ndev, RDFAR) - 1489 sh_eth_read(ndev, RDLAR)) >> 4; 1490 1491 mdp->cur_rx = count; 1492 mdp->dirty_rx = count; 1493 } 1494 sh_eth_write(ndev, EDRRR_R, EDRRR); 1495 } 1496 1497 return exceeded; 1498 } 1499 1500 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1501 { 1502 /* disable tx and rx */ 1503 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & 1504 ~(ECMR_RE | ECMR_TE), ECMR); 1505 } 1506 1507 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1508 { 1509 /* enable tx and rx */ 1510 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | 1511 (ECMR_RE | ECMR_TE), ECMR); 1512 } 1513 1514 /* error control function */ 1515 static void sh_eth_error(struct net_device *ndev, int intr_status) 1516 { 1517 struct sh_eth_private *mdp = netdev_priv(ndev); 1518 u32 felic_stat; 1519 u32 link_stat; 1520 u32 mask; 1521 1522 if (intr_status & EESR_ECI) { 1523 felic_stat = sh_eth_read(ndev, ECSR); 1524 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1525 if (felic_stat & ECSR_ICD) 1526 ndev->stats.tx_carrier_errors++; 1527 if (felic_stat & ECSR_LCHNG) { 1528 /* Link Changed */ 1529 if (mdp->cd->no_psr || mdp->no_ether_link) { 1530 goto ignore_link; 1531 } else { 1532 link_stat = (sh_eth_read(ndev, PSR)); 1533 if (mdp->ether_link_active_low) 1534 link_stat = ~link_stat; 1535 } 1536 if (!(link_stat & PHY_ST_LINK)) { 1537 sh_eth_rcv_snd_disable(ndev); 1538 } else { 1539 /* Link Up */ 1540 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) & 1541 ~DMAC_M_ECI, EESIPR); 1542 /* clear int */ 1543 sh_eth_write(ndev, sh_eth_read(ndev, ECSR), 1544 ECSR); 1545 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) | 1546 DMAC_M_ECI, EESIPR); 1547 /* enable tx and rx */ 1548 sh_eth_rcv_snd_enable(ndev); 1549 } 1550 } 1551 } 1552 1553 ignore_link: 1554 if (intr_status & EESR_TWB) { 1555 /* Unused write back interrupt */ 1556 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1557 ndev->stats.tx_aborted_errors++; 1558 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1559 } 1560 } 1561 1562 if (intr_status & EESR_RABT) { 1563 /* Receive Abort int */ 1564 if (intr_status & EESR_RFRMER) { 1565 /* Receive Frame Overflow int */ 1566 ndev->stats.rx_frame_errors++; 1567 netif_err(mdp, rx_err, ndev, "Receive Abort\n"); 1568 } 1569 } 1570 1571 if (intr_status & EESR_TDE) { 1572 /* Transmit Descriptor Empty int */ 1573 ndev->stats.tx_fifo_errors++; 1574 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1575 } 1576 1577 if (intr_status & EESR_TFE) { 1578 /* FIFO under flow */ 1579 ndev->stats.tx_fifo_errors++; 1580 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1581 } 1582 1583 if (intr_status & EESR_RDE) { 1584 /* Receive Descriptor Empty int */ 1585 ndev->stats.rx_over_errors++; 1586 netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n"); 1587 } 1588 1589 if (intr_status & EESR_RFE) { 1590 /* Receive FIFO Overflow int */ 1591 ndev->stats.rx_fifo_errors++; 1592 netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n"); 1593 } 1594 1595 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1596 /* Address Error */ 1597 ndev->stats.tx_fifo_errors++; 1598 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1599 } 1600 1601 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1602 if (mdp->cd->no_ade) 1603 mask &= ~EESR_ADE; 1604 if (intr_status & mask) { 1605 /* Tx error */ 1606 u32 edtrr = sh_eth_read(ndev, EDTRR); 1607 1608 /* dmesg */ 1609 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1610 intr_status, mdp->cur_tx, mdp->dirty_tx, 1611 (u32)ndev->state, edtrr); 1612 /* dirty buffer free */ 1613 sh_eth_txfree(ndev); 1614 1615 /* SH7712 BUG */ 1616 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) { 1617 /* tx dma start */ 1618 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 1619 } 1620 /* wakeup */ 1621 netif_wake_queue(ndev); 1622 } 1623 } 1624 1625 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1626 { 1627 struct net_device *ndev = netdev; 1628 struct sh_eth_private *mdp = netdev_priv(ndev); 1629 struct sh_eth_cpu_data *cd = mdp->cd; 1630 irqreturn_t ret = IRQ_NONE; 1631 unsigned long intr_status, intr_enable; 1632 1633 spin_lock(&mdp->lock); 1634 1635 /* Get interrupt status */ 1636 intr_status = sh_eth_read(ndev, EESR); 1637 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1638 * enabled since it's the one that comes thru regardless of the mask, 1639 * and we need to fully handle it in sh_eth_error() in order to quench 1640 * it as it doesn't get cleared by just writing 1 to the ECI bit... 1641 */ 1642 intr_enable = sh_eth_read(ndev, EESIPR); 1643 intr_status &= intr_enable | DMAC_M_ECI; 1644 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check)) 1645 ret = IRQ_HANDLED; 1646 else 1647 goto other_irq; 1648 1649 if (intr_status & EESR_RX_CHECK) { 1650 if (napi_schedule_prep(&mdp->napi)) { 1651 /* Mask Rx interrupts */ 1652 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1653 EESIPR); 1654 __napi_schedule(&mdp->napi); 1655 } else { 1656 netdev_warn(ndev, 1657 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n", 1658 intr_status, intr_enable); 1659 } 1660 } 1661 1662 /* Tx Check */ 1663 if (intr_status & cd->tx_check) { 1664 /* Clear Tx interrupts */ 1665 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1666 1667 sh_eth_txfree(ndev); 1668 netif_wake_queue(ndev); 1669 } 1670 1671 if (intr_status & cd->eesr_err_check) { 1672 /* Clear error interrupts */ 1673 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1674 1675 sh_eth_error(ndev, intr_status); 1676 } 1677 1678 other_irq: 1679 spin_unlock(&mdp->lock); 1680 1681 return ret; 1682 } 1683 1684 static int sh_eth_poll(struct napi_struct *napi, int budget) 1685 { 1686 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1687 napi); 1688 struct net_device *ndev = napi->dev; 1689 int quota = budget; 1690 unsigned long intr_status; 1691 1692 for (;;) { 1693 intr_status = sh_eth_read(ndev, EESR); 1694 if (!