1 // SPDX-License-Identifier: GPL-2.0 2 /* SuperH Ethernet device driver 3 * 4 * Copyright (C) 2014 Renesas Electronics Corporation 5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 6 * Copyright (C) 2008-2014 Renesas Solutions Corp. 7 * Copyright (C) 2013-2017 Cogent Embedded, Inc. 8 * Copyright (C) 2014 Codethink Limited 9 */ 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/etherdevice.h> 17 #include <linux/delay.h> 18 #include <linux/platform_device.h> 19 #include <linux/mdio-bitbang.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_net.h> 25 #include <linux/phy.h> 26 #include <linux/cache.h> 27 #include <linux/io.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/ethtool.h> 31 #include <linux/if_vlan.h> 32 #include <linux/sh_eth.h> 33 #include <linux/of_mdio.h> 34 35 #include "sh_eth.h" 36 37 #define SH_ETH_DEF_MSG_ENABLE \ 38 (NETIF_MSG_LINK | \ 39 NETIF_MSG_TIMER | \ 40 NETIF_MSG_RX_ERR| \ 41 NETIF_MSG_TX_ERR) 42 43 #define SH_ETH_OFFSET_INVALID ((u16)~0) 44 45 #define SH_ETH_OFFSET_DEFAULTS \ 46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID 47 48 /* use some intentionally tricky logic here to initialize the whole struct to 49 * 0xffff, but then override certain fields, requiring us to indicate that we 50 * "know" that there are overrides in this structure, and we'll need to disable 51 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but 52 * the macros available to do this only define GCC 8. 53 */ 54 __diag_push(); 55 __diag_ignore(GCC, 8, "-Woverride-init", 56 "logic to initialize all and then override some is OK"); 57 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 58 SH_ETH_OFFSET_DEFAULTS, 59 60 [EDSR] = 0x0000, 61 [EDMR] = 0x0400, 62 [EDTRR] = 0x0408, 63 [EDRRR] = 0x0410, 64 [EESR] = 0x0428, 65 [EESIPR] = 0x0430, 66 [TDLAR] = 0x0010, 67 [TDFAR] = 0x0014, 68 [TDFXR] = 0x0018, 69 [TDFFR] = 0x001c, 70 [RDLAR] = 0x0030, 71 [RDFAR] = 0x0034, 72 [RDFXR] = 0x0038, 73 [RDFFR] = 0x003c, 74 [TRSCER] = 0x0438, 75 [RMFCR] = 0x0440, 76 [TFTR] = 0x0448, 77 [FDR] = 0x0450, 78 [RMCR] = 0x0458, 79 [RPADIR] = 0x0460, 80 [FCFTR] = 0x0468, 81 [CSMR] = 0x04E4, 82 83 [ECMR] = 0x0500, 84 [ECSR] = 0x0510, 85 [ECSIPR] = 0x0518, 86 [PIR] = 0x0520, 87 [PSR] = 0x0528, 88 [PIPR] = 0x052c, 89 [RFLR] = 0x0508, 90 [APR] = 0x0554, 91 [MPR] = 0x0558, 92 [PFTCR] = 0x055c, 93 [PFRCR] = 0x0560, 94 [TPAUSER] = 0x0564, 95 [GECMR] = 0x05b0, 96 [BCULR] = 0x05b4, 97 [MAHR] = 0x05c0, 98 [MALR] = 0x05c8, 99 [TROCR] = 0x0700, 100 [CDCR] = 0x0708, 101 [LCCR] = 0x0710, 102 [CEFCR] = 0x0740, 103 [FRECR] = 0x0748, 104 [TSFRCR] = 0x0750, 105 [TLFRCR] = 0x0758, 106 [RFCR] = 0x0760, 107 [CERCR] = 0x0768, 108 [CEECR] = 0x0770, 109 [MAFCR] = 0x0778, 110 [RMII_MII] = 0x0790, 111 112 [ARSTR] = 0x0000, 113 [TSU_CTRST] = 0x0004, 114 [TSU_FWEN0] = 0x0010, 115 [TSU_FWEN1] = 0x0014, 116 [TSU_FCM] = 0x0018, 117 [TSU_BSYSL0] = 0x0020, 118 [TSU_BSYSL1] = 0x0024, 119 [TSU_PRISL0] = 0x0028, 120 [TSU_PRISL1] = 0x002c, 121 [TSU_FWSL0] = 0x0030, 122 [TSU_FWSL1] = 0x0034, 123 [TSU_FWSLC] = 0x0038, 124 [TSU_QTAGM0] = 0x0040, 125 [TSU_QTAGM1] = 0x0044, 126 [TSU_FWSR] = 0x0050, 127 [TSU_FWINMK] = 0x0054, 128 [TSU_ADQT0] = 0x0048, 129 [TSU_ADQT1] = 0x004c, 130 [TSU_VTAG0] = 0x0058, 131 [TSU_VTAG1] = 0x005c, 132 [TSU_ADSBSY] = 0x0060, 133 [TSU_TEN] = 0x0064, 134 [TSU_POST1] = 0x0070, 135 [TSU_POST2] = 0x0074, 136 [TSU_POST3] = 0x0078, 137 [TSU_POST4] = 0x007c, 138 [TSU_ADRH0] = 0x0100, 139 140 [TXNLCR0] = 0x0080, 141 [TXALCR0] = 0x0084, 142 [RXNLCR0] = 0x0088, 143 [RXALCR0] = 0x008c, 144 [FWNLCR0] = 0x0090, 145 [FWALCR0] = 0x0094, 146 [TXNLCR1] = 0x00a0, 147 [TXALCR1] = 0x00a4, 148 [RXNLCR1] = 0x00a8, 149 [RXALCR1] = 0x00ac, 150 [FWNLCR1] = 0x00b0, 151 [FWALCR1] = 0x00b4, 152 }; 153 154 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 155 SH_ETH_OFFSET_DEFAULTS, 156 157 [ECMR] = 0x0300, 158 [RFLR] = 0x0308, 159 [ECSR] = 0x0310, 160 [ECSIPR] = 0x0318, 161 [PIR] = 0x0320, 162 [PSR] = 0x0328, 163 [RDMLR] = 0x0340, 164 [IPGR] = 0x0350, 165 [APR] = 0x0354, 166 [MPR] = 0x0358, 167 [RFCF] = 0x0360, 168 [TPAUSER] = 0x0364, 169 [TPAUSECR] = 0x0368, 170 [MAHR] = 0x03c0, 171 [MALR] = 0x03c8, 172 [TROCR] = 0x03d0, 173 [CDCR] = 0x03d4, 174 [LCCR] = 0x03d8, 175 [CNDCR] = 0x03dc, 176 [CEFCR] = 0x03e4, 177 [FRECR] = 0x03e8, 178 [TSFRCR] = 0x03ec, 179 [TLFRCR] = 0x03f0, 180 [RFCR] = 0x03f4, 181 [MAFCR] = 0x03f8, 182 183 [EDMR] = 0x0200, 184 [EDTRR] = 0x0208, 185 [EDRRR] = 0x0210, 186 [TDLAR] = 0x0218, 187 [RDLAR] = 0x0220, 188 [EESR] = 0x0228, 189 [EESIPR] = 0x0230, 190 [TRSCER] = 0x0238, 191 [RMFCR] = 0x0240, 192 [TFTR] = 0x0248, 193 [FDR] = 0x0250, 194 [RMCR] = 0x0258, 195 [TFUCR] = 0x0264, 196 [RFOCR] = 0x0268, 197 [RMIIMODE] = 0x026c, 198 [FCFTR] = 0x0270, 199 [TRIMD] = 0x027c, 200 }; 201 202 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 203 SH_ETH_OFFSET_DEFAULTS, 204 205 [ECMR] = 0x0100, 206 [RFLR] = 0x0108, 207 [ECSR] = 0x0110, 208 [ECSIPR] = 0x0118, 209 [PIR] = 0x0120, 210 [PSR] = 0x0128, 211 [RDMLR] = 0x0140, 212 [IPGR] = 0x0150, 213 [APR] = 0x0154, 214 [MPR] = 0x0158, 215 [TPAUSER] = 0x0164, 216 [RFCF] = 0x0160, 217 [TPAUSECR] = 0x0168, 218 [BCFRR] = 0x016c, 219 [MAHR] = 0x01c0, 220 [MALR] = 0x01c8, 221 [TROCR] = 0x01d0, 222 [CDCR] = 0x01d4, 223 [LCCR] = 0x01d8, 224 [CNDCR] = 0x01dc, 225 [CEFCR] = 0x01e4, 226 [FRECR] = 0x01e8, 227 [TSFRCR] = 0x01ec, 228 [TLFRCR] = 0x01f0, 229 [RFCR] = 0x01f4, 230 [MAFCR] = 0x01f8, 231 [RTRATE] = 0x01fc, 232 233 [EDMR] = 0x0000, 234 [EDTRR] = 0x0008, 235 [EDRRR] = 0x0010, 236 [TDLAR] = 0x0018, 237 [RDLAR] = 0x0020, 238 [EESR] = 0x0028, 239 [EESIPR] = 0x0030, 240 [TRSCER] = 0x0038, 241 [RMFCR] = 0x0040, 242 [TFTR] = 0x0048, 243 [FDR] = 0x0050, 244 [RMCR] = 0x0058, 245 [TFUCR] = 0x0064, 246 [RFOCR] = 0x0068, 247 [FCFTR] = 0x0070, 248 [RPADIR] = 0x0078, 249 [TRIMD] = 0x007c, 250 [RBWAR] = 0x00c8, 251 [RDFAR] = 0x00cc, 252 [TBRAR] = 0x00d4, 253 [TDFAR] = 0x00d8, 254 }; 255 256 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 257 SH_ETH_OFFSET_DEFAULTS, 258 259 [EDMR] = 0x0000, 260 [EDTRR] = 0x0004, 261 [EDRRR] = 0x0008, 262 [TDLAR] = 0x000c, 263 [RDLAR] = 0x0010, 264 [EESR] = 0x0014, 265 [EESIPR] = 0x0018, 266 [TRSCER] = 0x001c, 267 [RMFCR] = 0x0020, 268 [TFTR] = 0x0024, 269 [FDR] = 0x0028, 270 [RMCR] = 0x002c, 271 [EDOCR] = 0x0030, 272 [FCFTR] = 0x0034, 273 [RPADIR] = 0x0038, 274 [TRIMD] = 0x003c, 275 [RBWAR] = 0x0040, 276 [RDFAR] = 0x0044, 277 [TBRAR] = 0x004c, 278 [TDFAR] = 0x0050, 279 280 [ECMR] = 0x0160, 281 [ECSR] = 0x0164, 282 [ECSIPR] = 0x0168, 283 [PIR] = 0x016c, 284 [MAHR] = 0x0170, 285 [MALR] = 0x0174, 286 [RFLR] = 0x0178, 287 [PSR] = 0x017c, 288 [TROCR] = 0x0180, 289 [CDCR] = 0x0184, 290 [LCCR] = 0x0188, 291 [CNDCR] = 0x018c, 292 [CEFCR] = 0x0194, 293 [FRECR] = 0x0198, 294 [TSFRCR] = 0x019c, 295 [TLFRCR] = 0x01a0, 296 [RFCR] = 0x01a4, 297 [MAFCR] = 0x01a8, 298 [IPGR] = 0x01b4, 299 [APR] = 0x01b8, 300 [MPR] = 0x01bc, 301 [TPAUSER] = 0x01c4, 302 [BCFR] = 0x01cc, 303 304 [ARSTR] = 0x0000, 305 [TSU_CTRST] = 0x0004, 306 [TSU_FWEN0] = 0x0010, 307 [TSU_FWEN1] = 0x0014, 308 [TSU_FCM] = 0x0018, 309 [TSU_BSYSL0] = 0x0020, 310 [TSU_BSYSL1] = 0x0024, 311 [TSU_PRISL0] = 0x0028, 312 [TSU_PRISL1] = 0x002c, 313 [TSU_FWSL0] = 0x0030, 314 [TSU_FWSL1] = 0x0034, 315 [TSU_FWSLC] = 0x0038, 316 [TSU_QTAGM0] = 0x0040, 317 [TSU_QTAGM1] = 0x0044, 318 [TSU_ADQT0] = 0x0048, 319 [TSU_ADQT1] = 0x004c, 320 [TSU_FWSR] = 0x0050, 321 [TSU_FWINMK] = 0x0054, 322 [TSU_ADSBSY] = 0x0060, 323 [TSU_TEN] = 0x0064, 324 [TSU_POST1] = 0x0070, 325 [TSU_POST2] = 0x0074, 326 [TSU_POST3] = 0x0078, 327 [TSU_POST4] = 0x007c, 328 329 [TXNLCR0] = 0x0080, 330 [TXALCR0] = 0x0084, 331 [RXNLCR0] = 0x0088, 332 [RXALCR0] = 0x008c, 333 [FWNLCR0] = 0x0090, 334 [FWALCR0] = 0x0094, 335 [TXNLCR1] = 0x00a0, 336 [TXALCR1] = 0x00a4, 337 [RXNLCR1] = 0x00a8, 338 [RXALCR1] = 0x00ac, 339 [FWNLCR1] = 0x00b0, 340 [FWALCR1] = 0x00b4, 341 342 [TSU_ADRH0] = 0x0100, 343 }; 344 __diag_pop(); 345 346 static void sh_eth_rcv_snd_disable(struct net_device *ndev); 347 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); 348 349 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) 350 { 351 struct sh_eth_private *mdp = netdev_priv(ndev); 352 u16 offset = mdp->reg_offset[enum_index]; 353 354 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 355 return; 356 357 iowrite32(data, mdp->addr + offset); 358 } 359 360 static u32 sh_eth_read(struct net_device *ndev, int enum_index) 361 { 362 struct sh_eth_private *mdp = netdev_priv(ndev); 363 u16 offset = mdp->reg_offset[enum_index]; 364 365 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 366 return ~0U; 367 368 return ioread32(mdp->addr + offset); 369 } 370 371 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, 372 u32 set) 373 { 374 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, 375 enum_index); 376 } 377 378 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index) 379 { 380 return mdp->reg_offset[enum_index]; 381 } 382 383 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data, 384 int enum_index) 385 { 386 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 387 388 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 389 return; 390 391 iowrite32(data, mdp->tsu_addr + offset); 392 } 393 394 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index) 395 { 396 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 397 398 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 399 return ~0U; 400 401 return ioread32(mdp->tsu_addr + offset); 402 } 403 404 static void sh_eth_soft_swap(char *src, int len) 405 { 406 #ifdef __LITTLE_ENDIAN 407 u32 *p = (u32 *)src; 408 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32)); 409 410 for (; p < maxp; p++) 411 *p = swab32(*p); 412 #endif 413 } 414 415 static void sh_eth_select_mii(struct net_device *ndev) 416 { 417 struct sh_eth_private *mdp = netdev_priv(ndev); 418 u32 value; 419 420 switch (mdp->phy_interface) { 421 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID: 422 value = 0x3; 423 break; 424 case PHY_INTERFACE_MODE_GMII: 425 value = 0x2; 426 break; 427 case PHY_INTERFACE_MODE_MII: 428 value = 0x1; 429 break; 430 case PHY_INTERFACE_MODE_RMII: 431 value = 0x0; 432 break; 433 default: 434 netdev_warn(ndev, 435 "PHY interface mode was not setup. Set to MII.\n"); 436 value = 0x1; 437 break; 438 } 439 440 sh_eth_write(ndev, value, RMII_MII); 441 } 442 443 static void sh_eth_set_duplex(struct net_device *ndev) 444 { 445 struct sh_eth_private *mdp = netdev_priv(ndev); 446 447 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); 448 } 449 450 static void sh_eth_chip_reset(struct net_device *ndev) 451 { 452 struct sh_eth_private *mdp = netdev_priv(ndev); 453 454 /* reset device */ 455 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR); 456 mdelay(1); 457 } 458 459 static int sh_eth_soft_reset(struct net_device *ndev) 460 { 461 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); 462 mdelay(3); 463 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); 464 465 return 0; 466 } 467 468 static int sh_eth_check_soft_reset(struct net_device *ndev) 469 { 470 int cnt; 471 472 for (cnt = 100; cnt > 0; cnt--) { 473 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER)) 474 return 0; 475 mdelay(1); 476 } 477 478 netdev_err(ndev, "Device reset failed\n"); 479 return -ETIMEDOUT; 480 } 481 482 static int sh_eth_soft_reset_gether(struct net_device *ndev) 483 { 484 struct sh_eth_private *mdp = netdev_priv(ndev); 485 int ret; 486 487 sh_eth_write(ndev, EDSR_ENALL, EDSR); 488 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); 489 490 ret = sh_eth_check_soft_reset(ndev); 491 if (ret) 492 return ret; 493 494 /* Table Init */ 495 sh_eth_write(ndev, 0, TDLAR); 496 sh_eth_write(ndev, 0, TDFAR); 497 sh_eth_write(ndev, 0, TDFXR); 498 sh_eth_write(ndev, 0, TDFFR); 499 sh_eth_write(ndev, 0, RDLAR); 500 sh_eth_write(ndev, 0, RDFAR); 501 sh_eth_write(ndev, 0, RDFXR); 502 sh_eth_write(ndev, 0, RDFFR); 503 504 /* Reset HW CRC register */ 505 if (mdp->cd->csmr) 506 sh_eth_write(ndev, 0, CSMR); 507 508 /* Select MII mode */ 509 if (mdp->cd->select_mii) 510 sh_eth_select_mii(ndev); 511 512 return ret; 513 } 514 515 static void sh_eth_set_rate_gether(struct net_device *ndev) 516 { 517 struct sh_eth_private *mdp = netdev_priv(ndev); 518 519 if (WARN_ON(!mdp->cd->gecmr)) 520 return; 521 522 switch (mdp->speed) { 523 