1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2016 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_FWSLC]	= 0x0038,
205 	[TSU_VTAG0]	= 0x0058,
206 	[TSU_ADSBSY]	= 0x0060,
207 	[TSU_TEN]	= 0x0064,
208 	[TSU_POST1]	= 0x0070,
209 	[TSU_POST2]	= 0x0074,
210 	[TSU_POST3]	= 0x0078,
211 	[TSU_POST4]	= 0x007c,
212 	[TSU_ADRH0]	= 0x0100,
213 
214 	[TXNLCR0]	= 0x0080,
215 	[TXALCR0]	= 0x0084,
216 	[RXNLCR0]	= 0x0088,
217 	[RXALCR0]	= 0x008C,
218 };
219 
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 	SH_ETH_OFFSET_DEFAULTS,
222 
223 	[ECMR]		= 0x0300,
224 	[RFLR]		= 0x0308,
225 	[ECSR]		= 0x0310,
226 	[ECSIPR]	= 0x0318,
227 	[PIR]		= 0x0320,
228 	[PSR]		= 0x0328,
229 	[RDMLR]		= 0x0340,
230 	[IPGR]		= 0x0350,
231 	[APR]		= 0x0354,
232 	[MPR]		= 0x0358,
233 	[RFCF]		= 0x0360,
234 	[TPAUSER]	= 0x0364,
235 	[TPAUSECR]	= 0x0368,
236 	[MAHR]		= 0x03c0,
237 	[MALR]		= 0x03c8,
238 	[TROCR]		= 0x03d0,
239 	[CDCR]		= 0x03d4,
240 	[LCCR]		= 0x03d8,
241 	[CNDCR]		= 0x03dc,
242 	[CEFCR]		= 0x03e4,
243 	[FRECR]		= 0x03e8,
244 	[TSFRCR]	= 0x03ec,
245 	[TLFRCR]	= 0x03f0,
246 	[RFCR]		= 0x03f4,
247 	[MAFCR]		= 0x03f8,
248 
249 	[EDMR]		= 0x0200,
250 	[EDTRR]		= 0x0208,
251 	[EDRRR]		= 0x0210,
252 	[TDLAR]		= 0x0218,
253 	[RDLAR]		= 0x0220,
254 	[EESR]		= 0x0228,
255 	[EESIPR]	= 0x0230,
256 	[TRSCER]	= 0x0238,
257 	[RMFCR]		= 0x0240,
258 	[TFTR]		= 0x0248,
259 	[FDR]		= 0x0250,
260 	[RMCR]		= 0x0258,
261 	[TFUCR]		= 0x0264,
262 	[RFOCR]		= 0x0268,
263 	[RMIIMODE]      = 0x026c,
264 	[FCFTR]		= 0x0270,
265 	[TRIMD]		= 0x027c,
266 };
267 
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 	SH_ETH_OFFSET_DEFAULTS,
270 
271 	[ECMR]		= 0x0100,
272 	[RFLR]		= 0x0108,
273 	[ECSR]		= 0x0110,
274 	[ECSIPR]	= 0x0118,
275 	[PIR]		= 0x0120,
276 	[PSR]		= 0x0128,
277 	[RDMLR]		= 0x0140,
278 	[IPGR]		= 0x0150,
279 	[APR]		= 0x0154,
280 	[MPR]		= 0x0158,
281 	[TPAUSER]	= 0x0164,
282 	[RFCF]		= 0x0160,
283 	[TPAUSECR]	= 0x0168,
284 	[BCFRR]		= 0x016c,
285 	[MAHR]		= 0x01c0,
286 	[MALR]		= 0x01c8,
287 	[TROCR]		= 0x01d0,
288 	[CDCR]		= 0x01d4,
289 	[LCCR]		= 0x01d8,
290 	[CNDCR]		= 0x01dc,
291 	[CEFCR]		= 0x01e4,
292 	[FRECR]		= 0x01e8,
293 	[TSFRCR]	= 0x01ec,
294 	[TLFRCR]	= 0x01f0,
295 	[RFCR]		= 0x01f4,
296 	[MAFCR]		= 0x01f8,
297 	[RTRATE]	= 0x01fc,
298 
299 	[EDMR]		= 0x0000,
300 	[EDTRR]		= 0x0008,
301 	[EDRRR]		= 0x0010,
302 	[TDLAR]		= 0x0018,
303 	[RDLAR]		= 0x0020,
304 	[EESR]		= 0x0028,
305 	[EESIPR]	= 0x0030,
306 	[TRSCER]	= 0x0038,
307 	[RMFCR]		= 0x0040,
308 	[TFTR]		= 0x0048,
309 	[FDR]		= 0x0050,
310 	[RMCR]		= 0x0058,
311 	[TFUCR]		= 0x0064,
312 	[RFOCR]		= 0x0068,
313 	[FCFTR]		= 0x0070,
314 	[RPADIR]	= 0x0078,
315 	[TRIMD]		= 0x007c,
316 	[RBWAR]		= 0x00c8,
317 	[RDFAR]		= 0x00cc,
318 	[TBRAR]		= 0x00d4,
319 	[TDFAR]		= 0x00d8,
320 };
321 
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 	SH_ETH_OFFSET_DEFAULTS,
324 
325 	[EDMR]		= 0x0000,
326 	[EDTRR]		= 0x0004,
327 	[EDRRR]		= 0x0008,
328 	[TDLAR]		= 0x000c,
329 	[RDLAR]		= 0x0010,
330 	[EESR]		= 0x0014,
331 	[EESIPR]	= 0x0018,
332 	[TRSCER]	= 0x001c,
333 	[RMFCR]		= 0x0020,
334 	[TFTR]		= 0x0024,
335 	[FDR]		= 0x0028,
336 	[RMCR]		= 0x002c,
337 	[EDOCR]		= 0x0030,
338 	[FCFTR]		= 0x0034,
339 	[RPADIR]	= 0x0038,
340 	[TRIMD]		= 0x003c,
341 	[RBWAR]		= 0x0040,
342 	[RDFAR]		= 0x0044,
343 	[TBRAR]		= 0x004c,
344 	[TDFAR]		= 0x0050,
345 
346 	[ECMR]		= 0x0160,
347 	[ECSR]		= 0x0164,
348 	[ECSIPR]	= 0x0168,
349 	[PIR]		= 0x016c,
350 	[MAHR]		= 0x0170,
351 	[MALR]		= 0x0174,
352 	[RFLR]		= 0x0178,
353 	[PSR]		= 0x017c,
354 	[TROCR]		= 0x0180,
355 	[CDCR]		= 0x0184,
356 	[LCCR]		= 0x0188,
357 	[CNDCR]		= 0x018c,
358 	[CEFCR]		= 0x0194,
359 	[FRECR]		= 0x0198,
360 	[TSFRCR]	= 0x019c,
361 	[TLFRCR]	= 0x01a0,
362 	[RFCR]		= 0x01a4,
363 	[MAFCR]		= 0x01a8,
364 	[IPGR]		= 0x01b4,
365 	[APR]		= 0x01b8,
366 	[MPR]		= 0x01bc,
367 	[TPAUSER]	= 0x01c4,
368 	[BCFR]		= 0x01cc,
369 
370 	[ARSTR]		= 0x0000,
371 	[TSU_CTRST]	= 0x0004,
372 	[TSU_FWEN0]	= 0x0010,
373 	[TSU_FWEN1]	= 0x0014,
374 	[TSU_FCM]	= 0x0018,
375 	[TSU_BSYSL0]	= 0x0020,
376 	[TSU_BSYSL1]	= 0x0024,
377 	[TSU_PRISL0]	= 0x0028,
378 	[TSU_PRISL1]	= 0x002c,
379 	[TSU_FWSL0]	= 0x0030,
380 	[TSU_FWSL1]	= 0x0034,
381 	[TSU_FWSLC]	= 0x0038,
382 	[TSU_QTAGM0]	= 0x0040,
383 	[TSU_QTAGM1]	= 0x0044,
384 	[TSU_ADQT0]	= 0x0048,
385 	[TSU_ADQT1]	= 0x004c,
386 	[TSU_FWSR]	= 0x0050,
387 	[TSU_FWINMK]	= 0x0054,
388 	[TSU_ADSBSY]	= 0x0060,
389 	[TSU_TEN]	= 0x0064,
390 	[TSU_POST1]	= 0x0070,
391 	[TSU_POST2]	= 0x0074,
392 	[TSU_POST3]	= 0x0078,
393 	[TSU_POST4]	= 0x007c,
394 
395 	[TXNLCR0]	= 0x0080,
396 	[TXALCR0]	= 0x0084,
397 	[RXNLCR0]	= 0x0088,
398 	[RXALCR0]	= 0x008c,
399 	[FWNLCR0]	= 0x0090,
400 	[FWALCR0]	= 0x0094,
401 	[TXNLCR1]	= 0x00a0,
402 	[TXALCR1]	= 0x00a0,
403 	[RXNLCR1]	= 0x00a8,
404 	[RXALCR1]	= 0x00ac,
405 	[FWNLCR1]	= 0x00b0,
406 	[FWALCR1]	= 0x00b4,
407 
408 	[TSU_ADRH0]	= 0x0100,
409 };
410 
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413 
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 	struct sh_eth_private *mdp = netdev_priv(ndev);
417 	u16 offset = mdp->reg_offset[enum_index];
418 
419 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 		return;
421 
422 	iowrite32(data, mdp->addr + offset);
423 }
424 
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 	struct sh_eth_private *mdp = netdev_priv(ndev);
428 	u16 offset = mdp->reg_offset[enum_index];
429 
430 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 		return ~0U;
432 
433 	return ioread32(mdp->addr + offset);
434 }
435 
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 			  u32 set)
438 {
439 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 		     enum_index);
441 }
442 
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447 
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 	return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 	struct sh_eth_private *mdp = netdev_priv(ndev);
497 
498 	switch (mdp->speed) {
499 	case 10: /* 10BASE */
500 		sh_eth_write(ndev, GECMR_10, GECMR);
501 		break;
502 	case 100:/* 100BASE */
503 		sh_eth_write(ndev, GECMR_100, GECMR);
504 		break;
505 	case 1000: /* 1000BASE */
506 		sh_eth_write(ndev, GECMR_1000, GECMR);
507 		break;
508 	}
509 }
510 
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 	.chip_reset	= sh_eth_chip_reset,
515 	.set_duplex	= sh_eth_set_duplex,
516 
517 	.register_type	= SH_ETH_REG_FAST_RZ,
518 
519 	.ecsr_value	= ECSR_ICD,
520 	.ecsipr_value	= ECSIPR_ICDIP,
521 	.eesipr_value	= 0xe77f009f,
522 
523 	.tx_check	= EESR_TC1 | EESR_FTC,
524 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
525 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
526 			  EESR_TDE | EESR_ECI,
527 	.fdr_value	= 0x0000070f,
528 
529 	.no_psr		= 1,
530 	.apr		= 1,
531 	.mpr		= 1,
532 	.tpauser	= 1,
533 	.hw_swap	= 1,
534 	.rpadir		= 1,
535 	.rpadir_value   = 2 << 16,
536 	.no_trimd	= 1,
537 	.no_ade		= 1,
538 	.hw_crc		= 1,
539 	.tsu		= 1,
540 	.shift_rd0	= 1,
541 };
542 
543 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
544 {
545 	sh_eth_chip_reset(ndev);
546 
547 	sh_eth_select_mii(ndev);
548 }
549 
550 /* R8A7740 */
551 static struct sh_eth_cpu_data r8a7740_data = {
552 	.chip_reset	= sh_eth_chip_reset_r8a7740,
553 	.set_duplex	= sh_eth_set_duplex,
554 	.set_rate	= sh_eth_set_rate_gether,
555 
556 	.register_type	= SH_ETH_REG_GIGABIT,
557 
558 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
559 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
560 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
561 
562 	.tx_check	= EESR_TC1 | EESR_FTC,
563 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
564 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
565 			  EESR_TDE | EESR_ECI,
566 	.fdr_value	= 0x0000070f,
567 
568 	.apr		= 1,
569 	.mpr		= 1,
570 	.tpauser	= 1,
571 	.bculr		= 1,
572 	.hw_swap	= 1,
573 	.rpadir		= 1,
574 	.rpadir_value   = 2 << 16,
575 	.no_trimd	= 1,
576 	.no_ade		= 1,
577 	.hw_crc		= 1,
578 	.tsu		= 1,
579 	.select_mii	= 1,
580 	.shift_rd0	= 1,
581 };
582 
583 /* There is CPU dependent code */
584 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
585 {
586 	struct sh_eth_private *mdp = netdev_priv(ndev);
587 
588 	switch (mdp->speed) {
589 	case 10: /* 10BASE */
590 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
591 		break;
592 	case 100:/* 100BASE */
593 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
594 		break;
595 	}
596 }
597 
598 /* R8A7778/9 */
599 static struct sh_eth_cpu_data r8a777x_data = {
600 	.set_duplex	= sh_eth_set_duplex,
601 	.set_rate	= sh_eth_set_rate_r8a777x,
602 
603 	.register_type	= SH_ETH_REG_FAST_RCAR,
604 
605 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
606 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
607 	.eesipr_value	= 0x01ff009f,
608 
609 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
610 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
611 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
612 			  EESR_ECI,
613 	.fdr_value	= 0x00000f0f,
614 
615 	.apr		= 1,
616 	.mpr		= 1,
617 	.tpauser	= 1,
618 	.hw_swap	= 1,
619 };
620 
621 /* R8A7790/1 */
622 static struct sh_eth_cpu_data r8a779x_data = {
623 	.set_duplex	= sh_eth_set_duplex,
624 	.set_rate	= sh_eth_set_rate_r8a777x,
625 
626 	.register_type	= SH_ETH_REG_FAST_RCAR,
627 
628 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
629 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
