xref: /openbmc/linux/drivers/net/ethernet/renesas/sh_eth.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAG0]	= 0x0040,
127 	[TSU_QTAG1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
443 {
444 	return mdp->reg_offset == sh_eth_offset_gigabit;
445 }
446 
447 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
448 {
449 	return mdp->reg_offset == sh_eth_offset_fast_rz;
450 }
451 
452 static void sh_eth_select_mii(struct net_device *ndev)
453 {
454 	struct sh_eth_private *mdp = netdev_priv(ndev);
455 	u32 value;
456 
457 	switch (mdp->phy_interface) {
458 	case PHY_INTERFACE_MODE_GMII:
459 		value = 0x2;
460 		break;
461 	case PHY_INTERFACE_MODE_MII:
462 		value = 0x1;
463 		break;
464 	case PHY_INTERFACE_MODE_RMII:
465 		value = 0x0;
466 		break;
467 	default:
468 		netdev_warn(ndev,
469 			    "PHY interface mode was not setup. Set to MII.\n");
470 		value = 0x1;
471 		break;
472 	}
473 
474 	sh_eth_write(ndev, value, RMII_MII);
475 }
476 
477 static void sh_eth_set_duplex(struct net_device *ndev)
478 {
479 	struct sh_eth_private *mdp = netdev_priv(ndev);
480 
481 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
482 }
483 
484 static void sh_eth_chip_reset(struct net_device *ndev)
485 {
486 	struct sh_eth_private *mdp = netdev_priv(ndev);
487 
488 	/* reset device */
489 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
490 	mdelay(1);
491 }
492 
493 static void sh_eth_set_rate_gether(struct net_device *ndev)
494 {
495 	struct sh_eth_private *mdp = netdev_priv(ndev);
496 
497 	switch (mdp->speed) {
498 	case 10: /* 10BASE */
499 		sh_eth_write(ndev, GECMR_10, GECMR);
500 		break;
501 	case 100:/* 100BASE */
502 		sh_eth_write(ndev, GECMR_100, GECMR);
503 		break;
504 	case 1000: /* 1000BASE */
505 		sh_eth_write(ndev, GECMR_1000, GECMR);
506 		break;
507 	}
508 }
509 
510 #ifdef CONFIG_OF
511 /* R7S72100 */
512 static struct sh_eth_cpu_data r7s72100_data = {
513 	.chip_reset	= sh_eth_chip_reset,
514 	.set_duplex	= sh_eth_set_duplex,
515 
516 	.register_type	= SH_ETH_REG_FAST_RZ,
517 
518 	.ecsr_value	= ECSR_ICD,
519 	.ecsipr_value	= ECSIPR_ICDIP,
520 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
521 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
522 			  EESIPR_ECIIP |
523 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
524 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
525 			  EESIPR_RMAFIP | EESIPR_RRFIP |
526 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
527 			  EESIPR_PREIP | EESIPR_CERFIP,
528 
529 	.tx_check	= EESR_TC1 | EESR_FTC,
530 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
531 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
532 			  EESR_TDE,
533 	.fdr_value	= 0x0000070f,
534 
535 	.no_psr		= 1,
536 	.apr		= 1,
537 	.mpr		= 1,
538 	.tpauser	= 1,
539 	.hw_swap	= 1,
540 	.rpadir		= 1,
541 	.rpadir_value   = 2 << 16,
542 	.no_trimd	= 1,
543 	.no_ade		= 1,
544 	.hw_checksum	= 1,
545 	.tsu		= 1,
546 };
547 
548 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
549 {
550 	sh_eth_chip_reset(ndev);
551 
552 	sh_eth_select_mii(ndev);
553 }
554 
555 /* R8A7740 */
556 static struct sh_eth_cpu_data r8a7740_data = {
557 	.chip_reset	= sh_eth_chip_reset_r8a7740,
558 	.set_duplex	= sh_eth_set_duplex,
559 	.set_rate	= sh_eth_set_rate_gether,
560 
561 	.register_type	= SH_ETH_REG_GIGABIT,
562 
563 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
564 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
565 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
566 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
567 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
568 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
569 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
570 			  EESIPR_CEEFIP | EESIPR_CELFIP |
571 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
572 			  EESIPR_PREIP | EESIPR_CERFIP,
573 
574 	.tx_check	= EESR_TC1 | EESR_FTC,
575 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
576 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
577 			  EESR_TDE,
578 	.fdr_value	= 0x0000070f,
579 
580 	.apr		= 1,
581 	.mpr		= 1,
582 	.tpauser	= 1,
583 	.bculr		= 1,
584 	.hw_swap	= 1,
585 	.rpadir		= 1,
586 	.rpadir_value   = 2 << 16,
587 	.no_trimd	= 1,
588 	.no_ade		= 1,
589 	.hw_checksum	= 1,
590 	.tsu		= 1,
591 	.select_mii	= 1,
592 	.magic		= 1,
593 };
594 
595 /* There is CPU dependent code */
596 static void sh_eth_set_rate_rcar(struct net_device *ndev)
597 {
598 	struct sh_eth_private *mdp = netdev_priv(ndev);
599 
600 	switch (mdp->speed) {
601 	case 10: /* 10BASE */
602 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
603 		break;
604 	case 100:/* 100BASE */
605 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
606 		break;
607 	}
608 }
609 
610 /* R-Car Gen1 */
611 static struct sh_eth_cpu_data rcar_gen1_data = {
612 	.set_duplex	= sh_eth_set_duplex,
613 	.set_rate	= sh_eth_set_rate_rcar,
614 
615 	.register_type	= SH_ETH_REG_FAST_RCAR,
616 
617 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
618 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
619 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
620 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
621 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
622 			  EESIPR_RMAFIP | EESIPR_RRFIP |
623 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
624 			  EESIPR_PREIP | EESIPR_CERFIP,
625 
626 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
627 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
628 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
629 	.fdr_value	= 0x00000f0f,
630 
631 	.apr		= 1,
632 	.mpr		= 1,
633 	.tpauser	= 1,
634 	.hw_swap	= 1,
635 };
636 
637 /* R-Car Gen2 and RZ/G1 */
638 static struct sh_eth_cpu_data rcar_gen2_data = {
639 	.set_duplex	= sh_eth_set_duplex,
640 	.set_rate	= sh_eth_set_rate_rcar,
641 
642 	.register_type	= SH_ETH_REG_FAST_RCAR,
643 
644 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
645 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
646 			  ECSIPR_MPDIP,
647 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
648 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
649 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
650 			  EESIPR_RMAFIP | EESIPR_RRFIP |
651 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
652 			  EESIPR_PREIP | EESIPR_CERFIP,
653 
654 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
655 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
656 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
657 	.fdr_value	= 0x00000f0f,
658 
659 	.trscer_err_mask = DESC_I_RINT8,
660 
661 	.apr		= 1,
662 	.mpr		= 1,
663 	.tpauser	= 1,
664 	.hw_swap	= 1,
665 	.rmiimode	= 1,
666 	.magic		= 1,
667 };
668 #endif /* CONFIG_OF */
669 
670 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
671 {
672 	struct sh_eth_private *mdp = netdev_priv(ndev);
673 
674 	switch (mdp->speed) {
675 	case 10: /* 10BASE */
676 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
677 		break;
678 	case 100:/* 100BASE */
679 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
680 		break;
681 	}
682 }
683 
684 /* SH7724 */
685 static struct sh_eth_cpu_data sh7724_data = {
686 	.set_duplex	= sh_eth_set_duplex,
687 	.set_rate	= sh_eth_set_rate_sh7724,
688 
689 	.register_type	= SH_ETH_REG_FAST_SH4,
690 
691 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
692 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
693 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
694 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
695 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
696 			  EESIPR_RMAFIP | EESIPR_RRFIP |
697 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
698 			  EESIPR_PREIP | EESIPR_CERFIP,
699 
700 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
701 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
702 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
703 
704 	.apr		= 1,
705 	.mpr		= 1,
706 	.tpauser	= 1,
707 	.hw_swap	= 1,
708 	.rpadir		= 1,
709 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
710 };
711 
712 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
713 {
714 	struct sh_eth_private *mdp = netdev_priv(ndev);
715 
716 	switch (mdp->speed) {
717 	case 10: /* 10BASE */
718 		sh_eth_write(ndev, 0, RTRATE);
719 		break;
720 	case 100:/* 100BASE */
721 		sh_eth_write(ndev, 1, RTRATE);
722 		break;
723 	}
724 }
725 
726 /* SH7757 */
727 static struct sh_eth_cpu_data sh7757_data = {
728 	.set_duplex	= sh_eth_set_duplex,
729 	.set_rate	= sh_eth_set_rate_sh7757,
730 
731 	.register_type	= SH_ETH_REG_FAST_SH4,
732 
733 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
734 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
735 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
736 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
737 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
738 			  EESIPR_CEEFIP | EESIPR_CELFIP |
739 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
740 			  EESIPR_PREIP | EESIPR_CERFIP,
741 
742 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
743 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
744 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
745 
746 	.irq_flags	= IRQF_SHARED,
747 	.apr		= 1,
748 	.mpr		= 1,
749 	.tpauser	= 1,
750 	.hw_swap	= 1,
751 	.no_ade		= 1,
752 	.rpadir		= 1,
753 	.rpadir_value   = 2 << 16,
754 	.rtrate		= 1,
755 };
756 
757 #define SH_GIGA_ETH_BASE	0xfee00000UL
758 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
759 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
760 static void sh_eth_chip_reset_giga(struct net_device *ndev)
761 {
762 	u32 mahr[2], malr[2];
763 	int i;
764 
765 	/* save MAHR and MALR */
766 	for (i = 0; i < 2; i++) {
767 		malr[i] = ioread32((void *)GIGA_MALR(i));
768 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
769 	}
770 
771 	sh_eth_chip_reset(ndev);
772 
773 	/* restore MAHR and MALR */
774 	for (i = 0; i < 2; i++) {
775 		iowrite32(malr[i], (void *)GIGA_MALR(i));
776 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
777 	}
778 }
779 
780 static void sh_eth_set_rate_giga(struct net_device *ndev)
781 {
782 	struct sh_eth_private *mdp = netdev_priv(ndev);
783 
784 	switch (mdp->speed) {
785 	case 10: /* 10BASE */
786 		sh_eth_write(ndev, 0x00000000, GECMR);
787 		break;
788 	case 100:/* 100BASE */
789 		sh_eth_write(ndev, 0x00000010, GECMR);
790 		break;
791 	case 1000: /* 1000BASE */
792 		sh_eth_write(ndev, 0x00000020, GECMR);
793 		break;
794 	}
795 }
796 
797 /* SH7757(GETHERC) */
798 static struct sh_eth_cpu_data sh7757_data_giga = {
799 	.chip_reset	= sh_eth_chip_reset_giga,
800 	.set_duplex	= sh_eth_set_duplex,
801 	.set_rate	= sh_eth_set_rate_giga,
802 
803 	.register_type	= SH_ETH_REG_GIGABIT,
804 
805 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
806 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
807 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
808 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
809 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
810 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
811 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
812 			  EESIPR_CEEFIP | EESIPR_CELFIP |
813 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
814 			  EESIPR_PREIP | EESIPR_CERFIP,
815 
816 	.tx_check	= EESR_TC1 | EESR_FTC,
817 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
818 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
819 			  EESR_TDE,
820 	.fdr_value	= 0x0000072f,
821 
822 	.irq_flags	= IRQF_SHARED,
823 	.apr		= 1,
824 	.mpr		= 1,
825 	.tpauser	= 1,
826 	.bculr		= 1,
827 	.hw_swap	= 1,
828 	.rpadir		= 1,
829 	.rpadir_value   = 2 << 16,
830 	.no_trimd	= 1,
831 	.no_ade		= 1,
832 	.tsu		= 1,
833 };
834 
835 /* SH7734 */
836 static struct sh_eth_cpu_data sh7734_data = {
837 	.chip_reset	= sh_eth_chip_reset,
838 	.set_duplex	= sh_eth_set_duplex,
839 	.set_rate	= sh_eth_set_rate_gether,
840 
841 	.register_type	= SH_ETH_REG_GIGABIT,
842 
843 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
844 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
845 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
846 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
847 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
848 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
849 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
850 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
851 			  EESIPR_PREIP | EESIPR_CERFIP,
852 
853 	.tx_check	= EESR_TC1 | EESR_FTC,
854 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
855 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
856 			  EESR_TDE,
857 
858 	.apr		= 1,
859 	.mpr		= 1,
860 	.tpauser	= 1,
861 	.bculr		= 1,
862 	.hw_swap	= 1,
863 	.no_trimd	= 1,
864 	.no_ade		= 1,
865 	.tsu		= 1,
866 	.hw_checksum	= 1,
867 	.select_mii	= 1,
868 	.magic		= 1,
869 };
870 
871 /* SH7763 */
872 static struct sh_eth_cpu_data sh7763_data = {
873 	.chip_reset	= sh_eth_chip_reset,
874 	.set_duplex	= sh_eth_set_duplex,
875 	.set_rate	= sh_eth_set_rate_gether,
876 
877 	.register_type	= SH_ETH_REG_GIGABIT,
878 
879 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
