1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_FWSLC]	= 0x0038,
205 	[TSU_VTAG0]	= 0x0058,
206 	[TSU_ADSBSY]	= 0x0060,
207 	[TSU_TEN]	= 0x0064,
208 	[TSU_POST1]	= 0x0070,
209 	[TSU_POST2]	= 0x0074,
210 	[TSU_POST3]	= 0x0078,
211 	[TSU_POST4]	= 0x007c,
212 	[TSU_ADRH0]	= 0x0100,
213 
214 	[TXNLCR0]	= 0x0080,
215 	[TXALCR0]	= 0x0084,
216 	[RXNLCR0]	= 0x0088,
217 	[RXALCR0]	= 0x008C,
218 };
219 
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 	SH_ETH_OFFSET_DEFAULTS,
222 
223 	[ECMR]		= 0x0300,
224 	[RFLR]		= 0x0308,
225 	[ECSR]		= 0x0310,
226 	[ECSIPR]	= 0x0318,
227 	[PIR]		= 0x0320,
228 	[PSR]		= 0x0328,
229 	[RDMLR]		= 0x0340,
230 	[IPGR]		= 0x0350,
231 	[APR]		= 0x0354,
232 	[MPR]		= 0x0358,
233 	[RFCF]		= 0x0360,
234 	[TPAUSER]	= 0x0364,
235 	[TPAUSECR]	= 0x0368,
236 	[MAHR]		= 0x03c0,
237 	[MALR]		= 0x03c8,
238 	[TROCR]		= 0x03d0,
239 	[CDCR]		= 0x03d4,
240 	[LCCR]		= 0x03d8,
241 	[CNDCR]		= 0x03dc,
242 	[CEFCR]		= 0x03e4,
243 	[FRECR]		= 0x03e8,
244 	[TSFRCR]	= 0x03ec,
245 	[TLFRCR]	= 0x03f0,
246 	[RFCR]		= 0x03f4,
247 	[MAFCR]		= 0x03f8,
248 
249 	[EDMR]		= 0x0200,
250 	[EDTRR]		= 0x0208,
251 	[EDRRR]		= 0x0210,
252 	[TDLAR]		= 0x0218,
253 	[RDLAR]		= 0x0220,
254 	[EESR]		= 0x0228,
255 	[EESIPR]	= 0x0230,
256 	[TRSCER]	= 0x0238,
257 	[RMFCR]		= 0x0240,
258 	[TFTR]		= 0x0248,
259 	[FDR]		= 0x0250,
260 	[RMCR]		= 0x0258,
261 	[TFUCR]		= 0x0264,
262 	[RFOCR]		= 0x0268,
263 	[RMIIMODE]      = 0x026c,
264 	[FCFTR]		= 0x0270,
265 	[TRIMD]		= 0x027c,
266 };
267 
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 	SH_ETH_OFFSET_DEFAULTS,
270 
271 	[ECMR]		= 0x0100,
272 	[RFLR]		= 0x0108,
273 	[ECSR]		= 0x0110,
274 	[ECSIPR]	= 0x0118,
275 	[PIR]		= 0x0120,
276 	[PSR]		= 0x0128,
277 	[RDMLR]		= 0x0140,
278 	[IPGR]		= 0x0150,
279 	[APR]		= 0x0154,
280 	[MPR]		= 0x0158,
281 	[TPAUSER]	= 0x0164,
282 	[RFCF]		= 0x0160,
283 	[TPAUSECR]	= 0x0168,
284 	[BCFRR]		= 0x016c,
285 	[MAHR]		= 0x01c0,
286 	[MALR]		= 0x01c8,
287 	[TROCR]		= 0x01d0,
288 	[CDCR]		= 0x01d4,
289 	[LCCR]		= 0x01d8,
290 	[CNDCR]		= 0x01dc,
291 	[CEFCR]		= 0x01e4,
292 	[FRECR]		= 0x01e8,
293 	[TSFRCR]	= 0x01ec,
294 	[TLFRCR]	= 0x01f0,
295 	[RFCR]		= 0x01f4,
296 	[MAFCR]		= 0x01f8,
297 	[RTRATE]	= 0x01fc,
298 
299 	[EDMR]		= 0x0000,
300 	[EDTRR]		= 0x0008,
301 	[EDRRR]		= 0x0010,
302 	[TDLAR]		= 0x0018,
303 	[RDLAR]		= 0x0020,
304 	[EESR]		= 0x0028,
305 	[EESIPR]	= 0x0030,
306 	[TRSCER]	= 0x0038,
307 	[RMFCR]		= 0x0040,
308 	[TFTR]		= 0x0048,
309 	[FDR]		= 0x0050,
310 	[RMCR]		= 0x0058,
311 	[TFUCR]		= 0x0064,
312 	[RFOCR]		= 0x0068,
313 	[FCFTR]		= 0x0070,
314 	[RPADIR]	= 0x0078,
315 	[TRIMD]		= 0x007c,
316 	[RBWAR]		= 0x00c8,
317 	[RDFAR]		= 0x00cc,
318 	[TBRAR]		= 0x00d4,
319 	[TDFAR]		= 0x00d8,
320 };
321 
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 	SH_ETH_OFFSET_DEFAULTS,
324 
325 	[EDMR]		= 0x0000,
326 	[EDTRR]		= 0x0004,
327 	[EDRRR]		= 0x0008,
328 	[TDLAR]		= 0x000c,
329 	[RDLAR]		= 0x0010,
330 	[EESR]		= 0x0014,
331 	[EESIPR]	= 0x0018,
332 	[TRSCER]	= 0x001c,
333 	[RMFCR]		= 0x0020,
334 	[TFTR]		= 0x0024,
335 	[FDR]		= 0x0028,
336 	[RMCR]		= 0x002c,
337 	[EDOCR]		= 0x0030,
338 	[FCFTR]		= 0x0034,
339 	[RPADIR]	= 0x0038,
340 	[TRIMD]		= 0x003c,
341 	[RBWAR]		= 0x0040,
342 	[RDFAR]		= 0x0044,
343 	[TBRAR]		= 0x004c,
344 	[TDFAR]		= 0x0050,
345 
346 	[ECMR]		= 0x0160,
347 	[ECSR]		= 0x0164,
348 	[ECSIPR]	= 0x0168,
349 	[PIR]		= 0x016c,
350 	[MAHR]		= 0x0170,
351 	[MALR]		= 0x0174,
352 	[RFLR]		= 0x0178,
353 	[PSR]		= 0x017c,
354 	[TROCR]		= 0x0180,
355 	[CDCR]		= 0x0184,
356 	[LCCR]		= 0x0188,
357 	[CNDCR]		= 0x018c,
358 	[CEFCR]		= 0x0194,
359 	[FRECR]		= 0x0198,
360 	[TSFRCR]	= 0x019c,
361 	[TLFRCR]	= 0x01a0,
362 	[RFCR]		= 0x01a4,
363 	[MAFCR]		= 0x01a8,
364 	[IPGR]		= 0x01b4,
365 	[APR]		= 0x01b8,
366 	[MPR]		= 0x01bc,
367 	[TPAUSER]	= 0x01c4,
368 	[BCFR]		= 0x01cc,
369 
370 	[ARSTR]		= 0x0000,
371 	[TSU_CTRST]	= 0x0004,
372 	[TSU_FWEN0]	= 0x0010,
373 	[TSU_FWEN1]	= 0x0014,
374 	[TSU_FCM]	= 0x0018,
375 	[TSU_BSYSL0]	= 0x0020,
376 	[TSU_BSYSL1]	= 0x0024,
377 	[TSU_PRISL0]	= 0x0028,
378 	[TSU_PRISL1]	= 0x002c,
379 	[TSU_FWSL0]	= 0x0030,
380 	[TSU_FWSL1]	= 0x0034,
381 	[TSU_FWSLC]	= 0x0038,
382 	[TSU_QTAGM0]	= 0x0040,
383 	[TSU_QTAGM1]	= 0x0044,
384 	[TSU_ADQT0]	= 0x0048,
385 	[TSU_ADQT1]	= 0x004c,
386 	[TSU_FWSR]	= 0x0050,
387 	[TSU_FWINMK]	= 0x0054,
388 	[TSU_ADSBSY]	= 0x0060,
389 	[TSU_TEN]	= 0x0064,
390 	[TSU_POST1]	= 0x0070,
391 	[TSU_POST2]	= 0x0074,
392 	[TSU_POST3]	= 0x0078,
393 	[TSU_POST4]	= 0x007c,
394 
395 	[TXNLCR0]	= 0x0080,
396 	[TXALCR0]	= 0x0084,
397 	[RXNLCR0]	= 0x0088,
398 	[RXALCR0]	= 0x008c,
399 	[FWNLCR0]	= 0x0090,
400 	[FWALCR0]	= 0x0094,
401 	[TXNLCR1]	= 0x00a0,
402 	[TXALCR1]	= 0x00a0,
403 	[RXNLCR1]	= 0x00a8,
404 	[RXALCR1]	= 0x00ac,
405 	[FWNLCR1]	= 0x00b0,
406 	[FWALCR1]	= 0x00b4,
407 
408 	[TSU_ADRH0]	= 0x0100,
409 };
410 
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413 
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 	struct sh_eth_private *mdp = netdev_priv(ndev);
417 	u16 offset = mdp->reg_offset[enum_index];
418 
419 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 		return;
421 
422 	iowrite32(data, mdp->addr + offset);
423 }
424 
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 	struct sh_eth_private *mdp = netdev_priv(ndev);
428 	u16 offset = mdp->reg_offset[enum_index];
429 
430 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 		return ~0U;
432 
433 	return ioread32(mdp->addr + offset);
434 }
435 
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 			  u32 set)
438 {
439 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 		     enum_index);
441 }
442 
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447 
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 	return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 	struct sh_eth_private *mdp = netdev_priv(ndev);
497 
498 	switch (mdp->speed) {
499 	case 10: /* 10BASE */
500 		sh_eth_write(ndev, GECMR_10, GECMR);
501 		break;
502 	case 100:/* 100BASE */
503 		sh_eth_write(ndev, GECMR_100, GECMR);
504 		break;
505 	case 1000: /* 1000BASE */
506 		sh_eth_write(ndev, GECMR_1000, GECMR);
507 		break;
508 	}
509 }
510 
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 	.chip_reset	= sh_eth_chip_reset,
515 	.set_duplex	= sh_eth_set_duplex,
516 
517 	.register_type	= SH_ETH_REG_FAST_RZ,
518 
519 	.ecsr_value	= ECSR_ICD,
520 	.ecsipr_value	= ECSIPR_ICDIP,
521 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
522 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
523 			  EESIPR_ECIIP |
524 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
525 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
526 			  EESIPR_RMAFIP | EESIPR_RRFIP |
527 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
528 			  EESIPR_PREIP | EESIPR_CERFIP,
529 
530 	.tx_check	= EESR_TC1 | EESR_FTC,
531 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
532 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
533 			  EESR_TDE,
534 	.fdr_value	= 0x0000070f,
535 
536 	.no_psr		= 1,
537 	.apr		= 1,
538 	.mpr		= 1,
539 	.tpauser	= 1,
540 	.hw_swap	= 1,
541 	.rpadir		= 1,
542 	.rpadir_value   = 2 << 16,
543 	.no_trimd	= 1,
544 	.no_ade		= 1,
545 	.hw_checksum	= 1,
546 	.tsu		= 1,
547 };
548 
549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
550 {
551 	sh_eth_chip_reset(ndev);
552 
553 	sh_eth_select_mii(ndev);
554 }
555 
556 /* R8A7740 */
557 static struct sh_eth_cpu_data r8a7740_data = {
558 	.chip_reset	= sh_eth_chip_reset_r8a7740,
559 	.set_duplex	= sh_eth_set_duplex,
560 	.set_rate	= sh_eth_set_rate_gether,
561 
562 	.register_type	= SH_ETH_REG_GIGABIT,
563 
564 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
565 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
566 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
567 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
568 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
569 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
570 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
571 			  EESIPR_CEEFIP | EESIPR_CELFIP |
572 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
573 			  EESIPR_PREIP | EESIPR_CERFIP,
574 
575 	.tx_check	= EESR_TC1 | EESR_FTC,
576 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
577 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
578 			  EESR_TDE,
579 	.fdr_value	= 0x0000070f,
580 
581 	.apr		= 1,
582 	.mpr		= 1,
583 	.tpauser	= 1,
584 	.bculr		= 1,
585 	.hw_swap	= 1,
586 	.rpadir		= 1,
587 	.rpadir_value   = 2 << 16,
588 	.no_trimd	= 1,
589 	.no_ade		= 1,
590 	.hw_checksum	= 1,
591 	.tsu		= 1,
592 	.select_mii	= 1,
593 	.magic		= 1,
594 };
595 
596 /* There is CPU dependent code */
597 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
598 {
599 	struct sh_eth_private *mdp = netdev_priv(ndev);
600 
601 	switch (mdp->speed) {
602 	case 10: /* 10BASE */
603 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
604 		break;
605 	case 100:/* 100BASE */
606 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
607 		break;
608 	}
609 }
610 
611 /* R8A7778/9 */
612 static struct sh_eth_cpu_data r8a777x_data = {
613 	.set_duplex	= sh_eth_set_duplex,
614 	.set_rate	= sh_eth_set_rate_r8a777x,
615 
616 	.register_type	= SH_ETH_REG_FAST_RCAR,
617 
618 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
619 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
620 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
621 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
622 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
623 			  EESIPR_RMAFIP | EESIPR_RRFIP |
624 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
625 			  EESIPR_PREIP | EESIPR_CERFIP,
626 
627 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
628 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
629 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
630 	.fdr_value	= 0x00000f0f,
631 
632 	.apr		= 1,
633 	.mpr		= 1,
634 	.tpauser	= 1,
635 	.hw_swap	= 1,
636 };
637 
638 /* R8A7790/1 */
639 static struct sh_eth_cpu_data r8a779x_data = {
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_r8a777x,
642 
643 	.register_type	= SH_ETH_REG_FAST_RCAR,
644 
645 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
647 			  ECSIPR_MPDIP,
648 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 			  EESIPR_RMAFIP | EESIPR_RRFIP |
652 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
653 			  EESIPR_PREIP | EESIPR_CERFIP,
654 
655 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
656 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 	.fdr_value	= 0x00000f0f,
659 
660 	.trscer_err_mask = DESC_I_RINT8,
661 
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.hw_swap	= 1,
666 	.rmiimode	= 1,
667 	.magic		= 1,
668 };
669 #endif /* CONFIG_OF */
670 
671 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
672 {
673 	struct sh_eth_private *mdp = netdev_priv(ndev);