case 10: /* 10BASE */ 524 sh_eth_write(ndev, GECMR_10, GECMR); 525 break; 526 case 100:/* 100BASE */ 527 sh_eth_write(ndev, GECMR_100, GECMR); 528 break; 529 case 1000: /* 1000BASE */ 530 sh_eth_write(ndev, GECMR_1000, GECMR); 531 break; 532 } 533 } 534 535 #ifdef CONFIG_OF 536 /* R7S72100 */ 537 static struct sh_eth_cpu_data r7s72100_data = { 538 .soft_reset = sh_eth_soft_reset_gether, 539 540 .chip_reset = sh_eth_chip_reset, 541 .set_duplex = sh_eth_set_duplex, 542 543 .register_type = SH_ETH_REG_GIGABIT, 544 545 .edtrr_trns = EDTRR_TRNS_GETHER, 546 .ecsr_value = ECSR_ICD, 547 .ecsipr_value = ECSIPR_ICDIP, 548 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP | 549 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | 550 EESIPR_ECIIP | 551 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 552 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 553 EESIPR_RMAFIP | EESIPR_RRFIP | 554 EESIPR_RTLFIP | EESIPR_RTSFIP | 555 EESIPR_PREIP | EESIPR_CERFIP, 556 557 .tx_check = EESR_TC1 | EESR_FTC, 558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 560 EESR_TDE, 561 .fdr_value = 0x0000070f, 562 563 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 564 565 .no_psr = 1, 566 .apr = 1, 567 .mpr = 1, 568 .tpauser = 1, 569 .hw_swap = 1, 570 .rpadir = 1, 571 .no_trimd = 1, 572 .no_ade = 1, 573 .xdfar_rw = 1, 574 .csmr = 1, 575 .rx_csum = 1, 576 .tsu = 1, 577 .no_tx_cntrs = 1, 578 }; 579 580 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 581 { 582 sh_eth_chip_reset(ndev); 583 584 sh_eth_select_mii(ndev); 585 } 586 587 /* R8A7740 */ 588 static struct sh_eth_cpu_data r8a7740_data = { 589 .soft_reset = sh_eth_soft_reset_gether, 590 591 .chip_reset = sh_eth_chip_reset_r8a7740, 592 .set_duplex = sh_eth_set_duplex, 593 .set_rate = sh_eth_set_rate_gether, 594 595 .register_type = SH_ETH_REG_GIGABIT, 596 597 .edtrr_trns = EDTRR_TRNS_GETHER, 598 .ecsr_value = ECSR_ICD | ECSR_MPD, 599 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 600 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 603 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 604 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 605 EESIPR_CEEFIP | EESIPR_CELFIP | 606 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 607 EESIPR_PREIP | EESIPR_CERFIP, 608 609 .tx_check = EESR_TC1 | EESR_FTC, 610 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 611 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 612 EESR_TDE, 613 .fdr_value = 0x0000070f, 614 615 .apr = 1, 616 .mpr = 1, 617 .tpauser = 1, 618 .gecmr = 1, 619 .bculr = 1, 620 .hw_swap = 1, 621 .rpadir = 1, 622 .no_trimd = 1, 623 .no_ade = 1, 624 .xdfar_rw = 1, 625 .csmr = 1, 626 .rx_csum = 1, 627 .tsu = 1, 628 .select_mii = 1, 629 .magic = 1, 630 .cexcr = 1, 631 }; 632 633 /* There is CPU dependent code */ 634 static void sh_eth_set_rate_rcar(struct net_device *ndev) 635 { 636 struct sh_eth_private *mdp = netdev_priv(ndev); 637 638 switch (mdp->speed) { 639 case 10: /* 10BASE */ 640 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); 641 break; 642 case 100:/* 100BASE */ 643 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); 644 break; 645 } 646 } 647 648 /* R-Car Gen1 */ 649 static struct sh_eth_cpu_data rcar_gen1_data = { 650 .soft_reset = sh_eth_soft_reset, 651 652 .set_duplex = sh_eth_set_duplex, 653 .set_rate = sh_eth_set_rate_rcar, 654 655 .register_type = SH_ETH_REG_FAST_RCAR, 656 657 .edtrr_trns = EDTRR_TRNS_ETHER, 658 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 659 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 660 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 661 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 662 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 663 EESIPR_RMAFIP | EESIPR_RRFIP | 664 EESIPR_RTLFIP | EESIPR_RTSFIP | 665 EESIPR_PREIP | EESIPR_CERFIP, 666 667 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 668 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 669 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 670 .fdr_value = 0x00000f0f, 671 672 .apr = 1, 673 .mpr = 1, 674 .tpauser = 1, 675 .hw_swap = 1, 676 .no_xdfar = 1, 677 }; 678 679 /* R-Car Gen2 and RZ/G1 */ 680 static struct sh_eth_cpu_data rcar_gen2_data = { 681 .soft_reset = sh_eth_soft_reset, 682 683 .set_duplex = sh_eth_set_duplex, 684 .set_rate = sh_eth_set_rate_rcar, 685 686 .register_type = SH_ETH_REG_FAST_RCAR, 687 688 .edtrr_trns = EDTRR_TRNS_ETHER, 689 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 690 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 691 ECSIPR_MPDIP, 692 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 693 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 694 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 695 EESIPR_RMAFIP | EESIPR_RRFIP | 696 EESIPR_RTLFIP | EESIPR_RTSFIP | 697 EESIPR_PREIP | EESIPR_CERFIP, 698 699 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 700 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 701 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 702 .fdr_value = 0x00000f0f, 703 704 .trscer_err_mask = TRSCER_RMAFCE, 705 706 .apr = 1, 707 .mpr = 1, 708 .tpauser = 1, 709 .hw_swap = 1, 710 .no_xdfar = 1, 711 .rmiimode = 1, 712 .magic = 1, 713 }; 714 715 /* R8A77980 */ 716 static struct sh_eth_cpu_data r8a77980_data = { 717 .soft_reset = sh_eth_soft_reset_gether, 718 719 .set_duplex = sh_eth_set_duplex, 720 .set_rate = sh_eth_set_rate_gether, 721 722 .register_type = SH_ETH_REG_GIGABIT, 723 724 .edtrr_trns = EDTRR_TRNS_GETHER, 725 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 726 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 727 ECSIPR_MPDIP, 728 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 729 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 730 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 731 EESIPR_RMAFIP | EESIPR_RRFIP | 732 EESIPR_RTLFIP | EESIPR_RTSFIP | 733 EESIPR_PREIP | EESIPR_CERFIP, 734 735 .tx_check = EESR_FTC | EESR_CD | EESR_TRO, 736 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 737 EESR_RFE | EESR_RDE | EESR_RFRMER | 738 EESR_TFE | EESR_TDE | EESR_ECI, 739 .fdr_value = 0x0000070f, 740 741 .apr = 1, 742 .mpr = 1, 743 .tpauser = 1, 744 .gecmr = 1, 745 .bculr = 1, 746 .hw_swap = 1, 747 .nbst = 1, 748 .rpadir = 1, 749 .no_trimd = 1, 750 .no_ade = 1, 751 .xdfar_rw = 1, 752 .csmr = 1, 753 .rx_csum = 1, 754 .select_mii = 1, 755 .magic = 1, 756 .cexcr = 1, 757 }; 758 759 /* R7S9210 */ 760 static struct sh_eth_cpu_data r7s9210_data = { 761 .soft_reset = sh_eth_soft_reset, 762 763 .set_duplex = sh_eth_set_duplex, 764 .set_rate = sh_eth_set_rate_rcar, 765 766 .register_type = SH_ETH_REG_FAST_SH4, 767 768 .edtrr_trns = EDTRR_TRNS_ETHER, 769 .ecsr_value = ECSR_ICD, 770 .ecsipr_value = ECSIPR_ICDIP, 771 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP | 772 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | 773 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | 774 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP | 775 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 776 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | 777 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, 778 779 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 780 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 781 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 782 783 .fdr_value = 0x0000070f, 784 785 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 786 787 .apr = 1, 788 .mpr = 1, 789 .tpauser = 1, 790 .hw_swap = 1, 791 .rpadir = 1, 792 .no_ade = 1, 793 .xdfar_rw = 1, 794 }; 795 #endif /* CONFIG_OF */ 796 797 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 798 { 799 struct sh_eth_private *mdp = netdev_priv(ndev); 800 801 switch (mdp->speed) { 802 case 10: /* 10BASE */ 803 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); 804 break; 805 case 100:/* 100BASE */ 806 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); 807 break; 808 } 809 } 810 811 /* SH7724 */ 812 static struct sh_eth_cpu_data sh7724_data = { 813 .soft_reset = sh_eth_soft_reset, 814 815 .set_duplex = sh_eth_set_duplex, 816 .set_rate = sh_eth_set_rate_sh7724, 817 818 .register_type = SH_ETH_REG_FAST_SH4, 819 820 .edtrr_trns = EDTRR_TRNS_ETHER, 821 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 822 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 823 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 824 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 825 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 826 EESIPR_RMAFIP | EESIPR_RRFIP | 827 EESIPR_RTLFIP | EESIPR_RTSFIP | 828 EESIPR_PREIP | EESIPR_CERFIP, 829 830 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 831 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 832 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 833 834 .apr = 1, 835 .mpr = 1, 836 .tpauser = 1, 837 .hw_swap = 1, 838 .rpadir = 1, 839 }; 840 841 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 842 { 843 struct sh_eth_private *mdp = netdev_priv(ndev); 844 845 switch (mdp->speed) { 846 case 10: /* 10BASE */ 847 sh_eth_write(ndev, 0, RTRATE); 848 break; 849 case 100:/* 100BASE */ 850 sh_eth_write(ndev, 1, RTRATE); 851 break; 852 } 853 } 854 855 /* SH7757 */ 856 static struct sh_eth_cpu_data sh7757_data = { 857 .soft_reset = sh_eth_soft_reset, 858 859 .set_duplex = sh_eth_set_duplex, 860 .set_rate = sh_eth_set_rate_sh7757, 861 862 .register_type = SH_ETH_REG_FAST_SH4, 863 864 .edtrr_trns = EDTRR_TRNS_ETHER, 865 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 866 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 867 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 868 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 869 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 870 EESIPR_CEEFIP | EESIPR_CELFIP | 871 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 872 EESIPR_PREIP | EESIPR_CERFIP, 873 874 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 875 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 876 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 877 878 .irq_flags = IRQF_SHARED, 879 .apr = 1, 880 .mpr = 1, 881 .tpauser = 1, 882 .hw_swap = 1, 883 .no_ade = 1, 884 .rpadir = 1, 885 .rtrate = 1, 886 .dual_port = 1, 887 }; 888 889 #define SH_GIGA_ETH_BASE 0xfee00000UL 890 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 891 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 892 static void sh_eth_chip_reset_giga(struct net_device *ndev) 893 { 894 u32 mahr[2], malr[2]; 895 int i; 896 897 /* save MAHR and MALR */ 898 for (i = 0; i < 2; i++) { 899 malr[i] = ioread32((void *)GIGA_MALR(i)); 900 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 901 } 902 903 sh_eth_chip_reset(ndev); 904 905 /* restore MAHR and MALR */ 906 for (i = 0; i < 2; i++) { 907 iowrite32(malr[i], (void *)GIGA_MALR(i)); 908 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 909 } 910 } 911 912 static void sh_eth_set_rate_giga(struct net_device *ndev) 913 { 914 struct sh_eth_private *mdp = netdev_priv(ndev); 915 916 if (WARN_ON(!mdp->cd->gecmr)) 917 return; 918 919 switch (mdp->speed) { 920 case 10: /* 10BASE */ 921 sh_eth_write(ndev, 0x00000000, GECMR); 922 break; 923 case 100:/* 100BASE */ 924 sh_eth_write(ndev, 0x00000010, GECMR); 925 break; 926 case 1000: /* 1000BASE */ 927 sh_eth_write(ndev, 0x00000020, GECMR); 928 break; 929 } 930 } 931 932 /* SH7757(GETHERC) */ 933 static struct sh_eth_cpu_data sh7757_data_giga = { 934 .soft_reset = sh_eth_soft_reset_gether, 935 936 .chip_reset = sh_eth_chip_reset_giga, 937 .set_duplex = sh_eth_set_duplex, 938 .set_rate = sh_eth_set_rate_giga, 939 940 .register_type = SH_ETH_REG_GIGABIT, 941 942 .edtrr_trns = EDTRR_TRNS_GETHER, 943 .ecsr_value = ECSR_ICD | ECSR_MPD, 944 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 945 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 946 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 947 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 948 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 949 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 950 EESIPR_CEEFIP | EESIPR_CELFIP | 951 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 952 EESIPR_PREIP | EESIPR_CERFIP, 953 954 .tx_check = EESR_TC1 | EESR_FTC, 955 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 