630 	.eesipr_value	= 0x01ff009f,
631 
632 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
633 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
634 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
635 			  EESR_ECI,
636 	.fdr_value	= 0x00000f0f,
637 
638 	.trscer_err_mask = DESC_I_RINT8,
639 
640 	.apr		= 1,
641 	.mpr		= 1,
642 	.tpauser	= 1,
643 	.hw_swap	= 1,
644 	.rmiimode	= 1,
645 };
646 #endif /* CONFIG_OF */
647 
648 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
649 {
650 	struct sh_eth_private *mdp = netdev_priv(ndev);
651 
652 	switch (mdp->speed) {
653 	case 10: /* 10BASE */
654 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
655 		break;
656 	case 100:/* 100BASE */
657 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
658 		break;
659 	}
660 }
661 
662 /* SH7724 */
663 static struct sh_eth_cpu_data sh7724_data = {
664 	.set_duplex	= sh_eth_set_duplex,
665 	.set_rate	= sh_eth_set_rate_sh7724,
666 
667 	.register_type	= SH_ETH_REG_FAST_SH4,
668 
669 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
670 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
671 	.eesipr_value	= 0x01ff009f,
672 
673 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
674 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
675 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
676 			  EESR_ECI,
677 
678 	.apr		= 1,
679 	.mpr		= 1,
680 	.tpauser	= 1,
681 	.hw_swap	= 1,
682 	.rpadir		= 1,
683 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
684 };
685 
686 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
687 {
688 	struct sh_eth_private *mdp = netdev_priv(ndev);
689 
690 	switch (mdp->speed) {
691 	case 10: /* 10BASE */
692 		sh_eth_write(ndev, 0, RTRATE);
693 		break;
694 	case 100:/* 100BASE */
695 		sh_eth_write(ndev, 1, RTRATE);
696 		break;
697 	}
698 }
699 
700 /* SH7757 */
701 static struct sh_eth_cpu_data sh7757_data = {
702 	.set_duplex	= sh_eth_set_duplex,
703 	.set_rate	= sh_eth_set_rate_sh7757,
704 
705 	.register_type	= SH_ETH_REG_FAST_SH4,
706 
707 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
708 
709 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
710 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
711 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
712 			  EESR_ECI,
713 
714 	.irq_flags	= IRQF_SHARED,
715 	.apr		= 1,
716 	.mpr		= 1,
717 	.tpauser	= 1,
718 	.hw_swap	= 1,
719 	.no_ade		= 1,
720 	.rpadir		= 1,
721 	.rpadir_value   = 2 << 16,
722 	.rtrate		= 1,
723 };
724 
725 #define SH_GIGA_ETH_BASE	0xfee00000UL
726 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
727 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
728 static void sh_eth_chip_reset_giga(struct net_device *ndev)
729 {
730 	u32 mahr[2], malr[2];
731 	int i;
732 
733 	/* save MAHR and MALR */
734 	for (i = 0; i < 2; i++) {
735 		malr[i] = ioread32((void *)GIGA_MALR(i));
736 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
737 	}
738 
739 	sh_eth_chip_reset(ndev);
740 
741 	/* restore MAHR and MALR */
742 	for (i = 0; i < 2; i++) {
743 		iowrite32(malr[i], (void *)GIGA_MALR(i));
744 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
745 	}
746 }
747 
748 static void sh_eth_set_rate_giga(struct net_device *ndev)
749 {
750 	struct sh_eth_private *mdp = netdev_priv(ndev);
751 
752 	switch (mdp->speed) {
753 	case 10: /* 10BASE */
754 		sh_eth_write(ndev, 0x00000000, GECMR);
755 		break;
756 	case 100:/* 100BASE */
757 		sh_eth_write(ndev, 0x00000010, GECMR);
758 		break;
759 	case 1000: /* 1000BASE */
760 		sh_eth_write(ndev, 0x00000020, GECMR);
761 		break;
762 	}
763 }
764 
765 /* SH7757(GETHERC) */
766 static struct sh_eth_cpu_data sh7757_data_giga = {
767 	.chip_reset	= sh_eth_chip_reset_giga,
768 	.set_duplex	= sh_eth_set_duplex,
769 	.set_rate	= sh_eth_set_rate_giga,
770 
771 	.register_type	= SH_ETH_REG_GIGABIT,
772 
773 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
774 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
776 
777 	.tx_check	= EESR_TC1 | EESR_FTC,
778 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 			  EESR_TDE | EESR_ECI,
781 	.fdr_value	= 0x0000072f,
782 
783 	.irq_flags	= IRQF_SHARED,
784 	.apr		= 1,
785 	.mpr		= 1,
786 	.tpauser	= 1,
787 	.bculr		= 1,
788 	.hw_swap	= 1,
789 	.rpadir		= 1,
790 	.rpadir_value   = 2 << 16,
791 	.no_trimd	= 1,
792 	.no_ade		= 1,
793 	.tsu		= 1,
794 };
795 
796 /* SH7734 */
797 static struct sh_eth_cpu_data sh7734_data = {
798 	.chip_reset	= sh_eth_chip_reset,
799 	.set_duplex	= sh_eth_set_duplex,
800 	.set_rate	= sh_eth_set_rate_gether,
801 
802 	.register_type	= SH_ETH_REG_GIGABIT,
803 
804 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
805 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
806 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
807 
808 	.tx_check	= EESR_TC1 | EESR_FTC,
809 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 			  EESR_TDE | EESR_ECI,
812 
813 	.apr		= 1,
814 	.mpr		= 1,
815 	.tpauser	= 1,
816 	.bculr		= 1,
817 	.hw_swap	= 1,
818 	.no_trimd	= 1,
819 	.no_ade		= 1,
820 	.tsu		= 1,
821 	.hw_crc		= 1,
822 	.select_mii	= 1,
823 	.shift_rd0	= 1,
824 };
825 
826 /* SH7763 */
827 static struct sh_eth_cpu_data sh7763_data = {
828 	.chip_reset	= sh_eth_chip_reset,
829 	.set_duplex	= sh_eth_set_duplex,
830 	.set_rate	= sh_eth_set_rate_gether,
831 
832 	.register_type	= SH_ETH_REG_GIGABIT,
833 
834 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
835 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
836 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
837 
838 	.tx_check	= EESR_TC1 | EESR_FTC,
839 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
840 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
841 			  EESR_ECI,
842 
843 	.apr		= 1,
844 	.mpr		= 1,
845 	.tpauser	= 1,
846 	.bculr		= 1,
847 	.hw_swap	= 1,
848 	.no_trimd	= 1,
849 	.no_ade		= 1,
850 	.tsu		= 1,
851 	.irq_flags	= IRQF_SHARED,
852 };
853 
854 static struct sh_eth_cpu_data sh7619_data = {
855 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
856 
857 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
858 
859 	.apr		= 1,
860 	.mpr		= 1,
861 	.tpauser	= 1,
862 	.hw_swap	= 1,
863 };
864 
865 static struct sh_eth_cpu_data sh771x_data = {
866 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
867 
868 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
869 	.tsu		= 1,
870 };
871 
872 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
873 {
874 	if (!cd->ecsr_value)
875 		cd->ecsr_value = DEFAULT_ECSR_INIT;
876 
877 	if (!cd->ecsipr_value)
878 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
879 
880 	if (!cd->fcftr_value)
881 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
882 				  DEFAULT_FIFO_F_D_RFD;
883 
884 	if (!cd->fdr_value)
885 		cd->fdr_value = DEFAULT_FDR_INIT;
886 
887 	if (!cd->tx_check)
888 		cd->tx_check = DEFAULT_TX_CHECK;
889 
890 	if (!cd->eesr_err_check)
891 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
892 
893 	if (!cd->trscer_err_mask)
894 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
895 }
896 
897 static int sh_eth_check_reset(struct net_device *ndev)
898 {
899 	int ret = 0;
900 	int cnt = 100;
901 
902 	while (cnt > 0) {
903 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
904 			break;
905 		mdelay(1);
906 		cnt--;
907 	}
908 	if (cnt <= 0) {
909 		netdev_err(ndev, "Device reset failed\n");
910 		ret = -ETIMEDOUT;
911 	}
912 	return ret;
913 }
914 
915 static int sh_eth_reset(struct net_device *ndev)
916 {
917 	struct sh_eth_private *mdp = netdev_priv(ndev);
918 	int ret = 0;
919 
920 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
921 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
922 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
923 
924 		ret = sh_eth_check_reset(ndev);
925 		if (ret)
926 			return ret;
927 
928 		/* Table Init */
929 		sh_eth_write(ndev, 0x0, TDLAR);
930 		sh_eth_write(ndev, 0x0, TDFAR);
931 		sh_eth_write(ndev, 0x0, TDFXR);
932 		sh_eth_write(ndev, 0x0, TDFFR);
933 		sh_eth_write(ndev, 0x0, RDLAR);
934 		sh_eth_write(ndev, 0x0, RDFAR);
935 		sh_eth_write(ndev, 0x0, RDFXR);
936 		sh_eth_write(ndev, 0x0, RDFFR);
937 
938 		/* Reset HW CRC register */
939 		if (mdp->cd->hw_crc)
940 			sh_eth_write(ndev, 0x0, CSMR);
941 
942 		/* Select MII mode */
943 		if (mdp->cd->select_mii)
944 			sh_eth_select_mii(ndev);
945 	} else {
946 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
947 		mdelay(3);
948 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
949 	}
950 
951 	return ret;
952 }
953 
954 static void sh_eth_set_receive_align(struct sk_buff *skb)
955 {
956 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
957 
958 	if (reserve)
959 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
960 }
961 
962 /* Program the hardware MAC address from dev->dev_addr. */
963 static void update_mac_address(struct net_device *ndev)
964 {
965 	sh_eth_write(ndev,
966 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
967 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
968 	sh_eth_write(ndev,
969 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
970 }
971 
972 /* Get MAC address from SuperH MAC address register
973  *
974  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
975  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
976  * When you want use this device, you must set MAC address in bootloader.
