xref: /openbmc/linux/drivers/net/ethernet/renesas/sh_eth.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34 
35 #include "sh_eth.h"
36 
37 #define SH_ETH_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	| \
39 		NETIF_MSG_TIMER	| \
40 		NETIF_MSG_RX_ERR| \
41 		NETIF_MSG_TX_ERR)
42 
43 #define SH_ETH_OFFSET_INVALID	((u16)~0)
44 
45 #define SH_ETH_OFFSET_DEFAULTS			\
46 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47 
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 	SH_ETH_OFFSET_DEFAULTS,
50 
51 	[EDSR]		= 0x0000,
52 	[EDMR]		= 0x0400,
53 	[EDTRR]		= 0x0408,
54 	[EDRRR]		= 0x0410,
55 	[EESR]		= 0x0428,
56 	[EESIPR]	= 0x0430,
57 	[TDLAR]		= 0x0010,
58 	[TDFAR]		= 0x0014,
59 	[TDFXR]		= 0x0018,
60 	[TDFFR]		= 0x001c,
61 	[RDLAR]		= 0x0030,
62 	[RDFAR]		= 0x0034,
63 	[RDFXR]		= 0x0038,
64 	[RDFFR]		= 0x003c,
65 	[TRSCER]	= 0x0438,
66 	[RMFCR]		= 0x0440,
67 	[TFTR]		= 0x0448,
68 	[FDR]		= 0x0450,
69 	[RMCR]		= 0x0458,
70 	[RPADIR]	= 0x0460,
71 	[FCFTR]		= 0x0468,
72 	[CSMR]		= 0x04E4,
73 
74 	[ECMR]		= 0x0500,
75 	[ECSR]		= 0x0510,
76 	[ECSIPR]	= 0x0518,
77 	[PIR]		= 0x0520,
78 	[PSR]		= 0x0528,
79 	[PIPR]		= 0x052c,
80 	[RFLR]		= 0x0508,
81 	[APR]		= 0x0554,
82 	[MPR]		= 0x0558,
83 	[PFTCR]		= 0x055c,
84 	[PFRCR]		= 0x0560,
85 	[TPAUSER]	= 0x0564,
86 	[GECMR]		= 0x05b0,
87 	[BCULR]		= 0x05b4,
88 	[MAHR]		= 0x05c0,
89 	[MALR]		= 0x05c8,
90 	[TROCR]		= 0x0700,
91 	[CDCR]		= 0x0708,
92 	[LCCR]		= 0x0710,
93 	[CEFCR]		= 0x0740,
94 	[FRECR]		= 0x0748,
95 	[TSFRCR]	= 0x0750,
96 	[TLFRCR]	= 0x0758,
97 	[RFCR]		= 0x0760,
98 	[CERCR]		= 0x0768,
99 	[CEECR]		= 0x0770,
100 	[MAFCR]		= 0x0778,
101 	[RMII_MII]	= 0x0790,
102 
103 	[ARSTR]		= 0x0000,
104 	[TSU_CTRST]	= 0x0004,
105 	[TSU_FWEN0]	= 0x0010,
106 	[TSU_FWEN1]	= 0x0014,
107 	[TSU_FCM]	= 0x0018,
108 	[TSU_BSYSL0]	= 0x0020,
109 	[TSU_BSYSL1]	= 0x0024,
110 	[TSU_PRISL0]	= 0x0028,
111 	[TSU_PRISL1]	= 0x002c,
112 	[TSU_FWSL0]	= 0x0030,
113 	[TSU_FWSL1]	= 0x0034,
114 	[TSU_FWSLC]	= 0x0038,
115 	[TSU_QTAGM0]	= 0x0040,
116 	[TSU_QTAGM1]	= 0x0044,
117 	[TSU_FWSR]	= 0x0050,
118 	[TSU_FWINMK]	= 0x0054,
119 	[TSU_ADQT0]	= 0x0048,
120 	[TSU_ADQT1]	= 0x004c,
121 	[TSU_VTAG0]	= 0x0058,
122 	[TSU_VTAG1]	= 0x005c,
123 	[TSU_ADSBSY]	= 0x0060,
124 	[TSU_TEN]	= 0x0064,
