1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2016 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_FWSLC]	= 0x0038,
205 	[TSU_VTAG0]	= 0x0058,
206 	[TSU_ADSBSY]	= 0x0060,
207 	[TSU_TEN]	= 0x0064,
208 	[TSU_POST1]	= 0x0070,
209 	[TSU_POST2]	= 0x0074,
210 	[TSU_POST3]	= 0x0078,
211 	[TSU_POST4]	= 0x007c,
212 	[TSU_ADRH0]	= 0x0100,
213 
214 	[TXNLCR0]	= 0x0080,
215 	[TXALCR0]	= 0x0084,
216 	[RXNLCR0]	= 0x0088,
217 	[RXALCR0]	= 0x008C,
218 };
219 
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 	SH_ETH_OFFSET_DEFAULTS,
222 
223 	[ECMR]		= 0x0300,
224 	[RFLR]		= 0x0308,
225 	[ECSR]		= 0x0310,
226 	[ECSIPR]	= 0x0318,
227 	[PIR]		= 0x0320,
228 	[PSR]		= 0x0328,
229 	[RDMLR]		= 0x0340,
230 	[IPGR]		= 0x0350,
231 	[APR]		= 0x0354,
232 	[MPR]		= 0x0358,
233 	[RFCF]		= 0x0360,
234 	[TPAUSER]	= 0x0364,
235 	[TPAUSECR]	= 0x0368,
236 	[MAHR]		= 0x03c0,
237 	[MALR]		= 0x03c8,
238 	[TROCR]		= 0x03d0,
239 	[CDCR]		= 0x03d4,
240 	[LCCR]		= 0x03d8,
241 	[CNDCR]		= 0x03dc,
242 	[CEFCR]		= 0x03e4,
243 	[FRECR]		= 0x03e8,
244 	[TSFRCR]	= 0x03ec,
245 	[TLFRCR]	= 0x03f0,
246 	[RFCR]		= 0x03f4,
247 	[MAFCR]		= 0x03f8,
248 
249 	[EDMR]		= 0x0200,
250 	[EDTRR]		= 0x0208,
251 	[EDRRR]		= 0x0210,
252 	[TDLAR]		= 0x0218,
253 	[RDLAR]		= 0x0220,
254 	[EESR]		= 0x0228,
255 	[EESIPR]	= 0x0230,
256 	[TRSCER]	= 0x0238,
257 	[RMFCR]		= 0x0240,
258 	[TFTR]		= 0x0248,
259 	[FDR]		= 0x0250,
260 	[RMCR]		= 0x0258,
261 	[TFUCR]		= 0x0264,
262 	[RFOCR]		= 0x0268,
263 	[RMIIMODE]      = 0x026c,
264 	[FCFTR]		= 0x0270,
265 	[TRIMD]		= 0x027c,
266 };
267 
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 	SH_ETH_OFFSET_DEFAULTS,
270 
271 	[ECMR]		= 0x0100,
272 	[RFLR]		= 0x0108,
273 	[ECSR]		= 0x0110,
274 	[ECSIPR]	= 0x0118,
275 	[PIR]		= 0x0120,
276 	[PSR]		= 0x0128,
277 	[RDMLR]		= 0x0140,
278 	[IPGR]		= 0x0150,
279 	[APR]		= 0x0154,
280 	[MPR]		= 0x0158,
281 	[TPAUSER]	= 0x0164,
282 	[RFCF]		= 0x0160,
283 	[TPAUSECR]	= 0x0168,
284 	[BCFRR]		= 0x016c,
285 	[MAHR]		= 0x01c0,
286 	[MALR]		= 0x01c8,
287 	[TROCR]		= 0x01d0,
288 	[CDCR]		= 0x01d4,
289 	[LCCR]		= 0x01d8,
290 	[CNDCR]		= 0x01dc,
291 	[CEFCR]		= 0x01e4,
292 	[FRECR]		= 0x01e8,
293 	[TSFRCR]	= 0x01ec,
294 	[TLFRCR]	= 0x01f0,
295 	[RFCR]		= 0x01f4,
296 	[MAFCR]		= 0x01f8,
297 	[RTRATE]	= 0x01fc,
298 
299 	[EDMR]		= 0x0000,
300 	[EDTRR]		= 0x0008,
301 	[EDRRR]		= 0x0010,
302 	[TDLAR]		= 0x0018,
303 	[RDLAR]		= 0x0020,
304 	[EESR]		= 0x0028,
305 	[EESIPR]	= 0x0030,
306 	[TRSCER]	= 0x0038,
307 	[RMFCR]		= 0x0040,
308 	[TFTR]		= 0x0048,
309 	[FDR]		= 0x0050,
310 	[RMCR]		= 0x0058,
311 	[TFUCR]		= 0x0064,
312 	[RFOCR]		= 0x0068,
313 	[FCFTR]		= 0x0070,
314 	[RPADIR]	= 0x0078,
315 	[TRIMD]		= 0x007c,
316 	[RBWAR]		= 0x00c8,
317 	[RDFAR]		= 0x00cc,
318 	[TBRAR]		= 0x00d4,
319 	[TDFAR]		= 0x00d8,
320 };
321 
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 	SH_ETH_OFFSET_DEFAULTS,
324 
325 	[EDMR]		= 0x0000,
326 	[EDTRR]		= 0x0004,
327 	[EDRRR]		= 0x0008,
328 	[TDLAR]		= 0x000c,
329 	[RDLAR]		= 0x0010,
330 	[EESR]		= 0x0014,
331 	[EESIPR]	= 0x0018,
332 	[TRSCER]	= 0x001c,
333 	[RMFCR]		= 0x0020,
334 	[TFTR]		= 0x0024,
335 	[FDR]		= 0x0028,
336 	[RMCR]		= 0x002c,
337 	[EDOCR]		= 0x0030,
338 	[FCFTR]		= 0x0034,
339 	[RPADIR]	= 0x0038,
340 	[TRIMD]		= 0x003c,
341 	[RBWAR]		= 0x0040,
342 	[RDFAR]		= 0x0044,
343 	[TBRAR]		= 0x004c,
344 	[TDFAR]		= 0x0050,
345 
346 	[ECMR]		= 0x0160,
347 	[ECSR]		= 0x0164,
348 	[ECSIPR]	= 0x0168,
349 	[PIR]		= 0x016c,
350 	[MAHR]		= 0x0170,
351 	[MALR]		= 0x0174,
352 	[RFLR]		= 0x0178,
353 	[PSR]		= 0x017c,
354 	[TROCR]		= 0x0180,
355 	[CDCR]		= 0x0184,
356 	[LCCR]		= 0x0188,
357 	[CNDCR]		= 0x018c,
358 	[CEFCR]		= 0x0194,
359 	[FRECR]		= 0x0198,
360 	[TSFRCR]	= 0x019c,
361 	[TLFRCR]	= 0x01a0,
362 	[RFCR]		= 0x01a4,
363 	[MAFCR]		= 0x01a8,
364 	[IPGR]		= 0x01b4,
365 	[APR]		= 0x01b8,
366 	[MPR]		= 0x01bc,
367 	[TPAUSER]	= 0x01c4,
368 	[BCFR]		= 0x01cc,
369 
370 	[ARSTR]		= 0x0000,
371 	[TSU_CTRST]	= 0x0004,
372 	[TSU_FWEN0]	= 0x0010,
373 	[TSU_FWEN1]	= 0x0014,
374 	[TSU_FCM]	= 0x0018,
375 	[TSU_BSYSL0]	= 0x0020,
376 	[TSU_BSYSL1]	= 0x0024,
377 	[TSU_PRISL0]	= 0x0028,
378 	[TSU_PRISL1]	= 0x002c,
379 	[TSU_FWSL0]	= 0x0030,
380 	[TSU_FWSL1]	= 0x0034,
381 	[TSU_FWSLC]	= 0x0038,
382 	[TSU_QTAGM0]	= 0x0040,
383 	[TSU_QTAGM1]	= 0x0044,
384 	[TSU_ADQT0]	= 0x0048,
385 	[TSU_ADQT1]	= 0x004c,
386 	[TSU_FWSR]	= 0x0050,
387 	[TSU_FWINMK]	= 0x0054,
388 	[TSU_ADSBSY]	= 0x0060,
389 	[TSU_TEN]	= 0x0064,
390 	[TSU_POST1]	= 0x0070,
391 	[TSU_POST2]	= 0x0074,
392 	[TSU_POST3]	= 0x0078,
393 	[TSU_POST4]	= 0x007c,
394 
395 	[TXNLCR0]	= 0x0080,
396 	[TXALCR0]	= 0x0084,
397 	[RXNLCR0]	= 0x0088,
398 	[RXALCR0]	= 0x008c,
399 	[FWNLCR0]	= 0x0090,
400 	[FWALCR0]	= 0x0094,
401 	[TXNLCR1]	= 0x00a0,
402 	[TXALCR1]	= 0x00a0,
403 	[RXNLCR1]	= 0x00a8,
404 	[RXALCR1]	= 0x00ac,
405 	[FWNLCR1]	= 0x00b0,
406 	[FWALCR1]	= 0x00b4,
407 
408 	[TSU_ADRH0]	= 0x0100,
409 };
410 
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413 
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 	struct sh_eth_private *mdp = netdev_priv(ndev);
417 	u16 offset = mdp->reg_offset[enum_index];
418 
419 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 		return;
421 
422 	iowrite32(data, mdp->addr + offset);
423 }
424 
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 	struct sh_eth_private *mdp = netdev_priv(ndev);
428 	u16 offset = mdp->reg_offset[enum_index];
429 
430 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 		return ~0U;
432 
433 	return ioread32(mdp->addr + offset);
434 }
435 
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 			  u32 set)
438 {
439 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 		     enum_index);
441 }
442 
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447 
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 	return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 	struct sh_eth_private *mdp = netdev_priv(ndev);
497 
498 	switch (mdp->speed) {
499 	case 10: /* 10BASE */
500 		sh_eth_write(ndev, GECMR_10, GECMR);
501 		break;
502 	case 100:/* 100BASE */
503 		sh_eth_write(ndev, GECMR_100, GECMR);
504 		break;
505 	case 1000: /* 1000BASE */
506 		sh_eth_write(ndev, GECMR_1000, GECMR);
507 		break;
508 	}
509 }
510 
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 	.chip_reset	= sh_eth_chip_reset,
515 	.set_duplex	= sh_eth_set_duplex,
516 
517 	.register_type	= SH_ETH_REG_FAST_RZ,
518 
519 	.ecsr_value	= ECSR_ICD,
520 	.ecsipr_value	= ECSIPR_ICDIP,
521 	.eesipr_value	= 0xff7f009f,
522 
523 	.tx_check	= EESR_TC1 | EESR_FTC,
524 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
525 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
526 			  EESR_TDE | EESR_ECI,
527 	.fdr_value	= 0x0000070f,
528 
529 	.no_psr		= 1,
530 	.apr		= 1,
531 	.mpr		= 1,
532 	.tpauser	= 1,
533 	.hw_swap	= 1,
534 	.rpadir		= 1,
535 	.rpadir_value   = 2 << 16,
536 	.no_trimd	= 1,
537 	.no_ade		= 1,
538 	.hw_crc		= 1,
539 	.tsu		= 1,
540 	.shift_rd0	= 1,
541 };
542 
543 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
544 {
545 	sh_eth_chip_reset(ndev);
546 
547 	sh_eth_select_mii(ndev);
548 }
549 
550 /* R8A7740 */
551 static struct sh_eth_cpu_data r8a7740_data = {
552 	.chip_reset	= sh_eth_chip_reset_r8a7740,
553 	.set_duplex	= sh_eth_set_duplex,
554 	.set_rate	= sh_eth_set_rate_gether,
555 
556 	.register_type	= SH_ETH_REG_GIGABIT,
557 
558 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
559 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
560 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
561 
562 	.tx_check	= EESR_TC1 | EESR_FTC,
563 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
564 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
565 			  EESR_TDE | EESR_ECI,
566 	.fdr_value	= 0x0000070f,
567 
568 	.apr		= 1,
569 	.mpr		= 1,
570 	.tpauser	= 1,
571 	.bculr		= 1,
572 	.hw_swap	= 1,
573 	.rpadir		= 1,
574 	.rpadir_value   = 2 << 16,
575 	.no_trimd	= 1,
576 	.no_ade		= 1,
577 	.tsu		= 1,
578 	.select_mii	= 1,
579 	.shift_rd0	= 1,
580 };
581 
582 /* There is CPU dependent code */
583 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
584 {
585 	struct sh_eth_private *mdp = netdev_priv(ndev);
586 
587 	switch (mdp->speed) {
588 	case 10: /* 10BASE */
589 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
590 		break;
591 	case 100:/* 100BASE */
592 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
593 		break;
594 	}
595 }
596 
597 /* R8A7778/9 */
598 static struct sh_eth_cpu_data r8a777x_data = {
599 	.set_duplex	= sh_eth_set_duplex,
600 	.set_rate	= sh_eth_set_rate_r8a777x,
601 
602 	.register_type	= SH_ETH_REG_FAST_RCAR,
603 
604 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
605 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
606 	.eesipr_value	= 0x01ff009f,
607 
608 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
609 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
610 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
611 			  EESR_ECI,
612 	.fdr_value	= 0x00000f0f,
613 
614 	.apr		= 1,
615 	.mpr		= 1,
616 	.tpauser	= 1,
617 	.hw_swap	= 1,
618 };
619 
620 /* R8A7790/1 */
621 static struct sh_eth_cpu_data r8a779x_data = {
622 	.set_duplex	= sh_eth_set_duplex,
623 	.set_rate	= sh_eth_set_rate_r8a777x,
624 
625 	.register_type	= SH_ETH_REG_FAST_RCAR,
626 
627 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
628 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
629 	.eesipr_value	= 0x01ff009f,
630 
631 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