977  *
978  */
979 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
980 {
981 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
982 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
983 	} else {
984 		u32 mahr = sh_eth_read(ndev, MAHR);
985 		u32 malr = sh_eth_read(ndev, MALR);
986 
987 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
988 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
989 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
990 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
991 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
992 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
993 	}
994 }
995 
996 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
997 {
998 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
999 		return EDTRR_TRNS_GETHER;
1000 	else
1001 		return EDTRR_TRNS_ETHER;
1002 }
1003 
1004 struct bb_info {
1005 	void (*set_gate)(void *addr);
1006 	struct mdiobb_ctrl ctrl;
1007 	void *addr;
1008 };
1009 
1010 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1011 {
1012 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1013 	u32 pir;
1014 
1015 	if (bitbang->set_gate)
1016 		bitbang->set_gate(bitbang->addr);
1017 
1018 	pir = ioread32(bitbang->addr);
1019 	if (set)
1020 		pir |=  mask;
1021 	else
1022 		pir &= ~mask;
1023 	iowrite32(pir, bitbang->addr);
1024 }
1025 
1026 /* Data I/O pin control */
1027 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1028 {
1029 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1030 }
1031 
1032 /* Set bit data*/
1033 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1034 {
1035 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1036 }
1037 
1038 /* Get bit data*/
1039 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1040 {
1041 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1042 
1043 	if (bitbang->set_gate)
1044 		bitbang->set_gate(bitbang->addr);
1045 
1046 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1047 }
1048 
1049 /* MDC pin control */
1050 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1051 {
1052 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1053 }
1054 
1055 /* mdio bus control struct */
1056 static struct mdiobb_ops bb_ops = {
1057 	.owner = THIS_MODULE,
1058 	.set_mdc = sh_mdc_ctrl,
1059 	.set_mdio_dir = sh_mmd_ctrl,
1060 	.set_mdio_data = sh_set_mdio,
1061 	.get_mdio_data = sh_get_mdio,
1062 };
1063 
1064 /* free skb and descriptor buffer */
1065 static void sh_eth_ring_free(struct net_device *ndev)
1066 {
1067 	struct sh_eth_private *mdp = netdev_priv(ndev);
1068 	int ringsize, i;
1069 
1070 	/* Free Rx skb ringbuffer */
1071 	if (mdp->rx_skbuff) {
1072 		for (i = 0; i < mdp->num_rx_ring; i++)
1073 			dev_kfree_skb(mdp->rx_skbuff[i]);
1074 	}
1075 	kfree(mdp->rx_skbuff);
1076 	mdp->rx_skbuff = NULL;
1077 
1078 	/* Free Tx skb ringbuffer */
1079 	if (mdp->tx_skbuff) {
1080 		for (i = 0; i < mdp->num_tx_ring; i++)
1081 			dev_kfree_skb(mdp->tx_skbuff[i]);
1082 	}
1083 	kfree(mdp->tx_skbuff);
1084 	mdp->tx_skbuff = NULL;
1085 
1086 	if (mdp->rx_ring) {
1087 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1088 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1089 				  mdp->rx_desc_dma);
1090 		mdp->rx_ring = NULL;
1091 	}
1092 
1093 	if (mdp->tx_ring) {
1094 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1095 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1096 				  mdp->tx_desc_dma);
1097 		mdp->tx_ring = NULL;
1098 	}
1099 }
1100 
1101 /* format skb and descriptor buffer */
1102 static void sh_eth_ring_format(struct net_device *ndev)
1103 {
1104 	struct sh_eth_private *mdp = netdev_priv(ndev);
1105 	int i;
1106 	struct sk_buff *skb;
1107 	struct sh_eth_rxdesc *rxdesc = NULL;
1108 	struct sh_eth_txdesc *txdesc = NULL;
1109 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1110 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1111 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1112 	dma_addr_t dma_addr;
1113 	u32 buf_len;
1114 
1115 	mdp->cur_rx = 0;
1116 	mdp->cur_tx = 0;
1117 	mdp->dirty_rx = 0;
1118 	mdp->dirty_tx = 0;
1119 
1120 	memset(mdp->rx_ring, 0, rx_ringsize);
1121 
1122 	/* build Rx ring buffer */
1123 	for (i = 0; i < mdp->num_rx_ring; i++) {
1124 		/* skb */
1125 		mdp->rx_skbuff[i] = NULL;
1126 		skb = netdev_alloc_skb(ndev, skbuff_size);
1127 		if (skb == NULL)
1128 			break;
1129 		sh_eth_set_receive_align(skb);
1130 
1131 		/* The size of the buffer is a multiple of 32 bytes. */
1132 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1133 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1134 					  DMA_FROM_DEVICE);
1135 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1136 			kfree_skb(skb);
1137 			break;
1138 		}
1139 		mdp->rx_skbuff[i] = skb;
1140 
1141 		/* RX descriptor */
1142 		rxdesc = &mdp->rx_ring[i];
1143 		rxdesc->len = cpu_to_le32(buf_len << 16);
1144 		rxdesc->addr = cpu_to_le32(dma_addr);
1145 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1146 
1147 		/* Rx descriptor address set */
1148 		if (i == 0) {
1149 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1150 			if (sh_eth_is_gether(mdp) ||
1151 			    sh_eth_is_rz_fast_ether(mdp))
1152 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1153 		}
1154 	}
1155 
1156 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1157 
1158 	/* Mark the last entry as wrapping the ring. */
1159 	if (rxdesc)
1160 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1161 
1162 	memset(mdp->tx_ring, 0, tx_ringsize);
1163 
1164 	/* build Tx ring buffer */
1165 	for (i = 0; i < mdp->num_tx_ring; i++) {
1166 		mdp->tx_skbuff[i] = NULL;
1167 		txdesc = &mdp->tx_ring[i];
1168 		txdesc->status = cpu_to_le32(TD_TFP);
1169 		txdesc->len = cpu_to_le32(0);
1170 		if (i == 0) {
1171 			/* Tx descriptor address set */
1172 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1173 			if (sh_eth_is_gether(mdp) ||
1174 			    sh_eth_is_rz_fast_ether(mdp))
1175 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1176 		}
1177 	}
1178 
1179 	txdesc->status |= cpu_to_le32(TD_TDLE);
1180 }
1181 
1182 /* Get skb and descriptor buffer */
1183 static int sh_eth_ring_init(struct net_device *ndev)
1184 {
1185 	struct sh_eth_private *mdp = netdev_priv(ndev);
1186 	int rx_ringsize, tx_ringsize;
1187 
1188 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1189 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1190 	 * the first 2 bytes, and +16 gets room for the status word from the
1191 	 * card.
1192 	 */
1193 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1194 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1195 	if (mdp->cd->rpadir)
1196 		mdp->rx_buf_sz += NET_IP_ALIGN;
1197 
1198 	/* Allocate RX and TX skb rings */
1199 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1200 				 GFP_KERNEL);
1201 	if (!mdp->rx_skbuff)
1202 		return -ENOMEM;
1203 
1204 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1205 				 GFP_KERNEL);
1206 	if (!mdp->tx_skbuff)
1207 		goto ring_free;
1208 
1209 	/* Allocate all Rx descriptors. */
1210 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1211 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1212 					  GFP_KERNEL);
1213 	if (!mdp->rx_ring)
1214 		goto ring_free;
1215 
1216 	mdp->dirty_rx = 0;
1217 
1218 	/* Allocate all Tx descriptors. */
1219 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1220 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1221 					  GFP_KERNEL);
1222 	if (!mdp->tx_ring)
1223 		goto ring_free;
1224 	return 0;
1225 
1226 ring_free:
1227 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1228 	sh_eth_ring_free(ndev);
1229 
1230 	return -ENOMEM;
1231 }
1232 
1233 static int sh_eth_dev_init(struct net_device *ndev)
1234 {
1235 	struct sh_eth_private *mdp = netdev_priv(ndev);
1236 	int ret;
1237 
1238 	/* Soft Reset */
1239 	ret = sh_eth_reset(ndev);
1240 	if (ret)
1241 		return ret;
1242 
1243 	if (mdp->cd->rmiimode)
1244 		sh_eth_write(ndev, 0x1, RMIIMODE);
1245 
1246 	/* Descriptor format */
1247 	sh_eth_ring_format(ndev);
1248 	if (mdp->cd->rpadir)
1249 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1250 
1251 	/* all sh_eth int mask */
1252 	sh_eth_write(ndev, 0, EESIPR);
1253 
1254 #if defined(__LITTLE_ENDIAN)
1255 	if (mdp->cd->hw_swap)
1256 		sh_eth_write(ndev, EDMR_EL, EDMR);
1257 	else
1258 #endif
1259 		sh_eth_write(ndev, 0, EDMR);
1260 
1261 	/* FIFO size set */
1262 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1263 	sh_eth_write(ndev, 0, TFTR);
1264 
1265 	/* Frame recv control (enable multiple-packets per rx irq) */
1266 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1267 
1268 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1269 
1270 	if (mdp->cd->bculr)
1271 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1272 
1273 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1274 
1275 	if (!mdp->cd->no_trimd)
1276 		sh_eth_write(ndev, 0, TRIMD);
1277 
1278 	/* Recv frame limit set register */
1279 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1280 		     RFLR);
1281 
1282 	sh_eth_modify(ndev, EESR, 0, 0);
1283 	mdp->irq_enabled = true;
1284 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1285 
1286 	/* PAUSE Prohibition */
1287 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1288 		     ECMR_TE | ECMR_RE, ECMR);
1289 
1290 	if (mdp->cd->set_rate)
1291 		mdp->cd->set_rate(ndev);
1292 
1293 	/* E-MAC Status Register clear */
1294 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1295 
1296 	/* E-MAC Interrupt Enable register */
1297 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1298 
1299 	/* Set MAC address */
1300 	update_mac_address(ndev);
1301 
1302 	/* mask reset */
1303 	if (mdp->cd->apr)
1304 		sh_eth_write(ndev, APR_AP, APR);
1305 	if (mdp->cd->mpr)
1306 		sh_eth_write(ndev, MPR_MP, MPR);
1307 	if (mdp->cd->tpauser)
1308 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1309 
1310 	/* Setting the Rx mode will start the Rx process. */
1311 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1312 
1313 	return ret;
1314 }
1315 
1316 static void sh_eth_dev_exit(struct net_device *ndev)
1317 {
1318 	struct sh_eth_private *mdp = netdev_priv(ndev);
1319 	int i;
1320 
1321 	/* Deactivate all TX descriptors, so DMA should stop at next
1322 	 * packet boundary if it's currently running
1323 	 */
1324 	for (i = 0; i < mdp->num_tx_ring; i++)
1325 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1326 
1327 	/* Disable TX FIFO egress to MAC */
1328 	sh_eth_rcv_snd_disable(ndev);
1329 
1330 	/* Stop RX DMA at next packet boundary */
1331 	sh_eth_write(ndev, 0, EDRRR);
1332 
1333 	/* Aside from TX DMA, we can't tell when the hardware is
1334 	 * really stopped, so we need to reset to make sure.
1335 	 * Before doing that, wait for long enough to *probably*
1336 	 * finish transmitting the last packet and poll stats.