(intr_status & EESR_RX_CHECK)) 1695 break; 1696 /* Clear Rx interrupts */ 1697 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1698 1699 if (sh_eth_rx(ndev, intr_status, "a)) 1700 goto out; 1701 } 1702 1703 napi_complete(napi); 1704 1705 /* Reenable Rx interrupts */ 1706 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1707 out: 1708 return budget - quota; 1709 } 1710 1711 /* PHY state control function */ 1712 static void sh_eth_adjust_link(struct net_device *ndev) 1713 { 1714 struct sh_eth_private *mdp = netdev_priv(ndev); 1715 struct phy_device *phydev = mdp->phydev; 1716 int new_state = 0; 1717 1718 if (phydev->link) { 1719 if (phydev->duplex != mdp->duplex) { 1720 new_state = 1; 1721 mdp->duplex = phydev->duplex; 1722 if (mdp->cd->set_duplex) 1723 mdp->cd->set_duplex(ndev); 1724 } 1725 1726 if (phydev->speed != mdp->speed) { 1727 new_state = 1; 1728 mdp->speed = phydev->speed; 1729 if (mdp->cd->set_rate) 1730 mdp->cd->set_rate(ndev); 1731 } 1732 if (!mdp->link) { 1733 sh_eth_write(ndev, 1734 sh_eth_read(ndev, ECMR) & ~ECMR_TXF, 1735 ECMR); 1736 new_state = 1; 1737 mdp->link = phydev->link; 1738 if (mdp->cd->no_psr || mdp->no_ether_link) 1739 sh_eth_rcv_snd_enable(ndev); 1740 } 1741 } else if (mdp->link) { 1742 new_state = 1; 1743 mdp->link = 0; 1744 mdp->speed = 0; 1745 mdp->duplex = -1; 1746 if (mdp->cd->no_psr || mdp->no_ether_link) 1747 sh_eth_rcv_snd_disable(ndev); 1748 } 1749 1750 if (new_state && netif_msg_link(mdp)) 1751 phy_print_status(phydev); 1752 } 1753 1754 /* PHY init function */ 1755 static int sh_eth_phy_init(struct net_device *ndev) 1756 { 1757 struct device_node *np = ndev->dev.parent->of_node; 1758 struct sh_eth_private *mdp = netdev_priv(ndev); 1759 struct phy_device *phydev = NULL; 1760 1761 mdp->link = 0; 1762 mdp->speed = 0; 1763 mdp->duplex = -1; 1764 1765 /* Try connect to PHY */ 1766 if (np) { 1767 struct device_node *pn; 1768 1769 pn = of_parse_phandle(np, "phy-handle", 0); 1770 phydev = of_phy_connect(ndev, pn, 1771 sh_eth_adjust_link, 0, 1772 mdp->phy_interface); 1773 1774 if (!phydev) 1775 phydev = ERR_PTR(-ENOENT); 1776 } else { 1777 char phy_id[MII_BUS_ID_SIZE + 3]; 1778 1779 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 1780 mdp->mii_bus->id, mdp->phy_id); 1781 1782 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 1783 mdp->phy_interface); 1784 } 1785 1786 if (IS_ERR(phydev)) { 1787 netdev_err(ndev, "failed to connect PHY\n"); 1788 return PTR_ERR(phydev); 1789 } 1790 1791 netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n", 1792 phydev->addr, phydev->irq, phydev->drv->name); 1793 1794 mdp->phydev = phydev; 1795 1796 return 0; 1797 } 1798 1799 /* PHY control start function */ 1800 static int sh_eth_phy_start(struct net_device *ndev) 1801 { 1802 struct sh_eth_private *mdp = netdev_priv(ndev); 1803 int ret; 1804 1805 ret = sh_eth_phy_init(ndev); 1806 if (ret) 1807 return ret; 1808 1809 phy_start(mdp->phydev); 1810 1811 return 0; 1812 } 1813 1814 static int sh_eth_get_settings(struct net_device *ndev, 1815 struct ethtool_cmd *ecmd) 1816 { 1817 struct sh_eth_private *mdp = netdev_priv(ndev); 1818 unsigned long flags; 1819 int ret; 1820 1821 spin_lock_irqsave(&mdp->lock, flags); 1822 ret = phy_ethtool_gset(mdp->phydev, ecmd); 1823 spin_unlock_irqrestore(&mdp->lock, flags); 1824 1825 return ret; 1826 } 1827 1828 static int sh_eth_set_settings(struct net_device *ndev, 1829 struct ethtool_cmd *ecmd) 1830 { 1831 struct sh_eth_private *mdp = netdev_priv(ndev); 1832 unsigned long flags; 1833 int ret; 1834 1835 spin_lock_irqsave(&mdp->lock, flags); 1836 1837 /* disable tx and rx */ 1838 sh_eth_rcv_snd_disable(ndev); 1839 1840 ret = phy_ethtool_sset(mdp->phydev, ecmd); 1841 if (ret) 1842 goto error_exit; 1843 1844 if (ecmd->duplex == DUPLEX_FULL) 1845 mdp->duplex = 1; 1846 else 1847 mdp->duplex = 0; 1848 1849 if (mdp->cd->set_duplex) 1850 mdp->cd->set_duplex(ndev); 1851 1852 error_exit: 1853 mdelay(1); 1854 1855 /* enable tx and rx */ 1856 sh_eth_rcv_snd_enable(ndev); 1857 1858 spin_unlock_irqrestore(&mdp->lock, flags); 1859 1860 return ret; 1861 } 1862 1863 static int sh_eth_nway_reset(struct net_device *ndev) 1864 { 1865 struct sh_eth_private *mdp = netdev_priv(ndev); 1866 unsigned long flags; 1867 int ret; 1868 1869 spin_lock_irqsave(&mdp->lock, flags); 1870 ret = phy_start_aneg(mdp->phydev); 1871 spin_unlock_irqrestore(&mdp->lock, flags); 1872 1873 return ret; 1874 } 1875 1876 static u32 sh_eth_get_msglevel(struct net_device *ndev) 1877 { 1878 struct sh_eth_private *mdp = netdev_priv(ndev); 1879 return mdp->msg_enable; 1880 } 1881 1882 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 