674 
675 	switch (mdp->speed) {
676 	case 10: /* 10BASE */
677 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
678 		break;
679 	case 100:/* 100BASE */
680 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
681 		break;
682 	}
683 }
684 
685 /* SH7724 */
686 static struct sh_eth_cpu_data sh7724_data = {
687 	.set_duplex	= sh_eth_set_duplex,
688 	.set_rate	= sh_eth_set_rate_sh7724,
689 
690 	.register_type	= SH_ETH_REG_FAST_SH4,
691 
692 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
693 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
694 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
695 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
696 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
697 			  EESIPR_RMAFIP | EESIPR_RRFIP |
698 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
699 			  EESIPR_PREIP | EESIPR_CERFIP,
700 
701 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
702 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
703 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
704 
705 	.apr		= 1,
706 	.mpr		= 1,
707 	.tpauser	= 1,
708 	.hw_swap	= 1,
709 	.rpadir		= 1,
710 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
711 };
712 
713 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
714 {
715 	struct sh_eth_private *mdp = netdev_priv(ndev);
716 
717 	switch (mdp->speed) {
718 	case 10: /* 10BASE */
719 		sh_eth_write(ndev, 0, RTRATE);
720 		break;
721 	case 100:/* 100BASE */
722 		sh_eth_write(ndev, 1, RTRATE);
723 		break;
724 	}
725 }
726 
727 /* SH7757 */
728 static struct sh_eth_cpu_data sh7757_data = {
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_sh7757,
731 
732 	.register_type	= SH_ETH_REG_FAST_SH4,
733 
734 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
735 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
738 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
739 			  EESIPR_CEEFIP | EESIPR_CELFIP |
740 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
741 			  EESIPR_PREIP | EESIPR_CERFIP,
742 
743 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
744 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
745 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
746 
747 	.irq_flags	= IRQF_SHARED,
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.hw_swap	= 1,
752 	.no_ade		= 1,
753 	.rpadir		= 1,
754 	.rpadir_value   = 2 << 16,
755 	.rtrate		= 1,
756 };
757 
758 #define SH_GIGA_ETH_BASE	0xfee00000UL
759 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
760 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
761 static void sh_eth_chip_reset_giga(struct net_device *ndev)
762 {
763 	u32 mahr[2], malr[2];
764 	int i;
765 
766 	/* save MAHR and MALR */
767 	for (i = 0; i < 2; i++) {
768 		malr[i] = ioread32((void *)GIGA_MALR(i));
769 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
770 	}
771 
772 	sh_eth_chip_reset(ndev);
773 
774 	/* restore MAHR and MALR */
775 	for (i = 0; i < 2; i++) {
776 		iowrite32(malr[i], (void *)GIGA_MALR(i));
777 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
778 	}
779 }
780 
781 static void sh_eth_set_rate_giga(struct net_device *ndev)
782 {
783 	struct sh_eth_private *mdp = netdev_priv(ndev);
784 
785 	switch (mdp->speed) {
786 	case 10: /* 10BASE */
787 		sh_eth_write(ndev, 0x00000000, GECMR);
788 		break;
789 	case 100:/* 100BASE */
790 		sh_eth_write(ndev, 0x00000010, GECMR);
791 		break;
792 	case 1000: /* 1000BASE */
793 		sh_eth_write(ndev, 0x00000020, GECMR);
794 		break;
795 	}
796 }
797 
798 /* SH7757(GETHERC) */
799 static struct sh_eth_cpu_data sh7757_data_giga = {
800 	.chip_reset	= sh_eth_chip_reset_giga,
801 	.set_duplex	= sh_eth_set_duplex,
802 	.set_rate	= sh_eth_set_rate_giga,
803 
804 	.register_type	= SH_ETH_REG_GIGABIT,
805 
806 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
807 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
808 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
809 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
810 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
811 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
812 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
813 			  EESIPR_CEEFIP | EESIPR_CELFIP |
814 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
815 			  EESIPR_PREIP | EESIPR_CERFIP,
816 
817 	.tx_check	= EESR_TC1 | EESR_FTC,
818 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
819 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 			  EESR_TDE,
821 	.fdr_value	= 0x0000072f,
822 
823 	.irq_flags	= IRQF_SHARED,
824 	.apr		= 1,
825 	.mpr		= 1,
826 	.tpauser	= 1,
827 	.bculr		= 1,
828 	.hw_swap	= 1,
829 	.rpadir		= 1,
830 	.rpadir_value   = 2 << 16,
831 	.no_trimd	= 1,
832 	.no_ade		= 1,
833 	.tsu		= 1,
834 };
835 
836 /* SH7734 */
837 static struct sh_eth_cpu_data sh7734_data = {
838 	.chip_reset	= sh_eth_chip_reset,
839 	.set_duplex	= sh_eth_set_duplex,
840 	.set_rate	= sh_eth_set_rate_gether,
841 
842 	.register_type	= SH_ETH_REG_GIGABIT,
843 
844 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
845 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
846 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
847 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
848 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
849 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
850 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
851 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
852 			  EESIPR_PREIP | EESIPR_CERFIP,
853 
854 	.tx_check	= EESR_TC1 | EESR_FTC,
855 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
856 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
857 			  EESR_TDE,
858 
859 	.apr		= 1,
860 	.mpr		= 1,
861 	.tpauser	= 1,
862 	.bculr		= 1,
863 	.hw_swap	= 1,
864 	.no_trimd	= 1,
865 	.no_ade		= 1,
866 	.tsu		= 1,
867 	.hw_checksum	= 1,
868 	.select_mii	= 1,
869 	.magic		= 1,
870 };
871 
872 /* SH7763 */
873 static struct sh_eth_cpu_data sh7763_data = {
874 	.chip_reset	= sh_eth_chip_reset,
875 	.set_duplex	= sh_eth_set_duplex,
876 	.set_rate	= sh_eth_set_rate_gether,
877 
878 	.register_type	= SH_ETH_REG_GIGABIT,
879 
880 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
881 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
882 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
883 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
886 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
887 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 			  EESIPR_PREIP | EESIPR_CERFIP,
889 
890 	.tx_check	= EESR_TC1 | EESR_FTC,
891 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
892 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893 
894 	.apr		= 1,
895 	.mpr		= 1,
896 	.tpauser	= 1,
897 	.bculr		= 1,
898 	.hw_swap	= 1,
899 	.no_trimd	= 1,
900 	.no_ade		= 1,
901 	.tsu		= 1,
902 	.irq_flags	= IRQF_SHARED,
903 	.magic		= 1,
904 };
905 
906 static struct sh_eth_cpu_data sh7619_data = {
907 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
908 
909 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
910 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 			  EESIPR_CEEFIP | EESIPR_CELFIP |
915 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 			  EESIPR_PREIP | EESIPR_CERFIP,
917 
918 	.apr		= 1,
919 	.mpr		= 1,
920 	.tpauser	= 1,
921 	.hw_swap	= 1,
922 };
923 
924 static struct sh_eth_cpu_data sh771x_data = {
925 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
926 
927 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
928 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
929 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
930 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
931 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
932 			  EESIPR_CEEFIP | EESIPR_CELFIP |
933 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
934 			  EESIPR_PREIP | EESIPR_CERFIP,
935 	.tsu		= 1,
936 };
937 
938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
939 {
940 	if (!cd->ecsr_value)
941 		cd->ecsr_value = DEFAULT_ECSR_INIT;
942 
943 	if (!cd->ecsipr_value)
944 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
945 
946 	if (!cd->fcftr_value)
947 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
948 				  DEFAULT_FIFO_F_D_RFD;
949 
950 	if (!cd->fdr_value)
951 		cd->fdr_value = DEFAULT_FDR_INIT;
952 
953 	if (!cd->tx_check)
954 		cd->tx_check = DEFAULT_TX_CHECK;
955 
956 	if (!cd->eesr_err_check)
957 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
958 
959 	if (!cd->trscer_err_mask)
960 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
961 }
962 
963 static int sh_eth_check_reset(struct net_device *ndev)
964 {
965 	int ret = 0;
966 	int cnt = 100;
967 
968 	while (cnt > 0) {
969 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
970 			break;
971 		mdelay(1);
972 		cnt--;
973 	}
974 	if (cnt <= 0) {
975 		netdev_err(ndev, "Device reset failed\n");
976 		ret = -ETIMEDOUT;
977 	}
978 	return ret;
979 }
980 
981 static int sh_eth_reset(struct net_device *ndev)
982 {
983 	struct sh_eth_private *mdp = netdev_priv(ndev);
984 	int ret = 0;
985 
986 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
987 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
988 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
989 
990 		ret = sh_eth_check_reset(ndev);
991 		if (ret)
992 			return ret;
993 
994 		/* Table Init */
995 		sh_eth_write(ndev, 0x0, TDLAR);
996 		sh_eth_write(ndev, 0x0, TDFAR);
997 		sh_eth_write(ndev, 0x0, TDFXR);
998 		sh_eth_write(ndev, 0x0, TDFFR);
999 		sh_eth_write(ndev, 0x0, RDLAR);
1000 		sh_eth_write(ndev, 0x0, RDFAR);
1001 		sh_eth_write(ndev, 0x0, RDFXR);
1002 		sh_eth_write(ndev, 0x0, RDFFR);
1003 
1004 		/* Reset HW CRC register */
1005 		if (mdp->cd->hw_checksum)
1006 			sh_eth_write(ndev, 0x0, CSMR);
1007 
1008 		/* Select MII mode */
1009 		if (mdp->cd->select_mii)
1010 			sh_eth_select_mii(ndev);
1011 	} else {
1012 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1013 		mdelay(3);
1014 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 static void sh_eth_set_receive_align(struct sk_buff *skb)
1021 {
1022 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1023 
1024 	if (reserve)
1025 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1026 }
1027 
1028 /* Program the hardware MAC address from dev->dev_addr. */
1029 static void update_mac_address(struct net_device *ndev)
1030 {
1031 	sh_eth_write(ndev,
1032 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1033 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1034 	sh_eth_write(ndev,
1035 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1036 }
1037 
1038 /* Get MAC address from SuperH MAC address register
1039  *
1040  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1041  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1042  * When you want use this device, you must set MAC address in bootloader.