1337 	 */
1338 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1339 	sh_eth_get_stats(ndev);
1340 	sh_eth_reset(ndev);
1341 
1342 	/* Set MAC address again */
1343 	update_mac_address(ndev);
1344 }
1345 
1346 /* free Tx skb function */
1347 static int sh_eth_txfree(struct net_device *ndev)
1348 {
1349 	struct sh_eth_private *mdp = netdev_priv(ndev);
1350 	struct sh_eth_txdesc *txdesc;
1351 	int free_num = 0;
1352 	int entry;
1353 
1354 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1355 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1356 		txdesc = &mdp->tx_ring[entry];
1357 		if (txdesc->status & cpu_to_le32(TD_TACT))
1358 			break;
1359 		/* TACT bit must be checked before all the following reads */
1360 		dma_rmb();
1361 		netif_info(mdp, tx_done, ndev,
1362 			   "tx entry %d status 0x%08x\n",
1363 			   entry, le32_to_cpu(txdesc->status));
1364 		/* Free the original skb. */
1365 		if (mdp->tx_skbuff[entry]) {
1366 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1367 					 le32_to_cpu(txdesc->len) >> 16,
1368 					 DMA_TO_DEVICE);
1369 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1370 			mdp->tx_skbuff[entry] = NULL;
1371 			free_num++;
1372 		}
1373 		txdesc->status = cpu_to_le32(TD_TFP);
1374 		if (entry >= mdp->num_tx_ring - 1)
1375 			txdesc->status |= cpu_to_le32(TD_TDLE);
1376 
1377 		ndev->stats.tx_packets++;
1378 		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1379 	}
1380 	return free_num;
1381 }
1382 
1383 /* Packet receive function */
1384 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1385 {
1386 	struct sh_eth_private *mdp = netdev_priv(ndev);
1387 	struct sh_eth_rxdesc *rxdesc;
1388 
1389 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1390 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1391 	int limit;
1392 	struct sk_buff *skb;
1393 	u32 desc_status;
1394 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1395 	dma_addr_t dma_addr;
1396 	u16 pkt_len;
1397 	u32 buf_len;
1398 
1399 	boguscnt = min(boguscnt, *quota);
1400 	limit = boguscnt;
1401 	rxdesc = &mdp->rx_ring[entry];
1402 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1403 		/* RACT bit must be checked before all the following reads */
1404 		dma_rmb();
1405 		desc_status = le32_to_cpu(rxdesc->status);
1406 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1407 
1408 		if (--boguscnt < 0)
1409 			break;
1410 
1411 		netif_info(mdp, rx_status, ndev,
1412 			   "rx entry %d status 0x%08x len %d\n",
1413 			   entry, desc_status, pkt_len);
1414 
1415 		if (!(desc_status & RDFEND))
1416 			ndev->stats.rx_length_errors++;
1417 
1418 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1419 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1420 		 * bit 0. However, in case of the R8A7740 and R7S72100
1421 		 * the RFS bits are from bit 25 to bit 16. So, the
1422 		 * driver needs right shifting by 16.
1423 		 */
1424 		if (mdp->cd->shift_rd0)
1425 			desc_status >>= 16;
1426 
1427 		skb = mdp->rx_skbuff[entry];
1428 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1429 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1430 			ndev->stats.rx_errors++;
1431 			if (desc_status & RD_RFS1)
1432 				ndev->stats.rx_crc_errors++;
1433 			if (desc_status & RD_RFS2)
1434 				ndev->stats.rx_frame_errors++;
1435 			if (desc_status & RD_RFS3)
1436 				ndev->stats.rx_length_errors++;
1437 			if (desc_status & RD_RFS4)
1438 				ndev->stats.rx_length_errors++;
1439 			if (desc_status & RD_RFS6)
1440 				ndev->stats.rx_missed_errors++;
1441 			if (desc_status & RD_RFS10)
1442 				ndev->stats.rx_over_errors++;
1443 		} else	if (skb) {
1444 			dma_addr = le32_to_cpu(rxdesc->addr);
1445 			if (!mdp->cd->hw_swap)
1446 				sh_eth_soft_swap(
1447 					phys_to_virt(ALIGN(dma_addr, 4)),
1448 					pkt_len + 2);
1449 			mdp->rx_skbuff[entry] = NULL;
1450 			if (mdp->cd->rpadir)
1451 				skb_reserve(skb, NET_IP_ALIGN);
1452 			dma_unmap_single(&ndev->dev, dma_addr,
1453 					 ALIGN(mdp->rx_buf_sz, 32),
1454 					 DMA_FROM_DEVICE);
1455 			skb_put(skb, pkt_len);
1456 			skb->protocol = eth_type_trans(skb, ndev);
1457 			netif_receive_skb(skb);
1458 			ndev->stats.rx_packets++;
1459 			ndev->stats.rx_bytes += pkt_len;
1460 			if (desc_status & RD_RFS8)
1461 				ndev->stats.multicast++;
1462 		}
1463 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1464 		rxdesc = &mdp->rx_ring[entry];
1465 	}
1466 
1467 	/* Refill the Rx ring buffers. */
1468 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1469 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1470 		rxdesc = &mdp->rx_ring[entry];
1471 		/* The size of the buffer is 32 byte boundary. */
1472 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1473 		rxdesc->len = cpu_to_le32(buf_len << 16);
1474 
1475 		if (mdp->rx_skbuff[entry] == NULL) {
1476 			skb = netdev_alloc_skb(ndev, skbuff_size);
1477 			if (skb == NULL)
1478 				break;	/* Better luck next round. */
1479 			sh_eth_set_receive_align(skb);
1480 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1481 						  buf_len, DMA_FROM_DEVICE);
1482 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1483 				kfree_skb(skb);
1484 				break;
1485 			}
1486 			mdp->rx_skbuff[entry] = skb;
1487 
1488 			skb_checksum_none_assert(skb);
1489 			rxdesc->addr = cpu_to_le32(dma_addr);
1490 		}
1491 		dma_wmb(); /* RACT bit must be set after all the above writes */
1492 		if (entry >= mdp->num_rx_ring - 1)
1493 			rxdesc->status |=
1494 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1495 		else
1496 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1497 	}
1498 
1499 	/* Restart Rx engine if stopped. */
1500 	/* If we don't need to check status, don't. -KDU */
1501 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1502 		/* fix the values for the next receiving if RDE is set */
1503 		if (intr_status & EESR_RDE &&
1504 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1505 			u32 count = (sh_eth_read(ndev, RDFAR) -
1506 				     sh_eth_read(ndev, RDLAR)) >> 4;
1507 
1508 			mdp->cur_rx = count;
1509 			mdp->dirty_rx = count;
1510 		}
1511 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1512 	}
1513 
1514 	*quota -= limit - boguscnt - 1;
1515 
1516 	return *quota <= 0;
1517 }
1518 
1519 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1520 {
1521 	/* disable tx and rx */
1522 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1523 }
1524 
1525 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1526 {
1527 	/* enable tx and rx */
1528 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1529 }
1530 
1531 /* error control function */
1532 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1533 {
1534 	struct sh_eth_private *mdp = netdev_priv(ndev);
1535 	u32 felic_stat;
1536 	u32 link_stat;
1537 	u32 mask;
1538 
1539 	if (intr_status & EESR_ECI) {
1540 		felic_stat = sh_eth_read(ndev, ECSR);
1541 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1542 		if (felic_stat & ECSR_ICD)
1543 			ndev->stats.tx_carrier_errors++;
1544 		if (felic_stat & ECSR_LCHNG) {
1545 			/* Link Changed */
1546 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1547 				goto ignore_link;
1548 			} else {
1549 				link_stat = (sh_eth_read(ndev, PSR));
1550 				if (mdp->ether_link_active_low)
1551 					link_stat = ~link_stat;
1552 			}
1553 			if (!(link_stat & PHY_ST_LINK)) {
1554 				sh_eth_rcv_snd_disable(ndev);
1555 			} else {
1556 				/* Link Up */
1557 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1558 				/* clear int */
1559 				sh_eth_modify(ndev, ECSR, 0, 0);
1560 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1561 					      DMAC_M_ECI);
1562 				/* enable tx and rx */
1563 				sh_eth_rcv_snd_enable(ndev);
1564 			}
1565 		}
1566 	}
1567 
1568 ignore_link:
1569 	if (intr_status & EESR_TWB) {
1570 		/* Unused write back interrupt */
1571 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1572 			ndev->stats.tx_aborted_errors++;
1573 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1574 		}
1575 	}
1576 
1577 	if (intr_status & EESR_RABT) {
1578 		/* Receive Abort int */
1579 		if (intr_status & EESR_RFRMER) {
1580 			/* Receive Frame Overflow int */
1581 			ndev->stats.rx_frame_errors++;
1582 		}
1583 	}
1584 
1585 	if (intr_status & EESR_TDE) {
1586 		/* Transmit Descriptor Empty int */
1587 		ndev->stats.tx_fifo_errors++;
1588 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1589 	}
1590 
1591 	if (intr_status & EESR_TFE) {
1592 		/* FIFO under flow */
1593 		ndev->stats.tx_fifo_errors++;
1594 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1595 	}
1596 
1597 	if (intr_status & EESR_RDE) {
1598 		/* Receive Descriptor Empty int */
1599 		ndev->stats.rx_over_errors++;
1600 	}
1601 
1602 	if (intr_status & EESR_RFE) {
1603 		/* Receive FIFO Overflow int */
1604 		ndev->stats.rx_fifo_errors++;
1605 	}
1606 
1607 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1608 		/* Address Error */
1609 		ndev->stats.tx_fifo_errors++;
1610 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1611 	}
1612 
1613 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1614 	if (mdp->cd->no_ade)
1615 		mask &= ~EESR_ADE;
1616 	if (intr_status & mask) {
1617 		/* Tx error */
1618 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1619 
1620 		/* dmesg */
1621 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1622 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1623 			   (u32)ndev->state, edtrr);
1624 		/* dirty buffer free */
1625 		sh_eth_txfree(ndev);
1626 
1627 		/* SH7712 BUG */
1628 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1629 			/* tx dma start */
1630 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1631 		}
1632 		/* wakeup */
1633 		netif_wake_queue(ndev);
1634 	}
1635 }
1636 
1637 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1638 {
1639 	struct net_device *ndev = netdev;
1640 	struct sh_eth_private *mdp = netdev_priv(ndev);
1641 	struct sh_eth_cpu_data *cd = mdp->cd;
1642 	irqreturn_t ret = IRQ_NONE;
1643 	u32 intr_status, intr_enable;
1644 
1645 	spin_lock(&mdp->lock);
1646 
1647 	/* Get interrupt status */
1648 	intr_status = sh_eth_read(ndev, EESR);