1883 { 1884 struct sh_eth_private *mdp = netdev_priv(ndev); 1885 mdp->msg_enable = value; 1886 } 1887 1888 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 1889 "rx_current", "tx_current", 1890 "rx_dirty", "tx_dirty", 1891 }; 1892 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 1893 1894 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 1895 { 1896 switch (sset) { 1897 case ETH_SS_STATS: 1898 return SH_ETH_STATS_LEN; 1899 default: 1900 return -EOPNOTSUPP; 1901 } 1902 } 1903 1904 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 1905 struct ethtool_stats *stats, u64 *data) 1906 { 1907 struct sh_eth_private *mdp = netdev_priv(ndev); 1908 int i = 0; 1909 1910 /* device-specific stats */ 1911 data[i++] = mdp->cur_rx; 1912 data[i++] = mdp->cur_tx; 1913 data[i++] = mdp->dirty_rx; 1914 data[i++] = mdp->dirty_tx; 1915 } 1916 1917 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1918 { 1919 switch (stringset) { 1920 case ETH_SS_STATS: 1921 memcpy(data, *sh_eth_gstrings_stats, 1922 sizeof(sh_eth_gstrings_stats)); 1923 break; 1924 } 1925 } 1926 1927 static void sh_eth_get_ringparam(struct net_device *ndev, 1928 struct ethtool_ringparam *ring) 1929 { 1930 struct sh_eth_private *mdp = netdev_priv(ndev); 1931 1932 ring->rx_max_pending = RX_RING_MAX; 1933 ring->tx_max_pending = TX_RING_MAX; 1934 ring->rx_pending = mdp->num_rx_ring; 1935 ring->tx_pending = mdp->num_tx_ring; 1936 } 1937 1938 static int sh_eth_set_ringparam(struct net_device *ndev, 1939 struct ethtool_ringparam *ring) 1940 { 1941 struct sh_eth_private *mdp = netdev_priv(ndev); 1942 int ret; 1943 1944 if (ring->tx_pending > TX_RING_MAX || 1945 ring->rx_pending > RX_RING_MAX || 1946 ring->tx_pending < TX_RING_MIN || 1947 ring->rx_pending < RX_RING_MIN) 1948 return -EINVAL; 1949 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 1950 return -EINVAL; 1951 1952 if (netif_running(ndev)) { 1953 netif_tx_disable(ndev); 1954 /* Disable interrupts by clearing the interrupt mask. */ 1955 sh_eth_write(ndev, 0x0000, EESIPR); 1956 /* Stop the chip's Tx and Rx processes. */ 1957 sh_eth_write(ndev, 0, EDTRR); 1958 sh_eth_write(ndev, 0, EDRRR); 1959 synchronize_irq(ndev->irq); 1960 } 1961 1962 /* Free all the skbuffs in the Rx queue. */ 1963 sh_eth_ring_free(ndev); 1964 /* Free DMA buffer */ 1965 sh_eth_free_dma_buffer(mdp); 1966 1967 /* Set new parameters */ 1968 mdp->num_rx_ring = ring->rx_pending; 1969 mdp->num_tx_ring = ring->tx_pending; 1970 1971 ret = sh_eth_ring_init(ndev); 1972 if (ret < 0) { 1973 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__); 1974 return ret; 1975 } 1976 ret = sh_eth_dev_init(ndev, false); 1977 if (ret < 0) { 1978 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__); 1979 return ret; 1980 } 1981 1982 if (netif_running(ndev)) { 1983 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1984 /* Setting the Rx mode will start the Rx process. */ 1985 sh_eth_write(ndev, EDRRR_R, EDRRR); 1986 netif_wake_queue(ndev); 1987 } 1988 1989 return 0; 1990 } 1991 1992 static const struct ethtool_ops sh_eth_ethtool_ops = { 1993 .get_settings = sh_eth_get_settings, 1994 .set_settings = sh_eth_set_settings, 1995 .nway_reset = sh_eth_nway_reset, 1996 .get_msglevel = sh_eth_get_msglevel, 1997 .set_msglevel = sh_eth_set_msglevel, 1998 .get_link = ethtool_op_get_link, 1999 .get_strings = sh_eth_get_strings, 2000 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2001 .get_sset_count = sh_eth_get_sset_count, 2002 .get_ringparam = sh_eth_get_ringparam, 2003 .set_ringparam = sh_eth_set_ringparam, 2004 }; 2005 2006 /* network device open function */ 2007 static int sh_eth_open(struct net_device *ndev) 2008 { 2009 int ret = 0; 2010 struct sh_eth_private *mdp = netdev_priv(ndev); 2011 2012 pm_runtime_get_sync(&mdp->pdev->dev); 2013 2014 napi_enable(&mdp->napi); 2015 2016 ret = request_irq(ndev->irq, sh_eth_interrupt, 2017 mdp->cd->irq_flags, ndev->name, ndev); 2018 if (ret) { 2019 netdev_err(ndev, "Can not assign IRQ number\n"); 2020 goto out_napi_off; 2021 } 2022 2023 /* Descriptor set */ 2024 ret = sh_eth_ring_init(ndev); 2025 if (ret) 2026 goto out_free_irq; 2027 2028 /* device init */ 2029 ret = sh_eth_dev_init(ndev, true); 2030 if (ret) 2031 goto out_free_irq; 2032 2033 /* PHY control start*/ 2034 ret = sh_eth_phy_start(ndev); 2035 if (ret) 2036 goto out_free_irq; 2037 2038 return ret; 2039 2040 out_free_irq: 2041 free_irq(ndev->irq, ndev); 2042 out_napi_off: 2043 napi_disable(&mdp->napi); 2044 pm_runtime_put_sync(&mdp->pdev->dev); 2045 return ret; 2046 } 2047 2048 /* Timeout function */ 2049 static void sh_eth_tx_timeout(struct net_device *ndev) 2050 { 2051 struct sh_eth_private *mdp = netdev_priv(ndev); 2052 struct sh_eth_rxdesc *rxdesc; 2053 int i; 2054 2055 netif_stop_queue(ndev); 2056 2057 netif_err(mdp, timer, ndev, 2058 "transmit timed out, status %8.8x, resetting...