1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	u16 offset = mdp->reg_offset[enum_index];
446 
447 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
448 		return;
449 
450 	iowrite32(data, mdp->tsu_addr + offset);
451 }
452 
453 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
454 {
455 	u16 offset = mdp->reg_offset[enum_index];
456 
457 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
458 		return ~0U;
459 
460 	return ioread32(mdp->tsu_addr + offset);
461 }
462 
463 static void sh_eth_soft_swap(char *src, int len)
464 {
465 #ifdef __LITTLE_ENDIAN
466 	u32 *p = (u32 *)src;
467 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
468 
469 	for (; p < maxp; p++)
470 		*p = swab32(*p);
471 #endif
472 }
473 
474 static void sh_eth_select_mii(struct net_device *ndev)
475 {
476 	struct sh_eth_private *mdp = netdev_priv(ndev);
477 	u32 value;
478 
479 	switch (mdp->phy_interface) {
480 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
481 		value = 0x3;
482 		break;
483 	case PHY_INTERFACE_MODE_GMII:
484 		value = 0x2;
485 		break;
486 	case PHY_INTERFACE_MODE_MII:
487 		value = 0x1;
488 		break;
489 	case PHY_INTERFACE_MODE_RMII:
490 		value = 0x0;
491 		break;
492 	default:
493 		netdev_warn(ndev,
494 			    "PHY interface mode was not setup. Set to MII.\n");
495 		value = 0x1;
496 		break;
497 	}
498 
499 	sh_eth_write(ndev, value, RMII_MII);
500 }
501 
502 static void sh_eth_set_duplex(struct net_device *ndev)
503 {
504 	struct sh_eth_private *mdp = netdev_priv(ndev);
505 
506 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
507 }
508 
509 static void sh_eth_chip_reset(struct net_device *ndev)
510 {
511 	struct sh_eth_private *mdp = netdev_priv(ndev);
512 
513 	/* reset device */
514 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
515 	mdelay(1);
516 }
517 
518 static int sh_eth_soft_reset(struct net_device *ndev)
519 {
520 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
521 	mdelay(3);
522 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
523 
524 	return 0;
525 }
526 
527 static int sh_eth_check_soft_reset(struct net_device *ndev)
528 {
529 	int cnt;
530 
531 	for (cnt = 100; cnt > 0; cnt--) {
532 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
533 			return 0;
534 		mdelay(1);
535 	}
536 
537 	netdev_err(ndev, "Device reset failed\n");
538 	return -ETIMEDOUT;
539 }
540 
541 static int sh_eth_soft_reset_gether(struct net_device *ndev)
542 {
543 	struct sh_eth_private *mdp = netdev_priv(ndev);
544 	int ret;
545 
546 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
547 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
548 
549 	ret = sh_eth_check_soft_reset(ndev);
550 	if (ret)
551 		return ret;
552 
553 	/* Table Init */
554 	sh_eth_write(ndev, 0, TDLAR);
555 	sh_eth_write(ndev, 0, TDFAR);
556 	sh_eth_write(ndev, 0, TDFXR);
557 	sh_eth_write(ndev, 0, TDFFR);
558 	sh_eth_write(ndev, 0, RDLAR);
559 	sh_eth_write(ndev, 0, RDFAR);
560 	sh_eth_write(ndev, 0, RDFXR);
561 	sh_eth_write(ndev, 0, RDFFR);
562 
563 	/* Reset HW CRC register */
564 	if (mdp->cd->hw_checksum)
565 		sh_eth_write(ndev, 0, CSMR);
566 
567 	/* Select MII mode */
568 	if (mdp->cd->select_mii)
569 		sh_eth_select_mii(ndev);
570 
571 	return ret;
572 }
573 
574 static void sh_eth_set_rate_gether(struct net_device *ndev)
575 {
576 	struct sh_eth_private *mdp = netdev_priv(ndev);
577 
578 	switch (mdp->speed) {
579 	case 10: /* 10BASE */
580 		sh_eth_write(ndev, GECMR_10, GECMR);
581 		break;
582 	case 100:/* 100BASE */
583 		sh_eth_write(ndev, GECMR_100, GECMR);
584 		break;
585 	case 1000: /* 1000BASE */
586 		sh_eth_write(ndev, GECMR_1000, GECMR);
587 		break;
588 	}
589 }
590 
591 #ifdef CONFIG_OF
592 /* R7S72100 */
593 static struct sh_eth_cpu_data r7s72100_data = {
594 	.soft_reset	= sh_eth_soft_reset_gether,
595 
596 	.chip_reset	= sh_eth_chip_reset,
597 	.set_duplex	= sh_eth_set_duplex,
598 
599 	.register_type	= SH_ETH_REG_FAST_RZ,
600 
601 	.edtrr_trns	= EDTRR_TRNS_GETHER,
602 	.ecsr_value	= ECSR_ICD,
603 	.ecsipr_value	= ECSIPR_ICDIP,
604 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
605 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
606 			  EESIPR_ECIIP |
607 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
608 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
609 			  EESIPR_RMAFIP | EESIPR_RRFIP |
610 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
611 			  EESIPR_PREIP | EESIPR_CERFIP,
612 
613 	.tx_check	= EESR_TC1 | EESR_FTC,
614 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
615 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
616 			  EESR_TDE,
617 	.fdr_value	= 0x0000070f,
618 
619 	.no_psr		= 1,
620 	.apr		= 1,
621 	.mpr		= 1,
622 	.tpauser	= 1,
623 	.hw_swap	= 1,
624 	.rpadir		= 1,
625 	.rpadir_value   = 2 << 16,
626 	.no_trimd	= 1,
627 	.no_ade		= 1,
628 	.xdfar_rw	= 1,
629 	.hw_checksum	= 1,
630 	.tsu		= 1,
631 	.no_tx_cntrs	= 1,
632 };
633 
634 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
635 {
636 	sh_eth_chip_reset(ndev);
637 
638 	sh_eth_select_mii(ndev);
639 }
640 
641 /* R8A7740 */
642 static struct sh_eth_cpu_data r8a7740_data = {
643 	.soft_reset	= sh_eth_soft_reset_gether,
644 
645 	.chip_reset	= sh_eth_chip_reset_r8a7740,
646 	.set_duplex	= sh_eth_set_duplex,
647 	.set_rate	= sh_eth_set_rate_gether,
648 
649 	.register_type	= SH_ETH_REG_GIGABIT,
650 
651 	.edtrr_trns	= EDTRR_TRNS_GETHER,
652 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
653 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
654 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
655 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
656 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
657 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
658 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
659 			  EESIPR_CEEFIP | EESIPR_CELFIP |
660 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
661 			  EESIPR_PREIP | EESIPR_CERFIP,
662 
663 	.tx_check	= EESR_TC1 | EESR_FTC,
664 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
665 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
666 			  EESR_TDE,
667 	.fdr_value	= 0x0000070f,
668 
669 	.apr		= 1,
670 	.mpr		= 1,
671 	.tpauser	= 1,
672 	.bculr		= 1,
673 	.hw_swap	= 1,
674 	.rpadir		= 1,
675 	.rpadir_value   = 2 << 16,
676 	.no_trimd	= 1,
677 	.no_ade		= 1,
678 	.xdfar_rw	= 1,
679 	.hw_checksum	= 1,
680 	.tsu		= 1,
681 	.select_mii	= 1,
682 	.magic		= 1,
683 	.cexcr		= 1,
684 };
685 
686 /* There is CPU dependent code */
687 static void sh_eth_set_rate_rcar(struct net_device *ndev)
688 {
689 	struct sh_eth_private *mdp = netdev_priv(ndev);
690 
691 	switch (mdp->speed) {
692 	case 10: /* 10BASE */
693 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
694 		break;
695 	case 100:/* 100BASE */
696 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
697 		break;
698 	}
699 }
700 
701 /* R-Car Gen1 */
702 static struct sh_eth_cpu_data rcar_gen1_data = {
703 	.soft_reset	= sh_eth_soft_reset,
704 
705 	.set_duplex	= sh_eth_set_duplex,
706 	.set_rate	= sh_eth_set_rate_rcar,
707 
708 	.register_type	= SH_ETH_REG_FAST_RCAR,
709 
710 	.edtrr_trns	= EDTRR_TRNS_ETHER,
711 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
712 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
713 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
714 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
715 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
716 			  EESIPR_RMAFIP | EESIPR_RRFIP |
717 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
718 			  EESIPR_PREIP | EESIPR_CERFIP,
719 
720 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
721 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
722 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
723 	.fdr_value	= 0x00000f0f,
724 
725 	.apr		= 1,
726 	.mpr		= 1,
727 	.tpauser	= 1,
728 	.hw_swap	= 1,
729 	.no_xdfar	= 1,
730 };
731 
732 /* R-Car Gen2 and RZ/G1 */
733 static struct sh_eth_cpu_data rcar_gen2_data = {
734 	.soft_reset	= sh_eth_soft_reset,
735 
736 	.set_duplex	= sh_eth_set_duplex,
737 	.set_rate	= sh_eth_set_rate_rcar,
738 
739 	.register_type	= SH_ETH_REG_FAST_RCAR,
740 
741 	.edtrr_trns	= EDTRR_TRNS_ETHER,
742 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
743 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
744 			  ECSIPR_MPDIP,
745 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
746 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
747 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
748 			  EESIPR_RMAFIP | EESIPR_RRFIP |
749 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
750 			  EESIPR_PREIP | EESIPR_CERFIP,
751 
752 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
753 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
754 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
755 	.fdr_value	= 0x00000f0f,
756 
757 	.trscer_err_mask = DESC_I_RINT8,
758 
759 	.apr		= 1,
760 	.mpr		= 1,
761 	.tpauser	= 1,
762 	.hw_swap	= 1,
763 	.no_xdfar	= 1,
764 	.rmiimode	= 1,
765 	.magic		= 1,
766 };
767 
768 /* R8A77980 */
769 static struct sh_eth_cpu_data r8a77980_data = {
770 	.soft_reset	= sh_eth_soft_reset_gether,
771 
772 	.set_duplex	= sh_eth_set_duplex,
773 	.set_rate	= sh_eth_set_rate_gether,
774 
775 	.register_type  = SH_ETH_REG_GIGABIT,
776 
777 	.edtrr_trns	= EDTRR_TRNS_GETHER,
778 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
779 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
780 			  ECSIPR_MPDIP,
781 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
782 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
783 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
784 			  EESIPR_RMAFIP | EESIPR_RRFIP |
785 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
786 			  EESIPR_PREIP | EESIPR_CERFIP,
787 
788 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
789 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
790 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
791 			  EESR_TFE | EESR_TDE | EESR_ECI,
792 	.fdr_value	= 0x0000070f,
793 
794 	.apr		= 1,
795 	.mpr		= 1,
796 	.tpauser	= 1,
797 	.bculr		= 1,
798 	.hw_swap	= 1,
799 	.nbst		= 1,
800 	.rpadir		= 1,
801 	.rpadir_value   = 2 << 16,
802 	.no_trimd	= 1,
803 	.no_ade		= 1,
804 	.xdfar_rw	= 1,
805 	.hw_checksum	= 1,
806 	.select_mii	= 1,
807 	.magic		= 1,
808 	.cexcr		= 1,
809 };
810 #endif /* CONFIG_OF */
811 
812 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
813 {
814 	struct sh_eth_private *mdp = netdev_priv(ndev);
815 
816 	switch (mdp->speed) {
817 	case 10: /* 10BASE */
818 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
819 		break;
820 	case 100:/* 100BASE */
821 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