1043  *
1044  */
1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1046 {
1047 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1048 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1049 	} else {
1050 		u32 mahr = sh_eth_read(ndev, MAHR);
1051 		u32 malr = sh_eth_read(ndev, MALR);
1052 
1053 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1054 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1055 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1056 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1057 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1058 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1059 	}
1060 }
1061 
1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1063 {
1064 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1065 		return EDTRR_TRNS_GETHER;
1066 	else
1067 		return EDTRR_TRNS_ETHER;
1068 }
1069 
1070 struct bb_info {
1071 	void (*set_gate)(void *addr);
1072 	struct mdiobb_ctrl ctrl;
1073 	void *addr;
1074 };
1075 
1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1077 {
1078 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1079 	u32 pir;
1080 
1081 	if (bitbang->set_gate)
1082 		bitbang->set_gate(bitbang->addr);
1083 
1084 	pir = ioread32(bitbang->addr);
1085 	if (set)
1086 		pir |=  mask;
1087 	else
1088 		pir &= ~mask;
1089 	iowrite32(pir, bitbang->addr);
1090 }
1091 
1092 /* Data I/O pin control */
1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1094 {
1095 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1096 }
1097 
1098 /* Set bit data*/
1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1102 }
1103 
1104 /* Get bit data*/
1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1106 {
1107 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1108 
1109 	if (bitbang->set_gate)
1110 		bitbang->set_gate(bitbang->addr);
1111 
1112 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1113 }
1114 
1115 /* MDC pin control */
1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1117 {
1118 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1119 }
1120 
1121 /* mdio bus control struct */
1122 static struct mdiobb_ops bb_ops = {
1123 	.owner = THIS_MODULE,
1124 	.set_mdc = sh_mdc_ctrl,
1125 	.set_mdio_dir = sh_mmd_ctrl,
1126 	.set_mdio_data = sh_set_mdio,
1127 	.get_mdio_data = sh_get_mdio,
1128 };
1129 
1130 /* free Tx skb function */
1131 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1132 {
1133 	struct sh_eth_private *mdp = netdev_priv(ndev);
1134 	struct sh_eth_txdesc *txdesc;
1135 	int free_num = 0;
1136 	int entry;
1137 	bool sent;
1138 
1139 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1140 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1141 		txdesc = &mdp->tx_ring[entry];
1142 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1143 		if (sent_only && !sent)
1144 			break;
1145 		/* TACT bit must be checked before all the following reads */
1146 		dma_rmb();
1147 		netif_info(mdp, tx_done, ndev,
1148 			   "tx entry %d status 0x%08x\n",
1149 			   entry, le32_to_cpu(txdesc->status));
1150 		/* Free the original skb. */
1151 		if (mdp->tx_skbuff[entry]) {
1152 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1153 					 le32_to_cpu(txdesc->len) >> 16,
1154 					 DMA_TO_DEVICE);
1155 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1156 			mdp->tx_skbuff[entry] = NULL;
1157 			free_num++;
1158 		}
1159 		txdesc->status = cpu_to_le32(TD_TFP);
1160 		if (entry >= mdp->num_tx_ring - 1)
1161 			txdesc->status |= cpu_to_le32(TD_TDLE);
1162 
1163 		if (sent) {
1164 			ndev->stats.tx_packets++;
1165 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1166 		}
1167 	}
1168 	return free_num;
1169 }
1170 
1171 /* free skb and descriptor buffer */
1172 static void sh_eth_ring_free(struct net_device *ndev)
1173 {
1174 	struct sh_eth_private *mdp = netdev_priv(ndev);
1175 	int ringsize, i;
1176 
1177 	if (mdp->rx_ring) {
1178 		for (i = 0; i < mdp->num_rx_ring; i++) {
1179 			if (mdp->rx_skbuff[i]) {
1180 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1181 
1182 				dma_unmap_single(&ndev->dev,
1183 						 le32_to_cpu(rxdesc->addr),
1184 						 ALIGN(mdp->rx_buf_sz, 32),
1185 						 DMA_FROM_DEVICE);
1186 			}
1187 		}
1188 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1189 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1190 				  mdp->rx_desc_dma);
1191 		mdp->rx_ring = NULL;
1192 	}
1193 
1194 	/* Free Rx skb ringbuffer */
1195 	if (mdp->rx_skbuff) {
1196 		for (i = 0; i < mdp->num_rx_ring; i++)
1197 			dev_kfree_skb(mdp->rx_skbuff[i]);
1198 	}
1199 	kfree(mdp->rx_skbuff);
1200 	mdp->rx_skbuff = NULL;
1201 
1202 	if (mdp->tx_ring) {
1203 		sh_eth_tx_free(ndev, false);
1204 
1205 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1206 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1207 				  mdp->tx_desc_dma);
1208 		mdp->tx_ring = NULL;
1209 	}
1210 
1211 	/* Free Tx skb ringbuffer */
1212 	kfree(mdp->tx_skbuff);
1213 	mdp->tx_skbuff = NULL;
1214 }
1215 
1216 /* format skb and descriptor buffer */
1217 static void sh_eth_ring_format(struct net_device *ndev)
1218 {
1219 	struct sh_eth_private *mdp = netdev_priv(ndev);
1220 	int i;
1221 	struct sk_buff *skb;
1222 	struct sh_eth_rxdesc *rxdesc = NULL;
1223 	struct sh_eth_txdesc *txdesc = NULL;
1224 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1225 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1226 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1227 	dma_addr_t dma_addr;
1228 	u32 buf_len;
1229 
1230 	mdp->cur_rx = 0;
1231 	mdp->cur_tx = 0;
1232 	mdp->dirty_rx = 0;
1233 	mdp->dirty_tx = 0;
1234 
1235 	memset(mdp->rx_ring, 0, rx_ringsize);
1236 
1237 	/* build Rx ring buffer */
1238 	for (i = 0; i < mdp->num_rx_ring; i++) {
1239 		/* skb */
1240 		mdp->rx_skbuff[i] = NULL;
1241 		skb = netdev_alloc_skb(ndev, skbuff_size);
1242 		if (skb == NULL)
1243 			break;
1244 		sh_eth_set_receive_align(skb);
1245 
1246 		/* The size of the buffer is a multiple of 32 bytes. */
1247 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1248 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1249 					  DMA_FROM_DEVICE);
1250 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1251 			kfree_skb(skb);
1252 			break;
1253 		}
1254 		mdp->rx_skbuff[i] = skb;
1255 
1256 		/* RX descriptor */
1257 		rxdesc = &mdp->rx_ring[i];
1258 		rxdesc->len = cpu_to_le32(buf_len << 16);
1259 		rxdesc->addr = cpu_to_le32(dma_addr);
1260 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1261 
1262 		/* Rx descriptor address set */
1263 		if (i == 0) {
1264 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1265 			if (sh_eth_is_gether(mdp) ||
1266 			    sh_eth_is_rz_fast_ether(mdp))
1267 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1268 		}
1269 	}
1270 
1271 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1272 
1273 	/* Mark the last entry as wrapping the ring. */
1274 	if (rxdesc)
1275 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1276 
1277 	memset(mdp->tx_ring, 0, tx_ringsize);
1278 
1279 	/* build Tx ring buffer */
1280 	for (i = 0; i < mdp->num_tx_ring; i++) {
1281 		mdp->tx_skbuff[i] = NULL;
1282 		txdesc = &mdp->tx_ring[i];
1283 		txdesc->status = cpu_to_le32(TD_TFP);
1284 		txdesc->len = cpu_to_le32(0);
1285 		if (i == 0) {
1286 			/* Tx descriptor address set */
1287 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1288 			if (sh_eth_is_gether(mdp) ||
1289 			    sh_eth_is_rz_fast_ether(mdp))
1290 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1291 		}
1292 	}
1293 
1294 	txdesc->status |= cpu_to_le32(TD_TDLE);
1295 }
1296 
1297 /* Get skb and descriptor buffer */
1298 static int sh_eth_ring_init(struct net_device *ndev)
1299 {
1300 	struct sh_eth_private *mdp = netdev_priv(ndev);
1301 	int rx_ringsize, tx_ringsize;
1302 
1303 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1304 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1305 	 * the first 2 bytes, and +16 gets room for the status word from the
1306 	 * card.
1307 	 */
1308 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1309 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1310 	if (mdp->cd->rpadir)
1311 		mdp->rx_buf_sz += NET_IP_ALIGN;
1312 
1313 	/* Allocate RX and TX skb rings */
1314 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1315 				 GFP_KERNEL);
1316 	if (!mdp->rx_skbuff)
1317 		return -ENOMEM;
1318 
1319 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1320 				 GFP_KERNEL);
1321 	if (!mdp->tx_skbuff)
1322 		goto ring_free;
1323 
1324 	/* Allocate all Rx descriptors. */
1325 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1326 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1327 					  GFP_KERNEL);
1328 	if (!mdp->rx_ring)
1329 		goto ring_free;
1330 
1331 	mdp->dirty_rx = 0;
1332 
1333 	/* Allocate all Tx descriptors. */
1334 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1335 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1336 					  GFP_KERNEL);
1337 	if (!mdp->tx_ring)
1338 		goto ring_free;
1339 	return 0;
1340 
1341 ring_free:
1342 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1343 	sh_eth_ring_free(ndev);
1344 
1345 	return -ENOMEM;
1346 }
1347 
1348 static int sh_eth_dev_init(struct net_device *ndev)
1349 {
1350 	struct sh_eth_private *mdp = netdev_priv(ndev);
1351 	int ret;
1352 
1353 	/* Soft Reset */
1354 	ret = sh_eth_reset(ndev);
1355 	if (ret)
1356 		return ret;
1357 
1358 	if (mdp->cd->rmiimode)
1359 		sh_eth_write(ndev, 0x1, RMIIMODE);
1360 
1361 	/* Descriptor format */
1362 	sh_eth_ring_format(ndev);
1363 	if (mdp->cd->rpadir)
1364 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1365 
1366 	/* all sh_eth int mask */
1367 	sh_eth_write(ndev, 0, EESIPR);
1368 
1369 #if defined(__LITTLE_ENDIAN)
1370 	if (mdp->cd->hw_swap)
1371 		sh_eth_write(ndev, EDMR_EL, EDMR);
1372 	else
1373 #endif
1374 		sh_eth_write(ndev, 0, EDMR);
1375 
1376 	/* FIFO size set */
1377 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1378 	sh_eth_write(ndev, 0, TFTR);
1379 
1380 	/* Frame recv control (enable multiple-packets per rx irq) */
1381 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1382 
1383 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1384 
1385 	if (mdp->cd->bculr)
1386 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1387 
1388 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1389 
1390 	if (!mdp->cd->no_trimd)
1391 		sh_eth_write(ndev, 0, TRIMD);
1392 
1393 	/* Recv frame limit set register */
1394 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1395 		     RFLR);
1396 
1397 	sh_eth_modify(ndev, EESR, 0, 0);
1398 	mdp->irq_enabled = true;
1399 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1400 
1401 	/* PAUSE Prohibition */
1402 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1403 		     ECMR_TE | ECMR_RE, ECMR);
1404 
1405 	if (mdp->cd->set_rate)
1406 		mdp->cd->set_rate(ndev);
1407 
1408 	/* E-MAC Status Register clear */
1409 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1410 
1411 	/* E-MAC Interrupt Enable register */
1412 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1413 
1414 	/* Set MAC address */
1415 	update_mac_address(ndev);
1416 
1417 	/* mask reset */
1418 	if (mdp->cd->apr)
1419 		sh_eth_write(ndev, APR_AP, APR);
1420 	if (mdp->cd->mpr)
1421 		sh_eth_write(ndev, MPR_MP, MPR);
1422 	if (mdp->cd->tpauser)
1423 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1424 
1425 	/* Setting the Rx mode will start the Rx process. */
1426 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1427 
1428 	return ret;
1429 }
1430 
1431 static void sh_eth_dev_exit(struct net_device *ndev)
1432 {
1433 	struct sh_eth_private *mdp = netdev_priv(ndev);
1434 	int i;
1435 
1436 	/* Deactivate all TX descriptors, so DMA should stop at next
1437 	 * packet boundary if it's currently running
1438 	 */
1439 	for (i = 0; i < mdp->num_tx_ring; i++)
1440 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1441 
1442 	/* Disable TX FIFO egress to MAC */
1443 	sh_eth_rcv_snd_disable(ndev);
1444 
1445 	/* Stop RX DMA at next packet boundary */
1446 	sh_eth_write(ndev, 0, EDRRR);
1447 
1448 	/* Aside from TX DMA, we can't tell when the hardware is
1449 	 * really stopped, so we need to reset to make sure.
1450 	 * Before doing that, wait for long enough to *probably*
1451 	 * finish transmitting the last packet and poll stats.