880 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
881 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
882 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
883 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
884 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
885 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
886 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
887 			  EESIPR_PREIP | EESIPR_CERFIP,
888 
889 	.tx_check	= EESR_TC1 | EESR_FTC,
890 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
891 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
892 
893 	.apr		= 1,
894 	.mpr		= 1,
895 	.tpauser	= 1,
896 	.bculr		= 1,
897 	.hw_swap	= 1,
898 	.no_trimd	= 1,
899 	.no_ade		= 1,
900 	.tsu		= 1,
901 	.irq_flags	= IRQF_SHARED,
902 	.magic		= 1,
903 };
904 
905 static struct sh_eth_cpu_data sh7619_data = {
906 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
907 
908 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
909 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
910 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
911 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
912 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
913 			  EESIPR_CEEFIP | EESIPR_CELFIP |
914 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
915 			  EESIPR_PREIP | EESIPR_CERFIP,
916 
917 	.apr		= 1,
918 	.mpr		= 1,
919 	.tpauser	= 1,
920 	.hw_swap	= 1,
921 };
922 
923 static struct sh_eth_cpu_data sh771x_data = {
924 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
925 
926 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
927 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
928 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
929 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
930 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
931 			  EESIPR_CEEFIP | EESIPR_CELFIP |
932 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
933 			  EESIPR_PREIP | EESIPR_CERFIP,
934 	.tsu		= 1,
935 };
936 
937 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
938 {
939 	if (!cd->ecsr_value)
940 		cd->ecsr_value = DEFAULT_ECSR_INIT;
941 
942 	if (!cd->ecsipr_value)
943 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
944 
945 	if (!cd->fcftr_value)
946 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
947 				  DEFAULT_FIFO_F_D_RFD;
948 
949 	if (!cd->fdr_value)
950 		cd->fdr_value = DEFAULT_FDR_INIT;
951 
952 	if (!cd->tx_check)
953 		cd->tx_check = DEFAULT_TX_CHECK;
954 
955 	if (!cd->eesr_err_check)
956 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
957 
958 	if (!cd->trscer_err_mask)
959 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
960 }
961 
962 static int sh_eth_check_reset(struct net_device *ndev)
963 {
964 	int ret = 0;
965 	int cnt = 100;
966 
967 	while (cnt > 0) {
968 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
969 			break;
970 		mdelay(1);
971 		cnt--;
972 	}
973 	if (cnt <= 0) {
974 		netdev_err(ndev, "Device reset failed\n");
975 		ret = -ETIMEDOUT;
976 	}
977 	return ret;
978 }
979 
980 static int sh_eth_reset(struct net_device *ndev)
981 {
982 	struct sh_eth_private *mdp = netdev_priv(ndev);
983 	int ret = 0;
984 
985 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
986 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
987 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
988 
989 		ret = sh_eth_check_reset(ndev);
990 		if (ret)
991 			return ret;
992 
993 		/* Table Init */
994 		sh_eth_write(ndev, 0x0, TDLAR);
995 		sh_eth_write(ndev, 0x0, TDFAR);
996 		sh_eth_write(ndev, 0x0, TDFXR);
997 		sh_eth_write(ndev, 0x0, TDFFR);
998 		sh_eth_write(ndev, 0x0, RDLAR);
999 		sh_eth_write(ndev, 0x0, RDFAR);
1000 		sh_eth_write(ndev, 0x0, RDFXR);
1001 		sh_eth_write(ndev, 0x0, RDFFR);
1002 
1003 		/* Reset HW CRC register */
1004 		if (mdp->cd->hw_checksum)
1005 			sh_eth_write(ndev, 0x0, CSMR);
1006 
1007 		/* Select MII mode */
1008 		if (mdp->cd->select_mii)
1009 			sh_eth_select_mii(ndev);
1010 	} else {
1011 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1012 		mdelay(3);
1013 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1014 	}
1015 
1016 	return ret;
1017 }
1018 
1019 static void sh_eth_set_receive_align(struct sk_buff *skb)
1020 {
1021 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1022 
1023 	if (reserve)
1024 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1025 }
1026 
1027 /* Program the hardware MAC address from dev->dev_addr. */
1028 static void update_mac_address(struct net_device *ndev)
1029 {
1030 	sh_eth_write(ndev,
1031 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1032 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1033 	sh_eth_write(ndev,
1034 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1035 }
1036 
1037 /* Get MAC address from SuperH MAC address register
1038  *
1039  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1040  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1041  * When you want use this device, you must set MAC address in bootloader.
1042  *
1043  */
1044 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1045 {
1046 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1047 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1048 	} else {
1049 		u32 mahr = sh_eth_read(ndev, MAHR);
1050 		u32 malr = sh_eth_read(ndev, MALR);
1051 
1052 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1053 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1054 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1055 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1056 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1057 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1058 	}
1059 }
1060 
1061 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1062 {
1063 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1064 		return EDTRR_TRNS_GETHER;
1065 	else
1066 		return EDTRR_TRNS_ETHER;
1067 }
1068 
1069 struct bb_info {
1070 	void (*set_gate)(void *addr);
1071 	struct mdiobb_ctrl ctrl;
1072 	void *addr;
1073 };
1074 
1075 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1076 {
1077 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1078 	u32 pir;
1079 
1080 	if (bitbang->set_gate)
1081 		bitbang->set_gate(bitbang->addr);
1082 
1083 	pir = ioread32(bitbang->addr);
1084 	if (set)
1085 		pir |=  mask;
1086 	else
1087 		pir &= ~mask;
1088 	iowrite32(pir, bitbang->addr);
1089 }
1090 
1091 /* Data I/O pin control */
1092 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1093 {
1094 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1095 }
1096 
1097 /* Set bit data*/
1098 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1099 {
1100 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1101 }
1102 
1103 /* Get bit data*/
1104 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1105 {
1106 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1107 
1108 	if (bitbang->set_gate)
1109 		bitbang->set_gate(bitbang->addr);
1110 
1111 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1112 }
1113 
1114 /* MDC pin control */
1115 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1116 {
1117 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1118 }
1119 
1120 /* mdio bus control struct */
1121 static struct mdiobb_ops bb_ops = {
1122 	.owner = THIS_MODULE,
1123 	.set_mdc = sh_mdc_ctrl,
1124 	.set_mdio_dir = sh_mmd_ctrl,
1125 	.set_mdio_data = sh_set_mdio,
1126 	.get_mdio_data = sh_get_mdio,
1127 };
1128 
1129 /* free Tx skb function */
1130 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1131 {
1132 	struct sh_eth_private *mdp = netdev_priv(ndev);
1133 	struct sh_eth_txdesc *txdesc;
1134 	int free_num = 0;
1135 	int entry;
1136 	bool sent;
1137 
1138 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1139 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1140 		txdesc = &mdp->tx_ring[entry];
1141 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1142 		if (sent_only && !sent)
1143 			break;
1144 		/* TACT bit must be checked before all the following reads */
1145 		dma_rmb();
1146 		netif_info(mdp, tx_done, ndev,
1147 			   "tx entry %d status 0x%08x\n",
1148 			   entry, le32_to_cpu(txdesc->status));
1149 		/* Free the original skb. */
1150 		if (mdp->tx_skbuff[entry]) {
1151 			dma_unmap_single(&mdp->pdev->dev,
1152 					 le32_to_cpu(txdesc->addr),
1153 					 le32_to_cpu(txdesc->len) >> 16,
1154 					 DMA_TO_DEVICE);
1155 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1156 			mdp->tx_skbuff[entry] = NULL;
1157 			free_num++;
1158 		}
1159 		txdesc->status = cpu_to_le32(TD_TFP);
1160 		if (entry >= mdp->num_tx_ring - 1)
1161 			txdesc->status |= cpu_to_le32(TD_TDLE);
1162 
1163 		if (sent) {
1164 			ndev->stats.tx_packets++;
1165 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1166 		}
1167 	}
1168 	return free_num;
1169 }
1170 
1171 /* free skb and descriptor buffer */
1172 static void sh_eth_ring_free(struct net_device *ndev)
1173 {
1174 	struct sh_eth_private *mdp = netdev_priv(ndev);
1175 	int ringsize, i;
1176 
1177 	if (mdp->rx_ring) {
1178 		for (i = 0; i < mdp->num_rx_ring; i++) {
1179 			if (mdp->rx_skbuff[i]) {
1180 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1181 
1182 				dma_unmap_single(&mdp->pdev->dev,
1183 						 le32_to_cpu(rxdesc->addr),
1184 						 ALIGN(mdp->rx_buf_sz, 32),
1185 						 DMA_FROM_DEVICE);
1186 			}
1187 		}
1188 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1189 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1190 				  mdp->rx_desc_dma);
1191 		mdp->rx_ring = NULL;
1192 	}
1193 
1194 	/* Free Rx skb ringbuffer */
1195 	if (mdp->rx_skbuff) {
1196 		for (i = 0; i < mdp->num_rx_ring; i++)
1197 			dev_kfree_skb(mdp->rx_skbuff[i]);
1198 	}
1199 	kfree(mdp->rx_skbuff);
1200 	mdp->rx_skbuff = NULL;
1201 
1202 	if (mdp->tx_ring) {
1203 		sh_eth_tx_free(ndev, false);
1204 
1205 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1206 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1207 				  mdp->tx_desc_dma);
1208 		mdp->tx_ring = NULL;
1209 	}
1210 
1211 	/* Free Tx skb ringbuffer */
1212 	kfree(mdp->tx_skbuff);
1213 	mdp->tx_skbuff = NULL;
1214 }
1215 
1216 /* format skb and descriptor buffer */
1217 static void sh_eth_ring_format(struct net_device *ndev)
1218 {
1219 	struct sh_eth_private *mdp = netdev_priv(ndev);
1220 	int i;
1221 	struct sk_buff *skb;
1222 	struct sh_eth_rxdesc *rxdesc = NULL;
1223 	struct sh_eth_txdesc *txdesc = NULL;
1224 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1225 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1226 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1227 	dma_addr_t dma_addr;
1228 	u32 buf_len;
1229 
1230 	mdp->cur_rx = 0;
1231 	mdp->cur_tx = 0;
1232 	mdp->dirty_rx = 0;
1233 	mdp->dirty_tx = 0;
1234 
1235 	memset(mdp->rx_ring, 0, rx_ringsize);
1236 
1237 	/* build Rx ring buffer */
1238 	for (i = 0; i < mdp->num_rx_ring; i++) {
1239 		/* skb */
1240 		mdp->rx_skbuff[i] = NULL;
1241 		skb = netdev_alloc_skb(ndev, skbuff_size);
1242 		if (skb == NULL)
1243 			break;
1244 		sh_eth_set_receive_align(skb);
1245 
1246 		/* The size of the buffer is a multiple of 32 bytes. */
1247 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1248 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1249 					  DMA_FROM_DEVICE);
1250 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1251 			kfree_skb(skb);
1252 			break;
1253 		}
1254 		mdp->rx_skbuff[i] = skb;
1255 
1256 		/* RX descriptor */
1257 		rxdesc = &mdp->rx_ring[i];
1258 		rxdesc->len = cpu_to_le32(buf_len << 16);
1259 		rxdesc->addr = cpu_to_le32(dma_addr);
1260 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1261 
1262 		/* Rx descriptor address set */
1263 		if (i == 0) {
1264 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1265 			if (sh_eth_is_gether(mdp) ||
1266 			    sh_eth_is_rz_fast_ether(mdp))
1267 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1268 		}
1269 	}
1270 
1271 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1272 
1273 	/* Mark the last entry as wrapping the ring. */
1274 	if (rxdesc)
1275 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1276 
1277 	memset(mdp->tx_ring, 0, tx_ringsize);
1278 
1279 	/* build Tx ring buffer */
1280 	for (i = 0; i < mdp->num_tx_ring; i++) {
1281 		mdp->tx_skbuff[i] = NULL;
1282 		txdesc = &mdp->tx_ring[i];
1283 		txdesc->status = cpu_to_le32(TD_TFP);
1284 		txdesc->len = cpu_to_le32(0);
1285 		if (i == 0) {
1286 			/* Tx descriptor address set */
1287 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1288 			if (sh_eth_is_gether(mdp) ||
1289 			    sh_eth_is_rz_fast_ether(mdp))
1290 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1291 		}
1292 	}
1293 
1294 	txdesc->status |= cpu_to_le32(TD_TDLE);
1295 }
1296 
1297 /* Get skb and descriptor buffer */
1298 static int sh_eth_ring_init(struct net_device *ndev)
1299 {
1300 	struct sh_eth_private *mdp = netdev_priv(ndev);
1301 	int rx_ringsize, tx_ringsize;
1302 
1303 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1304 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1305 	 * the first 2 bytes, and +16 gets room for the status word from the
1306 	 * card.
