1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_ADRH0]	= 0x0100,
208 
209 	[TXNLCR0]	= 0x0080,
210 	[TXALCR0]	= 0x0084,
211 	[RXNLCR0]	= 0x0088,
212 	[RXALCR0]	= 0x008C,
213 };
214 
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 	SH_ETH_OFFSET_DEFAULTS,
217 
218 	[ECMR]		= 0x0300,
219 	[RFLR]		= 0x0308,
220 	[ECSR]		= 0x0310,
221 	[ECSIPR]	= 0x0318,
222 	[PIR]		= 0x0320,
223 	[PSR]		= 0x0328,
224 	[RDMLR]		= 0x0340,
225 	[IPGR]		= 0x0350,
226 	[APR]		= 0x0354,
227 	[MPR]		= 0x0358,
228 	[RFCF]		= 0x0360,
229 	[TPAUSER]	= 0x0364,
230 	[TPAUSECR]	= 0x0368,
231 	[MAHR]		= 0x03c0,
232 	[MALR]		= 0x03c8,
233 	[TROCR]		= 0x03d0,
234 	[CDCR]		= 0x03d4,
235 	[LCCR]		= 0x03d8,
236 	[CNDCR]		= 0x03dc,
237 	[CEFCR]		= 0x03e4,
238 	[FRECR]		= 0x03e8,
239 	[TSFRCR]	= 0x03ec,
240 	[TLFRCR]	= 0x03f0,
241 	[RFCR]		= 0x03f4,
242 	[MAFCR]		= 0x03f8,
243 
244 	[EDMR]		= 0x0200,
245 	[EDTRR]		= 0x0208,
246 	[EDRRR]		= 0x0210,
247 	[TDLAR]		= 0x0218,
248 	[RDLAR]		= 0x0220,
249 	[EESR]		= 0x0228,
250 	[EESIPR]	= 0x0230,
251 	[TRSCER]	= 0x0238,
252 	[RMFCR]		= 0x0240,
253 	[TFTR]		= 0x0248,
254 	[FDR]		= 0x0250,
255 	[RMCR]		= 0x0258,
256 	[TFUCR]		= 0x0264,
257 	[RFOCR]		= 0x0268,
258 	[RMIIMODE]      = 0x026c,
259 	[FCFTR]		= 0x0270,
260 	[TRIMD]		= 0x027c,
261 };
262 
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 	SH_ETH_OFFSET_DEFAULTS,
265 
266 	[ECMR]		= 0x0100,
267 	[RFLR]		= 0x0108,
268 	[ECSR]		= 0x0110,
269 	[ECSIPR]	= 0x0118,
270 	[PIR]		= 0x0120,
271 	[PSR]		= 0x0128,
272 	[RDMLR]		= 0x0140,
273 	[IPGR]		= 0x0150,
274 	[APR]		= 0x0154,
275 	[MPR]		= 0x0158,
276 	[TPAUSER]	= 0x0164,
277 	[RFCF]		= 0x0160,
278 	[TPAUSECR]	= 0x0168,
279 	[BCFRR]		= 0x016c,
280 	[MAHR]		= 0x01c0,
281 	[MALR]		= 0x01c8,
282 	[TROCR]		= 0x01d0,
283 	[CDCR]		= 0x01d4,
284 	[LCCR]		= 0x01d8,
285 	[CNDCR]		= 0x01dc,
286 	[CEFCR]		= 0x01e4,
287 	[FRECR]		= 0x01e8,
288 	[TSFRCR]	= 0x01ec,
289 	[TLFRCR]	= 0x01f0,
290 	[RFCR]		= 0x01f4,
291 	[MAFCR]		= 0x01f8,
292 	[RTRATE]	= 0x01fc,
293 
294 	[EDMR]		= 0x0000,
295 	[EDTRR]		= 0x0008,
296 	[EDRRR]		= 0x0010,
297 	[TDLAR]		= 0x0018,
298 	[RDLAR]		= 0x0020,
299 	[EESR]		= 0x0028,
300 	[EESIPR]	= 0x0030,
301 	[TRSCER]	= 0x0038,
302 	[RMFCR]		= 0x0040,
303 	[TFTR]		= 0x0048,
304 	[FDR]		= 0x0050,
305 	[RMCR]		= 0x0058,
306 	[TFUCR]		= 0x0064,
307 	[RFOCR]		= 0x0068,
308 	[FCFTR]		= 0x0070,
309 	[RPADIR]	= 0x0078,
310 	[TRIMD]		= 0x007c,
311 	[RBWAR]		= 0x00c8,
312 	[RDFAR]		= 0x00cc,
313 	[TBRAR]		= 0x00d4,
314 	[TDFAR]		= 0x00d8,
315 };
316 
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 	SH_ETH_OFFSET_DEFAULTS,
319 
320 	[EDMR]		= 0x0000,
321 	[EDTRR]		= 0x0004,
322 	[EDRRR]		= 0x0008,
323 	[TDLAR]		= 0x000c,
324 	[RDLAR]		= 0x0010,
325 	[EESR]		= 0x0014,
326 	[EESIPR]	= 0x0018,
327 	[TRSCER]	= 0x001c,
328 	[RMFCR]		= 0x0020,
329 	[TFTR]		= 0x0024,
330 	[FDR]		= 0x0028,
331 	[RMCR]		= 0x002c,
332 	[EDOCR]		= 0x0030,
333 	[FCFTR]		= 0x0034,
334 	[RPADIR]	= 0x0038,
335 	[TRIMD]		= 0x003c,
336 	[RBWAR]		= 0x0040,
337 	[RDFAR]		= 0x0044,
338 	[TBRAR]		= 0x004c,
339 	[TDFAR]		= 0x0050,
340 
341 	[ECMR]		= 0x0160,
342 	[ECSR]		= 0x0164,
343 	[ECSIPR]	= 0x0168,
344 	[PIR]		= 0x016c,
345 	[MAHR]		= 0x0170,
346 	[MALR]		= 0x0174,
347 	[RFLR]		= 0x0178,
348 	[PSR]		= 0x017c,
349 	[TROCR]		= 0x0180,
350 	[CDCR]		= 0x0184,
351 	[LCCR]		= 0x0188,
352 	[CNDCR]		= 0x018c,
353 	[CEFCR]		= 0x0194,
354 	[FRECR]		= 0x0198,
355 	[TSFRCR]	= 0x019c,
356 	[TLFRCR]	= 0x01a0,
357 	[RFCR]		= 0x01a4,
358 	[MAFCR]		= 0x01a8,
359 	[IPGR]		= 0x01b4,
360 	[APR]		= 0x01b8,
361 	[MPR]		= 0x01bc,
362 	[TPAUSER]	= 0x01c4,
363 	[BCFR]		= 0x01cc,
364 
365 	[ARSTR]		= 0x0000,
366 	[TSU_CTRST]	= 0x0004,
367 	[TSU_FWEN0]	= 0x0010,
368 	[TSU_FWEN1]	= 0x0014,
369 	[TSU_FCM]	= 0x0018,
370 	[TSU_BSYSL0]	= 0x0020,
371 	[TSU_BSYSL1]	= 0x0024,
372 	[TSU_PRISL0]	= 0x0028,
373 	[TSU_PRISL1]	= 0x002c,
374 	[TSU_FWSL0]	= 0x0030,
375 	[TSU_FWSL1]	= 0x0034,
376 	[TSU_FWSLC]	= 0x0038,
377 	[TSU_QTAGM0]	= 0x0040,
378 	[TSU_QTAGM1]	= 0x0044,
379 	[TSU_ADQT0]	= 0x0048,
380 	[TSU_ADQT1]	= 0x004c,
381 	[TSU_FWSR]	= 0x0050,
382 	[TSU_FWINMK]	= 0x0054,
383 	[TSU_ADSBSY]	= 0x0060,
384 	[TSU_TEN]	= 0x0064,
385 	[TSU_POST1]	= 0x0070,
386 	[TSU_POST2]	= 0x0074,
387 	[TSU_POST3]	= 0x0078,
388 	[TSU_POST4]	= 0x007c,
389 
390 	[TXNLCR0]	= 0x0080,
391 	[TXALCR0]	= 0x0084,
392 	[RXNLCR0]	= 0x0088,
393 	[RXALCR0]	= 0x008c,
394 	[FWNLCR0]	= 0x0090,
395 	[FWALCR0]	= 0x0094,
396 	[TXNLCR1]	= 0x00a0,
397 	[TXALCR1]	= 0x00a0,
398 	[RXNLCR1]	= 0x00a8,
399 	[RXALCR1]	= 0x00ac,
400 	[FWNLCR1]	= 0x00b0,
401 	[FWALCR1]	= 0x00b4,
402 
403 	[TSU_ADRH0]	= 0x0100,
404 };
405 
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408 
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 	u16 offset = mdp->reg_offset[enum_index];
413 
414 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 		return;
416 
417 	iowrite32(data, mdp->addr + offset);
418 }
419 
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 	struct sh_eth_private *mdp = netdev_priv(ndev);
423 	u16 offset = mdp->reg_offset[enum_index];
424 
425 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 		return ~0U;
427 
428 	return ioread32(mdp->addr + offset);
429 }
430 
431 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
432 {
433 	return mdp->reg_offset == sh_eth_offset_gigabit;
434 }
435 
436 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
437 {
438 	return mdp->reg_offset == sh_eth_offset_fast_rz;
439 }
440 
441 static void sh_eth_select_mii(struct net_device *ndev)
442 {
443 	u32 value = 0x0;
444 	struct sh_eth_private *mdp = netdev_priv(ndev);
445 
446 	switch (mdp->phy_interface) {
447 	case PHY_INTERFACE_MODE_GMII:
448 		value = 0x2;
449 		break;
450 	case PHY_INTERFACE_MODE_MII:
451 		value = 0x1;
452 		break;
453 	case PHY_INTERFACE_MODE_RMII:
454 		value = 0x0;
455 		break;
456 	default:
457 		netdev_warn(ndev,
458 			    "PHY interface mode was not setup. Set to MII.\n");
459 		value = 0x1;
460 		break;
461 	}
462 
463 	sh_eth_write(ndev, value, RMII_MII);
464 }
465 
466 static void sh_eth_set_duplex(struct net_device *ndev)
467 {
468 	struct sh_eth_private *mdp = netdev_priv(ndev);
469 
470 	if (mdp->duplex) /* Full */
471 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
472 	else		/* Half */
473 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
474 }
475 
476 static void sh_eth_chip_reset(struct net_device *ndev)
477 {
478 	struct sh_eth_private *mdp = netdev_priv(ndev);
479 
480 	/* reset device */
481 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
482 	mdelay(1);
483 }
484 
485 static void sh_eth_set_rate_gether(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	switch (mdp->speed) {
490 	case 10: /* 10BASE */
491 		sh_eth_write(ndev, GECMR_10, GECMR);
492 		break;
493 	case 100:/* 100BASE */
494 		sh_eth_write(ndev, GECMR_100, GECMR);
495 		break;
496 	case 1000: /* 1000BASE */
497 		sh_eth_write(ndev, GECMR_1000, GECMR);
498 		break;
499 	default:
500 		break;
501 	}
502 }
503 
504 #ifdef CONFIG_OF
505 /* R7S72100 */
506 static struct sh_eth_cpu_data r7s72100_data = {
507 	.chip_reset	= sh_eth_chip_reset,
508 	.set_duplex	= sh_eth_set_duplex,
509 
510 	.register_type	= SH_ETH_REG_FAST_RZ,
511 
512 	.ecsr_value	= ECSR_ICD,
513 	.ecsipr_value	= ECSIPR_ICDIP,
514 	.eesipr_value	= 0xff7f009f,
515 
516 	.tx_check	= EESR_TC1 | EESR_FTC,
517 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
518 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
519 			  EESR_TDE | EESR_ECI,
520 	.fdr_value	= 0x0000070f,
521 
522 	.no_psr		= 1,
523 	.apr		= 1,
524 	.mpr		= 1,
525 	.tpauser	= 1,
526 	.hw_swap	= 1,
527 	.rpadir		= 1,
528 	.rpadir_value   = 2 << 16,
529 	.no_trimd	= 1,
530 	.no_ade		= 1,
531 	.hw_crc		= 1,
532 	.tsu		= 1,
533 	.shift_rd0	= 1,
534 };
535 
536 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
537 {
538 	struct sh_eth_private *mdp = netdev_priv(ndev);
539 
540 	/* reset device */
541 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
542 	mdelay(1);
543 
544 	sh_eth_select_mii(ndev);
545 }
546 
547 /* R8A7740 */
548 static struct sh_eth_cpu_data r8a7740_data = {
549 	.chip_reset	= sh_eth_chip_reset_r8a7740,
550 	.set_duplex	= sh_eth_set_duplex,
551 	.set_rate	= sh_eth_set_rate_gether,
552 
553 	.register_type	= SH_ETH_REG_GIGABIT,
554 
555 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
556 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
557 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
558 
559 	.tx_check	= EESR_TC1 | EESR_FTC,
560 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
561 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
562 			  EESR_TDE | EESR_ECI,
563 	.fdr_value	= 0x0000070f,
564 
565 	.apr		= 1,
566 	.mpr		= 1,
567 	.tpauser	= 1,
568 	.bculr		= 1,
569 	.hw_swap	= 1,
570 	.rpadir		= 1,
571 	.rpadir_value   = 2 << 16,
572 	.no_trimd	= 1,
573 	.no_ade		= 1,
574 	.tsu		= 1,
575 	.select_mii	= 1,
576 	.shift_rd0	= 1,
577 };
578 
579 /* There is CPU dependent code */
580 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
581 {
582 	struct sh_eth_private *mdp = netdev_priv(ndev);
583 
584 	switch (mdp->speed) {
585 	case 10: /* 10BASE */
586 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
587 		break;
588 	case 100:/* 100BASE */
589 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
590 		break;
591 	default:
592 		break;
593 	}
594 }
595 
596 /* R8A7778/9 */
597 static struct sh_eth_cpu_data r8a777x_data = {
598 	.set_duplex	= sh_eth_set_duplex,
599 	.set_rate	= sh_eth_set_rate_r8a777x,
600 
601 	.register_type	= SH_ETH_REG_FAST_RCAR,
602 
603 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
604 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
605 	.eesipr_value	= 0x01ff009f,
606 
607 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610 			  EESR_ECI,
611 	.fdr_value	= 0x00000f0f,
612 
613 	.apr		= 1,
614 	.mpr		= 1,
615 	.tpauser	= 1,
616 	.hw_swap	= 1,
617 };
618 
619 /* R8A7790/1 */
620 static struct sh_eth_cpu_data r8a779x_data = {