\n", 2059 (int)sh_eth_read(ndev, EESR)); 2060 2061 /* tx_errors count up */ 2062 ndev->stats.tx_errors++; 2063 2064 /* Free all the skbuffs in the Rx queue. */ 2065 for (i = 0; i < mdp->num_rx_ring; i++) { 2066 rxdesc = &mdp->rx_ring[i]; 2067 rxdesc->status = 0; 2068 rxdesc->addr = 0xBADF00D0; 2069 if (mdp->rx_skbuff[i]) 2070 dev_kfree_skb(mdp->rx_skbuff[i]); 2071 mdp->rx_skbuff[i] = NULL; 2072 } 2073 for (i = 0; i < mdp->num_tx_ring; i++) { 2074 if (mdp->tx_skbuff[i]) 2075 dev_kfree_skb(mdp->tx_skbuff[i]); 2076 mdp->tx_skbuff[i] = NULL; 2077 } 2078 2079 /* device init */ 2080 sh_eth_dev_init(ndev, true); 2081 } 2082 2083 /* Packet transmit function */ 2084 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2085 { 2086 struct sh_eth_private *mdp = netdev_priv(ndev); 2087 struct sh_eth_txdesc *txdesc; 2088 u32 entry; 2089 unsigned long flags; 2090 2091 spin_lock_irqsave(&mdp->lock, flags); 2092 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2093 if (!sh_eth_txfree(ndev)) { 2094 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2095 netif_stop_queue(ndev); 2096 spin_unlock_irqrestore(&mdp->lock, flags); 2097 return NETDEV_TX_BUSY; 2098 } 2099 } 2100 spin_unlock_irqrestore(&mdp->lock, flags); 2101 2102 entry = mdp->cur_tx % mdp->num_tx_ring; 2103 mdp->tx_skbuff[entry] = skb; 2104 txdesc = &mdp->tx_ring[entry]; 2105 /* soft swap. */ 2106 if (!mdp->cd->hw_swap) 2107 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)), 2108 skb->len + 2); 2109 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len, 2110 DMA_TO_DEVICE); 2111 if (skb->len < ETH_ZLEN) 2112 txdesc->buffer_length = ETH_ZLEN; 2113 else 2114 txdesc->buffer_length = skb->len; 2115 2116 if (entry >= mdp->num_tx_ring - 1) 2117 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE); 2118 else 2119 txdesc->status |= cpu_to_edmac(mdp, TD_TACT); 2120 2121 mdp->cur_tx++; 2122 2123 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp))) 2124 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 2125 2126 return NETDEV_TX_OK; 2127 } 2128 2129 /* device close function */ 2130 static int sh_eth_close(struct net_device *ndev) 2131 { 2132 struct sh_eth_private *mdp = netdev_priv(ndev); 2133 2134 netif_stop_queue(ndev); 2135 2136 /* Disable interrupts by clearing the interrupt mask. */ 2137 sh_eth_write(ndev, 0x0000, EESIPR); 2138 2139 /* Stop the chip's Tx and Rx processes. */ 2140 sh_eth_write(ndev, 0, EDTRR); 2141 sh_eth_write(ndev, 0, EDRRR); 2142 2143 /* PHY Disconnect */ 2144 if (mdp->phydev) { 2145 phy_stop(mdp->phydev); 2146 phy_disconnect(mdp->phydev); 2147 } 2148 2149 free_irq(ndev->irq, ndev); 2150 2151 napi_disable(&mdp->napi); 2152 2153 /* Free all the skbuffs in the Rx queue. */ 2154 sh_eth_ring_free(ndev); 2155 2156 /* free DMA buffer */ 2157 sh_eth_free_dma_buffer(mdp); 2158 2159 pm_runtime_put_sync(&mdp->pdev->dev); 2160 2161 return 0; 2162 } 2163 2164 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2165 { 2166 struct sh_eth_private *mdp = netdev_priv(ndev); 2167 2168 if (sh_eth_is_rz_fast_ether(mdp)) 2169 return &ndev->stats; 2170 2171 pm_runtime_get_sync(&mdp->pdev->dev); 2172 2173 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR); 2174 sh_eth_write(ndev, 0, TROCR); /* (write clear) */ 2175 ndev->stats.collisions += sh_eth_read(ndev, CDCR); 2176 sh_eth_write(ndev, 0, CDCR); /* (write clear) */ 2177 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR); 2178 sh_eth_write(ndev, 0, LCCR); /* (write clear) */ 2179 if (sh_eth_is_gether(mdp)) { 2180 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR); 2181 sh_eth_write(ndev, 0, CERCR); /* (write clear) */ 2182 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR); 2183 sh_eth_write(ndev, 0, CEECR); /* (write clear) */ 2184 } else { 2185 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR); 2186 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */ 2187 } 2188 pm_runtime_put_sync(&mdp->pdev->dev); 2189 2190 return &ndev->stats; 2191 } 2192 2193 /* ioctl to device function */ 2194 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2195 { 2196 struct sh_eth_private *mdp = netdev_priv(ndev); 2197 struct phy_device *phydev = mdp->phydev; 2198 2199 if (!netif_running(ndev)) 2200 return -EINVAL; 2201 2202 if (!phydev) 2203 return -ENODEV; 2204 2205 return phy_mii_ioctl(phydev, rq, cmd); 2206 } 2207 2208 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2209 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp, 2210 int entry) 2211 { 2212 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4); 2213 } 2214 2215 static u32 sh_eth_tsu_get_post_mask(int entry) 2216 { 2217 return 0x0f << (28 - ((entry % 8) * 4)); 2218 } 2219 2220 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2221 { 2222 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2223 } 2224 2225 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2226 int entry) 2227 { 2228 struct sh_eth_private *mdp = netdev_priv(ndev); 2229 u32 tmp; 2230 void *reg_offset; 2231 2232 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2233 tmp = ioread32(reg_offset); 2234 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset); 2235 } 2236 2237 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2238 int entry) 2239 { 2240 struct sh_eth_private *mdp = netdev_priv(ndev); 2241 u32 post_mask, ref_mask, tmp; 2242 void *reg_offset; 2243 2244 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2245 post_mask = sh_eth_tsu_get_post_mask(entry); 2246 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2247 2248 tmp = ioread32(reg_offset); 2249 iowrite32(tmp & ~post_mask, reg_offset); 2250 2251 /* If other port enables, the function returns "true" */ 2252 return tmp & ref_mask; 2253 } 2254 2255 