1307 	 */
1308 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1309 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1310 	if (mdp->cd->rpadir)
1311 		mdp->rx_buf_sz += NET_IP_ALIGN;
1312 
1313 	/* Allocate RX and TX skb rings */
1314 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1315 				 GFP_KERNEL);
1316 	if (!mdp->rx_skbuff)
1317 		return -ENOMEM;
1318 
1319 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1320 				 GFP_KERNEL);
1321 	if (!mdp->tx_skbuff)
1322 		goto ring_free;
1323 
1324 	/* Allocate all Rx descriptors. */
1325 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1326 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1327 					  &mdp->rx_desc_dma, GFP_KERNEL);
1328 	if (!mdp->rx_ring)
1329 		goto ring_free;
1330 
1331 	mdp->dirty_rx = 0;
1332 
1333 	/* Allocate all Tx descriptors. */
1334 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1335 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1336 					  &mdp->tx_desc_dma, GFP_KERNEL);
1337 	if (!mdp->tx_ring)
1338 		goto ring_free;
1339 	return 0;
1340 
1341 ring_free:
1342 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1343 	sh_eth_ring_free(ndev);
1344 
1345 	return -ENOMEM;
1346 }
1347 
1348 static int sh_eth_dev_init(struct net_device *ndev)
1349 {
1350 	struct sh_eth_private *mdp = netdev_priv(ndev);
1351 	int ret;
1352 
1353 	/* Soft Reset */
1354 	ret = sh_eth_reset(ndev);
1355 	if (ret)
1356 		return ret;
1357 
1358 	if (mdp->cd->rmiimode)
1359 		sh_eth_write(ndev, 0x1, RMIIMODE);
1360 
1361 	/* Descriptor format */
1362 	sh_eth_ring_format(ndev);
1363 	if (mdp->cd->rpadir)
1364 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1365 
1366 	/* all sh_eth int mask */
1367 	sh_eth_write(ndev, 0, EESIPR);
1368 
1369 #if defined(__LITTLE_ENDIAN)
1370 	if (mdp->cd->hw_swap)
1371 		sh_eth_write(ndev, EDMR_EL, EDMR);
1372 	else
1373 #endif
1374 		sh_eth_write(ndev, 0, EDMR);
1375 
1376 	/* FIFO size set */
1377 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1378 	sh_eth_write(ndev, 0, TFTR);
1379 
1380 	/* Frame recv control (enable multiple-packets per rx irq) */
1381 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1382 
1383 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1384 
1385 	if (mdp->cd->bculr)
1386 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1387 
1388 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1389 
1390 	if (!mdp->cd->no_trimd)
1391 		sh_eth_write(ndev, 0, TRIMD);
1392 
1393 	/* Recv frame limit set register */
1394 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1395 		     RFLR);
1396 
1397 	sh_eth_modify(ndev, EESR, 0, 0);
1398 	mdp->irq_enabled = true;
1399 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1400 
1401 	/* PAUSE Prohibition */
1402 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1403 		     ECMR_TE | ECMR_RE, ECMR);
1404 
1405 	if (mdp->cd->set_rate)
1406 		mdp->cd->set_rate(ndev);
1407 
1408 	/* E-MAC Status Register clear */
1409 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1410 
1411 	/* E-MAC Interrupt Enable register */
1412 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1413 
1414 	/* Set MAC address */
1415 	update_mac_address(ndev);
1416 
1417 	/* mask reset */
1418 	if (mdp->cd->apr)
1419 		sh_eth_write(ndev, APR_AP, APR);
1420 	if (mdp->cd->mpr)
1421 		sh_eth_write(ndev, MPR_MP, MPR);
1422 	if (mdp->cd->tpauser)
1423 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1424 
1425 	/* Setting the Rx mode will start the Rx process. */
1426 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1427 
1428 	return ret;
1429 }
1430 
1431 static void sh_eth_dev_exit(struct net_device *ndev)
1432 {
1433 	struct sh_eth_private *mdp = netdev_priv(ndev);
1434 	int i;
1435 
1436 	/* Deactivate all TX descriptors, so DMA should stop at next
1437 	 * packet boundary if it's currently running
1438 	 */
1439 	for (i = 0; i < mdp->num_tx_ring; i++)
1440 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1441 
1442 	/* Disable TX FIFO egress to MAC */
1443 	sh_eth_rcv_snd_disable(ndev);
1444 
1445 	/* Stop RX DMA at next packet boundary */
1446 	sh_eth_write(ndev, 0, EDRRR);
1447 
1448 	/* Aside from TX DMA, we can't tell when the hardware is
1449 	 * really stopped, so we need to reset to make sure.
1450 	 * Before doing that, wait for long enough to *probably*
1451 	 * finish transmitting the last packet and poll stats.
1452 	 */
1453 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1454 	sh_eth_get_stats(ndev);
1455 	sh_eth_reset(ndev);
1456 
1457 	/* Set MAC address again */
1458 	update_mac_address(ndev);
1459 }
1460 
1461 /* Packet receive function */
1462 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1463 {
1464 	struct sh_eth_private *mdp = netdev_priv(ndev);
1465 	struct sh_eth_rxdesc *rxdesc;
1466 
1467 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1468 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1469 	int limit;
1470 	struct sk_buff *skb;
1471 	u32 desc_status;
1472 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1473 	dma_addr_t dma_addr;
1474 	u16 pkt_len;
1475 	u32 buf_len;
1476 
1477 	boguscnt = min(boguscnt, *quota);
1478 	limit = boguscnt;
1479 	rxdesc = &mdp->rx_ring[entry];
1480 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1481 		/* RACT bit must be checked before all the following reads */
1482 		dma_rmb();
1483 		desc_status = le32_to_cpu(rxdesc->status);
1484 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1485 
1486 		if (--boguscnt < 0)
1487 			break;
1488 
1489 		netif_info(mdp, rx_status, ndev,
1490 			   "rx entry %d status 0x%08x len %d\n",
1491 			   entry, desc_status, pkt_len);
1492 
1493 		if (!(desc_status & RDFEND))
1494 			ndev->stats.rx_length_errors++;
1495 
1496 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1497 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1498 		 * bit 0. However, in case of the R8A7740 and R7S72100
1499 		 * the RFS bits are from bit 25 to bit 16. So, the
1500 		 * driver needs right shifting by 16.