1649 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1650 	 * enabled since it's the one that  comes thru regardless of the mask,
1651 	 * and we need to fully handle it in sh_eth_error() in order to quench
1652 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1653 	 */
1654 	intr_enable = sh_eth_read(ndev, EESIPR);
1655 	intr_status &= intr_enable | DMAC_M_ECI;
1656 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1657 		ret = IRQ_HANDLED;
1658 	else
1659 		goto out;
1660 
1661 	if (unlikely(!mdp->irq_enabled)) {
1662 		sh_eth_write(ndev, 0, EESIPR);
1663 		goto out;
1664 	}
1665 
1666 	if (intr_status & EESR_RX_CHECK) {
1667 		if (napi_schedule_prep(&mdp->napi)) {
1668 			/* Mask Rx interrupts */
1669 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1670 				     EESIPR);
1671 			__napi_schedule(&mdp->napi);
1672 		} else {
1673 			netdev_warn(ndev,
1674 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1675 				    intr_status, intr_enable);
1676 		}
1677 	}
1678 
1679 	/* Tx Check */
1680 	if (intr_status & cd->tx_check) {
1681 		/* Clear Tx interrupts */
1682 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1683 
1684 		sh_eth_txfree(ndev);
1685 		netif_wake_queue(ndev);
1686 	}
1687 
1688 	if (intr_status & cd->eesr_err_check) {
1689 		/* Clear error interrupts */
1690 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1691 
1692 		sh_eth_error(ndev, intr_status);
1693 	}
1694 
1695 out:
1696 	spin_unlock(&mdp->lock);
1697 
1698 	return ret;
1699 }
1700 
1701 static int sh_eth_poll(struct napi_struct *napi, int budget)
1702 {
1703 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1704 						  napi);
1705 	struct net_device *ndev = napi->dev;
1706 	int quota = budget;
1707 	u32 intr_status;
1708 
1709 	for (;;) {
1710 		intr_status = sh_eth_read(ndev, EESR);
1711 		if (!(intr_status & EESR_RX_CHECK))
1712 			break;
1713 		/* Clear Rx interrupts */
1714 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1715 
1716 		if (sh_eth_rx(ndev, intr_status, &quota))
1717 			goto out;
1718 	}
1719 
1720 	napi_complete(napi);
1721 
1722 	/* Reenable Rx interrupts */
1723 	if (mdp->irq_enabled)
1724 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1725 out:
1726 	return budget - quota;
1727 }
1728 
1729 /* PHY state control function */
1730 static void sh_eth_adjust_link(struct net_device *ndev)
1731 {
1732 	struct sh_eth_private *mdp = netdev_priv(ndev);
1733 	struct phy_device *phydev = ndev->phydev;
1734 	int new_state = 0;
1735 
1736 	if (phydev->link) {
1737 		if (phydev->duplex != mdp->duplex) {
1738 			new_state = 1;
1739 			mdp->duplex = phydev->duplex;
1740 			if (mdp->cd->set_duplex)
1741 				mdp->cd->set_duplex(ndev);
1742 		}
1743 
1744 		if (phydev->speed != mdp->speed) {
1745 			new_state = 1;
1746 			mdp->speed = phydev->speed;
1747 			if (mdp->cd->set_rate)
1748 				mdp->cd->set_rate(ndev);
1749 		}
1750 		if (!mdp->link) {
1751 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1752 			new_state = 1;
1753 			mdp->link = phydev->link;
1754 			if (mdp->cd->no_psr || mdp->no_ether_link)
1755 				sh_eth_rcv_snd_enable(ndev);
1756 		}
1757 	} else if (mdp->link) {
1758 		new_state = 1;
1759 		mdp->link = 0;
1760 		mdp->speed = 0;
1761 		mdp->duplex = -1;
1762 		if (mdp->cd->no_psr || mdp->no_ether_link)
1763 			sh_eth_rcv_snd_disable(ndev);
1764 	}
1765 
1766 	if (new_state && netif_msg_link(mdp))
1767 		phy_print_status(phydev);
1768 }
1769 
1770 /* PHY init function */
1771 static int sh_eth_phy_init(struct net_device *ndev)
1772 {
1773 	struct device_node *np = ndev->dev.parent->of_node;
1774 	struct sh_eth_private *mdp = netdev_priv(ndev);
1775 	struct phy_device *phydev;
1776 
1777 	mdp->link = 0;
1778 	mdp->speed = 0;
1779 	mdp->duplex = -1;
1780 
1781 	/* Try connect to PHY */
1782 	if (np) {
1783 		struct device_node *pn;
1784 
1785 		pn = of_parse_phandle(np, "phy-handle", 0);
1786 		phydev = of_phy_connect(ndev, pn,
1787 					sh_eth_adjust_link, 0,
1788 					mdp->phy_interface);
1789 
1790 		of_node_put(pn);
1791 		if (!phydev)
1792 			phydev = ERR_PTR(-ENOENT);
1793 	} else {
1794 		char phy_id[MII_BUS_ID_SIZE + 3];
1795 
1796 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1797 			 mdp->mii_bus->id, mdp->phy_id);
1798 
1799 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1800 				     mdp->phy_interface);
1801 	}
1802 
1803 	if (IS_ERR(phydev)) {
1804 		netdev_err(ndev, "failed to connect PHY\n");
1805 		return PTR_ERR(phydev);
1806 	}
1807 
1808 	phy_attached_info(phydev);
1809 
1810 	return 0;
1811 }
1812 
1813 /* PHY control start function */
1814 static int sh_eth_phy_start(struct net_device *ndev)
1815 {
1816 	int ret;
1817 
1818 	ret = sh_eth_phy_init(ndev);
1819 	if (ret)
1820 		return ret;
1821 
1822 	phy_start(ndev->phydev);
1823 
1824 	return 0;
1825 }
1826 
1827 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1828 				     struct ethtool_link_ksettings *cmd)
1829 {
1830 	struct sh_eth_private *mdp = netdev_priv(ndev);
1831 	unsigned long flags;
1832 	int ret;
1833 
1834 	if (!ndev->phydev)
1835 		return -ENODEV;
1836 
1837 	spin_lock_irqsave(&mdp->lock, flags);
1838 	ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1839 	spin_unlock_irqrestore(&mdp->lock, flags);
1840 
1841 	return ret;
1842 }
1843 
1844 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1845 				     const struct ethtool_link_ksettings *cmd)
1846 {
1847 	struct sh_eth_private *mdp = netdev_priv(ndev);
1848 	unsigned long flags;
1849 	int ret;
1850 
1851 	if (!ndev->phydev)
1852 		return -ENODEV;
1853 
1854 	spin_lock_irqsave(&mdp->lock, flags);
1855 
1856 	/* disable tx and rx */
1857 	sh_eth_rcv_snd_disable(ndev);
1858 
1859 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1860 	if (ret)
1861 		goto error_exit;
1862 
1863 	if (cmd->base.duplex == DUPLEX_FULL)
1864 		mdp->duplex = 1;
1865 	else
1866 		mdp->duplex = 0;
1867 
1868 	if (mdp->cd->set_duplex)
1869 		mdp->cd->set_duplex(ndev);
1870 
1871 error_exit:
1872 	mdelay(1);
1873 
1874 	/* enable tx and rx */
1875 	sh_eth_rcv_snd_enable(ndev);
1876 
1877 	spin_unlock_irqrestore(&mdp->lock, flags);
1878 
1879 	return ret;
1880 }
1881 
1882 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1883  * version must be bumped as well.  Just adding registers up to that
1884  * limit is fine, as long as the existing register indices don't
1885  * change.
1886  */
1887 #define SH_ETH_REG_DUMP_VERSION		1
1888 #define SH_ETH_REG_DUMP_MAX_REGS	256
1889 
1890 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1891 {
1892 	struct sh_eth_private *mdp = netdev_priv(ndev);
1893 	struct sh_eth_cpu_data *cd = mdp->cd;
1894 	u32 *valid_map;
1895 	size_t len;
1896 
1897 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1898 
1899 	/* Dump starts with a bitmap that tells ethtool which
1900 	 * registers are defined for this chip.
1901 	 */
1902 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1903 	if (buf) {
1904 		valid_map = buf;
1905 		buf += len;
1906 	} else {
1907 		valid_map = NULL;
1908 	}
1909 
1910 	/* Add a register to the dump, if it has a defined offset.
1911 	 * This automatically skips most undefined registers, but for
1912 	 * some it is also necessary to check a capability flag in
1913 	 * struct sh_eth_cpu_data.
1914 	 */
1915 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1916 #define add_reg_from(reg, read_expr) do {				\
1917 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1918 			if (buf) {					\
1919 				mark_reg_valid(reg);			\
1920 				*buf++ = read_expr;			\
1921 			}						\
1922 			++len;						\
1923 		}							\
1924 	} while (0)
1925 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1926 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1927 
1928 	add_reg(EDSR);
1929 	add_reg(EDMR);
1930 	add_reg(EDTRR);
1931 	add_reg(EDRRR);
1932 	add_reg(EESR);
1933 	add_reg(EESIPR);
1934 	add_reg(TDLAR);
1935 	add_reg(TDFAR);
1936 	add_reg(TDFXR);
1937 	add_reg(TDFFR);
1938 	add_reg(RDLAR);
1939 	add_reg(RDFAR);
1940 	add_reg(RDFXR);
1941 	add_reg(RDFFR);
1942 	add_reg(TRSCER);
1943 	add_reg(RMFCR);
1944 	add_reg(TFTR);
1945 	add_reg(FDR);
1946 	add_reg(RMCR);
1947 	add_reg(TFUCR);
1948 	add_reg(RFOCR);
1949 	if (cd->rmiimode)
1950 		add_reg(RMIIMODE);
1951 	add_reg(FCFTR);
1952 	if (cd->rpadir)
1953 		add_reg(RPADIR);
1954 	if (!cd->no_trimd)
1955 		add_reg(TRIMD);
1956 	add_reg(ECMR);
1957 	add_reg(ECSR);
1958 	add_reg(ECSIPR);
1959 	add_reg(PIR);
1960 	if (!cd->no_psr)
1961 		add_reg(PSR);
1962 	add_reg(RDMLR);
1963 	add_reg(RFLR);
1964 	add_reg(IPGR);
1965 	if (cd->apr)
1966 		add_reg(APR);
1967 	if (cd->mpr)
1968 		add_reg(MPR);
1969 	add_reg(RFCR);
1970 	add_reg(RFCF);
1971 	if (cd->tpauser)
1972 		add_reg(TPAUSER);
1973 	add_reg(TPAUSECR);
1974 	add_reg(GECMR);
1975 	if (cd->bculr)
1976 		add_reg(BCULR);
1977 	add_reg(MAHR);
1978 	add_reg(MALR);
1979 	add_reg(TROCR);
1980 	add_reg(CDCR);
1981 	add_reg(LCCR);
1982 	add_reg(CNDCR);
1983 	add_reg(CEFCR);
1984 	add_reg(FRECR);
1985 	add_reg(TSFRCR);
1986 	add_reg(TLFRCR);
1987 	add_reg(CERCR);
1988 	add_reg(CEECR);
1989 	add_reg(MAFCR);
1990 	if (cd->rtrate)
1991 		add_reg(RTRATE);
1992 	if (cd->hw_crc)
1993 		add_reg(CSMR);
1994 	if (cd->select_mii)
1995 		add_reg(RMII_MII);
1996 	add_reg(ARSTR);
1997 	if (cd->tsu) {
1998 		add_tsu_reg(TSU_CTRST);
1999 		add_tsu_reg(TSU_FWEN0);
2000 		add_tsu_reg(TSU_FWEN1);
2001 		add_tsu_reg(TSU_FCM);
2002 		add_tsu_reg(TSU_BSYSL0);
2003 		add_tsu_reg(TSU_BSYSL1);
2004 		add_tsu_reg(TSU_PRISL0);
2005 		add_tsu_reg(TSU_PRISL1);
2006 		add_tsu_reg(TSU_FWSL0);
2007 		add_tsu_reg(TSU_FWSL1);
2008 		add_tsu_reg(TSU_FWSLC);
2009 		add_tsu_reg(TSU_QTAG0);
2010 		add_tsu_reg(TSU_QTAG1);
2011 		add_tsu_reg(TSU_QTAGM0);
2012 		add_tsu_reg(TSU_QTAGM1);
2013 		add_tsu_reg(TSU_FWSR);
2014 		add_tsu_reg(TSU_FWINMK);
2015 		add_tsu_reg(TSU_ADQT0);
2016 		add_tsu_reg(TSU_ADQT1);
2017 		add_tsu_reg(TSU_VTAG0);
2018 		add_tsu_reg(TSU_VTAG1);
2019 		add_tsu_reg(TSU_ADSBSY);
2020 		add_tsu_reg(TSU_TEN);
2021 		add_tsu_reg(TSU_POST1);
2022 		add_tsu_reg(TSU_POST2);
2023 		add_tsu_reg(TSU_POST3);
2024 		add_tsu_reg(TSU_POST4);
2025 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2026 			/* This is the start of a table, not just a single
2027 			 * register.