static int sh_eth_tsu_busy(struct net_device *ndev) 2256 { 2257 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2258 struct sh_eth_private *mdp = netdev_priv(ndev); 2259 2260 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2261 udelay(10); 2262 timeout--; 2263 if (timeout <= 0) { 2264 netdev_err(ndev, "%s: timeout\n", __func__); 2265 return -ETIMEDOUT; 2266 } 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg, 2273 const u8 *addr) 2274 { 2275 u32 val; 2276 2277 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2278 iowrite32(val, reg); 2279 if (sh_eth_tsu_busy(ndev) < 0) 2280 return -EBUSY; 2281 2282 val = addr[4] << 8 | addr[5]; 2283 iowrite32(val, reg + 4); 2284 if (sh_eth_tsu_busy(ndev) < 0) 2285 return -EBUSY; 2286 2287 return 0; 2288 } 2289 2290 static void sh_eth_tsu_read_entry(void *reg, u8 *addr) 2291 { 2292 u32 val; 2293 2294 val = ioread32(reg); 2295 addr[0] = (val >> 24) & 0xff; 2296 addr[1] = (val >> 16) & 0xff; 2297 addr[2] = (val >> 8) & 0xff; 2298 addr[3] = val & 0xff; 2299 val = ioread32(reg + 4); 2300 addr[4] = (val >> 8) & 0xff; 2301 addr[5] = val & 0xff; 2302 } 2303 2304 2305 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2306 { 2307 struct sh_eth_private *mdp = netdev_priv(ndev); 2308 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2309 int i; 2310 u8 c_addr[ETH_ALEN]; 2311 2312 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2313 sh_eth_tsu_read_entry(reg_offset, c_addr); 2314 if (ether_addr_equal(addr, c_addr)) 2315 return i; 2316 } 2317 2318 return -ENOENT; 2319 } 2320 2321 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2322 { 2323 u8 blank[ETH_ALEN]; 2324 int entry; 2325 2326 memset(blank, 0, sizeof(blank)); 2327 entry = sh_eth_tsu_find_entry(ndev, blank); 2328 return (entry < 0) ? -ENOMEM : entry; 2329 } 2330 2331 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2332 int entry) 2333 { 2334 struct sh_eth_private *mdp = netdev_priv(ndev); 2335 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2336 int ret; 2337 u8 blank[ETH_ALEN]; 2338 2339 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2340 ~(1 << (31 - entry)), TSU_TEN); 2341 2342 memset(blank, 0, sizeof(blank)); 2343 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2344 if (ret < 0) 2345 return ret; 2346 return 0; 2347 } 2348 2349 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2350 { 2351 struct sh_eth_private *mdp = netdev_priv(ndev); 2352 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2353 int i, ret; 2354 2355 if (!mdp->cd->tsu) 2356 return 0; 2357 2358 i = sh_eth_tsu_find_entry(ndev, addr); 2359 if (i < 0) { 2360 /* No entry found, create one */ 2361 i = sh_eth_tsu_find_empty(ndev); 2362 if (i < 0) 2363 return -ENOMEM; 2364 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2365 if (ret < 0) 2366 return ret; 2367 2368 /* Enable the entry */ 2369 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2370 (1 << (31 - i)), TSU_TEN); 2371 } 2372 2373 /* Entry found or created, enable POST */ 2374 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2375 2376 return 0; 2377 } 2378 2379 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2380 { 2381 struct sh_eth_private *mdp = netdev_priv(ndev); 2382 int i, ret; 2383 2384 if (!mdp->cd->tsu) 2385 return 0; 2386 2387 i = sh_eth_tsu_find_entry(ndev, addr); 2388 if (i) { 2389 /* Entry found */ 2390 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2391 goto done; 2392 2393 /* Disable the entry if both ports was disabled */ 2394 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2395 if (ret < 0) 2396 return ret; 2397 } 2398 done: 2399 return 0; 2400 } 2401 2402 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2403 { 2404 struct sh_eth_private *mdp = netdev_priv(ndev); 2405 int i, ret; 2406 2407 if (unlikely(!mdp->cd->tsu)) 2408 return 0; 2409 2410 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2411 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2412 continue; 2413 2414 /* Disable the entry if both ports was disabled */ 2415 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2416 if (ret < 0) 2417 return ret; 2418 } 2419 2420 return 0; 2421 } 2422 2423 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2424 { 2425 struct sh_eth_private *mdp = netdev_priv(ndev); 2426 u8 addr[ETH_ALEN]; 2427 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2428 int i; 2429 2430 if (unlikely(!mdp->cd->tsu)) 2431 return; 2432 2433 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2434 sh_eth_tsu_read_entry(reg_offset, addr); 2435 if (is_multicast_ether_addr(addr)) 2436 sh_eth_tsu_del_entry(ndev, addr); 2437 } 2438 } 2439 2440 /* Multicast reception directions set */ 2441 static void sh_eth_set_multicast_list(struct net_device *ndev) 2442 { 2443 struct sh_eth_private *mdp = netdev_priv(ndev); 2444 u32 ecmr_bits; 2445 int mcast_all = 0; 2446 unsigned long flags; 2447 2448 spin_lock_irqsave(&mdp->lock, flags); 2449 /* Initial condition is MCT = 1, PRM = 0. 2450 * Depending on ndev->flags, set PRM or clear MCT 2451 */ 2452 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT; 2453 2454 if (!