956 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 957 EESR_TDE, 958 .fdr_value = 0x0000072f, 959 960 .irq_flags = IRQF_SHARED, 961 .apr = 1, 962 .mpr = 1, 963 .tpauser = 1, 964 .gecmr = 1, 965 .bculr = 1, 966 .hw_swap = 1, 967 .rpadir = 1, 968 .no_trimd = 1, 969 .no_ade = 1, 970 .xdfar_rw = 1, 971 .tsu = 1, 972 .cexcr = 1, 973 .dual_port = 1, 974 }; 975 976 /* SH7734 */ 977 static struct sh_eth_cpu_data sh7734_data = { 978 .soft_reset = sh_eth_soft_reset_gether, 979 980 .chip_reset = sh_eth_chip_reset, 981 .set_duplex = sh_eth_set_duplex, 982 .set_rate = sh_eth_set_rate_gether, 983 984 .register_type = SH_ETH_REG_GIGABIT, 985 986 .edtrr_trns = EDTRR_TRNS_GETHER, 987 .ecsr_value = ECSR_ICD | ECSR_MPD, 988 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 989 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 990 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 991 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 992 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 993 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 994 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 995 EESIPR_PREIP | EESIPR_CERFIP, 996 997 .tx_check = EESR_TC1 | EESR_FTC, 998 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 999 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 1000 EESR_TDE, 1001 1002 .apr = 1, 1003 .mpr = 1, 1004 .tpauser = 1, 1005 .gecmr = 1, 1006 .bculr = 1, 1007 .hw_swap = 1, 1008 .no_trimd = 1, 1009 .no_ade = 1, 1010 .xdfar_rw = 1, 1011 .tsu = 1, 1012 .csmr = 1, 1013 .rx_csum = 1, 1014 .select_mii = 1, 1015 .magic = 1, 1016 .cexcr = 1, 1017 }; 1018 1019 /* SH7763 */ 1020 static struct sh_eth_cpu_data sh7763_data = { 1021 .soft_reset = sh_eth_soft_reset_gether, 1022 1023 .chip_reset = sh_eth_chip_reset, 1024 .set_duplex = sh_eth_set_duplex, 1025 .set_rate = sh_eth_set_rate_gether, 1026 1027 .register_type = SH_ETH_REG_GIGABIT, 1028 1029 .edtrr_trns = EDTRR_TRNS_GETHER, 1030 .ecsr_value = ECSR_ICD | ECSR_MPD, 1031 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 1032 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1033 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1034 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1035 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 1036 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 1037 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1038 EESIPR_PREIP | EESIPR_CERFIP, 1039 1040 .tx_check = EESR_TC1 | EESR_FTC, 1041 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 1042 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 1043 1044 .apr = 1, 1045 .mpr = 1, 1046 .tpauser = 1, 1047 .gecmr = 1, 1048 .bculr = 1, 1049 .hw_swap = 1, 1050 .no_trimd = 1, 1051 .no_ade = 1, 1052 .xdfar_rw = 1, 1053 .tsu = 1, 1054 .irq_flags = IRQF_SHARED, 1055 .magic = 1, 1056 .cexcr = 1, 1057 .rx_csum = 1, 1058 .dual_port = 1, 1059 }; 1060 1061 static struct sh_eth_cpu_data sh7619_data = { 1062 .soft_reset = sh_eth_soft_reset, 1063 1064 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1065 1066 .edtrr_trns = EDTRR_TRNS_ETHER, 1067 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1068 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1069 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1070 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1071 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1072 EESIPR_CEEFIP | EESIPR_CELFIP | 1073 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1074 EESIPR_PREIP | EESIPR_CERFIP, 1075 1076 .apr = 1, 1077 .mpr = 1, 1078 .tpauser = 1, 1079 .hw_swap = 1, 1080 }; 1081 1082 static struct sh_eth_cpu_data sh771x_data = { 1083 .soft_reset = sh_eth_soft_reset, 1084 1085 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1086 1087 .edtrr_trns = EDTRR_TRNS_ETHER, 1088 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1089 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1090 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1091 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1092 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1093 EESIPR_CEEFIP | EESIPR_CELFIP | 1094 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1095 EESIPR_PREIP | EESIPR_CERFIP, 1096 1097 .trscer_err_mask = TRSCER_RMAFCE, 1098 1099 .tsu = 1, 1100 .dual_port = 1, 1101 }; 1102 1103 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 1104 { 1105 if (!cd->ecsr_value) 1106 cd->ecsr_value = DEFAULT_ECSR_INIT; 1107 1108 if (!cd->ecsipr_value) 1109 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 1110 1111 if (!cd->fcftr_value) 1112 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 1113 DEFAULT_FIFO_F_D_RFD; 1114 1115 if (!cd->fdr_value) 1116 cd->fdr_value = DEFAULT_FDR_INIT; 1117 1118 if (!cd->tx_check) 1119 cd->tx_check = DEFAULT_TX_CHECK; 1120 1121 if (!cd->eesr_err_check) 1122 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 1123 1124 if (!cd->trscer_err_mask) 1125 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; 1126 } 1127 1128 static void sh_eth_set_receive_align(struct sk_buff *skb) 1129 { 1130 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); 1131 1132 if (reserve) 1133 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); 1134 } 1135 1136 /* Program the hardware MAC address from dev->dev_addr. */ 1137 static void update_mac_address(struct net_device *ndev) 1138 { 1139 sh_eth_write(ndev, 1140 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 1141 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 1142 sh_eth_write(ndev, 1143 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 1144 } 1145 1146 /* Get MAC address from SuperH MAC address register 1147 * 1148 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 1149 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 1150 * When you want use this device, you must set MAC address in bootloader. 1151 * 1152 */ 1153 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 1154 { 1155 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 1156 memcpy(ndev->dev_addr, mac, ETH_ALEN); 1157 } else { 1158 u32 mahr = sh_eth_read(ndev, MAHR); 1159 u32 malr = sh_eth_read(ndev, MALR); 1160 1161 ndev->dev_addr[0] = (mahr >> 24) & 0xFF; 1162 ndev->dev_addr[1] = (mahr >> 16) & 0xFF; 1163 ndev->dev_addr[2] = (mahr >> 8) & 0xFF; 1164 ndev->dev_addr[3] = (mahr >> 0) & 0xFF; 1165 ndev->dev_addr[4] = (malr >> 8) & 0xFF; 1166 ndev->dev_addr[5] = (malr >> 0) & 0xFF; 1167 } 1168 } 1169 1170 struct bb_info { 1171 void (*set_gate)(void *addr); 1172 struct mdiobb_ctrl ctrl; 1173 void *addr; 1174 }; 1175 1176 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 1177 { 1178 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1179 u32 pir; 1180 1181 if (bitbang->set_gate) 1182 bitbang->set_gate(bitbang->addr); 1183 1184 pir = ioread32(bitbang->addr); 1185 if (set) 1186 pir |= mask; 1187 else 1188 pir &= ~mask; 1189 iowrite32(pir, bitbang->addr); 1190 } 1191 1192 /* Data I/O pin control */ 1193 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1194 { 1195 sh_mdio_ctrl(ctrl, PIR_MMD, bit); 1196 } 1197 1198 /* Set bit data*/ 1199 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1200 { 1201 sh_mdio_ctrl(ctrl, PIR_MDO, bit); 1202 } 1203 1204 /* Get bit data*/ 1205 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1206 { 1207 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1208 1209 if (bitbang->set_gate) 1210 bitbang->set_gate(bitbang->addr); 1211 1212 return (ioread32(bitbang->addr) & PIR_MDI) != 0; 1213 } 1214 1215 /* MDC pin control */ 1216 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1217 { 1218 sh_mdio_ctrl(ctrl, PIR_MDC, bit); 1219 } 1220 1221 /* mdio bus control struct */ 1222 static const struct mdiobb_ops bb_ops = { 1223 .owner = THIS_MODULE, 1224 .set_mdc = sh_mdc_ctrl, 1225 .set_mdio_dir = sh_mmd_ctrl, 1226 .set_mdio_data = sh_set_mdio, 1227 .get_mdio_data = sh_get_mdio, 1228 }; 1229 1230 /* free Tx skb function */ 1231 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only) 1232 { 1233 struct sh_eth_private *mdp = netdev_priv(ndev); 1234 struct sh_eth_txdesc *txdesc; 1235 int free_num = 0; 1236 int entry; 1237 bool sent; 1238 1239 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1240 entry = mdp->dirty_tx % mdp->num_tx_ring; 1241 txdesc = &mdp->tx_ring[entry]; 1242 sent = !(txdesc->status & cpu_to_le32(TD_TACT)); 1243 if (sent_only && !sent) 1244 break; 1245 /* TACT bit must be checked before all the following reads */ 1246 dma_rmb(); 1247 netif_info(mdp, tx_done, ndev, 1248 "tx entry %d status 0x%08x\n", 1249 entry, le32_to_cpu(txdesc->status)); 1250 /* Free the original skb. */ 1251 if (mdp->tx_skbuff[entry]) { 1252 dma_unmap_single(&mdp->pdev->dev, 1253 le32_to_cpu(txdesc->addr), 1254 le32_to_cpu(txdesc->len) >> 16, 1255 DMA_TO_DEVICE); 1256 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1257 mdp->tx_skbuff[entry] = NULL; 1258 free_num++; 1259 } 1260 txdesc->status = cpu_to_le32(TD_TFP); 1261 if (entry >= mdp->num_tx_ring - 1) 1262 txdesc->status |= cpu_to_le32(TD_TDLE); 1263 1264 if (sent) { 1265 ndev->stats.tx_packets++; 1266 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; 1267 } 1268 } 1269 return free_num; 1270 } 1271 1272 /* free skb and descriptor buffer */ 1273 static void sh_eth_ring_free(struct net_device *ndev) 1274 { 1275 struct sh_eth_private *mdp = netdev_priv(ndev); 1276 int ringsize, i; 1277 1278 if (mdp->rx_ring) { 1279 for (i = 0; i < mdp->num_rx_ring; i++) { 1280 if (mdp->rx_skbuff[i]) { 1281 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i]; 1282 1283 dma_unmap_single(&mdp->pdev->dev, 1284 le32_to_cpu(rxdesc->addr), 1285 ALIGN(mdp->rx_buf_sz, 32), 1286 DMA_FROM_DEVICE); 1287 } 1288 } 1289 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1290 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring, 1291 mdp->rx_desc_dma); 1292 mdp->rx_ring = NULL; 1293 } 1294 1295 /* Free Rx skb ringbuffer */ 1296 if (mdp->rx_skbuff) { 1297 for (i = 0; i < mdp->num_rx_ring; i++) 1298 dev_kfree_skb(mdp->rx_skbuff[i]); 1299 } 1300 kfree(mdp->rx_skbuff); 1301 mdp->rx_skbuff = NULL; 1302 1303 if (mdp->tx_ring) { 1304 sh_eth_tx_free(ndev, false); 1305 1306 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1307 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring, 1308 mdp->tx_desc_dma); 1309 mdp->tx_ring = NULL; 1310 } 1311 1312 /* Free Tx skb ringbuffer */ 1313 kfree(mdp->tx_skbuff); 1314 mdp->tx_skbuff = NULL; 1315 } 1316 1317 /* format skb and descriptor buffer */ 1318 static void sh_eth_ring_format(struct net_device *ndev) 1319 { 1320 struct sh_eth_private *mdp = netdev_priv(ndev); 1321 int i; 1322 struct sk_buff *skb; 1323 struct sh_eth_rxdesc *rxdesc = NULL; 1324 struct sh_eth_txdesc *txdesc = NULL; 1325 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1326 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1327 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1328 dma_addr_t dma_addr; 1329 u32 buf_len; 1330 1331 mdp->cur_rx = 0; 1332 mdp->cur_tx = 0; 1333 mdp->dirty_rx = 0; 1334 mdp->dirty_tx = 0; 1335 1336 memset(mdp->rx_ring, 0, rx_ringsize); 1337 1338 /* build Rx ring buffer */ 1339 for (i = 0; i < mdp->num_rx_ring; i++) { 1340 /* skb */ 1341 mdp->rx_skbuff[i] = NULL; 1342 skb = netdev_alloc_skb(ndev, skbuff_size); 1343 if (skb == NULL) 1344 break; 1345 sh_eth_set_receive_align(skb); 1346 1347 /* The size of the buffer is a multiple of 32 bytes. */ 1348 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1349 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len, 1350 DMA_FROM_DEVICE); 1351 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1352 kfree_skb(skb); 1353 break; 1354 } 1355 mdp->rx_skbuff[i] = skb; 1356 1357 /* RX descriptor */ 1358 rxdesc = &mdp->rx_ring[i]; 1359 rxdesc->len = cpu_to_le32(buf_len << 16); 1360 rxdesc->addr = cpu_to_le32(dma_addr); 1361 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); 1362 1363 /* Rx descriptor address set */ 1364 if (i == 0) { 1365 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1366 if (mdp->cd->xdfar_rw) 1367 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1368 } 1369 } 1370 1371 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1372 1373 /* Mark the last entry as wrapping the ring. */ 1374 if (rxdesc) 1375 rxdesc->status |= cpu_to_le32(RD_RDLE); 1376 1377 memset(mdp->tx_ring, 0, tx_ringsize); 1378 1379 /* build