2028 			 */
2029 			if (buf) {
2030 				unsigned int i;
2031 
2032 				mark_reg_valid(TSU_ADRH0);
2033 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2034 					*buf++ = ioread32(
2035 						mdp->tsu_addr +
2036 						mdp->reg_offset[TSU_ADRH0] +
2037 						i * 4);
2038 			}
2039 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2040 		}
2041 	}
2042 
2043 #undef mark_reg_valid
2044 #undef add_reg_from
2045 #undef add_reg
2046 #undef add_tsu_reg
2047 
2048 	return len * 4;
2049 }
2050 
2051 static int sh_eth_get_regs_len(struct net_device *ndev)
2052 {
2053 	return __sh_eth_get_regs(ndev, NULL);
2054 }
2055 
2056 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2057 			    void *buf)
2058 {
2059 	struct sh_eth_private *mdp = netdev_priv(ndev);
2060 
2061 	regs->version = SH_ETH_REG_DUMP_VERSION;
2062 
2063 	pm_runtime_get_sync(&mdp->pdev->dev);
2064 	__sh_eth_get_regs(ndev, buf);
2065 	pm_runtime_put_sync(&mdp->pdev->dev);
2066 }
2067 
2068 static int sh_eth_nway_reset(struct net_device *ndev)
2069 {
2070 	struct sh_eth_private *mdp = netdev_priv(ndev);
2071 	unsigned long flags;
2072 	int ret;
2073 
2074 	if (!ndev->phydev)
2075 		return -ENODEV;
2076 
2077 	spin_lock_irqsave(&mdp->lock, flags);
2078 	ret = phy_start_aneg(ndev->phydev);
2079 	spin_unlock_irqrestore(&mdp->lock, flags);
2080 
2081 	return ret;
2082 }
2083 
2084 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2085 {
2086 	struct sh_eth_private *mdp = netdev_priv(ndev);
2087 	return mdp->msg_enable;
2088 }
2089 
2090 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2091 {
2092 	struct sh_eth_private *mdp = netdev_priv(ndev);
2093 	mdp->msg_enable = value;
2094 }
2095 
2096 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2097 	"rx_current", "tx_current",
2098 	"rx_dirty", "tx_dirty",
2099 };
2100 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2101 
2102 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2103 {
2104 	switch (sset) {
2105 	case ETH_SS_STATS:
2106 		return SH_ETH_STATS_LEN;
2107 	default:
2108 		return -EOPNOTSUPP;
2109 	}
2110 }
2111 
2112 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2113 				     struct ethtool_stats *stats, u64 *data)
2114 {
2115 	struct sh_eth_private *mdp = netdev_priv(ndev);
2116 	int i = 0;
2117 
2118 	/* device-specific stats */
2119 	data[i++] = mdp->cur_rx;
2120 	data[i++] = mdp->cur_tx;
2121 	data[i++] = mdp->dirty_rx;
2122 	data[i++] = mdp->dirty_tx;
2123 }
2124 
2125 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2126 {
2127 	switch (stringset) {
2128 	case ETH_SS_STATS:
2129 		memcpy(data, *sh_eth_gstrings_stats,
2130 		       sizeof(sh_eth_gstrings_stats));
2131 		break;
2132 	}
2133 }
2134 
2135 static void sh_eth_get_ringparam(struct net_device *ndev,
2136 				 struct ethtool_ringparam *ring)
2137 {
2138 	struct sh_eth_private *mdp = netdev_priv(ndev);
2139 
2140 	ring->rx_max_pending = RX_RING_MAX;
2141 	ring->tx_max_pending = TX_RING_MAX;
2142 	ring->rx_pending = mdp->num_rx_ring;
2143 	ring->tx_pending = mdp->num_tx_ring;
2144 }
2145 
2146 static int sh_eth_set_ringparam(struct net_device *ndev,
2147 				struct ethtool_ringparam *ring)
2148 {
2149 	struct sh_eth_private *mdp = netdev_priv(ndev);
2150 	int ret;
2151 
2152 	if (ring->tx_pending > TX_RING_MAX ||
2153 	    ring->rx_pending > RX_RING_MAX ||
2154 	    ring->tx_pending < TX_RING_MIN ||
2155 	    ring->rx_pending < RX_RING_MIN)
2156 		return -EINVAL;
2157 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2158 		return -EINVAL;
2159 
2160 	if (netif_running(ndev)) {
2161 		netif_device_detach(ndev);
2162 		netif_tx_disable(ndev);
2163 
2164 		/* Serialise with the interrupt handler and NAPI, then
2165 		 * disable interrupts.  We have to clear the
2166 		 * irq_enabled flag first to ensure that interrupts
2167 		 * won't be re-enabled.
2168 		 */
2169 		mdp->irq_enabled = false;
2170 		synchronize_irq(ndev->irq);
2171 		napi_synchronize(&mdp->napi);
2172 		sh_eth_write(ndev, 0x0000, EESIPR);
2173 
2174 		sh_eth_dev_exit(ndev);
2175 
2176 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2177 		sh_eth_ring_free(ndev);
2178 	}
2179 
2180 	/* Set new parameters */
2181 	mdp->num_rx_ring = ring->rx_pending;
2182 	mdp->num_tx_ring = ring->tx_pending;
2183 
2184 	if (netif_running(ndev)) {
2185 		ret = sh_eth_ring_init(ndev);
2186 		if (ret < 0) {
2187 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2188 				   __func__);
2189 			return ret;
2190 		}
2191 		ret = sh_eth_dev_init(ndev);
2192 		if (ret < 0) {
2193 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2194 				   __func__);
2195 			return ret;
2196 		}
2197 
2198 		netif_device_attach(ndev);
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static const struct ethtool_ops sh_eth_ethtool_ops = {
2205 	.get_regs_len	= sh_eth_get_regs_len,
2206 	.get_regs	= sh_eth_get_regs,
2207 	.nway_reset	= sh_eth_nway_reset,
2208 	.get_msglevel	= sh_eth_get_msglevel,
2209 	.set_msglevel	= sh_eth_set_msglevel,
2210 	.get_link	= ethtool_op_get_link,
2211 	.get_strings	= sh_eth_get_strings,
2212 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2213 	.get_sset_count     = sh_eth_get_sset_count,
2214 	.get_ringparam	= sh_eth_get_ringparam,
2215 	.set_ringparam	= sh_eth_set_ringparam,
2216 	.get_link_ksettings = sh_eth_get_link_ksettings,
2217 	.set_link_ksettings = sh_eth_set_link_ksettings,
2218 };
2219 
2220 /* network device open function */
2221 static int sh_eth_open(struct net_device *ndev)
2222 {
2223 	struct sh_eth_private *mdp = netdev_priv(ndev);
2224 	int ret;
2225 
2226 	pm_runtime_get_sync(&mdp->pdev->dev);
2227 
2228 	napi_enable(&mdp->napi);
2229 
2230 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2231 			  mdp->cd->irq_flags, ndev->name, ndev);
2232 	if (ret) {
2233 		netdev_err(ndev, "Can not assign IRQ number\n");
2234 		goto out_napi_off;
2235 	}
2236 
2237 	/* Descriptor set */
2238 	ret = sh_eth_ring_init(ndev);
2239 	if (ret)
2240 		goto out_free_irq;
2241 
2242 	/* device init */
2243 	ret = sh_eth_dev_init(ndev);
2244 	if (ret)
2245 		goto out_free_irq;
2246 
2247 	/* PHY control start*/
2248 	ret = sh_eth_phy_start(ndev);
2249 	if (ret)
2250 		goto out_free_irq;
2251 
2252 	netif_start_queue(ndev);
2253 
2254 	mdp->is_opened = 1;
2255 
2256 	return ret;
2257 
2258 out_free_irq:
2259 	free_irq(ndev->irq, ndev);
2260 out_napi_off:
2261 	napi_disable(&mdp->napi);
2262 	pm_runtime_put_sync(&mdp->pdev->dev);
2263 	return ret;
2264 }
2265 
2266 /* Timeout function */
2267 static void sh_eth_tx_timeout(struct net_device *ndev)
2268 {
2269 	struct sh_eth_private *mdp = netdev_priv(ndev);
2270 	struct sh_eth_rxdesc *rxdesc;
2271 	int i;
2272 
2273 	netif_stop_queue(ndev);
2274 
2275 	netif_err(mdp, timer, ndev,
2276 		  "transmit timed out, status %8.8x, resetting...\n",
2277 		  sh_eth_read(ndev, EESR));
2278 
2279 	/* tx_errors count up */
2280 	ndev->stats.tx_errors++;
2281 
2282 	/* Free all the skbuffs in the Rx queue. */
2283 	for (i = 0; i < mdp->num_rx_ring; i++) {
2284 		rxdesc = &mdp->rx_ring[i];
2285 		rxdesc->status = cpu_to_le32(0);
2286 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2287 		dev_kfree_skb(mdp->rx_skbuff[i]);
2288 		mdp->rx_skbuff[i] = NULL;
2289 	}
2290 	for (i = 0; i < mdp->num_tx_ring; i++) {
2291 		dev_kfree_skb(mdp->tx_skbuff[i]);
2292 		mdp->tx_skbuff[i] = NULL;
2293 	}
2294 
2295 	/* device init */
2296 	sh_eth_dev_init(ndev);
2297 
2298 	netif_start_queue(ndev);
2299 }
2300 
2301 /* Packet transmit function */
2302 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2303 {
2304 	struct sh_eth_private *mdp = netdev_priv(ndev);
2305 	struct sh_eth_txdesc *txdesc;
2306 	dma_addr_t dma_addr;
2307 	u32 entry;
2308 	unsigned long flags;
2309 
2310 	spin_lock_irqsave(&mdp->lock, flags);
2311 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2312 		if (!sh_eth_txfree(ndev)) {
2313 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2314 			netif_stop_queue(ndev);
2315 			spin_unlock_irqrestore(&mdp->lock, flags);
2316 			return NETDEV_TX_BUSY;
2317 		}
2318 	}
2319 	spin_unlock_irqrestore(&mdp->lock, flags);
2320 
2321 	if (skb_put_padto(skb, ETH_ZLEN))
2322 		return NETDEV_TX_OK;
2323 
2324 	entry = mdp->cur_tx % mdp->num_tx_ring;
2325 	mdp->tx_skbuff[entry] = skb;
2326 	txdesc = &mdp->tx_ring[entry];
2327 	/* soft swap. */
2328 	if (!mdp->cd->hw_swap)
2329 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2330 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2331 				  DMA_TO_DEVICE);
2332 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2333 		kfree_skb(skb);
2334 		return NETDEV_TX_OK;
2335 	}
2336 	txdesc->addr = cpu_to_le32(dma_addr);
2337 	txdesc->len  = cpu_to_le32(skb->len << 16);
2338 
2339 	dma_wmb(); /* TACT bit must be set after all the above writes */
2340 	if (entry >= mdp->num_tx_ring - 1)
2341 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2342 	else
2343 		txdesc->status |= cpu_to_le32(TD_TACT);
2344 
2345 	mdp->cur_tx++;
2346 
2347 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2348 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2349 
2350 	return NETDEV_TX_OK;
2351 }
2352 
2353 /* The statistics registers have write-clear behaviour, which means we
2354  * will lose any increment between the read and write.  We mitigate
2355  * this by only clearing when we read a non-zero value, so we will
2356  * never falsely report a total of zero.
2357  */
2358 static void
2359 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2360 {
2361 	u32 delta = sh_eth_read(ndev, reg);
2362 
2363 	if (delta) {
2364 		*stat += delta;
2365 		sh_eth_write(ndev, 0, reg);
2366 	}
2367 }
2368 
2369 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2370 {
2371 	struct sh_eth_private *mdp = netdev_priv(ndev);
2372 
2373 	if (sh_eth_is_rz_fast_ether(mdp))
2374 		return &ndev->stats;
2375 
2376 	if (!mdp->is_opened)
2377 		return &ndev->stats;
2378 
2379 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2380 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2381 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2382 
2383 	if (sh_eth_is_gether(mdp)) {
2384 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2385 				   CERCR);
2386 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2387 				   CEECR);
2388 	} else {
2389 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2390 				   CNDCR);
2391 	}
2392 
2393 	return &ndev->stats;
2394 }
2395 
2396 /* device close function */
2397 static int sh_eth_close(struct net_device *ndev)
2398 {
2399 	struct sh_eth_private *mdp = netdev_priv(ndev);
2400 
2401 	netif_stop_queue(ndev);
2402 
2403 	/* Serialise with the interrupt handler and NAPI, then disable
2404 	 * interrupts.  We have to clear the irq_enabled flag first to
2405 	 * ensure that interrupts won't be re-enabled.