(ndev->flags & IFF_MULTICAST)) { 2455 sh_eth_tsu_purge_mcast(ndev); 2456 mcast_all = 1; 2457 } 2458 if (ndev->flags & IFF_ALLMULTI) { 2459 sh_eth_tsu_purge_mcast(ndev); 2460 ecmr_bits &= ~ECMR_MCT; 2461 mcast_all = 1; 2462 } 2463 2464 if (ndev->flags & IFF_PROMISC) { 2465 sh_eth_tsu_purge_all(ndev); 2466 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2467 } else if (mdp->cd->tsu) { 2468 struct netdev_hw_addr *ha; 2469 netdev_for_each_mc_addr(ha, ndev) { 2470 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2471 continue; 2472 2473 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2474 if (!mcast_all) { 2475 sh_eth_tsu_purge_mcast(ndev); 2476 ecmr_bits &= ~ECMR_MCT; 2477 mcast_all = 1; 2478 } 2479 } 2480 } 2481 } else { 2482 /* Normal, unicast/broadcast-only mode. */ 2483 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT; 2484 } 2485 2486 /* update the ethernet mode */ 2487 sh_eth_write(ndev, ecmr_bits, ECMR); 2488 2489 spin_unlock_irqrestore(&mdp->lock, flags); 2490 } 2491 2492 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2493 { 2494 if (!mdp->port) 2495 return TSU_VTAG0; 2496 else 2497 return TSU_VTAG1; 2498 } 2499 2500 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2501 __be16 proto, u16 vid) 2502 { 2503 struct sh_eth_private *mdp = netdev_priv(ndev); 2504 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2505 2506 if (unlikely(!mdp->cd->tsu)) 2507 return -EPERM; 2508 2509 /* No filtering if vid = 0 */ 2510 if (!vid) 2511 return 0; 2512 2513 mdp->vlan_num_ids++; 2514 2515 /* The controller has one VLAN tag HW filter. So, if the filter is 2516 * already enabled, the driver disables it and the filte 2517 */ 2518 if (mdp->vlan_num_ids > 1) { 2519 /* disable VLAN filter */ 2520 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2521 return 0; 2522 } 2523 2524 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2525 vtag_reg_index); 2526 2527 return 0; 2528 } 2529 2530 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2531 __be16 proto, u16 vid) 2532 { 2533 struct sh_eth_private *mdp = netdev_priv(ndev); 2534 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2535 2536 if (unlikely(!mdp->cd->tsu)) 2537 return -EPERM; 2538 2539 /* No filtering if vid = 0 */ 2540 if (!vid) 2541 return 0; 2542 2543 mdp->vlan_num_ids--; 2544 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2545 2546 return 0; 2547 } 2548 2549 /* SuperH's TSU register init function */ 2550 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 2551 { 2552 if (sh_eth_is_rz_fast_ether(mdp)) { 2553 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2554 return; 2555 } 2556 2557 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 2558 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 2559 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 2560 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 2561 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 2562 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 2563 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 2564 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 2565 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 2566 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 2567 if (sh_eth_is_gether(mdp)) { 2568 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */ 2569 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */ 2570 } else { 2571 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 2572 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 2573 } 2574 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 2575 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 2576 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2577 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 2578 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 2579 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 2580 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 2581 } 2582 2583 /* MDIO bus release function */ 2584 static int sh_mdio_release(struct sh_eth_private *mdp) 2585 { 2586 /* unregister mdio bus */ 2587 mdiobus_unregister(mdp->mii_bus); 2588 2589 /* free bitbang info */ 2590 free_mdio_bitbang(mdp->mii_bus); 2591 2592 return 0; 2593 } 2594 2595 /* MDIO bus init function */ 2596 static int sh_mdio_init(struct sh_eth_private *mdp, 2597 struct sh_eth_plat_data *pd) 2598 { 2599 int ret, i; 2600 struct bb_info *bitbang; 2601 struct platform_device *pdev = mdp->pdev; 2602 struct device *dev = &mdp->pdev->dev; 2603 2604 /* create bit control struct for PHY */ 2605 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 2606 if (!bitbang) 2607 return -ENOMEM; 2608 2609 /* bitbang init */ 2610 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 2611 bitbang->set_gate = pd->set_mdio_gate; 2612 bitbang->mdi_msk = PIR_MDI; 2613 bitbang->mdo_msk = PIR_MDO; 2614 bitbang->mmd_msk = PIR_MMD; 2615 bitbang->mdc_msk = PIR_MDC; 2616 bitbang->ctrl.ops = &bb_ops; 2617 2618 /* MII controller setting */ 2619 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 2620 if (!mdp->mii_bus) 2621 return -ENOMEM; 2622 2623 /* Hook up MII support for ethtool */ 2624 mdp->mii_bus->name = "sh_mii"; 2625 mdp->mii_bus->parent = dev; 2626 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2627 pdev->name, pdev->id); 2628 2629 /* PHY IRQ */ 2630 mdp->mii_bus->irq = devm_kzalloc(dev, sizeof(int) * PHY_MAX_ADDR, 2631 GFP_KERNEL); 2632 if (!mdp->mii_bus->irq) { 2633 ret = -ENOMEM; 2634 goto out_free_bus; 