621 	.set_duplex	= sh_eth_set_duplex,
622 	.set_rate	= sh_eth_set_rate_r8a777x,
623 
624 	.register_type	= SH_ETH_REG_FAST_RCAR,
625 
626 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
627 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
628 	.eesipr_value	= 0x01ff009f,
629 
630 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
631 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
632 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
633 			  EESR_ECI,
634 	.fdr_value	= 0x00000f0f,
635 
636 	.trscer_err_mask = DESC_I_RINT8,
637 
638 	.apr		= 1,
639 	.mpr		= 1,
640 	.tpauser	= 1,
641 	.hw_swap	= 1,
642 	.rmiimode	= 1,
643 };
644 #endif /* CONFIG_OF */
645 
646 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
647 {
648 	struct sh_eth_private *mdp = netdev_priv(ndev);
649 
650 	switch (mdp->speed) {
651 	case 10: /* 10BASE */
652 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
653 		break;
654 	case 100:/* 100BASE */
655 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
656 		break;
657 	default:
658 		break;
659 	}
660 }
661 
662 /* SH7724 */
663 static struct sh_eth_cpu_data sh7724_data = {
664 	.set_duplex	= sh_eth_set_duplex,
665 	.set_rate	= sh_eth_set_rate_sh7724,
666 
667 	.register_type	= SH_ETH_REG_FAST_SH4,
668 
669 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
670 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
671 	.eesipr_value	= 0x01ff009f,
672 
673 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
674 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
675 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
676 			  EESR_ECI,
677 
678 	.apr		= 1,
679 	.mpr		= 1,
680 	.tpauser	= 1,
681 	.hw_swap	= 1,
682 	.rpadir		= 1,
683 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
684 };
685 
686 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
687 {
688 	struct sh_eth_private *mdp = netdev_priv(ndev);
689 
690 	switch (mdp->speed) {
691 	case 10: /* 10BASE */
692 		sh_eth_write(ndev, 0, RTRATE);
693 		break;
694 	case 100:/* 100BASE */
695 		sh_eth_write(ndev, 1, RTRATE);
696 		break;
697 	default:
698 		break;
699 	}
700 }
701 
702 /* SH7757 */
703 static struct sh_eth_cpu_data sh7757_data = {
704 	.set_duplex	= sh_eth_set_duplex,
705 	.set_rate	= sh_eth_set_rate_sh7757,
706 
707 	.register_type	= SH_ETH_REG_FAST_SH4,
708 
709 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
710 
711 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
712 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
713 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
714 			  EESR_ECI,
715 
716 	.irq_flags	= IRQF_SHARED,
717 	.apr		= 1,
718 	.mpr		= 1,
719 	.tpauser	= 1,
720 	.hw_swap	= 1,
721 	.no_ade		= 1,
722 	.rpadir		= 1,
723 	.rpadir_value   = 2 << 16,
724 	.rtrate		= 1,
725 };
726 
727 #define SH_GIGA_ETH_BASE	0xfee00000UL
728 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
729 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
730 static void sh_eth_chip_reset_giga(struct net_device *ndev)
731 {
732 	int i;
733 	u32 mahr[2], malr[2];
734 
735 	/* save MAHR and MALR */
736 	for (i = 0; i < 2; i++) {
737 		malr[i] = ioread32((void *)GIGA_MALR(i));
738 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
739 	}
740 
741 	/* reset device */
742 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
743 	mdelay(1);
744 
745 	/* restore MAHR and MALR */
746 	for (i = 0; i < 2; i++) {
747 		iowrite32(malr[i], (void *)GIGA_MALR(i));
748 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
749 	}
750 }
751 
752 static void sh_eth_set_rate_giga(struct net_device *ndev)
753 {
754 	struct sh_eth_private *mdp = netdev_priv(ndev);
755 
756 	switch (mdp->speed) {
757 	case 10: /* 10BASE */
758 		sh_eth_write(ndev, 0x00000000, GECMR);
759 		break;
760 	case 100:/* 100BASE */
761 		sh_eth_write(ndev, 0x00000010, GECMR);
762 		break;
763 	case 1000: /* 1000BASE */
764 		sh_eth_write(ndev, 0x00000020, GECMR);
765 		break;
766 	default:
767 		break;
768 	}
769 }
770 
771 /* SH7757(GETHERC) */
772 static struct sh_eth_cpu_data sh7757_data_giga = {
773 	.chip_reset	= sh_eth_chip_reset_giga,
774 	.set_duplex	= sh_eth_set_duplex,
775 	.set_rate	= sh_eth_set_rate_giga,
776 
777 	.register_type	= SH_ETH_REG_GIGABIT,
778 
779 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
780 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
781 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
782 
783 	.tx_check	= EESR_TC1 | EESR_FTC,
784 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
785 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
786 			  EESR_TDE | EESR_ECI,
787 	.fdr_value	= 0x0000072f,
788 
789 	.irq_flags	= IRQF_SHARED,
790 	.apr		= 1,
791 	.mpr		= 1,
792 	.tpauser	= 1,
793 	.bculr		= 1,
794 	.hw_swap	= 1,
795 	.rpadir		= 1,
796 	.rpadir_value   = 2 << 16,
797 	.no_trimd	= 1,
798 	.no_ade		= 1,
799 	.tsu		= 1,
800 };
801 
802 /* SH7734 */
803 static struct sh_eth_cpu_data sh7734_data = {
804 	.chip_reset	= sh_eth_chip_reset,
805 	.set_duplex	= sh_eth_set_duplex,
806 	.set_rate	= sh_eth_set_rate_gether,
807 
808 	.register_type	= SH_ETH_REG_GIGABIT,
809 
810 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
811 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
812 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
813 
814 	.tx_check	= EESR_TC1 | EESR_FTC,
815 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
816 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
817 			  EESR_TDE | EESR_ECI,
818 
819 	.apr		= 1,
820 	.mpr		= 1,
821 	.tpauser	= 1,
822 	.bculr		= 1,
823 	.hw_swap	= 1,
824 	.no_trimd	= 1,
825 	.no_ade		= 1,
826 	.tsu		= 1,
827 	.hw_crc		= 1,
828 	.select_mii	= 1,
829 };
830 
831 /* SH7763 */
832 static struct sh_eth_cpu_data sh7763_data = {
833 	.chip_reset	= sh_eth_chip_reset,
834 	.set_duplex	= sh_eth_set_duplex,
835 	.set_rate	= sh_eth_set_rate_gether,
836 
837 	.register_type	= SH_ETH_REG_GIGABIT,
838 
839 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
840 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
841 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
842 
843 	.tx_check	= EESR_TC1 | EESR_FTC,
844 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
845 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
846 			  EESR_ECI,
847 
848 	.apr		= 1,
849 	.mpr		= 1,
850 	.tpauser	= 1,
851 	.bculr		= 1,
852 	.hw_swap	= 1,
853 	.no_trimd	= 1,
854 	.no_ade		= 1,
855 	.tsu		= 1,
856 	.irq_flags	= IRQF_SHARED,
857 };
858 
859 static struct sh_eth_cpu_data sh7619_data = {
860 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
861 
862 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
863 
864 	.apr		= 1,
865 	.mpr		= 1,
866 	.tpauser	= 1,
867 	.hw_swap	= 1,
868 };
869 
870 static struct sh_eth_cpu_data sh771x_data = {
871 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
872 
873 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
874 	.tsu		= 1,
875 };
876 
877 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
878 {
879 	if (!cd->ecsr_value)
880 		cd->ecsr_value = DEFAULT_ECSR_INIT;
881 
882 	if (!cd->ecsipr_value)
883 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
884 
885 	if (!cd->fcftr_value)
886 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
887 				  DEFAULT_FIFO_F_D_RFD;
888 
889 	if (!cd->fdr_value)
890 		cd->fdr_value = DEFAULT_FDR_INIT;
891 
892 	if (!cd->tx_check)
893 		cd->tx_check = DEFAULT_TX_CHECK;
894 
895 	if (!cd->eesr_err_check)
896 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
897 
898 	if (!cd->trscer_err_mask)
899 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
900 }
901 
902 static int sh_eth_check_reset(struct net_device *ndev)
903 {
904 	int ret = 0;
905 	int cnt = 100;
906 
907 	while (cnt > 0) {
908 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
909 			break;
910 		mdelay(1);
911 		cnt--;
912 	}
913 	if (cnt <= 0) {
914 		netdev_err(ndev, "Device reset failed\n");
915 		ret = -ETIMEDOUT;
916 	}
917 	return ret;
918 }
919 
920 static int sh_eth_reset(struct net_device *ndev)
921 {
922 	struct sh_eth_private *mdp = netdev_priv(ndev);
923 	int ret = 0;
924 
925 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
926 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
927 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
928 			     EDMR);
929 
930 		ret = sh_eth_check_reset(ndev);
931 		if (ret)
932 			return ret;
933 
934 		/* Table Init */
935 		sh_eth_write(ndev, 0x0, TDLAR);
936 		sh_eth_write(ndev, 0x0, TDFAR);
937 		sh_eth_write(ndev, 0x0, TDFXR);
938 		sh_eth_write(ndev, 0x0, TDFFR);
939 		sh_eth_write(ndev, 0x0, RDLAR);
940 		sh_eth_write(ndev, 0x0, RDFAR);
941 		sh_eth_write(ndev, 0x0, RDFXR);
942 		sh_eth_write(ndev, 0x0, RDFFR);
943 
944 		/* Reset HW CRC register */
945 		if (mdp->cd->hw_crc)
946 			sh_eth_write(ndev, 0x0, CSMR);
947 
948 		/* Select MII mode */
949 		if (mdp->cd->select_mii)
950 			sh_eth_select_mii(ndev);
951 	} else {
952 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
953 			     EDMR);
954 		mdelay(3);
955 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
956 			     EDMR);
957 	}
958 
959 	return ret;
960 }
961 
962 static void sh_eth_set_receive_align(struct sk_buff *skb)
963 {
964 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
965 
966 	if (reserve)
967 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
968 }
969 
970 /* Program the hardware MAC address from dev->dev_addr. */
971 static void update_mac_address(struct net_device *ndev)
972 {
973 	sh_eth_write(ndev,
974 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
975 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
976 	sh_eth_write(ndev,
977 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
978 }
979 
980 /* Get MAC address from SuperH MAC address register
981  *
982  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
983  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
984  * When you want use this device, you must set MAC address in bootloader.