1501 		 */
1502 		if (mdp->cd->hw_checksum)
1503 			desc_status >>= 16;
1504 
1505 		skb = mdp->rx_skbuff[entry];
1506 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1507 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1508 			ndev->stats.rx_errors++;
1509 			if (desc_status & RD_RFS1)
1510 				ndev->stats.rx_crc_errors++;
1511 			if (desc_status & RD_RFS2)
1512 				ndev->stats.rx_frame_errors++;
1513 			if (desc_status & RD_RFS3)
1514 				ndev->stats.rx_length_errors++;
1515 			if (desc_status & RD_RFS4)
1516 				ndev->stats.rx_length_errors++;
1517 			if (desc_status & RD_RFS6)
1518 				ndev->stats.rx_missed_errors++;
1519 			if (desc_status & RD_RFS10)
1520 				ndev->stats.rx_over_errors++;
1521 		} else	if (skb) {
1522 			dma_addr = le32_to_cpu(rxdesc->addr);
1523 			if (!mdp->cd->hw_swap)
1524 				sh_eth_soft_swap(
1525 					phys_to_virt(ALIGN(dma_addr, 4)),
1526 					pkt_len + 2);
1527 			mdp->rx_skbuff[entry] = NULL;
1528 			if (mdp->cd->rpadir)
1529 				skb_reserve(skb, NET_IP_ALIGN);
1530 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1531 					 ALIGN(mdp->rx_buf_sz, 32),
1532 					 DMA_FROM_DEVICE);
1533 			skb_put(skb, pkt_len);
1534 			skb->protocol = eth_type_trans(skb, ndev);
1535 			netif_receive_skb(skb);
1536 			ndev->stats.rx_packets++;
1537 			ndev->stats.rx_bytes += pkt_len;
1538 			if (desc_status & RD_RFS8)
1539 				ndev->stats.multicast++;
1540 		}
1541 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1542 		rxdesc = &mdp->rx_ring[entry];
1543 	}
1544 
1545 	/* Refill the Rx ring buffers. */
1546 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1547 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1548 		rxdesc = &mdp->rx_ring[entry];
1549 		/* The size of the buffer is 32 byte boundary. */
1550 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1551 		rxdesc->len = cpu_to_le32(buf_len << 16);
1552 
1553 		if (mdp->rx_skbuff[entry] == NULL) {
1554 			skb = netdev_alloc_skb(ndev, skbuff_size);
1555 			if (skb == NULL)
1556 				break;	/* Better luck next round. */
1557 			sh_eth_set_receive_align(skb);
1558 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1559 						  buf_len, DMA_FROM_DEVICE);
1560 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1561 				kfree_skb(skb);
1562 				break;
1563 			}
1564 			mdp->rx_skbuff[entry] = skb;
1565 
1566 			skb_checksum_none_assert(skb);
1567 			rxdesc->addr = cpu_to_le32(dma_addr);
1568 		}
1569 		dma_wmb(); /* RACT bit must be set after all the above writes */
1570 		if (entry >= mdp->num_rx_ring - 1)
1571 			rxdesc->status |=
1572 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1573 		else
1574 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1575 	}
1576 
1577 	/* Restart Rx engine if stopped. */
1578 	/* If we don't need to check status, don't. -KDU */
1579 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1580 		/* fix the values for the next receiving if RDE is set */
1581 		if (intr_status & EESR_RDE &&
1582 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1583 			u32 count = (sh_eth_read(ndev, RDFAR) -
1584 				     sh_eth_read(ndev, RDLAR)) >> 4;
1585 
1586 			mdp->cur_rx = count;
1587 			mdp->dirty_rx = count;
1588 		}
1589 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1590 	}
1591 
1592 	*quota -= limit - boguscnt - 1;
1593 
1594 	return *quota <= 0;
1595 }
1596 
1597 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1598 {
1599 	/* disable tx and rx */
1600 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1601 }
1602 
1603 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1604 {
1605 	/* enable tx and rx */
1606 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1607 }
1608 
1609 /* E-MAC interrupt handler */
1610 static void sh_eth_emac_interrupt(struct net_device *ndev)
1611 {
1612 	struct sh_eth_private *mdp = netdev_priv(ndev);
1613 	u32 felic_stat;
1614 	u32 link_stat;
1615 
1616 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1617 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1618 	if (felic_stat & ECSR_ICD)
1619 		ndev->stats.tx_carrier_errors++;
1620 	if (felic_stat & ECSR_MPD)
1621 		pm_wakeup_event(&mdp->pdev->dev, 0);
1622 	if (felic_stat & ECSR_LCHNG) {
1623 		/* Link Changed */
1624 		if (mdp->cd->no_psr || mdp->no_ether_link)
1625 			return;
1626 		link_stat = sh_eth_read(ndev, PSR);
1627 		if (mdp->ether_link_active_low)
1628 			link_stat = ~link_stat;
1629 		if (!(link_stat & PHY_ST_LINK)) {
1630 			sh_eth_rcv_snd_disable(ndev);
1631 		} else {
1632 			/* Link Up */
1633 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1634 			/* clear int */
1635 			sh_eth_modify(ndev, ECSR, 0, 0);
1636 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1637 			/* enable tx and rx */
1638 			sh_eth_rcv_snd_enable(ndev);
1639 		}
1640 	}
1641 }
1642 
1643 /* error control function */
1644 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1645 {
1646 	struct sh_eth_private *mdp = netdev_priv(ndev);
1647 	u32 mask;
1648 
1649 	if (intr_status & EESR_TWB) {
1650 		/* Unused write back interrupt */
1651 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1652 			ndev->stats.tx_aborted_errors++;
1653 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1654 		}
1655 	}
1656 
1657 	if (intr_status & EESR_RABT) {
1658 		/* Receive Abort int */
1659 		if (intr_status & EESR_RFRMER) {
1660 			/* Receive Frame Overflow int */
1661 			ndev->stats.rx_frame_errors++;
1662 		}
1663 	}
1664 
1665 	if (intr_status & EESR_TDE) {
1666 		/* Transmit Descriptor Empty int */
1667 		ndev->stats.tx_fifo_errors++;
1668 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1669 	}
1670 
1671 	if (intr_status & EESR_TFE) {
1672 		/* FIFO under flow */
1673 		ndev->stats.tx_fifo_errors++;
1674 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1675 	}
1676 
1677 	if (intr_status & EESR_RDE) {
1678 		/* Receive Descriptor Empty int */
1679 		ndev->stats.rx_over_errors++;
1680 	}
1681 
1682 	if (intr_status & EESR_RFE) {
1683 		/* Receive FIFO Overflow int */
1684 		ndev->stats.rx_fifo_errors++;
1685 	}
1686 
1687 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1688 		/* Address Error */
1689 		ndev->stats.tx_fifo_errors++;
1690 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1691 	}
1692 
1693 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1694 	if (mdp->cd->no_ade)
1695 		mask &= ~EESR_ADE;
1696 	if (intr_status & mask) {
1697 		/* Tx error */
1698 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1699 
1700 		/* dmesg */
1701 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1702 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1703 			   (u32)ndev->state, edtrr);
1704 		/* dirty buffer free */
1705 		sh_eth_tx_free(ndev, true);
1706 
1707 		/* SH7712 BUG */
1708 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1709 			/* tx dma start */
1710 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1711 		}
1712 		/* wakeup */
1713 		netif_wake_queue(ndev);
1714 	}
1715 }
1716 
1717 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1718 {
1719 	struct net_device *ndev = netdev;
1720 	struct sh_eth_private *mdp = netdev_priv(ndev);
1721 	struct sh_eth_cpu_data *cd = mdp->cd;
1722 	irqreturn_t ret = IRQ_NONE;
1723 	u32 intr_status, intr_enable;
1724 
1725 	spin_lock(&mdp->lock);
1726 
1727 	/* Get interrupt status */
1728 	intr_status = sh_eth_read(ndev, EESR);
1729 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1730 	 * enabled since it's the one that  comes  thru regardless of the mask,
1731 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1732 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1733 	 * bit...
1734 	 */
1735 	intr_enable = sh_eth_read(ndev, EESIPR);
1736 	intr_status &= intr_enable | EESIPR_ECIIP;
1737 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1738 			   cd->eesr_err_check))
1739 		ret = IRQ_HANDLED;
1740 	else
1741 		goto out;
1742 
1743 	if (unlikely(!mdp->irq_enabled)) {
1744 		sh_eth_write(ndev, 0, EESIPR);
1745 		goto out;
1746 	}
1747 
1748 	if (intr_status & EESR_RX_CHECK) {
1749 		if (napi_schedule_prep(&mdp->napi)) {
1750 			/* Mask Rx interrupts */
1751 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1752 				     EESIPR);
1753 			__napi_schedule(&mdp->napi);
1754 		} else {
1755 			netdev_warn(ndev,
1756 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1757 				    intr_status, intr_enable);
1758 		}
1759 	}
1760 
1761 	/* Tx Check */
1762 	if (intr_status & cd->tx_check) {
1763 		/* Clear Tx interrupts */
1764 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1765 
1766 		sh_eth_tx_free(ndev, true);
1767 		netif_wake_queue(ndev);
1768 	}
1769 
1770 	/* E-MAC interrupt */
1771 	if (intr_status & EESR_ECI)
1772 		sh_eth_emac_interrupt(ndev);
1773 
1774 	if (intr_status & cd->eesr_err_check) {
1775 		/* Clear error interrupts */
1776 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1777 
1778 		sh_eth_error(ndev, intr_status);
1779 	}
1780 
1781 out:
1782 	spin_unlock(&mdp->lock);
1783 
1784 	return ret;
1785 }
1786 
1787 static int sh_eth_poll(struct napi_struct *napi, int budget)
1788 {
1789 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1790 						  napi);
1791 	struct net_device *ndev = napi->dev;
1792 	int quota = budget;
1793 	u32 intr_status;
1794 
1795 	for (;;) {
1796 		intr_status = sh_eth_read(ndev, EESR);
1797 		if (!(intr_status & EESR_RX_CHECK))
1798 			break;
1799 		/* Clear Rx interrupts */
1800 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1801 
1802 		if (sh_eth_rx(ndev, intr_status, &quota))
1803 			goto out;
1804 	}
1805 
1806 	napi_complete(napi);
1807 
1808 	/* Reenable Rx interrupts */
1809 	if (mdp->irq_enabled)
1810 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1811 out:
1812 	return budget - quota;
1813 }
1814 
1815 /* PHY state control function */
1816 static void sh_eth_adjust_link(struct net_device *ndev)
1817 {
1818 	struct sh_eth_private *mdp = netdev_priv(ndev);
1819 	struct phy_device *phydev = ndev->phydev;
1820 	int new_state = 0;
1821 
1822 	if (phydev->link) {
1823 		if (phydev->duplex != mdp->duplex) {
1824 			new_state = 1;
1825 			mdp->duplex = phydev->duplex;
1826 			if (mdp->cd->set_duplex)
1827 				mdp->cd->set_duplex(ndev);
1828 		}
1829 
1830 		if (phydev->speed != mdp->speed) {
1831 			new_state = 1;
1832 			mdp->speed = phydev->speed;
1833 			if (mdp->cd->set_rate)
1834 				mdp->cd->set_rate(ndev);
1835 		}
1836 		if (!mdp->link) {
1837 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1838 			new_state = 1;
1839 			mdp->link = phydev->link;
1840 			if (mdp->cd->no_psr || mdp->no_ether_link)
1841 				sh_eth_rcv_snd_enable(ndev);
1842 		}
1843 	} else if (mdp->link) {
1844 		new_state = 1;
1845 		mdp->link = 0;
1846 		mdp->speed = 0;
1847 		mdp->duplex = -1;
1848 		if (mdp->cd->no_psr || mdp->no_ether_link)
1849 			sh_eth_rcv_snd_disable(ndev);
1850 	}
1851 
1852 	if (new_state && netif_msg_link(mdp))
1853 		phy_print_status(phydev);
1854 }
1855 
1856 /* PHY init function */
1857 static int sh_eth_phy_init(struct net_device *ndev)
1858 {
1859 	struct device_node *np = ndev->dev.parent->of_node;
1860 	struct sh_eth_private *mdp = netdev_priv(ndev);
1861 	struct phy_device *phydev;
1862 
1863 	mdp->link = 0;
1864 	mdp->speed = 0;
1865 	mdp->duplex = -1;
1866 
1867 	/* Try connect to PHY */
1868 	if (np) {
1869 		struct device_node *pn;
1870 
1871 		pn = of_parse_phandle(np, "phy-handle", 0);
1872 		phydev = of_phy_connect(ndev, pn,
1873 					sh_eth_adjust_link, 0,
1874 					mdp->phy_interface);
1875 
1876 		of_node_put(pn);
1877 		if (!phydev)
1878 			phydev = ERR_PTR(-ENOENT);
1879 	} else {
1880 		char phy_id[MII_BUS_ID_SIZE + 3];
1881 
1882 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1883 			 mdp->mii_bus->id, mdp->phy_id);
1884 
1885 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1886 				     mdp->phy_interface);
1887 	}
1888 
1889 	if (IS_ERR(phydev)) {
1890 		netdev_err(ndev, "failed to connect PHY\n");
1891 		return PTR_ERR(phydev);
1892 	}
1893 
1894 	/* mask with MAC supported features */
1895 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1896 		int err = phy_set_max_speed(phydev, SPEED_100);
1897 		if (err) {
1898 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1899 			phy_disconnect(phydev);
1900 			return err;
1901 		}
1902 	}
1903 
1904 	phy_attached_info(phydev);
1905 
1906 	return 0;
1907 }
1908 
1909 /* PHY control start function */
1910 static int sh_eth_phy_start(struct net_device *ndev)
1911 {
1912 	int ret;
1913 
1914 	ret = sh_eth_phy_init(ndev);
1915 	if (ret)
1916 		return ret;
1917 
1918 	phy_start(ndev->phydev);
1919 
1920 	return 0;
1921 }
1922 
1923 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1924 				     struct ethtool_link_ksettings *cmd)
1925 {
1926 	struct sh_eth_private *mdp = netdev_priv(ndev);
1927 	unsigned long flags;
1928 
1929 	if (!ndev->phydev)
1930 		return -ENODEV;
1931 
1932 	spin_lock_irqsave(&mdp->lock, flags);
1933 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1934 	spin_unlock_irqrestore(&mdp->lock, flags);
1935 
1936 	return 0;
1937 }
1938 
1939 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1940 				     const struct ethtool_link_ksettings *cmd)
1941 {
1942 	struct sh_eth_private *mdp = netdev_priv(ndev);
1943 	unsigned long flags;
1944 	int ret;
1945 
1946 	if (!ndev->phydev)
1947 		return -ENODEV;
1948 
1949 	spin_lock_irqsave(&mdp->lock, flags);
1950 
1951 	/* disable tx and rx */
1952 	sh_eth_rcv_snd_disable(ndev);
1953 
1954 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1955 	if (ret)
1956 		goto error_exit;
1957 
1958 	if (cmd->base.duplex == DUPLEX_FULL)
1959 		mdp->duplex = 1;
1960 	else
1961 		mdp->duplex = 0;
1962 
1963 	if (mdp->cd->set_duplex)
1964 		mdp->cd->set_duplex(ndev);
1965 
1966 error_exit:
1967 	mdelay(1);
1968 
1969 	/* enable tx and rx */
1970 	sh_eth_rcv_snd_enable(ndev);
1971 
1972 	spin_unlock_irqrestore(&mdp->lock, flags);
1973 
1974 	return ret;
1975 }
1976 
1977 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1978  * version must be bumped as well.  Just adding registers up to that
1979  * limit is fine, as long as the existing register indices don't
1980  * change.