632 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
633 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
634 			  EESR_ECI,
635 	.fdr_value	= 0x00000f0f,
636 
637 	.trscer_err_mask = DESC_I_RINT8,
638 
639 	.apr		= 1,
640 	.mpr		= 1,
641 	.tpauser	= 1,
642 	.hw_swap	= 1,
643 	.rmiimode	= 1,
644 };
645 #endif /* CONFIG_OF */
646 
647 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
648 {
649 	struct sh_eth_private *mdp = netdev_priv(ndev);
650 
651 	switch (mdp->speed) {
652 	case 10: /* 10BASE */
653 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
654 		break;
655 	case 100:/* 100BASE */
656 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
657 		break;
658 	}
659 }
660 
661 /* SH7724 */
662 static struct sh_eth_cpu_data sh7724_data = {
663 	.set_duplex	= sh_eth_set_duplex,
664 	.set_rate	= sh_eth_set_rate_sh7724,
665 
666 	.register_type	= SH_ETH_REG_FAST_SH4,
667 
668 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
669 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
670 	.eesipr_value	= 0x01ff009f,
671 
672 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
673 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
674 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
675 			  EESR_ECI,
676 
677 	.apr		= 1,
678 	.mpr		= 1,
679 	.tpauser	= 1,
680 	.hw_swap	= 1,
681 	.rpadir		= 1,
682 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
683 };
684 
685 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
686 {
687 	struct sh_eth_private *mdp = netdev_priv(ndev);
688 
689 	switch (mdp->speed) {
690 	case 10: /* 10BASE */
691 		sh_eth_write(ndev, 0, RTRATE);
692 		break;
693 	case 100:/* 100BASE */
694 		sh_eth_write(ndev, 1, RTRATE);
695 		break;
696 	}
697 }
698 
699 /* SH7757 */
700 static struct sh_eth_cpu_data sh7757_data = {
701 	.set_duplex	= sh_eth_set_duplex,
702 	.set_rate	= sh_eth_set_rate_sh7757,
703 
704 	.register_type	= SH_ETH_REG_FAST_SH4,
705 
706 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
707 
708 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
709 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
710 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
711 			  EESR_ECI,
712 
713 	.irq_flags	= IRQF_SHARED,
714 	.apr		= 1,
715 	.mpr		= 1,
716 	.tpauser	= 1,
717 	.hw_swap	= 1,
718 	.no_ade		= 1,
719 	.rpadir		= 1,
720 	.rpadir_value   = 2 << 16,
721 	.rtrate		= 1,
722 };
723 
724 #define SH_GIGA_ETH_BASE	0xfee00000UL
725 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
726 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
727 static void sh_eth_chip_reset_giga(struct net_device *ndev)
728 {
729 	u32 mahr[2], malr[2];
730 	int i;
731 
732 	/* save MAHR and MALR */
733 	for (i = 0; i < 2; i++) {
734 		malr[i] = ioread32((void *)GIGA_MALR(i));
735 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
736 	}
737 
738 	sh_eth_chip_reset(ndev);
739 
740 	/* restore MAHR and MALR */
741 	for (i = 0; i < 2; i++) {
742 		iowrite32(malr[i], (void *)GIGA_MALR(i));
743 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
744 	}
745 }
746 
747 static void sh_eth_set_rate_giga(struct net_device *ndev)
748 {
749 	struct sh_eth_private *mdp = netdev_priv(ndev);
750 
751 	switch (mdp->speed) {
752 	case 10: /* 10BASE */
753 		sh_eth_write(ndev, 0x00000000, GECMR);
754 		break;
755 	case 100:/* 100BASE */
756 		sh_eth_write(ndev, 0x00000010, GECMR);
757 		break;
758 	case 1000: /* 1000BASE */
759 		sh_eth_write(ndev, 0x00000020, GECMR);
760 		break;
761 	}
762 }
763 
764 /* SH7757(GETHERC) */
765 static struct sh_eth_cpu_data sh7757_data_giga = {
766 	.chip_reset	= sh_eth_chip_reset_giga,
767 	.set_duplex	= sh_eth_set_duplex,
768 	.set_rate	= sh_eth_set_rate_giga,
769 
770 	.register_type	= SH_ETH_REG_GIGABIT,
771 
772 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
773 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
774 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
775 
776 	.tx_check	= EESR_TC1 | EESR_FTC,
777 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
778 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
779 			  EESR_TDE | EESR_ECI,
780 	.fdr_value	= 0x0000072f,
781 
782 	.irq_flags	= IRQF_SHARED,
783 	.apr		= 1,
784 	.mpr		= 1,
785 	.tpauser	= 1,
786 	.bculr		= 1,
787 	.hw_swap	= 1,
788 	.rpadir		= 1,
789 	.rpadir_value   = 2 << 16,
790 	.no_trimd	= 1,
791 	.no_ade		= 1,
792 	.tsu		= 1,
793 };
794 
795 /* SH7734 */
796 static struct sh_eth_cpu_data sh7734_data = {
797 	.chip_reset	= sh_eth_chip_reset,
798 	.set_duplex	= sh_eth_set_duplex,
799 	.set_rate	= sh_eth_set_rate_gether,
800 
801 	.register_type	= SH_ETH_REG_GIGABIT,
802 
803 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
804 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
805 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
806 
807 	.tx_check	= EESR_TC1 | EESR_FTC,
808 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
809 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
810 			  EESR_TDE | EESR_ECI,
811 
812 	.apr		= 1,
813 	.mpr		= 1,
814 	.tpauser	= 1,
815 	.bculr		= 1,
816 	.hw_swap	= 1,
817 	.no_trimd	= 1,
818 	.no_ade		= 1,
819 	.tsu		= 1,
820 	.hw_crc		= 1,
821 	.select_mii	= 1,
822 };
823 
824 /* SH7763 */
825 static struct sh_eth_cpu_data sh7763_data = {
826 	.chip_reset	= sh_eth_chip_reset,
827 	.set_duplex	= sh_eth_set_duplex,
828 	.set_rate	= sh_eth_set_rate_gether,
829 
830 	.register_type	= SH_ETH_REG_GIGABIT,
831 
832 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
833 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
834 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835 
836 	.tx_check	= EESR_TC1 | EESR_FTC,
837 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
838 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
839 			  EESR_ECI,
840 
841 	.apr		= 1,
842 	.mpr		= 1,
843 	.tpauser	= 1,
844 	.bculr		= 1,
845 	.hw_swap	= 1,
846 	.no_trimd	= 1,
847 	.no_ade		= 1,
848 	.tsu		= 1,
849 	.irq_flags	= IRQF_SHARED,
850 };
851 
852 static struct sh_eth_cpu_data sh7619_data = {
853 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
854 
855 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
856 
857 	.apr		= 1,
858 	.mpr		= 1,
859 	.tpauser	= 1,
860 	.hw_swap	= 1,
861 };
862 
863 static struct sh_eth_cpu_data sh771x_data = {
864 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
865 
866 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
867 	.tsu		= 1,
868 };
869 
870 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
871 {
872 	if (!cd->ecsr_value)
873 		cd->ecsr_value = DEFAULT_ECSR_INIT;
874 
875 	if (!cd->ecsipr_value)
876 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
877 
878 	if (!cd->fcftr_value)
879 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
880 				  DEFAULT_FIFO_F_D_RFD;
881 
882 	if (!cd->fdr_value)
883 		cd->fdr_value = DEFAULT_FDR_INIT;
884 
885 	if (!cd->tx_check)
886 		cd->tx_check = DEFAULT_TX_CHECK;
887 
888 	if (!cd->eesr_err_check)
889 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
890 
891 	if (!cd->trscer_err_mask)
892 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
893 }
894 
895 static int sh_eth_check_reset(struct net_device *ndev)
896 {
897 	int ret = 0;
898 	int cnt = 100;
899 
900 	while (cnt > 0) {
901 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
902 			break;
903 		mdelay(1);
904 		cnt--;
905 	}
906 	if (cnt <= 0) {
907 		netdev_err(ndev, "Device reset failed\n");
908 		ret = -ETIMEDOUT;
909 	}
910 	return ret;
911 }
912 
913 static int sh_eth_reset(struct net_device *ndev)
914 {
915 	struct sh_eth_private *mdp = netdev_priv(ndev);
916 	int ret = 0;
917 
918 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
919 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
920 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
921 
922 		ret = sh_eth_check_reset(ndev);
923 		if (ret)
924 			return ret;
925 
926 		/* Table Init */
927 		sh_eth_write(ndev, 0x0, TDLAR);
928 		sh_eth_write(ndev, 0x0, TDFAR);
929 		sh_eth_write(ndev, 0x0, TDFXR);
930 		sh_eth_write(ndev, 0x0, TDFFR);
931 		sh_eth_write(ndev, 0x0, RDLAR);
932 		sh_eth_write(ndev, 0x0, RDFAR);
933 		sh_eth_write(ndev, 0x0, RDFXR);
934 		sh_eth_write(ndev, 0x0, RDFFR);
935 
936 		/* Reset HW CRC register */
937 		if (mdp->cd->hw_crc)
938 			sh_eth_write(ndev, 0x0, CSMR);
939 
940 		/* Select MII mode */
941 		if (mdp->cd->select_mii)
942 			sh_eth_select_mii(ndev);
943 	} else {
944 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
945 		mdelay(3);
946 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
947 	}
948 
949 	return ret;
950 }
951 
952 static void sh_eth_set_receive_align(struct sk_buff *skb)
953 {
954 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
955 
956 	if (reserve)
957 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
958 }
959 
960 /* Program the hardware MAC address from dev->dev_addr. */
961 static void update_mac_address(struct net_device *ndev)
962 {
963 	sh_eth_write(ndev,
964 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
965 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
966 	sh_eth_write(ndev,
967 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
968 }
969 
970 /* Get MAC address from SuperH MAC address register
971  *
972  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
973  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
974  * When you want use this device, you must set MAC address in bootloader.