2635 } 2636 2637 /* register MDIO bus */ 2638 if (dev->of_node) { 2639 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 2640 } else { 2641 for (i = 0; i < PHY_MAX_ADDR; i++) 2642 mdp->mii_bus->irq[i] = PHY_POLL; 2643 if (pd->phy_irq > 0) 2644 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 2645 2646 ret = mdiobus_register(mdp->mii_bus); 2647 } 2648 2649 if (ret) 2650 goto out_free_bus; 2651 2652 return 0; 2653 2654 out_free_bus: 2655 free_mdio_bitbang(mdp->mii_bus); 2656 return ret; 2657 } 2658 2659 static const u16 *sh_eth_get_register_offset(int register_type) 2660 { 2661 const u16 *reg_offset = NULL; 2662 2663 switch (register_type) { 2664 case SH_ETH_REG_GIGABIT: 2665 reg_offset = sh_eth_offset_gigabit; 2666 break; 2667 case SH_ETH_REG_FAST_RZ: 2668 reg_offset = sh_eth_offset_fast_rz; 2669 break; 2670 case SH_ETH_REG_FAST_RCAR: 2671 reg_offset = sh_eth_offset_fast_rcar; 2672 break; 2673 case SH_ETH_REG_FAST_SH4: 2674 reg_offset = sh_eth_offset_fast_sh4; 2675 break; 2676 case SH_ETH_REG_FAST_SH3_SH2: 2677 reg_offset = sh_eth_offset_fast_sh3_sh2; 2678 break; 2679 default: 2680 break; 2681 } 2682 2683 return reg_offset; 2684 } 2685 2686 static const struct net_device_ops sh_eth_netdev_ops = { 2687 .ndo_open = sh_eth_open, 2688 .ndo_stop = sh_eth_close, 2689 .ndo_start_xmit = sh_eth_start_xmit, 2690 .ndo_get_stats = sh_eth_get_stats, 2691 .ndo_tx_timeout = sh_eth_tx_timeout, 2692 .ndo_do_ioctl = sh_eth_do_ioctl, 2693 .ndo_validate_addr = eth_validate_addr, 2694 .ndo_set_mac_address = eth_mac_addr, 2695 .ndo_change_mtu = eth_change_mtu, 2696 }; 2697 2698 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 2699 .ndo_open = sh_eth_open, 2700 .ndo_stop = sh_eth_close, 2701 .ndo_start_xmit = sh_eth_start_xmit, 2702 .ndo_get_stats = sh_eth_get_stats, 2703 .ndo_set_rx_mode = sh_eth_set_multicast_list, 2704 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 2705 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 2706 .ndo_tx_timeout = sh_eth_tx_timeout, 2707 .ndo_do_ioctl = sh_eth_do_ioctl, 2708 .ndo_validate_addr = eth_validate_addr, 2709 .ndo_set_mac_address = eth_mac_addr, 2710 .ndo_change_mtu = eth_change_mtu, 2711 }; 2712 2713 #ifdef CONFIG_OF 2714 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 2715 { 2716 struct device_node *np = dev->of_node; 2717 struct sh_eth_plat_data *pdata; 2718 const char *mac_addr; 2719 2720 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2721 if (!pdata) 2722 return NULL; 2723 2724 pdata->phy_interface = of_get_phy_mode(np); 2725 2726 mac_addr = of_get_mac_address(np); 2727 if (mac_addr) 2728 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN); 2729 2730 pdata->no_ether_link = 2731 of_property_read_bool(np, "renesas,no-ether-link"); 2732 pdata->ether_link_active_low = 2733 of_property_read_bool(np, "renesas,ether-link-active-low"); 2734 2735 return pdata; 2736 } 2737 2738 static const struct of_device_id sh_eth_match_table[] = { 2739 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 2740 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data }, 2741 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data }, 2742 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data }, 2743 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data }, 2744 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 2745 { } 2746 }; 2747 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 2748 #else 2749 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 2750 { 2751 return NULL; 2752 } 2753 #endif 2754 2755 static int sh_eth_drv_probe(struct platform_device *pdev) 2756 { 2757 int ret, devno = 0; 2758 struct resource *res; 2759 struct net_device *ndev = NULL; 2760 struct sh_eth_private *mdp = NULL; 2761 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 2762 const struct platform_device_id *id = platform_get_device_id(pdev); 2763 2764 /* get base addr */ 2765 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2766 if (unlikely(res == NULL)) { 2767 dev_err(&pdev->dev, "invalid resource\n"); 2768 return -EINVAL; 2769 } 2770 2771 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 2772 if (!ndev) 2773 return -ENOMEM; 2774 2775 pm_runtime_enable(&pdev->dev); 2776 pm_runtime_get_sync(&pdev->dev); 2777 2778 /* The sh Ether-specific entries in the device structure. */ 2779 ndev->base_addr = res->start; 2780 devno = pdev->id; 2781 if (devno < 0) 2782 devno = 0; 2783 2784 ndev->dma = -1; 2785 ret = platform_get_irq(pdev, 0); 2786 if (ret < 0) { 2787 ret = -ENODEV; 2788 goto out_release; 2789 } 2790 ndev->irq = ret; 2791 2792 SET_NETDEV_DEV(ndev, &pdev->dev); 2793 2794 mdp = netdev_priv(ndev); 2795 mdp->num_tx_ring = TX_RING_SIZE; 2796 mdp->num_rx_ring = RX_RING_SIZE; 2797 mdp->addr = devm_ioremap_resource(&pdev->dev, res); 2798 if (IS_ERR(mdp->addr)) { 2799 ret = PTR_ERR(mdp->addr); 2800 goto out_release; 2801 } 2802 2803 spin_lock_init(&mdp->lock); 2804 mdp->pdev = pdev; 2805 2806 if (pdev->dev.of_node) 2807 pd = sh_eth_parse_dt(&pdev->dev); 2808 if (!pd) { 2809 dev_err(&pdev->dev, "no platform data\n"); 2810 ret = -EINVAL; 2811 goto out_release; 2812 } 2813 2814 /* get PHY ID */ 2815 mdp->phy_id = pd->phy; 2816 mdp->phy_interface = pd->phy_interface; 2817 /* EDMAC endian */ 2818 mdp->edmac_endian = pd->edmac_endian; 