1981  */
1982 #define SH_ETH_REG_DUMP_VERSION		1
1983 #define SH_ETH_REG_DUMP_MAX_REGS	256
1984 
1985 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1986 {
1987 	struct sh_eth_private *mdp = netdev_priv(ndev);
1988 	struct sh_eth_cpu_data *cd = mdp->cd;
1989 	u32 *valid_map;
1990 	size_t len;
1991 
1992 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1993 
1994 	/* Dump starts with a bitmap that tells ethtool which
1995 	 * registers are defined for this chip.
1996 	 */
1997 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1998 	if (buf) {
1999 		valid_map = buf;
2000 		buf += len;
2001 	} else {
2002 		valid_map = NULL;
2003 	}
2004 
2005 	/* Add a register to the dump, if it has a defined offset.
2006 	 * This automatically skips most undefined registers, but for
2007 	 * some it is also necessary to check a capability flag in
2008 	 * struct sh_eth_cpu_data.
2009 	 */
2010 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2011 #define add_reg_from(reg, read_expr) do {				\
2012 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2013 			if (buf) {					\
2014 				mark_reg_valid(reg);			\
2015 				*buf++ = read_expr;			\
2016 			}						\
2017 			++len;						\
2018 		}							\
2019 	} while (0)
2020 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2021 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2022 
2023 	add_reg(EDSR);
2024 	add_reg(EDMR);
2025 	add_reg(EDTRR);
2026 	add_reg(EDRRR);
2027 	add_reg(EESR);
2028 	add_reg(EESIPR);
2029 	add_reg(TDLAR);
2030 	add_reg(TDFAR);
2031 	add_reg(TDFXR);
2032 	add_reg(TDFFR);
2033 	add_reg(RDLAR);
2034 	add_reg(RDFAR);
2035 	add_reg(RDFXR);
2036 	add_reg(RDFFR);
2037 	add_reg(TRSCER);
2038 	add_reg(RMFCR);
2039 	add_reg(TFTR);
2040 	add_reg(FDR);
2041 	add_reg(RMCR);
2042 	add_reg(TFUCR);
2043 	add_reg(RFOCR);
2044 	if (cd->rmiimode)
2045 		add_reg(RMIIMODE);
2046 	add_reg(FCFTR);
2047 	if (cd->rpadir)
2048 		add_reg(RPADIR);
2049 	if (!cd->no_trimd)
2050 		add_reg(TRIMD);
2051 	add_reg(ECMR);
2052 	add_reg(ECSR);
2053 	add_reg(ECSIPR);
2054 	add_reg(PIR);
2055 	if (!cd->no_psr)
2056 		add_reg(PSR);
2057 	add_reg(RDMLR);
2058 	add_reg(RFLR);
2059 	add_reg(IPGR);
2060 	if (cd->apr)
2061 		add_reg(APR);
2062 	if (cd->mpr)
2063 		add_reg(MPR);
2064 	add_reg(RFCR);
2065 	add_reg(RFCF);
2066 	if (cd->tpauser)
2067 		add_reg(TPAUSER);
2068 	add_reg(TPAUSECR);
2069 	add_reg(GECMR);
2070 	if (cd->bculr)
2071 		add_reg(BCULR);
2072 	add_reg(MAHR);
2073 	add_reg(MALR);
2074 	add_reg(TROCR);
2075 	add_reg(CDCR);
2076 	add_reg(LCCR);
2077 	add_reg(CNDCR);
2078 	add_reg(CEFCR);
2079 	add_reg(FRECR);
2080 	add_reg(TSFRCR);
2081 	add_reg(TLFRCR);
2082 	add_reg(CERCR);
2083 	add_reg(CEECR);
2084 	add_reg(MAFCR);
2085 	if (cd->rtrate)
2086 		add_reg(RTRATE);
2087 	if (cd->hw_checksum)
2088 		add_reg(CSMR);
2089 	if (cd->select_mii)
2090 		add_reg(RMII_MII);
2091 	if (cd->tsu) {
2092 		add_tsu_reg(ARSTR);
2093 		add_tsu_reg(TSU_CTRST);
2094 		add_tsu_reg(TSU_FWEN0);
2095 		add_tsu_reg(TSU_FWEN1);
2096 		add_tsu_reg(TSU_FCM);
2097 		add_tsu_reg(TSU_BSYSL0);
2098 		add_tsu_reg(TSU_BSYSL1);
2099 		add_tsu_reg(TSU_PRISL0);
2100 		add_tsu_reg(TSU_PRISL1);
2101 		add_tsu_reg(TSU_FWSL0);
2102 		add_tsu_reg(TSU_FWSL1);
2103 		add_tsu_reg(TSU_FWSLC);
2104 		add_tsu_reg(TSU_QTAG0);
2105 		add_tsu_reg(TSU_QTAG1);
2106 		add_tsu_reg(TSU_QTAGM0);
2107 		add_tsu_reg(TSU_QTAGM1);
2108 		add_tsu_reg(TSU_FWSR);
2109 		add_tsu_reg(TSU_FWINMK);
2110 		add_tsu_reg(TSU_ADQT0);
2111 		add_tsu_reg(TSU_ADQT1);
2112 		add_tsu_reg(TSU_VTAG0);
2113 		add_tsu_reg(TSU_VTAG1);
2114 		add_tsu_reg(TSU_ADSBSY);
2115 		add_tsu_reg(TSU_TEN);
2116 		add_tsu_reg(TSU_POST1);
2117 		add_tsu_reg(TSU_POST2);
2118 		add_tsu_reg(TSU_POST3);
2119 		add_tsu_reg(TSU_POST4);
2120 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2121 			/* This is the start of a table, not just a single
2122 			 * register.
2123 			 */
2124 			if (buf) {
2125 				unsigned int i;
2126 
2127 				mark_reg_valid(TSU_ADRH0);
2128 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2129 					*buf++ = ioread32(
2130 						mdp->tsu_addr +
2131 						mdp->reg_offset[TSU_ADRH0] +
2132 						i * 4);
2133 			}
2134 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2135 		}
2136 	}
2137 
2138 #undef mark_reg_valid
2139 #undef add_reg_from
2140 #undef add_reg
2141 #undef add_tsu_reg
2142 
2143 	return len * 4;
2144 }
2145 
2146 static int sh_eth_get_regs_len(struct net_device *ndev)
2147 {
2148 	return __sh_eth_get_regs(ndev, NULL);
2149 }
2150 
2151 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2152 			    void *buf)
2153 {
2154 	struct sh_eth_private *mdp = netdev_priv(ndev);
2155 
2156 	regs->version = SH_ETH_REG_DUMP_VERSION;
2157 
2158 	pm_runtime_get_sync(&mdp->pdev->dev);
2159 	__sh_eth_get_regs(ndev, buf);
2160 	pm_runtime_put_sync(&mdp->pdev->dev);
2161 }
2162 
2163 static int sh_eth_nway_reset(struct net_device *ndev)
2164 {
2165 	struct sh_eth_private *mdp = netdev_priv(ndev);
2166 	unsigned long flags;
2167 	int ret;
2168 
2169 	if (!ndev->phydev)
2170 		return -ENODEV;
2171 
2172 	spin_lock_irqsave(&mdp->lock, flags);
2173 	ret = phy_start_aneg(ndev->phydev);
2174 	spin_unlock_irqrestore(&mdp->lock, flags);
2175 
2176 	return ret;
2177 }
2178 
2179 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2180 {
2181 	struct sh_eth_private *mdp = netdev_priv(ndev);
2182 	return mdp->msg_enable;
2183 }
2184 
2185 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2186 {
2187 	struct sh_eth_private *mdp = netdev_priv(ndev);
2188 	mdp->msg_enable = value;
2189 }
2190 
2191 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2192 	"rx_current", "tx_current",
2193 	"rx_dirty", "tx_dirty",
2194 };
2195 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2196 
2197 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2198 {
2199 	switch (sset) {
2200 	case ETH_SS_STATS:
2201 		return SH_ETH_STATS_LEN;
2202 	default:
2203 		return -EOPNOTSUPP;
2204 	}
2205 }
2206 
2207 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2208 				     struct ethtool_stats *stats, u64 *data)
2209 {
2210 	struct sh_eth_private *mdp = netdev_priv(ndev);
2211 	int i = 0;
2212 
2213 	/* device-specific stats */
2214 	data[i++] = mdp->cur_rx;
2215 	data[i++] = mdp->cur_tx;
2216 	data[i++] = mdp->dirty_rx;
2217 	data[i++] = mdp->dirty_tx;
2218 }
2219 
2220 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2221 {
2222 	switch (stringset) {
2223 	case ETH_SS_STATS:
2224 		memcpy(data, *sh_eth_gstrings_stats,
2225 		       sizeof(sh_eth_gstrings_stats));
2226 		break;
2227 	}
2228 }
2229 
2230 static void sh_eth_get_ringparam(struct net_device *ndev,
2231 				 struct ethtool_ringparam *ring)
2232 {
2233 	struct sh_eth_private *mdp = netdev_priv(ndev);
2234 
2235 	ring->rx_max_pending = RX_RING_MAX;
2236 	ring->tx_max_pending = TX_RING_MAX;
2237 	ring->rx_pending = mdp->num_rx_ring;
2238 	ring->tx_pending = mdp->num_tx_ring;
2239 }
2240 
2241 static int sh_eth_set_ringparam(struct net_device *ndev,
2242 				struct ethtool_ringparam *ring)
2243 {
2244 	struct sh_eth_private *mdp = netdev_priv(ndev);
2245 	int ret;
2246 
2247 	if (ring->tx_pending > TX_RING_MAX ||
2248 	    ring->rx_pending > RX_RING_MAX ||
2249 	    ring->tx_pending < TX_RING_MIN ||
2250 	    ring->rx_pending < RX_RING_MIN)
2251 		return -EINVAL;
2252 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2253 		return -EINVAL;
2254 
2255 	if (netif_running(ndev)) {
2256 		netif_device_detach(ndev);
2257 		netif_tx_disable(ndev);
2258 
2259 		/* Serialise with the interrupt handler and NAPI, then
2260 		 * disable interrupts.  We have to clear the
2261 		 * irq_enabled flag first to ensure that interrupts
2262 		 * won't be re-enabled.