975  *
976  */
977 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
978 {
979 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
980 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
981 	} else {
982 		u32 mahr = sh_eth_read(ndev, MAHR);
983 		u32 malr = sh_eth_read(ndev, MALR);
984 
985 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
986 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
987 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
988 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
989 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
990 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
991 	}
992 }
993 
994 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
995 {
996 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
997 		return EDTRR_TRNS_GETHER;
998 	else
999 		return EDTRR_TRNS_ETHER;
1000 }
1001 
1002 struct bb_info {
1003 	void (*set_gate)(void *addr);
1004 	struct mdiobb_ctrl ctrl;
1005 	void *addr;
1006 };
1007 
1008 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1009 {
1010 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1011 	u32 pir;
1012 
1013 	if (bitbang->set_gate)
1014 		bitbang->set_gate(bitbang->addr);
1015 
1016 	pir = ioread32(bitbang->addr);
1017 	if (set)
1018 		pir |=  mask;
1019 	else
1020 		pir &= ~mask;
1021 	iowrite32(pir, bitbang->addr);
1022 }
1023 
1024 /* Data I/O pin control */
1025 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1026 {
1027 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1028 }
1029 
1030 /* Set bit data*/
1031 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1032 {
1033 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1034 }
1035 
1036 /* Get bit data*/
1037 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1038 {
1039 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1040 
1041 	if (bitbang->set_gate)
1042 		bitbang->set_gate(bitbang->addr);
1043 
1044 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1045 }
1046 
1047 /* MDC pin control */
1048 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1049 {
1050 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1051 }
1052 
1053 /* mdio bus control struct */
1054 static struct mdiobb_ops bb_ops = {
1055 	.owner = THIS_MODULE,
1056 	.set_mdc = sh_mdc_ctrl,
1057 	.set_mdio_dir = sh_mmd_ctrl,
1058 	.set_mdio_data = sh_set_mdio,
1059 	.get_mdio_data = sh_get_mdio,
1060 };
1061 
1062 /* free skb and descriptor buffer */
1063 static void sh_eth_ring_free(struct net_device *ndev)
1064 {
1065 	struct sh_eth_private *mdp = netdev_priv(ndev);
1066 	int ringsize, i;
1067 
1068 	/* Free Rx skb ringbuffer */
1069 	if (mdp->rx_skbuff) {
1070 		for (i = 0; i < mdp->num_rx_ring; i++)
1071 			dev_kfree_skb(mdp->rx_skbuff[i]);
1072 	}
1073 	kfree(mdp->rx_skbuff);
1074 	mdp->rx_skbuff = NULL;
1075 
1076 	/* Free Tx skb ringbuffer */
1077 	if (mdp->tx_skbuff) {
1078 		for (i = 0; i < mdp->num_tx_ring; i++)
1079 			dev_kfree_skb(mdp->tx_skbuff[i]);
1080 	}
1081 	kfree(mdp->tx_skbuff);
1082 	mdp->tx_skbuff = NULL;
1083 
1084 	if (mdp->rx_ring) {
1085 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1086 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1087 				  mdp->rx_desc_dma);
1088 		mdp->rx_ring = NULL;
1089 	}
1090 
1091 	if (mdp->tx_ring) {
1092 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1093 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1094 				  mdp->tx_desc_dma);
1095 		mdp->tx_ring = NULL;
1096 	}
1097 }
1098 
1099 /* format skb and descriptor buffer */
1100 static void sh_eth_ring_format(struct net_device *ndev)
1101 {
1102 	struct sh_eth_private *mdp = netdev_priv(ndev);
1103 	int i;
1104 	struct sk_buff *skb;
1105 	struct sh_eth_rxdesc *rxdesc = NULL;
1106 	struct sh_eth_txdesc *txdesc = NULL;
1107 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1108 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1109 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1110 	dma_addr_t dma_addr;
1111 	u32 buf_len;
1112 
1113 	mdp->cur_rx = 0;
1114 	mdp->cur_tx = 0;
1115 	mdp->dirty_rx = 0;
1116 	mdp->dirty_tx = 0;
1117 
1118 	memset(mdp->rx_ring, 0, rx_ringsize);
1119 
1120 	/* build Rx ring buffer */
1121 	for (i = 0; i < mdp->num_rx_ring; i++) {
1122 		/* skb */
1123 		mdp->rx_skbuff[i] = NULL;
1124 		skb = netdev_alloc_skb(ndev, skbuff_size);
1125 		if (skb == NULL)
1126 			break;
1127 		sh_eth_set_receive_align(skb);
1128 
1129 		/* The size of the buffer is a multiple of 32 bytes. */
1130 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1131 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1132 					  DMA_FROM_DEVICE);
1133 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1134 			kfree_skb(skb);
1135 			break;
1136 		}
1137 		mdp->rx_skbuff[i] = skb;
1138 
1139 		/* RX descriptor */
1140 		rxdesc = &mdp->rx_ring[i];
1141 		rxdesc->len = cpu_to_le32(buf_len << 16);
1142 		rxdesc->addr = cpu_to_le32(dma_addr);
1143 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1144 
1145 		/* Rx descriptor address set */
1146 		if (i == 0) {
1147 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1148 			if (sh_eth_is_gether(mdp) ||
1149 			    sh_eth_is_rz_fast_ether(mdp))
1150 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1151 		}
1152 	}
1153 
1154 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1155 
1156 	/* Mark the last entry as wrapping the ring. */
1157 	if (rxdesc)
1158 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1159 
1160 	memset(mdp->tx_ring, 0, tx_ringsize);
1161 
1162 	/* build Tx ring buffer */
1163 	for (i = 0; i < mdp->num_tx_ring; i++) {
1164 		mdp->tx_skbuff[i] = NULL;
1165 		txdesc = &mdp->tx_ring[i];
1166 		txdesc->status = cpu_to_le32(TD_TFP);
1167 		txdesc->len = cpu_to_le32(0);
1168 		if (i == 0) {
1169 			/* Tx descriptor address set */
1170 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1171 			if (sh_eth_is_gether(mdp) ||
1172 			    sh_eth_is_rz_fast_ether(mdp))
1173 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1174 		}
1175 	}
1176 
1177 	txdesc->status |= cpu_to_le32(TD_TDLE);
1178 }
1179 
1180 /* Get skb and descriptor buffer */
1181 static int sh_eth_ring_init(struct net_device *ndev)
1182 {
1183 	struct sh_eth_private *mdp = netdev_priv(ndev);
1184 	int rx_ringsize, tx_ringsize;
1185 
1186 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1187 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1188 	 * the first 2 bytes, and +16 gets room for the status word from the
1189 	 * card.
1190 	 */
1191 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1192 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1193 	if (mdp->cd->rpadir)
1194 		mdp->rx_buf_sz += NET_IP_ALIGN;
1195 
1196 	/* Allocate RX and TX skb rings */
1197 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1198 				 GFP_KERNEL);
1199 	if (!mdp->rx_skbuff)
1200 		return -ENOMEM;
1201 
1202 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1203 				 GFP_KERNEL);
1204 	if (!mdp->tx_skbuff)
1205 		goto ring_free;
1206 
1207 	/* Allocate all Rx descriptors. */
1208 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1209 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1210 					  GFP_KERNEL);
1211 	if (!mdp->rx_ring)
1212 		goto ring_free;
1213 
1214 	mdp->dirty_rx = 0;
1215 
1216 	/* Allocate all Tx descriptors. */
1217 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1218 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1219 					  GFP_KERNEL);
1220 	if (!mdp->tx_ring)
1221 		goto ring_free;
1222 	return 0;
1223 
1224 ring_free:
1225 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1226 	sh_eth_ring_free(ndev);
1227 
1228 	return -ENOMEM;
1229 }
1230 
1231 static int sh_eth_dev_init(struct net_device *ndev)
1232 {
1233 	struct sh_eth_private *mdp = netdev_priv(ndev);
1234 	int ret;
1235 
1236 	/* Soft Reset */
1237 	ret = sh_eth_reset(ndev);
1238 	if (ret)
1239 		return ret;
1240 
1241 	if (mdp->cd->rmiimode)
1242 		sh_eth_write(ndev, 0x1, RMIIMODE);
1243 
1244 	/* Descriptor format */
1245 	sh_eth_ring_format(ndev);
1246 	if (mdp->cd->rpadir)
1247 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1248 
1249 	/* all sh_eth int mask */
1250 	sh_eth_write(ndev, 0, EESIPR);
1251 
1252 #if defined(__LITTLE_ENDIAN)
1253 	if (mdp->cd->hw_swap)
1254 		sh_eth_write(ndev, EDMR_EL, EDMR);
1255 	else
1256 #endif
1257 		sh_eth_write(ndev, 0, EDMR);
1258 
1259 	/* FIFO size set */
1260 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1261 	sh_eth_write(ndev, 0, TFTR);
1262 
1263 	/* Frame recv control (enable multiple-packets per rx irq) */
1264 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1265 
1266 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1267 
1268 	if (mdp->cd->bculr)
1269 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1270 
1271 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1272 
1273 	if (!mdp->cd->no_trimd)
1274 		sh_eth_write(ndev, 0, TRIMD);
1275 
1276 	/* Recv frame limit set register */
1277 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1278 		     RFLR);
1279 
1280 	sh_eth_modify(ndev, EESR, 0, 0);
1281 	mdp->irq_enabled = true;
1282 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1283 
1284 	/* PAUSE Prohibition */
1285 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1286 		     ECMR_TE | ECMR_RE, ECMR);
1287 
1288 	if (mdp->cd->set_rate)
1289 		mdp->cd->set_rate(ndev);
1290 
1291 	/* E-MAC Status Register clear */
1292 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1293 
1294 	/* E-MAC Interrupt Enable register */
1295 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1296 
1297 	/* Set MAC address */
1298 	update_mac_address(ndev);
1299 
1300 	/* mask reset */
1301 	if (mdp->cd->apr)
1302 		sh_eth_write(ndev, APR_AP, APR);
1303 	if (mdp->cd->mpr)
1304 		sh_eth_write(ndev, MPR_MP, MPR);
1305 	if (mdp->cd->tpauser)
1306 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1307 
1308 	/* Setting the Rx mode will start the Rx process. */
1309 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1310 
1311 	return ret;
1312 }
1313 
1314 static void sh_eth_dev_exit(struct net_device *ndev)
1315 {
1316 	struct sh_eth_private *mdp = netdev_priv(ndev);
1317 	int i;
1318 
1319 	/* Deactivate all TX descriptors, so DMA should stop at next
1320 	 * packet boundary if it's currently running
1321 	 */
1322 	for (i = 0; i < mdp->num_tx_ring; i++)
1323 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1324 
1325 	/* Disable TX FIFO egress to MAC */
1326 	sh_eth_rcv_snd_disable(ndev);
1327 
1328 	/* Stop RX DMA at next packet boundary */
1329 	sh_eth_write(ndev, 0, EDRRR);
1330 
1331 	/* Aside from TX DMA, we can't tell when the hardware is
1332 	 * really stopped, so we need to reset to make sure.
1333 	 * Before doing that, wait for long enough to *probably*
1334 	 * finish transmitting the last packet and poll stats.