985  *
986  */
987 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
988 {
989 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
990 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
991 	} else {
992 		u32 mahr = sh_eth_read(ndev, MAHR);
993 		u32 malr = sh_eth_read(ndev, MALR);
994 
995 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
996 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
997 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
998 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
999 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1000 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1001 	}
1002 }
1003 
1004 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1005 {
1006 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1007 		return EDTRR_TRNS_GETHER;
1008 	else
1009 		return EDTRR_TRNS_ETHER;
1010 }
1011 
1012 struct bb_info {
1013 	void (*set_gate)(void *addr);
1014 	struct mdiobb_ctrl ctrl;
1015 	void *addr;
1016 };
1017 
1018 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1019 {
1020 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1021 	u32 pir;
1022 
1023 	if (bitbang->set_gate)
1024 		bitbang->set_gate(bitbang->addr);
1025 
1026 	pir = ioread32(bitbang->addr);
1027 	if (set)
1028 		pir |=  mask;
1029 	else
1030 		pir &= ~mask;
1031 	iowrite32(pir, bitbang->addr);
1032 }
1033 
1034 /* Data I/O pin control */
1035 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1036 {
1037 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1038 }
1039 
1040 /* Set bit data*/
1041 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1042 {
1043 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1044 }
1045 
1046 /* Get bit data*/
1047 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1048 {
1049 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1050 
1051 	if (bitbang->set_gate)
1052 		bitbang->set_gate(bitbang->addr);
1053 
1054 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1055 }
1056 
1057 /* MDC pin control */
1058 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1059 {
1060 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1061 }
1062 
1063 /* mdio bus control struct */
1064 static struct mdiobb_ops bb_ops = {
1065 	.owner = THIS_MODULE,
1066 	.set_mdc = sh_mdc_ctrl,
1067 	.set_mdio_dir = sh_mmd_ctrl,
1068 	.set_mdio_data = sh_set_mdio,
1069 	.get_mdio_data = sh_get_mdio,
1070 };
1071 
1072 /* free skb and descriptor buffer */
1073 static void sh_eth_ring_free(struct net_device *ndev)
1074 {
1075 	struct sh_eth_private *mdp = netdev_priv(ndev);
1076 	int ringsize, i;
1077 
1078 	/* Free Rx skb ringbuffer */
1079 	if (mdp->rx_skbuff) {
1080 		for (i = 0; i < mdp->num_rx_ring; i++)
1081 			dev_kfree_skb(mdp->rx_skbuff[i]);
1082 	}
1083 	kfree(mdp->rx_skbuff);
1084 	mdp->rx_skbuff = NULL;
1085 
1086 	/* Free Tx skb ringbuffer */
1087 	if (mdp->tx_skbuff) {
1088 		for (i = 0; i < mdp->num_tx_ring; i++)
1089 			dev_kfree_skb(mdp->tx_skbuff[i]);
1090 	}
1091 	kfree(mdp->tx_skbuff);
1092 	mdp->tx_skbuff = NULL;
1093 
1094 	if (mdp->rx_ring) {
1095 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1096 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1097 				  mdp->rx_desc_dma);
1098 		mdp->rx_ring = NULL;
1099 	}
1100 
1101 	if (mdp->tx_ring) {
1102 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1103 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1104 				  mdp->tx_desc_dma);
1105 		mdp->tx_ring = NULL;
1106 	}
1107 }
1108 
1109 /* format skb and descriptor buffer */
1110 static void sh_eth_ring_format(struct net_device *ndev)
1111 {
1112 	struct sh_eth_private *mdp = netdev_priv(ndev);
1113 	int i;
1114 	struct sk_buff *skb;
1115 	struct sh_eth_rxdesc *rxdesc = NULL;
1116 	struct sh_eth_txdesc *txdesc = NULL;
1117 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1118 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1119 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1120 	dma_addr_t dma_addr;
1121 	u32 buf_len;
1122 
1123 	mdp->cur_rx = 0;
1124 	mdp->cur_tx = 0;
1125 	mdp->dirty_rx = 0;
1126 	mdp->dirty_tx = 0;
1127 
1128 	memset(mdp->rx_ring, 0, rx_ringsize);
1129 
1130 	/* build Rx ring buffer */
1131 	for (i = 0; i < mdp->num_rx_ring; i++) {
1132 		/* skb */
1133 		mdp->rx_skbuff[i] = NULL;
1134 		skb = netdev_alloc_skb(ndev, skbuff_size);
1135 		if (skb == NULL)
1136 			break;
1137 		sh_eth_set_receive_align(skb);
1138 
1139 		/* RX descriptor */
1140 		rxdesc = &mdp->rx_ring[i];
1141 		/* The size of the buffer is a multiple of 32 bytes. */
1142 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1143 		rxdesc->len = cpu_to_le32(buf_len << 16);
1144 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1145 					  DMA_FROM_DEVICE);
1146 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1147 			kfree_skb(skb);
1148 			break;
1149 		}
1150 		mdp->rx_skbuff[i] = skb;
1151 		rxdesc->addr = cpu_to_le32(dma_addr);
1152 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1153 
1154 		/* Rx descriptor address set */
1155 		if (i == 0) {
1156 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1157 			if (sh_eth_is_gether(mdp) ||
1158 			    sh_eth_is_rz_fast_ether(mdp))
1159 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1160 		}
1161 	}
1162 
1163 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1164 
1165 	/* Mark the last entry as wrapping the ring. */
1166 	rxdesc->status |= cpu_to_le32(RD_RDLE);
1167 
1168 	memset(mdp->tx_ring, 0, tx_ringsize);
1169 
1170 	/* build Tx ring buffer */
1171 	for (i = 0; i < mdp->num_tx_ring; i++) {
1172 		mdp->tx_skbuff[i] = NULL;
1173 		txdesc = &mdp->tx_ring[i];
1174 		txdesc->status = cpu_to_le32(TD_TFP);
1175 		txdesc->len = cpu_to_le32(0);
1176 		if (i == 0) {
1177 			/* Tx descriptor address set */
1178 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1179 			if (sh_eth_is_gether(mdp) ||
1180 			    sh_eth_is_rz_fast_ether(mdp))
1181 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1182 		}
1183 	}
1184 
1185 	txdesc->status |= cpu_to_le32(TD_TDLE);
1186 }
1187 
1188 /* Get skb and descriptor buffer */
1189 static int sh_eth_ring_init(struct net_device *ndev)
1190 {
1191 	struct sh_eth_private *mdp = netdev_priv(ndev);
1192 	int rx_ringsize, tx_ringsize;
1193 
1194 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1195 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1196 	 * the first 2 bytes, and +16 gets room for the status word from the
1197 	 * card.
1198 	 */
1199 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1200 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1201 	if (mdp->cd->rpadir)
1202 		mdp->rx_buf_sz += NET_IP_ALIGN;
1203 
1204 	/* Allocate RX and TX skb rings */
1205 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1206 				 GFP_KERNEL);
1207 	if (!mdp->rx_skbuff)
1208 		return -ENOMEM;
1209 
1210 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1211 				 GFP_KERNEL);
1212 	if (!mdp->tx_skbuff)
1213 		goto ring_free;
1214 
1215 	/* Allocate all Rx descriptors. */
1216 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1217 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1218 					  GFP_KERNEL);
1219 	if (!mdp->rx_ring)
1220 		goto ring_free;
1221 
1222 	mdp->dirty_rx = 0;
1223 
1224 	/* Allocate all Tx descriptors. */
1225 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1226 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1227 					  GFP_KERNEL);
1228 	if (!mdp->tx_ring)
1229 		goto ring_free;
1230 	return 0;
1231 
1232 ring_free:
1233 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1234 	sh_eth_ring_free(ndev);
1235 
1236 	return -ENOMEM;
1237 }
1238 
1239 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1240 {
1241 	int ret = 0;
1242 	struct sh_eth_private *mdp = netdev_priv(ndev);
1243 
1244 	/* Soft Reset */
1245 	ret = sh_eth_reset(ndev);
1246 	if (ret)
1247 		return ret;
1248 
1249 	if (mdp->cd->rmiimode)
1250 		sh_eth_write(ndev, 0x1, RMIIMODE);
1251 
1252 	/* Descriptor format */
1253 	sh_eth_ring_format(ndev);
1254 	if (mdp->cd->rpadir)
1255 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1256 
1257 	/* all sh_eth int mask */
1258 	sh_eth_write(ndev, 0, EESIPR);
1259 
1260 #if defined(__LITTLE_ENDIAN)
1261 	if (mdp->cd->hw_swap)
1262 		sh_eth_write(ndev, EDMR_EL, EDMR);
1263 	else
1264 #endif
1265 		sh_eth_write(ndev, 0, EDMR);
1266 
1267 	/* FIFO size set */
1268 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1269 	sh_eth_write(ndev, 0, TFTR);
1270 
1271 	/* Frame recv control (enable multiple-packets per rx irq) */
1272 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1273 
1274 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1275 
1276 	if (mdp->cd->bculr)
1277 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1278 
1279 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1280 
1281 	if (!mdp->cd->no_trimd)
1282 		sh_eth_write(ndev, 0, TRIMD);
1283 
1284 	/* Recv frame limit set register */
1285 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1286 		     RFLR);
1287 
1288 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1289 	if (start) {
1290 		mdp->irq_enabled = true;
1291 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1292 	}
1293 
1294 	/* PAUSE Prohibition */
1295 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1296 		     ECMR_TE | ECMR_RE, ECMR);
1297 
1298 	if (mdp->cd->set_rate)
1299 		mdp->cd->set_rate(ndev);
1300 
1301 	/* E-MAC Status Register clear */
1302 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1303 
1304 	/* E-MAC Interrupt Enable register */
1305 	if (start)
1306 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1307 
1308 	/* Set MAC address */
1309 	update_mac_address(ndev);
1310 
1311 	/* mask reset */
1312 	if (mdp->cd->apr)
1313 		sh_eth_write(ndev, APR_AP, APR);
1314 	if (mdp->cd->mpr)
1315 		sh_eth_write(ndev, MPR_MP, MPR);
1316 	if (mdp->cd->tpauser)
1317 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1318 
1319 	if (start) {
1320 		/* Setting the Rx mode will start the Rx process. */
1321 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1322 
1323 		netif_start_queue(ndev);
1324 	}
1325 
1326 	return ret;
1327 }
1328 
1329 static void sh_eth_dev_exit(struct net_device *ndev)
1330 {
1331 	struct sh_eth_private *mdp = netdev_priv(ndev);
1332 	int i;
1333 
1334 	/* Deactivate all TX descriptors, so DMA should stop at next
1335 	 * packet boundary if it's currently running
1336 	 */
1337 	for (i = 0; i < mdp->num_tx_ring; i++)
1338 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1339 
1340 	/* Disable TX FIFO egress to MAC */
1341 	sh_eth_rcv_snd_disable(ndev);
1342 
1343 	/* Stop RX DMA at next packet boundary */
1344 	sh_eth_write(ndev, 0, EDRRR);
1345 
1346 	/* Aside from TX DMA, we can't tell when the hardware is
1347 	 * really stopped, so we need to reset to make sure.
1348 	 * Before doing that, wait for long enough to *probably*
1349 	 * finish transmitting the last packet and poll stats.