2263 		 */
2264 		mdp->irq_enabled = false;
2265 		synchronize_irq(ndev->irq);
2266 		napi_synchronize(&mdp->napi);
2267 		sh_eth_write(ndev, 0x0000, EESIPR);
2268 
2269 		sh_eth_dev_exit(ndev);
2270 
2271 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2272 		sh_eth_ring_free(ndev);
2273 	}
2274 
2275 	/* Set new parameters */
2276 	mdp->num_rx_ring = ring->rx_pending;
2277 	mdp->num_tx_ring = ring->tx_pending;
2278 
2279 	if (netif_running(ndev)) {
2280 		ret = sh_eth_ring_init(ndev);
2281 		if (ret < 0) {
2282 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2283 				   __func__);
2284 			return ret;
2285 		}
2286 		ret = sh_eth_dev_init(ndev);
2287 		if (ret < 0) {
2288 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2289 				   __func__);
2290 			return ret;
2291 		}
2292 
2293 		netif_device_attach(ndev);
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2300 {
2301 	struct sh_eth_private *mdp = netdev_priv(ndev);
2302 
2303 	wol->supported = 0;
2304 	wol->wolopts = 0;
2305 
2306 	if (mdp->cd->magic) {
2307 		wol->supported = WAKE_MAGIC;
2308 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2309 	}
2310 }
2311 
2312 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2313 {
2314 	struct sh_eth_private *mdp = netdev_priv(ndev);
2315 
2316 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2317 		return -EOPNOTSUPP;
2318 
2319 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2320 
2321 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2322 
2323 	return 0;
2324 }
2325 
2326 static const struct ethtool_ops sh_eth_ethtool_ops = {
2327 	.get_regs_len	= sh_eth_get_regs_len,
2328 	.get_regs	= sh_eth_get_regs,
2329 	.nway_reset	= sh_eth_nway_reset,
2330 	.get_msglevel	= sh_eth_get_msglevel,
2331 	.set_msglevel	= sh_eth_set_msglevel,
2332 	.get_link	= ethtool_op_get_link,
2333 	.get_strings	= sh_eth_get_strings,
2334 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2335 	.get_sset_count     = sh_eth_get_sset_count,
2336 	.get_ringparam	= sh_eth_get_ringparam,
2337 	.set_ringparam	= sh_eth_set_ringparam,
2338 	.get_link_ksettings = sh_eth_get_link_ksettings,
2339 	.set_link_ksettings = sh_eth_set_link_ksettings,
2340 	.get_wol	= sh_eth_get_wol,
2341 	.set_wol	= sh_eth_set_wol,
2342 };
2343 
2344 /* network device open function */
2345 static int sh_eth_open(struct net_device *ndev)
2346 {
2347 	struct sh_eth_private *mdp = netdev_priv(ndev);
2348 	int ret;
2349 
2350 	pm_runtime_get_sync(&mdp->pdev->dev);
2351 
2352 	napi_enable(&mdp->napi);
2353 
2354 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2355 			  mdp->cd->irq_flags, ndev->name, ndev);
2356 	if (ret) {
2357 		netdev_err(ndev, "Can not assign IRQ number\n");
2358 		goto out_napi_off;
2359 	}
2360 
2361 	/* Descriptor set */
2362 	ret = sh_eth_ring_init(ndev);
2363 	if (ret)
2364 		goto out_free_irq;
2365 
2366 	/* device init */
2367 	ret = sh_eth_dev_init(ndev);
2368 	if (ret)
2369 		goto out_free_irq;
2370 
2371 	/* PHY control start*/
2372 	ret = sh_eth_phy_start(ndev);
2373 	if (ret)
2374 		goto out_free_irq;
2375 
2376 	netif_start_queue(ndev);
2377 
2378 	mdp->is_opened = 1;
2379 
2380 	return ret;
2381 
2382 out_free_irq:
2383 	free_irq(ndev->irq, ndev);
2384 out_napi_off:
2385 	napi_disable(&mdp->napi);
2386 	pm_runtime_put_sync(&mdp->pdev->dev);
2387 	return ret;
2388 }
2389 
2390 /* Timeout function */
2391 static void sh_eth_tx_timeout(struct net_device *ndev)
2392 {
2393 	struct sh_eth_private *mdp = netdev_priv(ndev);
2394 	struct sh_eth_rxdesc *rxdesc;
2395 	int i;
2396 
2397 	netif_stop_queue(ndev);
2398 
2399 	netif_err(mdp, timer, ndev,
2400 		  "transmit timed out, status %8.8x, resetting...\n",
2401 		  sh_eth_read(ndev, EESR));
2402 
2403 	/* tx_errors count up */
2404 	ndev->stats.tx_errors++;
2405 
2406 	/* Free all the skbuffs in the Rx queue. */
2407 	for (i = 0; i < mdp->num_rx_ring; i++) {
2408 		rxdesc = &mdp->rx_ring[i];
2409 		rxdesc->status = cpu_to_le32(0);
2410 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2411 		dev_kfree_skb(mdp->rx_skbuff[i]);
2412 		mdp->rx_skbuff[i] = NULL;
2413 	}
2414 	for (i = 0; i < mdp->num_tx_ring; i++) {
2415 		dev_kfree_skb(mdp->tx_skbuff[i]);
2416 		mdp->tx_skbuff[i] = NULL;
2417 	}
2418 
2419 	/* device init */
2420 	sh_eth_dev_init(ndev);
2421 
2422 	netif_start_queue(ndev);
2423 }
2424 
2425 /* Packet transmit function */
2426 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2427 {
2428 	struct sh_eth_private *mdp = netdev_priv(ndev);
2429 	struct sh_eth_txdesc *txdesc;
2430 	dma_addr_t dma_addr;
2431 	u32 entry;
2432 	unsigned long flags;
2433 
2434 	spin_lock_irqsave(&mdp->lock, flags);
2435 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2436 		if (!sh_eth_tx_free(ndev, true)) {
2437 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2438 			netif_stop_queue(ndev);
2439 			spin_unlock_irqrestore(&mdp->lock, flags);
2440 			return NETDEV_TX_BUSY;
2441 		}
2442 	}
2443 	spin_unlock_irqrestore(&mdp->lock, flags);
2444 
2445 	if (skb_put_padto(skb, ETH_ZLEN))
2446 		return NETDEV_TX_OK;
2447 
2448 	entry = mdp->cur_tx % mdp->num_tx_ring;
2449 	mdp->tx_skbuff[entry] = skb;
2450 	txdesc = &mdp->tx_ring[entry];
2451 	/* soft swap. */
2452 	if (!mdp->cd->hw_swap)
2453 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2454 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2455 				  DMA_TO_DEVICE);
2456 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2457 		kfree_skb(skb);
2458 		return NETDEV_TX_OK;
2459 	}
2460 	txdesc->addr = cpu_to_le32(dma_addr);
2461 	txdesc->len  = cpu_to_le32(skb->len << 16);
2462 
2463 	dma_wmb(); /* TACT bit must be set after all the above writes */
2464 	if (entry >= mdp->num_tx_ring - 1)
2465 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2466 	else
2467 		txdesc->status |= cpu_to_le32(TD_TACT);
2468 
2469 	mdp->cur_tx++;
2470 
2471 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2472 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2473 
2474 	return NETDEV_TX_OK;
2475 }
2476 
2477 /* The statistics registers have write-clear behaviour, which means we
2478  * will lose any increment between the read and write.  We mitigate
2479  * this by only clearing when we read a non-zero value, so we will
2480  * never falsely report a total of zero.
2481  */
2482 static void
2483 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2484 {
2485 	u32 delta = sh_eth_read(ndev, reg);
2486 
2487 	if (delta) {
2488 		*stat += delta;
2489 		sh_eth_write(ndev, 0, reg);
2490 	}
2491 }
2492 
2493 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2494 {
2495 	struct sh_eth_private *mdp = netdev_priv(ndev);
2496 
2497 	if (sh_eth_is_rz_fast_ether(mdp))
2498 		return &ndev->stats;
2499 
2500 	if (!mdp->is_opened)
2501 		return &ndev->stats;
2502 
2503 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2504 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2505 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2506 
2507 	if (sh_eth_is_gether(mdp)) {
2508 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2509 				   CERCR);
2510 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2511 				   CEECR);
2512 	} else {
2513 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2514 				   CNDCR);
2515 	}
2516 
2517 	return &ndev->stats;
2518 }
2519 
2520 /* device close function */
2521 static int sh_eth_close(struct net_device *ndev)
2522 {
2523 	struct sh_eth_private *mdp = netdev_priv(ndev);
2524 
2525 	netif_stop_queue(ndev);
2526 
2527 	/* Serialise with the interrupt handler and NAPI, then disable
2528 	 * interrupts.  We have to clear the irq_enabled flag first to
2529 	 * ensure that interrupts won't be re-enabled.