1335 	 */
1336 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1337 	sh_eth_get_stats(ndev);
1338 	sh_eth_reset(ndev);
1339 
1340 	/* Set MAC address again */
1341 	update_mac_address(ndev);
1342 }
1343 
1344 /* free Tx skb function */
1345 static int sh_eth_txfree(struct net_device *ndev)
1346 {
1347 	struct sh_eth_private *mdp = netdev_priv(ndev);
1348 	struct sh_eth_txdesc *txdesc;
1349 	int free_num = 0;
1350 	int entry;
1351 
1352 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1353 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1354 		txdesc = &mdp->tx_ring[entry];
1355 		if (txdesc->status & cpu_to_le32(TD_TACT))
1356 			break;
1357 		/* TACT bit must be checked before all the following reads */
1358 		dma_rmb();
1359 		netif_info(mdp, tx_done, ndev,
1360 			   "tx entry %d status 0x%08x\n",
1361 			   entry, le32_to_cpu(txdesc->status));
1362 		/* Free the original skb. */
1363 		if (mdp->tx_skbuff[entry]) {
1364 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1365 					 le32_to_cpu(txdesc->len) >> 16,
1366 					 DMA_TO_DEVICE);
1367 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1368 			mdp->tx_skbuff[entry] = NULL;
1369 			free_num++;
1370 		}
1371 		txdesc->status = cpu_to_le32(TD_TFP);
1372 		if (entry >= mdp->num_tx_ring - 1)
1373 			txdesc->status |= cpu_to_le32(TD_TDLE);
1374 
1375 		ndev->stats.tx_packets++;
1376 		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1377 	}
1378 	return free_num;
1379 }
1380 
1381 /* Packet receive function */
1382 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1383 {
1384 	struct sh_eth_private *mdp = netdev_priv(ndev);
1385 	struct sh_eth_rxdesc *rxdesc;
1386 
1387 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1388 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1389 	int limit;
1390 	struct sk_buff *skb;
1391 	u32 desc_status;
1392 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1393 	dma_addr_t dma_addr;
1394 	u16 pkt_len;
1395 	u32 buf_len;
1396 
1397 	boguscnt = min(boguscnt, *quota);
1398 	limit = boguscnt;
1399 	rxdesc = &mdp->rx_ring[entry];
1400 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1401 		/* RACT bit must be checked before all the following reads */
1402 		dma_rmb();
1403 		desc_status = le32_to_cpu(rxdesc->status);
1404 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1405 
1406 		if (--boguscnt < 0)
1407 			break;
1408 
1409 		netif_info(mdp, rx_status, ndev,
1410 			   "rx entry %d status 0x%08x len %d\n",
1411 			   entry, desc_status, pkt_len);
1412 
1413 		if (!(desc_status & RDFEND))
1414 			ndev->stats.rx_length_errors++;
1415 
1416 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1417 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1418 		 * bit 0. However, in case of the R8A7740 and R7S72100
1419 		 * the RFS bits are from bit 25 to bit 16. So, the
1420 		 * driver needs right shifting by 16.
1421 		 */
1422 		if (mdp->cd->shift_rd0)
1423 			desc_status >>= 16;
1424 
1425 		skb = mdp->rx_skbuff[entry];
1426 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1427 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1428 			ndev->stats.rx_errors++;
1429 			if (desc_status & RD_RFS1)
1430 				ndev->stats.rx_crc_errors++;
1431 			if (desc_status & RD_RFS2)
1432 				ndev->stats.rx_frame_errors++;
1433 			if (desc_status & RD_RFS3)
1434 				ndev->stats.rx_length_errors++;
1435 			if (desc_status & RD_RFS4)
1436 				ndev->stats.rx_length_errors++;
1437 			if (desc_status & RD_RFS6)
1438 				ndev->stats.rx_missed_errors++;
1439 			if (desc_status & RD_RFS10)
1440 				ndev->stats.rx_over_errors++;
1441 		} else	if (skb) {
1442 			dma_addr = le32_to_cpu(rxdesc->addr);
1443 			if (!mdp->cd->hw_swap)
1444 				sh_eth_soft_swap(
1445 					phys_to_virt(ALIGN(dma_addr, 4)),
1446 					pkt_len + 2);
1447 			mdp->rx_skbuff[entry] = NULL;
1448 			if (mdp->cd->rpadir)
1449 				skb_reserve(skb, NET_IP_ALIGN);
1450 			dma_unmap_single(&ndev->dev, dma_addr,
1451 					 ALIGN(mdp->rx_buf_sz, 32),
1452 					 DMA_FROM_DEVICE);
1453 			skb_put(skb, pkt_len);
1454 			skb->protocol = eth_type_trans(skb, ndev);
1455 			netif_receive_skb(skb);
1456 			ndev->stats.rx_packets++;
1457 			ndev->stats.rx_bytes += pkt_len;
1458 			if (desc_status & RD_RFS8)
1459 				ndev->stats.multicast++;
1460 		}
1461 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1462 		rxdesc = &mdp->rx_ring[entry];
1463 	}
1464 
1465 	/* Refill the Rx ring buffers. */
1466 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1467 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1468 		rxdesc = &mdp->rx_ring[entry];
1469 		/* The size of the buffer is 32 byte boundary. */
1470 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1471 		rxdesc->len = cpu_to_le32(buf_len << 16);
1472 
1473 		if (mdp->rx_skbuff[entry] == NULL) {
1474 			skb = netdev_alloc_skb(ndev, skbuff_size);
1475 			if (skb == NULL)
1476 				break;	/* Better luck next round. */
1477 			sh_eth_set_receive_align(skb);
1478 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1479 						  buf_len, DMA_FROM_DEVICE);
1480 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1481 				kfree_skb(skb);
1482 				break;
1483 			}
1484 			mdp->rx_skbuff[entry] = skb;
1485 
1486 			skb_checksum_none_assert(skb);
1487 			rxdesc->addr = cpu_to_le32(dma_addr);
1488 		}
1489 		dma_wmb(); /* RACT bit must be set after all the above writes */
1490 		if (entry >= mdp->num_rx_ring - 1)
1491 			rxdesc->status |=
1492 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1493 		else
1494 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1495 	}
1496 
1497 	/* Restart Rx engine if stopped. */
1498 	/* If we don't need to check status, don't. -KDU */
1499 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1500 		/* fix the values for the next receiving if RDE is set */
1501 		if (intr_status & EESR_RDE &&
1502 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1503 			u32 count = (sh_eth_read(ndev, RDFAR) -
1504 				     sh_eth_read(ndev, RDLAR)) >> 4;
1505 
1506 			mdp->cur_rx = count;
1507 			mdp->dirty_rx = count;
1508 		}
1509 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1510 	}
1511 
1512 	*quota -= limit - boguscnt - 1;
1513 
1514 	return *quota <= 0;
1515 }
1516 
1517 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1518 {
1519 	/* disable tx and rx */
1520 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1521 }
1522 
1523 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1524 {
1525 	/* enable tx and rx */
1526 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1527 }
1528 
1529 /* error control function */
1530 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1531 {
1532 	struct sh_eth_private *mdp = netdev_priv(ndev);
1533 	u32 felic_stat;
1534 	u32 link_stat;
1535 	u32 mask;
1536 
1537 	if (intr_status & EESR_ECI) {
1538 		felic_stat = sh_eth_read(ndev, ECSR);
1539 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1540 		if (felic_stat & ECSR_ICD)
1541 			ndev->stats.tx_carrier_errors++;
1542 		if (felic_stat & ECSR_LCHNG) {
1543 			/* Link Changed */
1544 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1545 				goto ignore_link;
1546 			} else {
1547 				link_stat = (sh_eth_read(ndev, PSR));
1548 				if (mdp->ether_link_active_low)
1549 					link_stat = ~link_stat;
1550 			}
1551 			if (!(link_stat & PHY_ST_LINK)) {
1552 				sh_eth_rcv_snd_disable(ndev);
1553 			} else {
1554 				/* Link Up */
1555 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1556 				/* clear int */
1557 				sh_eth_modify(ndev, ECSR, 0, 0);
1558 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1559 					      DMAC_M_ECI);
1560 				/* enable tx and rx */
1561 				sh_eth_rcv_snd_enable(ndev);
1562 			}
1563 		}
1564 	}
1565 
1566 ignore_link:
1567 	if (intr_status & EESR_TWB) {
1568 		/* Unused write back interrupt */
1569 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1570 			ndev->stats.tx_aborted_errors++;
1571 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1572 		}
1573 	}
1574 
1575 	if (intr_status & EESR_RABT) {
1576 		/* Receive Abort int */
1577 		if (intr_status & EESR_RFRMER) {
1578 			/* Receive Frame Overflow int */
1579 			ndev->stats.rx_frame_errors++;
1580 		}
1581 	}
1582 
1583 	if (intr_status & EESR_TDE) {
1584 		/* Transmit Descriptor Empty int */
1585 		ndev->stats.tx_fifo_errors++;
1586 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1587 	}
1588 
1589 	if (intr_status & EESR_TFE) {
1590 		/* FIFO under flow */
1591 		ndev->stats.tx_fifo_errors++;
1592 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1593 	}
1594 
1595 	if (intr_status & EESR_RDE) {
1596 		/* Receive Descriptor Empty int */
1597 		ndev->stats.rx_over_errors++;
1598 	}
1599 
1600 	if (intr_status & EESR_RFE) {
1601 		/* Receive FIFO Overflow int */
1602 		ndev->stats.rx_fifo_errors++;
1603 	}
1604 
1605 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1606 		/* Address Error */
1607 		ndev->stats.tx_fifo_errors++;
1608 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1609 	}
1610 
1611 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1612 	if (mdp->cd->no_ade)
1613 		mask &= ~EESR_ADE;
1614 	if (intr_status & mask) {
1615 		/* Tx error */
1616 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1617 
1618 		/* dmesg */
1619 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1620 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1621 			   (u32)ndev->state, edtrr);
1622 		/* dirty buffer free */
1623 		sh_eth_txfree(ndev);
1624 
1625 		/* SH7712 BUG */
1626 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1627 			/* tx dma start */
1628 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1629 		}
1630 		/* wakeup */
1631 		netif_wake_queue(ndev);
1632 	}
1633 }
1634 
1635 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1636 {
1637 	struct net_device *ndev = netdev;
1638 	struct sh_eth_private *mdp = netdev_priv(ndev);
1639 	struct sh_eth_cpu_data *cd = mdp->cd;
1640 	irqreturn_t ret = IRQ_NONE;
1641 	u32 intr_status, intr_enable;
1642 
1643 	spin_lock(&mdp->lock);
1644 
1645 	/* Get interrupt status */
1646 	intr_status = sh_eth_read(ndev, EESR);