Tx ring buffer */ 1380 for (i = 0; i < mdp->num_tx_ring; i++) { 1381 mdp->tx_skbuff[i] = NULL; 1382 txdesc = &mdp->tx_ring[i]; 1383 txdesc->status = cpu_to_le32(TD_TFP); 1384 txdesc->len = cpu_to_le32(0); 1385 if (i == 0) { 1386 /* Tx descriptor address set */ 1387 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1388 if (mdp->cd->xdfar_rw) 1389 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1390 } 1391 } 1392 1393 txdesc->status |= cpu_to_le32(TD_TDLE); 1394 } 1395 1396 /* Get skb and descriptor buffer */ 1397 static int sh_eth_ring_init(struct net_device *ndev) 1398 { 1399 struct sh_eth_private *mdp = netdev_priv(ndev); 1400 int rx_ringsize, tx_ringsize; 1401 1402 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1403 * card needs room to do 8 byte alignment, +2 so we can reserve 1404 * the first 2 bytes, and +16 gets room for the status word from the 1405 * card. 1406 */ 1407 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1408 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1409 if (mdp->cd->rpadir) 1410 mdp->rx_buf_sz += NET_IP_ALIGN; 1411 1412 /* Allocate RX and TX skb rings */ 1413 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), 1414 GFP_KERNEL); 1415 if (!mdp->rx_skbuff) 1416 return -ENOMEM; 1417 1418 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), 1419 GFP_KERNEL); 1420 if (!mdp->tx_skbuff) 1421 goto ring_free; 1422 1423 /* Allocate all Rx descriptors. */ 1424 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1425 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize, 1426 &mdp->rx_desc_dma, GFP_KERNEL); 1427 if (!mdp->rx_ring) 1428 goto ring_free; 1429 1430 mdp->dirty_rx = 0; 1431 1432 /* Allocate all Tx descriptors. */ 1433 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1434 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize, 1435 &mdp->tx_desc_dma, GFP_KERNEL); 1436 if (!mdp->tx_ring) 1437 goto ring_free; 1438 return 0; 1439 1440 ring_free: 1441 /* Free Rx and Tx skb ring buffer and DMA buffer */ 1442 sh_eth_ring_free(ndev); 1443 1444 return -ENOMEM; 1445 } 1446 1447 static int sh_eth_dev_init(struct net_device *ndev) 1448 { 1449 struct sh_eth_private *mdp = netdev_priv(ndev); 1450 int ret; 1451 1452 /* Soft Reset */ 1453 ret = mdp->cd->soft_reset(ndev); 1454 if (ret) 1455 return ret; 1456 1457 if (mdp->cd->rmiimode) 1458 sh_eth_write(ndev, 0x1, RMIIMODE); 1459 1460 /* Descriptor format */ 1461 sh_eth_ring_format(ndev); 1462 if (mdp->cd->rpadir) 1463 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR); 1464 1465 /* all sh_eth int mask */ 1466 sh_eth_write(ndev, 0, EESIPR); 1467 1468 #if defined(__LITTLE_ENDIAN) 1469 if (mdp->cd->hw_swap) 1470 sh_eth_write(ndev, EDMR_EL, EDMR); 1471 else 1472 #endif 1473 sh_eth_write(ndev, 0, EDMR); 1474 1475 /* FIFO size set */ 1476 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1477 sh_eth_write(ndev, 0, TFTR); 1478 1479 /* Frame recv control (enable multiple-packets per rx irq) */ 1480 sh_eth_write(ndev, RMCR_RNC, RMCR); 1481 1482 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); 1483 1484 /* DMA transfer burst mode */ 1485 if (mdp->cd->nbst) 1486 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST); 1487 1488 /* Burst cycle count upper-limit */ 1489 if (mdp->cd->bculr) 1490 sh_eth_write(ndev, 0x800, BCULR); 1491 1492 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1493 1494 if (!mdp->cd->no_trimd) 1495 sh_eth_write(ndev, 0, TRIMD); 1496 1497 /* Recv frame limit set register */ 1498 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1499 RFLR); 1500 1501 sh_eth_modify(ndev, EESR, 0, 0); 1502 mdp->irq_enabled = true; 1503 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1504 1505 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ 1506 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | 1507 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | 1508 ECMR_TE | ECMR_RE, ECMR); 1509 1510 if (mdp->cd->set_rate) 1511 mdp->cd->set_rate(ndev); 1512 1513 /* E-MAC Status Register clear */ 1514 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1515 1516 /* E-MAC Interrupt Enable register */ 1517 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1518 1519 /* Set MAC address */ 1520 update_mac_address(ndev); 1521 1522 /* mask reset */ 1523 if (mdp->cd->apr) 1524 sh_eth_write(ndev, 1, APR); 1525 if (mdp->cd->mpr) 1526 sh_eth_write(ndev, 1, MPR); 1527 if (mdp->cd->tpauser) 1528 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1529 1530 /* Setting the Rx mode will start the Rx process. */ 1531 sh_eth_write(ndev, EDRRR_R, EDRRR); 1532 1533 return ret; 1534 } 1535 1536 static void sh_eth_dev_exit(struct net_device *ndev) 1537 { 1538 struct sh_eth_private *mdp = netdev_priv(ndev); 1539 int i; 1540 1541 /* Deactivate all TX descriptors, so DMA should stop at next 1542 * packet boundary if it's currently running 1543 */ 1544 for (i = 0; i < mdp->num_tx_ring; i++) 1545 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); 1546 1547 /* Disable TX FIFO egress to MAC */ 1548 sh_eth_rcv_snd_disable(ndev); 1549 1550 /* Stop RX DMA at next packet boundary */ 1551 sh_eth_write(ndev, 0, EDRRR); 1552 1553 /* Aside from TX DMA, we can't tell when the hardware is 1554 * really stopped, so we need to reset to make sure. 1555 * Before doing that, wait for long enough to *probably* 1556 * finish transmitting the last packet and poll stats. 1557 */ 1558 msleep(2); /* max frame time at 10 Mbps < 1250 us */ 1559 sh_eth_get_stats(ndev); 1560 mdp->cd->soft_reset(ndev); 1561 1562 /* Set the RMII mode again if required */ 1563 if (mdp->cd->rmiimode) 1564 sh_eth_write(ndev, 0x1, RMIIMODE); 1565 1566 /* Set MAC address again */ 1567 update_mac_address(ndev); 1568 } 1569 1570 static void sh_eth_rx_csum(struct sk_buff *skb) 1571 { 1572 u8 *hw_csum; 1573 1574 /* The hardware checksum is 2 bytes appended to packet data */ 1575 if (unlikely(skb->len < sizeof(__sum16))) 1576 return; 1577 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); 1578 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); 1579 skb->ip_summed = CHECKSUM_COMPLETE; 1580 skb_trim(skb, skb->len - sizeof(__sum16)); 1581 } 1582 1583 /* Packet receive function */ 1584 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1585 { 1586 struct sh_eth_private *mdp = netdev_priv(ndev); 1587 struct sh_eth_rxdesc *rxdesc; 1588 1589 int entry = mdp->cur_rx % mdp->num_rx_ring; 1590 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1591 int limit; 1592 struct sk_buff *skb; 1593 u32 desc_status; 1594 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1595 dma_addr_t dma_addr; 1596 u16 pkt_len; 1597 u32 buf_len; 1598 1599 boguscnt = min(boguscnt, *quota); 1600 limit = boguscnt; 1601 rxdesc = &mdp->rx_ring[entry]; 1602 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { 1603 /* RACT bit must be checked before all the following reads */ 1604 dma_rmb(); 1605 desc_status = le32_to_cpu(rxdesc->status); 1606 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; 1607 1608 if (--boguscnt < 0) 1609 break; 1610 1611 netif_info(mdp, rx_status, ndev, 1612 "rx entry %d status 0x%08x len %d\n", 1613 entry, desc_status, pkt_len); 1614 1615 if (!(desc_status & RDFEND)) 1616 ndev->stats.rx_length_errors++; 1617 1618 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1619 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1620 * bit 0. However, in case of the R8A7740 and R7S72100 1621 * the RFS bits are from bit 25 to bit 16. So, the 1622 * driver needs right shifting by 16. 1623 */ 1624 if (mdp->cd->csmr) 1625 desc_status >>= 16; 1626 1627 skb = mdp->rx_skbuff[entry]; 1628 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1629 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1630 ndev->stats.rx_errors++; 1631 if (desc_status & RD_RFS1) 1632 ndev->stats.rx_crc_errors++; 1633 if (desc_status & RD_RFS2) 1634 ndev->stats.rx_frame_errors++; 1635 if (desc_status & RD_RFS3) 1636 ndev->stats.rx_length_errors++; 1637 if (desc_status & RD_RFS4) 1638 ndev->stats.rx_length_errors++; 1639 if (desc_status & RD_RFS6) 1640 ndev->stats.rx_missed_errors++; 1641 if (desc_status & RD_RFS10) 1642 ndev->stats.rx_over_errors++; 1643 } else if (skb) { 1644 dma_addr = le32_to_cpu(rxdesc->addr); 1645 if (!mdp->cd->hw_swap) 1646 sh_eth_soft_swap( 1647 phys_to_virt(ALIGN(dma_addr, 4)), 1648 pkt_len + 2); 1649 mdp->rx_skbuff[entry] = NULL; 1650 if (mdp->cd->rpadir) 1651 skb_reserve(skb, NET_IP_ALIGN); 1652 dma_unmap_single(&mdp->pdev->dev, dma_addr, 1653 ALIGN(mdp->rx_buf_sz, 32), 1654 DMA_FROM_DEVICE); 1655 skb_put(skb, pkt_len); 1656 skb->protocol = eth_type_trans(skb, ndev); 1657 if (ndev->features & NETIF_F_RXCSUM) 1658 sh_eth_rx_csum(skb); 1659 netif_receive_skb(skb); 1660 ndev->stats.rx_packets++; 1661 ndev->stats.rx_bytes += pkt_len; 1662 if (desc_status & RD_RFS8) 1663 ndev->stats.multicast++; 1664 } 1665 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1666 rxdesc = &mdp->rx_ring[entry]; 1667 } 1668 1669 /* Refill the Rx ring buffers. */ 1670 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1671 entry = mdp->dirty_rx % mdp->num_rx_ring; 1672 rxdesc = &mdp->rx_ring[entry]; 1673 /* The size of the buffer is 32 byte boundary. */ 1674 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1675 rxdesc->len = cpu_to_le32(buf_len << 16); 1676 1677 if (mdp->rx_skbuff[entry] == NULL) { 1678 skb = netdev_alloc_skb(ndev, skbuff_size); 1679 if (skb == NULL) 1680 break; /* Better luck next round. */ 1681 sh_eth_set_receive_align(skb); 1682 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, 1683 buf_len, DMA_FROM_DEVICE); 1684 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1685 kfree_skb(skb); 1686 break; 1687 } 1688 mdp->rx_skbuff[entry] = skb; 1689 1690 skb_checksum_none_assert(skb); 1691 rxdesc->addr = cpu_to_le32(dma_addr); 1692 } 1693 dma_wmb(); /* RACT bit must be set after all the above writes */ 1694 if (entry >= mdp->num_rx_ring - 1) 1695 rxdesc->status |= 1696 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); 1697 else 1698 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); 1699 } 1700 1701 /* Restart Rx engine if stopped. */ 1702 /* If we don't need to check status, don't. -KDU */ 1703 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1704 /* fix the values for the next receiving if RDE is set */ 1705 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) { 1706 u32 count = (sh_eth_read(ndev, RDFAR) - 1707 sh_eth_read(ndev, RDLAR)) >> 4; 1708 1709 mdp->cur_rx = count; 1710 mdp->dirty_rx = count; 1711 } 1712 sh_eth_write(ndev, EDRRR_R, EDRRR); 1713 } 1714 1715 *quota -= limit - boguscnt - 1; 1716 1717 return *quota <= 0; 1718 } 1719 1720 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1721 { 1722 /* disable tx and rx */ 1723 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1724 } 1725 1726 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1727 { 1728 /* enable tx and rx */ 1729 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1730 } 1731 1732 /* E-MAC interrupt handler */ 1733 static void sh_eth_emac_interrupt(struct net_device *ndev) 1734 { 1735 struct sh_eth_private *mdp = netdev_priv(ndev); 1736 u32 felic_stat; 1737 u32 link_stat; 1738 1739 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR); 1740 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1741 if (felic_stat & ECSR_ICD) 1742 ndev->stats.tx_carrier_errors++; 1743 if (felic_stat & ECSR_MPD) 1744 pm_wakeup_event(&mdp->pdev->dev, 0); 1745 if (felic_stat & ECSR_LCHNG) { 1746 /* Link Changed */ 1747 if (mdp->cd->no_psr || mdp->no_ether_link) 1748 return; 1749 link_stat = sh_eth_read(ndev, PSR); 1750 if (mdp->ether_link_active_low) 1751 link_stat = ~link_stat; 1752 if (!