822 		break;
823 	}
824 }
825 
826 /* SH7724 */
827 static struct sh_eth_cpu_data sh7724_data = {
828 	.soft_reset	= sh_eth_soft_reset,
829 
830 	.set_duplex	= sh_eth_set_duplex,
831 	.set_rate	= sh_eth_set_rate_sh7724,
832 
833 	.register_type	= SH_ETH_REG_FAST_SH4,
834 
835 	.edtrr_trns	= EDTRR_TRNS_ETHER,
836 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
837 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
838 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
839 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
840 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
841 			  EESIPR_RMAFIP | EESIPR_RRFIP |
842 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
843 			  EESIPR_PREIP | EESIPR_CERFIP,
844 
845 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
846 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
847 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
848 
849 	.apr		= 1,
850 	.mpr		= 1,
851 	.tpauser	= 1,
852 	.hw_swap	= 1,
853 	.rpadir		= 1,
854 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
855 };
856 
857 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
858 {
859 	struct sh_eth_private *mdp = netdev_priv(ndev);
860 
861 	switch (mdp->speed) {
862 	case 10: /* 10BASE */
863 		sh_eth_write(ndev, 0, RTRATE);
864 		break;
865 	case 100:/* 100BASE */
866 		sh_eth_write(ndev, 1, RTRATE);
867 		break;
868 	}
869 }
870 
871 /* SH7757 */
872 static struct sh_eth_cpu_data sh7757_data = {
873 	.soft_reset	= sh_eth_soft_reset,
874 
875 	.set_duplex	= sh_eth_set_duplex,
876 	.set_rate	= sh_eth_set_rate_sh7757,
877 
878 	.register_type	= SH_ETH_REG_FAST_SH4,
879 
880 	.edtrr_trns	= EDTRR_TRNS_ETHER,
881 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
882 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
883 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
884 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
885 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
886 			  EESIPR_CEEFIP | EESIPR_CELFIP |
887 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 			  EESIPR_PREIP | EESIPR_CERFIP,
889 
890 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
891 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
892 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893 
894 	.irq_flags	= IRQF_SHARED,
895 	.apr		= 1,
896 	.mpr		= 1,
897 	.tpauser	= 1,
898 	.hw_swap	= 1,
899 	.no_ade		= 1,
900 	.rpadir		= 1,
901 	.rpadir_value   = 2 << 16,
902 	.rtrate		= 1,
903 	.dual_port	= 1,
904 };
905 
906 #define SH_GIGA_ETH_BASE	0xfee00000UL
907 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
908 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
909 static void sh_eth_chip_reset_giga(struct net_device *ndev)
910 {
911 	u32 mahr[2], malr[2];
912 	int i;
913 
914 	/* save MAHR and MALR */
915 	for (i = 0; i < 2; i++) {
916 		malr[i] = ioread32((void *)GIGA_MALR(i));
917 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
918 	}
919 
920 	sh_eth_chip_reset(ndev);
921 
922 	/* restore MAHR and MALR */
923 	for (i = 0; i < 2; i++) {
924 		iowrite32(malr[i], (void *)GIGA_MALR(i));
925 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
926 	}
927 }
928 
929 static void sh_eth_set_rate_giga(struct net_device *ndev)
930 {
931 	struct sh_eth_private *mdp = netdev_priv(ndev);
932 
933 	switch (mdp->speed) {
934 	case 10: /* 10BASE */
935 		sh_eth_write(ndev, 0x00000000, GECMR);
936 		break;
937 	case 100:/* 100BASE */
938 		sh_eth_write(ndev, 0x00000010, GECMR);
939 		break;
940 	case 1000: /* 1000BASE */
941 		sh_eth_write(ndev, 0x00000020, GECMR);
942 		break;
943 	}
944 }
945 
946 /* SH7757(GETHERC) */
947 static struct sh_eth_cpu_data sh7757_data_giga = {
948 	.soft_reset	= sh_eth_soft_reset_gether,
949 
950 	.chip_reset	= sh_eth_chip_reset_giga,
951 	.set_duplex	= sh_eth_set_duplex,
952 	.set_rate	= sh_eth_set_rate_giga,
953 
954 	.register_type	= SH_ETH_REG_GIGABIT,
955 
956 	.edtrr_trns	= EDTRR_TRNS_GETHER,
957 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
958 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
959 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
960 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
961 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
962 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
963 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
964 			  EESIPR_CEEFIP | EESIPR_CELFIP |
965 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
966 			  EESIPR_PREIP | EESIPR_CERFIP,
967 
968 	.tx_check	= EESR_TC1 | EESR_FTC,
969 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
970 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
971 			  EESR_TDE,
972 	.fdr_value	= 0x0000072f,
973 
974 	.irq_flags	= IRQF_SHARED,
975 	.apr		= 1,
976 	.mpr		= 1,
977 	.tpauser	= 1,
978 	.bculr		= 1,
979 	.hw_swap	= 1,
980 	.rpadir		= 1,
981 	.rpadir_value   = 2 << 16,
982 	.no_trimd	= 1,
983 	.no_ade		= 1,
984 	.xdfar_rw	= 1,
985 	.tsu		= 1,
986 	.cexcr		= 1,
987 	.dual_port	= 1,
988 };
989 
990 /* SH7734 */
991 static struct sh_eth_cpu_data sh7734_data = {
992 	.soft_reset	= sh_eth_soft_reset_gether,
993 
994 	.chip_reset	= sh_eth_chip_reset,
995 	.set_duplex	= sh_eth_set_duplex,
996 	.set_rate	= sh_eth_set_rate_gether,
997 
998 	.register_type	= SH_ETH_REG_GIGABIT,
999 
1000 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1001 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1002 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1003 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1004 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1005 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1006 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1007 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1008 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1009 			  EESIPR_PREIP | EESIPR_CERFIP,
1010 
1011 	.tx_check	= EESR_TC1 | EESR_FTC,
1012 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1013 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1014 			  EESR_TDE,
1015 
1016 	.apr		= 1,
1017 	.mpr		= 1,
1018 	.tpauser	= 1,
1019 	.bculr		= 1,
1020 	.hw_swap	= 1,
1021 	.no_trimd	= 1,
1022 	.no_ade		= 1,
1023 	.xdfar_rw	= 1,
1024 	.tsu		= 1,
1025 	.hw_checksum	= 1,
1026 	.select_mii	= 1,
1027 	.magic		= 1,
1028 	.cexcr		= 1,
1029 };
1030 
1031 /* SH7763 */
1032 static struct sh_eth_cpu_data sh7763_data = {
1033 	.soft_reset	= sh_eth_soft_reset_gether,
1034 
1035 	.chip_reset	= sh_eth_chip_reset,
1036 	.set_duplex	= sh_eth_set_duplex,
1037 	.set_rate	= sh_eth_set_rate_gether,
1038 
1039 	.register_type	= SH_ETH_REG_GIGABIT,
1040 
1041 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1042 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1043 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1044 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1045 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1046 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1047 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1048 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1049 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1050 			  EESIPR_PREIP | EESIPR_CERFIP,
1051 
1052 	.tx_check	= EESR_TC1 | EESR_FTC,
1053 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1054 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1055 
1056 	.apr		= 1,
1057 	.mpr		= 1,
1058 	.tpauser	= 1,
1059 	.bculr		= 1,
1060 	.hw_swap	= 1,
1061 	.no_trimd	= 1,
1062 	.no_ade		= 1,
1063 	.xdfar_rw	= 1,
1064 	.tsu		= 1,
1065 	.irq_flags	= IRQF_SHARED,
1066 	.magic		= 1,
1067 	.cexcr		= 1,
1068 	.dual_port	= 1,
1069 };
1070 
1071 static struct sh_eth_cpu_data sh7619_data = {
1072 	.soft_reset	= sh_eth_soft_reset,
1073 
1074 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1075 
1076 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1077 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1078 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1079 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1080 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1081 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1082 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1083 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1084 			  EESIPR_PREIP | EESIPR_CERFIP,
1085 
1086 	.apr		= 1,
1087 	.mpr		= 1,
1088 	.tpauser	= 1,
1089 	.hw_swap	= 1,
1090 };
1091 
1092 static struct sh_eth_cpu_data sh771x_data = {
1093 	.soft_reset	= sh_eth_soft_reset,
1094 
1095 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1096 
1097 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1098 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1099 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1100 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1101 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1102 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1103 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1104 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1105 			  EESIPR_PREIP | EESIPR_CERFIP,
1106 	.tsu		= 1,
1107 	.dual_port	= 1,
1108 };
1109 
1110 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1111 {
1112 	if (!cd->ecsr_value)
1113 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1114 
1115 	if (!cd->ecsipr_value)
1116 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1117 
1118 	if (!cd->fcftr_value)
1119 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1120 				  DEFAULT_FIFO_F_D_RFD;
1121 
1122 	if (!cd->fdr_value)
1123 		cd->fdr_value = DEFAULT_FDR_INIT;
1124 
1125 	if (!cd->tx_check)
1126 		cd->tx_check = DEFAULT_TX_CHECK;
1127 
1128 	if (!cd->eesr_err_check)
1129 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1130 
1131 	if (!cd->trscer_err_mask)
1132 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1133 }
1134 
1135 static void sh_eth_set_receive_align(struct sk_buff *skb)
1136 {
1137 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1138 
1139 	if (reserve)
1140 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1141 }
1142 
1143 /* Program the hardware MAC address from dev->dev_addr. */
1144 static void update_mac_address(struct net_device *ndev)
1145 {
1146 	sh_eth_write(ndev,
1147 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1148 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1149 	sh_eth_write(ndev,
1150 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1151 }
1152 
1153 /* Get MAC address from SuperH MAC address register
1154  *
1155  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1156  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1157  * When you want use this device, you must set MAC address in bootloader.