125 	[TSU_POST1]	= 0x0070,
126 	[TSU_POST2]	= 0x0074,
127 	[TSU_POST3]	= 0x0078,
128 	[TSU_POST4]	= 0x007c,
129 	[TSU_ADRH0]	= 0x0100,
130 
131 	[TXNLCR0]	= 0x0080,
132 	[TXALCR0]	= 0x0084,
133 	[RXNLCR0]	= 0x0088,
134 	[RXALCR0]	= 0x008c,
135 	[FWNLCR0]	= 0x0090,
136 	[FWALCR0]	= 0x0094,
137 	[TXNLCR1]	= 0x00a0,
138 	[TXALCR1]	= 0x00a4,
139 	[RXNLCR1]	= 0x00a8,
140 	[RXALCR1]	= 0x00ac,
141 	[FWNLCR1]	= 0x00b0,
142 	[FWALCR1]	= 0x00b4,
143 };
144 
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 	SH_ETH_OFFSET_DEFAULTS,
147 
148 	[EDSR]		= 0x0000,
149 	[EDMR]		= 0x0400,
150 	[EDTRR]		= 0x0408,
151 	[EDRRR]		= 0x0410,
152 	[EESR]		= 0x0428,
153 	[EESIPR]	= 0x0430,
154 	[TDLAR]		= 0x0010,
155 	[TDFAR]		= 0x0014,
156 	[TDFXR]		= 0x0018,
157 	[TDFFR]		= 0x001c,
158 	[RDLAR]		= 0x0030,
159 	[RDFAR]		= 0x0034,
160 	[RDFXR]		= 0x0038,
161 	[RDFFR]		= 0x003c,
162 	[TRSCER]	= 0x0438,
163 	[RMFCR]		= 0x0440,
164 	[TFTR]		= 0x0448,
165 	[FDR]		= 0x0450,
166 	[RMCR]		= 0x0458,
167 	[RPADIR]	= 0x0460,
168 	[FCFTR]		= 0x0468,
169 	[CSMR]		= 0x04E4,
170 
171 	[ECMR]		= 0x0500,
172 	[RFLR]		= 0x0508,
173 	[ECSR]		= 0x0510,
174 	[ECSIPR]	= 0x0518,
175 	[PIR]		= 0x0520,
176 	[APR]		= 0x0554,
177 	[MPR]		= 0x0558,
178 	[PFTCR]		= 0x055c,
179 	[PFRCR]		= 0x0560,
180 	[TPAUSER]	= 0x0564,
181 	[MAHR]		= 0x05c0,
182 	[MALR]		= 0x05c8,
183 	[CEFCR]		= 0x0740,
184 	[FRECR]		= 0x0748,
185 	[TSFRCR]	= 0x0750,
186 	[TLFRCR]	= 0x0758,
187 	[RFCR]		= 0x0760,
188 	[MAFCR]		= 0x0778,
189 
190 	[ARSTR]		= 0x0000,
191 	[TSU_CTRST]	= 0x0004,
192 	[TSU_FWSLC]	= 0x0038,
193 	[TSU_VTAG0]	= 0x0058,
194 	[TSU_ADSBSY]	= 0x0060,
195 	[TSU_TEN]	= 0x0064,
196 	[TSU_POST1]	= 0x0070,
197 	[TSU_POST2]	= 0x0074,
198 	[TSU_POST3]	= 0x0078,
199 	[TSU_POST4]	= 0x007c,
200 	[TSU_ADRH0]	= 0x0100,
201 
202 	[TXNLCR0]	= 0x0080,
203 	[TXALCR0]	= 0x0084,
204 	[RXNLCR0]	= 0x0088,
205 	[RXALCR0]	= 0x008C,
206 };
207 
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 	SH_ETH_OFFSET_DEFAULTS,
210 
211 	[ECMR]		= 0x0300,
212 	[RFLR]		= 0x0308,
213 	[ECSR]		= 0x0310,
214 	[ECSIPR]	= 0x0318,
215 	[PIR]		= 0x0320,
216 	[PSR]		= 0x0328,
217 	[RDMLR]		= 0x0340,
218 	[IPGR]		= 0x0350,
219 	[APR]		= 0x0354,
220 	[MPR]		= 0x0358,
221 	[RFCF]		= 0x0360,
222 	[TPAUSER]	= 0x0364,