1647 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1648 	 * enabled since it's the one that  comes thru regardless of the mask,
1649 	 * and we need to fully handle it in sh_eth_error() in order to quench
1650 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1651 	 */
1652 	intr_enable = sh_eth_read(ndev, EESIPR);
1653 	intr_status &= intr_enable | DMAC_M_ECI;
1654 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1655 		ret = IRQ_HANDLED;
1656 	else
1657 		goto out;
1658 
1659 	if (!likely(mdp->irq_enabled)) {
1660 		sh_eth_write(ndev, 0, EESIPR);
1661 		goto out;
1662 	}
1663 
1664 	if (intr_status & EESR_RX_CHECK) {
1665 		if (napi_schedule_prep(&mdp->napi)) {
1666 			/* Mask Rx interrupts */
1667 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1668 				     EESIPR);
1669 			__napi_schedule(&mdp->napi);
1670 		} else {
1671 			netdev_warn(ndev,
1672 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1673 				    intr_status, intr_enable);
1674 		}
1675 	}
1676 
1677 	/* Tx Check */
1678 	if (intr_status & cd->tx_check) {
1679 		/* Clear Tx interrupts */
1680 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1681 
1682 		sh_eth_txfree(ndev);
1683 		netif_wake_queue(ndev);
1684 	}
1685 
1686 	if (intr_status & cd->eesr_err_check) {
1687 		/* Clear error interrupts */
1688 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1689 
1690 		sh_eth_error(ndev, intr_status);
1691 	}
1692 
1693 out:
1694 	spin_unlock(&mdp->lock);
1695 
1696 	return ret;
1697 }
1698 
1699 static int sh_eth_poll(struct napi_struct *napi, int budget)
1700 {
1701 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1702 						  napi);
1703 	struct net_device *ndev = napi->dev;
1704 	int quota = budget;
1705 	u32 intr_status;
1706 
1707 	for (;;) {
1708 		intr_status = sh_eth_read(ndev, EESR);
1709 		if (!(intr_status & EESR_RX_CHECK))
1710 			break;
1711 		/* Clear Rx interrupts */
1712 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1713 
1714 		if (sh_eth_rx(ndev, intr_status, &quota))
1715 			goto out;
1716 	}
1717 
1718 	napi_complete(napi);
1719 
1720 	/* Reenable Rx interrupts */
1721 	if (mdp->irq_enabled)
1722 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1723 out:
1724 	return budget - quota;
1725 }
1726 
1727 /* PHY state control function */
1728 static void sh_eth_adjust_link(struct net_device *ndev)
1729 {
1730 	struct sh_eth_private *mdp = netdev_priv(ndev);
1731 	struct phy_device *phydev = ndev->phydev;
1732 	int new_state = 0;
1733 
1734 	if (phydev->link) {
1735 		if (phydev->duplex != mdp->duplex) {
1736 			new_state = 1;
1737 			mdp->duplex = phydev->duplex;
1738 			if (mdp->cd->set_duplex)
1739 				mdp->cd->set_duplex(ndev);
1740 		}
1741 
1742 		if (phydev->speed != mdp->speed) {
1743 			new_state = 1;
1744 			mdp->speed = phydev->speed;
1745 			if (mdp->cd->set_rate)
1746 				mdp->cd->set_rate(ndev);
1747 		}
1748 		if (!mdp->link) {
1749 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1750 			new_state = 1;
1751 			mdp->link = phydev->link;
1752 			if (mdp->cd->no_psr || mdp->no_ether_link)
1753 				sh_eth_rcv_snd_enable(ndev);
1754 		}
1755 	} else if (mdp->link) {
1756 		new_state = 1;
1757 		mdp->link = 0;
1758 		mdp->speed = 0;
1759 		mdp->duplex = -1;
1760 		if (mdp->cd->no_psr || mdp->no_ether_link)
1761 			sh_eth_rcv_snd_disable(ndev);
1762 	}
1763 
1764 	if (new_state && netif_msg_link(mdp))
1765 		phy_print_status(phydev);
1766 }
1767 
1768 /* PHY init function */
1769 static int sh_eth_phy_init(struct net_device *ndev)
1770 {
1771 	struct device_node *np = ndev->dev.parent->of_node;
1772 	struct sh_eth_private *mdp = netdev_priv(ndev);
1773 	struct phy_device *phydev;
1774 
1775 	mdp->link = 0;
1776 	mdp->speed = 0;
1777 	mdp->duplex = -1;
1778 
1779 	/* Try connect to PHY */
1780 	if (np) {
1781 		struct device_node *pn;
1782 
1783 		pn = of_parse_phandle(np, "phy-handle", 0);
1784 		phydev = of_phy_connect(ndev, pn,
1785 					sh_eth_adjust_link, 0,
1786 					mdp->phy_interface);
1787 
1788 		of_node_put(pn);
1789 		if (!phydev)
1790 			phydev = ERR_PTR(-ENOENT);
1791 	} else {
1792 		char phy_id[MII_BUS_ID_SIZE + 3];
1793 
1794 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1795 			 mdp->mii_bus->id, mdp->phy_id);
1796 
1797 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1798 				     mdp->phy_interface);
1799 	}
1800 
1801 	if (IS_ERR(phydev)) {
1802 		netdev_err(ndev, "failed to connect PHY\n");
1803 		return PTR_ERR(phydev);
1804 	}
1805 
1806 	phy_attached_info(phydev);
1807 
1808 	return 0;
1809 }
1810 
1811 /* PHY control start function */
1812 static int sh_eth_phy_start(struct net_device *ndev)
1813 {
1814 	int ret;
1815 
1816 	ret = sh_eth_phy_init(ndev);
1817 	if (ret)
1818 		return ret;
1819 
1820 	phy_start(ndev->phydev);
1821 
1822 	return 0;
1823 }
1824 
1825 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1826 				     struct ethtool_link_ksettings *cmd)
1827 {
1828 	struct sh_eth_private *mdp = netdev_priv(ndev);
1829 	unsigned long flags;
1830 	int ret;
1831 
1832 	if (!ndev->phydev)
1833 		return -ENODEV;
1834 
1835 	spin_lock_irqsave(&mdp->lock, flags);
1836 	ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1837 	spin_unlock_irqrestore(&mdp->lock, flags);
1838 
1839 	return ret;
1840 }
1841 
1842 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1843 				     const struct ethtool_link_ksettings *cmd)
1844 {
1845 	struct sh_eth_private *mdp = netdev_priv(ndev);
1846 	unsigned long flags;
1847 	int ret;
1848 
1849 	if (!ndev->phydev)
1850 		return -ENODEV;
1851 
1852 	spin_lock_irqsave(&mdp->lock, flags);
1853 
1854 	/* disable tx and rx */
1855 	sh_eth_rcv_snd_disable(ndev);
1856 
1857 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1858 	if (ret)
1859 		goto error_exit;
1860 
1861 	if (cmd->base.duplex == DUPLEX_FULL)
1862 		mdp->duplex = 1;
1863 	else
1864 		mdp->duplex = 0;
1865 
1866 	if (mdp->cd->set_duplex)
1867 		mdp->cd->set_duplex(ndev);
1868 
1869 error_exit:
1870 	mdelay(1);
1871 
1872 	/* enable tx and rx */
1873 	sh_eth_rcv_snd_enable(ndev);
1874 
1875 	spin_unlock_irqrestore(&mdp->lock, flags);
1876 
1877 	return ret;
1878 }
1879 
1880 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1881  * version must be bumped as well.  Just adding registers up to that
1882  * limit is fine, as long as the existing register indices don't
1883  * change.
1884  */
1885 #define SH_ETH_REG_DUMP_VERSION		1
1886 #define SH_ETH_REG_DUMP_MAX_REGS	256
1887 
1888 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1889 {
1890 	struct sh_eth_private *mdp = netdev_priv(ndev);
1891 	struct sh_eth_cpu_data *cd = mdp->cd;
1892 	u32 *valid_map;
1893 	size_t len;
1894 
1895 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1896 
1897 	/* Dump starts with a bitmap that tells ethtool which
1898 	 * registers are defined for this chip.
1899 	 */
1900 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1901 	if (buf) {
1902 		valid_map = buf;
1903 		buf += len;
1904 	} else {
1905 		valid_map = NULL;
1906 	}
1907 
1908 	/* Add a register to the dump, if it has a defined offset.
1909 	 * This automatically skips most undefined registers, but for
1910 	 * some it is also necessary to check a capability flag in
1911 	 * struct sh_eth_cpu_data.
1912 	 */
1913 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1914 #define add_reg_from(reg, read_expr) do {				\
1915 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1916 			if (buf) {					\
1917 				mark_reg_valid(reg);			\
1918 				*buf++ = read_expr;			\
1919 			}						\
1920 			++len;						\
1921 		}							\
1922 	} while (0)
1923 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1924 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1925 
1926 	add_reg(EDSR);
1927 	add_reg(EDMR);
1928 	add_reg(EDTRR);
1929 	add_reg(EDRRR);
1930 	add_reg(EESR);
1931 	add_reg(EESIPR);
1932 	add_reg(TDLAR);
1933 	add_reg(TDFAR);
1934 	add_reg(TDFXR);
1935 	add_reg(TDFFR);
1936 	add_reg(RDLAR);
1937 	add_reg(RDFAR);
1938 	add_reg(RDFXR);
1939 	add_reg(RDFFR);
1940 	add_reg(TRSCER);
1941 	add_reg(RMFCR);
1942 	add_reg(TFTR);
1943 	add_reg(FDR);
1944 	add_reg(RMCR);
1945 	add_reg(TFUCR);
1946 	add_reg(RFOCR);
1947 	if (cd->rmiimode)
1948 		add_reg(RMIIMODE);
1949 	add_reg(FCFTR);
1950 	if (cd->rpadir)
1951 		add_reg(RPADIR);
1952 	if (!cd->no_trimd)
1953 		add_reg(TRIMD);
1954 	add_reg(ECMR);
1955 	add_reg(ECSR);
1956 	add_reg(ECSIPR);
1957 	add_reg(PIR);
1958 	if (!cd->no_psr)
1959 		add_reg(PSR);
1960 	add_reg(RDMLR);
1961 	add_reg(RFLR);
1962 	add_reg(IPGR);
1963 	if (cd->apr)
1964 		add_reg(APR);
1965 	if (cd->mpr)
1966 		add_reg(MPR);
1967 	add_reg(RFCR);
1968 	add_reg(RFCF);
1969 	if (cd->tpauser)
1970 		add_reg(TPAUSER);
1971 	add_reg(TPAUSECR);
1972 	add_reg(GECMR);
1973 	if (cd->bculr)
1974 		add_reg(BCULR);
1975 	add_reg(MAHR);
1976 	add_reg(MALR);
1977 	add_reg(TROCR);
1978 	add_reg(CDCR);
1979 	add_reg(LCCR);
1980 	add_reg(CNDCR);
1981 	add_reg(CEFCR);
1982 	add_reg(FRECR);
1983 	add_reg(TSFRCR);
1984 	add_reg(TLFRCR);
1985 	add_reg(CERCR);
1986 	add_reg(CEECR);
1987 	add_reg(MAFCR);
1988 	if (cd->rtrate)
1989 		add_reg(RTRATE);
1990 	if (cd->hw_crc)
1991 		add_reg(CSMR);
1992 	if (cd->select_mii)
1993 		add_reg(RMII_MII);
1994 	add_reg(ARSTR);
1995 	if (cd->tsu) {
1996 		add_tsu_reg(TSU_CTRST);
1997 		add_tsu_reg(TSU_FWEN0);
1998 		add_tsu_reg(TSU_FWEN1);
1999 		add_tsu_reg(TSU_FCM);
2000 		add_tsu_reg(TSU_BSYSL0);
2001 		add_tsu_reg(TSU_BSYSL1);
2002 		add_tsu_reg(TSU_PRISL0);
2003 		add_tsu_reg(TSU_PRISL1);
2004 		add_tsu_reg(TSU_FWSL0);
2005 		add_tsu_reg(TSU_FWSL1);
2006 		add_tsu_reg(TSU_FWSLC);
2007 		add_tsu_reg(TSU_QTAG0);
2008 		add_tsu_reg(TSU_QTAG1);
2009 		add_tsu_reg(TSU_QTAGM0);
2010 		add_tsu_reg(TSU_QTAGM1);
2011 		add_tsu_reg(TSU_FWSR);
2012 		add_tsu_reg(TSU_FWINMK);
2013 		add_tsu_reg(TSU_ADQT0);
2014 		add_tsu_reg(TSU_ADQT1);
2015 		add_tsu_reg(TSU_VTAG0);
2016 		add_tsu_reg(TSU_VTAG1);
2017 		add_tsu_reg(TSU_ADSBSY);
2018 		add_tsu_reg(TSU_TEN);
2019 		add_tsu_reg(TSU_POST1);
2020 		add_tsu_reg(TSU_POST2);
2021 		add_tsu_reg(TSU_POST3);
2022 		add_tsu_reg(TSU_POST4);
2023 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2024 			/* This is the start of a table, not just a single
2025 			 * register.