2406 	 */
2407 	mdp->irq_enabled = false;
2408 	synchronize_irq(ndev->irq);
2409 	napi_disable(&mdp->napi);
2410 	sh_eth_write(ndev, 0x0000, EESIPR);
2411 
2412 	sh_eth_dev_exit(ndev);
2413 
2414 	/* PHY Disconnect */
2415 	if (ndev->phydev) {
2416 		phy_stop(ndev->phydev);
2417 		phy_disconnect(ndev->phydev);
2418 	}
2419 
2420 	free_irq(ndev->irq, ndev);
2421 
2422 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2423 	sh_eth_ring_free(ndev);
2424 
2425 	pm_runtime_put_sync(&mdp->pdev->dev);
2426 
2427 	mdp->is_opened = 0;
2428 
2429 	return 0;
2430 }
2431 
2432 /* ioctl to device function */
2433 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2434 {
2435 	struct phy_device *phydev = ndev->phydev;
2436 
2437 	if (!netif_running(ndev))
2438 		return -EINVAL;
2439 
2440 	if (!phydev)
2441 		return -ENODEV;
2442 
2443 	return phy_mii_ioctl(phydev, rq, cmd);
2444 }
2445 
2446 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2447 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2448 					    int entry)
2449 {
2450 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2451 }
2452 
2453 static u32 sh_eth_tsu_get_post_mask(int entry)
2454 {
2455 	return 0x0f << (28 - ((entry % 8) * 4));
2456 }
2457 
2458 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2459 {
2460 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2461 }
2462 
2463 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2464 					     int entry)
2465 {
2466 	struct sh_eth_private *mdp = netdev_priv(ndev);
2467 	u32 tmp;
2468 	void *reg_offset;
2469 
2470 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2471 	tmp = ioread32(reg_offset);
2472 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2473 }
2474 
2475 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2476 					      int entry)
2477 {
2478 	struct sh_eth_private *mdp = netdev_priv(ndev);
2479 	u32 post_mask, ref_mask, tmp;
2480 	void *reg_offset;
2481 
2482 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2483 	post_mask = sh_eth_tsu_get_post_mask(entry);
2484 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2485 
2486 	tmp = ioread32(reg_offset);
2487 	iowrite32(tmp & ~post_mask, reg_offset);
2488 
2489 	/* If other port enables, the function returns "true" */
2490 	return tmp & ref_mask;
2491 }
2492 
2493 static int sh_eth_tsu_busy(struct net_device *ndev)
2494 {
2495 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2496 	struct sh_eth_private *mdp = netdev_priv(ndev);
2497 
2498 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2499 		udelay(10);
2500 		timeout--;
2501 		if (timeout <= 0) {
2502 			netdev_err(ndev, "%s: timeout\n", __func__);
2503 			return -ETIMEDOUT;
2504 		}
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2511 				  const u8 *addr)
2512 {
2513 	u32 val;
2514 
2515 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2516 	iowrite32(val, reg);
2517 	if (sh_eth_tsu_busy(ndev) < 0)
2518 		return -EBUSY;
2519 
2520 	val = addr[4] << 8 | addr[5];
2521 	iowrite32(val, reg + 4);
2522 	if (sh_eth_tsu_busy(ndev) < 0)
2523 		return -EBUSY;
2524 
2525 	return 0;
2526 }
2527 
2528 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2529 {
2530 	u32 val;
2531 
2532 	val = ioread32(reg);
2533 	addr[0] = (val >> 24) & 0xff;
2534 	addr[1] = (val >> 16) & 0xff;
2535 	addr[2] = (val >> 8) & 0xff;
2536 	addr[3] = val & 0xff;
2537 	val = ioread32(reg + 4);
2538 	addr[4] = (val >> 8) & 0xff;
2539 	addr[5] = val & 0xff;
2540 }
2541 
2542 
2543 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2544 {
2545 	struct sh_eth_private *mdp = netdev_priv(ndev);
2546 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2547 	int i;
2548 	u8 c_addr[ETH_ALEN];
2549 
2550 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2551 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2552 		if (ether_addr_equal(addr, c_addr))
2553 			return i;
2554 	}
2555 
2556 	return -ENOENT;
2557 }
2558 
2559 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2560 {
2561 	u8 blank[ETH_ALEN];
2562 	int entry;
2563 
2564 	memset(blank, 0, sizeof(blank));
2565 	entry = sh_eth_tsu_find_entry(ndev, blank);
2566 	return (entry < 0) ? -ENOMEM : entry;
2567 }
2568 
2569 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2570 					      int entry)
2571 {
2572 	struct sh_eth_private *mdp = netdev_priv(ndev);
2573 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2574 	int ret;
2575 	u8 blank[ETH_ALEN];
2576 
2577 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2578 			 ~(1 << (31 - entry)), TSU_TEN);
2579 
2580 	memset(blank, 0, sizeof(blank));
2581 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2582 	if (ret < 0)
2583 		return ret;
2584 	return 0;
2585 }
2586 
2587 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2588 {
2589 	struct sh_eth_private *mdp = netdev_priv(ndev);
2590 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2591 	int i, ret;
2592 
2593 	if (!mdp->cd->tsu)
2594 		return 0;
2595 
2596 	i = sh_eth_tsu_find_entry(ndev, addr);
2597 	if (i < 0) {
2598 		/* No entry found, create one */
2599 		i = sh_eth_tsu_find_empty(ndev);
2600 		if (i < 0)
2601 			return -ENOMEM;
2602 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2603 		if (ret < 0)
2604 			return ret;
2605 
2606 		/* Enable the entry */
2607 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2608 				 (1 << (31 - i)), TSU_TEN);
2609 	}
2610 
2611 	/* Entry found or created, enable POST */
2612 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2613 
2614 	return 0;
2615 }
2616 
2617 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2618 {
2619 	struct sh_eth_private *mdp = netdev_priv(ndev);
2620 	int i, ret;
2621 
2622 	if (!mdp->cd->tsu)
2623 		return 0;
2624 
2625 	i = sh_eth_tsu_find_entry(ndev, addr);
2626 	if (i) {
2627 		/* Entry found */
2628 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2629 			goto done;
2630 
2631 		/* Disable the entry if both ports was disabled */
2632 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2633 		if (ret < 0)
2634 			return ret;
2635 	}
2636 done:
2637 	return 0;
2638 }
2639 
2640 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2641 {
2642 	struct sh_eth_private *mdp = netdev_priv(ndev);
2643 	int i, ret;
2644 
2645 	if (!mdp->cd->tsu)
2646 		return 0;
2647 
2648 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2649 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2650 			continue;
2651 
2652 		/* Disable the entry if both ports was disabled */
2653 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2654 		if (ret < 0)
2655 			return ret;
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2662 {
2663 	struct sh_eth_private *mdp = netdev_priv(ndev);
2664 	u8 addr[ETH_ALEN];
2665 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2666 	int i;
2667 
2668 	if (!mdp->cd->tsu)
2669 		return;
2670 
2671 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2672 		sh_eth_tsu_read_entry(reg_offset, addr);
2673 		if (is_multicast_ether_addr(addr))
2674 			sh_eth_tsu_del_entry(ndev, addr);
2675 	}
2676 }
2677 
2678 /* Update promiscuous flag and multicast filter */
2679 static void sh_eth_set_rx_mode(struct net_device *ndev)
2680 {
2681 	struct sh_eth_private *mdp = netdev_priv(ndev);
2682 	u32 ecmr_bits;
2683 	int mcast_all = 0;
2684 	unsigned long flags;
2685 
2686 	spin_lock_irqsave(&mdp->lock, flags);
2687 	/* Initial condition is MCT = 1, PRM = 0.
2688 	 * Depending on ndev->flags, set PRM or clear MCT
2689 	 */
2690 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2691 	if (mdp->cd->tsu)
2692 		ecmr_bits |= ECMR_MCT;
2693 
2694 	if (!(ndev->flags & IFF_MULTICAST)) {
2695 		sh_eth_tsu_purge_mcast(ndev);
2696 		mcast_all = 1;
2697 	}
2698 	if (ndev->flags & IFF_ALLMULTI) {
2699 		sh_eth_tsu_purge_mcast(ndev);
2700 		ecmr_bits &= ~ECMR_MCT;
2701 		mcast_all = 1;
2702 	}
2703 
2704 	if (ndev->flags & IFF_PROMISC) {
2705 		sh_eth_tsu_purge_all(ndev);
2706 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2707 	} else if (mdp->cd->tsu) {
2708 		struct netdev_hw_addr *ha;
2709 		netdev_for_each_mc_addr(ha, ndev) {
2710 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2711 				continue;
2712 
2713 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2714 				if (!mcast_all) {
2715 					sh_eth_tsu_purge_mcast(ndev);
2716 					ecmr_bits &= ~ECMR_MCT;
2717 					mcast_all = 1;
2718 				}
2719 			}
2720 		}
2721 	}
2722 
2723 	/* update the ethernet mode */
2724 	sh_eth_write(ndev, ecmr_bits, ECMR);
2725 
2726 	spin_unlock_irqrestore(&mdp->lock, flags);
2727 }
2728 
2729 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2730 {
2731 	if (!mdp->port)
2732 		return TSU_VTAG0;
2733 	else
2734 		return TSU_VTAG1;
2735 }
2736 
2737 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2738 				  __be16 proto, u16 vid)
2739 {
2740 	struct sh_eth_private *mdp = netdev_priv(ndev);
2741 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2742 
2743 	if (unlikely(!mdp->cd->tsu))
2744 		return -EPERM;
2745 
2746 	/* No filtering if vid = 0 */
2747 	if (!vid)
2748 		return 0;
2749 
2750 	mdp->vlan_num_ids++;
2751 
2752 	/* The controller has one VLAN tag HW filter. So, if the filter is
2753 	 * already enabled, the driver disables it and the filte
2754 	 */
2755 	if (mdp->vlan_num_ids > 1) {
2756 		/* disable VLAN filter */
2757 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2758 		return 0;
2759 	}
2760 
2761 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2762 			 vtag_reg_index);
2763 
2764 	return 0;
2765 }
2766 
2767 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2768 				   __be16 proto, u16 vid)
2769 {
2770 	struct sh_eth_private *mdp = netdev_priv(ndev);
2771 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2772 
2773 	if (unlikely(!mdp->cd->tsu))
2774 		return -EPERM;
2775 
2776 	/* No filtering if vid = 0 */
2777 	if (!vid)
2778 		return 0;
2779 
2780 	mdp->vlan_num_ids--;
2781 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2782 
2783 	return 0;
2784 }
2785 
2786 /* SuperH's TSU register init function */
2787 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2788 {
2789 	if (sh_eth_is_rz_fast_ether(mdp)) {
2790 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2791 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2792 				 TSU_FWSLC);	/* Enable POST registers */
2793 		return;
2794 	}
2795 
2796 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2797 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2798 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2799 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2800 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2801 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2802 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2803 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2804 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2805 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2806 	if (sh_eth_is_gether(mdp)) {
2807 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2808 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2809 	} else {
2810 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2811 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2812 	}
2813 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2814 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2815 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2816 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2817 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2818 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2819 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2820 }
2821 
2822 /* MDIO bus release function */
2823 static int sh_mdio_release(struct sh_eth_private *mdp)
2824 {
2825 	/* unregister mdio bus */
2826 	mdiobus_unregister(mdp->mii_bus);
2827 
2828 	/* free bitbang info */
2829 	free_mdio_bitbang(mdp->mii_bus);
2830 
2831 	return 0;
2832 }
2833 