1452 	 */
1453 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1454 	sh_eth_get_stats(ndev);
1455 	sh_eth_reset(ndev);
1456 
1457 	/* Set MAC address again */
1458 	update_mac_address(ndev);
1459 }
1460 
1461 /* Packet receive function */
1462 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1463 {
1464 	struct sh_eth_private *mdp = netdev_priv(ndev);
1465 	struct sh_eth_rxdesc *rxdesc;
1466 
1467 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1468 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1469 	int limit;
1470 	struct sk_buff *skb;
1471 	u32 desc_status;
1472 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1473 	dma_addr_t dma_addr;
1474 	u16 pkt_len;
1475 	u32 buf_len;
1476 
1477 	boguscnt = min(boguscnt, *quota);
1478 	limit = boguscnt;
1479 	rxdesc = &mdp->rx_ring[entry];
1480 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1481 		/* RACT bit must be checked before all the following reads */
1482 		dma_rmb();
1483 		desc_status = le32_to_cpu(rxdesc->status);
1484 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1485 
1486 		if (--boguscnt < 0)
1487 			break;
1488 
1489 		netif_info(mdp, rx_status, ndev,
1490 			   "rx entry %d status 0x%08x len %d\n",
1491 			   entry, desc_status, pkt_len);
1492 
1493 		if (!(desc_status & RDFEND))
1494 			ndev->stats.rx_length_errors++;
1495 
1496 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1497 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1498 		 * bit 0. However, in case of the R8A7740 and R7S72100
1499 		 * the RFS bits are from bit 25 to bit 16. So, the
1500 		 * driver needs right shifting by 16.
1501 		 */
1502 		if (mdp->cd->hw_checksum)
1503 			desc_status >>= 16;
1504 
1505 		skb = mdp->rx_skbuff[entry];
1506 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1507 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1508 			ndev->stats.rx_errors++;
1509 			if (desc_status & RD_RFS1)
1510 				ndev->stats.rx_crc_errors++;
1511 			if (desc_status & RD_RFS2)
1512 				ndev->stats.rx_frame_errors++;
1513 			if (desc_status & RD_RFS3)
1514 				ndev->stats.rx_length_errors++;
1515 			if (desc_status & RD_RFS4)
1516 				ndev->stats.rx_length_errors++;
1517 			if (desc_status & RD_RFS6)
1518 				ndev->stats.rx_missed_errors++;
1519 			if (desc_status & RD_RFS10)
1520 				ndev->stats.rx_over_errors++;
1521 		} else	if (skb) {
1522 			dma_addr = le32_to_cpu(rxdesc->addr);
1523 			if (!mdp->cd->hw_swap)
1524 				sh_eth_soft_swap(
1525 					phys_to_virt(ALIGN(dma_addr, 4)),
1526 					pkt_len + 2);
1527 			mdp->rx_skbuff[entry] = NULL;
1528 			if (mdp->cd->rpadir)
1529 				skb_reserve(skb, NET_IP_ALIGN);
1530 			dma_unmap_single(&ndev->dev, dma_addr,
1531 					 ALIGN(mdp->rx_buf_sz, 32),
1532 					 DMA_FROM_DEVICE);
1533 			skb_put(skb, pkt_len);
1534 			skb->protocol = eth_type_trans(skb, ndev);
1535 			netif_receive_skb(skb);
1536 			ndev->stats.rx_packets++;
1537 			ndev->stats.rx_bytes += pkt_len;
1538 			if (desc_status & RD_RFS8)
1539 				ndev->stats.multicast++;
1540 		}
1541 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1542 		rxdesc = &mdp->rx_ring[entry];
1543 	}
1544 
1545 	/* Refill the Rx ring buffers. */
1546 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1547 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1548 		rxdesc = &mdp->rx_ring[entry];
1549 		/* The size of the buffer is 32 byte boundary. */
1550 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1551 		rxdesc->len = cpu_to_le32(buf_len << 16);
1552 
1553 		if (mdp->rx_skbuff[entry] == NULL) {
1554 			skb = netdev_alloc_skb(ndev, skbuff_size);
1555 			if (skb == NULL)
1556 				break;	/* Better luck next round. */
1557 			sh_eth_set_receive_align(skb);
1558 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1559 						  buf_len, DMA_FROM_DEVICE);
1560 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1561 				kfree_skb(skb);
1562 				break;
1563 			}
1564 			mdp->rx_skbuff[entry] = skb;
1565 
1566 			skb_checksum_none_assert(skb);
1567 			rxdesc->addr = cpu_to_le32(dma_addr);
1568 		}
1569 		dma_wmb(); /* RACT bit must be set after all the above writes */
1570 		if (entry >= mdp->num_rx_ring - 1)
1571 			rxdesc->status |=
1572 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1573 		else
1574 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1575 	}
1576 
1577 	/* Restart Rx engine if stopped. */
1578 	/* If we don't need to check status, don't. -KDU */
1579 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1580 		/* fix the values for the next receiving if RDE is set */
1581 		if (intr_status & EESR_RDE &&
1582 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1583 			u32 count = (sh_eth_read(ndev, RDFAR) -
1584 				     sh_eth_read(ndev, RDLAR)) >> 4;
1585 
1586 			mdp->cur_rx = count;
1587 			mdp->dirty_rx = count;
1588 		}
1589 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1590 	}
1591 
1592 	*quota -= limit - boguscnt - 1;
1593 
1594 	return *quota <= 0;
1595 }
1596 
1597 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1598 {
1599 	/* disable tx and rx */
1600 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1601 }
1602 
1603 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1604 {
1605 	/* enable tx and rx */
1606 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1607 }
1608 
1609 /* E-MAC interrupt handler */
1610 static void sh_eth_emac_interrupt(struct net_device *ndev)
1611 {
1612 	struct sh_eth_private *mdp = netdev_priv(ndev);
1613 	u32 felic_stat;
1614 	u32 link_stat;
1615 
1616 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1617 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1618 	if (felic_stat & ECSR_ICD)
1619 		ndev->stats.tx_carrier_errors++;
1620 	if (felic_stat & ECSR_MPD)
1621 		pm_wakeup_event(&mdp->pdev->dev, 0);
1622 	if (felic_stat & ECSR_LCHNG) {
1623 		/* Link Changed */
1624 		if (mdp->cd->no_psr || mdp->no_ether_link)
1625 			return;
1626 		link_stat = sh_eth_read(ndev, PSR);
1627 		if (mdp->ether_link_active_low)
1628 			link_stat = ~link_stat;
1629 		if (!(link_stat & PHY_ST_LINK)) {
1630 			sh_eth_rcv_snd_disable(ndev);
1631 		} else {
1632 			/* Link Up */
1633 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1634 			/* clear int */
1635 			sh_eth_modify(ndev, ECSR, 0, 0);
1636 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1637 			/* enable tx and rx */
1638 			sh_eth_rcv_snd_enable(ndev);
1639 		}
1640 	}
1641 }
1642 
1643 /* error control function */
1644 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1645 {
1646 	struct sh_eth_private *mdp = netdev_priv(ndev);
1647 	u32 mask;
1648 
1649 	if (intr_status & EESR_TWB) {
1650 		/* Unused write back interrupt */
1651 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1652 			ndev->stats.tx_aborted_errors++;
1653 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1654 		}
1655 	}
1656 
1657 	if (intr_status & EESR_RABT) {
1658 		/* Receive Abort int */
1659 		if (intr_status & EESR_RFRMER) {
1660 			/* Receive Frame Overflow int */
1661 			ndev->stats.rx_frame_errors++;
1662 		}
1663 	}
1664 
1665 	if (intr_status & EESR_TDE) {
1666 		/* Transmit Descriptor Empty int */
1667 		ndev->stats.tx_fifo_errors++;
1668 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1669 	}
1670 
1671 	if (intr_status & EESR_TFE) {
1672 		/* FIFO under flow */
1673 		ndev->stats.tx_fifo_errors++;
1674 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1675 	}
1676 
1677 	if (intr_status & EESR_RDE) {
1678 		/* Receive Descriptor Empty int */
1679 		ndev->stats.rx_over_errors++;
1680 	}
1681 
1682 	if (intr_status & EESR_RFE) {
1683 		/* Receive FIFO Overflow int */
1684 		ndev->stats.rx_fifo_errors++;
1685 	}
1686 
1687 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1688 		/* Address Error */
1689 		ndev->stats.tx_fifo_errors++;
1690 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1691 	}
1692 
1693 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1694 	if (mdp->cd->no_ade)
1695 		mask &= ~EESR_ADE;
1696 	if (intr_status & mask) {
1697 		/* Tx error */
1698 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1699 
1700 		/* dmesg */
1701 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1702 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1703 			   (u32)ndev->state, edtrr);
1704 		/* dirty buffer free */
1705 		sh_eth_tx_free(ndev, true);
1706 
1707 		/* SH7712 BUG */
1708 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1709 			/* tx dma start */
1710 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1711 		}
1712 		/* wakeup */
1713 		netif_wake_queue(ndev);
1714 	}
1715 }
1716 
1717 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1718 {
1719 	struct net_device *ndev = netdev;
1720 	struct sh_eth_private *mdp = netdev_priv(ndev);
1721 	struct sh_eth_cpu_data *cd = mdp->cd;
1722 	irqreturn_t ret = IRQ_NONE;
1723 	u32 intr_status, intr_enable;
1724 
1725 	spin_lock(&mdp->lock);
1726 
1727 	/* Get interrupt status */
1728 	intr_status = sh_eth_read(ndev, EESR);
1729 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1730 	 * enabled since it's the one that  comes  thru regardless of the mask,
1731 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1732 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1733 	 * bit...