(link_stat & PSR_LMON)) { 1753 sh_eth_rcv_snd_disable(ndev); 1754 } else { 1755 /* Link Up */ 1756 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0); 1757 /* clear int */ 1758 sh_eth_modify(ndev, ECSR, 0, 0); 1759 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP); 1760 /* enable tx and rx */ 1761 sh_eth_rcv_snd_enable(ndev); 1762 } 1763 } 1764 } 1765 1766 /* error control function */ 1767 static void sh_eth_error(struct net_device *ndev, u32 intr_status) 1768 { 1769 struct sh_eth_private *mdp = netdev_priv(ndev); 1770 u32 mask; 1771 1772 if (intr_status & EESR_TWB) { 1773 /* Unused write back interrupt */ 1774 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1775 ndev->stats.tx_aborted_errors++; 1776 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1777 } 1778 } 1779 1780 if (intr_status & EESR_RABT) { 1781 /* Receive Abort int */ 1782 if (intr_status & EESR_RFRMER) { 1783 /* Receive Frame Overflow int */ 1784 ndev->stats.rx_frame_errors++; 1785 } 1786 } 1787 1788 if (intr_status & EESR_TDE) { 1789 /* Transmit Descriptor Empty int */ 1790 ndev->stats.tx_fifo_errors++; 1791 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1792 } 1793 1794 if (intr_status & EESR_TFE) { 1795 /* FIFO under flow */ 1796 ndev->stats.tx_fifo_errors++; 1797 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1798 } 1799 1800 if (intr_status & EESR_RDE) { 1801 /* Receive Descriptor Empty int */ 1802 ndev->stats.rx_over_errors++; 1803 } 1804 1805 if (intr_status & EESR_RFE) { 1806 /* Receive FIFO Overflow int */ 1807 ndev->stats.rx_fifo_errors++; 1808 } 1809 1810 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1811 /* Address Error */ 1812 ndev->stats.tx_fifo_errors++; 1813 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1814 } 1815 1816 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1817 if (mdp->cd->no_ade) 1818 mask &= ~EESR_ADE; 1819 if (intr_status & mask) { 1820 /* Tx error */ 1821 u32 edtrr = sh_eth_read(ndev, EDTRR); 1822 1823 /* dmesg */ 1824 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1825 intr_status, mdp->cur_tx, mdp->dirty_tx, 1826 (u32)ndev->state, edtrr); 1827 /* dirty buffer free */ 1828 sh_eth_tx_free(ndev, true); 1829 1830 /* SH7712 BUG */ 1831 if (edtrr ^ mdp->cd->edtrr_trns) { 1832 /* tx dma start */ 1833 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 1834 } 1835 /* wakeup */ 1836 netif_wake_queue(ndev); 1837 } 1838 } 1839 1840 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1841 { 1842 struct net_device *ndev = netdev; 1843 struct sh_eth_private *mdp = netdev_priv(ndev); 1844 struct sh_eth_cpu_data *cd = mdp->cd; 1845 irqreturn_t ret = IRQ_NONE; 1846 u32 intr_status, intr_enable; 1847 1848 spin_lock(&mdp->lock); 1849 1850 /* Get interrupt status */ 1851 intr_status = sh_eth_read(ndev, EESR); 1852 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1853 * enabled since it's the one that comes thru regardless of the mask, 1854 * and we need to fully handle it in sh_eth_emac_interrupt() in order 1855 * to quench it as it doesn't get cleared by just writing 1 to the ECI 1856 * bit... 1857 */ 1858 intr_enable = sh_eth_read(ndev, EESIPR); 1859 intr_status &= intr_enable | EESIPR_ECIIP; 1860 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI | 1861 cd->eesr_err_check)) 1862 ret = IRQ_HANDLED; 1863 else 1864 goto out; 1865 1866 if (unlikely(!mdp->irq_enabled)) { 1867 sh_eth_write(ndev, 0, EESIPR); 1868 goto out; 1869 } 1870 1871 if (intr_status & EESR_RX_CHECK) { 1872 if (napi_schedule_prep(&mdp->napi)) { 1873 /* Mask Rx interrupts */ 1874 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1875 EESIPR); 1876 __napi_schedule(&mdp->napi); 1877 } else { 1878 netdev_warn(ndev, 1879 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", 1880 intr_status, intr_enable); 1881 } 1882 } 1883 1884 /* Tx Check */ 1885 if (intr_status & cd->tx_check) { 1886 /* Clear Tx interrupts */ 1887 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1888 1889 sh_eth_tx_free(ndev, true); 1890 netif_wake_queue(ndev); 1891 } 1892 1893 /* E-MAC interrupt */ 1894 if (intr_status & EESR_ECI) 1895 sh_eth_emac_interrupt(ndev); 1896 1897 if (intr_status & cd->eesr_err_check) { 1898 /* Clear error interrupts */ 1899 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1900 1901 sh_eth_error(ndev, intr_status); 1902 } 1903 1904 out: 1905 spin_unlock(&mdp->lock); 1906 1907 return ret; 1908 } 1909 1910 static int sh_eth_poll(struct napi_struct *napi, int budget) 1911 { 1912 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1913 napi); 1914 struct net_device *ndev = napi->dev; 1915 int quota = budget; 1916 u32 intr_status; 1917 1918 for (;;) { 1919 intr_status = sh_eth_read(ndev, EESR); 1920 if (!(intr_status & EESR_RX_CHECK)) 1921 break; 1922 /* Clear Rx interrupts */ 1923 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1924 1925 if (sh_eth_rx(ndev, intr_status, "a)) 1926 goto out; 1927 } 1928 1929 napi_complete(napi); 1930 1931 /* Reenable Rx interrupts */ 1932 if (mdp->irq_enabled) 1933 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1934 out: 1935 return budget - quota; 1936 } 1937 1938 /* PHY state control function */ 1939 static void sh_eth_adjust_link(struct net_device *ndev) 1940 { 1941 struct sh_eth_private *mdp = netdev_priv(ndev); 1942 struct phy_device *phydev = ndev->phydev; 1943 unsigned long flags; 1944 int new_state = 0; 1945 1946 spin_lock_irqsave(&mdp->lock, flags); 1947 1948 /* Disable TX and RX right over here, if E-MAC change is ignored */ 1949 if (mdp->cd->no_psr || mdp->no_ether_link) 1950 sh_eth_rcv_snd_disable(ndev); 1951 1952 if (phydev->link) { 1953 if (phydev->duplex != mdp->duplex) { 1954 new_state = 1; 1955 mdp->duplex = phydev->duplex; 1956 if (mdp->cd->set_duplex) 1957 mdp->cd->set_duplex(ndev); 1958 } 1959 1960 if (phydev->speed != mdp->speed) { 1961 new_state = 1; 1962 mdp->speed = phydev->speed; 1963 if (mdp->cd->set_rate) 1964 mdp->cd->set_rate(ndev); 1965 } 1966 if (!mdp->link) { 1967 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); 1968 new_state = 1; 1969 mdp->link = phydev->link; 1970 } 1971 } else if (mdp->link) { 1972 new_state = 1; 1973 mdp->link = 0; 1974 mdp->speed = 0; 1975 mdp->duplex = -1; 1976 } 1977 1978 /* Enable TX and RX right over here, if E-MAC change is ignored */ 1979 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link) 1980 sh_eth_rcv_snd_enable(ndev); 1981 1982 spin_unlock_irqrestore(&mdp->lock, flags); 1983 1984 if (new_state && netif_msg_link(mdp)) 1985 phy_print_status(phydev); 1986 } 1987 1988 /* PHY init function */ 1989 static int sh_eth_phy_init(struct net_device *ndev) 1990 { 1991 struct device_node *np = ndev->dev.parent->of_node; 1992 struct sh_eth_private *mdp = netdev_priv(ndev); 1993 struct phy_device *phydev; 1994 1995 mdp->link = 0; 1996 mdp->speed = 0; 1997 mdp->duplex = -1; 1998 1999 /* Try connect to PHY */ 2000 if (np) { 2001 struct device_node *pn; 2002 2003 pn = of_parse_phandle(np, "phy-handle", 0); 2004 phydev = of_phy_connect(ndev, pn, 2005 sh_eth_adjust_link, 0, 2006 mdp->phy_interface); 2007 2008 of_node_put(pn); 2009 if (!phydev) 2010 phydev = ERR_PTR(-ENOENT); 2011 } else { 2012 char phy_id[MII_BUS_ID_SIZE + 3]; 2013 2014 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 2015 mdp->mii_bus->id, mdp->phy_id); 2016 2017 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 2018 mdp->phy_interface); 2019 } 2020 2021 if (IS_ERR(phydev)) { 2022 netdev_err(ndev, "failed to connect PHY\n"); 2023 return PTR_ERR(phydev); 2024 } 2025 2026 /* mask with MAC supported features */ 2027 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) { 2028 int err = phy_set_max_speed(phydev, SPEED_100); 2029 if (err) { 2030 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n"); 2031 phy_disconnect(phydev); 2032 return err; 2033 } 2034 } 2035 2036 phy_attached_info(phydev); 2037 2038 return 0; 2039 } 2040 2041 /* PHY control start function */ 2042 static int sh_eth_phy_start(struct net_device *ndev) 2043 { 2044 int ret; 2045 2046 ret = sh_eth_phy_init(ndev); 2047 if (ret) 2048 return ret; 2049 2050 phy_start(ndev->phydev); 2051 2052 return 0; 2053 } 2054 2055 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the 2056 * version must be bumped as well. Just adding registers up to that 2057 * limit is fine, as long as the existing register indices don't 2058 * change. 2059 */ 2060 #define SH_ETH_REG_DUMP_VERSION 1 2061 #define SH_ETH_REG_DUMP_MAX_REGS 256 2062 2063 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) 2064 { 2065 struct sh_eth_private *mdp = netdev_priv(ndev); 2066 struct sh_eth_cpu_data *cd = mdp->cd; 2067 u32 *valid_map; 2068 size_t len; 2069 2070 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); 2071 2072 /* Dump starts with a bitmap that tells ethtool which 2073 * registers are defined for this chip. 2074 */ 2075 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); 2076 if (buf) { 2077 valid_map = buf; 2078 buf += len; 2079 } else { 2080 valid_map = NULL; 2081 } 2082 2083 /* Add a register to the dump, if it has a defined offset. 2084 * This automatically skips most undefined registers, but for 2085 * some it is also necessary to check a capability flag in 2086 * struct sh_eth_cpu_data. 2087 */ 2088 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) 2089 #define add_reg_from(reg, read_expr) do { \ 2090 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ 2091 if (buf) { \ 2092 mark_reg_valid(reg); \ 2093 *buf++ = read_expr; \ 2094 } \ 2095 ++len; \ 2096 } \ 2097 } while (0) 2098 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) 2099 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) 2100 2101 add_reg(EDSR); 2102 add_reg(EDMR); 2103 add_reg(EDTRR); 2104 add_reg(EDRRR); 2105 add_reg(EESR); 2106 add_reg(EESIPR); 2107 add_reg(TDLAR); 2108 if (!cd->no_xdfar) 2109 add_reg(TDFAR); 2110 add_reg(TDFXR); 2111 add_reg(TDFFR); 2112 add_reg(RDLAR); 2113 if (!cd->no_xdfar) 2114 add_reg(RDFAR); 2115 add_reg(RDFXR); 2116 add_reg(RDFFR); 2117 add_reg(TRSCER); 2118 add_reg(RMFCR); 2119 add_reg(TFTR); 2120 add_reg(FDR); 2121 add_reg(RMCR); 2122 add_reg(TFUCR); 2123 add_reg(RFOCR); 2124 if (cd->rmiimode) 2125 add_reg(RMIIMODE); 2126 add_reg(FCFTR); 2127 if (cd->rpadir) 2128 add_reg(RPADIR); 2129 if (!cd->no_trimd) 2130 add_reg(TRIMD); 2131 add_reg(ECMR); 2132 add_reg(ECSR); 2133 add_reg(ECSIPR); 2134 add_reg(PIR); 2135 if (!cd->no_psr) 2136 add_reg(PSR); 2137 add_reg(RDMLR); 2138 add_reg(RFLR); 2139 add_reg(IPGR); 2140 if (cd->apr) 2141 add_reg(APR); 2142 if (cd->mpr) 2143 add_reg(MPR); 2144 add_reg(RFCR); 2145 add_reg(RFCF); 2146 if (cd->tpauser) 2147 add_reg(TPAUSER); 2148 add_reg(TPAUSECR); 2149 if (cd->gecmr) 2150 add_reg(GECMR); 2151 if (cd->bculr) 2152 add_reg(BCULR); 2153 add_reg(MAHR); 2154 add_reg(MALR); 2155 if (!cd->no_tx_cntrs) { 2156 add_reg(TROCR); 2157 add_reg(CDCR); 2158 add_reg(LCCR); 2159 add_reg(CNDCR); 2160 } 2161 add_reg(CEFCR); 2162 add_reg(FRECR); 2163 add_reg(TSFRCR); 2164 add_reg(TLFRCR); 2165 if (cd->cexcr) { 2166 add_reg(CERCR); 2167 add_reg(CEECR); 2168 } 2169 add_reg(MAFCR); 2170 if (cd->rtrate) 2171 add_reg(RTRATE); 2172 if (cd->csmr) 2173 add_reg(CSMR); 2174 if (cd->select_mii) 2175 add_reg(RMII_MII); 2176 if (cd->tsu) { 2177 add_tsu_reg(ARSTR); 2178 add_tsu_reg(TSU_CTRST); 2179 if (cd->dual_port) { 2180 add_tsu_reg(TSU_FWEN0); 2181 add_tsu_reg(TSU_FWEN1); 2182 add_tsu_reg(TSU_FCM); 2183 add_tsu_reg(TSU_BSYSL0); 2184 add_tsu_reg(TSU_BSYSL1); 2185 add_tsu_reg(TSU_PRISL0); 2186 add_tsu_reg(TSU_PRISL1); 2187 add_tsu_reg(TSU_FWSL0); 2188 add_tsu_reg(TSU_FWSL1); 2189 } 2190 add_tsu_reg(TSU_FWSLC); 2191 if (cd->dual_port) { 2192 add_tsu_reg(TSU_QTAGM0); 2193 add_tsu_reg(TSU_QTAGM1); 2194 add_tsu_reg(TSU_FWSR); 2195 add_tsu_reg(TSU_FWINMK); 2196 add_tsu_reg(TSU_ADQT0); 2197 add_tsu_reg(TSU_ADQT1); 2198 add_tsu_reg(TSU_VTAG0); 2199 add_tsu_reg(TSU_VTAG1); 2200 } 2201 add_tsu_reg(TSU_ADSBSY); 2202 add_tsu_reg(TSU_TEN); 2203 add_tsu_reg(TSU_POST1); 2204 add_tsu_reg(TSU_POST2); 2205 add_tsu_reg(TSU_POST3); 2206 add_tsu_reg(TSU_POST4); 2207 /* This is the start of a table, not just a single register. */ 2208 if (buf) { 2209 unsigned int i; 2210 2211 mark_reg_valid(TSU_ADRH0); 2212 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) 2213 *buf++ = ioread32(mdp->tsu_addr + 2214 mdp->reg_offset[TSU_ADRH0] + 2215 i * 4); 2216 } 2217 len += SH_ETH_TSU_CAM_ENTRIES * 2; 2218 } 2219 2220 #undef mark_reg_valid 2221 #undef add_reg_from 2222 #undef add_reg 2223 #undef add_tsu_reg 2224 2225 return len * 4; 2226 } 2227 2228 static int sh_eth_get_regs_len(struct net_device *ndev) 2229 { 2230 return __sh_eth_get_regs(ndev, NULL); 2231 } 2232 2233 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, 2234 void *buf) 2235 { 2236 struct sh_eth_private *mdp = netdev_priv(ndev); 2237 2238 regs->version = SH_ETH_REG_DUMP_VERSION; 2239 2240 pm_runtime_get_sync(&mdp->pdev->dev); 2241 __sh_eth_get_regs(ndev, buf); 2242 pm_runtime_put_sync(&mdp->pdev->dev); 2243 } 2244 2245 static