1158  *
1159  */
1160 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1161 {
1162 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1163 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1164 	} else {
1165 		u32 mahr = sh_eth_read(ndev, MAHR);
1166 		u32 malr = sh_eth_read(ndev, MALR);
1167 
1168 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1169 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1170 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1171 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1172 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1173 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1174 	}
1175 }
1176 
1177 struct bb_info {
1178 	void (*set_gate)(void *addr);
1179 	struct mdiobb_ctrl ctrl;
1180 	void *addr;
1181 };
1182 
1183 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1184 {
1185 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1186 	u32 pir;
1187 
1188 	if (bitbang->set_gate)
1189 		bitbang->set_gate(bitbang->addr);
1190 
1191 	pir = ioread32(bitbang->addr);
1192 	if (set)
1193 		pir |=  mask;
1194 	else
1195 		pir &= ~mask;
1196 	iowrite32(pir, bitbang->addr);
1197 }
1198 
1199 /* Data I/O pin control */
1200 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1201 {
1202 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1203 }
1204 
1205 /* Set bit data*/
1206 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1207 {
1208 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1209 }
1210 
1211 /* Get bit data*/
1212 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1213 {
1214 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1215 
1216 	if (bitbang->set_gate)
1217 		bitbang->set_gate(bitbang->addr);
1218 
1219 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1220 }
1221 
1222 /* MDC pin control */
1223 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1224 {
1225 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1226 }
1227 
1228 /* mdio bus control struct */
1229 static struct mdiobb_ops bb_ops = {
1230 	.owner = THIS_MODULE,
1231 	.set_mdc = sh_mdc_ctrl,
1232 	.set_mdio_dir = sh_mmd_ctrl,
1233 	.set_mdio_data = sh_set_mdio,
1234 	.get_mdio_data = sh_get_mdio,
1235 };
1236 
1237 /* free Tx skb function */
1238 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1239 {
1240 	struct sh_eth_private *mdp = netdev_priv(ndev);
1241 	struct sh_eth_txdesc *txdesc;
1242 	int free_num = 0;
1243 	int entry;
1244 	bool sent;
1245 
1246 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1247 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1248 		txdesc = &mdp->tx_ring[entry];
1249 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1250 		if (sent_only && !sent)
1251 			break;
1252 		/* TACT bit must be checked before all the following reads */
1253 		dma_rmb();
1254 		netif_info(mdp, tx_done, ndev,
1255 			   "tx entry %d status 0x%08x\n",
1256 			   entry, le32_to_cpu(txdesc->status));
1257 		/* Free the original skb. */
1258 		if (mdp->tx_skbuff[entry]) {
1259 			dma_unmap_single(&mdp->pdev->dev,
1260 					 le32_to_cpu(txdesc->addr),
1261 					 le32_to_cpu(txdesc->len) >> 16,
1262 					 DMA_TO_DEVICE);
1263 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1264 			mdp->tx_skbuff[entry] = NULL;
1265 			free_num++;
1266 		}
1267 		txdesc->status = cpu_to_le32(TD_TFP);
1268 		if (entry >= mdp->num_tx_ring - 1)
1269 			txdesc->status |= cpu_to_le32(TD_TDLE);
1270 
1271 		if (sent) {
1272 			ndev->stats.tx_packets++;
1273 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1274 		}
1275 	}
1276 	return free_num;
1277 }
1278 
1279 /* free skb and descriptor buffer */
1280 static void sh_eth_ring_free(struct net_device *ndev)
1281 {
1282 	struct sh_eth_private *mdp = netdev_priv(ndev);
1283 	int ringsize, i;
1284 
1285 	if (mdp->rx_ring) {
1286 		for (i = 0; i < mdp->num_rx_ring; i++) {
1287 			if (mdp->rx_skbuff[i]) {
1288 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1289 
1290 				dma_unmap_single(&mdp->pdev->dev,
1291 						 le32_to_cpu(rxdesc->addr),
1292 						 ALIGN(mdp->rx_buf_sz, 32),
1293 						 DMA_FROM_DEVICE);
1294 			}
1295 		}
1296 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1297 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1298 				  mdp->rx_desc_dma);
1299 		mdp->rx_ring = NULL;
1300 	}
1301 
1302 	/* Free Rx skb ringbuffer */
1303 	if (mdp->rx_skbuff) {
1304 		for (i = 0; i < mdp->num_rx_ring; i++)
1305 			dev_kfree_skb(mdp->rx_skbuff[i]);
1306 	}
1307 	kfree(mdp->rx_skbuff);
1308 	mdp->rx_skbuff = NULL;
1309 
1310 	if (mdp->tx_ring) {
1311 		sh_eth_tx_free(ndev, false);
1312 
1313 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1314 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1315 				  mdp->tx_desc_dma);
1316 		mdp->tx_ring = NULL;
1317 	}
1318 
1319 	/* Free Tx skb ringbuffer */
1320 	kfree(mdp->tx_skbuff);
1321 	mdp->tx_skbuff = NULL;
1322 }
1323 
1324 /* format skb and descriptor buffer */
1325 static void sh_eth_ring_format(struct net_device *ndev)
1326 {
1327 	struct sh_eth_private *mdp = netdev_priv(ndev);
1328 	int i;
1329 	struct sk_buff *skb;
1330 	struct sh_eth_rxdesc *rxdesc = NULL;
1331 	struct sh_eth_txdesc *txdesc = NULL;
1332 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1333 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1334 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1335 	dma_addr_t dma_addr;
1336 	u32 buf_len;
1337 
1338 	mdp->cur_rx = 0;
1339 	mdp->cur_tx = 0;
1340 	mdp->dirty_rx = 0;
1341 	mdp->dirty_tx = 0;
1342 
1343 	memset(mdp->rx_ring, 0, rx_ringsize);
1344 
1345 	/* build Rx ring buffer */
1346 	for (i = 0; i < mdp->num_rx_ring; i++) {
1347 		/* skb */
1348 		mdp->rx_skbuff[i] = NULL;
1349 		skb = netdev_alloc_skb(ndev, skbuff_size);
1350 		if (skb == NULL)
1351 			break;
1352 		sh_eth_set_receive_align(skb);
1353 
1354 		/* The size of the buffer is a multiple of 32 bytes. */
1355 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1356 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1357 					  DMA_FROM_DEVICE);
1358 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1359 			kfree_skb(skb);
1360 			break;
1361 		}
1362 		mdp->rx_skbuff[i] = skb;
1363 
1364 		/* RX descriptor */
1365 		rxdesc = &mdp->rx_ring[i];
1366 		rxdesc->len = cpu_to_le32(buf_len << 16);
1367 		rxdesc->addr = cpu_to_le32(dma_addr);
1368 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1369 
1370 		/* Rx descriptor address set */
1371 		if (i == 0) {
1372 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1373 			if (mdp->cd->xdfar_rw)
1374 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1375 		}
1376 	}
1377 
1378 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1379 
1380 	/* Mark the last entry as wrapping the ring. */
1381 	if (rxdesc)
1382 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1383 
1384 	memset(mdp->tx_ring, 0, tx_ringsize);
1385 
1386 	/* build Tx ring buffer */
1387 	for (i = 0; i < mdp->num_tx_ring; i++) {
1388 		mdp->tx_skbuff[i] = NULL;
1389 		txdesc = &mdp->tx_ring[i];
1390 		txdesc->status = cpu_to_le32(TD_TFP);
1391 		txdesc->len = cpu_to_le32(0);
1392 		if (i == 0) {
1393 			/* Tx descriptor address set */
1394 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1395 			if (mdp->cd->xdfar_rw)
1396 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1397 		}
1398 	}
1399 
1400 	txdesc->status |= cpu_to_le32(TD_TDLE);
1401 }
1402 
1403 /* Get skb and descriptor buffer */
1404 static int sh_eth_ring_init(struct net_device *ndev)
1405 {
1406 	struct sh_eth_private *mdp = netdev_priv(ndev);
1407 	int rx_ringsize, tx_ringsize;
1408 
1409 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1410 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1411 	 * the first 2 bytes, and +16 gets room for the status word from the
1412 	 * card.
1413 	 */
1414 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1415 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1416 	if (mdp->cd->rpadir)
1417 		mdp->rx_buf_sz += NET_IP_ALIGN;
1418 
1419 	/* Allocate RX and TX skb rings */
1420 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1421 				 GFP_KERNEL);
1422 	if (!mdp->rx_skbuff)
1423 		return -ENOMEM;
1424 
1425 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1426 				 GFP_KERNEL);
1427 	if (!mdp->tx_skbuff)
1428 		goto ring_free;
1429 
1430 	/* Allocate all Rx descriptors. */
1431 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1432 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1433 					  &mdp->rx_desc_dma, GFP_KERNEL);
1434 	if (!mdp->rx_ring)
1435 		goto ring_free;
1436 
1437 	mdp->dirty_rx = 0;
1438 
1439 	/* Allocate all Tx descriptors. */
1440 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1441 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1442 					  &mdp->tx_desc_dma, GFP_KERNEL);
1443 	if (!mdp->tx_ring)
1444 		goto ring_free;
1445 	return 0;
1446 
1447 ring_free:
1448 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1449 	sh_eth_ring_free(ndev);
1450 
1451 	return -ENOMEM;
1452 }
1453 
1454 static int sh_eth_dev_init(struct net_device *ndev)
1455 {
1456 	struct sh_eth_private *mdp = netdev_priv(ndev);
1457 	int ret;
1458 
1459 	/* Soft Reset */
1460 	ret = mdp->cd->soft_reset(ndev);
1461 	if (ret)
1462 		return ret;
1463 
1464 	if (mdp->cd->rmiimode)
1465 		sh_eth_write(ndev, 0x1, RMIIMODE);
1466 
1467 	/* Descriptor format */
1468 	sh_eth_ring_format(ndev);
1469 	if (mdp->cd->rpadir)
1470 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1471 
1472 	/* all sh_eth int mask */
1473 	sh_eth_write(ndev, 0, EESIPR);
1474 
1475 #if defined(__LITTLE_ENDIAN)
1476 	if (mdp->cd->hw_swap)
1477 		sh_eth_write(ndev, EDMR_EL, EDMR);
1478 	else
1479 #endif
1480 		sh_eth_write(ndev, 0, EDMR);
1481 
1482 	/* FIFO size set */
1483 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1484 	sh_eth_write(ndev, 0, TFTR);
1485 
1486 	/* Frame recv control (enable multiple-packets per rx irq) */
1487 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1488 
1489 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1490 
1491 	/* DMA transfer burst mode */
1492 	if (mdp->cd->nbst)
1493 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1494 
1495 	/* Burst cycle count upper-limit */
1496 	if (mdp->cd->bculr)
1497 		sh_eth_write(ndev, 0x800, BCULR);
1498 
1499 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1500 
1501 	if (!mdp->cd->no_trimd)
1502 		sh_eth_write(ndev, 0, TRIMD);
1503 
1504 	/* Recv frame limit set register */
1505 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1506 		     RFLR);
1507 
1508 	sh_eth_modify(ndev, EESR, 0, 0);
1509 	mdp->irq_enabled = true;
1510 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1511 
1512 	/* PAUSE Prohibition */
1513 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1514 		     ECMR_TE | ECMR_RE, ECMR);
1515 
1516 	if (mdp->cd->set_rate)
1517 		mdp->cd->set_rate(ndev);
1518 
1519 	/* E-MAC Status Register clear */
1520 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1521 
1522 	/* E-MAC Interrupt Enable register */
1523 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1524 
1525 	/* Set MAC address */
1526 	update_mac_address(ndev);
1527 
1528 	/* mask reset */
1529 	if (mdp->cd->apr)
1530 		sh_eth_write(ndev, APR_AP, APR);
1531 	if (mdp->cd->mpr)
1532 		sh_eth_write(ndev, MPR_MP, MPR);
1533 	if (mdp->cd->tpauser)
1534 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1535 
1536 	/* Setting the Rx mode will start the Rx process. */
1537 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1538 
1539 	return ret;
1540 }
1541 
1542 static void sh_eth_dev_exit(struct net_device *ndev)
1543 {
1544 	struct sh_eth_private *mdp = netdev_priv(ndev);
1545 	int i;
1546 
1547 	/* Deactivate all TX descriptors, so DMA should stop at next
1548 	 * packet boundary if it's currently running
1549 	 */
1550 	for (i = 0; i < mdp->num_tx_ring; i++)
1551 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1552 
1553 	/* Disable TX FIFO egress to MAC */
1554 	sh_eth_rcv_snd_disable(ndev);
1555 
1556 	/* Stop RX DMA at next packet boundary */
1557 	sh_eth_write(ndev, 0, EDRRR);
1558 
1559 	/* Aside from TX DMA, we can't tell when the hardware is
1560 	 * really stopped, so we need to reset to make sure.
1561 	 * Before doing that, wait for long enough to *probably*
1562 	 * finish transmitting the last packet and poll stats.
1563 	 */
1564 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1565 	sh_eth_get_stats(ndev);
1566 	mdp->cd->soft_reset(ndev);
1567 
1568 	/* Set MAC address again */
1569 	update_mac_address(ndev);
1570 }
1571 
1572 /* Packet receive function */
1573 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1574 {
1575 	struct sh_eth_private *mdp = netdev_priv(ndev);
1576 	struct sh_eth_rxdesc *rxdesc;
1577 
1578 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1579 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1580 	int limit;
1581 	struct sk_buff *skb;
1582 	u32 desc_status;
1583 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1584 	dma_addr_t dma_addr;
1585 	u16 pkt_len;
1586 	u32 buf_len;
1587 
1588 	boguscnt = min(boguscnt, *quota);
1589 	limit = boguscnt;
1590 	rxdesc = &mdp->rx_ring[entry];
1591 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1592 		/* RACT bit must be checked before all the following reads */
1593 		dma_rmb();
1594 		desc_status = le32_to_cpu(rxdesc->status);
1595 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1596 
1597 		if (--boguscnt < 0)
1598 			break;
1599 
1600 		netif_info(mdp, rx_status, ndev,
1601 			   "rx entry %d status 0x%08x len %d\n",
1602 			   entry, desc_status, pkt_len);
1603 
1604 		if (!(desc_status & RDFEND))
1605 			ndev->stats.rx_length_errors++;
1606 
1607 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1608 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1609 		 * bit 0. However, in case of the R8A7740 and R7S72100
1610 		 * the RFS bits are from bit 25 to bit 16. So, the
1611 		 * driver needs right shifting by 16.