1734 	 */
1735 	intr_enable = sh_eth_read(ndev, EESIPR);
1736 	intr_status &= intr_enable | EESIPR_ECIIP;
1737 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1738 			   cd->eesr_err_check))
1739 		ret = IRQ_HANDLED;
1740 	else
1741 		goto out;
1742 
1743 	if (unlikely(!mdp->irq_enabled)) {
1744 		sh_eth_write(ndev, 0, EESIPR);
1745 		goto out;
1746 	}
1747 
1748 	if (intr_status & EESR_RX_CHECK) {
1749 		if (napi_schedule_prep(&mdp->napi)) {
1750 			/* Mask Rx interrupts */
1751 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1752 				     EESIPR);
1753 			__napi_schedule(&mdp->napi);
1754 		} else {
1755 			netdev_warn(ndev,
1756 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1757 				    intr_status, intr_enable);
1758 		}
1759 	}
1760 
1761 	/* Tx Check */
1762 	if (intr_status & cd->tx_check) {
1763 		/* Clear Tx interrupts */
1764 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1765 
1766 		sh_eth_tx_free(ndev, true);
1767 		netif_wake_queue(ndev);
1768 	}
1769 
1770 	/* E-MAC interrupt */
1771 	if (intr_status & EESR_ECI)
1772 		sh_eth_emac_interrupt(ndev);
1773 
1774 	if (intr_status & cd->eesr_err_check) {
1775 		/* Clear error interrupts */
1776 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1777 
1778 		sh_eth_error(ndev, intr_status);
1779 	}
1780 
1781 out:
1782 	spin_unlock(&mdp->lock);
1783 
1784 	return ret;
1785 }
1786 
1787 static int sh_eth_poll(struct napi_struct *napi, int budget)
1788 {
1789 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1790 						  napi);
1791 	struct net_device *ndev = napi->dev;
1792 	int quota = budget;
1793 	u32 intr_status;
1794 
1795 	for (;;) {
1796 		intr_status = sh_eth_read(ndev, EESR);
1797 		if (!(intr_status & EESR_RX_CHECK))
1798 			break;
1799 		/* Clear Rx interrupts */
1800 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1801 
1802 		if (sh_eth_rx(ndev, intr_status, &quota))
1803 			goto out;
1804 	}
1805 
1806 	napi_complete(napi);
1807 
1808 	/* Reenable Rx interrupts */
1809 	if (mdp->irq_enabled)
1810 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1811 out:
1812 	return budget - quota;
1813 }
1814 
1815 /* PHY state control function */
1816 static void sh_eth_adjust_link(struct net_device *ndev)
1817 {
1818 	struct sh_eth_private *mdp = netdev_priv(ndev);
1819 	struct phy_device *phydev = ndev->phydev;
1820 	int new_state = 0;
1821 
1822 	if (phydev->link) {
1823 		if (phydev->duplex != mdp->duplex) {
1824 			new_state = 1;
1825 			mdp->duplex = phydev->duplex;
1826 			if (mdp->cd->set_duplex)
1827 				mdp->cd->set_duplex(ndev);
1828 		}
1829 
1830 		if (phydev->speed != mdp->speed) {
1831 			new_state = 1;
1832 			mdp->speed = phydev->speed;
1833 			if (mdp->cd->set_rate)
1834 				mdp->cd->set_rate(ndev);
1835 		}
1836 		if (!mdp->link) {
1837 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1838 			new_state = 1;
1839 			mdp->link = phydev->link;
1840 			if (mdp->cd->no_psr || mdp->no_ether_link)
1841 				sh_eth_rcv_snd_enable(ndev);
1842 		}
1843 	} else if (mdp->link) {
1844 		new_state = 1;
1845 		mdp->link = 0;
1846 		mdp->speed = 0;
1847 		mdp->duplex = -1;
1848 		if (mdp->cd->no_psr || mdp->no_ether_link)
1849 			sh_eth_rcv_snd_disable(ndev);
1850 	}
1851 
1852 	if (new_state && netif_msg_link(mdp))
1853 		phy_print_status(phydev);
1854 }
1855 
1856 /* PHY init function */
1857 static int sh_eth_phy_init(struct net_device *ndev)
1858 {
1859 	struct device_node *np = ndev->dev.parent->of_node;
1860 	struct sh_eth_private *mdp = netdev_priv(ndev);
1861 	struct phy_device *phydev;
1862 
1863 	mdp->link = 0;
1864 	mdp->speed = 0;
1865 	mdp->duplex = -1;
1866 
1867 	/* Try connect to PHY */
1868 	if (np) {
1869 		struct device_node *pn;
1870 
1871 		pn = of_parse_phandle(np, "phy-handle", 0);
1872 		phydev = of_phy_connect(ndev, pn,
1873 					sh_eth_adjust_link, 0,
1874 					mdp->phy_interface);
1875 
1876 		of_node_put(pn);
1877 		if (!phydev)
1878 			phydev = ERR_PTR(-ENOENT);
1879 	} else {
1880 		char phy_id[MII_BUS_ID_SIZE + 3];
1881 
1882 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1883 			 mdp->mii_bus->id, mdp->phy_id);
1884 
1885 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1886 				     mdp->phy_interface);
1887 	}
1888 
1889 	if (IS_ERR(phydev)) {
1890 		netdev_err(ndev, "failed to connect PHY\n");
1891 		return PTR_ERR(phydev);
1892 	}
1893 
1894 	phy_attached_info(phydev);
1895 
1896 	return 0;
1897 }
1898 
1899 /* PHY control start function */
1900 static int sh_eth_phy_start(struct net_device *ndev)
1901 {
1902 	int ret;
1903 
1904 	ret = sh_eth_phy_init(ndev);
1905 	if (ret)
1906 		return ret;
1907 
1908 	phy_start(ndev->phydev);
1909 
1910 	return 0;
1911 }
1912 
1913 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1914 				     struct ethtool_link_ksettings *cmd)
1915 {
1916 	struct sh_eth_private *mdp = netdev_priv(ndev);
1917 	unsigned long flags;
1918 
1919 	if (!ndev->phydev)
1920 		return -ENODEV;
1921 
1922 	spin_lock_irqsave(&mdp->lock, flags);
1923 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1924 	spin_unlock_irqrestore(&mdp->lock, flags);
1925 
1926 	return 0;
1927 }
1928 
1929 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1930 				     const struct ethtool_link_ksettings *cmd)
1931 {
1932 	struct sh_eth_private *mdp = netdev_priv(ndev);
1933 	unsigned long flags;
1934 	int ret;
1935 
1936 	if (!ndev->phydev)
1937 		return -ENODEV;
1938 
1939 	spin_lock_irqsave(&mdp->lock, flags);
1940 
1941 	/* disable tx and rx */
1942 	sh_eth_rcv_snd_disable(ndev);
1943 
1944 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1945 	if (ret)
1946 		goto error_exit;
1947 
1948 	if (cmd->base.duplex == DUPLEX_FULL)
1949 		mdp->duplex = 1;
1950 	else
1951 		mdp->duplex = 0;
1952 
1953 	if (mdp->cd->set_duplex)
1954 		mdp->cd->set_duplex(ndev);
1955 
1956 error_exit:
1957 	mdelay(1);
1958 
1959 	/* enable tx and rx */
1960 	sh_eth_rcv_snd_enable(ndev);
1961 
1962 	spin_unlock_irqrestore(&mdp->lock, flags);
1963 
1964 	return ret;
1965 }
1966 
1967 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1968  * version must be bumped as well.  Just adding registers up to that
1969  * limit is fine, as long as the existing register indices don't
1970  * change.
1971  */
1972 #define SH_ETH_REG_DUMP_VERSION		1
1973 #define SH_ETH_REG_DUMP_MAX_REGS	256
1974 
1975 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1976 {
1977 	struct sh_eth_private *mdp = netdev_priv(ndev);
1978 	struct sh_eth_cpu_data *cd = mdp->cd;
1979 	u32 *valid_map;
1980 	size_t len;
1981 
1982 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1983 
1984 	/* Dump starts with a bitmap that tells ethtool which
1985 	 * registers are defined for this chip.
1986 	 */
1987 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1988 	if (buf) {
1989 		valid_map = buf;
1990 		buf += len;
1991 	} else {
1992 		valid_map = NULL;
1993 	}
1994 
1995 	/* Add a register to the dump, if it has a defined offset.
1996 	 * This automatically skips most undefined registers, but for
1997 	 * some it is also necessary to check a capability flag in
1998 	 * struct sh_eth_cpu_data.
1999 	 */
2000 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2001 #define add_reg_from(reg, read_expr) do {				\
2002 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2003 			if (buf) {					\
2004 				mark_reg_valid(reg);			\
2005 				*buf++ = read_expr;			\
2006 			}						\
2007 			++len;						\
2008 		}							\
2009 	} while (0)
2010 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2011 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2012 
2013 	add_reg(EDSR);
2014 	add_reg(EDMR);
2015 	add_reg(EDTRR);
2016 	add_reg(EDRRR);
2017 	add_reg(EESR);
2018 	add_reg(EESIPR);
2019 	add_reg(TDLAR);
2020 	add_reg(TDFAR);
2021 	add_reg(TDFXR);
2022 	add_reg(TDFFR);
2023 	add_reg(RDLAR);
2024 	add_reg(RDFAR);
2025 	add_reg(RDFXR);
2026 	add_reg(RDFFR);
2027 	add_reg(TRSCER);
2028 	add_reg(RMFCR);
2029 	add_reg(TFTR);
2030 	add_reg(FDR);
2031 	add_reg(RMCR);
2032 	add_reg(TFUCR);
2033 	add_reg(RFOCR);
2034 	if (cd->rmiimode)
2035 		add_reg(RMIIMODE);
2036 	add_reg(FCFTR);
2037 	if (cd->rpadir)
2038 		add_reg(RPADIR);
2039 	if (!cd->no_trimd)
2040 		add_reg(TRIMD);
2041 	add_reg(ECMR);
2042 	add_reg(ECSR);
2043 	add_reg(ECSIPR);
2044 	add_reg(PIR);
2045 	if (!cd->no_psr)
2046 		add_reg(PSR);
2047 	add_reg(RDMLR);
2048 	add_reg(RFLR);
2049 	add_reg(IPGR);
2050 	if (cd->apr)
2051 		add_reg(APR);
2052 	if (cd->mpr)
2053 		add_reg(MPR);
2054 	add_reg(RFCR);
2055 	add_reg(RFCF);
2056 	if (cd->tpauser)
2057 		add_reg(TPAUSER);
2058 	add_reg(TPAUSECR);
2059 	add_reg(GECMR);
2060 	if (cd->bculr)
2061 		add_reg(BCULR);
2062 	add_reg(MAHR);
2063 	add_reg(MALR);
2064 	add_reg(TROCR);
2065 	add_reg(CDCR);
2066 	add_reg(LCCR);
2067 	add_reg(CNDCR);
2068 	add_reg(CEFCR);
2069 	add_reg(FRECR);
2070 	add_reg(TSFRCR);
2071 	add_reg(TLFRCR);
2072 	add_reg(CERCR);
2073 	add_reg(CEECR);
2074 	add_reg(MAFCR);
2075 	if (cd->rtrate)
2076 		add_reg(RTRATE);
2077 	if (cd->hw_checksum)
2078 		add_reg(CSMR);
2079 	if (cd->select_mii)
2080 		add_reg(RMII_MII);
2081 	add_reg(ARSTR);
2082 	if (cd->tsu) {
2083 		add_tsu_reg(TSU_CTRST);
2084 		add_tsu_reg(TSU_FWEN0);
2085 		add_tsu_reg(TSU_FWEN1);
2086 		add_tsu_reg(TSU_FCM);
2087 		add_tsu_reg(TSU_BSYSL0);
2088 		add_tsu_reg(TSU_BSYSL1);
2089 		add_tsu_reg(TSU_PRISL0);
2090 		add_tsu_reg(TSU_PRISL1);
2091 		add_tsu_reg(TSU_FWSL0);
2092 		add_tsu_reg(TSU_FWSL1);
2093 		add_tsu_reg(TSU_FWSLC);
2094 		add_tsu_reg(TSU_QTAG0);
2095 		add_tsu_reg(TSU_QTAG1);
2096 		add_tsu_reg(TSU_QTAGM0);
2097 		add_tsu_reg(TSU_QTAGM1);
2098 		add_tsu_reg(TSU_FWSR);
2099 		add_tsu_reg(TSU_FWINMK);
2100 		add_tsu_reg(TSU_ADQT0);
2101 		add_tsu_reg(TSU_ADQT1);
2102 		add_tsu_reg(TSU_VTAG0);
2103 		add_tsu_reg(TSU_VTAG1);
2104 		add_tsu_reg(TSU_ADSBSY);
2105 		add_tsu_reg(TSU_TEN);
2106 		add_tsu_reg(TSU_POST1);
2107 		add_tsu_reg(TSU_POST2);
2108 		add_tsu_reg(TSU_POST3);
2109 		add_tsu_reg(TSU_POST4);
2110 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2111 			/* This is the start of a table, not just a single
2112 			 * register.
2113 			 */
2114 			if (buf) {
2115 				unsigned int i;
2116 
2117 				mark_reg_valid(TSU_ADRH0);
2118 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2119 					*buf++ = ioread32(
2120 						mdp->tsu_addr +
2121 						mdp->reg_offset[TSU_ADRH0] +
2122 						i * 4);
2123 			}
2124 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2125 		}
2126 	}
2127 
2128 #undef mark_reg_valid
2129 #undef add_reg_from
2130 #undef add_reg
2131 #undef add_tsu_reg
2132 
2133 	return len * 4;
2134 }
2135 
2136 static int sh_eth_get_regs_len(struct net_device *ndev)
2137 {
2138 	return __sh_eth_get_regs(ndev, NULL);
2139 }
2140 
2141 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2142 			    void *buf)
2143 {
2144 	struct sh_eth_private *mdp = netdev_priv(ndev);
2145 
2146 	regs->version = SH_ETH_REG_DUMP_VERSION;
2147 
2148 	pm_runtime_get_sync(&mdp->pdev->dev);
2149 	__sh_eth_get_regs(ndev, buf);
2150 	pm_runtime_put_sync(&mdp->pdev->dev);
2151 }
2152 
2153 static int sh_eth_nway_reset(struct net_device *ndev)
2154 {
2155 	struct sh_eth_private *mdp = netdev_priv(ndev);
2156 	unsigned long flags;
2157 	int ret;
2158 
2159 	if (!ndev->phydev)
2160 		return -ENODEV;
2161 
2162 	spin_lock_irqsave(&mdp->lock, flags);
2163 	ret = phy_start_aneg(ndev->phydev);
2164 	spin_unlock_irqrestore(&mdp->lock, flags);
2165 
2166 	return ret;
2167 }
2168 
2169 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2170 {
2171 	struct sh_eth_private *mdp = netdev_priv(ndev);
2172 	return mdp->msg_enable;
2173 }
2174 
2175 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2176 {
2177 	struct sh_eth_private *mdp = netdev_priv(ndev);
2178 	mdp->msg_enable = value;
2179 }
2180 
2181 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2182 	"rx_current", "tx_current",
2183 	"rx_dirty", "tx_dirty",
2184 };
2185 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2186 
2187 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2188 {
2189 	switch (sset) {
2190 	case ETH_SS_STATS:
2191 		return SH_ETH_STATS_LEN;
2192 	default:
2193 		return -EOPNOTSUPP;
2194 	}
2195 }
2196 
2197 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2198 				     struct ethtool_stats *stats, u64 *data)
2199 {
2200 	struct sh_eth_private *mdp = netdev_priv(ndev);
2201 	int i = 0;
2202 
2203 	/* device-specific stats */
2204 	data[i++] = mdp->cur_rx;
2205 	data[i++] = mdp->cur_tx;
2206 	data[i++] = mdp->dirty_rx;
2207 	data[i++] = mdp->dirty_tx;
2208 }
2209 
2210 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2211 {
2212 	switch (stringset) {
2213 	case ETH_SS_STATS:
2214 		memcpy(data, *sh_eth_gstrings_stats,
2215 		       sizeof(sh_eth_gstrings_stats));
2216 		break;
2217 	}
2218 }
2219 
2220 static void sh_eth_get_ringparam(struct net_device *ndev,
2221 				 struct ethtool_ringparam *ring)
2222 {
2223 	struct sh_eth_private *mdp = netdev_priv(ndev);
2224 
2225 	ring->rx_max_pending = RX_RING_MAX;
2226 	ring->tx_max_pending = TX_RING_MAX;
2227 	ring->rx_pending = mdp->num_rx_ring;
2228 	ring->tx_pending = mdp->num_tx_ring;
2229 }
2230 
2231 static int sh_eth_set_ringparam(struct net_device *ndev,
2232 				struct ethtool_ringparam *ring)
2233 {
2234 	struct sh_eth_private *mdp = netdev_priv(ndev);
2235 	int ret;
2236 
2237 	if (ring->tx_pending > TX_RING_MAX ||
2238 	    ring->rx_pending > RX_RING_MAX ||
2239 	    ring->tx_pending < TX_RING_MIN ||
2240 	    ring->rx_pending < RX_RING_MIN)
2241 		return -EINVAL;
2242 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2243 		return -EINVAL;
2244 
2245 	if (netif_running(ndev)) {
2246 		netif_device_detach(ndev);
2247 		netif_tx_disable(ndev);
2248 
2249 		/* Serialise with the interrupt handler and NAPI, then
2250 		 * disable interrupts.  We have to clear the
2251 		 * irq_enabled flag first to ensure that interrupts
2252 		 * won't be re-enabled.