2530 	 */
2531 	mdp->irq_enabled = false;
2532 	synchronize_irq(ndev->irq);
2533 	napi_disable(&mdp->napi);
2534 	sh_eth_write(ndev, 0x0000, EESIPR);
2535 
2536 	sh_eth_dev_exit(ndev);
2537 
2538 	/* PHY Disconnect */
2539 	if (ndev->phydev) {
2540 		phy_stop(ndev->phydev);
2541 		phy_disconnect(ndev->phydev);
2542 	}
2543 
2544 	free_irq(ndev->irq, ndev);
2545 
2546 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2547 	sh_eth_ring_free(ndev);
2548 
2549 	pm_runtime_put_sync(&mdp->pdev->dev);
2550 
2551 	mdp->is_opened = 0;
2552 
2553 	return 0;
2554 }
2555 
2556 /* ioctl to device function */
2557 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2558 {
2559 	struct phy_device *phydev = ndev->phydev;
2560 
2561 	if (!netif_running(ndev))
2562 		return -EINVAL;
2563 
2564 	if (!phydev)
2565 		return -ENODEV;
2566 
2567 	return phy_mii_ioctl(phydev, rq, cmd);
2568 }
2569 
2570 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2571 {
2572 	if (netif_running(ndev))
2573 		return -EBUSY;
2574 
2575 	ndev->mtu = new_mtu;
2576 	netdev_update_features(ndev);
2577 
2578 	return 0;
2579 }
2580 
2581 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2582 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2583 					    int entry)
2584 {
2585 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2586 }
2587 
2588 static u32 sh_eth_tsu_get_post_mask(int entry)
2589 {
2590 	return 0x0f << (28 - ((entry % 8) * 4));
2591 }
2592 
2593 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2594 {
2595 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2596 }
2597 
2598 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2599 					     int entry)
2600 {
2601 	struct sh_eth_private *mdp = netdev_priv(ndev);
2602 	u32 tmp;
2603 	void *reg_offset;
2604 
2605 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2606 	tmp = ioread32(reg_offset);
2607 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2608 }
2609 
2610 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2611 					      int entry)
2612 {
2613 	struct sh_eth_private *mdp = netdev_priv(ndev);
2614 	u32 post_mask, ref_mask, tmp;
2615 	void *reg_offset;
2616 
2617 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2618 	post_mask = sh_eth_tsu_get_post_mask(entry);
2619 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2620 
2621 	tmp = ioread32(reg_offset);
2622 	iowrite32(tmp & ~post_mask, reg_offset);
2623 
2624 	/* If other port enables, the function returns "true" */
2625 	return tmp & ref_mask;
2626 }
2627 
2628 static int sh_eth_tsu_busy(struct net_device *ndev)
2629 {
2630 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2631 	struct sh_eth_private *mdp = netdev_priv(ndev);
2632 
2633 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2634 		udelay(10);
2635 		timeout--;
2636 		if (timeout <= 0) {
2637 			netdev_err(ndev, "%s: timeout\n", __func__);
2638 			return -ETIMEDOUT;
2639 		}
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2646 				  const u8 *addr)
2647 {
2648 	u32 val;
2649 
2650 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2651 	iowrite32(val, reg);
2652 	if (sh_eth_tsu_busy(ndev) < 0)
2653 		return -EBUSY;
2654 
2655 	val = addr[4] << 8 | addr[5];
2656 	iowrite32(val, reg + 4);
2657 	if (sh_eth_tsu_busy(ndev) < 0)
2658 		return -EBUSY;
2659 
2660 	return 0;
2661 }
2662 
2663 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2664 {
2665 	u32 val;
2666 
2667 	val = ioread32(reg);
2668 	addr[0] = (val >> 24) & 0xff;
2669 	addr[1] = (val >> 16) & 0xff;
2670 	addr[2] = (val >> 8) & 0xff;
2671 	addr[3] = val & 0xff;
2672 	val = ioread32(reg + 4);
2673 	addr[4] = (val >> 8) & 0xff;
2674 	addr[5] = val & 0xff;
2675 }
2676 
2677 
2678 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2679 {
2680 	struct sh_eth_private *mdp = netdev_priv(ndev);
2681 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2682 	int i;
2683 	u8 c_addr[ETH_ALEN];
2684 
2685 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2686 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2687 		if (ether_addr_equal(addr, c_addr))
2688 			return i;
2689 	}
2690 
2691 	return -ENOENT;
2692 }
2693 
2694 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2695 {
2696 	u8 blank[ETH_ALEN];
2697 	int entry;
2698 
2699 	memset(blank, 0, sizeof(blank));
2700 	entry = sh_eth_tsu_find_entry(ndev, blank);
2701 	return (entry < 0) ? -ENOMEM : entry;
2702 }
2703 
2704 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2705 					      int entry)
2706 {
2707 	struct sh_eth_private *mdp = netdev_priv(ndev);
2708 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2709 	int ret;
2710 	u8 blank[ETH_ALEN];
2711 
2712 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2713 			 ~(1 << (31 - entry)), TSU_TEN);
2714 
2715 	memset(blank, 0, sizeof(blank));
2716 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2717 	if (ret < 0)
2718 		return ret;
2719 	return 0;
2720 }
2721 
2722 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2723 {
2724 	struct sh_eth_private *mdp = netdev_priv(ndev);
2725 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2726 	int i, ret;
2727 
2728 	if (!mdp->cd->tsu)
2729 		return 0;
2730 
2731 	i = sh_eth_tsu_find_entry(ndev, addr);
2732 	if (i < 0) {
2733 		/* No entry found, create one */
2734 		i = sh_eth_tsu_find_empty(ndev);
2735 		if (i < 0)
2736 			return -ENOMEM;
2737 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2738 		if (ret < 0)
2739 			return ret;
2740 
2741 		/* Enable the entry */
2742 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2743 				 (1 << (31 - i)), TSU_TEN);
2744 	}
2745 
2746 	/* Entry found or created, enable POST */
2747 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2748 
2749 	return 0;
2750 }
2751 
2752 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2753 {
2754 	struct sh_eth_private *mdp = netdev_priv(ndev);
2755 	int i, ret;
2756 
2757 	if (!mdp->cd->tsu)
2758 		return 0;
2759 
2760 	i = sh_eth_tsu_find_entry(ndev, addr);
2761 	if (i) {
2762 		/* Entry found */
2763 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2764 			goto done;
2765 
2766 		/* Disable the entry if both ports was disabled */
2767 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2768 		if (ret < 0)
2769 			return ret;
2770 	}
2771 done:
2772 	return 0;
2773 }
2774 
2775 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2776 {
2777 	struct sh_eth_private *mdp = netdev_priv(ndev);
2778 	int i, ret;
2779 
2780 	if (!mdp->cd->tsu)
2781 		return 0;
2782 
2783 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2784 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2785 			continue;
2786 
2787 		/* Disable the entry if both ports was disabled */
2788 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2789 		if (ret < 0)
2790 			return ret;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2797 {
2798 	struct sh_eth_private *mdp = netdev_priv(ndev);
2799 	u8 addr[ETH_ALEN];
2800 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2801 	int i;
2802 
2803 	if (!mdp->cd->tsu)
2804 		return;
2805 
2806 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2807 		sh_eth_tsu_read_entry(reg_offset, addr);
2808 		if (is_multicast_ether_addr(addr))
2809 			sh_eth_tsu_del_entry(ndev, addr);
2810 	}
2811 }
2812 
2813 /* Update promiscuous flag and multicast filter */
2814 static void sh_eth_set_rx_mode(struct net_device *ndev)
2815 {
2816 	struct sh_eth_private *mdp = netdev_priv(ndev);
2817 	u32 ecmr_bits;
2818 	int mcast_all = 0;
2819 	unsigned long flags;
2820 
2821 	spin_lock_irqsave(&mdp->lock, flags);
2822 	/* Initial condition is MCT = 1, PRM = 0.
2823 	 * Depending on ndev->flags, set PRM or clear MCT
2824 	 */
2825 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2826 	if (mdp->cd->tsu)
2827 		ecmr_bits |= ECMR_MCT;
2828 
2829 	if (!(ndev->flags & IFF_MULTICAST)) {
2830 		sh_eth_tsu_purge_mcast(ndev);
2831 		mcast_all = 1;
2832 	}
2833 	if (ndev->flags & IFF_ALLMULTI) {
2834 		sh_eth_tsu_purge_mcast(ndev);
2835 		ecmr_bits &= ~ECMR_MCT;
2836 		mcast_all = 1;
2837 	}
2838 
2839 	if (ndev->flags & IFF_PROMISC) {
2840 		sh_eth_tsu_purge_all(ndev);
2841 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2842 	} else if (mdp->cd->tsu) {
2843 		struct netdev_hw_addr *ha;
2844 		netdev_for_each_mc_addr(ha, ndev) {
2845 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2846 				continue;
2847 
2848 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2849 				if (!mcast_all) {
2850 					sh_eth_tsu_purge_mcast(ndev);
2851 					ecmr_bits &= ~ECMR_MCT;
2852 					mcast_all = 1;
2853 				}
2854 			}
2855 		}
2856 	}
2857 
2858 	/* update the ethernet mode */
2859 	sh_eth_write(ndev, ecmr_bits, ECMR);
2860 
2861 	spin_unlock_irqrestore(&mdp->lock, flags);
2862 }
2863 
2864 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2865 {
2866 	if (!mdp->port)
2867 		return TSU_VTAG0;
2868 	else
2869 		return TSU_VTAG1;
2870 }
2871 
2872 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2873 				  __be16 proto, u16 vid)
2874 {
2875 	struct sh_eth_private *mdp = netdev_priv(ndev);
2876 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2877 
2878 	if (unlikely(!mdp->cd->tsu))
2879 		return -EPERM;
2880 
2881 	/* No filtering if vid = 0 */
2882 	if (!vid)
2883 		return 0;
2884 
2885 	mdp->vlan_num_ids++;
2886 
2887 	/* The controller has one VLAN tag HW filter. So, if the filter is
2888 	 * already enabled, the driver disables it and the filte
2889 	 */
2890 	if (mdp->vlan_num_ids > 1) {
2891 		/* disable VLAN filter */
2892 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2893 		return 0;
2894 	}
2895 
2896 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2897 			 vtag_reg_index);
2898 
2899 	return 0;
2900 }
2901 
2902 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2903 				   __be16 proto, u16 vid)
2904 {
2905 	struct sh_eth_private *mdp = netdev_priv(ndev);
2906 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2907 
2908 	if (unlikely(!mdp->cd->tsu))
2909 		return -EPERM;
2910 
2911 	/* No filtering if vid = 0 */
2912 	if (!vid)
2913 		return 0;
2914 
2915 	mdp->vlan_num_ids--;
2916 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2917 
2918 	return 0;
2919 }
2920 
2921 /* SuperH's TSU register init function */
2922 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2923 {
2924 	if (sh_eth_is_rz_fast_ether(mdp)) {
2925 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2926 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2927 				 TSU_FWSLC);	/* Enable POST registers */
2928 		return;
2929 	}
2930 
2931 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2932 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2933 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2934 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2935 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2936 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2937 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2938 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2939 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2940 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2941 	if (sh_eth_is_gether(mdp)) {
2942 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2943 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2944 	} else {
2945 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2946 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2947 	}
2948 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2949 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2950 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2951 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2952 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2953 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2954 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2955 }
2956 
2957 /* MDIO bus release function */
2958 static int sh_mdio_release(struct sh_eth_private *mdp)
2959 {
2960 	/* unregister mdio bus */
2961 	mdiobus_unregister(mdp->mii_bus);
2962 
2963 	/* free bitbang info */
2964 	free_mdio_bitbang(mdp->mii_bus);
2965 
2966 	return 0;
2967 }
2968 
2969 /* MDIO bus init function */
2970 static int sh_mdio_init(struct sh_eth_private *mdp,
2971 			struct sh_eth_plat_data *pd)
2972 {
2973 	int ret;
2974 	struct bb_info *bitbang;
2975 	struct platform_device *pdev = mdp->pdev;
2976 	struct device *dev = &mdp->pdev->dev;
2977 
2978 	/* create bit control struct for PHY */
2979 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2980 	if (!bitbang)
2981 		return -ENOMEM;
2982 
2983 	/* bitbang init */
2984 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2985 	bitbang->set_gate = pd->set_mdio_gate;
2986 	bitbang->ctrl.ops = &bb_ops;
2987 
2988 	/* MII controller setting */
2989 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2990 	if (!mdp->mii_bus)
2991 		return -ENOMEM;
2992 
2993 	/* Hook up MII support for ethtool */
2994 	mdp->mii_bus->name = "sh_mii";
2995 	mdp->mii_bus->parent = dev;
2996 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2997 		 pdev->name, pdev->id);
2998 
2999 	/* register MDIO bus */
3000 	if (dev->of_node) {
3001 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3002 	} else {
3003 		if (pd->phy_irq > 0)
3004 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3005 
3006 		ret = mdiobus_register(mdp->mii_bus);
3007 	}