1612 		 */
1613 		if (mdp->cd->hw_checksum)
1614 			desc_status >>= 16;
1615 
1616 		skb = mdp->rx_skbuff[entry];
1617 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1618 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1619 			ndev->stats.rx_errors++;
1620 			if (desc_status & RD_RFS1)
1621 				ndev->stats.rx_crc_errors++;
1622 			if (desc_status & RD_RFS2)
1623 				ndev->stats.rx_frame_errors++;
1624 			if (desc_status & RD_RFS3)
1625 				ndev->stats.rx_length_errors++;
1626 			if (desc_status & RD_RFS4)
1627 				ndev->stats.rx_length_errors++;
1628 			if (desc_status & RD_RFS6)
1629 				ndev->stats.rx_missed_errors++;
1630 			if (desc_status & RD_RFS10)
1631 				ndev->stats.rx_over_errors++;
1632 		} else	if (skb) {
1633 			dma_addr = le32_to_cpu(rxdesc->addr);
1634 			if (!mdp->cd->hw_swap)
1635 				sh_eth_soft_swap(
1636 					phys_to_virt(ALIGN(dma_addr, 4)),
1637 					pkt_len + 2);
1638 			mdp->rx_skbuff[entry] = NULL;
1639 			if (mdp->cd->rpadir)
1640 				skb_reserve(skb, NET_IP_ALIGN);
1641 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1642 					 ALIGN(mdp->rx_buf_sz, 32),
1643 					 DMA_FROM_DEVICE);
1644 			skb_put(skb, pkt_len);
1645 			skb->protocol = eth_type_trans(skb, ndev);
1646 			netif_receive_skb(skb);
1647 			ndev->stats.rx_packets++;
1648 			ndev->stats.rx_bytes += pkt_len;
1649 			if (desc_status & RD_RFS8)
1650 				ndev->stats.multicast++;
1651 		}
1652 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1653 		rxdesc = &mdp->rx_ring[entry];
1654 	}
1655 
1656 	/* Refill the Rx ring buffers. */
1657 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1658 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1659 		rxdesc = &mdp->rx_ring[entry];
1660 		/* The size of the buffer is 32 byte boundary. */
1661 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1662 		rxdesc->len = cpu_to_le32(buf_len << 16);
1663 
1664 		if (mdp->rx_skbuff[entry] == NULL) {
1665 			skb = netdev_alloc_skb(ndev, skbuff_size);
1666 			if (skb == NULL)
1667 				break;	/* Better luck next round. */
1668 			sh_eth_set_receive_align(skb);
1669 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1670 						  buf_len, DMA_FROM_DEVICE);
1671 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1672 				kfree_skb(skb);
1673 				break;
1674 			}
1675 			mdp->rx_skbuff[entry] = skb;
1676 
1677 			skb_checksum_none_assert(skb);
1678 			rxdesc->addr = cpu_to_le32(dma_addr);
1679 		}
1680 		dma_wmb(); /* RACT bit must be set after all the above writes */
1681 		if (entry >= mdp->num_rx_ring - 1)
1682 			rxdesc->status |=
1683 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1684 		else
1685 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1686 	}
1687 
1688 	/* Restart Rx engine if stopped. */
1689 	/* If we don't need to check status, don't. -KDU */
1690 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1691 		/* fix the values for the next receiving if RDE is set */
1692 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1693 			u32 count = (sh_eth_read(ndev, RDFAR) -
1694 				     sh_eth_read(ndev, RDLAR)) >> 4;
1695 
1696 			mdp->cur_rx = count;
1697 			mdp->dirty_rx = count;
1698 		}
1699 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1700 	}
1701 
1702 	*quota -= limit - boguscnt - 1;
1703 
1704 	return *quota <= 0;
1705 }
1706 
1707 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1708 {
1709 	/* disable tx and rx */
1710 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1711 }
1712 
1713 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1714 {
1715 	/* enable tx and rx */
1716 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1717 }
1718 
1719 /* E-MAC interrupt handler */
1720 static void sh_eth_emac_interrupt(struct net_device *ndev)
1721 {
1722 	struct sh_eth_private *mdp = netdev_priv(ndev);
1723 	u32 felic_stat;
1724 	u32 link_stat;
1725 
1726 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1727 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1728 	if (felic_stat & ECSR_ICD)
1729 		ndev->stats.tx_carrier_errors++;
1730 	if (felic_stat & ECSR_MPD)
1731 		pm_wakeup_event(&mdp->pdev->dev, 0);
1732 	if (felic_stat & ECSR_LCHNG) {
1733 		/* Link Changed */
1734 		if (mdp->cd->no_psr || mdp->no_ether_link)
1735 			return;
1736 		link_stat = sh_eth_read(ndev, PSR);
1737 		if (mdp->ether_link_active_low)
1738 			link_stat = ~link_stat;
1739 		if (!(link_stat & PHY_ST_LINK)) {
1740 			sh_eth_rcv_snd_disable(ndev);
1741 		} else {
1742 			/* Link Up */
1743 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1744 			/* clear int */
1745 			sh_eth_modify(ndev, ECSR, 0, 0);
1746 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1747 			/* enable tx and rx */
1748 			sh_eth_rcv_snd_enable(ndev);
1749 		}
1750 	}
1751 }
1752 
1753 /* error control function */
1754 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1755 {
1756 	struct sh_eth_private *mdp = netdev_priv(ndev);
1757 	u32 mask;
1758 
1759 	if (intr_status & EESR_TWB) {
1760 		/* Unused write back interrupt */
1761 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1762 			ndev->stats.tx_aborted_errors++;
1763 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1764 		}
1765 	}
1766 
1767 	if (intr_status & EESR_RABT) {
1768 		/* Receive Abort int */
1769 		if (intr_status & EESR_RFRMER) {
1770 			/* Receive Frame Overflow int */
1771 			ndev->stats.rx_frame_errors++;
1772 		}
1773 	}
1774 
1775 	if (intr_status & EESR_TDE) {
1776 		/* Transmit Descriptor Empty int */
1777 		ndev->stats.tx_fifo_errors++;
1778 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1779 	}
1780 
1781 	if (intr_status & EESR_TFE) {
1782 		/* FIFO under flow */
1783 		ndev->stats.tx_fifo_errors++;
1784 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1785 	}
1786 
1787 	if (intr_status & EESR_RDE) {
1788 		/* Receive Descriptor Empty int */
1789 		ndev->stats.rx_over_errors++;
1790 	}
1791 
1792 	if (intr_status & EESR_RFE) {
1793 		/* Receive FIFO Overflow int */
1794 		ndev->stats.rx_fifo_errors++;
1795 	}
1796 
1797 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1798 		/* Address Error */
1799 		ndev->stats.tx_fifo_errors++;
1800 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1801 	}
1802 
1803 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1804 	if (mdp->cd->no_ade)
1805 		mask &= ~EESR_ADE;
1806 	if (intr_status & mask) {
1807 		/* Tx error */
1808 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1809 
1810 		/* dmesg */
1811 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1812 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1813 			   (u32)ndev->state, edtrr);
1814 		/* dirty buffer free */
1815 		sh_eth_tx_free(ndev, true);
1816 
1817 		/* SH7712 BUG */
1818 		if (edtrr ^ mdp->cd->edtrr_trns) {
1819 			/* tx dma start */
1820 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1821 		}
1822 		/* wakeup */
1823 		netif_wake_queue(ndev);
1824 	}
1825 }
1826 
1827 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1828 {
1829 	struct net_device *ndev = netdev;
1830 	struct sh_eth_private *mdp = netdev_priv(ndev);
1831 	struct sh_eth_cpu_data *cd = mdp->cd;
1832 	irqreturn_t ret = IRQ_NONE;
1833 	u32 intr_status, intr_enable;
1834 
1835 	spin_lock(&mdp->lock);
1836 
1837 	/* Get interrupt status */
1838 	intr_status = sh_eth_read(ndev, EESR);
1839 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1840 	 * enabled since it's the one that  comes  thru regardless of the mask,
1841 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1842 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1843 	 * bit...
1844 	 */
1845 	intr_enable = sh_eth_read(ndev, EESIPR);
1846 	intr_status &= intr_enable | EESIPR_ECIIP;
1847 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1848 			   cd->eesr_err_check))
1849 		ret = IRQ_HANDLED;
1850 	else
1851 		goto out;
1852 
1853 	if (unlikely(!mdp->irq_enabled)) {
1854 		sh_eth_write(ndev, 0, EESIPR);
1855 		goto out;
1856 	}
1857 
1858 	if (intr_status & EESR_RX_CHECK) {
1859 		if (napi_schedule_prep(&mdp->napi)) {
1860 			/* Mask Rx interrupts */
1861 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1862 				     EESIPR);
1863 			__napi_schedule(&mdp->napi);
1864 		} else {
1865 			netdev_warn(ndev,
1866 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1867 				    intr_status, intr_enable);
1868 		}
1869 	}
1870 
1871 	/* Tx Check */
1872 	if (intr_status & cd->tx_check) {
1873 		/* Clear Tx interrupts */
1874 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1875 
1876 		sh_eth_tx_free(ndev, true);
1877 		netif_wake_queue(ndev);
1878 	}
1879 
1880 	/* E-MAC interrupt */
1881 	if (intr_status & EESR_ECI)
1882 		sh_eth_emac_interrupt(ndev);
1883 
1884 	if (intr_status & cd->eesr_err_check) {
1885 		/* Clear error interrupts */
1886 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1887 
1888 		sh_eth_error(ndev, intr_status);
1889 	}
1890 
1891 out:
1892 	spin_unlock(&mdp->lock);
1893 
1894 	return ret;
1895 }
1896 
1897 static int sh_eth_poll(struct napi_struct *napi, int budget)
1898 {
1899 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1900 						  napi);
1901 	struct net_device *ndev = napi->dev;
1902 	int quota = budget;
1903 	u32 intr_status;
1904 
1905 	for (;;) {
1906 		intr_status = sh_eth_read(ndev, EESR);
1907 		if (!(intr_status & EESR_RX_CHECK))
1908 			break;
1909 		/* Clear Rx interrupts */
1910 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1911 
1912 		if (sh_eth_rx(ndev, intr_status, &quota))
1913 			goto out;
1914 	}
1915 
1916 	napi_complete(napi);
1917 
1918 	/* Reenable Rx interrupts */
1919 	if (mdp->irq_enabled)
1920 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1921 out:
1922 	return budget - quota;
1923 }
1924 
1925 /* PHY state control function */
1926 static void sh_eth_adjust_link(struct net_device *ndev)
1927 {
1928 	struct sh_eth_private *mdp = netdev_priv(ndev);
1929 	struct phy_device *phydev = ndev->phydev;
1930 	int new_state = 0;
1931 
1932 	if (phydev->link) {
1933 		if (phydev->duplex != mdp->duplex) {
1934 			new_state = 1;
1935 			mdp->duplex = phydev->duplex;
1936 			if (mdp->cd->set_duplex)
1937 				mdp->cd->set_duplex(ndev);
1938 		}
1939 
1940 		if (phydev->speed != mdp->speed) {
1941 			new_state = 1;
1942 			mdp->speed = phydev->speed;
1943 			if (mdp->cd->set_rate)
1944 				mdp->cd->set_rate(ndev);
1945 		}
1946 		if (!mdp->link) {
1947 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1948 			new_state = 1;
1949 			mdp->link = phydev->link;
1950 			if (mdp->cd->no_psr || mdp->no_ether_link)
1951 				sh_eth_rcv_snd_enable(ndev);
1952 		}
1953 	} else if (mdp->link) {
1954 		new_state = 1;
1955 		mdp->link = 0;
1956 		mdp->speed = 0;
1957 		mdp->duplex = -1;
1958 		if (mdp->cd->no_psr || mdp->no_ether_link)
1959 			sh_eth_rcv_snd_disable(ndev);
1960 	}
1961 
1962 	if (new_state && netif_msg_link(mdp))
1963 		phy_print_status(phydev);
1964 }
1965 
1966 /* PHY init function */
1967 static int sh_eth_phy_init(struct net_device *ndev)
1968 {
1969 	struct device_node *np = ndev->dev.parent->of_node;
1970 	struct sh_eth_private *mdp = netdev_priv(ndev);
1971 	struct phy_device *phydev;
1972 
1973 	mdp->link = 0;
1974 	mdp->speed = 0;
1975 	mdp->duplex = -1;
1976 
1977 	/* Try connect to PHY */
1978 	if (np) {
1979 		struct device_node *pn;
1980 
1981 		pn = of_parse_phandle(np, "phy-handle", 0);
1982 		phydev = of_phy_connect(ndev, pn,
1983 					sh_eth_adjust_link, 0,
1984 					mdp->phy_interface);
1985 
1986 		of_node_put(pn);
1987 		if (!phydev)
1988 			phydev = ERR_PTR(-ENOENT);
1989 	} else {
1990 		char phy_id[MII_BUS_ID_SIZE + 3];
1991 
1992 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1993 			 mdp->mii_bus->id, mdp->phy_id);
1994 
1995 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1996 				     mdp->phy_interface);
1997 	}
1998 
1999 	if (IS_ERR(phydev)) {
2000 		netdev_err(ndev, "failed to connect PHY\n");
2001 		return PTR_ERR(phydev);
2002 	}
2003 
2004 	/* mask with MAC supported features */
2005 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2006 		int err = phy_set_max_speed(phydev, SPEED_100);
2007 		if (err) {
2008 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2009 			phy_disconnect(phydev);
2010 			return err;
2011 		}
2012 	}
2013 
2014 	phy_attached_info(phydev);
2015 
2016 	return 0;
2017 }
2018 
2019 /* PHY control start function */
2020 static int sh_eth_phy_start(struct net_device *ndev)
2021 {
2022 	int ret;
2023 
2024 	ret = sh_eth_phy_init(ndev);
2025 	if (ret)
2026 		return ret;
2027 
2028 	phy_start(ndev->phydev);
2029 
2030 	return 0;
2031 }
2032 
2033 static int sh_eth_get_link_ksettings(struct net_device *ndev,
2034 				     struct ethtool_link_ksettings *cmd)
2035 {
2036 	struct sh_eth_private *mdp = netdev_priv(ndev);
2037 	unsigned long flags;
2038 
2039 	if (!ndev->phydev)
2040 		return -ENODEV;
2041 
2042 	spin_lock_irqsave(&mdp->lock, flags);
2043 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
2044 	spin_unlock_irqrestore(&mdp->lock, flags);
2045 
2046 	return 0;
2047 }
2048 
2049 static int sh_eth_set_link_ksettings(struct net_device *ndev,
2050 				     const struct ethtool_link_ksettings *cmd)
2051 {
2052 	struct sh_eth_private *mdp = netdev_priv(ndev);
2053 	unsigned long flags;
2054 	int ret;
2055 
2056 	if (!ndev->phydev)
2057 		return -ENODEV;
2058 
2059 	spin_lock_irqsave(&mdp->lock, flags);
2060 
2061 	/* disable tx and rx */
2062 	sh_eth_rcv_snd_disable(ndev);
2063 
2064 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
2065 	if (ret)
2066 		goto error_exit;
2067 
2068 	if (cmd->base.duplex == DUPLEX_FULL)
2069 		mdp->duplex = 1;
2070 	else
2071 		mdp->duplex = 0;
2072 
2073 	if (mdp->cd->set_duplex)
2074 		mdp->cd->set_duplex(ndev);
2075 
2076 error_exit:
2077 	mdelay(1);
2078 
2079 	/* enable tx and rx */
2080 	sh_eth_rcv_snd_enable(ndev);
2081 
2082 	spin_unlock_irqrestore(&mdp->lock, flags);
2083 
2084 	return ret;
2085 }
2086 
2087 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2088  * version must be bumped as well.  Just adding registers up to that
2089  * limit is fine, as long as the existing register indices don't
2090  * change.