2026 			 */
2027 			if (buf) {
2028 				unsigned int i;
2029 
2030 				mark_reg_valid(TSU_ADRH0);
2031 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2032 					*buf++ = ioread32(
2033 						mdp->tsu_addr +
2034 						mdp->reg_offset[TSU_ADRH0] +
2035 						i * 4);
2036 			}
2037 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2038 		}
2039 	}
2040 
2041 #undef mark_reg_valid
2042 #undef add_reg_from
2043 #undef add_reg
2044 #undef add_tsu_reg
2045 
2046 	return len * 4;
2047 }
2048 
2049 static int sh_eth_get_regs_len(struct net_device *ndev)
2050 {
2051 	return __sh_eth_get_regs(ndev, NULL);
2052 }
2053 
2054 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2055 			    void *buf)
2056 {
2057 	struct sh_eth_private *mdp = netdev_priv(ndev);
2058 
2059 	regs->version = SH_ETH_REG_DUMP_VERSION;
2060 
2061 	pm_runtime_get_sync(&mdp->pdev->dev);
2062 	__sh_eth_get_regs(ndev, buf);
2063 	pm_runtime_put_sync(&mdp->pdev->dev);
2064 }
2065 
2066 static int sh_eth_nway_reset(struct net_device *ndev)
2067 {
2068 	struct sh_eth_private *mdp = netdev_priv(ndev);
2069 	unsigned long flags;
2070 	int ret;
2071 
2072 	if (!ndev->phydev)
2073 		return -ENODEV;
2074 
2075 	spin_lock_irqsave(&mdp->lock, flags);
2076 	ret = phy_start_aneg(ndev->phydev);
2077 	spin_unlock_irqrestore(&mdp->lock, flags);
2078 
2079 	return ret;
2080 }
2081 
2082 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2083 {
2084 	struct sh_eth_private *mdp = netdev_priv(ndev);
2085 	return mdp->msg_enable;
2086 }
2087 
2088 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2089 {
2090 	struct sh_eth_private *mdp = netdev_priv(ndev);
2091 	mdp->msg_enable = value;
2092 }
2093 
2094 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2095 	"rx_current", "tx_current",
2096 	"rx_dirty", "tx_dirty",
2097 };
2098 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2099 
2100 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2101 {
2102 	switch (sset) {
2103 	case ETH_SS_STATS:
2104 		return SH_ETH_STATS_LEN;
2105 	default:
2106 		return -EOPNOTSUPP;
2107 	}
2108 }
2109 
2110 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2111 				     struct ethtool_stats *stats, u64 *data)
2112 {
2113 	struct sh_eth_private *mdp = netdev_priv(ndev);
2114 	int i = 0;
2115 
2116 	/* device-specific stats */
2117 	data[i++] = mdp->cur_rx;
2118 	data[i++] = mdp->cur_tx;
2119 	data[i++] = mdp->dirty_rx;
2120 	data[i++] = mdp->dirty_tx;
2121 }
2122 
2123 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2124 {
2125 	switch (stringset) {
2126 	case ETH_SS_STATS:
2127 		memcpy(data, *sh_eth_gstrings_stats,
2128 		       sizeof(sh_eth_gstrings_stats));
2129 		break;
2130 	}
2131 }
2132 
2133 static void sh_eth_get_ringparam(struct net_device *ndev,
2134 				 struct ethtool_ringparam *ring)
2135 {
2136 	struct sh_eth_private *mdp = netdev_priv(ndev);
2137 
2138 	ring->rx_max_pending = RX_RING_MAX;
2139 	ring->tx_max_pending = TX_RING_MAX;
2140 	ring->rx_pending = mdp->num_rx_ring;
2141 	ring->tx_pending = mdp->num_tx_ring;
2142 }
2143 
2144 static int sh_eth_set_ringparam(struct net_device *ndev,
2145 				struct ethtool_ringparam *ring)
2146 {
2147 	struct sh_eth_private *mdp = netdev_priv(ndev);
2148 	int ret;
2149 
2150 	if (ring->tx_pending > TX_RING_MAX ||
2151 	    ring->rx_pending > RX_RING_MAX ||
2152 	    ring->tx_pending < TX_RING_MIN ||
2153 	    ring->rx_pending < RX_RING_MIN)
2154 		return -EINVAL;
2155 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2156 		return -EINVAL;
2157 
2158 	if (netif_running(ndev)) {
2159 		netif_device_detach(ndev);
2160 		netif_tx_disable(ndev);
2161 
2162 		/* Serialise with the interrupt handler and NAPI, then
2163 		 * disable interrupts.  We have to clear the
2164 		 * irq_enabled flag first to ensure that interrupts
2165 		 * won't be re-enabled.
2166 		 */
2167 		mdp->irq_enabled = false;
2168 		synchronize_irq(ndev->irq);
2169 		napi_synchronize(&mdp->napi);
2170 		sh_eth_write(ndev, 0x0000, EESIPR);
2171 
2172 		sh_eth_dev_exit(ndev);
2173 
2174 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2175 		sh_eth_ring_free(ndev);
2176 	}
2177 
2178 	/* Set new parameters */
2179 	mdp->num_rx_ring = ring->rx_pending;
2180 	mdp->num_tx_ring = ring->tx_pending;
2181 
2182 	if (netif_running(ndev)) {
2183 		ret = sh_eth_ring_init(ndev);
2184 		if (ret < 0) {
2185 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2186 				   __func__);
2187 			return ret;
2188 		}
2189 		ret = sh_eth_dev_init(ndev);
2190 		if (ret < 0) {
2191 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2192 				   __func__);
2193 			return ret;
2194 		}
2195 
2196 		netif_device_attach(ndev);
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static const struct ethtool_ops sh_eth_ethtool_ops = {
2203 	.get_regs_len	= sh_eth_get_regs_len,
2204 	.get_regs	= sh_eth_get_regs,
2205 	.nway_reset	= sh_eth_nway_reset,
2206 	.get_msglevel	= sh_eth_get_msglevel,
2207 	.set_msglevel	= sh_eth_set_msglevel,
2208 	.get_link	= ethtool_op_get_link,
2209 	.get_strings	= sh_eth_get_strings,
2210 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2211 	.get_sset_count     = sh_eth_get_sset_count,
2212 	.get_ringparam	= sh_eth_get_ringparam,
2213 	.set_ringparam	= sh_eth_set_ringparam,
2214 	.get_link_ksettings = sh_eth_get_link_ksettings,
2215 	.set_link_ksettings = sh_eth_set_link_ksettings,
2216 };
2217 
2218 /* network device open function */
2219 static int sh_eth_open(struct net_device *ndev)
2220 {
2221 	struct sh_eth_private *mdp = netdev_priv(ndev);
2222 	int ret;
2223 
2224 	pm_runtime_get_sync(&mdp->pdev->dev);
2225 
2226 	napi_enable(&mdp->napi);
2227 
2228 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2229 			  mdp->cd->irq_flags, ndev->name, ndev);
2230 	if (ret) {
2231 		netdev_err(ndev, "Can not assign IRQ number\n");
2232 		goto out_napi_off;
2233 	}
2234 
2235 	/* Descriptor set */
2236 	ret = sh_eth_ring_init(ndev);
2237 	if (ret)
2238 		goto out_free_irq;
2239 
2240 	/* device init */
2241 	ret = sh_eth_dev_init(ndev);
2242 	if (ret)
2243 		goto out_free_irq;
2244 
2245 	/* PHY control start*/
2246 	ret = sh_eth_phy_start(ndev);
2247 	if (ret)
2248 		goto out_free_irq;
2249 
2250 	netif_start_queue(ndev);
2251 
2252 	mdp->is_opened = 1;
2253 
2254 	return ret;
2255 
2256 out_free_irq:
2257 	free_irq(ndev->irq, ndev);
2258 out_napi_off:
2259 	napi_disable(&mdp->napi);
2260 	pm_runtime_put_sync(&mdp->pdev->dev);
2261 	return ret;
2262 }
2263 
2264 /* Timeout function */
2265 static void sh_eth_tx_timeout(struct net_device *ndev)
2266 {
2267 	struct sh_eth_private *mdp = netdev_priv(ndev);
2268 	struct sh_eth_rxdesc *rxdesc;
2269 	int i;
2270 
2271 	netif_stop_queue(ndev);
2272 
2273 	netif_err(mdp, timer, ndev,
2274 		  "transmit timed out, status %8.8x, resetting...\n",
2275 		  sh_eth_read(ndev, EESR));
2276 
2277 	/* tx_errors count up */
2278 	ndev->stats.tx_errors++;
2279 
2280 	/* Free all the skbuffs in the Rx queue. */
2281 	for (i = 0; i < mdp->num_rx_ring; i++) {
2282 		rxdesc = &mdp->rx_ring[i];
2283 		rxdesc->status = cpu_to_le32(0);
2284 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2285 		dev_kfree_skb(mdp->rx_skbuff[i]);
2286 		mdp->rx_skbuff[i] = NULL;
2287 	}
2288 	for (i = 0; i < mdp->num_tx_ring; i++) {
2289 		dev_kfree_skb(mdp->tx_skbuff[i]);
2290 		mdp->tx_skbuff[i] = NULL;
2291 	}
2292 
2293 	/* device init */
2294 	sh_eth_dev_init(ndev);
2295 
2296 	netif_start_queue(ndev);
2297 }
2298 
2299 /* Packet transmit function */
2300 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2301 {
2302 	struct sh_eth_private *mdp = netdev_priv(ndev);
2303 	struct sh_eth_txdesc *txdesc;
2304 	dma_addr_t dma_addr;
2305 	u32 entry;
2306 	unsigned long flags;
2307 
2308 	spin_lock_irqsave(&mdp->lock, flags);
2309 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2310 		if (!sh_eth_txfree(ndev)) {
2311 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2312 			netif_stop_queue(ndev);
2313 			spin_unlock_irqrestore(&mdp->lock, flags);
2314 			return NETDEV_TX_BUSY;
2315 		}
2316 	}
2317 	spin_unlock_irqrestore(&mdp->lock, flags);
2318 
2319 	if (skb_put_padto(skb, ETH_ZLEN))
2320 		return NETDEV_TX_OK;
2321 
2322 	entry = mdp->cur_tx % mdp->num_tx_ring;
2323 	mdp->tx_skbuff[entry] = skb;
2324 	txdesc = &mdp->tx_ring[entry];
2325 	/* soft swap. */
2326 	if (!mdp->cd->hw_swap)
2327 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2328 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2329 				  DMA_TO_DEVICE);
2330 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2331 		kfree_skb(skb);
2332 		return NETDEV_TX_OK;
2333 	}
2334 	txdesc->addr = cpu_to_le32(dma_addr);
2335 	txdesc->len  = cpu_to_le32(skb->len << 16);
2336 
2337 	dma_wmb(); /* TACT bit must be set after all the above writes */
2338 	if (entry >= mdp->num_tx_ring - 1)
2339 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2340 	else
2341 		txdesc->status |= cpu_to_le32(TD_TACT);
2342 
2343 	mdp->cur_tx++;
2344 
2345 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2346 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2347 
2348 	return NETDEV_TX_OK;
2349 }
2350 
2351 /* The statistics registers have write-clear behaviour, which means we
2352  * will lose any increment between the read and write.  We mitigate
2353  * this by only clearing when we read a non-zero value, so we will
2354  * never falsely report a total of zero.
2355  */
2356 static void
2357 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2358 {
2359 	u32 delta = sh_eth_read(ndev, reg);
2360 
2361 	if (delta) {
2362 		*stat += delta;
2363 		sh_eth_write(ndev, 0, reg);
2364 	}
2365 }
2366 
2367 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2368 {
2369 	struct sh_eth_private *mdp = netdev_priv(ndev);
2370 
2371 	if (sh_eth_is_rz_fast_ether(mdp))
2372 		return &ndev->stats;
2373 
2374 	if (!mdp->is_opened)
2375 		return &ndev->stats;
2376 
2377 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2378 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2379 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2380 
2381 	if (sh_eth_is_gether(mdp)) {
2382 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2383 				   CERCR);
2384 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2385 				   CEECR);
2386 	} else {
2387 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2388 				   CNDCR);
2389 	}
2390 
2391 	return &ndev->stats;
2392 }
2393 
2394 /* device close function */
2395 static int sh_eth_close(struct net_device *ndev)
2396 {
2397 	struct sh_eth_private *mdp = netdev_priv(ndev);
2398 
2399 	netif_stop_queue(ndev);
2400 
2401 	/* Serialise with the interrupt handler and NAPI, then disable
2402 	 * interrupts.  We have to clear the irq_enabled flag first to
2403 	 * ensure that interrupts won't be re-enabled.