1350 	 */
1351 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1352 	sh_eth_get_stats(ndev);
1353 	sh_eth_reset(ndev);
1354 
1355 	/* Set MAC address again */
1356 	update_mac_address(ndev);
1357 }
1358 
1359 /* free Tx skb function */
1360 static int sh_eth_txfree(struct net_device *ndev)
1361 {
1362 	struct sh_eth_private *mdp = netdev_priv(ndev);
1363 	struct sh_eth_txdesc *txdesc;
1364 	int free_num = 0;
1365 	int entry = 0;
1366 
1367 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1368 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1369 		txdesc = &mdp->tx_ring[entry];
1370 		if (txdesc->status & cpu_to_le32(TD_TACT))
1371 			break;
1372 		/* TACT bit must be checked before all the following reads */
1373 		dma_rmb();
1374 		netif_info(mdp, tx_done, ndev,
1375 			   "tx entry %d status 0x%08x\n",
1376 			   entry, le32_to_cpu(txdesc->status));
1377 		/* Free the original skb. */
1378 		if (mdp->tx_skbuff[entry]) {
1379 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1380 					 le32_to_cpu(txdesc->len) >> 16,
1381 					 DMA_TO_DEVICE);
1382 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1383 			mdp->tx_skbuff[entry] = NULL;
1384 			free_num++;
1385 		}
1386 		txdesc->status = cpu_to_le32(TD_TFP);
1387 		if (entry >= mdp->num_tx_ring - 1)
1388 			txdesc->status |= cpu_to_le32(TD_TDLE);
1389 
1390 		ndev->stats.tx_packets++;
1391 		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1392 	}
1393 	return free_num;
1394 }
1395 
1396 /* Packet receive function */
1397 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1398 {
1399 	struct sh_eth_private *mdp = netdev_priv(ndev);
1400 	struct sh_eth_rxdesc *rxdesc;
1401 
1402 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1403 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1404 	int limit;
1405 	struct sk_buff *skb;
1406 	u16 pkt_len = 0;
1407 	u32 desc_status;
1408 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1409 	dma_addr_t dma_addr;
1410 	u32 buf_len;
1411 
1412 	boguscnt = min(boguscnt, *quota);
1413 	limit = boguscnt;
1414 	rxdesc = &mdp->rx_ring[entry];
1415 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1416 		/* RACT bit must be checked before all the following reads */
1417 		dma_rmb();
1418 		desc_status = le32_to_cpu(rxdesc->status);
1419 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1420 
1421 		if (--boguscnt < 0)
1422 			break;
1423 
1424 		netif_info(mdp, rx_status, ndev,
1425 			   "rx entry %d status 0x%08x len %d\n",
1426 			   entry, desc_status, pkt_len);
1427 
1428 		if (!(desc_status & RDFEND))
1429 			ndev->stats.rx_length_errors++;
1430 
1431 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1432 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1433 		 * bit 0. However, in case of the R8A7740 and R7S72100
1434 		 * the RFS bits are from bit 25 to bit 16. So, the
1435 		 * driver needs right shifting by 16.
1436 		 */
1437 		if (mdp->cd->shift_rd0)
1438 			desc_status >>= 16;
1439 
1440 		skb = mdp->rx_skbuff[entry];
1441 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1442 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1443 			ndev->stats.rx_errors++;
1444 			if (desc_status & RD_RFS1)
1445 				ndev->stats.rx_crc_errors++;
1446 			if (desc_status & RD_RFS2)
1447 				ndev->stats.rx_frame_errors++;
1448 			if (desc_status & RD_RFS3)
1449 				ndev->stats.rx_length_errors++;
1450 			if (desc_status & RD_RFS4)
1451 				ndev->stats.rx_length_errors++;
1452 			if (desc_status & RD_RFS6)
1453 				ndev->stats.rx_missed_errors++;
1454 			if (desc_status & RD_RFS10)
1455 				ndev->stats.rx_over_errors++;
1456 		} else	if (skb) {
1457 			dma_addr = le32_to_cpu(rxdesc->addr);
1458 			if (!mdp->cd->hw_swap)
1459 				sh_eth_soft_swap(
1460 					phys_to_virt(ALIGN(dma_addr, 4)),
1461 					pkt_len + 2);
1462 			mdp->rx_skbuff[entry] = NULL;
1463 			if (mdp->cd->rpadir)
1464 				skb_reserve(skb, NET_IP_ALIGN);
1465 			dma_unmap_single(&ndev->dev, dma_addr,
1466 					 ALIGN(mdp->rx_buf_sz, 32),
1467 					 DMA_FROM_DEVICE);
1468 			skb_put(skb, pkt_len);
1469 			skb->protocol = eth_type_trans(skb, ndev);
1470 			netif_receive_skb(skb);
1471 			ndev->stats.rx_packets++;
1472 			ndev->stats.rx_bytes += pkt_len;
1473 			if (desc_status & RD_RFS8)
1474 				ndev->stats.multicast++;
1475 		}
1476 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1477 		rxdesc = &mdp->rx_ring[entry];
1478 	}
1479 
1480 	/* Refill the Rx ring buffers. */
1481 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1482 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1483 		rxdesc = &mdp->rx_ring[entry];
1484 		/* The size of the buffer is 32 byte boundary. */
1485 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1486 		rxdesc->len = cpu_to_le32(buf_len << 16);
1487 
1488 		if (mdp->rx_skbuff[entry] == NULL) {
1489 			skb = netdev_alloc_skb(ndev, skbuff_size);
1490 			if (skb == NULL)
1491 				break;	/* Better luck next round. */
1492 			sh_eth_set_receive_align(skb);
1493 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1494 						  buf_len, DMA_FROM_DEVICE);
1495 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1496 				kfree_skb(skb);
1497 				break;
1498 			}
1499 			mdp->rx_skbuff[entry] = skb;
1500 
1501 			skb_checksum_none_assert(skb);
1502 			rxdesc->addr = cpu_to_le32(dma_addr);
1503 		}
1504 		dma_wmb(); /* RACT bit must be set after all the above writes */
1505 		if (entry >= mdp->num_rx_ring - 1)
1506 			rxdesc->status |=
1507 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1508 		else
1509 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1510 	}
1511 
1512 	/* Restart Rx engine if stopped. */
1513 	/* If we don't need to check status, don't. -KDU */
1514 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1515 		/* fix the values for the next receiving if RDE is set */
1516 		if (intr_status & EESR_RDE &&
1517 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1518 			u32 count = (sh_eth_read(ndev, RDFAR) -
1519 				     sh_eth_read(ndev, RDLAR)) >> 4;
1520 
1521 			mdp->cur_rx = count;
1522 			mdp->dirty_rx = count;
1523 		}
1524 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1525 	}
1526 
1527 	*quota -= limit - boguscnt - 1;
1528 
1529 	return *quota <= 0;
1530 }
1531 
1532 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1533 {
1534 	/* disable tx and rx */
1535 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1536 		~(ECMR_RE | ECMR_TE), ECMR);
1537 }
1538 
1539 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1540 {
1541 	/* enable tx and rx */
1542 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1543 		(ECMR_RE | ECMR_TE), ECMR);
1544 }
1545 
1546 /* error control function */
1547 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1548 {
1549 	struct sh_eth_private *mdp = netdev_priv(ndev);
1550 	u32 felic_stat;
1551 	u32 link_stat;
1552 	u32 mask;
1553 
1554 	if (intr_status & EESR_ECI) {
1555 		felic_stat = sh_eth_read(ndev, ECSR);
1556 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1557 		if (felic_stat & ECSR_ICD)
1558 			ndev->stats.tx_carrier_errors++;
1559 		if (felic_stat & ECSR_LCHNG) {
1560 			/* Link Changed */
1561 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1562 				goto ignore_link;
1563 			} else {
1564 				link_stat = (sh_eth_read(ndev, PSR));
1565 				if (mdp->ether_link_active_low)
1566 					link_stat = ~link_stat;
1567 			}
1568 			if (!(link_stat & PHY_ST_LINK)) {
1569 				sh_eth_rcv_snd_disable(ndev);
1570 			} else {
1571 				/* Link Up */
1572 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1573 						   ~DMAC_M_ECI, EESIPR);
1574 				/* clear int */
1575 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1576 					     ECSR);
1577 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1578 						   DMAC_M_ECI, EESIPR);
1579 				/* enable tx and rx */
1580 				sh_eth_rcv_snd_enable(ndev);
1581 			}
1582 		}
1583 	}
1584 
1585 ignore_link:
1586 	if (intr_status & EESR_TWB) {
1587 		/* Unused write back interrupt */
1588 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1589 			ndev->stats.tx_aborted_errors++;
1590 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1591 		}
1592 	}
1593 
1594 	if (intr_status & EESR_RABT) {
1595 		/* Receive Abort int */
1596 		if (intr_status & EESR_RFRMER) {
1597 			/* Receive Frame Overflow int */
1598 			ndev->stats.rx_frame_errors++;
1599 		}
1600 	}
1601 
1602 	if (intr_status & EESR_TDE) {
1603 		/* Transmit Descriptor Empty int */
1604 		ndev->stats.tx_fifo_errors++;
1605 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1606 	}
1607 
1608 	if (intr_status & EESR_TFE) {
1609 		/* FIFO under flow */
1610 		ndev->stats.tx_fifo_errors++;
1611 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1612 	}
1613 
1614 	if (intr_status & EESR_RDE) {
1615 		/* Receive Descriptor Empty int */
1616 		ndev->stats.rx_over_errors++;
1617 	}
1618 
1619 	if (intr_status & EESR_RFE) {
1620 		/* Receive FIFO Overflow int */
1621 		ndev->stats.rx_fifo_errors++;
1622 	}
1623 
1624 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1625 		/* Address Error */
1626 		ndev->stats.tx_fifo_errors++;
1627 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1628 	}
1629 
1630 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1631 	if (mdp->cd->no_ade)
1632 		mask &= ~EESR_ADE;
1633 	if (intr_status & mask) {
1634 		/* Tx error */
1635 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1636 
1637 		/* dmesg */
1638 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1639 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1640 			   (u32)ndev->state, edtrr);
1641 		/* dirty buffer free */
1642 		sh_eth_txfree(ndev);
1643 
1644 		/* SH7712 BUG */
1645 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1646 			/* tx dma start */
1647 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1648 		}
1649 		/* wakeup */
1650 		netif_wake_queue(ndev);
1651 	}
1652 }
1653 
1654 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1655 {
1656 	struct net_device *ndev = netdev;
1657 	struct sh_eth_private *mdp = netdev_priv(ndev);
1658 	struct sh_eth_cpu_data *cd = mdp->cd;
1659 	irqreturn_t ret = IRQ_NONE;
1660 	u32 intr_status, intr_enable;
1661 
1662 	spin_lock(&mdp->lock);
1663 
1664 	/* Get interrupt status */
1665 	intr_status = sh_eth_read(ndev, EESR);