2091  */
2092 #define SH_ETH_REG_DUMP_VERSION		1
2093 #define SH_ETH_REG_DUMP_MAX_REGS	256
2094 
2095 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2096 {
2097 	struct sh_eth_private *mdp = netdev_priv(ndev);
2098 	struct sh_eth_cpu_data *cd = mdp->cd;
2099 	u32 *valid_map;
2100 	size_t len;
2101 
2102 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2103 
2104 	/* Dump starts with a bitmap that tells ethtool which
2105 	 * registers are defined for this chip.
2106 	 */
2107 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2108 	if (buf) {
2109 		valid_map = buf;
2110 		buf += len;
2111 	} else {
2112 		valid_map = NULL;
2113 	}
2114 
2115 	/* Add a register to the dump, if it has a defined offset.
2116 	 * This automatically skips most undefined registers, but for
2117 	 * some it is also necessary to check a capability flag in
2118 	 * struct sh_eth_cpu_data.
2119 	 */
2120 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2121 #define add_reg_from(reg, read_expr) do {				\
2122 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2123 			if (buf) {					\
2124 				mark_reg_valid(reg);			\
2125 				*buf++ = read_expr;			\
2126 			}						\
2127 			++len;						\
2128 		}							\
2129 	} while (0)
2130 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2131 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2132 
2133 	add_reg(EDSR);
2134 	add_reg(EDMR);
2135 	add_reg(EDTRR);
2136 	add_reg(EDRRR);
2137 	add_reg(EESR);
2138 	add_reg(EESIPR);
2139 	add_reg(TDLAR);
2140 	add_reg(TDFAR);
2141 	add_reg(TDFXR);
2142 	add_reg(TDFFR);
2143 	add_reg(RDLAR);
2144 	add_reg(RDFAR);
2145 	add_reg(RDFXR);
2146 	add_reg(RDFFR);
2147 	add_reg(TRSCER);
2148 	add_reg(RMFCR);
2149 	add_reg(TFTR);
2150 	add_reg(FDR);
2151 	add_reg(RMCR);
2152 	add_reg(TFUCR);
2153 	add_reg(RFOCR);
2154 	if (cd->rmiimode)
2155 		add_reg(RMIIMODE);
2156 	add_reg(FCFTR);
2157 	if (cd->rpadir)
2158 		add_reg(RPADIR);
2159 	if (!cd->no_trimd)
2160 		add_reg(TRIMD);
2161 	add_reg(ECMR);
2162 	add_reg(ECSR);
2163 	add_reg(ECSIPR);
2164 	add_reg(PIR);
2165 	if (!cd->no_psr)
2166 		add_reg(PSR);
2167 	add_reg(RDMLR);
2168 	add_reg(RFLR);
2169 	add_reg(IPGR);
2170 	if (cd->apr)
2171 		add_reg(APR);
2172 	if (cd->mpr)
2173 		add_reg(MPR);
2174 	add_reg(RFCR);
2175 	add_reg(RFCF);
2176 	if (cd->tpauser)
2177 		add_reg(TPAUSER);
2178 	add_reg(TPAUSECR);
2179 	add_reg(GECMR);
2180 	if (cd->bculr)
2181 		add_reg(BCULR);
2182 	add_reg(MAHR);
2183 	add_reg(MALR);
2184 	add_reg(TROCR);
2185 	add_reg(CDCR);
2186 	add_reg(LCCR);
2187 	add_reg(CNDCR);
2188 	add_reg(CEFCR);
2189 	add_reg(FRECR);
2190 	add_reg(TSFRCR);
2191 	add_reg(TLFRCR);
2192 	add_reg(CERCR);
2193 	add_reg(CEECR);
2194 	add_reg(MAFCR);
2195 	if (cd->rtrate)
2196 		add_reg(RTRATE);
2197 	if (cd->hw_checksum)
2198 		add_reg(CSMR);
2199 	if (cd->select_mii)
2200 		add_reg(RMII_MII);
2201 	if (cd->tsu) {
2202 		add_tsu_reg(ARSTR);
2203 		add_tsu_reg(TSU_CTRST);
2204 		add_tsu_reg(TSU_FWEN0);
2205 		add_tsu_reg(TSU_FWEN1);
2206 		add_tsu_reg(TSU_FCM);
2207 		add_tsu_reg(TSU_BSYSL0);
2208 		add_tsu_reg(TSU_BSYSL1);
2209 		add_tsu_reg(TSU_PRISL0);
2210 		add_tsu_reg(TSU_PRISL1);
2211 		add_tsu_reg(TSU_FWSL0);
2212 		add_tsu_reg(TSU_FWSL1);
2213 		add_tsu_reg(TSU_FWSLC);
2214 		add_tsu_reg(TSU_QTAGM0);
2215 		add_tsu_reg(TSU_QTAGM1);
2216 		add_tsu_reg(TSU_FWSR);
2217 		add_tsu_reg(TSU_FWINMK);
2218 		add_tsu_reg(TSU_ADQT0);
2219 		add_tsu_reg(TSU_ADQT1);
2220 		add_tsu_reg(TSU_VTAG0);
2221 		add_tsu_reg(TSU_VTAG1);
2222 		add_tsu_reg(TSU_ADSBSY);
2223 		add_tsu_reg(TSU_TEN);
2224 		add_tsu_reg(TSU_POST1);
2225 		add_tsu_reg(TSU_POST2);
2226 		add_tsu_reg(TSU_POST3);
2227 		add_tsu_reg(TSU_POST4);
2228 		/* This is the start of a table, not just a single register. */
2229 		if (buf) {
2230 			unsigned int i;
2231 
2232 			mark_reg_valid(TSU_ADRH0);
2233 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2234 				*buf++ = ioread32(mdp->tsu_addr +
2235 						  mdp->reg_offset[TSU_ADRH0] +
2236 						  i * 4);
2237 		}
2238 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2239 	}
2240 
2241 #undef mark_reg_valid
2242 #undef add_reg_from
2243 #undef add_reg
2244 #undef add_tsu_reg
2245 
2246 	return len * 4;
2247 }
2248 
2249 static int sh_eth_get_regs_len(struct net_device *ndev)
2250 {
2251 	return __sh_eth_get_regs(ndev, NULL);
2252 }
2253 
2254 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2255 			    void *buf)
2256 {
2257 	struct sh_eth_private *mdp = netdev_priv(ndev);
2258 
2259 	regs->version = SH_ETH_REG_DUMP_VERSION;
2260 
2261 	pm_runtime_get_sync(&mdp->pdev->dev);
2262 	__sh_eth_get_regs(ndev, buf);
2263 	pm_runtime_put_sync(&mdp->pdev->dev);
2264 }
2265 
2266 static int sh_eth_nway_reset(struct net_device *ndev)
2267 {
2268 	struct sh_eth_private *mdp = netdev_priv(ndev);
2269 	unsigned long flags;
2270 	int ret;
2271 
2272 	if (!ndev->phydev)
2273 		return -ENODEV;
2274 
2275 	spin_lock_irqsave(&mdp->lock, flags);
2276 	ret = phy_start_aneg(ndev->phydev);
2277 	spin_unlock_irqrestore(&mdp->lock, flags);
2278 
2279 	return ret;
2280 }
2281 
2282 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2283 {
2284 	struct sh_eth_private *mdp = netdev_priv(ndev);
2285 	return mdp->msg_enable;
2286 }
2287 
2288 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2289 {
2290 	struct sh_eth_private *mdp = netdev_priv(ndev);
2291 	mdp->msg_enable = value;
2292 }
2293 
2294 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2295 	"rx_current", "tx_current",
2296 	"rx_dirty", "tx_dirty",
2297 };
2298 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2299 
2300 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2301 {
2302 	switch (sset) {
2303 	case ETH_SS_STATS:
2304 		return SH_ETH_STATS_LEN;
2305 	default:
2306 		return -EOPNOTSUPP;
2307 	}
2308 }
2309 
2310 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2311 				     struct ethtool_stats *stats, u64 *data)
2312 {
2313 	struct sh_eth_private *mdp = netdev_priv(ndev);
2314 	int i = 0;
2315 
2316 	/* device-specific stats */
2317 	data[i++] = mdp->cur_rx;
2318 	data[i++] = mdp->cur_tx;
2319 	data[i++] = mdp->dirty_rx;
2320 	data[i++] = mdp->dirty_tx;
2321 }
2322 
2323 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2324 {
2325 	switch (stringset) {
2326 	case ETH_SS_STATS:
2327 		memcpy(data, *sh_eth_gstrings_stats,
2328 		       sizeof(sh_eth_gstrings_stats));
2329 		break;
2330 	}
2331 }
2332 
2333 static void sh_eth_get_ringparam(struct net_device *ndev,
2334 				 struct ethtool_ringparam *ring)
2335 {
2336 	struct sh_eth_private *mdp = netdev_priv(ndev);
2337 
2338 	ring->rx_max_pending = RX_RING_MAX;
2339 	ring->tx_max_pending = TX_RING_MAX;
2340 	ring->rx_pending = mdp->num_rx_ring;
2341 	ring->tx_pending = mdp->num_tx_ring;
2342 }
2343 
2344 static int sh_eth_set_ringparam(struct net_device *ndev,
2345 				struct ethtool_ringparam *ring)
2346 {
2347 	struct sh_eth_private *mdp = netdev_priv(ndev);
2348 	int ret;
2349 
2350 	if (ring->tx_pending > TX_RING_MAX ||
2351 	    ring->rx_pending > RX_RING_MAX ||
2352 	    ring->tx_pending < TX_RING_MIN ||
2353 	    ring->rx_pending < RX_RING_MIN)
2354 		return -EINVAL;
2355 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2356 		return -EINVAL;
2357 
2358 	if (netif_running(ndev)) {
2359 		netif_device_detach(ndev);
2360 		netif_tx_disable(ndev);
2361 
2362 		/* Serialise with the interrupt handler and NAPI, then
2363 		 * disable interrupts.  We have to clear the
2364 		 * irq_enabled flag first to ensure that interrupts
2365 		 * won't be re-enabled.