2404 	 */
2405 	mdp->irq_enabled = false;
2406 	synchronize_irq(ndev->irq);
2407 	napi_disable(&mdp->napi);
2408 	sh_eth_write(ndev, 0x0000, EESIPR);
2409 
2410 	sh_eth_dev_exit(ndev);
2411 
2412 	/* PHY Disconnect */
2413 	if (ndev->phydev) {
2414 		phy_stop(ndev->phydev);
2415 		phy_disconnect(ndev->phydev);
2416 	}
2417 
2418 	free_irq(ndev->irq, ndev);
2419 
2420 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2421 	sh_eth_ring_free(ndev);
2422 
2423 	pm_runtime_put_sync(&mdp->pdev->dev);
2424 
2425 	mdp->is_opened = 0;
2426 
2427 	return 0;
2428 }
2429 
2430 /* ioctl to device function */
2431 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2432 {
2433 	struct phy_device *phydev = ndev->phydev;
2434 
2435 	if (!netif_running(ndev))
2436 		return -EINVAL;
2437 
2438 	if (!phydev)
2439 		return -ENODEV;
2440 
2441 	return phy_mii_ioctl(phydev, rq, cmd);
2442 }
2443 
2444 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2445 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2446 					    int entry)
2447 {
2448 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2449 }
2450 
2451 static u32 sh_eth_tsu_get_post_mask(int entry)
2452 {
2453 	return 0x0f << (28 - ((entry % 8) * 4));
2454 }
2455 
2456 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2457 {
2458 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2459 }
2460 
2461 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2462 					     int entry)
2463 {
2464 	struct sh_eth_private *mdp = netdev_priv(ndev);
2465 	u32 tmp;
2466 	void *reg_offset;
2467 
2468 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2469 	tmp = ioread32(reg_offset);
2470 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2471 }
2472 
2473 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2474 					      int entry)
2475 {
2476 	struct sh_eth_private *mdp = netdev_priv(ndev);
2477 	u32 post_mask, ref_mask, tmp;
2478 	void *reg_offset;
2479 
2480 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2481 	post_mask = sh_eth_tsu_get_post_mask(entry);
2482 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2483 
2484 	tmp = ioread32(reg_offset);
2485 	iowrite32(tmp & ~post_mask, reg_offset);
2486 
2487 	/* If other port enables, the function returns "true" */
2488 	return tmp & ref_mask;
2489 }
2490 
2491 static int sh_eth_tsu_busy(struct net_device *ndev)
2492 {
2493 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2494 	struct sh_eth_private *mdp = netdev_priv(ndev);
2495 
2496 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2497 		udelay(10);
2498 		timeout--;
2499 		if (timeout <= 0) {
2500 			netdev_err(ndev, "%s: timeout\n", __func__);
2501 			return -ETIMEDOUT;
2502 		}
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2509 				  const u8 *addr)
2510 {
2511 	u32 val;
2512 
2513 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2514 	iowrite32(val, reg);
2515 	if (sh_eth_tsu_busy(ndev) < 0)
2516 		return -EBUSY;
2517 
2518 	val = addr[4] << 8 | addr[5];
2519 	iowrite32(val, reg + 4);
2520 	if (sh_eth_tsu_busy(ndev) < 0)
2521 		return -EBUSY;
2522 
2523 	return 0;
2524 }
2525 
2526 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2527 {
2528 	u32 val;
2529 
2530 	val = ioread32(reg);
2531 	addr[0] = (val >> 24) & 0xff;
2532 	addr[1] = (val >> 16) & 0xff;
2533 	addr[2] = (val >> 8) & 0xff;
2534 	addr[3] = val & 0xff;
2535 	val = ioread32(reg + 4);
2536 	addr[4] = (val >> 8) & 0xff;
2537 	addr[5] = val & 0xff;
2538 }
2539 
2540 
2541 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2542 {
2543 	struct sh_eth_private *mdp = netdev_priv(ndev);
2544 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2545 	int i;
2546 	u8 c_addr[ETH_ALEN];
2547 
2548 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2549 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2550 		if (ether_addr_equal(addr, c_addr))
2551 			return i;
2552 	}
2553 
2554 	return -ENOENT;
2555 }
2556 
2557 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2558 {
2559 	u8 blank[ETH_ALEN];
2560 	int entry;
2561 
2562 	memset(blank, 0, sizeof(blank));
2563 	entry = sh_eth_tsu_find_entry(ndev, blank);
2564 	return (entry < 0) ? -ENOMEM : entry;
2565 }
2566 
2567 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2568 					      int entry)
2569 {
2570 	struct sh_eth_private *mdp = netdev_priv(ndev);
2571 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2572 	int ret;
2573 	u8 blank[ETH_ALEN];
2574 
2575 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2576 			 ~(1 << (31 - entry)), TSU_TEN);
2577 
2578 	memset(blank, 0, sizeof(blank));
2579 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2580 	if (ret < 0)
2581 		return ret;
2582 	return 0;
2583 }
2584 
2585 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2586 {
2587 	struct sh_eth_private *mdp = netdev_priv(ndev);
2588 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2589 	int i, ret;
2590 
2591 	if (!mdp->cd->tsu)
2592 		return 0;
2593 
2594 	i = sh_eth_tsu_find_entry(ndev, addr);
2595 	if (i < 0) {
2596 		/* No entry found, create one */
2597 		i = sh_eth_tsu_find_empty(ndev);
2598 		if (i < 0)
2599 			return -ENOMEM;
2600 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2601 		if (ret < 0)
2602 			return ret;
2603 
2604 		/* Enable the entry */
2605 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2606 				 (1 << (31 - i)), TSU_TEN);
2607 	}
2608 
2609 	/* Entry found or created, enable POST */
2610 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2611 
2612 	return 0;
2613 }
2614 
2615 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2616 {
2617 	struct sh_eth_private *mdp = netdev_priv(ndev);
2618 	int i, ret;
2619 
2620 	if (!mdp->cd->tsu)
2621 		return 0;
2622 
2623 	i = sh_eth_tsu_find_entry(ndev, addr);
2624 	if (i) {
2625 		/* Entry found */
2626 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2627 			goto done;
2628 
2629 		/* Disable the entry if both ports was disabled */
2630 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2631 		if (ret < 0)
2632 			return ret;
2633 	}
2634 done:
2635 	return 0;
2636 }
2637 
2638 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2639 {
2640 	struct sh_eth_private *mdp = netdev_priv(ndev);
2641 	int i, ret;
2642 
2643 	if (!mdp->cd->tsu)
2644 		return 0;
2645 
2646 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2647 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2648 			continue;
2649 
2650 		/* Disable the entry if both ports was disabled */
2651 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2652 		if (ret < 0)
2653 			return ret;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2660 {
2661 	struct sh_eth_private *mdp = netdev_priv(ndev);
2662 	u8 addr[ETH_ALEN];
2663 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2664 	int i;
2665 
2666 	if (!mdp->cd->tsu)
2667 		return;
2668 
2669 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2670 		sh_eth_tsu_read_entry(reg_offset, addr);
2671 		if (is_multicast_ether_addr(addr))
2672 			sh_eth_tsu_del_entry(ndev, addr);
2673 	}
2674 }
2675 
2676 /* Update promiscuous flag and multicast filter */
2677 static void sh_eth_set_rx_mode(struct net_device *ndev)
2678 {
2679 	struct sh_eth_private *mdp = netdev_priv(ndev);
2680 	u32 ecmr_bits;
2681 	int mcast_all = 0;
2682 	unsigned long flags;
2683 
2684 	spin_lock_irqsave(&mdp->lock, flags);
2685 	/* Initial condition is MCT = 1, PRM = 0.
2686 	 * Depending on ndev->flags, set PRM or clear MCT
2687 	 */
2688 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2689 	if (mdp->cd->tsu)
2690 		ecmr_bits |= ECMR_MCT;
2691 
2692 	if (!(ndev->flags & IFF_MULTICAST)) {
2693 		sh_eth_tsu_purge_mcast(ndev);
2694 		mcast_all = 1;
2695 	}
2696 	if (ndev->flags & IFF_ALLMULTI) {
2697 		sh_eth_tsu_purge_mcast(ndev);
2698 		ecmr_bits &= ~ECMR_MCT;
2699 		mcast_all = 1;
2700 	}
2701 
2702 	if (ndev->flags & IFF_PROMISC) {
2703 		sh_eth_tsu_purge_all(ndev);
2704 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2705 	} else if (mdp->cd->tsu) {
2706 		struct netdev_hw_addr *ha;
2707 		netdev_for_each_mc_addr(ha, ndev) {
2708 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2709 				continue;
2710 
2711 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2712 				if (!mcast_all) {
2713 					sh_eth_tsu_purge_mcast(ndev);
2714 					ecmr_bits &= ~ECMR_MCT;
2715 					mcast_all = 1;
2716 				}
2717 			}
2718 		}
2719 	}
2720 
2721 	/* update the ethernet mode */
2722 	sh_eth_write(ndev, ecmr_bits, ECMR);
2723 
2724 	spin_unlock_irqrestore(&mdp->lock, flags);
2725 }
2726 
2727 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2728 {
2729 	if (!mdp->port)
2730 		return TSU_VTAG0;
2731 	else
2732 		return TSU_VTAG1;
2733 }
2734 
2735 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2736 				  __be16 proto, u16 vid)
2737 {
2738 	struct sh_eth_private *mdp = netdev_priv(ndev);
2739 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2740 
2741 	if (unlikely(!mdp->cd->tsu))
2742 		return -EPERM;
2743 
2744 	/* No filtering if vid = 0 */
2745 	if (!vid)
2746 		return 0;
2747 
2748 	mdp->vlan_num_ids++;
2749 
2750 	/* The controller has one VLAN tag HW filter. So, if the filter is
2751 	 * already enabled, the driver disables it and the filte
2752 	 */
2753 	if (mdp->vlan_num_ids > 1) {
2754 		/* disable VLAN filter */
2755 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2756 		return 0;
2757 	}
2758 
2759 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2760 			 vtag_reg_index);
2761 
2762 	return 0;
2763 }
2764 
2765 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2766 				   __be16 proto, u16 vid)
2767 {
2768 	struct sh_eth_private *mdp = netdev_priv(ndev);
2769 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2770 
2771 	if (unlikely(!mdp->cd->tsu))
2772 		return -EPERM;
2773 
2774 	/* No filtering if vid = 0 */
2775 	if (!vid)
2776 		return 0;
2777 
2778 	mdp->vlan_num_ids--;
2779 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2780 
2781 	return 0;
2782 }
2783 
2784 /* SuperH's TSU register init function */
2785 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2786 {
2787 	if (sh_eth_is_rz_fast_ether(mdp)) {
2788 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2789 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2790 				 TSU_FWSLC);	/* Enable POST registers */
2791 		return;
2792 	}
2793 
2794 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2795 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2796 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2797 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2798 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2799 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2800 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2801 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2802 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2803 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2804 	if (sh_eth_is_gether(mdp)) {
2805 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2806 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2807 	} else {
2808 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2809 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2810 	}
2811 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2812 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2813 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2814 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2815 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2816 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2817 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2818 }
2819 
2820 /* MDIO bus release function */
2821 static int sh_mdio_release(struct sh_eth_private *mdp)
2822 {
2823 	/* unregister mdio bus */
2824 	mdiobus_unregister(mdp->mii_bus);
2825 
2826 	/* free bitbang info */
2827 	free_mdio_bitbang(mdp->mii_bus);
2828 
2829 	return 0;
2830 }
2831 
2832 /* MDIO bus init function */