3008 
3009 	if (ret)
3010 		goto out_free_bus;
3011 
3012 	return 0;
3013 
3014 out_free_bus:
3015 	free_mdio_bitbang(mdp->mii_bus);
3016 	return ret;
3017 }
3018 
3019 static const u16 *sh_eth_get_register_offset(int register_type)
3020 {
3021 	const u16 *reg_offset = NULL;
3022 
3023 	switch (register_type) {
3024 	case SH_ETH_REG_GIGABIT:
3025 		reg_offset = sh_eth_offset_gigabit;
3026 		break;
3027 	case SH_ETH_REG_FAST_RZ:
3028 		reg_offset = sh_eth_offset_fast_rz;
3029 		break;
3030 	case SH_ETH_REG_FAST_RCAR:
3031 		reg_offset = sh_eth_offset_fast_rcar;
3032 		break;
3033 	case SH_ETH_REG_FAST_SH4:
3034 		reg_offset = sh_eth_offset_fast_sh4;
3035 		break;
3036 	case SH_ETH_REG_FAST_SH3_SH2:
3037 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3038 		break;
3039 	}
3040 
3041 	return reg_offset;
3042 }
3043 
3044 static const struct net_device_ops sh_eth_netdev_ops = {
3045 	.ndo_open		= sh_eth_open,
3046 	.ndo_stop		= sh_eth_close,
3047 	.ndo_start_xmit		= sh_eth_start_xmit,
3048 	.ndo_get_stats		= sh_eth_get_stats,
3049 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3050 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3051 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3052 	.ndo_change_mtu		= sh_eth_change_mtu,
3053 	.ndo_validate_addr	= eth_validate_addr,
3054 	.ndo_set_mac_address	= eth_mac_addr,
3055 };
3056 
3057 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3058 	.ndo_open		= sh_eth_open,
3059 	.ndo_stop		= sh_eth_close,
3060 	.ndo_start_xmit		= sh_eth_start_xmit,
3061 	.ndo_get_stats		= sh_eth_get_stats,
3062 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3063 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3064 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3065 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3066 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3067 	.ndo_change_mtu		= sh_eth_change_mtu,
3068 	.ndo_validate_addr	= eth_validate_addr,
3069 	.ndo_set_mac_address	= eth_mac_addr,
3070 };
3071 
3072 #ifdef CONFIG_OF
3073 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3074 {
3075 	struct device_node *np = dev->of_node;
3076 	struct sh_eth_plat_data *pdata;
3077 	const char *mac_addr;
3078 
3079 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3080 	if (!pdata)
3081 		return NULL;
3082 
3083 	pdata->phy_interface = of_get_phy_mode(np);
3084 
3085 	mac_addr = of_get_mac_address(np);
3086 	if (mac_addr)
3087 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3088 
3089 	pdata->no_ether_link =
3090 		of_property_read_bool(np, "renesas,no-ether-link");
3091 	pdata->ether_link_active_low =
3092 		of_property_read_bool(np, "renesas,ether-link-active-low");
3093 
3094 	return pdata;
3095 }
3096 
3097 static const struct of_device_id sh_eth_match_table[] = {
3098 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3099 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3100 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3101 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3102 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3103 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3104 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3105 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3106 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3107 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3108 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3109 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3110 	{ }
3111 };
3112 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3113 #else
3114 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3115 {
3116 	return NULL;
3117 }
3118 #endif
3119 
3120 static int sh_eth_drv_probe(struct platform_device *pdev)
3121 {
3122 	struct resource *res;
3123 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3124 	const struct platform_device_id *id = platform_get_device_id(pdev);
3125 	struct sh_eth_private *mdp;
3126 	struct net_device *ndev;
3127 	int ret;
3128 
3129 	/* get base addr */
3130 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3131 
3132 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3133 	if (!ndev)
3134 		return -ENOMEM;
3135 
3136 	pm_runtime_enable(&pdev->dev);
3137 	pm_runtime_get_sync(&pdev->dev);
3138 
3139 	ret = platform_get_irq(pdev, 0);
3140 	if (ret < 0)
3141 		goto out_release;
3142 	ndev->irq = ret;
3143 
3144 	SET_NETDEV_DEV(ndev, &pdev->dev);
3145 
3146 	mdp = netdev_priv(ndev);
3147 	mdp->num_tx_ring = TX_RING_SIZE;
3148 	mdp->num_rx_ring = RX_RING_SIZE;
3149 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3150 	if (IS_ERR(mdp->addr)) {
3151 		ret = PTR_ERR(mdp->addr);
3152 		goto out_release;
3153 	}
3154 
3155 	ndev->base_addr = res->start;
3156 
3157 	spin_lock_init(&mdp->lock);
3158 	mdp->pdev = pdev;
3159 
3160 	if (pdev->dev.of_node)
3161 		pd = sh_eth_parse_dt(&pdev->dev);
3162 	if (!pd) {
3163 		dev_err(&pdev->dev, "no platform data\n");
3164 		ret = -EINVAL;
3165 		goto out_release;
3166 	}
3167 
3168 	/* get PHY ID */
3169 	mdp->phy_id = pd->phy;
3170 	mdp->phy_interface = pd->phy_interface;
3171 	mdp->no_ether_link = pd->no_ether_link;
3172 	mdp->ether_link_active_low = pd->ether_link_active_low;
3173 
3174 	/* set cpu data */
3175 	if (id)
3176 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3177 	else
3178 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3179 
3180 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3181 	if (!mdp->reg_offset) {
3182 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3183 			mdp->cd->register_type);
3184 		ret = -EINVAL;
3185 		goto out_release;
3186 	}
3187 	sh_eth_set_default_cpu_data(mdp->cd);
3188 
3189 	/* User's manual states max MTU should be 2048 but due to the
3190 	 * alignment calculations in sh_eth_ring_init() the practical
3191 	 * MTU is a bit less. Maybe this can be optimized some more.
3192 	 */
3193 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3194 	ndev->min_mtu = ETH_MIN_MTU;
3195 
3196 	/* set function */
3197 	if (mdp->cd->tsu)
3198 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3199 	else
3200 		ndev->netdev_ops = &sh_eth_netdev_ops;
3201 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3202 	ndev->watchdog_timeo = TX_TIMEOUT;
3203 
3204 	/* debug message level */
3205 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3206 
3207 	/* read and set MAC address */
3208 	read_mac_address(ndev, pd->mac_addr);
3209 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3210 		dev_warn(&pdev->dev,
3211 			 "no valid MAC address supplied, using a random one.\n");
3212 		eth_hw_addr_random(ndev);
3213 	}
3214 
3215 	if (mdp->cd->tsu) {
3216 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3217 		struct resource *rtsu;
3218 
3219 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3220 		if (!rtsu) {
3221 			dev_err(&pdev->dev, "no TSU resource\n");
3222 			ret = -ENODEV;
3223 			goto out_release;
3224 		}
3225 		/* We can only request the  TSU region  for the first port
3226 		 * of the two  sharing this TSU for the probe to succeed...
3227 		 */
3228 		if (port == 0 &&
3229 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3230 					     resource_size(rtsu),
3231 					     dev_name(&pdev->dev))) {
3232 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3233 			ret = -EBUSY;
3234 			goto out_release;
3235 		}
3236 		/* ioremap the TSU registers */
3237 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3238 					     resource_size(rtsu));
3239 		if (!mdp->tsu_addr) {
3240 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3241 			ret = -ENOMEM;
3242 			goto out_release;
3243 		}
3244 		mdp->port = port;
3245 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3246 
3247 		/* Need to init only the first port of the two sharing a TSU */
3248 		if (port == 0) {
3249 			if (mdp->cd->chip_reset)
3250 				mdp->cd->chip_reset(ndev);
3251 
3252 			/* TSU init (Init only)*/
3253 			sh_eth_tsu_init(mdp);
3254 		}
3255 	}
3256 
3257 	if (mdp->cd->rmiimode)
3258 		sh_eth_write(ndev, 0x1, RMIIMODE);
3259 
3260 	/* MDIO bus init */
3261 	ret = sh_mdio_init(mdp, pd);
3262 	if (ret) {
3263 		if (ret != -EPROBE_DEFER)
3264 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3265 		goto out_release;
3266 	}
3267 
3268 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3269 
3270 	/* network device register */
3271 	ret = register_netdev(ndev);
3272 	if (ret)
3273 		goto out_napi_del;
3274 
3275 	if (mdp->cd->magic)
3276 		device_set_wakeup_capable(&pdev->dev, 1);
3277 
3278 	/* print device information */
3279 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3280 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3281 
3282 	pm_runtime_put(&pdev->dev);
3283 	platform_set_drvdata(pdev, ndev);
3284 
3285 	return ret;
3286 
3287 out_napi_del:
3288 	netif_napi_del(&mdp->napi);
3289 	sh_mdio_release(mdp);
3290 
3291 out_release:
3292 	/* net_dev free */
3293 	free_netdev(ndev);
3294 
3295 	pm_runtime_put(&pdev->dev);
3296 	pm_runtime_disable(&pdev->dev);
3297 	return ret;
3298 }
3299 
3300 static int sh_eth_drv_remove(struct platform_device *pdev)
3301 {
3302 	struct net_device *ndev = platform_get_drvdata(pdev);
3303 	struct sh_eth_private *mdp = netdev_priv(ndev);
3304 
3305 	unregister_netdev(ndev);
3306 	netif_napi_del(&mdp->napi);
3307 	sh_mdio_release(mdp);
3308 	pm_runtime_disable(&pdev->dev);
3309 	free_netdev(ndev);
3310 
3311 	return 0;
3312 }
3313 
3314 #ifdef CONFIG_PM
3315 #ifdef CONFIG_PM_SLEEP
3316 static int sh_eth_wol_setup(struct net_device *ndev)
3317 {
3318 	struct sh_eth_private *mdp = netdev_priv(ndev);
3319 
3320 	/* Only allow ECI interrupts */
3321 	synchronize_irq(ndev->irq);
3322 	napi_disable(&mdp->napi);
3323 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3324 
3325 	/* Enable MagicPacket */
3326 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3327 
3328 	return enable_irq_wake(ndev->irq);
3329 }
3330 
3331 static int sh_eth_wol_restore(struct net_device *ndev)
3332 {
3333 	struct sh_eth_private *mdp = netdev_priv(ndev);
3334 	int ret;
3335 
3336 	napi_enable(&mdp->napi);
3337 
3338 	/* Disable MagicPacket */
3339 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3340 
3341 	/* The device needs to be reset to restore MagicPacket logic
3342 	 * for next wakeup. If we close and open the device it will
3343 	 * both be reset and all registers restored. This is what
3344 	 * happens during suspend and resume without WoL enabled.
3345 	 */
3346 	ret = sh_eth_close(ndev);
3347 	if (ret < 0)
3348 		return ret;
3349 	ret = sh_eth_open(ndev);
3350 	if (ret < 0)
3351 		return ret;
3352 
3353 	return disable_irq_wake(ndev->irq);
3354 }
3355 
3356 static int sh_eth_suspend(struct device *dev)
3357 {
3358 	struct net_device *ndev = dev_get_drvdata(dev);
3359 	struct sh_eth_private *mdp = netdev_priv(ndev);
3360 	int ret = 0;
3361 
3362 	if (!netif_running(ndev))
3363 		return 0;
3364 
3365 	netif_device_detach(ndev);
3366 
3367 	if (mdp->wol_enabled)
3368 		ret = sh_eth_wol_setup(ndev);
3369 	else
3370 		ret = sh_eth_close(ndev);
3371 
3372 	return ret;
3373 }
3374 
3375 static int sh_eth_resume(struct device *dev)
3376 {
3377 	struct net_device *ndev = dev_get_drvdata(dev);
3378 	struct sh_eth_private *mdp = netdev_priv(ndev);
3379 	int ret = 0;
3380 
3381 	if (!netif_running(ndev))
3382 		return 0;
3383 
3384 	if (mdp->wol_enabled)
3385 		ret = sh_eth_wol_restore(ndev);
3386 	else
3387 		ret = sh_eth_open(ndev);
3388 
3389 	if (ret < 0)
3390 		return ret;
3391 
3392 	netif_device_attach(ndev);
3393 
3394 	return ret;
3395 }
3396 #endif
3397 
3398 static int sh_eth_runtime_nop(struct device *dev)
3399 {
3400 	/* Runtime PM callback shared between ->runtime_suspend()
3401 	 * and ->runtime_resume(). Simply returns success.
3402 	 *
3403 	 * This driver re-initializes all registers after
3404 	 * pm_runtime_get_sync() anyway so there is no need
3405 	 * to save and restore registers here.
3406 	 */
3407 	return 0;
3408 }
3409 
3410 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3411 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3412 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3413 };
3414 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3415 #else
3416 #define SH_ETH_PM_OPS NULL
3417 #endif
3418 
3419 static const struct platform_device_id sh_eth_id_table[] = {
3420 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3421 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3422 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3423 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3424 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3425 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3426 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3427 	{ }
3428 };
3429 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3430 
3431 static struct platform_driver sh_eth_driver = {
3432 	.probe = sh_eth_drv_probe,
3433 	.remove = sh_eth_drv_remove,
3434 	.id_table = sh_eth_id_table,
3435 	.driver = {
3436 		   .name = CARDNAME,
3437 		   .pm = SH_ETH_PM_OPS,
3438 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3439 	},
3440 };
3441 
3442 module_platform_driver(sh_eth_driver);
3443 
3444 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3445 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3446 MODULE_LICENSE("GPL v2");
3447