223 	[TPAUSECR]	= 0x0368,
224 	[MAHR]		= 0x03c0,
225 	[MALR]		= 0x03c8,
226 	[TROCR]		= 0x03d0,
227 	[CDCR]		= 0x03d4,
228 	[LCCR]		= 0x03d8,
229 	[CNDCR]		= 0x03dc,
230 	[CEFCR]		= 0x03e4,
231 	[FRECR]		= 0x03e8,
232 	[TSFRCR]	= 0x03ec,
233 	[TLFRCR]	= 0x03f0,
234 	[RFCR]		= 0x03f4,
235 	[MAFCR]		= 0x03f8,
236 
237 	[EDMR]		= 0x0200,
238 	[EDTRR]		= 0x0208,
239 	[EDRRR]		= 0x0210,
240 	[TDLAR]		= 0x0218,
241 	[RDLAR]		= 0x0220,
242 	[EESR]		= 0x0228,
243 	[EESIPR]	= 0x0230,
244 	[TRSCER]	= 0x0238,
245 	[RMFCR]		= 0x0240,
246 	[TFTR]		= 0x0248,
247 	[FDR]		= 0x0250,
248 	[RMCR]		= 0x0258,
249 	[TFUCR]		= 0x0264,
250 	[RFOCR]		= 0x0268,
251 	[RMIIMODE]      = 0x026c,
252 	[FCFTR]		= 0x0270,
253 	[TRIMD]		= 0x027c,
254 };
255 
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 	SH_ETH_OFFSET_DEFAULTS,
258 
259 	[ECMR]		= 0x0100,
260 	[RFLR]		= 0x0108,
261 	[ECSR]		= 0x0110,
262 	[ECSIPR]	= 0x0118,
263 	[PIR]		= 0x0120,
264 	[PSR]		= 0x0128,
265 	[RDMLR]		= 0x0140,
266 	[IPGR]		= 0x0150,
267 	[APR]		= 0x0154,
268 	[MPR]		= 0x0158,
269 	[TPAUSER]	= 0x0164,
270 	[RFCF]		= 0x0160,
271 	[TPAUSECR]	= 0x0168,
272 	[BCFRR]		= 0x016c,
273 	[MAHR]		= 0x01c0,
274 	[MALR]		= 0x01c8,
275 	[TROCR]		= 0x01d0,
276 	[CDCR]		= 0x01d4,
277 	[LCCR]		= 0x01d8,
278 	[CNDCR]		= 0x01dc,
279 	[CEFCR]		= 0x01e4,
280 	[FRECR]		= 0x01e8,
281 	[TSFRCR]	= 0x01ec,
282 	[TLFRCR]	= 0x01f0,
283 	[RFCR]		= 0x01f4,
284 	[MAFCR]		= 0x01f8,
285 	[RTRATE]	= 0x01fc,
286 
287 	[EDMR]		= 0x0000,
288 	[EDTRR]		= 0x0008,
289 	[EDRRR]		= 0x0010,
290 	[TDLAR]		= 0x0018,
291 	[RDLAR]		= 0x0020,
292 	[EESR]		= 0x0028,
293 	[EESIPR]	= 0x0030,
294 	[TRSCER]	= 0x0038,
295 	[RMFCR]		= 0x0040,
296 	[TFTR]		= 0x0048,
297 	[FDR]		= 0x0050,
298 	[RMCR]		= 0x0058,
299 	[TFUCR]		= 0x0064,
300 	[RFOCR]		= 0x0068,
301 	[FCFTR]		= 0x0070,
302 	[RPADIR]	= 0x0078,
303 	[TRIMD]		= 0x007c,
304 	[RBWAR]		= 0x00c8,
305 	[RDFAR]		= 0x00cc,
306 	[TBRAR]		= 0x00d4,
307 	[TDFAR]		= 0x00d8,
308 };
309 
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 	SH_ETH_OFFSET_DEFAULTS,
312 
313 	[EDMR]		= 0x0000,
314 	[EDTRR]		= 0x0004,
315 	[EDRRR]		= 0x0008,
316 	[TDLAR]		= 0x000c,
317 	[RDLAR]		= 0x0010,
318 	[EESR]		= 0x0014,
319 	[EESIPR]	= 0x0018,
320 	[TRSCER]	= 0x001c,
321 	[RMFCR]		= 0x0020,