2366 		 */
2367 		mdp->irq_enabled = false;
2368 		synchronize_irq(ndev->irq);
2369 		napi_synchronize(&mdp->napi);
2370 		sh_eth_write(ndev, 0x0000, EESIPR);
2371 
2372 		sh_eth_dev_exit(ndev);
2373 
2374 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2375 		sh_eth_ring_free(ndev);
2376 	}
2377 
2378 	/* Set new parameters */
2379 	mdp->num_rx_ring = ring->rx_pending;
2380 	mdp->num_tx_ring = ring->tx_pending;
2381 
2382 	if (netif_running(ndev)) {
2383 		ret = sh_eth_ring_init(ndev);
2384 		if (ret < 0) {
2385 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2386 				   __func__);
2387 			return ret;
2388 		}
2389 		ret = sh_eth_dev_init(ndev);
2390 		if (ret < 0) {
2391 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2392 				   __func__);
2393 			return ret;
2394 		}
2395 
2396 		netif_device_attach(ndev);
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2403 {
2404 	struct sh_eth_private *mdp = netdev_priv(ndev);
2405 
2406 	wol->supported = 0;
2407 	wol->wolopts = 0;
2408 
2409 	if (mdp->cd->magic) {
2410 		wol->supported = WAKE_MAGIC;
2411 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2412 	}
2413 }
2414 
2415 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2416 {
2417 	struct sh_eth_private *mdp = netdev_priv(ndev);
2418 
2419 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2420 		return -EOPNOTSUPP;
2421 
2422 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2423 
2424 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2425 
2426 	return 0;
2427 }
2428 
2429 static const struct ethtool_ops sh_eth_ethtool_ops = {
2430 	.get_regs_len	= sh_eth_get_regs_len,
2431 	.get_regs	= sh_eth_get_regs,
2432 	.nway_reset	= sh_eth_nway_reset,
2433 	.get_msglevel	= sh_eth_get_msglevel,
2434 	.set_msglevel	= sh_eth_set_msglevel,
2435 	.get_link	= ethtool_op_get_link,
2436 	.get_strings	= sh_eth_get_strings,
2437 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2438 	.get_sset_count     = sh_eth_get_sset_count,
2439 	.get_ringparam	= sh_eth_get_ringparam,
2440 	.set_ringparam	= sh_eth_set_ringparam,
2441 	.get_link_ksettings = sh_eth_get_link_ksettings,
2442 	.set_link_ksettings = sh_eth_set_link_ksettings,
2443 	.get_wol	= sh_eth_get_wol,
2444 	.set_wol	= sh_eth_set_wol,
2445 };
2446 
2447 /* network device open function */
2448 static int sh_eth_open(struct net_device *ndev)
2449 {
2450 	struct sh_eth_private *mdp = netdev_priv(ndev);
2451 	int ret;
2452 
2453 	pm_runtime_get_sync(&mdp->pdev->dev);
2454 
2455 	napi_enable(&mdp->napi);
2456 
2457 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2458 			  mdp->cd->irq_flags, ndev->name, ndev);
2459 	if (ret) {
2460 		netdev_err(ndev, "Can not assign IRQ number\n");
2461 		goto out_napi_off;
2462 	}
2463 
2464 	/* Descriptor set */
2465 	ret = sh_eth_ring_init(ndev);
2466 	if (ret)
2467 		goto out_free_irq;
2468 
2469 	/* device init */
2470 	ret = sh_eth_dev_init(ndev);
2471 	if (ret)
2472 		goto out_free_irq;
2473 
2474 	/* PHY control start*/
2475 	ret = sh_eth_phy_start(ndev);
2476 	if (ret)
2477 		goto out_free_irq;
2478 
2479 	netif_start_queue(ndev);
2480 
2481 	mdp->is_opened = 1;
2482 
2483 	return ret;
2484 
2485 out_free_irq:
2486 	free_irq(ndev->irq, ndev);
2487 out_napi_off:
2488 	napi_disable(&mdp->napi);
2489 	pm_runtime_put_sync(&mdp->pdev->dev);
2490 	return ret;
2491 }
2492 
2493 /* Timeout function */
2494 static void sh_eth_tx_timeout(struct net_device *ndev)
2495 {
2496 	struct sh_eth_private *mdp = netdev_priv(ndev);
2497 	struct sh_eth_rxdesc *rxdesc;
2498 	int i;
2499 
2500 	netif_stop_queue(ndev);
2501 
2502 	netif_err(mdp, timer, ndev,
2503 		  "transmit timed out, status %8.8x, resetting...\n",
2504 		  sh_eth_read(ndev, EESR));
2505 
2506 	/* tx_errors count up */
2507 	ndev->stats.tx_errors++;
2508 
2509 	/* Free all the skbuffs in the Rx queue. */
2510 	for (i = 0; i < mdp->num_rx_ring; i++) {
2511 		rxdesc = &mdp->rx_ring[i];
2512 		rxdesc->status = cpu_to_le32(0);
2513 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2514 		dev_kfree_skb(mdp->rx_skbuff[i]);
2515 		mdp->rx_skbuff[i] = NULL;
2516 	}
2517 	for (i = 0; i < mdp->num_tx_ring; i++) {
2518 		dev_kfree_skb(mdp->tx_skbuff[i]);
2519 		mdp->tx_skbuff[i] = NULL;
2520 	}
2521 
2522 	/* device init */
2523 	sh_eth_dev_init(ndev);
2524 
2525 	netif_start_queue(ndev);
2526 }
2527 
2528 /* Packet transmit function */
2529 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2530 {
2531 	struct sh_eth_private *mdp = netdev_priv(ndev);
2532 	struct sh_eth_txdesc *txdesc;
2533 	dma_addr_t dma_addr;
2534 	u32 entry;
2535 	unsigned long flags;
2536 
2537 	spin_lock_irqsave(&mdp->lock, flags);
2538 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2539 		if (!sh_eth_tx_free(ndev, true)) {
2540 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2541 			netif_stop_queue(ndev);
2542 			spin_unlock_irqrestore(&mdp->lock, flags);
2543 			return NETDEV_TX_BUSY;
2544 		}
2545 	}
2546 	spin_unlock_irqrestore(&mdp->lock, flags);
2547 
2548 	if (skb_put_padto(skb, ETH_ZLEN))
2549 		return NETDEV_TX_OK;
2550 
2551 	entry = mdp->cur_tx % mdp->num_tx_ring;
2552 	mdp->tx_skbuff[entry] = skb;
2553 	txdesc = &mdp->tx_ring[entry];
2554 	/* soft swap. */
2555 	if (!mdp->cd->hw_swap)
2556 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2557 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2558 				  DMA_TO_DEVICE);
2559 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2560 		kfree_skb(skb);
2561 		return NETDEV_TX_OK;
2562 	}
2563 	txdesc->addr = cpu_to_le32(dma_addr);
2564 	txdesc->len  = cpu_to_le32(skb->len << 16);
2565 
2566 	dma_wmb(); /* TACT bit must be set after all the above writes */
2567 	if (entry >= mdp->num_tx_ring - 1)
2568 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2569 	else
2570 		txdesc->status |= cpu_to_le32(TD_TACT);
2571 
2572 	mdp->cur_tx++;
2573 
2574 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2575 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2576 
2577 	return NETDEV_TX_OK;
2578 }
2579 
2580 /* The statistics registers have write-clear behaviour, which means we
2581  * will lose any increment between the read and write.  We mitigate
2582  * this by only clearing when we read a non-zero value, so we will
2583  * never falsely report a total of zero.
2584  */
2585 static void
2586 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2587 {
2588 	u32 delta = sh_eth_read(ndev, reg);
2589 
2590 	if (delta) {
2591 		*stat += delta;
2592 		sh_eth_write(ndev, 0, reg);
2593 	}
2594 }
2595 
2596 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2597 {
2598 	struct sh_eth_private *mdp = netdev_priv(ndev);
2599 
2600 	if (mdp->cd->no_tx_cntrs)
2601 		return &ndev->stats;
2602 
2603 	if (!mdp->is_opened)
2604 		return &ndev->stats;
2605 
2606 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2607 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2608 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2609 
2610 	if (mdp->cd->cexcr) {
2611 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2612 				   CERCR);
2613 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2614 				   CEECR);
2615 	} else {
2616 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2617 				   CNDCR);
2618 	}
2619 
2620 	return &ndev->stats;
2621 }
2622 
2623 /* device close function */
2624 static int sh_eth_close(struct net_device *ndev)
2625 {
2626 	struct sh_eth_private *mdp = netdev_priv(ndev);
2627 
2628 	netif_stop_queue(ndev);
2629 
2630 	/* Serialise with the interrupt handler and NAPI, then disable
2631 	 * interrupts.  We have to clear the irq_enabled flag first to
2632 	 * ensure that interrupts won't be re-enabled.