2834 /* MDIO bus init function */
2835 static int sh_mdio_init(struct sh_eth_private *mdp,
2836 			struct sh_eth_plat_data *pd)
2837 {
2838 	int ret;
2839 	struct bb_info *bitbang;
2840 	struct platform_device *pdev = mdp->pdev;
2841 	struct device *dev = &mdp->pdev->dev;
2842 
2843 	/* create bit control struct for PHY */
2844 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2845 	if (!bitbang)
2846 		return -ENOMEM;
2847 
2848 	/* bitbang init */
2849 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2850 	bitbang->set_gate = pd->set_mdio_gate;
2851 	bitbang->ctrl.ops = &bb_ops;
2852 
2853 	/* MII controller setting */
2854 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2855 	if (!mdp->mii_bus)
2856 		return -ENOMEM;
2857 
2858 	/* Hook up MII support for ethtool */
2859 	mdp->mii_bus->name = "sh_mii";
2860 	mdp->mii_bus->parent = dev;
2861 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2862 		 pdev->name, pdev->id);
2863 
2864 	/* register MDIO bus */
2865 	if (dev->of_node) {
2866 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2867 	} else {
2868 		if (pd->phy_irq > 0)
2869 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2870 
2871 		ret = mdiobus_register(mdp->mii_bus);
2872 	}
2873 
2874 	if (ret)
2875 		goto out_free_bus;
2876 
2877 	return 0;
2878 
2879 out_free_bus:
2880 	free_mdio_bitbang(mdp->mii_bus);
2881 	return ret;
2882 }
2883 
2884 static const u16 *sh_eth_get_register_offset(int register_type)
2885 {
2886 	const u16 *reg_offset = NULL;
2887 
2888 	switch (register_type) {
2889 	case SH_ETH_REG_GIGABIT:
2890 		reg_offset = sh_eth_offset_gigabit;
2891 		break;
2892 	case SH_ETH_REG_FAST_RZ:
2893 		reg_offset = sh_eth_offset_fast_rz;
2894 		break;
2895 	case SH_ETH_REG_FAST_RCAR:
2896 		reg_offset = sh_eth_offset_fast_rcar;
2897 		break;
2898 	case SH_ETH_REG_FAST_SH4:
2899 		reg_offset = sh_eth_offset_fast_sh4;
2900 		break;
2901 	case SH_ETH_REG_FAST_SH3_SH2:
2902 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2903 		break;
2904 	}
2905 
2906 	return reg_offset;
2907 }
2908 
2909 static const struct net_device_ops sh_eth_netdev_ops = {
2910 	.ndo_open		= sh_eth_open,
2911 	.ndo_stop		= sh_eth_close,
2912 	.ndo_start_xmit		= sh_eth_start_xmit,
2913 	.ndo_get_stats		= sh_eth_get_stats,
2914 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2915 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2916 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2917 	.ndo_validate_addr	= eth_validate_addr,
2918 	.ndo_set_mac_address	= eth_mac_addr,
2919 };
2920 
2921 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2922 	.ndo_open		= sh_eth_open,
2923 	.ndo_stop		= sh_eth_close,
2924 	.ndo_start_xmit		= sh_eth_start_xmit,
2925 	.ndo_get_stats		= sh_eth_get_stats,
2926 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2927 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2928 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2929 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2930 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2931 	.ndo_validate_addr	= eth_validate_addr,
2932 	.ndo_set_mac_address	= eth_mac_addr,
2933 };
2934 
2935 #ifdef CONFIG_OF
2936 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2937 {
2938 	struct device_node *np = dev->of_node;
2939 	struct sh_eth_plat_data *pdata;
2940 	const char *mac_addr;
2941 
2942 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2943 	if (!pdata)
2944 		return NULL;
2945 
2946 	pdata->phy_interface = of_get_phy_mode(np);
2947 
2948 	mac_addr = of_get_mac_address(np);
2949 	if (mac_addr)
2950 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2951 
2952 	pdata->no_ether_link =
2953 		of_property_read_bool(np, "renesas,no-ether-link");
2954 	pdata->ether_link_active_low =
2955 		of_property_read_bool(np, "renesas,ether-link-active-low");
2956 
2957 	return pdata;
2958 }
2959 
2960 static const struct of_device_id sh_eth_match_table[] = {
2961 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2962 	{ .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
2963 	{ .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
2964 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2965 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2966 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2967 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2968 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2969 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2970 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2971 	{ }
2972 };
2973 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2974 #else
2975 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2976 {
2977 	return NULL;
2978 }
2979 #endif
2980 
2981 static int sh_eth_drv_probe(struct platform_device *pdev)
2982 {
2983 	struct resource *res;
2984 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2985 	const struct platform_device_id *id = platform_get_device_id(pdev);
2986 	struct sh_eth_private *mdp;
2987 	struct net_device *ndev;
2988 	int ret, devno;
2989 
2990 	/* get base addr */
2991 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2992 
2993 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2994 	if (!ndev)
2995 		return -ENOMEM;
2996 
2997 	pm_runtime_enable(&pdev->dev);
2998 	pm_runtime_get_sync(&pdev->dev);
2999 
3000 	devno = pdev->id;
3001 	if (devno < 0)
3002 		devno = 0;
3003 
3004 	ret = platform_get_irq(pdev, 0);
3005 	if (ret < 0)
3006 		goto out_release;
3007 	ndev->irq = ret;
3008 
3009 	SET_NETDEV_DEV(ndev, &pdev->dev);
3010 
3011 	mdp = netdev_priv(ndev);
3012 	mdp->num_tx_ring = TX_RING_SIZE;
3013 	mdp->num_rx_ring = RX_RING_SIZE;
3014 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3015 	if (IS_ERR(mdp->addr)) {
3016 		ret = PTR_ERR(mdp->addr);
3017 		goto out_release;
3018 	}
3019 
3020 	ndev->base_addr = res->start;
3021 
3022 	spin_lock_init(&mdp->lock);
3023 	mdp->pdev = pdev;
3024 
3025 	if (pdev->dev.of_node)
3026 		pd = sh_eth_parse_dt(&pdev->dev);
3027 	if (!pd) {
3028 		dev_err(&pdev->dev, "no platform data\n");
3029 		ret = -EINVAL;
3030 		goto out_release;
3031 	}
3032 
3033 	/* get PHY ID */
3034 	mdp->phy_id = pd->phy;
3035 	mdp->phy_interface = pd->phy_interface;
3036 	mdp->no_ether_link = pd->no_ether_link;
3037 	mdp->ether_link_active_low = pd->ether_link_active_low;
3038 
3039 	/* set cpu data */
3040 	if (id)
3041 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3042 	else
3043 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3044 
3045 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3046 	if (!mdp->reg_offset) {
3047 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3048 			mdp->cd->register_type);
3049 		ret = -EINVAL;
3050 		goto out_release;
3051 	}
3052 	sh_eth_set_default_cpu_data(mdp->cd);
3053 
3054 	/* set function */
3055 	if (mdp->cd->tsu)
3056 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3057 	else
3058 		ndev->netdev_ops = &sh_eth_netdev_ops;
3059 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3060 	ndev->watchdog_timeo = TX_TIMEOUT;
3061 
3062 	/* debug message level */
3063 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3064 
3065 	/* read and set MAC address */
3066 	read_mac_address(ndev, pd->mac_addr);
3067 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3068 		dev_warn(&pdev->dev,
3069 			 "no valid MAC address supplied, using a random one.\n");
3070 		eth_hw_addr_random(ndev);
3071 	}
3072 
3073 	/* ioremap the TSU registers */
3074 	if (mdp->cd->tsu) {
3075 		struct resource *rtsu;
3076 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3077 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3078 		if (IS_ERR(mdp->tsu_addr)) {
3079 			ret = PTR_ERR(mdp->tsu_addr);
3080 			goto out_release;
3081 		}
3082 		mdp->port = devno % 2;
3083 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3084 	}
3085 
3086 	/* initialize first or needed device */
3087 	if (!devno || pd->needs_init) {
3088 		if (mdp->cd->chip_reset)
3089 			mdp->cd->chip_reset(ndev);
3090 
3091 		if (mdp->cd->tsu) {
3092 			/* TSU init (Init only)*/
3093 			sh_eth_tsu_init(mdp);
3094 		}
3095 	}
3096 
3097 	if (mdp->cd->rmiimode)
3098 		sh_eth_write(ndev, 0x1, RMIIMODE);
3099 
3100 	/* MDIO bus init */
3101 	ret = sh_mdio_init(mdp, pd);
3102 	if (ret) {
3103 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3104 		goto out_release;
3105 	}
3106 
3107 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3108 
3109 	/* network device register */
3110 	ret = register_netdev(ndev);
3111 	if (ret)
3112 		goto out_napi_del;
3113 
3114 	/* print device information */
3115 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3116 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3117 
3118 	pm_runtime_put(&pdev->dev);
3119 	platform_set_drvdata(pdev, ndev);
3120 
3121 	return ret;
3122 
3123 out_napi_del:
3124 	netif_napi_del(&mdp->napi);
3125 	sh_mdio_release(mdp);
3126 
3127 out_release:
3128 	/* net_dev free */
3129 	if (ndev)
3130 		free_netdev(ndev);
3131 
3132 	pm_runtime_put(&pdev->dev);
3133 	pm_runtime_disable(&pdev->dev);
3134 	return ret;
3135 }
3136 
3137 static int sh_eth_drv_remove(struct platform_device *pdev)
3138 {
3139 	struct net_device *ndev = platform_get_drvdata(pdev);
3140 	struct sh_eth_private *mdp = netdev_priv(ndev);
3141 
3142 	unregister_netdev(ndev);
3143 	netif_napi_del(&mdp->napi);
3144 	sh_mdio_release(mdp);
3145 	pm_runtime_disable(&pdev->dev);
3146 	free_netdev(ndev);
3147 
3148 	return 0;
3149 }
3150 
3151 #ifdef CONFIG_PM
3152 #ifdef CONFIG_PM_SLEEP
3153 static int sh_eth_suspend(struct device *dev)
3154 {
3155 	struct net_device *ndev = dev_get_drvdata(dev);
3156 	int ret = 0;
3157 
3158 	if (netif_running(ndev)) {
3159 		netif_device_detach(ndev);
3160 		ret = sh_eth_close(ndev);
3161 	}
3162 
3163 	return ret;
3164 }
3165 
3166 static int sh_eth_resume(struct device *dev)
3167 {
3168 	struct net_device *ndev = dev_get_drvdata(dev);
3169 	int ret = 0;
3170 
3171 	if (netif_running(ndev)) {
3172 		ret = sh_eth_open(ndev);
3173 		if (ret < 0)
3174 			return ret;
3175 		netif_device_attach(ndev);
3176 	}
3177 
3178 	return ret;
3179 }
3180 #endif
3181 
3182 static int sh_eth_runtime_nop(struct device *dev)
3183 {
3184 	/* Runtime PM callback shared between ->runtime_suspend()
3185 	 * and ->runtime_resume(). Simply returns success.
3186 	 *
3187 	 * This driver re-initializes all registers after
3188 	 * pm_runtime_get_sync() anyway so there is no need
3189 	 * to save and restore registers here.
3190 	 */
3191 	return 0;
3192 }
3193 
3194 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3195 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3196 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3197 };
3198 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3199 #else
3200 #define SH_ETH_PM_OPS NULL
3201 #endif
3202 
3203 static struct platform_device_id sh_eth_id_table[] = {
3204 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3205 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3206 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3207 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3208 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3209 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3210 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3211 	{ }
3212 };
3213 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3214 
3215 static struct platform_driver sh_eth_driver = {
3216 	.probe = sh_eth_drv_probe,
3217 	.remove = sh_eth_drv_remove,
3218 	.id_table = sh_eth_id_table,
3219 	.driver = {
3220 		   .name = CARDNAME,
3221 		   .pm = SH_ETH_PM_OPS,
3222 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3223 	},
3224 };
3225 
3226 module_platform_driver(sh_eth_driver);
3227 
3228 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3229 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3230 MODULE_LICENSE("GPL v2");
3231