1666 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1667 	 * enabled since it's the one that  comes thru regardless of the mask,
1668 	 * and we need to fully handle it in sh_eth_error() in order to quench
1669 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1670 	 */
1671 	intr_enable = sh_eth_read(ndev, EESIPR);
1672 	intr_status &= intr_enable | DMAC_M_ECI;
1673 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1674 		ret = IRQ_HANDLED;
1675 	else
1676 		goto out;
1677 
1678 	if (!likely(mdp->irq_enabled)) {
1679 		sh_eth_write(ndev, 0, EESIPR);
1680 		goto out;
1681 	}
1682 
1683 	if (intr_status & EESR_RX_CHECK) {
1684 		if (napi_schedule_prep(&mdp->napi)) {
1685 			/* Mask Rx interrupts */
1686 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1687 				     EESIPR);
1688 			__napi_schedule(&mdp->napi);
1689 		} else {
1690 			netdev_warn(ndev,
1691 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1692 				    intr_status, intr_enable);
1693 		}
1694 	}
1695 
1696 	/* Tx Check */
1697 	if (intr_status & cd->tx_check) {
1698 		/* Clear Tx interrupts */
1699 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1700 
1701 		sh_eth_txfree(ndev);
1702 		netif_wake_queue(ndev);
1703 	}
1704 
1705 	if (intr_status & cd->eesr_err_check) {
1706 		/* Clear error interrupts */
1707 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1708 
1709 		sh_eth_error(ndev, intr_status);
1710 	}
1711 
1712 out:
1713 	spin_unlock(&mdp->lock);
1714 
1715 	return ret;
1716 }
1717 
1718 static int sh_eth_poll(struct napi_struct *napi, int budget)
1719 {
1720 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1721 						  napi);
1722 	struct net_device *ndev = napi->dev;
1723 	int quota = budget;
1724 	u32 intr_status;
1725 
1726 	for (;;) {
1727 		intr_status = sh_eth_read(ndev, EESR);
1728 		if (!(intr_status & EESR_RX_CHECK))
1729 			break;
1730 		/* Clear Rx interrupts */
1731 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1732 
1733 		if (sh_eth_rx(ndev, intr_status, &quota))
1734 			goto out;
1735 	}
1736 
1737 	napi_complete(napi);
1738 
1739 	/* Reenable Rx interrupts */
1740 	if (mdp->irq_enabled)
1741 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1742 out:
1743 	return budget - quota;
1744 }
1745 
1746 /* PHY state control function */
1747 static void sh_eth_adjust_link(struct net_device *ndev)
1748 {
1749 	struct sh_eth_private *mdp = netdev_priv(ndev);
1750 	struct phy_device *phydev = mdp->phydev;
1751 	int new_state = 0;
1752 
1753 	if (phydev->link) {
1754 		if (phydev->duplex != mdp->duplex) {
1755 			new_state = 1;
1756 			mdp->duplex = phydev->duplex;
1757 			if (mdp->cd->set_duplex)
1758 				mdp->cd->set_duplex(ndev);
1759 		}
1760 
1761 		if (phydev->speed != mdp->speed) {
1762 			new_state = 1;
1763 			mdp->speed = phydev->speed;
1764 			if (mdp->cd->set_rate)
1765 				mdp->cd->set_rate(ndev);
1766 		}
1767 		if (!mdp->link) {
1768 			sh_eth_write(ndev,
1769 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1770 				     ECMR);
1771 			new_state = 1;
1772 			mdp->link = phydev->link;
1773 			if (mdp->cd->no_psr || mdp->no_ether_link)
1774 				sh_eth_rcv_snd_enable(ndev);
1775 		}
1776 	} else if (mdp->link) {
1777 		new_state = 1;
1778 		mdp->link = 0;
1779 		mdp->speed = 0;
1780 		mdp->duplex = -1;
1781 		if (mdp->cd->no_psr || mdp->no_ether_link)
1782 			sh_eth_rcv_snd_disable(ndev);
1783 	}
1784 
1785 	if (new_state && netif_msg_link(mdp))
1786 		phy_print_status(phydev);
1787 }
1788 
1789 /* PHY init function */
1790 static int sh_eth_phy_init(struct net_device *ndev)
1791 {
1792 	struct device_node *np = ndev->dev.parent->of_node;
1793 	struct sh_eth_private *mdp = netdev_priv(ndev);
1794 	struct phy_device *phydev = NULL;
1795 
1796 	mdp->link = 0;
1797 	mdp->speed = 0;
1798 	mdp->duplex = -1;
1799 
1800 	/* Try connect to PHY */
1801 	if (np) {
1802 		struct device_node *pn;
1803 
1804 		pn = of_parse_phandle(np, "phy-handle", 0);
1805 		phydev = of_phy_connect(ndev, pn,
1806 					sh_eth_adjust_link, 0,
1807 					mdp->phy_interface);
1808 
1809 		if (!phydev)
1810 			phydev = ERR_PTR(-ENOENT);
1811 	} else {
1812 		char phy_id[MII_BUS_ID_SIZE + 3];
1813 
1814 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1815 			 mdp->mii_bus->id, mdp->phy_id);
1816 
1817 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1818 				     mdp->phy_interface);
1819 	}
1820 
1821 	if (IS_ERR(phydev)) {
1822 		netdev_err(ndev, "failed to connect PHY\n");
1823 		return PTR_ERR(phydev);
1824 	}
1825 
1826 	phy_attached_info(phydev);
1827 
1828 	mdp->phydev = phydev;
1829 
1830 	return 0;
1831 }
1832 
1833 /* PHY control start function */
1834 static int sh_eth_phy_start(struct net_device *ndev)
1835 {
1836 	struct sh_eth_private *mdp = netdev_priv(ndev);
1837 	int ret;
1838 
1839 	ret = sh_eth_phy_init(ndev);
1840 	if (ret)
1841 		return ret;
1842 
1843 	phy_start(mdp->phydev);
1844 
1845 	return 0;
1846 }
1847 
1848 static int sh_eth_get_settings(struct net_device *ndev,
1849 			       struct ethtool_cmd *ecmd)
1850 {
1851 	struct sh_eth_private *mdp = netdev_priv(ndev);
1852 	unsigned long flags;
1853 	int ret;
1854 
1855 	if (!mdp->phydev)
1856 		return -ENODEV;
1857 
1858 	spin_lock_irqsave(&mdp->lock, flags);
1859 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1860 	spin_unlock_irqrestore(&mdp->lock, flags);
1861 
1862 	return ret;
1863 }
1864 
1865 static int sh_eth_set_settings(struct net_device *ndev,
1866 			       struct ethtool_cmd *ecmd)
1867 {
1868 	struct sh_eth_private *mdp = netdev_priv(ndev);
1869 	unsigned long flags;
1870 	int ret;
1871 
1872 	if (!mdp->phydev)
1873 		return -ENODEV;
1874 
1875 	spin_lock_irqsave(&mdp->lock, flags);
1876 
1877 	/* disable tx and rx */
1878 	sh_eth_rcv_snd_disable(ndev);
1879 
1880 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1881 	if (ret)
1882 		goto error_exit;
1883 
1884 	if (ecmd->duplex == DUPLEX_FULL)
1885 		mdp->duplex = 1;
1886 	else
1887 		mdp->duplex = 0;
1888 
1889 	if (mdp->cd->set_duplex)
1890 		mdp->cd->set_duplex(ndev);
1891 
1892 error_exit:
1893 	mdelay(1);
1894 
1895 	/* enable tx and rx */
1896 	sh_eth_rcv_snd_enable(ndev);
1897 
1898 	spin_unlock_irqrestore(&mdp->lock, flags);
1899 
1900 	return ret;
1901 }
1902 
1903 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1904  * version must be bumped as well.  Just adding registers up to that
1905  * limit is fine, as long as the existing register indices don't
1906  * change.
1907  */
1908 #define SH_ETH_REG_DUMP_VERSION		1
1909 #define SH_ETH_REG_DUMP_MAX_REGS	256
1910 
1911 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1912 {
1913 	struct sh_eth_private *mdp = netdev_priv(ndev);
1914 	struct sh_eth_cpu_data *cd = mdp->cd;
1915 	u32 *valid_map;
1916 	size_t len;
1917 
1918 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1919 
1920 	/* Dump starts with a bitmap that tells ethtool which
1921 	 * registers are defined for this chip.
1922 	 */
1923 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1924 	if (buf) {
1925 		valid_map = buf;
1926 		buf += len;
1927 	} else {
1928 		valid_map = NULL;
1929 	}
1930 
1931 	/* Add a register to the dump, if it has a defined offset.
1932 	 * This automatically skips most undefined registers, but for
1933 	 * some it is also necessary to check a capability flag in
1934 	 * struct sh_eth_cpu_data.
1935 	 */
1936 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1937 #define add_reg_from(reg, read_expr) do {				\
1938 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1939 			if (buf) {					\
1940 				mark_reg_valid(reg);			\
1941 				*buf++ = read_expr;			\
1942 			}						\
1943 			++len;						\
1944 		}							\
1945 	} while (0)
1946 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1947 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1948 
1949 	add_reg(EDSR);
1950 	add_reg(EDMR);
1951 	add_reg(EDTRR);
1952 	add_reg(EDRRR);
1953 	add_reg(EESR);
1954 	add_reg(EESIPR);
1955 	add_reg(TDLAR);
1956 	add_reg(TDFAR);
1957 	add_reg(TDFXR);
1958 	add_reg(TDFFR);
1959 	add_reg(RDLAR);
1960 	add_reg(RDFAR);
1961 	add_reg(RDFXR);
1962 	add_reg(RDFFR);
1963 	add_reg(TRSCER);
1964 	add_reg(RMFCR);
1965 	add_reg(TFTR);
1966 	add_reg(FDR);
1967 	add_reg(RMCR);
1968 	add_reg(TFUCR);
1969 	add_reg(RFOCR);
1970 	if (cd->rmiimode)
1971 		add_reg(RMIIMODE);
1972 	add_reg(FCFTR);
1973 	if (cd->rpadir)
1974 		add_reg(RPADIR);
1975 	if (!cd->no_trimd)
1976 		add_reg(TRIMD);
1977 	add_reg(ECMR);
1978 	add_reg(ECSR);
1979 	add_reg(ECSIPR);
1980 	add_reg(PIR);
1981 	if (!cd->no_psr)
1982 		add_reg(PSR);
1983 	add_reg(RDMLR);
1984 	add_reg(RFLR);
1985 	add_reg(IPGR);
1986 	if (cd->apr)
1987 		add_reg(APR);
1988 	if (cd->mpr)
1989 		add_reg(MPR);
1990 	add_reg(RFCR);
1991 	add_reg(RFCF);
1992 	if (cd->tpauser)
1993 		add_reg(TPAUSER);
1994 	add_reg(TPAUSECR);
1995 	add_reg(GECMR);
1996 	if (cd->bculr)
1997 		add_reg(BCULR);
1998 	add_reg(MAHR);
1999 	add_reg(MALR);
2000 	add_reg(TROCR);
2001 	add_reg(CDCR);
2002 	add_reg(LCCR);
2003 	add_reg(CNDCR);
2004 	add_reg(CEFCR);
2005 	add_reg(FRECR);
2006 	add_reg(TSFRCR);
2007 	add_reg(TLFRCR);
2008 	add_reg(CERCR);
2009 	add_reg(CEECR);
2010 	add_reg(MAFCR);
2011 	if (cd->rtrate)
2012 		add_reg(RTRATE);
2013 	if (cd->hw_crc)
2014 		add_reg(CSMR);
2015 	if (cd->select_mii)
2016 		add_reg(RMII_MII);
2017 	add_reg(ARSTR);
2018 	if (cd->tsu) {
2019 		add_tsu_reg(TSU_CTRST);
2020 		add_tsu_reg(TSU_FWEN0);
2021 		add_tsu_reg(TSU_FWEN1);
2022 		add_tsu_reg(TSU_FCM);
2023 		add_tsu_reg(TSU_BSYSL0);
2024 		add_tsu_reg(TSU_BSYSL1);
2025 		add_tsu_reg(TSU_PRISL0);
2026 		add_tsu_reg(TSU_PRISL1);
2027 		add_tsu_reg(TSU_FWSL0);
2028 		add_tsu_reg(TSU_FWSL1);
2029 		add_tsu_reg(TSU_FWSLC);
2030 		add_tsu_reg(TSU_QTAG0);
2031 		add_tsu_reg(TSU_QTAG1);
2032 		add_tsu_reg(TSU_QTAGM0);
2033 		add_tsu_reg(TSU_QTAGM1);
2034 		add_tsu_reg(TSU_FWSR);
2035 		add_tsu_reg(TSU_FWINMK);
2036 		add_tsu_reg(TSU_ADQT0);
2037 		add_tsu_reg(TSU_ADQT1);
2038 		add_tsu_reg(TSU_VTAG0);
2039 		add_tsu_reg(TSU_VTAG1);
2040 		add_tsu_reg(TSU_ADSBSY);
2041 		add_tsu_reg(TSU_TEN);
2042 		add_tsu_reg(TSU_POST1);
2043 		add_tsu_reg(TSU_POST2);
2044 		add_tsu_reg(TSU_POST3);
2045 		add_tsu_reg(TSU_POST4);
2046 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2047 			/* This is the start of a table, not just a single
2048 			 * register.