2819 mdp->no_ether_link = pd->no_ether_link; 2820 mdp->ether_link_active_low = pd->ether_link_active_low; 2821 2822 /* set cpu data */ 2823 if (id) { 2824 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 2825 } else { 2826 const struct of_device_id *match; 2827 2828 match = of_match_device(of_match_ptr(sh_eth_match_table), 2829 &pdev->dev); 2830 mdp->cd = (struct sh_eth_cpu_data *)match->data; 2831 } 2832 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 2833 if (!mdp->reg_offset) { 2834 dev_err(&pdev->dev, "Unknown register type (%d)\n", 2835 mdp->cd->register_type); 2836 ret = -EINVAL; 2837 goto out_release; 2838 } 2839 sh_eth_set_default_cpu_data(mdp->cd); 2840 2841 /* set function */ 2842 if (mdp->cd->tsu) 2843 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 2844 else 2845 ndev->netdev_ops = &sh_eth_netdev_ops; 2846 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops); 2847 ndev->watchdog_timeo = TX_TIMEOUT; 2848 2849 /* debug message level */ 2850 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 2851 2852 /* read and set MAC address */ 2853 read_mac_address(ndev, pd->mac_addr); 2854 if (!is_valid_ether_addr(ndev->dev_addr)) { 2855 dev_warn(&pdev->dev, 2856 "no valid MAC address supplied, using a random one.\n"); 2857 eth_hw_addr_random(ndev); 2858 } 2859 2860 /* ioremap the TSU registers */ 2861 if (mdp->cd->tsu) { 2862 struct resource *rtsu; 2863 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2864 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu); 2865 if (IS_ERR(mdp->tsu_addr)) { 2866 ret = PTR_ERR(mdp->tsu_addr); 2867 goto out_release; 2868 } 2869 mdp->port = devno % 2; 2870 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER; 2871 } 2872 2873 /* initialize first or needed device */ 2874 if (!devno || pd->needs_init) { 2875 if (mdp->cd->chip_reset) 2876 mdp->cd->chip_reset(ndev); 2877 2878 if (mdp->cd->tsu) { 2879 /* TSU init (Init only)*/ 2880 sh_eth_tsu_init(mdp); 2881 } 2882 } 2883 2884 /* MDIO bus init */ 2885 ret = sh_mdio_init(mdp, pd); 2886 if (ret) { 2887 dev_err(&ndev->dev, "failed to initialise MDIO\n"); 2888 goto out_release; 2889 } 2890 2891 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 2892 2893 /* network device register */ 2894 ret = register_netdev(ndev); 2895 if (ret) 2896 goto out_napi_del; 2897 2898 /* print device information */ 2899 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 2900 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 2901 2902 pm_runtime_put(&pdev->dev); 2903 platform_set_drvdata(pdev, ndev); 2904 2905 return ret; 2906 2907 out_napi_del: 2908 netif_napi_del(&mdp->napi); 2909 sh_mdio_release(mdp); 2910 2911 out_release: 2912 /* net_dev free */ 2913 if (ndev) 2914 free_netdev(ndev); 2915 2916 pm_runtime_put(&pdev->dev); 2917 pm_runtime_disable(&pdev->dev); 2918 return ret; 2919 } 2920 2921 static int sh_eth_drv_remove(struct platform_device *pdev) 2922 { 2923 struct net_device *ndev = platform_get_drvdata(pdev); 2924 struct sh_eth_private *mdp = netdev_priv(ndev); 2925 2926 unregister_netdev(ndev); 2927 netif_napi_del(&mdp->napi); 2928 sh_mdio_release(mdp); 2929 pm_runtime_disable(&pdev->dev); 2930 free_netdev(ndev); 2931 2932 return 0; 2933 } 2934 2935 #ifdef CONFIG_PM 2936 static int sh_eth_runtime_nop(struct device *dev) 2937 { 2938 /* Runtime PM callback shared between ->runtime_suspend() 2939 * and ->runtime_resume(). Simply returns success. 2940 * 2941 * This driver re-initializes all registers after 2942 * pm_runtime_get_sync() anyway so there is no need 2943 * to save and restore registers here. 2944 */ 2945 return 0; 2946 } 2947 2948 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 2949 .runtime_suspend = sh_eth_runtime_nop, 2950 .runtime_resume = sh_eth_runtime_nop, 2951 }; 2952 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 2953 #else 2954 #define SH_ETH_PM_OPS NULL 2955 #endif 2956 2957 static struct platform_device_id sh_eth_id_table[] = { 2958 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 2959 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 2960 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 2961 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 2962 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 2963 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 2964 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 2965 { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data }, 2966 { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data }, 2967 { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data }, 2968 { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data }, 2969 { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data }, 2970 { } 2971 }; 2972 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 2973 2974 static struct platform_driver sh_eth_driver = { 2975 .probe = sh_eth_drv_probe, 2976 .remove = sh_eth_drv_remove, 2977 .id_table = sh_eth_id_table, 2978 .driver = { 2979 .name = CARDNAME, 2980 .pm = SH_ETH_PM_OPS, 2981 .of_match_table = of_match_ptr(sh_eth_match_table), 2982 }, 2983 }; 2984 2985 module_platform_driver(sh_eth_driver); 2986 2987 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 2988 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 2989 MODULE_LICENSE("GPL v2"); 2990