u32 sh_eth_get_msglevel(struct net_device *ndev) 2246 { 2247 struct sh_eth_private *mdp = netdev_priv(ndev); 2248 return mdp->msg_enable; 2249 } 2250 2251 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 2252 { 2253 struct sh_eth_private *mdp = netdev_priv(ndev); 2254 mdp->msg_enable = value; 2255 } 2256 2257 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 2258 "rx_current", "tx_current", 2259 "rx_dirty", "tx_dirty", 2260 }; 2261 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 2262 2263 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 2264 { 2265 switch (sset) { 2266 case ETH_SS_STATS: 2267 return SH_ETH_STATS_LEN; 2268 default: 2269 return -EOPNOTSUPP; 2270 } 2271 } 2272 2273 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 2274 struct ethtool_stats *stats, u64 *data) 2275 { 2276 struct sh_eth_private *mdp = netdev_priv(ndev); 2277 int i = 0; 2278 2279 /* device-specific stats */ 2280 data[i++] = mdp->cur_rx; 2281 data[i++] = mdp->cur_tx; 2282 data[i++] = mdp->dirty_rx; 2283 data[i++] = mdp->dirty_tx; 2284 } 2285 2286 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 2287 { 2288 switch (stringset) { 2289 case ETH_SS_STATS: 2290 memcpy(data, sh_eth_gstrings_stats, 2291 sizeof(sh_eth_gstrings_stats)); 2292 break; 2293 } 2294 } 2295 2296 static void sh_eth_get_ringparam(struct net_device *ndev, 2297 struct ethtool_ringparam *ring) 2298 { 2299 struct sh_eth_private *mdp = netdev_priv(ndev); 2300 2301 ring->rx_max_pending = RX_RING_MAX; 2302 ring->tx_max_pending = TX_RING_MAX; 2303 ring->rx_pending = mdp->num_rx_ring; 2304 ring->tx_pending = mdp->num_tx_ring; 2305 } 2306 2307 static int sh_eth_set_ringparam(struct net_device *ndev, 2308 struct ethtool_ringparam *ring) 2309 { 2310 struct sh_eth_private *mdp = netdev_priv(ndev); 2311 int ret; 2312 2313 if (ring->tx_pending > TX_RING_MAX || 2314 ring->rx_pending > RX_RING_MAX || 2315 ring->tx_pending < TX_RING_MIN || 2316 ring->rx_pending < RX_RING_MIN) 2317 return -EINVAL; 2318 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 2319 return -EINVAL; 2320 2321 if (netif_running(ndev)) { 2322 netif_device_detach(ndev); 2323 netif_tx_disable(ndev); 2324 2325 /* Serialise with the interrupt handler and NAPI, then 2326 * disable interrupts. We have to clear the 2327 * irq_enabled flag first to ensure that interrupts 2328 * won't be re-enabled. 2329 */ 2330 mdp->irq_enabled = false; 2331 synchronize_irq(ndev->irq); 2332 napi_synchronize(&mdp->napi); 2333 sh_eth_write(ndev, 0x0000, EESIPR); 2334 2335 sh_eth_dev_exit(ndev); 2336 2337 /* Free all the skbuffs in the Rx queue and the DMA buffers. */ 2338 sh_eth_ring_free(ndev); 2339 } 2340 2341 /* Set new parameters */ 2342 mdp->num_rx_ring = ring->rx_pending; 2343 mdp->num_tx_ring = ring->tx_pending; 2344 2345 if (netif_running(ndev)) { 2346 ret = sh_eth_ring_init(ndev); 2347 if (ret < 0) { 2348 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", 2349 __func__); 2350 return ret; 2351 } 2352 ret = sh_eth_dev_init(ndev); 2353 if (ret < 0) { 2354 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", 2355 __func__); 2356 return ret; 2357 } 2358 2359 netif_device_attach(ndev); 2360 } 2361 2362 return 0; 2363 } 2364 2365 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2366 { 2367 struct sh_eth_private *mdp = netdev_priv(ndev); 2368 2369 wol->supported = 0; 2370 wol->wolopts = 0; 2371 2372 if (mdp->cd->magic) { 2373 wol->supported = WAKE_MAGIC; 2374 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0; 2375 } 2376 } 2377 2378 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2379 { 2380 struct sh_eth_private *mdp = netdev_priv(ndev); 2381 2382 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC) 2383 return -EOPNOTSUPP; 2384 2385 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); 2386 2387 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled); 2388 2389 return 0; 2390 } 2391 2392 static const struct ethtool_ops sh_eth_ethtool_ops = { 2393 .get_regs_len = sh_eth_get_regs_len, 2394 .get_regs = sh_eth_get_regs, 2395 .nway_reset = phy_ethtool_nway_reset, 2396 .get_msglevel = sh_eth_get_msglevel, 2397 .set_msglevel = sh_eth_set_msglevel, 2398 .get_link = ethtool_op_get_link, 2399 .get_strings = sh_eth_get_strings, 2400 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2401 .get_sset_count = sh_eth_get_sset_count, 2402 .get_ringparam = sh_eth_get_ringparam, 2403 .set_ringparam = sh_eth_set_ringparam, 2404 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2405 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2406 .get_wol = sh_eth_get_wol, 2407 .set_wol = sh_eth_set_wol, 2408 }; 2409 2410 /* network device open function */ 2411 static int sh_eth_open(struct net_device *ndev) 2412 { 2413 struct sh_eth_private *mdp = netdev_priv(ndev); 2414 int ret; 2415 2416 pm_runtime_get_sync(&mdp->pdev->dev); 2417 2418 napi_enable(&mdp->napi); 2419 2420 ret = request_irq(ndev->irq, sh_eth_interrupt, 2421 mdp->cd->irq_flags, ndev->name, ndev); 2422 if (ret) { 2423 netdev_err(ndev, "Can not assign IRQ number\n"); 2424 goto out_napi_off; 2425 } 2426 2427 /* Descriptor set */ 2428 ret = sh_eth_ring_init(ndev); 2429 if (ret) 2430 goto out_free_irq; 2431 2432 /* device init */ 2433 ret = sh_eth_dev_init(ndev); 2434 if (ret) 2435 goto out_free_irq; 2436 2437 /* PHY control start*/ 2438 ret = sh_eth_phy_start(ndev); 2439 if (ret) 2440 goto out_free_irq; 2441 2442 netif_start_queue(ndev); 2443 2444 mdp->is_opened = 1; 2445 2446 return ret; 2447 2448 out_free_irq: 2449 free_irq(ndev->irq, ndev); 2450 out_napi_off: 2451 napi_disable(&mdp->napi); 2452 pm_runtime_put_sync(&mdp->pdev->dev); 2453 return ret; 2454 } 2455 2456 /* Timeout function */ 2457 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue) 2458 { 2459 struct sh_eth_private *mdp = netdev_priv(ndev); 2460 struct sh_eth_rxdesc *rxdesc; 2461 int i; 2462 2463 netif_stop_queue(ndev); 2464 2465 netif_err(mdp, timer, ndev, 2466 "transmit timed out, status %8.8x, resetting...\n", 2467 sh_eth_read(ndev, EESR)); 2468 2469 /* tx_errors count up */ 2470 ndev->stats.tx_errors++; 2471 2472 /* Free all the skbuffs in the Rx queue. */ 2473 for (i = 0; i < mdp->num_rx_ring; i++) { 2474 rxdesc = &mdp->rx_ring[i]; 2475 rxdesc->status = cpu_to_le32(0); 2476 rxdesc->addr = cpu_to_le32(0xBADF00D0); 2477 dev_kfree_skb(mdp->rx_skbuff[i]); 2478 mdp->rx_skbuff[i] = NULL; 2479 } 2480 for (i = 0; i < mdp->num_tx_ring; i++) { 2481 dev_kfree_skb(mdp->tx_skbuff[i]); 2482 mdp->tx_skbuff[i] = NULL; 2483 } 2484 2485 /* device init */ 2486 sh_eth_dev_init(ndev); 2487 2488 netif_start_queue(ndev); 2489 } 2490 2491 /* Packet transmit function */ 2492 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb, 2493 struct net_device *ndev) 2494 { 2495 struct sh_eth_private *mdp = netdev_priv(ndev); 2496 struct sh_eth_txdesc *txdesc; 2497 dma_addr_t dma_addr; 2498 u32 entry; 2499 unsigned long flags; 2500 2501 spin_lock_irqsave(&mdp->lock, flags); 2502 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2503 if (!sh_eth_tx_free(ndev, true)) { 2504 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2505 netif_stop_queue(ndev); 2506 spin_unlock_irqrestore(&mdp->lock, flags); 2507 return NETDEV_TX_BUSY; 2508 } 2509 } 2510 spin_unlock_irqrestore(&mdp->lock, flags); 2511 2512 if (skb_put_padto(skb, ETH_ZLEN)) 2513 return NETDEV_TX_OK; 2514 2515 entry = mdp->cur_tx % mdp->num_tx_ring; 2516 mdp->tx_skbuff[entry] = skb; 2517 txdesc = &mdp->tx_ring[entry]; 2518 /* soft swap. */ 2519 if (!mdp->cd->hw_swap) 2520 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); 2521 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len, 2522 DMA_TO_DEVICE); 2523 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 2524 kfree_skb(skb); 2525 return NETDEV_TX_OK; 2526 } 2527 txdesc->addr = cpu_to_le32(dma_addr); 2528 txdesc->len = cpu_to_le32(skb->len << 16); 2529 2530 dma_wmb(); /* TACT bit must be set after all the above writes */ 2531 if (entry >= mdp->num_tx_ring - 1) 2532 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); 2533 else 2534 txdesc->status |= cpu_to_le32(TD_TACT); 2535 2536 mdp->cur_tx++; 2537 2538 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns)) 2539 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 2540 2541 return NETDEV_TX_OK; 2542 } 2543 2544 /* The statistics registers have write-clear behaviour, which means we 2545 * will lose any increment between the read and write. We mitigate 2546 * this by only clearing when we read a non-zero value, so we will 2547 * never falsely report a total of zero. 2548 */ 2549 static void 2550 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) 2551 { 2552 u32 delta = sh_eth_read(ndev, reg); 2553 2554 if (delta) { 2555 *stat += delta; 2556 sh_eth_write(ndev, 0, reg); 2557 } 2558 } 2559 2560 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2561 { 2562 struct sh_eth_private *mdp = netdev_priv(ndev); 2563 2564 if (mdp->cd->no_tx_cntrs) 2565 return &ndev->stats; 2566 2567 if (!mdp->is_opened) 2568 return &ndev->stats; 2569 2570 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); 2571 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); 2572 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); 2573 2574 if (mdp->cd->cexcr) { 2575 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2576 CERCR); 2577 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2578 CEECR); 2579 } else { 2580 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2581 CNDCR); 2582 } 2583 2584 return &ndev->stats; 2585 } 2586 2587 /* device close function */ 2588 static int sh_eth_close(struct net_device *ndev) 2589 { 2590 struct sh_eth_private *mdp = netdev_priv(ndev); 2591 2592 netif_stop_queue(ndev); 2593 2594 /* Serialise with the interrupt handler and NAPI, then disable 2595 * interrupts. We have to clear the irq_enabled flag first to 2596 * ensure that interrupts won't be re-enabled. 2597 */ 2598 mdp->irq_enabled = false; 2599 synchronize_irq(ndev->irq); 2600 napi_disable(&mdp->napi); 2601 sh_eth_write(ndev, 0x0000, EESIPR); 2602 2603 sh_eth_dev_exit(ndev); 2604 2605 /* PHY Disconnect */ 2606 if (ndev->phydev) { 2607 phy_stop(ndev->phydev); 2608 phy_disconnect(ndev->phydev); 2609 } 2610 2611 free_irq(ndev->irq, ndev); 2612 2613 /* Free all the skbuffs in the Rx queue and the DMA buffer. */ 2614 sh_eth_ring_free(ndev); 2615 2616 mdp->is_opened = 0; 2617 2618 pm_runtime_put(&mdp->pdev->dev); 2619 2620 return 0; 2621 } 2622 2623 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu) 2624 { 2625 if (netif_running(ndev)) 2626 return -EBUSY; 2627 2628 ndev->mtu = new_mtu; 2629 netdev_update_features(ndev); 2630 2631 return 0; 2632 } 2633 2634 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2635 static u32 sh_eth_tsu_get_post_mask(int entry) 2636 { 2637 return 0x0f << (28 - ((entry % 8) * 4)); 2638 } 2639 2640 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2641 { 2642 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2643 } 2644 2645 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2646 int entry) 2647 { 2648 struct sh_eth_private *mdp = netdev_priv(ndev); 2649 int reg = TSU_POST1 + entry / 8; 2650 u32 tmp; 2651 2652 tmp = sh_eth_tsu_read(mdp, reg); 2653 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg); 2654 } 2655 2656 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2657 int entry) 2658 { 2659 struct sh_eth_private *mdp = netdev_priv(ndev); 2660 int reg = TSU_POST1 + entry / 8; 2661 u32 post_mask, ref_mask, tmp; 2662 2663 post_mask = sh_eth_tsu_get_post_mask(entry); 2664 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2665 2666 tmp = sh_eth_tsu_read(mdp, reg); 2667 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg); 2668 2669 /* If other port enables, the function returns "true" */ 2670 return tmp & ref_mask; 2671 } 2672 2673 static int sh_eth_tsu_busy(struct net_device *ndev) 2674 { 2675 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2676 struct sh_eth_private *mdp = netdev_priv(ndev); 2677 2678 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2679 udelay(10); 2680 timeout--; 2681 if (timeout <= 0) { 2682 netdev_err(ndev, "%s: timeout\n", __func__); 2683 return -ETIMEDOUT; 2684 } 2685 } 2686 2687 return 0; 2688 } 2689 2690 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset, 2691 const u8 *addr) 2692 { 2693 struct sh_eth_private *mdp = netdev_priv(ndev); 2694 u32 val; 2695 2696 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2697 iowrite32(val, mdp->tsu_addr + offset); 2698 if (sh_eth_tsu_busy(ndev) < 0) 2699 return -EBUSY; 2700 2701 val = addr[4] << 8 | addr[5]; 2702 iowrite32(val, mdp->tsu_addr + offset + 4); 2703 if (sh_eth_tsu_busy(ndev) < 0) 2704 return -EBUSY; 2705 2706 return 0; 2707 } 2708 2709 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr) 2710 { 2711 struct sh_eth_private *mdp = netdev_priv(ndev); 2712 u32 val; 2713 2714 val = ioread32(mdp->tsu_addr + offset); 2715 addr[0] = (val >> 24) & 0xff; 2716 addr[1] = (val >> 16) & 0xff; 2717 addr[2] = (val >> 8) & 0xff; 2718 addr[3] = val & 0xff; 2719 val = ioread32(mdp->tsu_addr + offset + 4); 2720 addr[4] = (val >> 8) & 0xff; 2721 addr[5] = val & 0xff; 2722 } 2723 2724 2725 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2726 { 2727 struct sh_eth_private *mdp = netdev_priv(ndev); 2728 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2729 int i; 2730 u8 c_addr[ETH_ALEN]; 2731 2732 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2733 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr); 2734 if (ether_addr_equal(addr, c_addr)) 2735 return i; 2736 } 2737 2738 return -ENOENT; 2739 } 2740 2741 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2742 { 2743 u8 blank[ETH_ALEN]; 2744 int entry; 2745 2746 memset(blank, 0, sizeof(blank)); 2747 entry = sh_eth_tsu_find_entry(ndev, blank); 2748 return (entry < 0) ? -ENOMEM : entry; 2749 } 2750 2751 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2752 int entry) 2753 { 2754 struct sh_eth_private *mdp = netdev_priv(ndev); 2755 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2756 int ret; 2757 u8 blank[ETH_ALEN]; 2758 2759 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2760 ~(1 << (31 - entry)), TSU_TEN); 2761 2762 memset(blank, 0, sizeof(blank)); 2763 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2764 if (ret < 0) 2765 return ret; 2766 return 0; 2767 } 2768 2769 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2770 { 2771 struct sh_eth_private *mdp = netdev_priv(ndev); 2772 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2773 int i, ret; 2774 2775 if (!mdp->cd->tsu) 2776 return 0; 2777 2778 i = sh_eth_tsu_find_entry(ndev, addr); 2779 if (i < 0) { 2780 /* No entry found, create one */ 2781 i = sh_eth_tsu_find_empty(ndev); 2782 if (i < 0) 2783 return -ENOMEM; 2784 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2785 if (ret < 0) 2786 return ret; 2787 2788 /* Enable the entry */ 2789 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2790 (1 << (31 - i)), TSU_TEN); 2791 } 2792 2793 /* Entry found or created, enable POST */ 2794 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2795 2796 return 0; 2797 } 2798 2799 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2800 { 2801 struct sh_eth_private *mdp = netdev_priv(ndev); 2802 int i, ret; 2803 2804 if (!mdp->cd->tsu) 2805 return 0; 2806 2807 i = sh_eth_tsu_find_entry(ndev, addr); 2808 if (i) { 2809 /* Entry found */ 2810 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2811 goto done; 2812 2813 /* Disable the entry if both ports was disabled */ 2814 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2815 if (ret < 0) 2816 return ret; 2817 } 2818 done: 2819 return 0; 2820 } 2821 2822 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2823 { 2824 struct sh_eth_private *mdp = netdev_priv(ndev); 2825 int i, ret; 2826 2827 if (!mdp->cd->tsu) 2828 return 0; 2829 2830 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2831 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2832 continue; 2833 2834 /* Disable the entry if both ports was disabled */ 2835 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2836 if (ret < 0) 2837 return ret; 2838 } 2839 2840 return 0; 2841 } 2842 2843 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2844 { 2845 struct sh_eth_private *mdp = netdev_priv(ndev); 2846 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2847 u8 addr[ETH_ALEN]; 2848 int i; 2849 2850 if (!mdp->cd->tsu) 2851 return; 2852 2853 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2854 sh_eth_tsu_read_entry(ndev, reg_offset, addr); 2855 if (is_multicast_ether_addr(addr)) 2856 sh_eth_tsu_del_entry(ndev, addr); 2857 } 2858 } 2859 2860 /* Update promiscuous flag and multicast filter */ 2861 static void sh_eth_set_rx_mode(struct net_device *ndev) 2862 { 2863 struct sh_eth_private *mdp = netdev_priv(ndev); 2864 u32 ecmr_bits; 2865 int mcast_all = 0; 2866 unsigned long flags; 2867 2868 spin_lock_irqsave(&mdp->lock, flags); 2869 /* Initial condition is MCT = 1, PRM = 0. 2870 * Depending on ndev->flags, set PRM or clear MCT 2871 */ 2872 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; 2873 if (mdp->cd->tsu) 2874 ecmr_bits |= ECMR_MCT; 2875 2876 if (!(ndev->flags & IFF_MULTICAST)) { 2877 sh_eth_tsu_purge_mcast(ndev); 2878 mcast_all = 1; 2879 } 2880 if (ndev->flags & IFF_ALLMULTI) { 2881 sh_eth_tsu_purge_mcast(ndev); 2882 ecmr_bits &= ~ECMR_MCT; 2883 mcast_all = 1; 2884 } 2885 2886 if (ndev->flags & IFF_PROMISC) { 2887 sh_eth_tsu_purge_all(ndev); 2888 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2889 } else if (mdp->cd->tsu) { 2890 struct netdev_hw_addr *ha; 2891 netdev_for_each_mc_addr(ha, ndev) { 2892 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2893 continue; 2894 2895 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2896 if (!mcast_all) { 2897 sh_eth_tsu_purge_mcast(ndev); 2898 ecmr_bits &= ~ECMR_MCT; 2899 mcast_all = 1; 2900 } 2901 } 2902 } 2903 } 2904 2905 /* update the ethernet mode */ 2906 sh_eth_write(ndev, ecmr_bits, ECMR); 2907 2908 spin_unlock_irqrestore(&mdp->lock, flags); 2909 } 2910 2911 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable) 2912 { 2913 struct sh_eth_private *mdp = netdev_priv(ndev); 2914 unsigned long flags; 2915 2916 spin_lock_irqsave(&mdp->lock, flags); 2917 2918 /* Disable TX and RX */ 2919 sh_eth_rcv_snd_disable(ndev); 2920 2921 /* Modify RX Checksum setting */ 2922 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); 2923 2924 /* Enable TX and RX */ 2925 sh_eth_rcv_snd_enable(ndev); 2926 2927 spin_unlock_irqrestore(&mdp->lock, flags); 2928 } 2929 2930 static int sh_eth_set_features(struct net_device *ndev, 2931 netdev_features_t features) 2932 { 2933 netdev_features_t changed = ndev->features ^ features; 2934 struct sh_eth_private *mdp = netdev_priv(ndev); 2935 2936 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum) 2937 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM); 2938 2939 ndev->features = features; 2940 2941 return 0; 2942 } 2943 2944 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2945 { 2946 if (!mdp->port) 2947 return TSU_VTAG0; 2948 else 2949 return TSU_VTAG1; 2950 } 2951 2952 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2953 __be16 proto, u16 vid) 2954 { 2955 struct sh_eth_private *mdp = netdev_priv(ndev); 2956 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2957 2958 if (unlikely(!mdp->cd->tsu)) 2959 return -EPERM; 2960 2961 /* No filtering if vid = 0 */ 2962 if (!vid) 2963 return 0; 2964 2965 mdp->vlan_num_ids++; 2966 2967 /* The controller has one VLAN tag HW filter. So, if the filter is 2968 * already enabled, the driver disables it and the filte 2969 */ 2970 if (mdp->vlan_num_ids > 1) { 2971 /* disable VLAN filter */ 2972 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2973 return 0; 2974 } 2975 2976 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2977 vtag_reg_index); 2978 2979 return 0; 2980 } 2981 2982 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2983 __be16 proto, u16 vid) 2984 { 2985 struct sh_eth_private *mdp = netdev_priv(ndev); 2986 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2987 2988 if (unlikely(!mdp->cd->tsu)) 2989 return -EPERM; 2990 2991 /* No filtering if vid = 0 */ 2992 if (!vid) 2993 return 0; 2994 2995 mdp->vlan_num_ids--; 2996 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2997 2998 return 0; 2999 } 3000 3001 /* SuperH's TSU register init function */ 3002 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 3003 { 3004 if (!mdp->cd->dual_port) { 3005 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3006 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, 3007 TSU_FWSLC); /* Enable POST registers */ 3008 return; 3009 } 3010 3011 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 3012 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 3013 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 3014 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 3015 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 3016 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 3017 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 3018 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 3019 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 3020 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 3021 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 3022 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 3023 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 3024 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 3025 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3026 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 3027 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 3028 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 3029 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 3030 } 3031 3032 /* MDIO bus release function */ 3033 static int sh_mdio_release(struct sh_eth_private *mdp) 3034 { 3035 /* unregister mdio bus */ 3036 mdiobus_unregister(mdp->mii_bus); 3037 3038 /* free bitbang info */ 3039 free_mdio_bitbang(mdp->mii_bus); 3040 3041 return 0; 3042 } 3043 3044 static int sh_mdiobb_read(struct mii_bus *bus, int phy, int reg) 3045 { 3046 int res; 3047 3048 pm_runtime_get_sync(bus->parent); 3049 res = mdiobb_read(bus, phy, reg); 3050 pm_runtime_put(bus->parent); 3051 3052 return res; 3053 } 3054 3055 static int sh_mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val) 3056 { 3057 int res; 3058 3059 pm_runtime_get_sync(bus->parent); 3060 res = mdiobb_write(bus, phy, reg, val); 3061 pm_runtime_put(bus->parent); 3062 3063 return res; 3064 } 3065 3066 /* MDIO bus init function */ 3067 static int sh_mdio_init(struct sh_eth_private *mdp, 3068 struct sh_eth_plat_data *pd) 3069 { 3070 int ret; 3071 struct bb_info *bitbang; 3072 struct platform_device *pdev = mdp->pdev; 3073 struct device *dev = &mdp->pdev->dev; 3074 3075 /* create bit control struct for PHY */ 3076 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 3077 if (!bitbang) 3078 return -ENOMEM; 3079 3080 /* bitbang init */ 3081 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 3082 bitbang->set_gate = pd->set_mdio_gate; 3083 bitbang->ctrl.ops = &bb_ops; 3084 3085 /* MII controller setting */ 3086 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 3087 if (!mdp->mii_bus) 3088 return -ENOMEM; 3089 3090 /* Wrap accessors with Runtime PM-aware ops */ 3091 mdp->mii_bus->read = sh_mdiobb_read; 3092 mdp->mii_bus->write = sh_mdiobb_write; 3093 3094 /* Hook up MII support for ethtool */ 3095 mdp->mii_bus->name = "sh_mii"; 3096 mdp->mii_bus->parent = dev; 3097 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 3098 pdev->name, pdev->id); 3099 3100 /* register MDIO bus */ 3101 if (pd->phy_irq > 0) 3102 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 3103 3104 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 3105 if (ret) 3106 goto out_free_bus; 3107 3108 return 0; 3109 3110 out_free_bus: 3111 free_mdio_bitbang(mdp->mii_bus); 3112 return ret; 3113 } 3114 3115 static const u16 *sh_eth_get_register_offset(int register_type) 3116 { 3117 const u16 *reg_offset = NULL; 3118 3119 switch (register_type) { 3120 case SH_ETH_REG_GIGABIT: 3121 reg_offset = sh_eth_offset_gigabit; 3122 break; 3123 case SH_ETH_REG_FAST_RCAR: 3124 reg_offset = sh_eth_offset_fast_rcar; 3125 break; 3126 case SH_ETH_REG_FAST_SH4: 3127 reg_offset = sh_eth_offset_fast_sh4; 3128 break; 3129 case SH_ETH_REG_FAST_SH3_SH2: 3130 reg_offset = sh_eth_offset_fast_sh3_sh2; 3131 break; 3132 } 3133 3134 return reg_offset; 3135 } 3136 3137 static const struct net_device_ops sh_eth_netdev_ops = { 3138 .ndo_open = sh_eth_open, 3139 .ndo_stop = sh_eth_close, 