2049 			 */
2050 			if (buf) {
2051 				unsigned int i;
2052 
2053 				mark_reg_valid(TSU_ADRH0);
2054 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2055 					*buf++ = ioread32(
2056 						mdp->tsu_addr +
2057 						mdp->reg_offset[TSU_ADRH0] +
2058 						i * 4);
2059 			}
2060 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2061 		}
2062 	}
2063 
2064 #undef mark_reg_valid
2065 #undef add_reg_from
2066 #undef add_reg
2067 #undef add_tsu_reg
2068 
2069 	return len * 4;
2070 }
2071 
2072 static int sh_eth_get_regs_len(struct net_device *ndev)
2073 {
2074 	return __sh_eth_get_regs(ndev, NULL);
2075 }
2076 
2077 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2078 			    void *buf)
2079 {
2080 	struct sh_eth_private *mdp = netdev_priv(ndev);
2081 
2082 	regs->version = SH_ETH_REG_DUMP_VERSION;
2083 
2084 	pm_runtime_get_sync(&mdp->pdev->dev);
2085 	__sh_eth_get_regs(ndev, buf);
2086 	pm_runtime_put_sync(&mdp->pdev->dev);
2087 }
2088 
2089 static int sh_eth_nway_reset(struct net_device *ndev)
2090 {
2091 	struct sh_eth_private *mdp = netdev_priv(ndev);
2092 	unsigned long flags;
2093 	int ret;
2094 
2095 	if (!mdp->phydev)
2096 		return -ENODEV;
2097 
2098 	spin_lock_irqsave(&mdp->lock, flags);
2099 	ret = phy_start_aneg(mdp->phydev);
2100 	spin_unlock_irqrestore(&mdp->lock, flags);
2101 
2102 	return ret;
2103 }
2104 
2105 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2106 {
2107 	struct sh_eth_private *mdp = netdev_priv(ndev);
2108 	return mdp->msg_enable;
2109 }
2110 
2111 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2112 {
2113 	struct sh_eth_private *mdp = netdev_priv(ndev);
2114 	mdp->msg_enable = value;
2115 }
2116 
2117 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2118 	"rx_current", "tx_current",
2119 	"rx_dirty", "tx_dirty",
2120 };
2121 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2122 
2123 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2124 {
2125 	switch (sset) {
2126 	case ETH_SS_STATS:
2127 		return SH_ETH_STATS_LEN;
2128 	default:
2129 		return -EOPNOTSUPP;
2130 	}
2131 }
2132 
2133 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2134 				     struct ethtool_stats *stats, u64 *data)
2135 {
2136 	struct sh_eth_private *mdp = netdev_priv(ndev);
2137 	int i = 0;
2138 
2139 	/* device-specific stats */
2140 	data[i++] = mdp->cur_rx;
2141 	data[i++] = mdp->cur_tx;
2142 	data[i++] = mdp->dirty_rx;
2143 	data[i++] = mdp->dirty_tx;
2144 }
2145 
2146 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2147 {
2148 	switch (stringset) {
2149 	case ETH_SS_STATS:
2150 		memcpy(data, *sh_eth_gstrings_stats,
2151 		       sizeof(sh_eth_gstrings_stats));
2152 		break;
2153 	}
2154 }
2155 
2156 static void sh_eth_get_ringparam(struct net_device *ndev,
2157 				 struct ethtool_ringparam *ring)
2158 {
2159 	struct sh_eth_private *mdp = netdev_priv(ndev);
2160 
2161 	ring->rx_max_pending = RX_RING_MAX;
2162 	ring->tx_max_pending = TX_RING_MAX;
2163 	ring->rx_pending = mdp->num_rx_ring;
2164 	ring->tx_pending = mdp->num_tx_ring;
2165 }
2166 
2167 static int sh_eth_set_ringparam(struct net_device *ndev,
2168 				struct ethtool_ringparam *ring)
2169 {
2170 	struct sh_eth_private *mdp = netdev_priv(ndev);
2171 	int ret;
2172 
2173 	if (ring->tx_pending > TX_RING_MAX ||
2174 	    ring->rx_pending > RX_RING_MAX ||
2175 	    ring->tx_pending < TX_RING_MIN ||
2176 	    ring->rx_pending < RX_RING_MIN)
2177 		return -EINVAL;
2178 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2179 		return -EINVAL;
2180 
2181 	if (netif_running(ndev)) {
2182 		netif_device_detach(ndev);
2183 		netif_tx_disable(ndev);
2184 
2185 		/* Serialise with the interrupt handler and NAPI, then
2186 		 * disable interrupts.  We have to clear the
2187 		 * irq_enabled flag first to ensure that interrupts
2188 		 * won't be re-enabled.
2189 		 */
2190 		mdp->irq_enabled = false;
2191 		synchronize_irq(ndev->irq);
2192 		napi_synchronize(&mdp->napi);
2193 		sh_eth_write(ndev, 0x0000, EESIPR);
2194 
2195 		sh_eth_dev_exit(ndev);
2196 
2197 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2198 		sh_eth_ring_free(ndev);
2199 	}
2200 
2201 	/* Set new parameters */
2202 	mdp->num_rx_ring = ring->rx_pending;
2203 	mdp->num_tx_ring = ring->tx_pending;
2204 
2205 	if (netif_running(ndev)) {
2206 		ret = sh_eth_ring_init(ndev);
2207 		if (ret < 0) {
2208 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2209 				   __func__);
2210 			return ret;
2211 		}
2212 		ret = sh_eth_dev_init(ndev, false);
2213 		if (ret < 0) {
2214 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2215 				   __func__);
2216 			return ret;
2217 		}
2218 
2219 		mdp->irq_enabled = true;
2220 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2221 		/* Setting the Rx mode will start the Rx process. */
2222 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2223 		netif_device_attach(ndev);
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static const struct ethtool_ops sh_eth_ethtool_ops = {
2230 	.get_settings	= sh_eth_get_settings,
2231 	.set_settings	= sh_eth_set_settings,
2232 	.get_regs_len	= sh_eth_get_regs_len,
2233 	.get_regs	= sh_eth_get_regs,
2234 	.nway_reset	= sh_eth_nway_reset,
2235 	.get_msglevel	= sh_eth_get_msglevel,
2236 	.set_msglevel	= sh_eth_set_msglevel,
2237 	.get_link	= ethtool_op_get_link,
2238 	.get_strings	= sh_eth_get_strings,
2239 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2240 	.get_sset_count     = sh_eth_get_sset_count,
2241 	.get_ringparam	= sh_eth_get_ringparam,
2242 	.set_ringparam	= sh_eth_set_ringparam,
2243 };
2244 
2245 /* network device open function */
2246 static int sh_eth_open(struct net_device *ndev)
2247 {
2248 	int ret = 0;
2249 	struct sh_eth_private *mdp = netdev_priv(ndev);
2250 
2251 	pm_runtime_get_sync(&mdp->pdev->dev);
2252 
2253 	napi_enable(&mdp->napi);
2254 
2255 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2256 			  mdp->cd->irq_flags, ndev->name, ndev);
2257 	if (ret) {
2258 		netdev_err(ndev, "Can not assign IRQ number\n");
2259 		goto out_napi_off;
2260 	}
2261 
2262 	/* Descriptor set */
2263 	ret = sh_eth_ring_init(ndev);
2264 	if (ret)
2265 		goto out_free_irq;
2266 
2267 	/* device init */
2268 	ret = sh_eth_dev_init(ndev, true);
2269 	if (ret)
2270 		goto out_free_irq;
2271 
2272 	/* PHY control start*/
2273 	ret = sh_eth_phy_start(ndev);
2274 	if (ret)
2275 		goto out_free_irq;
2276 
2277 	mdp->is_opened = 1;
2278 
2279 	return ret;
2280 
2281 out_free_irq:
2282 	free_irq(ndev->irq, ndev);
2283 out_napi_off:
2284 	napi_disable(&mdp->napi);
2285 	pm_runtime_put_sync(&mdp->pdev->dev);
2286 	return ret;
2287 }
2288 
2289 /* Timeout function */
2290 static void sh_eth_tx_timeout(struct net_device *ndev)
2291 {
2292 	struct sh_eth_private *mdp = netdev_priv(ndev);
2293 	struct sh_eth_rxdesc *rxdesc;
2294 	int i;
2295 
2296 	netif_stop_queue(ndev);
2297 
2298 	netif_err(mdp, timer, ndev,
2299 		  "transmit timed out, status %8.8x, resetting...\n",
2300 		  sh_eth_read(ndev, EESR));
2301 
2302 	/* tx_errors count up */
2303 	ndev->stats.tx_errors++;
2304 
2305 	/* Free all the skbuffs in the Rx queue. */
2306 	for (i = 0; i < mdp->num_rx_ring; i++) {
2307 		rxdesc = &mdp->rx_ring[i];
2308 		rxdesc->status = cpu_to_le32(0);
2309 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2310 		dev_kfree_skb(mdp->rx_skbuff[i]);
2311 		mdp->rx_skbuff[i] = NULL;
2312 	}
2313 	for (i = 0; i < mdp->num_tx_ring; i++) {
2314 		dev_kfree_skb(mdp->tx_skbuff[i]);
2315 		mdp->tx_skbuff[i] = NULL;
2316 	}
2317 
2318 	/* device init */
2319 	sh_eth_dev_init(ndev, true);
2320 }
2321 
2322 /* Packet transmit function */
2323 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2324 {
2325 	struct sh_eth_private *mdp = netdev_priv(ndev);
2326 	struct sh_eth_txdesc *txdesc;
2327 	dma_addr_t dma_addr;
2328 	u32 entry;
2329 	unsigned long flags;
2330 
2331 	spin_lock_irqsave(&mdp->lock, flags);
2332 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2333 		if (!sh_eth_txfree(ndev)) {
2334 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2335 			netif_stop_queue(ndev);
2336 			spin_unlock_irqrestore(&mdp->lock, flags);
2337 			return NETDEV_TX_BUSY;
2338 		}
2339 	}
2340 	spin_unlock_irqrestore(&mdp->lock, flags);
2341 
2342 	if (skb_put_padto(skb, ETH_ZLEN))
2343 		return NETDEV_TX_OK;
2344 
2345 	entry = mdp->cur_tx % mdp->num_tx_ring;
2346 	mdp->tx_skbuff[entry] = skb;
2347 	txdesc = &mdp->tx_ring[entry];
2348 	/* soft swap. */
2349 	if (!mdp->cd->hw_swap)
2350 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2351 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2352 				  DMA_TO_DEVICE);
2353 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2354 		kfree_skb(skb);
2355 		return NETDEV_TX_OK;
2356 	}
2357 	txdesc->addr = cpu_to_le32(dma_addr);
2358 	txdesc->len  = cpu_to_le32(skb->len << 16);
2359 
2360 	dma_wmb(); /* TACT bit must be set after all the above writes */
2361 	if (entry >= mdp->num_tx_ring - 1)
2362 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2363 	else
2364 		txdesc->status |= cpu_to_le32(TD_TACT);
2365 
2366 	mdp->cur_tx++;
2367 
2368 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2369 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2370 
2371 	return NETDEV_TX_OK;
2372 }
2373 
2374 /* The statistics registers have write-clear behaviour, which means we
2375  * will lose any increment between the read and write.  We mitigate
2376  * this by only clearing when we read a non-zero value, so we will
2377  * never falsely report a total of zero.
2378  */
2379 static void
2380 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2381 {
2382 	u32 delta = sh_eth_read(ndev, reg);
2383 
2384 	if (delta) {
2385 		*stat += delta;
2386 		sh_eth_write(ndev, 0, reg);
2387 	}
2388 }
2389 
2390 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2391 {
2392 	struct sh_eth_private *mdp = netdev_priv(ndev);
2393 
2394 	if (sh_eth_is_rz_fast_ether(mdp))
2395 		return &ndev->stats;
2396 
2397 	if (!mdp->is_opened)
2398 		return &ndev->stats;
2399 
2400 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2401 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2402 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2403 
2404 	if (sh_eth_is_gether(mdp)) {
2405 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2406 				   CERCR);
2407 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2408 				   CEECR);
2409 	} else {
2410 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2411 				   CNDCR);
2412 	}
2413 
2414 	return &ndev->stats;
2415 }
2416 
2417 /* device close function */
2418 static int sh_eth_close(struct net_device *ndev)
2419 {
2420 	struct sh_eth_private *mdp = netdev_priv(ndev);
2421 
2422 	netif_stop_queue(ndev);
2423 
2424 	/* Serialise with the interrupt handler and NAPI, then disable
2425 	 * interrupts.  We have to clear the irq_enabled flag first to
2426 	 * ensure that interrupts won't be re-enabled.