2253 		 */
2254 		mdp->irq_enabled = false;
2255 		synchronize_irq(ndev->irq);
2256 		napi_synchronize(&mdp->napi);
2257 		sh_eth_write(ndev, 0x0000, EESIPR);
2258 
2259 		sh_eth_dev_exit(ndev);
2260 
2261 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2262 		sh_eth_ring_free(ndev);
2263 	}
2264 
2265 	/* Set new parameters */
2266 	mdp->num_rx_ring = ring->rx_pending;
2267 	mdp->num_tx_ring = ring->tx_pending;
2268 
2269 	if (netif_running(ndev)) {
2270 		ret = sh_eth_ring_init(ndev);
2271 		if (ret < 0) {
2272 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2273 				   __func__);
2274 			return ret;
2275 		}
2276 		ret = sh_eth_dev_init(ndev);
2277 		if (ret < 0) {
2278 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2279 				   __func__);
2280 			return ret;
2281 		}
2282 
2283 		netif_device_attach(ndev);
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2290 {
2291 	struct sh_eth_private *mdp = netdev_priv(ndev);
2292 
2293 	wol->supported = 0;
2294 	wol->wolopts = 0;
2295 
2296 	if (mdp->cd->magic && mdp->clk) {
2297 		wol->supported = WAKE_MAGIC;
2298 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2299 	}
2300 }
2301 
2302 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2303 {
2304 	struct sh_eth_private *mdp = netdev_priv(ndev);
2305 
2306 	if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2307 		return -EOPNOTSUPP;
2308 
2309 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2310 
2311 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2312 
2313 	return 0;
2314 }
2315 
2316 static const struct ethtool_ops sh_eth_ethtool_ops = {
2317 	.get_regs_len	= sh_eth_get_regs_len,
2318 	.get_regs	= sh_eth_get_regs,
2319 	.nway_reset	= sh_eth_nway_reset,
2320 	.get_msglevel	= sh_eth_get_msglevel,
2321 	.set_msglevel	= sh_eth_set_msglevel,
2322 	.get_link	= ethtool_op_get_link,
2323 	.get_strings	= sh_eth_get_strings,
2324 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2325 	.get_sset_count     = sh_eth_get_sset_count,
2326 	.get_ringparam	= sh_eth_get_ringparam,
2327 	.set_ringparam	= sh_eth_set_ringparam,
2328 	.get_link_ksettings = sh_eth_get_link_ksettings,
2329 	.set_link_ksettings = sh_eth_set_link_ksettings,
2330 	.get_wol	= sh_eth_get_wol,
2331 	.set_wol	= sh_eth_set_wol,
2332 };
2333 
2334 /* network device open function */
2335 static int sh_eth_open(struct net_device *ndev)
2336 {
2337 	struct sh_eth_private *mdp = netdev_priv(ndev);
2338 	int ret;
2339 
2340 	pm_runtime_get_sync(&mdp->pdev->dev);
2341 
2342 	napi_enable(&mdp->napi);
2343 
2344 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2345 			  mdp->cd->irq_flags, ndev->name, ndev);
2346 	if (ret) {
2347 		netdev_err(ndev, "Can not assign IRQ number\n");
2348 		goto out_napi_off;
2349 	}
2350 
2351 	/* Descriptor set */
2352 	ret = sh_eth_ring_init(ndev);
2353 	if (ret)
2354 		goto out_free_irq;
2355 
2356 	/* device init */
2357 	ret = sh_eth_dev_init(ndev);
2358 	if (ret)
2359 		goto out_free_irq;
2360 
2361 	/* PHY control start*/
2362 	ret = sh_eth_phy_start(ndev);
2363 	if (ret)
2364 		goto out_free_irq;
2365 
2366 	netif_start_queue(ndev);
2367 
2368 	mdp->is_opened = 1;
2369 
2370 	return ret;
2371 
2372 out_free_irq:
2373 	free_irq(ndev->irq, ndev);
2374 out_napi_off:
2375 	napi_disable(&mdp->napi);
2376 	pm_runtime_put_sync(&mdp->pdev->dev);
2377 	return ret;
2378 }
2379 
2380 /* Timeout function */
2381 static void sh_eth_tx_timeout(struct net_device *ndev)
2382 {
2383 	struct sh_eth_private *mdp = netdev_priv(ndev);
2384 	struct sh_eth_rxdesc *rxdesc;
2385 	int i;
2386 
2387 	netif_stop_queue(ndev);
2388 
2389 	netif_err(mdp, timer, ndev,
2390 		  "transmit timed out, status %8.8x, resetting...\n",
2391 		  sh_eth_read(ndev, EESR));
2392 
2393 	/* tx_errors count up */
2394 	ndev->stats.tx_errors++;
2395 
2396 	/* Free all the skbuffs in the Rx queue. */
2397 	for (i = 0; i < mdp->num_rx_ring; i++) {
2398 		rxdesc = &mdp->rx_ring[i];
2399 		rxdesc->status = cpu_to_le32(0);
2400 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2401 		dev_kfree_skb(mdp->rx_skbuff[i]);
2402 		mdp->rx_skbuff[i] = NULL;
2403 	}
2404 	for (i = 0; i < mdp->num_tx_ring; i++) {
2405 		dev_kfree_skb(mdp->tx_skbuff[i]);
2406 		mdp->tx_skbuff[i] = NULL;
2407 	}
2408 
2409 	/* device init */
2410 	sh_eth_dev_init(ndev);
2411 
2412 	netif_start_queue(ndev);
2413 }
2414 
2415 /* Packet transmit function */
2416 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2417 {
2418 	struct sh_eth_private *mdp = netdev_priv(ndev);
2419 	struct sh_eth_txdesc *txdesc;
2420 	dma_addr_t dma_addr;
2421 	u32 entry;
2422 	unsigned long flags;
2423 
2424 	spin_lock_irqsave(&mdp->lock, flags);
2425 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2426 		if (!sh_eth_tx_free(ndev, true)) {
2427 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2428 			netif_stop_queue(ndev);
2429 			spin_unlock_irqrestore(&mdp->lock, flags);
2430 			return NETDEV_TX_BUSY;
2431 		}
2432 	}
2433 	spin_unlock_irqrestore(&mdp->lock, flags);
2434 
2435 	if (skb_put_padto(skb, ETH_ZLEN))
2436 		return NETDEV_TX_OK;
2437 
2438 	entry = mdp->cur_tx % mdp->num_tx_ring;
2439 	mdp->tx_skbuff[entry] = skb;
2440 	txdesc = &mdp->tx_ring[entry];
2441 	/* soft swap. */
2442 	if (!mdp->cd->hw_swap)
2443 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2444 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2445 				  DMA_TO_DEVICE);
2446 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2447 		kfree_skb(skb);
2448 		return NETDEV_TX_OK;
2449 	}
2450 	txdesc->addr = cpu_to_le32(dma_addr);
2451 	txdesc->len  = cpu_to_le32(skb->len << 16);
2452 
2453 	dma_wmb(); /* TACT bit must be set after all the above writes */
2454 	if (entry >= mdp->num_tx_ring - 1)
2455 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2456 	else
2457 		txdesc->status |= cpu_to_le32(TD_TACT);
2458 
2459 	mdp->cur_tx++;
2460 
2461 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2462 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2463 
2464 	return NETDEV_TX_OK;
2465 }
2466 
2467 /* The statistics registers have write-clear behaviour, which means we
2468  * will lose any increment between the read and write.  We mitigate
2469  * this by only clearing when we read a non-zero value, so we will
2470  * never falsely report a total of zero.
2471  */
2472 static void
2473 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2474 {
2475 	u32 delta = sh_eth_read(ndev, reg);
2476 
2477 	if (delta) {
2478 		*stat += delta;
2479 		sh_eth_write(ndev, 0, reg);
2480 	}
2481 }
2482 
2483 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2484 {
2485 	struct sh_eth_private *mdp = netdev_priv(ndev);
2486 
2487 	if (sh_eth_is_rz_fast_ether(mdp))
2488 		return &ndev->stats;
2489 
2490 	if (!mdp->is_opened)
2491 		return &ndev->stats;
2492 
2493 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2494 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2495 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2496 
2497 	if (sh_eth_is_gether(mdp)) {
2498 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2499 				   CERCR);
2500 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2501 				   CEECR);
2502 	} else {
2503 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2504 				   CNDCR);
2505 	}
2506 
2507 	return &ndev->stats;
2508 }
2509 
2510 /* device close function */
2511 static int sh_eth_close(struct net_device *ndev)
2512 {
2513 	struct sh_eth_private *mdp = netdev_priv(ndev);
2514 
2515 	netif_stop_queue(ndev);
2516 
2517 	/* Serialise with the interrupt handler and NAPI, then disable
2518 	 * interrupts.  We have to clear the irq_enabled flag first to
2519 	 * ensure that interrupts won't be re-enabled.