3140 .ndo_start_xmit = sh_eth_start_xmit, 3141 .ndo_get_stats = sh_eth_get_stats, 3142 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3143 .ndo_tx_timeout = sh_eth_tx_timeout, 3144 .ndo_do_ioctl = phy_do_ioctl_running, 3145 .ndo_change_mtu = sh_eth_change_mtu, 3146 .ndo_validate_addr = eth_validate_addr, 3147 .ndo_set_mac_address = eth_mac_addr, 3148 .ndo_set_features = sh_eth_set_features, 3149 }; 3150 3151 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 3152 .ndo_open = sh_eth_open, 3153 .ndo_stop = sh_eth_close, 3154 .ndo_start_xmit = sh_eth_start_xmit, 3155 .ndo_get_stats = sh_eth_get_stats, 3156 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3157 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 3158 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 3159 .ndo_tx_timeout = sh_eth_tx_timeout, 3160 .ndo_do_ioctl = phy_do_ioctl_running, 3161 .ndo_change_mtu = sh_eth_change_mtu, 3162 .ndo_validate_addr = eth_validate_addr, 3163 .ndo_set_mac_address = eth_mac_addr, 3164 .ndo_set_features = sh_eth_set_features, 3165 }; 3166 3167 #ifdef CONFIG_OF 3168 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3169 { 3170 struct device_node *np = dev->of_node; 3171 struct sh_eth_plat_data *pdata; 3172 phy_interface_t interface; 3173 int ret; 3174 3175 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3176 if (!pdata) 3177 return NULL; 3178 3179 ret = of_get_phy_mode(np, &interface); 3180 if (ret) 3181 return NULL; 3182 pdata->phy_interface = interface; 3183 3184 of_get_mac_address(np, pdata->mac_addr); 3185 3186 pdata->no_ether_link = 3187 of_property_read_bool(np, "renesas,no-ether-link"); 3188 pdata->ether_link_active_low = 3189 of_property_read_bool(np, "renesas,ether-link-active-low"); 3190 3191 return pdata; 3192 } 3193 3194 static const struct of_device_id sh_eth_match_table[] = { 3195 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 3196 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data }, 3197 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data }, 3198 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data }, 3199 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data }, 3200 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data }, 3201 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data }, 3202 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data }, 3203 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data }, 3204 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data }, 3205 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 3206 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data }, 3207 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data }, 3208 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data }, 3209 { } 3210 }; 3211 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 3212 #else 3213 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3214 { 3215 return NULL; 3216 } 3217 #endif 3218 3219 static int sh_eth_drv_probe(struct platform_device *pdev) 3220 { 3221 struct resource *res; 3222 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 3223 const struct platform_device_id *id = platform_get_device_id(pdev); 3224 struct sh_eth_private *mdp; 3225 struct net_device *ndev; 3226 int ret; 3227 3228 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 3229 if (!ndev) 3230 return -ENOMEM; 3231 3232 pm_runtime_enable(&pdev->dev); 3233 pm_runtime_get_sync(&pdev->dev); 3234 3235 ret = platform_get_irq(pdev, 0); 3236 if (ret < 0) 3237 goto out_release; 3238 ndev->irq = ret; 3239 3240 SET_NETDEV_DEV(ndev, &pdev->dev); 3241 3242 mdp = netdev_priv(ndev); 3243 mdp->num_tx_ring = TX_RING_SIZE; 3244 mdp->num_rx_ring = RX_RING_SIZE; 3245 mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 3246 if (IS_ERR(mdp->addr)) { 3247 ret = PTR_ERR(mdp->addr); 3248 goto out_release; 3249 } 3250 3251 ndev->base_addr = res->start; 3252 3253 spin_lock_init(&mdp->lock); 3254 mdp->pdev = pdev; 3255 3256 if (pdev->dev.of_node) 3257 pd = sh_eth_parse_dt(&pdev->dev); 3258 if (!pd) { 3259 dev_err(&pdev->dev, "no platform data\n"); 3260 ret = -EINVAL; 3261 goto out_release; 3262 } 3263 3264 /* get PHY ID */ 3265 mdp->phy_id = pd->phy; 3266 mdp->phy_interface = pd->phy_interface; 3267 mdp->no_ether_link = pd->no_ether_link; 3268 mdp->ether_link_active_low = pd->ether_link_active_low; 3269 3270 /* set cpu data */ 3271 if (id) 3272 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 3273 else 3274 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); 3275 3276 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 3277 if (!mdp->reg_offset) { 3278 dev_err(&pdev->dev, "Unknown register type (%d)\n", 3279 mdp->cd->register_type); 3280 ret = -EINVAL; 3281 goto out_release; 3282 } 3283 sh_eth_set_default_cpu_data(mdp->cd); 3284 3285 /* User's manual states max MTU should be 2048 but due to the 3286 * alignment calculations in sh_eth_ring_init() the practical 3287 * MTU is a bit less. Maybe this can be optimized some more. 3288 */ 3289 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); 3290 ndev->min_mtu = ETH_MIN_MTU; 3291 3292 if (mdp->cd->rx_csum) { 3293 ndev->features = NETIF_F_RXCSUM; 3294 ndev->hw_features = NETIF_F_RXCSUM; 3295 } 3296 3297 /* set function */ 3298 if (mdp->cd->tsu) 3299 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 3300 else 3301 ndev->netdev_ops = &sh_eth_netdev_ops; 3302 ndev->ethtool_ops = &sh_eth_ethtool_ops; 3303 ndev->watchdog_timeo = TX_TIMEOUT; 3304 3305 /* debug message level */ 3306 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 3307 3308 /* read and set MAC address */ 3309 read_mac_address(ndev, pd->mac_addr); 3310 if (!is_valid_ether_addr(ndev->dev_addr)) { 3311 dev_warn(&pdev->dev, 3312 "no valid MAC address supplied, using a random one.\n"); 3313 eth_hw_addr_random(ndev); 3314 } 3315 3316 if (mdp->cd->tsu) { 3317 int port = pdev->id < 0 ? 0 : pdev->id % 2; 3318 struct resource *rtsu; 3319 3320 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3321 if (!rtsu) { 3322 dev_err(&pdev->dev, "no TSU resource\n"); 3323 ret = -ENODEV; 3324 goto out_release; 3325 } 3326 /* We can only request the TSU region for the first port 3327 * of the two sharing this TSU for the probe to succeed... 3328 */ 3329 if (port == 0 && 3330 !devm_request_mem_region(&pdev->dev, rtsu->start, 3331 resource_size(rtsu), 3332 dev_name(&pdev->dev))) { 3333 dev_err(&pdev->dev, "can't request TSU resource.\n"); 3334 ret = -EBUSY; 3335 goto out_release; 3336 } 3337 /* ioremap the TSU registers */ 3338 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start, 3339 resource_size(rtsu)); 3340 if (!mdp->tsu_addr) { 3341 dev_err(&pdev->dev, "TSU region ioremap() failed.\n"); 3342 ret = -ENOMEM; 3343 goto out_release; 3344 } 3345 mdp->port = port; 3346 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3347 3348 /* Need to init only the first port of the two sharing a TSU */ 3349 if (port == 0) { 3350 if (mdp->cd->chip_reset) 3351 mdp->cd->chip_reset(ndev); 3352 3353 /* TSU init (Init only)*/ 3354 sh_eth_tsu_init(mdp); 3355 } 3356 } 3357 3358 if (mdp->cd->rmiimode) 3359 sh_eth_write(ndev, 0x1, RMIIMODE); 3360 3361 /* MDIO bus init */ 3362 ret = sh_mdio_init(mdp, pd); 3363 if (ret) { 3364 if (ret != -EPROBE_DEFER) 3365 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret); 3366 goto out_release; 3367 } 3368 3369 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 3370 3371 /* network device register */ 3372 ret = register_netdev(ndev); 3373 if (ret) 3374 goto out_napi_del; 3375 3376 if (mdp->cd->magic) 3377 device_set_wakeup_capable(&pdev->dev, 1); 3378 3379 /* print device information */ 3380 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 3381 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 3382 3383 pm_runtime_put(&pdev->dev); 3384 platform_set_drvdata(pdev, ndev); 3385 3386 return ret; 3387 3388 out_napi_del: 3389 netif_napi_del(&mdp->napi); 3390 sh_mdio_release(mdp); 3391 3392 out_release: 3393 /* net_dev free */ 3394 free_netdev(ndev); 3395 3396 pm_runtime_put(&pdev->dev); 3397 pm_runtime_disable(&pdev->dev); 3398 return ret; 3399 } 3400 3401 static int sh_eth_drv_remove(struct platform_device *pdev) 3402 { 3403 struct net_device *ndev = platform_get_drvdata(pdev); 3404 struct sh_eth_private *mdp = netdev_priv(ndev); 3405 3406 unregister_netdev(ndev); 3407 netif_napi_del(&mdp->napi); 3408 sh_mdio_release(mdp); 3409 pm_runtime_disable(&pdev->dev); 3410 free_netdev(ndev); 3411 3412 return 0; 3413 } 3414 3415 #ifdef CONFIG_PM 3416 #ifdef CONFIG_PM_SLEEP 3417 static int sh_eth_wol_setup(struct net_device *ndev) 3418 { 3419 struct sh_eth_private *mdp = netdev_priv(ndev); 3420 3421 /* Only allow ECI interrupts */ 3422 synchronize_irq(ndev->irq); 3423 napi_disable(&mdp->napi); 3424 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR); 3425 3426 /* Enable MagicPacket */ 3427 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); 3428 3429 return enable_irq_wake(ndev->irq); 3430 } 3431 3432 static int sh_eth_wol_restore(struct net_device *ndev) 3433 { 3434 struct sh_eth_private *mdp = netdev_priv(ndev); 3435 int ret; 3436 3437 napi_enable(&mdp->napi); 3438 3439 /* Disable MagicPacket */ 3440 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0); 3441 3442 /* The device needs to be reset to restore MagicPacket logic 3443 * for next wakeup. If we close and open the device it will 3444 * both be reset and all registers restored. This is what 3445 * happens during suspend and resume without WoL enabled. 3446 */ 3447 ret = sh_eth_close(ndev); 3448 if (ret < 0) 3449 return ret; 3450 ret = sh_eth_open(ndev); 3451 if (ret < 0) 3452 return ret; 3453 3454 return disable_irq_wake(ndev->irq); 3455 } 3456 3457 static int sh_eth_suspend(struct device *dev) 3458 { 3459 struct net_device *ndev = dev_get_drvdata(dev); 3460 struct sh_eth_private *mdp = netdev_priv(ndev); 3461 int ret = 0; 3462 3463 if (!netif_running(ndev)) 3464 return 0; 3465 3466 netif_device_detach(ndev); 3467 3468 if (mdp->wol_enabled) 3469 ret = sh_eth_wol_setup(ndev); 3470 else 3471 ret = sh_eth_close(ndev); 3472 3473 return ret; 3474 } 3475 3476 static int sh_eth_resume(struct device *dev) 3477 { 3478 struct net_device *ndev = dev_get_drvdata(dev); 3479 struct sh_eth_private *mdp = netdev_priv(ndev); 3480 int ret = 0; 3481 3482 if (!netif_running(ndev)) 3483 return 0; 3484 3485 if (mdp->wol_enabled) 3486 ret = sh_eth_wol_restore(ndev); 3487 else 3488 ret = sh_eth_open(ndev); 3489 3490 if (ret < 0) 3491 return ret; 3492 3493 netif_device_attach(ndev); 3494 3495 return ret; 3496 } 3497 #endif 3498 3499 static int sh_eth_runtime_nop(struct device *dev) 3500 { 3501 /* Runtime PM callback shared between ->runtime_suspend() 3502 * and ->runtime_resume(). Simply returns success. 3503 * 3504 * This driver re-initializes all registers after 3505 * pm_runtime_get_sync() anyway so there is no need 3506 * to save and restore registers here. 3507 */ 3508 return 0; 3509 } 3510 3511 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 3512 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) 3513 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) 3514 }; 3515 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 3516 #else 3517 #define SH_ETH_PM_OPS NULL 3518 #endif 3519 3520 static const struct platform_device_id sh_eth_id_table[] = { 3521 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 3522 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 3523 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 3524 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 3525 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 3526 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 3527 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 3528 { } 3529 }; 3530 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 3531 3532 static struct platform_driver sh_eth_driver = { 3533 .probe = sh_eth_drv_probe, 3534 .remove = sh_eth_drv_remove, 3535 .id_table = sh_eth_id_table, 3536 .driver = { 3537 .name = CARDNAME, 3538 .pm = SH_ETH_PM_OPS, 3539 .of_match_table = of_match_ptr(sh_eth_match_table), 3540 }, 3541 }; 3542 3543 module_platform_driver(sh_eth_driver); 3544 3545 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 3546 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 3547 MODULE_LICENSE("GPL v2"); 3548