2427 	 */
2428 	mdp->irq_enabled = false;
2429 	synchronize_irq(ndev->irq);
2430 	napi_disable(&mdp->napi);
2431 	sh_eth_write(ndev, 0x0000, EESIPR);
2432 
2433 	sh_eth_dev_exit(ndev);
2434 
2435 	/* PHY Disconnect */
2436 	if (mdp->phydev) {
2437 		phy_stop(mdp->phydev);
2438 		phy_disconnect(mdp->phydev);
2439 		mdp->phydev = NULL;
2440 	}
2441 
2442 	free_irq(ndev->irq, ndev);
2443 
2444 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2445 	sh_eth_ring_free(ndev);
2446 
2447 	pm_runtime_put_sync(&mdp->pdev->dev);
2448 
2449 	mdp->is_opened = 0;
2450 
2451 	return 0;
2452 }
2453 
2454 /* ioctl to device function */
2455 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2456 {
2457 	struct sh_eth_private *mdp = netdev_priv(ndev);
2458 	struct phy_device *phydev = mdp->phydev;
2459 
2460 	if (!netif_running(ndev))
2461 		return -EINVAL;
2462 
2463 	if (!phydev)
2464 		return -ENODEV;
2465 
2466 	return phy_mii_ioctl(phydev, rq, cmd);
2467 }
2468 
2469 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2470 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2471 					    int entry)
2472 {
2473 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2474 }
2475 
2476 static u32 sh_eth_tsu_get_post_mask(int entry)
2477 {
2478 	return 0x0f << (28 - ((entry % 8) * 4));
2479 }
2480 
2481 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2482 {
2483 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2484 }
2485 
2486 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2487 					     int entry)
2488 {
2489 	struct sh_eth_private *mdp = netdev_priv(ndev);
2490 	u32 tmp;
2491 	void *reg_offset;
2492 
2493 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2494 	tmp = ioread32(reg_offset);
2495 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2496 }
2497 
2498 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2499 					      int entry)
2500 {
2501 	struct sh_eth_private *mdp = netdev_priv(ndev);
2502 	u32 post_mask, ref_mask, tmp;
2503 	void *reg_offset;
2504 
2505 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2506 	post_mask = sh_eth_tsu_get_post_mask(entry);
2507 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2508 
2509 	tmp = ioread32(reg_offset);
2510 	iowrite32(tmp & ~post_mask, reg_offset);
2511 
2512 	/* If other port enables, the function returns "true" */
2513 	return tmp & ref_mask;
2514 }
2515 
2516 static int sh_eth_tsu_busy(struct net_device *ndev)
2517 {
2518 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2519 	struct sh_eth_private *mdp = netdev_priv(ndev);
2520 
2521 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2522 		udelay(10);
2523 		timeout--;
2524 		if (timeout <= 0) {
2525 			netdev_err(ndev, "%s: timeout\n", __func__);
2526 			return -ETIMEDOUT;
2527 		}
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2534 				  const u8 *addr)
2535 {
2536 	u32 val;
2537 
2538 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2539 	iowrite32(val, reg);
2540 	if (sh_eth_tsu_busy(ndev) < 0)
2541 		return -EBUSY;
2542 
2543 	val = addr[4] << 8 | addr[5];
2544 	iowrite32(val, reg + 4);
2545 	if (sh_eth_tsu_busy(ndev) < 0)
2546 		return -EBUSY;
2547 
2548 	return 0;
2549 }
2550 
2551 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2552 {
2553 	u32 val;
2554 
2555 	val = ioread32(reg);
2556 	addr[0] = (val >> 24) & 0xff;
2557 	addr[1] = (val >> 16) & 0xff;
2558 	addr[2] = (val >> 8) & 0xff;
2559 	addr[3] = val & 0xff;
2560 	val = ioread32(reg + 4);
2561 	addr[4] = (val >> 8) & 0xff;
2562 	addr[5] = val & 0xff;
2563 }
2564 
2565 
2566 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2567 {
2568 	struct sh_eth_private *mdp = netdev_priv(ndev);
2569 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2570 	int i;
2571 	u8 c_addr[ETH_ALEN];
2572 
2573 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2574 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2575 		if (ether_addr_equal(addr, c_addr))
2576 			return i;
2577 	}
2578 
2579 	return -ENOENT;
2580 }
2581 
2582 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2583 {
2584 	u8 blank[ETH_ALEN];
2585 	int entry;
2586 
2587 	memset(blank, 0, sizeof(blank));
2588 	entry = sh_eth_tsu_find_entry(ndev, blank);
2589 	return (entry < 0) ? -ENOMEM : entry;
2590 }
2591 
2592 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2593 					      int entry)
2594 {
2595 	struct sh_eth_private *mdp = netdev_priv(ndev);
2596 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2597 	int ret;
2598 	u8 blank[ETH_ALEN];
2599 
2600 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2601 			 ~(1 << (31 - entry)), TSU_TEN);
2602 
2603 	memset(blank, 0, sizeof(blank));
2604 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2605 	if (ret < 0)
2606 		return ret;
2607 	return 0;
2608 }
2609 
2610 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2611 {
2612 	struct sh_eth_private *mdp = netdev_priv(ndev);
2613 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2614 	int i, ret;
2615 
2616 	if (!mdp->cd->tsu)
2617 		return 0;
2618 
2619 	i = sh_eth_tsu_find_entry(ndev, addr);
2620 	if (i < 0) {
2621 		/* No entry found, create one */
2622 		i = sh_eth_tsu_find_empty(ndev);
2623 		if (i < 0)
2624 			return -ENOMEM;
2625 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2626 		if (ret < 0)
2627 			return ret;
2628 
2629 		/* Enable the entry */
2630 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2631 				 (1 << (31 - i)), TSU_TEN);
2632 	}
2633 
2634 	/* Entry found or created, enable POST */
2635 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2636 
2637 	return 0;
2638 }
2639 
2640 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2641 {
2642 	struct sh_eth_private *mdp = netdev_priv(ndev);
2643 	int i, ret;
2644 
2645 	if (!mdp->cd->tsu)
2646 		return 0;
2647 
2648 	i = sh_eth_tsu_find_entry(ndev, addr);
2649 	if (i) {
2650 		/* Entry found */
2651 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2652 			goto done;
2653 
2654 		/* Disable the entry if both ports was disabled */
2655 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2656 		if (ret < 0)
2657 			return ret;
2658 	}
2659 done:
2660 	return 0;
2661 }
2662 
2663 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2664 {
2665 	struct sh_eth_private *mdp = netdev_priv(ndev);
2666 	int i, ret;
2667 
2668 	if (!mdp->cd->tsu)
2669 		return 0;
2670 
2671 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2672 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2673 			continue;
2674 
2675 		/* Disable the entry if both ports was disabled */
2676 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2677 		if (ret < 0)
2678 			return ret;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2685 {
2686 	struct sh_eth_private *mdp = netdev_priv(ndev);
2687 	u8 addr[ETH_ALEN];
2688 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2689 	int i;
2690 
2691 	if (!mdp->cd->tsu)
2692 		return;
2693 
2694 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2695 		sh_eth_tsu_read_entry(reg_offset, addr);
2696 		if (is_multicast_ether_addr(addr))
2697 			sh_eth_tsu_del_entry(ndev, addr);
2698 	}
2699 }
2700 
2701 /* Update promiscuous flag and multicast filter */
2702 static void sh_eth_set_rx_mode(struct net_device *ndev)
2703 {
2704 	struct sh_eth_private *mdp = netdev_priv(ndev);
2705 	u32 ecmr_bits;
2706 	int mcast_all = 0;
2707 	unsigned long flags;
2708 
2709 	spin_lock_irqsave(&mdp->lock, flags);
2710 	/* Initial condition is MCT = 1, PRM = 0.
2711 	 * Depending on ndev->flags, set PRM or clear MCT
2712 	 */
2713 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2714 	if (mdp->cd->tsu)
2715 		ecmr_bits |= ECMR_MCT;
2716 
2717 	if (!(ndev->flags & IFF_MULTICAST)) {
2718 		sh_eth_tsu_purge_mcast(ndev);
2719 		mcast_all = 1;
2720 	}
2721 	if (ndev->flags & IFF_ALLMULTI) {
2722 		sh_eth_tsu_purge_mcast(ndev);
2723 		ecmr_bits &= ~ECMR_MCT;
2724 		mcast_all = 1;
2725 	}
2726 
2727 	if (ndev->flags & IFF_PROMISC) {
2728 		sh_eth_tsu_purge_all(ndev);
2729 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2730 	} else if (mdp->cd->tsu) {
2731 		struct netdev_hw_addr *ha;
2732 		netdev_for_each_mc_addr(ha, ndev) {
2733 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2734 				continue;
2735 
2736 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2737 				if (!mcast_all) {
2738 					sh_eth_tsu_purge_mcast(ndev);
2739 					ecmr_bits &= ~ECMR_MCT;
2740 					mcast_all = 1;
2741 				}
2742 			}
2743 		}
2744 	}
2745 
2746 	/* update the ethernet mode */
2747 	sh_eth_write(ndev, ecmr_bits, ECMR);
2748 
2749 	spin_unlock_irqrestore(&mdp->lock, flags);
2750 }
2751 
2752 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2753 {
2754 	if (!mdp->port)
2755 		return TSU_VTAG0;
2756 	else
2757 		return TSU_VTAG1;
2758 }
2759 
2760 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2761 				  __be16 proto, u16 vid)
2762 {
2763 	struct sh_eth_private *mdp = netdev_priv(ndev);
2764 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2765 
2766 	if (unlikely(!mdp->cd->tsu))
2767 		return -EPERM;
2768 
2769 	/* No filtering if vid = 0 */
2770 	if (!vid)
2771 		return 0;
2772 
2773 	mdp->vlan_num_ids++;
2774 
2775 	/* The controller has one VLAN tag HW filter. So, if the filter is
2776 	 * already enabled, the driver disables it and the filte
2777 	 */
2778 	if (mdp->vlan_num_ids > 1) {
2779 		/* disable VLAN filter */
2780 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2781 		return 0;
2782 	}
2783 
2784 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2785 			 vtag_reg_index);
2786 
2787 	return 0;
2788 }
2789 
2790 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2791 				   __be16 proto, u16 vid)
2792 {
2793 	struct sh_eth_private *mdp = netdev_priv(ndev);
2794 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2795 
2796 	if (unlikely(!mdp->cd->tsu))
2797 		return -EPERM;
2798 
2799 	/* No filtering if vid = 0 */
2800 	if (!vid)
2801 		return 0;
2802 
2803 	mdp->vlan_num_ids--;
2804 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2805 
2806 	return 0;
2807 }
2808 
2809 /* SuperH's TSU register init function */
2810 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2811 {
2812 	if (sh_eth_is_rz_fast_ether(mdp)) {
2813 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2814 		return;
2815 	}
2816 
2817 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2818 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2819 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2820 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2821 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2822 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2823 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2824 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2825 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2826 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2827 	if (sh_eth_is_gether(mdp)) {
2828 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2829 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2830 	} else {
2831 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2832 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2833 	}
2834 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2835 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2836 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2837 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2838 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2839 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2840 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2841 }
2842 
2843 /* MDIO bus release function */
2844 static int sh_mdio_release(struct sh_eth_private *mdp)
2845 {
2846 	/* unregister mdio bus */
2847 	mdiobus_unregister(mdp->mii_bus);
2848 
2849 	/* free bitbang info */
2850 	free_mdio_bitbang(mdp->mii_bus);
2851 
2852 	return 0;
2853 }
2854 
2855 /* MDIO bus init function */
2856 static int sh_mdio_init(struct sh_eth_private *mdp,