2520 	 */
2521 	mdp->irq_enabled = false;
2522 	synchronize_irq(ndev->irq);
2523 	napi_disable(&mdp->napi);
2524 	sh_eth_write(ndev, 0x0000, EESIPR);
2525 
2526 	sh_eth_dev_exit(ndev);
2527 
2528 	/* PHY Disconnect */
2529 	if (ndev->phydev) {
2530 		phy_stop(ndev->phydev);
2531 		phy_disconnect(ndev->phydev);
2532 	}
2533 
2534 	free_irq(ndev->irq, ndev);
2535 
2536 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2537 	sh_eth_ring_free(ndev);
2538 
2539 	pm_runtime_put_sync(&mdp->pdev->dev);
2540 
2541 	mdp->is_opened = 0;
2542 
2543 	return 0;
2544 }
2545 
2546 /* ioctl to device function */
2547 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2548 {
2549 	struct phy_device *phydev = ndev->phydev;
2550 
2551 	if (!netif_running(ndev))
2552 		return -EINVAL;
2553 
2554 	if (!phydev)
2555 		return -ENODEV;
2556 
2557 	return phy_mii_ioctl(phydev, rq, cmd);
2558 }
2559 
2560 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2561 {
2562 	if (netif_running(ndev))
2563 		return -EBUSY;
2564 
2565 	ndev->mtu = new_mtu;
2566 	netdev_update_features(ndev);
2567 
2568 	return 0;
2569 }
2570 
2571 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2572 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2573 					    int entry)
2574 {
2575 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2576 }
2577 
2578 static u32 sh_eth_tsu_get_post_mask(int entry)
2579 {
2580 	return 0x0f << (28 - ((entry % 8) * 4));
2581 }
2582 
2583 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2584 {
2585 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2586 }
2587 
2588 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2589 					     int entry)
2590 {
2591 	struct sh_eth_private *mdp = netdev_priv(ndev);
2592 	u32 tmp;
2593 	void *reg_offset;
2594 
2595 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2596 	tmp = ioread32(reg_offset);
2597 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2598 }
2599 
2600 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2601 					      int entry)
2602 {
2603 	struct sh_eth_private *mdp = netdev_priv(ndev);
2604 	u32 post_mask, ref_mask, tmp;
2605 	void *reg_offset;
2606 
2607 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2608 	post_mask = sh_eth_tsu_get_post_mask(entry);
2609 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2610 
2611 	tmp = ioread32(reg_offset);
2612 	iowrite32(tmp & ~post_mask, reg_offset);
2613 
2614 	/* If other port enables, the function returns "true" */
2615 	return tmp & ref_mask;
2616 }
2617 
2618 static int sh_eth_tsu_busy(struct net_device *ndev)
2619 {
2620 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2621 	struct sh_eth_private *mdp = netdev_priv(ndev);
2622 
2623 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2624 		udelay(10);
2625 		timeout--;
2626 		if (timeout <= 0) {
2627 			netdev_err(ndev, "%s: timeout\n", __func__);
2628 			return -ETIMEDOUT;
2629 		}
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2636 				  const u8 *addr)
2637 {
2638 	u32 val;
2639 
2640 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2641 	iowrite32(val, reg);
2642 	if (sh_eth_tsu_busy(ndev) < 0)
2643 		return -EBUSY;
2644 
2645 	val = addr[4] << 8 | addr[5];
2646 	iowrite32(val, reg + 4);
2647 	if (sh_eth_tsu_busy(ndev) < 0)
2648 		return -EBUSY;
2649 
2650 	return 0;
2651 }
2652 
2653 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2654 {
2655 	u32 val;
2656 
2657 	val = ioread32(reg);
2658 	addr[0] = (val >> 24) & 0xff;
2659 	addr[1] = (val >> 16) & 0xff;
2660 	addr[2] = (val >> 8) & 0xff;
2661 	addr[3] = val & 0xff;
2662 	val = ioread32(reg + 4);
2663 	addr[4] = (val >> 8) & 0xff;
2664 	addr[5] = val & 0xff;
2665 }
2666 
2667 
2668 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2669 {
2670 	struct sh_eth_private *mdp = netdev_priv(ndev);
2671 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2672 	int i;
2673 	u8 c_addr[ETH_ALEN];
2674 
2675 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2676 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2677 		if (ether_addr_equal(addr, c_addr))
2678 			return i;
2679 	}
2680 
2681 	return -ENOENT;
2682 }
2683 
2684 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2685 {
2686 	u8 blank[ETH_ALEN];
2687 	int entry;
2688 
2689 	memset(blank, 0, sizeof(blank));
2690 	entry = sh_eth_tsu_find_entry(ndev, blank);
2691 	return (entry < 0) ? -ENOMEM : entry;
2692 }
2693 
2694 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2695 					      int entry)
2696 {
2697 	struct sh_eth_private *mdp = netdev_priv(ndev);
2698 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2699 	int ret;
2700 	u8 blank[ETH_ALEN];
2701 
2702 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2703 			 ~(1 << (31 - entry)), TSU_TEN);
2704 
2705 	memset(blank, 0, sizeof(blank));
2706 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2707 	if (ret < 0)
2708 		return ret;
2709 	return 0;
2710 }
2711 
2712 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2713 {
2714 	struct sh_eth_private *mdp = netdev_priv(ndev);
2715 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2716 	int i, ret;
2717 
2718 	if (!mdp->cd->tsu)
2719 		return 0;
2720 
2721 	i = sh_eth_tsu_find_entry(ndev, addr);
2722 	if (i < 0) {
2723 		/* No entry found, create one */
2724 		i = sh_eth_tsu_find_empty(ndev);
2725 		if (i < 0)
2726 			return -ENOMEM;
2727 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2728 		if (ret < 0)
2729 			return ret;
2730 
2731 		/* Enable the entry */
2732 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2733 				 (1 << (31 - i)), TSU_TEN);
2734 	}
2735 
2736 	/* Entry found or created, enable POST */
2737 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2738 
2739 	return 0;
2740 }
2741 
2742 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2743 {
2744 	struct sh_eth_private *mdp = netdev_priv(ndev);
2745 	int i, ret;
2746 
2747 	if (!mdp->cd->tsu)
2748 		return 0;
2749 
2750 	i = sh_eth_tsu_find_entry(ndev, addr);
2751 	if (i) {
2752 		/* Entry found */
2753 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2754 			goto done;
2755 
2756 		/* Disable the entry if both ports was disabled */
2757 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2758 		if (ret < 0)
2759 			return ret;
2760 	}
2761 done:
2762 	return 0;
2763 }
2764 
2765 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2766 {
2767 	struct sh_eth_private *mdp = netdev_priv(ndev);
2768 	int i, ret;
2769 
2770 	if (!mdp->cd->tsu)
2771 		return 0;
2772 
2773 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2774 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2775 			continue;
2776 
2777 		/* Disable the entry if both ports was disabled */
2778 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2779 		if (ret < 0)
2780 			return ret;
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2787 {
2788 	struct sh_eth_private *mdp = netdev_priv(ndev);
2789 	u8 addr[ETH_ALEN];
2790 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2791 	int i;
2792 
2793 	if (!mdp->cd->tsu)
2794 		return;
2795 
2796 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2797 		sh_eth_tsu_read_entry(reg_offset, addr);
2798 		if (is_multicast_ether_addr(addr))
2799 			sh_eth_tsu_del_entry(ndev, addr);
2800 	}
2801 }
2802 
2803 /* Update promiscuous flag and multicast filter */
2804 static void sh_eth_set_rx_mode(struct net_device *ndev)
2805 {
2806 	struct sh_eth_private *mdp = netdev_priv(ndev);
2807 	u32 ecmr_bits;
2808 	int mcast_all = 0;
2809 	unsigned long flags;
2810 
2811 	spin_lock_irqsave(&mdp->lock, flags);
2812 	/* Initial condition is MCT = 1, PRM = 0.
2813 	 * Depending on ndev->flags, set PRM or clear MCT
2814 	 */
2815 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2816 	if (mdp->cd->tsu)
2817 		ecmr_bits |= ECMR_MCT;
2818 
2819 	if (!(ndev->flags & IFF_MULTICAST)) {
2820 		sh_eth_tsu_purge_mcast(ndev);
2821 		mcast_all = 1;
2822 	}
2823 	if (ndev->flags & IFF_ALLMULTI) {
2824 		sh_eth_tsu_purge_mcast(ndev);
2825 		ecmr_bits &= ~ECMR_MCT;
2826 		mcast_all = 1;
2827 	}
2828 
2829 	if (ndev->flags & IFF_PROMISC) {
2830 		sh_eth_tsu_purge_all(ndev);
2831 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2832 	} else if (mdp->cd->tsu) {
2833 		struct netdev_hw_addr *ha;
2834 		netdev_for_each_mc_addr(ha, ndev) {
2835 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2836 				continue;
2837 
2838 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2839 				if (!mcast_all) {
2840 					sh_eth_tsu_purge_mcast(ndev);
2841 					ecmr_bits &= ~ECMR_MCT;
2842 					mcast_all = 1;
2843 				}
2844 			}
2845 		}
2846 	}
2847 
2848 	/* update the ethernet mode */
2849 	sh_eth_write(ndev, ecmr_bits, ECMR);
2850 
2851 	spin_unlock_irqrestore(&mdp->lock, flags);
2852 }
2853 
2854 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2855 {
2856 	if (!mdp->port)
2857 		return TSU_VTAG0;
2858 	else
2859 		return TSU_VTAG1;
2860 }
2861 
2862 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2863 				  __be16 proto, u16 vid)
2864 {
2865 	struct sh_eth_private *mdp = netdev_priv(ndev);
2866 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2867 
2868 	if (unlikely(!mdp->cd->tsu))
2869 		return -EPERM;
2870 
2871 	/* No filtering if vid = 0 */
2872 	if (!vid)
2873 		return 0;
2874 
2875 	mdp->vlan_num_ids++;
2876 
2877 	/* The controller has one VLAN tag HW filter. So, if the filter is
2878 	 * already enabled, the driver disables it and the filte
2879 	 */
2880 	if (mdp->vlan_num_ids > 1) {
2881 		/* disable VLAN filter */
2882 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2883 		return 0;
2884 	}
2885 
2886 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2887 			 vtag_reg_index);
2888 
2889 	return 0;
2890 }
2891 
2892 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2893 				   __be16 proto, u16 vid)
2894 {
2895 	struct sh_eth_private *mdp = netdev_priv(ndev);
2896 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2897 
2898 	if (unlikely(!mdp->cd->tsu))
2899 		return -EPERM;
2900 
2901 	/* No filtering if vid = 0 */
2902 	if (!vid)
2903 		return 0;
2904 
2905 	mdp->vlan_num_ids--;
2906 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2907 
2908 	return 0;
2909 }
2910 
2911 /* SuperH's TSU register init function */
2912 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2913 {
2914 	if (sh_eth_is_rz_fast_ether(mdp)) {
2915 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2916 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2917 				 TSU_FWSLC);	/* Enable POST registers */
2918 		return;
2919 	}
2920 
2921 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2922 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2923 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2924 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2925 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2926 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2927 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2928 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2929 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2930 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2931 	if (sh_eth_is_gether(mdp)) {
2932 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2933 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2934 	} else {
2935 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2936 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2937 	}
2938 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2939 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2940 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2941 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2942 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2943 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2944 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2945 }
2946 
2947 /* MDIO bus release function */
2948 static int sh_mdio_release(struct sh_eth_private *mdp)
2949 {
2950 	/* unregister mdio bus */
2951 	mdiobus_unregister(mdp->mii_bus);
2952 
2953 	/* free bitbang info */
2954 	free_mdio_bitbang(mdp->mii_bus);
2955 
2956 	return 0;
2957 }
2958 
2959 /* MDIO bus init function */
2960 static int sh_mdio_init(struct sh_eth_private *mdp,
2961 			struct sh_eth_plat_data *pd)
2962 {
2963 	int ret;
2964 	struct bb_info *bitbang;
2965 	struct platform_device *pdev = mdp->pdev;
2966 	struct device *dev = &mdp->pdev->dev;
2967 
2968 	/* create bit control struct for PHY */
2969 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2970 	if (!bitbang)
2971 		return -ENOMEM;
2972 
2973 	/* bitbang init */
2974 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2975 	bitbang->set_gate = pd->set_mdio_gate;
2976 	bitbang->ctrl.ops = &bb_ops;
2977 
2978 	/* MII controller setting */
2979 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2980 	if (!mdp->mii_bus)
2981 		return -ENOMEM;
2982 
2983 	/* Hook up MII support for ethtool */
2984 	mdp->mii_bus->name = "sh_mii";
2985 	mdp->mii_bus->parent = dev;
2986 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2987 		 pdev->name, pdev->id);
2988 
2989 	/* register MDIO bus */
2990 	if (dev->of_node) {
2991 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2992 	} else {