2633 	 */
2634 	mdp->irq_enabled = false;
2635 	synchronize_irq(ndev->irq);
2636 	napi_disable(&mdp->napi);
2637 	sh_eth_write(ndev, 0x0000, EESIPR);
2638 
2639 	sh_eth_dev_exit(ndev);
2640 
2641 	/* PHY Disconnect */
2642 	if (ndev->phydev) {
2643 		phy_stop(ndev->phydev);
2644 		phy_disconnect(ndev->phydev);
2645 	}
2646 
2647 	free_irq(ndev->irq, ndev);
2648 
2649 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2650 	sh_eth_ring_free(ndev);
2651 
2652 	pm_runtime_put_sync(&mdp->pdev->dev);
2653 
2654 	mdp->is_opened = 0;
2655 
2656 	return 0;
2657 }
2658 
2659 /* ioctl to device function */
2660 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2661 {
2662 	struct phy_device *phydev = ndev->phydev;
2663 
2664 	if (!netif_running(ndev))
2665 		return -EINVAL;
2666 
2667 	if (!phydev)
2668 		return -ENODEV;
2669 
2670 	return phy_mii_ioctl(phydev, rq, cmd);
2671 }
2672 
2673 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2674 {
2675 	if (netif_running(ndev))
2676 		return -EBUSY;
2677 
2678 	ndev->mtu = new_mtu;
2679 	netdev_update_features(ndev);
2680 
2681 	return 0;
2682 }
2683 
2684 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2685 static u32 sh_eth_tsu_get_post_mask(int entry)
2686 {
2687 	return 0x0f << (28 - ((entry % 8) * 4));
2688 }
2689 
2690 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2691 {
2692 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2693 }
2694 
2695 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2696 					     int entry)
2697 {
2698 	struct sh_eth_private *mdp = netdev_priv(ndev);
2699 	int reg = TSU_POST1 + entry / 8;
2700 	u32 tmp;
2701 
2702 	tmp = sh_eth_tsu_read(mdp, reg);
2703 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2704 }
2705 
2706 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2707 					      int entry)
2708 {
2709 	struct sh_eth_private *mdp = netdev_priv(ndev);
2710 	int reg = TSU_POST1 + entry / 8;
2711 	u32 post_mask, ref_mask, tmp;
2712 
2713 	post_mask = sh_eth_tsu_get_post_mask(entry);
2714 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2715 
2716 	tmp = sh_eth_tsu_read(mdp, reg);
2717 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2718 
2719 	/* If other port enables, the function returns "true" */
2720 	return tmp & ref_mask;
2721 }
2722 
2723 static int sh_eth_tsu_busy(struct net_device *ndev)
2724 {
2725 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2726 	struct sh_eth_private *mdp = netdev_priv(ndev);
2727 
2728 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2729 		udelay(10);
2730 		timeout--;
2731 		if (timeout <= 0) {
2732 			netdev_err(ndev, "%s: timeout\n", __func__);
2733 			return -ETIMEDOUT;
2734 		}
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2741 				  const u8 *addr)
2742 {
2743 	u32 val;
2744 
2745 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2746 	iowrite32(val, reg);
2747 	if (sh_eth_tsu_busy(ndev) < 0)
2748 		return -EBUSY;
2749 
2750 	val = addr[4] << 8 | addr[5];
2751 	iowrite32(val, reg + 4);
2752 	if (sh_eth_tsu_busy(ndev) < 0)
2753 		return -EBUSY;
2754 
2755 	return 0;
2756 }
2757 
2758 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2759 {
2760 	u32 val;
2761 
2762 	val = ioread32(reg);
2763 	addr[0] = (val >> 24) & 0xff;
2764 	addr[1] = (val >> 16) & 0xff;
2765 	addr[2] = (val >> 8) & 0xff;
2766 	addr[3] = val & 0xff;
2767 	val = ioread32(reg + 4);
2768 	addr[4] = (val >> 8) & 0xff;
2769 	addr[5] = val & 0xff;
2770 }
2771 
2772 
2773 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2774 {
2775 	struct sh_eth_private *mdp = netdev_priv(ndev);
2776 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2777 	int i;
2778 	u8 c_addr[ETH_ALEN];
2779 
2780 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2781 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2782 		if (ether_addr_equal(addr, c_addr))
2783 			return i;
2784 	}
2785 
2786 	return -ENOENT;
2787 }
2788 
2789 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2790 {
2791 	u8 blank[ETH_ALEN];
2792 	int entry;
2793 
2794 	memset(blank, 0, sizeof(blank));
2795 	entry = sh_eth_tsu_find_entry(ndev, blank);
2796 	return (entry < 0) ? -ENOMEM : entry;
2797 }
2798 
2799 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2800 					      int entry)
2801 {
2802 	struct sh_eth_private *mdp = netdev_priv(ndev);
2803 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2804 	int ret;
2805 	u8 blank[ETH_ALEN];
2806 
2807 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2808 			 ~(1 << (31 - entry)), TSU_TEN);
2809 
2810 	memset(blank, 0, sizeof(blank));
2811 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2812 	if (ret < 0)
2813 		return ret;
2814 	return 0;
2815 }
2816 
2817 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2818 {
2819 	struct sh_eth_private *mdp = netdev_priv(ndev);
2820 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2821 	int i, ret;
2822 
2823 	if (!mdp->cd->tsu)
2824 		return 0;
2825 
2826 	i = sh_eth_tsu_find_entry(ndev, addr);
2827 	if (i < 0) {
2828 		/* No entry found, create one */
2829 		i = sh_eth_tsu_find_empty(ndev);
2830 		if (i < 0)
2831 			return -ENOMEM;
2832 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2833 		if (ret < 0)
2834 			return ret;
2835 
2836 		/* Enable the entry */
2837 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2838 				 (1 << (31 - i)), TSU_TEN);
2839 	}
2840 
2841 	/* Entry found or created, enable POST */
2842 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2843 
2844 	return 0;
2845 }
2846 
2847 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2848 {
2849 	struct sh_eth_private *mdp = netdev_priv(ndev);
2850 	int i, ret;
2851 
2852 	if (!mdp->cd->tsu)
2853 		return 0;
2854 
2855 	i = sh_eth_tsu_find_entry(ndev, addr);
2856 	if (i) {
2857 		/* Entry found */
2858 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2859 			goto done;
2860 
2861 		/* Disable the entry if both ports was disabled */
2862 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2863 		if (ret < 0)
2864 			return ret;
2865 	}
2866 done:
2867 	return 0;
2868 }
2869 
2870 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2871 {
2872 	struct sh_eth_private *mdp = netdev_priv(ndev);
2873 	int i, ret;
2874 
2875 	if (!mdp->cd->tsu)
2876 		return 0;
2877 
2878 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2879 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2880 			continue;
2881 
2882 		/* Disable the entry if both ports was disabled */
2883 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2884 		if (ret < 0)
2885 			return ret;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2892 {
2893 	struct sh_eth_private *mdp = netdev_priv(ndev);
2894 	u8 addr[ETH_ALEN];
2895 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2896 	int i;
2897 
2898 	if (!mdp->cd->tsu)
2899 		return;
2900 
2901 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2902 		sh_eth_tsu_read_entry(reg_offset, addr);
2903 		if (is_multicast_ether_addr(addr))
2904 			sh_eth_tsu_del_entry(ndev, addr);
2905 	}
2906 }
2907 
2908 /* Update promiscuous flag and multicast filter */
2909 static void sh_eth_set_rx_mode(struct net_device *ndev)
2910 {
2911 	struct sh_eth_private *mdp = netdev_priv(ndev);
2912 	u32 ecmr_bits;
2913 	int mcast_all = 0;
2914 	unsigned long flags;
2915 
2916 	spin_lock_irqsave(&mdp->lock, flags);
2917 	/* Initial condition is MCT = 1, PRM = 0.
2918 	 * Depending on ndev->flags, set PRM or clear MCT
2919 	 */
2920 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2921 	if (mdp->cd->tsu)
2922 		ecmr_bits |= ECMR_MCT;
2923 
2924 	if (!(ndev->flags & IFF_MULTICAST)) {
2925 		sh_eth_tsu_purge_mcast(ndev);
2926 		mcast_all = 1;
2927 	}
2928 	if (ndev->flags & IFF_ALLMULTI) {
2929 		sh_eth_tsu_purge_mcast(ndev);
2930 		ecmr_bits &= ~ECMR_MCT;
2931 		mcast_all = 1;
2932 	}
2933 
2934 	if (ndev->flags & IFF_PROMISC) {
2935 		sh_eth_tsu_purge_all(ndev);
2936 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2937 	} else if (mdp->cd->tsu) {
2938 		struct netdev_hw_addr *ha;
2939 		netdev_for_each_mc_addr(ha, ndev) {
2940 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2941 				continue;
2942 
2943 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2944 				if (!mcast_all) {
2945 					sh_eth_tsu_purge_mcast(ndev);
2946 					ecmr_bits &= ~ECMR_MCT;
2947 					mcast_all = 1;
2948 				}
2949 			}
2950 		}
2951 	}
2952 
2953 	/* update the ethernet mode */
2954 	sh_eth_write(ndev, ecmr_bits, ECMR);
2955 
2956 	spin_unlock_irqrestore(&mdp->lock, flags);
2957 }
2958 
2959 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2960 {
2961 	if (!mdp->port)
2962 		return TSU_VTAG0;
2963 	else
2964 		return TSU_VTAG1;
2965 }
2966 
2967 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2968 				  __be16 proto, u16 vid)
2969 {
2970 	struct sh_eth_private *mdp = netdev_priv(ndev);
2971 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2972 
2973 	if (unlikely(!mdp->cd->tsu))
2974 		return -EPERM;
2975 
2976 	/* No filtering if vid = 0 */
2977 	if (!vid)
2978 		return 0;
2979 
2980 	mdp->vlan_num_ids++;
2981 
2982 	/* The controller has one VLAN tag HW filter. So, if the filter is
2983 	 * already enabled, the driver disables it and the filte
2984 	 */
2985 	if (mdp->vlan_num_ids > 1) {
2986 		/* disable VLAN filter */
2987 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2988 		return 0;
2989 	}
2990 
2991 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2992 			 vtag_reg_index);
2993 
2994 	return 0;
2995 }
2996 
2997 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2998 				   __be16 proto, u16 vid)
2999 {
3000 	struct sh_eth_private *mdp = netdev_priv(ndev);
3001 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
3002 
3003 	if (unlikely(!mdp->cd->tsu))
3004 		return -EPERM;
3005 
3006 	/* No filtering if vid = 0 */
3007 	if (!vid)
3008 		return 0;
3009 
3010 	mdp->vlan_num_ids--;
3011 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3012 
3013 	return 0;
3014 }
3015 
3016 /* SuperH's TSU register init function */
3017 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3018 {
3019 	if (!mdp->cd->dual_port) {
3020 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3021 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3022 				 TSU_FWSLC);	/* Enable POST registers */
3023 		return;
3024 	}
3025 
3026 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3027 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3028 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3029 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3030 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3031 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3032 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3033 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3034 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3035 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3036 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3037 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3038 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3039 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3040 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3041 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3042 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3043 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3044 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3045 }
3046 
3047 /* MDIO bus release function */
3048 static int sh_mdio_release(struct sh_eth_private *mdp)
3049 {
3050 	/* unregister mdio bus */
3051 	mdiobus_unregister(mdp->mii_bus);
3052 
3053 	/* free bitbang info */
3054 	free_mdio_bitbang(mdp->mii_bus);
3055 
3056 	return 0;
3057 }
3058 
3059 /* MDIO bus init function */
3060 static int sh_mdio_init(struct sh_eth_private *mdp,
3061 			struct sh_eth_plat_data *pd)
3062 {
3063 	int ret;
3064 	struct bb_info *bitbang;
3065 	struct platform_device *pdev = mdp->pdev;
3066 	struct device *dev = &mdp->pdev->dev;
3067 
3068 	/* create bit control struct for PHY */
3069 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3070 	if (!bitbang)
3071 		return -ENOMEM;
3072 
3073 	/* bitbang init */
3074 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3075 	bitbang->set_gate = pd->set_mdio_gate;
3076 	bitbang->ctrl.ops = &bb_ops;
3077 
3078 	/* MII controller setting */
3079 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3080 	if (!mdp->mii_bus)
3081 		return -ENOMEM;
3082 
3083 	/* Hook up MII support for ethtool */
3084 	mdp->mii_bus->name = "sh_mii";
3085 	mdp->mii_bus->parent = dev;
3086 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3087 		 pdev->name, pdev->id);
3088 
3089 	/* register MDIO bus */
3090 	if (pd->phy_irq > 0)
3091 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3092 
3093 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3094 	if (ret)
3095 		goto out_free_bus;
3096 
3097 	return 0;
3098 
3099 out_free_bus:
3100 	free_mdio_bitbang(mdp->mii_bus);
3101 	return ret;
3102 }
3103 
3104 static const u16 *sh_eth_get_register_offset(int register_type)
3105 {
3106 	const u16 *reg_offset = NULL;
3107 