2833 static int sh_mdio_init(struct sh_eth_private *mdp,
2834 			struct sh_eth_plat_data *pd)
2835 {
2836 	int ret;
2837 	struct bb_info *bitbang;
2838 	struct platform_device *pdev = mdp->pdev;
2839 	struct device *dev = &mdp->pdev->dev;
2840 
2841 	/* create bit control struct for PHY */
2842 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2843 	if (!bitbang)
2844 		return -ENOMEM;
2845 
2846 	/* bitbang init */
2847 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2848 	bitbang->set_gate = pd->set_mdio_gate;
2849 	bitbang->ctrl.ops = &bb_ops;
2850 
2851 	/* MII controller setting */
2852 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2853 	if (!mdp->mii_bus)
2854 		return -ENOMEM;
2855 
2856 	/* Hook up MII support for ethtool */
2857 	mdp->mii_bus->name = "sh_mii";
2858 	mdp->mii_bus->parent = dev;
2859 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2860 		 pdev->name, pdev->id);
2861 
2862 	/* register MDIO bus */
2863 	if (dev->of_node) {
2864 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2865 	} else {
2866 		if (pd->phy_irq > 0)
2867 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2868 
2869 		ret = mdiobus_register(mdp->mii_bus);
2870 	}
2871 
2872 	if (ret)
2873 		goto out_free_bus;
2874 
2875 	return 0;
2876 
2877 out_free_bus:
2878 	free_mdio_bitbang(mdp->mii_bus);
2879 	return ret;
2880 }
2881 
2882 static const u16 *sh_eth_get_register_offset(int register_type)
2883 {
2884 	const u16 *reg_offset = NULL;
2885 
2886 	switch (register_type) {
2887 	case SH_ETH_REG_GIGABIT:
2888 		reg_offset = sh_eth_offset_gigabit;
2889 		break;
2890 	case SH_ETH_REG_FAST_RZ:
2891 		reg_offset = sh_eth_offset_fast_rz;
2892 		break;
2893 	case SH_ETH_REG_FAST_RCAR:
2894 		reg_offset = sh_eth_offset_fast_rcar;
2895 		break;
2896 	case SH_ETH_REG_FAST_SH4:
2897 		reg_offset = sh_eth_offset_fast_sh4;
2898 		break;
2899 	case SH_ETH_REG_FAST_SH3_SH2:
2900 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2901 		break;
2902 	}
2903 
2904 	return reg_offset;
2905 }
2906 
2907 static const struct net_device_ops sh_eth_netdev_ops = {
2908 	.ndo_open		= sh_eth_open,
2909 	.ndo_stop		= sh_eth_close,
2910 	.ndo_start_xmit		= sh_eth_start_xmit,
2911 	.ndo_get_stats		= sh_eth_get_stats,
2912 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2913 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2914 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2915 	.ndo_validate_addr	= eth_validate_addr,
2916 	.ndo_set_mac_address	= eth_mac_addr,
2917 	.ndo_change_mtu		= eth_change_mtu,
2918 };
2919 
2920 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2921 	.ndo_open		= sh_eth_open,
2922 	.ndo_stop		= sh_eth_close,
2923 	.ndo_start_xmit		= sh_eth_start_xmit,
2924 	.ndo_get_stats		= sh_eth_get_stats,
2925 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2926 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2927 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2928 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2929 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2930 	.ndo_validate_addr	= eth_validate_addr,
2931 	.ndo_set_mac_address	= eth_mac_addr,
2932 	.ndo_change_mtu		= eth_change_mtu,
2933 };
2934 
2935 #ifdef CONFIG_OF
2936 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2937 {
2938 	struct device_node *np = dev->of_node;
2939 	struct sh_eth_plat_data *pdata;
2940 	const char *mac_addr;
2941 
2942 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2943 	if (!pdata)
2944 		return NULL;
2945 
2946 	pdata->phy_interface = of_get_phy_mode(np);
2947 
2948 	mac_addr = of_get_mac_address(np);
2949 	if (mac_addr)
2950 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2951 
2952 	pdata->no_ether_link =
2953 		of_property_read_bool(np, "renesas,no-ether-link");
2954 	pdata->ether_link_active_low =
2955 		of_property_read_bool(np, "renesas,ether-link-active-low");
2956 
2957 	return pdata;
2958 }
2959 
2960 static const struct of_device_id sh_eth_match_table[] = {
2961 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2962 	{ .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
2963 	{ .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
2964 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2965 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2966 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2967 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2968 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2969 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2970 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2971 	{ }
2972 };
2973 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2974 #else
2975 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2976 {
2977 	return NULL;
2978 }
2979 #endif
2980 
2981 static int sh_eth_drv_probe(struct platform_device *pdev)
2982 {
2983 	struct resource *res;
2984 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2985 	const struct platform_device_id *id = platform_get_device_id(pdev);
2986 	struct sh_eth_private *mdp;
2987 	struct net_device *ndev;
2988 	int ret, devno;
2989 
2990 	/* get base addr */
2991 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2992 
2993 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2994 	if (!ndev)
2995 		return -ENOMEM;
2996 
2997 	pm_runtime_enable(&pdev->dev);
2998 	pm_runtime_get_sync(&pdev->dev);
2999 
3000 	devno = pdev->id;
3001 	if (devno < 0)
3002 		devno = 0;
3003 
3004 	ret = platform_get_irq(pdev, 0);
3005 	if (ret < 0)
3006 		goto out_release;
3007 	ndev->irq = ret;
3008 
3009 	SET_NETDEV_DEV(ndev, &pdev->dev);
3010 
3011 	mdp = netdev_priv(ndev);
3012 	mdp->num_tx_ring = TX_RING_SIZE;
3013 	mdp->num_rx_ring = RX_RING_SIZE;
3014 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3015 	if (IS_ERR(mdp->addr)) {
3016 		ret = PTR_ERR(mdp->addr);
3017 		goto out_release;
3018 	}
3019 
3020 	ndev->base_addr = res->start;
3021 
3022 	spin_lock_init(&mdp->lock);
3023 	mdp->pdev = pdev;
3024 
3025 	if (pdev->dev.of_node)
3026 		pd = sh_eth_parse_dt(&pdev->dev);
3027 	if (!pd) {
3028 		dev_err(&pdev->dev, "no platform data\n");
3029 		ret = -EINVAL;
3030 		goto out_release;
3031 	}
3032 
3033 	/* get PHY ID */
3034 	mdp->phy_id = pd->phy;
3035 	mdp->phy_interface = pd->phy_interface;
3036 	mdp->no_ether_link = pd->no_ether_link;
3037 	mdp->ether_link_active_low = pd->ether_link_active_low;
3038 
3039 	/* set cpu data */
3040 	if (id)
3041 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3042 	else
3043 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3044 
3045 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3046 	if (!mdp->reg_offset) {
3047 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3048 			mdp->cd->register_type);
3049 		ret = -EINVAL;
3050 		goto out_release;
3051 	}
3052 	sh_eth_set_default_cpu_data(mdp->cd);
3053 
3054 	/* set function */
3055 	if (mdp->cd->tsu)
3056 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3057 	else
3058 		ndev->netdev_ops = &sh_eth_netdev_ops;
3059 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3060 	ndev->watchdog_timeo = TX_TIMEOUT;
3061 
3062 	/* debug message level */
3063 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3064 
3065 	/* read and set MAC address */
3066 	read_mac_address(ndev, pd->mac_addr);
3067 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3068 		dev_warn(&pdev->dev,
3069 			 "no valid MAC address supplied, using a random one.\n");
3070 		eth_hw_addr_random(ndev);
3071 	}
3072 
3073 	/* ioremap the TSU registers */
3074 	if (mdp->cd->tsu) {
3075 		struct resource *rtsu;
3076 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3077 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3078 		if (IS_ERR(mdp->tsu_addr)) {
3079 			ret = PTR_ERR(mdp->tsu_addr);
3080 			goto out_release;
3081 		}
3082 		mdp->port = devno % 2;
3083 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3084 	}
3085 
3086 	/* initialize first or needed device */
3087 	if (!devno || pd->needs_init) {
3088 		if (mdp->cd->chip_reset)
3089 			mdp->cd->chip_reset(ndev);
3090 
3091 		if (mdp->cd->tsu) {
3092 			/* TSU init (Init only)*/
3093 			sh_eth_tsu_init(mdp);
3094 		}
3095 	}
3096 
3097 	if (mdp->cd->rmiimode)
3098 		sh_eth_write(ndev, 0x1, RMIIMODE);
3099 
3100 	/* MDIO bus init */
3101 	ret = sh_mdio_init(mdp, pd);
3102 	if (ret) {
3103 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3104 		goto out_release;
3105 	}
3106 
3107 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3108 
3109 	/* network device register */
3110 	ret = register_netdev(ndev);
3111 	if (ret)
3112 		goto out_napi_del;
3113 
3114 	/* print device information */
3115 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3116 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3117 
3118 	pm_runtime_put(&pdev->dev);
3119 	platform_set_drvdata(pdev, ndev);
3120 
3121 	return ret;
3122 
3123 out_napi_del:
3124 	netif_napi_del(&mdp->napi);
3125 	sh_mdio_release(mdp);
3126 
3127 out_release:
3128 	/* net_dev free */
3129 	if (ndev)
3130 		free_netdev(ndev);
3131 
3132 	pm_runtime_put(&pdev->dev);
3133 	pm_runtime_disable(&pdev->dev);
3134 	return ret;
3135 }
3136 
3137 static int sh_eth_drv_remove(struct platform_device *pdev)
3138 {
3139 	struct net_device *ndev = platform_get_drvdata(pdev);
3140 	struct sh_eth_private *mdp = netdev_priv(ndev);
3141 
3142 	unregister_netdev(ndev);
3143 	netif_napi_del(&mdp->napi);
3144 	sh_mdio_release(mdp);
3145 	pm_runtime_disable(&pdev->dev);
3146 	free_netdev(ndev);
3147 
3148 	return 0;
3149 }
3150 
3151 #ifdef CONFIG_PM
3152 #ifdef CONFIG_PM_SLEEP
3153 static int sh_eth_suspend(struct device *dev)
3154 {
3155 	struct net_device *ndev = dev_get_drvdata(dev);
3156 	int ret = 0;
3157 
3158 	if (netif_running(ndev)) {
3159 		netif_device_detach(ndev);
3160 		ret = sh_eth_close(ndev);
3161 	}
3162 
3163 	return ret;
3164 }
3165 
3166 static int sh_eth_resume(struct device *dev)
3167 {
3168 	struct net_device *ndev = dev_get_drvdata(dev);
3169 	int ret = 0;
3170 
3171 	if (netif_running(ndev)) {
3172 		ret = sh_eth_open(ndev);
3173 		if (ret < 0)
3174 			return ret;
3175 		netif_device_attach(ndev);
3176 	}
3177 
3178 	return ret;
3179 }
3180 #endif
3181 
3182 static int sh_eth_runtime_nop(struct device *dev)
3183 {
3184 	/* Runtime PM callback shared between ->runtime_suspend()
3185 	 * and ->runtime_resume(). Simply returns success.
3186 	 *
3187 	 * This driver re-initializes all registers after
3188 	 * pm_runtime_get_sync() anyway so there is no need
3189 	 * to save and restore registers here.
3190 	 */
3191 	return 0;
3192 }
3193 
3194 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3195 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3196 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3197 };
3198 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3199 #else
3200 #define SH_ETH_PM_OPS NULL
3201 #endif
3202 
3203 static struct platform_device_id sh_eth_id_table[] = {
3204 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3205 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3206 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3207 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3208 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3209 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3210 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3211 	{ }
3212 };
3213 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3214 
3215 static struct platform_driver sh_eth_driver = {
3216 	.probe = sh_eth_drv_probe,
3217 	.remove = sh_eth_drv_remove,
3218 	.id_table = sh_eth_id_table,
3219 	.driver = {
3220 		   .name = CARDNAME,
3221 		   .pm = SH_ETH_PM_OPS,
3222 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3223 	},
3224 };
3225 
3226 module_platform_driver(sh_eth_driver);
3227 
3228 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3229 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3230 MODULE_LICENSE("GPL v2");
3231