2993 		if (pd->phy_irq > 0)
2994 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2995 
2996 		ret = mdiobus_register(mdp->mii_bus);
2997 	}
2998 
2999 	if (ret)
3000 		goto out_free_bus;
3001 
3002 	return 0;
3003 
3004 out_free_bus:
3005 	free_mdio_bitbang(mdp->mii_bus);
3006 	return ret;
3007 }
3008 
3009 static const u16 *sh_eth_get_register_offset(int register_type)
3010 {
3011 	const u16 *reg_offset = NULL;
3012 
3013 	switch (register_type) {
3014 	case SH_ETH_REG_GIGABIT:
3015 		reg_offset = sh_eth_offset_gigabit;
3016 		break;
3017 	case SH_ETH_REG_FAST_RZ:
3018 		reg_offset = sh_eth_offset_fast_rz;
3019 		break;
3020 	case SH_ETH_REG_FAST_RCAR:
3021 		reg_offset = sh_eth_offset_fast_rcar;
3022 		break;
3023 	case SH_ETH_REG_FAST_SH4:
3024 		reg_offset = sh_eth_offset_fast_sh4;
3025 		break;
3026 	case SH_ETH_REG_FAST_SH3_SH2:
3027 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3028 		break;
3029 	}
3030 
3031 	return reg_offset;
3032 }
3033 
3034 static const struct net_device_ops sh_eth_netdev_ops = {
3035 	.ndo_open		= sh_eth_open,
3036 	.ndo_stop		= sh_eth_close,
3037 	.ndo_start_xmit		= sh_eth_start_xmit,
3038 	.ndo_get_stats		= sh_eth_get_stats,
3039 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3040 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3041 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3042 	.ndo_change_mtu		= sh_eth_change_mtu,
3043 	.ndo_validate_addr	= eth_validate_addr,
3044 	.ndo_set_mac_address	= eth_mac_addr,
3045 };
3046 
3047 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3048 	.ndo_open		= sh_eth_open,
3049 	.ndo_stop		= sh_eth_close,
3050 	.ndo_start_xmit		= sh_eth_start_xmit,
3051 	.ndo_get_stats		= sh_eth_get_stats,
3052 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3053 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3054 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3055 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3056 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3057 	.ndo_change_mtu		= sh_eth_change_mtu,
3058 	.ndo_validate_addr	= eth_validate_addr,
3059 	.ndo_set_mac_address	= eth_mac_addr,
3060 };
3061 
3062 #ifdef CONFIG_OF
3063 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3064 {
3065 	struct device_node *np = dev->of_node;
3066 	struct sh_eth_plat_data *pdata;
3067 	const char *mac_addr;
3068 
3069 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3070 	if (!pdata)
3071 		return NULL;
3072 
3073 	pdata->phy_interface = of_get_phy_mode(np);
3074 
3075 	mac_addr = of_get_mac_address(np);
3076 	if (mac_addr)
3077 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3078 
3079 	pdata->no_ether_link =
3080 		of_property_read_bool(np, "renesas,no-ether-link");
3081 	pdata->ether_link_active_low =
3082 		of_property_read_bool(np, "renesas,ether-link-active-low");
3083 
3084 	return pdata;
3085 }
3086 
3087 static const struct of_device_id sh_eth_match_table[] = {
3088 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3089 	{ .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
3090 	{ .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
3091 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3092 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3093 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3094 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3095 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3096 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3097 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3098 	{ }
3099 };
3100 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3101 #else
3102 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3103 {
3104 	return NULL;
3105 }
3106 #endif
3107 
3108 static int sh_eth_drv_probe(struct platform_device *pdev)
3109 {
3110 	struct resource *res;
3111 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3112 	const struct platform_device_id *id = platform_get_device_id(pdev);
3113 	struct sh_eth_private *mdp;
3114 	struct net_device *ndev;
3115 	int ret, devno;
3116 
3117 	/* get base addr */
3118 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3119 
3120 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3121 	if (!ndev)
3122 		return -ENOMEM;
3123 
3124 	pm_runtime_enable(&pdev->dev);
3125 	pm_runtime_get_sync(&pdev->dev);
3126 
3127 	devno = pdev->id;
3128 	if (devno < 0)
3129 		devno = 0;
3130 
3131 	ret = platform_get_irq(pdev, 0);
3132 	if (ret < 0)
3133 		goto out_release;
3134 	ndev->irq = ret;
3135 
3136 	SET_NETDEV_DEV(ndev, &pdev->dev);
3137 
3138 	mdp = netdev_priv(ndev);
3139 	mdp->num_tx_ring = TX_RING_SIZE;
3140 	mdp->num_rx_ring = RX_RING_SIZE;
3141 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3142 	if (IS_ERR(mdp->addr)) {
3143 		ret = PTR_ERR(mdp->addr);
3144 		goto out_release;
3145 	}
3146 
3147 	/* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3148 	mdp->clk = devm_clk_get(&pdev->dev, NULL);
3149 	if (IS_ERR(mdp->clk))
3150 		mdp->clk = NULL;
3151 
3152 	ndev->base_addr = res->start;
3153 
3154 	spin_lock_init(&mdp->lock);
3155 	mdp->pdev = pdev;
3156 
3157 	if (pdev->dev.of_node)
3158 		pd = sh_eth_parse_dt(&pdev->dev);
3159 	if (!pd) {
3160 		dev_err(&pdev->dev, "no platform data\n");
3161 		ret = -EINVAL;
3162 		goto out_release;
3163 	}
3164 
3165 	/* get PHY ID */
3166 	mdp->phy_id = pd->phy;
3167 	mdp->phy_interface = pd->phy_interface;
3168 	mdp->no_ether_link = pd->no_ether_link;
3169 	mdp->ether_link_active_low = pd->ether_link_active_low;
3170 
3171 	/* set cpu data */
3172 	if (id)
3173 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3174 	else
3175 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3176 
3177 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3178 	if (!mdp->reg_offset) {
3179 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3180 			mdp->cd->register_type);
3181 		ret = -EINVAL;
3182 		goto out_release;
3183 	}
3184 	sh_eth_set_default_cpu_data(mdp->cd);
3185 
3186 	/* User's manual states max MTU should be 2048 but due to the
3187 	 * alignment calculations in sh_eth_ring_init() the practical
3188 	 * MTU is a bit less. Maybe this can be optimized some more.
3189 	 */
3190 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3191 	ndev->min_mtu = ETH_MIN_MTU;
3192 
3193 	/* set function */
3194 	if (mdp->cd->tsu)
3195 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3196 	else
3197 		ndev->netdev_ops = &sh_eth_netdev_ops;
3198 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3199 	ndev->watchdog_timeo = TX_TIMEOUT;
3200 
3201 	/* debug message level */
3202 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3203 
3204 	/* read and set MAC address */
3205 	read_mac_address(ndev, pd->mac_addr);
3206 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3207 		dev_warn(&pdev->dev,
3208 			 "no valid MAC address supplied, using a random one.\n");
3209 		eth_hw_addr_random(ndev);
3210 	}
3211 
3212 	/* ioremap the TSU registers */
3213 	if (mdp->cd->tsu) {
3214 		struct resource *rtsu;
3215 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3216 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3217 		if (IS_ERR(mdp->tsu_addr)) {
3218 			ret = PTR_ERR(mdp->tsu_addr);
3219 			goto out_release;
3220 		}
3221 		mdp->port = devno % 2;
3222 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3223 	}
3224 
3225 	/* initialize first or needed device */
3226 	if (!devno || pd->needs_init) {
3227 		if (mdp->cd->chip_reset)
3228 			mdp->cd->chip_reset(ndev);
3229 
3230 		if (mdp->cd->tsu) {
3231 			/* TSU init (Init only)*/
3232 			sh_eth_tsu_init(mdp);
3233 		}
3234 	}
3235 
3236 	if (mdp->cd->rmiimode)
3237 		sh_eth_write(ndev, 0x1, RMIIMODE);
3238 
3239 	/* MDIO bus init */
3240 	ret = sh_mdio_init(mdp, pd);
3241 	if (ret) {
3242 		if (ret != -EPROBE_DEFER)
3243 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3244 		goto out_release;
3245 	}
3246 
3247 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3248 
3249 	/* network device register */
3250 	ret = register_netdev(ndev);
3251 	if (ret)
3252 		goto out_napi_del;
3253 
3254 	if (mdp->cd->magic && mdp->clk)
3255 		device_set_wakeup_capable(&pdev->dev, 1);
3256 
3257 	/* print device information */
3258 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3259 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3260 
3261 	pm_runtime_put(&pdev->dev);
3262 	platform_set_drvdata(pdev, ndev);
3263 
3264 	return ret;
3265 
3266 out_napi_del:
3267 	netif_napi_del(&mdp->napi);
3268 	sh_mdio_release(mdp);
3269 
3270 out_release:
3271 	/* net_dev free */
3272 	if (ndev)
3273 		free_netdev(ndev);
3274 
3275 	pm_runtime_put(&pdev->dev);
3276 	pm_runtime_disable(&pdev->dev);
3277 	return ret;
3278 }
3279 
3280 static int sh_eth_drv_remove(struct platform_device *pdev)
3281 {
3282 	struct net_device *ndev = platform_get_drvdata(pdev);
3283 	struct sh_eth_private *mdp = netdev_priv(ndev);
3284 
3285 	unregister_netdev(ndev);
3286 	netif_napi_del(&mdp->napi);
3287 	sh_mdio_release(mdp);
3288 	pm_runtime_disable(&pdev->dev);
3289 	free_netdev(ndev);
3290 
3291 	return 0;
3292 }
3293 
3294 #ifdef CONFIG_PM
3295 #ifdef CONFIG_PM_SLEEP
3296 static int sh_eth_wol_setup(struct net_device *ndev)
3297 {
3298 	struct sh_eth_private *mdp = netdev_priv(ndev);
3299 
3300 	/* Only allow ECI interrupts */
3301 	synchronize_irq(ndev->irq);
3302 	napi_disable(&mdp->napi);
3303 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3304 
3305 	/* Enable MagicPacket */
3306 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3307 
3308 	/* Increased clock usage so device won't be suspended */
3309 	clk_enable(mdp->clk);
3310 
3311 	return enable_irq_wake(ndev->irq);
3312 }
3313 
3314 static int sh_eth_wol_restore(struct net_device *ndev)
3315 {
3316 	struct sh_eth_private *mdp = netdev_priv(ndev);
3317 	int ret;
3318 
3319 	napi_enable(&mdp->napi);
3320 
3321 	/* Disable MagicPacket */
3322 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3323 
3324 	/* The device needs to be reset to restore MagicPacket logic
3325 	 * for next wakeup. If we close and open the device it will
3326 	 * both be reset and all registers restored. This is what
3327 	 * happens during suspend and resume without WoL enabled.
3328 	 */
3329 	ret = sh_eth_close(ndev);
3330 	if (ret < 0)
3331 		return ret;
3332 	ret = sh_eth_open(ndev);
3333 	if (ret < 0)
3334 		return ret;
3335 
3336 	/* Restore clock usage count */
3337 	clk_disable(mdp->clk);
3338 
3339 	return disable_irq_wake(ndev->irq);
3340 }
3341 
3342 static int sh_eth_suspend(struct device *dev)
3343 {
3344 	struct net_device *ndev = dev_get_drvdata(dev);
3345 	struct sh_eth_private *mdp = netdev_priv(ndev);
3346 	int ret = 0;
3347 
3348 	if (!netif_running(ndev))
3349 		return 0;
3350 
3351 	netif_device_detach(ndev);
3352 
3353 	if (mdp->wol_enabled)
3354 		ret = sh_eth_wol_setup(ndev);
3355 	else
3356 		ret = sh_eth_close(ndev);
3357 
3358 	return ret;
3359 }
3360 
3361 static int sh_eth_resume(struct device *dev)
3362 {
3363 	struct net_device *ndev = dev_get_drvdata(dev);
3364 	struct sh_eth_private *mdp = netdev_priv(ndev);
3365 	int ret = 0;
3366 
3367 	if (!netif_running(ndev))
3368 		return 0;
3369 
3370 	if (mdp->wol_enabled)
3371 		ret = sh_eth_wol_restore(ndev);
3372 	else
3373 		ret = sh_eth_open(ndev);
3374 
3375 	if (ret < 0)
3376 		return ret;
3377 
3378 	netif_device_attach(ndev);
3379 
3380 	return ret;
3381 }
3382 #endif
3383 
3384 static int sh_eth_runtime_nop(struct device *dev)
3385 {
3386 	/* Runtime PM callback shared between ->runtime_suspend()
3387 	 * and ->runtime_resume(). Simply returns success.
3388 	 *
3389 	 * This driver re-initializes all registers after
3390 	 * pm_runtime_get_sync() anyway so there is no need
3391 	 * to save and restore registers here.
3392 	 */
3393 	return 0;
3394 }
3395 
3396 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3397 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3398 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3399 };
3400 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3401 #else
3402 #define SH_ETH_PM_OPS NULL
3403 #endif
3404 
3405 static const struct platform_device_id sh_eth_id_table[] = {
3406 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3407 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3408 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3409 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3410 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3411 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3412 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3413 	{ }
3414 };
3415 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3416 
3417 static struct platform_driver sh_eth_driver = {
3418 	.probe = sh_eth_drv_probe,
3419 	.remove = sh_eth_drv_remove,
3420 	.id_table = sh_eth_id_table,
3421 	.driver = {
3422 		   .name = CARDNAME,
3423 		   .pm = SH_ETH_PM_OPS,
3424 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3425 	},
3426 };
3427 
3428 module_platform_driver(sh_eth_driver);
3429 
3430 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3431 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3432 MODULE_LICENSE("GPL v2");
3433