3108 	switch (register_type) {
3109 	case SH_ETH_REG_GIGABIT:
3110 		reg_offset = sh_eth_offset_gigabit;
3111 		break;
3112 	case SH_ETH_REG_FAST_RZ:
3113 		reg_offset = sh_eth_offset_fast_rz;
3114 		break;
3115 	case SH_ETH_REG_FAST_RCAR:
3116 		reg_offset = sh_eth_offset_fast_rcar;
3117 		break;
3118 	case SH_ETH_REG_FAST_SH4:
3119 		reg_offset = sh_eth_offset_fast_sh4;
3120 		break;
3121 	case SH_ETH_REG_FAST_SH3_SH2:
3122 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3123 		break;
3124 	}
3125 
3126 	return reg_offset;
3127 }
3128 
3129 static const struct net_device_ops sh_eth_netdev_ops = {
3130 	.ndo_open		= sh_eth_open,
3131 	.ndo_stop		= sh_eth_close,
3132 	.ndo_start_xmit		= sh_eth_start_xmit,
3133 	.ndo_get_stats		= sh_eth_get_stats,
3134 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3135 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3136 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3137 	.ndo_change_mtu		= sh_eth_change_mtu,
3138 	.ndo_validate_addr	= eth_validate_addr,
3139 	.ndo_set_mac_address	= eth_mac_addr,
3140 };
3141 
3142 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3143 	.ndo_open		= sh_eth_open,
3144 	.ndo_stop		= sh_eth_close,
3145 	.ndo_start_xmit		= sh_eth_start_xmit,
3146 	.ndo_get_stats		= sh_eth_get_stats,
3147 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3148 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3149 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3150 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3151 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3152 	.ndo_change_mtu		= sh_eth_change_mtu,
3153 	.ndo_validate_addr	= eth_validate_addr,
3154 	.ndo_set_mac_address	= eth_mac_addr,
3155 };
3156 
3157 #ifdef CONFIG_OF
3158 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3159 {
3160 	struct device_node *np = dev->of_node;
3161 	struct sh_eth_plat_data *pdata;
3162 	const char *mac_addr;
3163 
3164 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3165 	if (!pdata)
3166 		return NULL;
3167 
3168 	pdata->phy_interface = of_get_phy_mode(np);
3169 
3170 	mac_addr = of_get_mac_address(np);
3171 	if (mac_addr)
3172 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3173 
3174 	pdata->no_ether_link =
3175 		of_property_read_bool(np, "renesas,no-ether-link");
3176 	pdata->ether_link_active_low =
3177 		of_property_read_bool(np, "renesas,ether-link-active-low");
3178 
3179 	return pdata;
3180 }
3181 
3182 static const struct of_device_id sh_eth_match_table[] = {
3183 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3184 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3185 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3186 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3187 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3188 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3189 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3190 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3191 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3192 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3193 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3194 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3195 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3196 	{ }
3197 };
3198 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3199 #else
3200 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3201 {
3202 	return NULL;
3203 }
3204 #endif
3205 
3206 static int sh_eth_drv_probe(struct platform_device *pdev)
3207 {
3208 	struct resource *res;
3209 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3210 	const struct platform_device_id *id = platform_get_device_id(pdev);
3211 	struct sh_eth_private *mdp;
3212 	struct net_device *ndev;
3213 	int ret;
3214 
3215 	/* get base addr */
3216 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3217 
3218 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3219 	if (!ndev)
3220 		return -ENOMEM;
3221 
3222 	pm_runtime_enable(&pdev->dev);
3223 	pm_runtime_get_sync(&pdev->dev);
3224 
3225 	ret = platform_get_irq(pdev, 0);
3226 	if (ret < 0)
3227 		goto out_release;
3228 	ndev->irq = ret;
3229 
3230 	SET_NETDEV_DEV(ndev, &pdev->dev);
3231 
3232 	mdp = netdev_priv(ndev);
3233 	mdp->num_tx_ring = TX_RING_SIZE;
3234 	mdp->num_rx_ring = RX_RING_SIZE;
3235 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3236 	if (IS_ERR(mdp->addr)) {
3237 		ret = PTR_ERR(mdp->addr);
3238 		goto out_release;
3239 	}
3240 
3241 	ndev->base_addr = res->start;
3242 
3243 	spin_lock_init(&mdp->lock);
3244 	mdp->pdev = pdev;
3245 
3246 	if (pdev->dev.of_node)
3247 		pd = sh_eth_parse_dt(&pdev->dev);
3248 	if (!pd) {
3249 		dev_err(&pdev->dev, "no platform data\n");
3250 		ret = -EINVAL;
3251 		goto out_release;
3252 	}
3253 
3254 	/* get PHY ID */
3255 	mdp->phy_id = pd->phy;
3256 	mdp->phy_interface = pd->phy_interface;
3257 	mdp->no_ether_link = pd->no_ether_link;
3258 	mdp->ether_link_active_low = pd->ether_link_active_low;
3259 
3260 	/* set cpu data */
3261 	if (id)
3262 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3263 	else
3264 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3265 
3266 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3267 	if (!mdp->reg_offset) {
3268 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3269 			mdp->cd->register_type);
3270 		ret = -EINVAL;
3271 		goto out_release;
3272 	}
3273 	sh_eth_set_default_cpu_data(mdp->cd);
3274 
3275 	/* User's manual states max MTU should be 2048 but due to the
3276 	 * alignment calculations in sh_eth_ring_init() the practical
3277 	 * MTU is a bit less. Maybe this can be optimized some more.
3278 	 */
3279 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3280 	ndev->min_mtu = ETH_MIN_MTU;
3281 
3282 	/* set function */
3283 	if (mdp->cd->tsu)
3284 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3285 	else
3286 		ndev->netdev_ops = &sh_eth_netdev_ops;
3287 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3288 	ndev->watchdog_timeo = TX_TIMEOUT;
3289 
3290 	/* debug message level */
3291 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3292 
3293 	/* read and set MAC address */
3294 	read_mac_address(ndev, pd->mac_addr);
3295 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3296 		dev_warn(&pdev->dev,
3297 			 "no valid MAC address supplied, using a random one.\n");
3298 		eth_hw_addr_random(ndev);
3299 	}
3300 
3301 	if (mdp->cd->tsu) {
3302 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3303 		struct resource *rtsu;
3304 
3305 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3306 		if (!rtsu) {
3307 			dev_err(&pdev->dev, "no TSU resource\n");
3308 			ret = -ENODEV;
3309 			goto out_release;
3310 		}
3311 		/* We can only request the  TSU region  for the first port
3312 		 * of the two  sharing this TSU for the probe to succeed...
3313 		 */
3314 		if (port == 0 &&
3315 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3316 					     resource_size(rtsu),
3317 					     dev_name(&pdev->dev))) {
3318 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3319 			ret = -EBUSY;
3320 			goto out_release;
3321 		}
3322 		/* ioremap the TSU registers */
3323 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3324 					     resource_size(rtsu));
3325 		if (!mdp->tsu_addr) {
3326 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3327 			ret = -ENOMEM;
3328 			goto out_release;
3329 		}
3330 		mdp->port = port;
3331 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3332 
3333 		/* Need to init only the first port of the two sharing a TSU */
3334 		if (port == 0) {
3335 			if (mdp->cd->chip_reset)
3336 				mdp->cd->chip_reset(ndev);
3337 
3338 			/* TSU init (Init only)*/
3339 			sh_eth_tsu_init(mdp);
3340 		}
3341 	}
3342 
3343 	if (mdp->cd->rmiimode)
3344 		sh_eth_write(ndev, 0x1, RMIIMODE);
3345 
3346 	/* MDIO bus init */
3347 	ret = sh_mdio_init(mdp, pd);
3348 	if (ret) {
3349 		if (ret != -EPROBE_DEFER)
3350 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3351 		goto out_release;
3352 	}
3353 
3354 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3355 
3356 	/* network device register */
3357 	ret = register_netdev(ndev);
3358 	if (ret)
3359 		goto out_napi_del;
3360 
3361 	if (mdp->cd->magic)
3362 		device_set_wakeup_capable(&pdev->dev, 1);
3363 
3364 	/* print device information */
3365 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3366 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3367 
3368 	pm_runtime_put(&pdev->dev);
3369 	platform_set_drvdata(pdev, ndev);
3370 
3371 	return ret;
3372 
3373 out_napi_del:
3374 	netif_napi_del(&mdp->napi);
3375 	sh_mdio_release(mdp);
3376 
3377 out_release:
3378 	/* net_dev free */
3379 	free_netdev(ndev);
3380 
3381 	pm_runtime_put(&pdev->dev);
3382 	pm_runtime_disable(&pdev->dev);
3383 	return ret;
3384 }
3385 
3386 static int sh_eth_drv_remove(struct platform_device *pdev)
3387 {
3388 	struct net_device *ndev = platform_get_drvdata(pdev);
3389 	struct sh_eth_private *mdp = netdev_priv(ndev);
3390 
3391 	unregister_netdev(ndev);
3392 	netif_napi_del(&mdp->napi);
3393 	sh_mdio_release(mdp);
3394 	pm_runtime_disable(&pdev->dev);
3395 	free_netdev(ndev);
3396 
3397 	return 0;
3398 }
3399 
3400 #ifdef CONFIG_PM
3401 #ifdef CONFIG_PM_SLEEP
3402 static int sh_eth_wol_setup(struct net_device *ndev)
3403 {
3404 	struct sh_eth_private *mdp = netdev_priv(ndev);
3405 
3406 	/* Only allow ECI interrupts */
3407 	synchronize_irq(ndev->irq);
3408 	napi_disable(&mdp->napi);
3409 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3410 
3411 	/* Enable MagicPacket */
3412 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3413 
3414 	return enable_irq_wake(ndev->irq);
3415 }
3416 
3417 static int sh_eth_wol_restore(struct net_device *ndev)
3418 {
3419 	struct sh_eth_private *mdp = netdev_priv(ndev);
3420 	int ret;
3421 
3422 	napi_enable(&mdp->napi);
3423 
3424 	/* Disable MagicPacket */
3425 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3426 
3427 	/* The device needs to be reset to restore MagicPacket logic
3428 	 * for next wakeup. If we close and open the device it will
3429 	 * both be reset and all registers restored. This is what
3430 	 * happens during suspend and resume without WoL enabled.
3431 	 */
3432 	ret = sh_eth_close(ndev);
3433 	if (ret < 0)
3434 		return ret;
3435 	ret = sh_eth_open(ndev);
3436 	if (ret < 0)
3437 		return ret;
3438 
3439 	return disable_irq_wake(ndev->irq);
3440 }
3441 
3442 static int sh_eth_suspend(struct device *dev)
3443 {
3444 	struct net_device *ndev = dev_get_drvdata(dev);
3445 	struct sh_eth_private *mdp = netdev_priv(ndev);
3446 	int ret = 0;
3447 
3448 	if (!netif_running(ndev))
3449 		return 0;
3450 
3451 	netif_device_detach(ndev);
3452 
3453 	if (mdp->wol_enabled)
3454 		ret = sh_eth_wol_setup(ndev);
3455 	else
3456 		ret = sh_eth_close(ndev);
3457 
3458 	return ret;
3459 }
3460 
3461 static int sh_eth_resume(struct device *dev)
3462 {
3463 	struct net_device *ndev = dev_get_drvdata(dev);
3464 	struct sh_eth_private *mdp = netdev_priv(ndev);
3465 	int ret = 0;
3466 
3467 	if (!netif_running(ndev))
3468 		return 0;
3469 
3470 	if (mdp->wol_enabled)
3471 		ret = sh_eth_wol_restore(ndev);
3472 	else
3473 		ret = sh_eth_open(ndev);
3474 
3475 	if (ret < 0)
3476 		return ret;
3477 
3478 	netif_device_attach(ndev);
3479 
3480 	return ret;
3481 }
3482 #endif
3483 
3484 static int sh_eth_runtime_nop(struct device *dev)
3485 {
3486 	/* Runtime PM callback shared between ->runtime_suspend()
3487 	 * and ->runtime_resume(). Simply returns success.
3488 	 *
3489 	 * This driver re-initializes all registers after
3490 	 * pm_runtime_get_sync() anyway so there is no need
3491 	 * to save and restore registers here.
3492 	 */
3493 	return 0;
3494 }
3495 
3496 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3497 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3498 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3499 };
3500 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3501 #else
3502 #define SH_ETH_PM_OPS NULL
3503 #endif
3504 
3505 static const struct platform_device_id sh_eth_id_table[] = {
3506 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3507 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3508 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3509 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3510 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3511 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3512 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3513 	{ }
3514 };
3515 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3516 
3517 static struct platform_driver sh_eth_driver = {
3518 	.probe = sh_eth_drv_probe,
3519 	.remove = sh_eth_drv_remove,
3520 	.id_table = sh_eth_id_table,
3521 	.driver = {
3522 		   .name = CARDNAME,
3523 		   .pm = SH_ETH_PM_OPS,
3524 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3525 	},
3526 };
3527 
3528 module_platform_driver(sh_eth_driver);
3529 
3530 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3531 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3532 MODULE_LICENSE("GPL v2");
3533