2857 			struct sh_eth_plat_data *pd)
2858 {
2859 	int ret;
2860 	struct bb_info *bitbang;
2861 	struct platform_device *pdev = mdp->pdev;
2862 	struct device *dev = &mdp->pdev->dev;
2863 
2864 	/* create bit control struct for PHY */
2865 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2866 	if (!bitbang)
2867 		return -ENOMEM;
2868 
2869 	/* bitbang init */
2870 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2871 	bitbang->set_gate = pd->set_mdio_gate;
2872 	bitbang->ctrl.ops = &bb_ops;
2873 
2874 	/* MII controller setting */
2875 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2876 	if (!mdp->mii_bus)
2877 		return -ENOMEM;
2878 
2879 	/* Hook up MII support for ethtool */
2880 	mdp->mii_bus->name = "sh_mii";
2881 	mdp->mii_bus->parent = dev;
2882 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2883 		 pdev->name, pdev->id);
2884 
2885 	/* register MDIO bus */
2886 	if (dev->of_node) {
2887 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2888 	} else {
2889 		if (pd->phy_irq > 0)
2890 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2891 
2892 		ret = mdiobus_register(mdp->mii_bus);
2893 	}
2894 
2895 	if (ret)
2896 		goto out_free_bus;
2897 
2898 	return 0;
2899 
2900 out_free_bus:
2901 	free_mdio_bitbang(mdp->mii_bus);
2902 	return ret;
2903 }
2904 
2905 static const u16 *sh_eth_get_register_offset(int register_type)
2906 {
2907 	const u16 *reg_offset = NULL;
2908 
2909 	switch (register_type) {
2910 	case SH_ETH_REG_GIGABIT:
2911 		reg_offset = sh_eth_offset_gigabit;
2912 		break;
2913 	case SH_ETH_REG_FAST_RZ:
2914 		reg_offset = sh_eth_offset_fast_rz;
2915 		break;
2916 	case SH_ETH_REG_FAST_RCAR:
2917 		reg_offset = sh_eth_offset_fast_rcar;
2918 		break;
2919 	case SH_ETH_REG_FAST_SH4:
2920 		reg_offset = sh_eth_offset_fast_sh4;
2921 		break;
2922 	case SH_ETH_REG_FAST_SH3_SH2:
2923 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2924 		break;
2925 	default:
2926 		break;
2927 	}
2928 
2929 	return reg_offset;
2930 }
2931 
2932 static const struct net_device_ops sh_eth_netdev_ops = {
2933 	.ndo_open		= sh_eth_open,
2934 	.ndo_stop		= sh_eth_close,
2935 	.ndo_start_xmit		= sh_eth_start_xmit,
2936 	.ndo_get_stats		= sh_eth_get_stats,
2937 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2938 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2939 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2940 	.ndo_validate_addr	= eth_validate_addr,
2941 	.ndo_set_mac_address	= eth_mac_addr,
2942 	.ndo_change_mtu		= eth_change_mtu,
2943 };
2944 
2945 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2946 	.ndo_open		= sh_eth_open,
2947 	.ndo_stop		= sh_eth_close,
2948 	.ndo_start_xmit		= sh_eth_start_xmit,
2949 	.ndo_get_stats		= sh_eth_get_stats,
2950 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2951 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2952 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2953 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2954 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2955 	.ndo_validate_addr	= eth_validate_addr,
2956 	.ndo_set_mac_address	= eth_mac_addr,
2957 	.ndo_change_mtu		= eth_change_mtu,
2958 };
2959 
2960 #ifdef CONFIG_OF
2961 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2962 {
2963 	struct device_node *np = dev->of_node;
2964 	struct sh_eth_plat_data *pdata;
2965 	const char *mac_addr;
2966 
2967 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2968 	if (!pdata)
2969 		return NULL;
2970 
2971 	pdata->phy_interface = of_get_phy_mode(np);
2972 
2973 	mac_addr = of_get_mac_address(np);
2974 	if (mac_addr)
2975 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2976 
2977 	pdata->no_ether_link =
2978 		of_property_read_bool(np, "renesas,no-ether-link");
2979 	pdata->ether_link_active_low =
2980 		of_property_read_bool(np, "renesas,ether-link-active-low");
2981 
2982 	return pdata;
2983 }
2984 
2985 static const struct of_device_id sh_eth_match_table[] = {
2986 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2987 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2988 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2989 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2990 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2991 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2992 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2993 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2994 	{ }
2995 };
2996 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2997 #else
2998 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2999 {
3000 	return NULL;
3001 }
3002 #endif
3003 
3004 static int sh_eth_drv_probe(struct platform_device *pdev)
3005 {
3006 	int ret, devno = 0;
3007 	struct resource *res;
3008 	struct net_device *ndev = NULL;
3009 	struct sh_eth_private *mdp = NULL;
3010 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3011 	const struct platform_device_id *id = platform_get_device_id(pdev);
3012 
3013 	/* get base addr */
3014 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3015 
3016 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3017 	if (!ndev)
3018 		return -ENOMEM;
3019 
3020 	pm_runtime_enable(&pdev->dev);
3021 	pm_runtime_get_sync(&pdev->dev);
3022 
3023 	devno = pdev->id;
3024 	if (devno < 0)
3025 		devno = 0;
3026 
3027 	ndev->dma = -1;
3028 	ret = platform_get_irq(pdev, 0);
3029 	if (ret < 0)
3030 		goto out_release;
3031 	ndev->irq = ret;
3032 
3033 	SET_NETDEV_DEV(ndev, &pdev->dev);
3034 
3035 	mdp = netdev_priv(ndev);
3036 	mdp->num_tx_ring = TX_RING_SIZE;
3037 	mdp->num_rx_ring = RX_RING_SIZE;
3038 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3039 	if (IS_ERR(mdp->addr)) {
3040 		ret = PTR_ERR(mdp->addr);
3041 		goto out_release;
3042 	}
3043 
3044 	ndev->base_addr = res->start;
3045 
3046 	spin_lock_init(&mdp->lock);
3047 	mdp->pdev = pdev;
3048 
3049 	if (pdev->dev.of_node)
3050 		pd = sh_eth_parse_dt(&pdev->dev);
3051 	if (!pd) {
3052 		dev_err(&pdev->dev, "no platform data\n");
3053 		ret = -EINVAL;
3054 		goto out_release;
3055 	}
3056 
3057 	/* get PHY ID */
3058 	mdp->phy_id = pd->phy;
3059 	mdp->phy_interface = pd->phy_interface;
3060 	mdp->no_ether_link = pd->no_ether_link;
3061 	mdp->ether_link_active_low = pd->ether_link_active_low;
3062 
3063 	/* set cpu data */
3064 	if (id) {
3065 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3066 	} else	{
3067 		const struct of_device_id *match;
3068 
3069 		match = of_match_device(of_match_ptr(sh_eth_match_table),
3070 					&pdev->dev);
3071 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3072 	}
3073 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3074 	if (!mdp->reg_offset) {
3075 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3076 			mdp->cd->register_type);
3077 		ret = -EINVAL;
3078 		goto out_release;
3079 	}
3080 	sh_eth_set_default_cpu_data(mdp->cd);
3081 
3082 	/* set function */
3083 	if (mdp->cd->tsu)
3084 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3085 	else
3086 		ndev->netdev_ops = &sh_eth_netdev_ops;
3087 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3088 	ndev->watchdog_timeo = TX_TIMEOUT;
3089 
3090 	/* debug message level */
3091 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3092 
3093 	/* read and set MAC address */
3094 	read_mac_address(ndev, pd->mac_addr);
3095 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3096 		dev_warn(&pdev->dev,
3097 			 "no valid MAC address supplied, using a random one.\n");
3098 		eth_hw_addr_random(ndev);
3099 	}
3100 
3101 	/* ioremap the TSU registers */
3102 	if (mdp->cd->tsu) {
3103 		struct resource *rtsu;
3104 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3105 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3106 		if (IS_ERR(mdp->tsu_addr)) {
3107 			ret = PTR_ERR(mdp->tsu_addr);
3108 			goto out_release;
3109 		}
3110 		mdp->port = devno % 2;
3111 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3112 	}
3113 
3114 	/* initialize first or needed device */
3115 	if (!devno || pd->needs_init) {
3116 		if (mdp->cd->chip_reset)
3117 			mdp->cd->chip_reset(ndev);
3118 
3119 		if (mdp->cd->tsu) {
3120 			/* TSU init (Init only)*/
3121 			sh_eth_tsu_init(mdp);
3122 		}
3123 	}
3124 
3125 	if (mdp->cd->rmiimode)
3126 		sh_eth_write(ndev, 0x1, RMIIMODE);
3127 
3128 	/* MDIO bus init */
3129 	ret = sh_mdio_init(mdp, pd);
3130 	if (ret) {
3131 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3132 		goto out_release;
3133 	}
3134 
3135 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3136 
3137 	/* network device register */
3138 	ret = register_netdev(ndev);
3139 	if (ret)
3140 		goto out_napi_del;
3141 
3142 	/* print device information */
3143 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3144 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3145 
3146 	pm_runtime_put(&pdev->dev);
3147 	platform_set_drvdata(pdev, ndev);
3148 
3149 	return ret;
3150 
3151 out_napi_del:
3152 	netif_napi_del(&mdp->napi);
3153 	sh_mdio_release(mdp);
3154 
3155 out_release:
3156 	/* net_dev free */
3157 	if (ndev)
3158 		free_netdev(ndev);
3159 
3160 	pm_runtime_put(&pdev->dev);
3161 	pm_runtime_disable(&pdev->dev);
3162 	return ret;
3163 }
3164 
3165 static int sh_eth_drv_remove(struct platform_device *pdev)
3166 {
3167 	struct net_device *ndev = platform_get_drvdata(pdev);
3168 	struct sh_eth_private *mdp = netdev_priv(ndev);
3169 
3170 	unregister_netdev(ndev);
3171 	netif_napi_del(&mdp->napi);
3172 	sh_mdio_release(mdp);
3173 	pm_runtime_disable(&pdev->dev);
3174 	free_netdev(ndev);
3175 
3176 	return 0;
3177 }
3178 
3179 #ifdef CONFIG_PM
3180 #ifdef CONFIG_PM_SLEEP
3181 static int sh_eth_suspend(struct device *dev)
3182 {
3183 	struct net_device *ndev = dev_get_drvdata(dev);
3184 	int ret = 0;
3185 
3186 	if (netif_running(ndev)) {
3187 		netif_device_detach(ndev);
3188 		ret = sh_eth_close(ndev);
3189 	}
3190 
3191 	return ret;
3192 }
3193 
3194 static int sh_eth_resume(struct device *dev)
3195 {
3196 	struct net_device *ndev = dev_get_drvdata(dev);
3197 	int ret = 0;
3198 
3199 	if (netif_running(ndev)) {
3200 		ret = sh_eth_open(ndev);
3201 		if (ret < 0)
3202 			return ret;
3203 		netif_device_attach(ndev);
3204 	}
3205 
3206 	return ret;
3207 }
3208 #endif
3209 
3210 static int sh_eth_runtime_nop(struct device *dev)
3211 {
3212 	/* Runtime PM callback shared between ->runtime_suspend()
3213 	 * and ->runtime_resume(). Simply returns success.
3214 	 *
3215 	 * This driver re-initializes all registers after
3216 	 * pm_runtime_get_sync() anyway so there is no need
3217 	 * to save and restore registers here.
3218 	 */
3219 	return 0;
3220 }
3221 
3222 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3223 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3224 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3225 };
3226 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3227 #else
3228 #define SH_ETH_PM_OPS NULL
3229 #endif
3230 
3231 static struct platform_device_id sh_eth_id_table[] = {
3232 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3233 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3234 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3235 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3236 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3237 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3238 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3239 	{ }
3240 };
3241 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3242 
3243 static struct platform_driver sh_eth_driver = {
3244 	.probe = sh_eth_drv_probe,
3245 	.remove = sh_eth_drv_remove,
3246 	.id_table = sh_eth_id_table,
3247 	.driver = {
3248 		   .name = CARDNAME,
3249 		   .pm = SH_ETH_PM_OPS,
3250 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3251 	},
3252 };
3253 
3254 module_platform_driver(sh_eth_driver);
3255 
3256 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3257 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3258 MODULE_LICENSE("GPL v2");
3259