322 	[TFTR]		= 0x0024,
323 	[FDR]		= 0x0028,
324 	[RMCR]		= 0x002c,
325 	[EDOCR]		= 0x0030,
326 	[FCFTR]		= 0x0034,
327 	[RPADIR]	= 0x0038,
328 	[TRIMD]		= 0x003c,
329 	[RBWAR]		= 0x0040,
330 	[RDFAR]		= 0x0044,
331 	[TBRAR]		= 0x004c,
332 	[TDFAR]		= 0x0050,
333 
334 	[ECMR]		= 0x0160,
335 	[ECSR]		= 0x0164,
336 	[ECSIPR]	= 0x0168,
337 	[PIR]		= 0x016c,
338 	[MAHR]		= 0x0170,
339 	[MALR]		= 0x0174,
340 	[RFLR]		= 0x0178,
341 	[PSR]		= 0x017c,
342 	[TROCR]		= 0x0180,
343 	[CDCR]		= 0x0184,
344 	[LCCR]		= 0x0188,
345 	[CNDCR]		= 0x018c,
346 	[CEFCR]		= 0x0194,
347 	[FRECR]		= 0x0198,
348 	[TSFRCR]	= 0x019c,
349 	[TLFRCR]	= 0x01a0,
350 	[RFCR]		= 0x01a4,
351 	[MAFCR]		= 0x01a8,
352 	[IPGR]		= 0x01b4,
353 	[APR]		= 0x01b8,
354 	[MPR]		= 0x01bc,
355 	[TPAUSER]	= 0x01c4,
356 	[BCFR]		= 0x01cc,
357 
358 	[ARSTR]		= 0x0000,
359 	[TSU_CTRST]	= 0x0004,
360 	[TSU_FWEN0]	= 0x0010,
361 	[TSU_FWEN1]	= 0x0014,
362 	[TSU_FCM]	= 0x0018,
363 	[TSU_BSYSL0]	= 0x0020,
364 	[TSU_BSYSL1]	= 0x0024,
365 	[TSU_PRISL0]	= 0x0028,
366 	[TSU_PRISL1]	= 0x002c,
367 	[TSU_FWSL0]	= 0x0030,
368 	[TSU_FWSL1]	= 0x0034,
369 	[TSU_FWSLC]	= 0x0038,
370 	[TSU_QTAGM0]	= 0x0040,
371 	[TSU_QTAGM1]	= 0x0044,
372 	[TSU_ADQT0]	= 0x0048,
373 	[TSU_ADQT1]	= 0x004c,
374 	[TSU_FWSR]	= 0x0050,
375 	[TSU_FWINMK]	= 0x0054,
376 	[TSU_ADSBSY]	= 0x0060,
377 	[TSU_TEN]	= 0x0064,
378 	[TSU_POST1]	= 0x0070,
379 	[TSU_POST2]	= 0x0074,
380 	[TSU_POST3]	= 0x0078,
381 	[TSU_POST4]	= 0x007c,
382 
383 	[TXNLCR0]	= 0x0080,
384 	[TXALCR0]	= 0x0084,
385 	[RXNLCR0]	= 0x0088,
386 	[RXALCR0]	= 0x008c,
387 	[FWNLCR0]	= 0x0090,
388 	[FWALCR0]	= 0x0094,
389 	[TXNLCR1]	= 0x00a0,
390 	[TXALCR1]	= 0x00a4,
391 	[RXNLCR1]	= 0x00a8,
392 	[RXALCR1]	= 0x00ac,
393 	[FWNLCR1]	= 0x00b0,
394 	[FWALCR1]	= 0x00b4,
395 
396 	[TSU_ADRH0]	= 0x0100,
397 };
398 
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401 
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
403 {
404 	struct sh_eth_private *mdp = netdev_priv(ndev);
405 	u16 offset = mdp->reg_offset[enum_index];
406 
407 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 		return;
409 
410 	iowrite32(data, mdp->addr + offset);
411 }
412 
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return ~0U;
420 
421 	return ioread32(mdp->addr + offset);
422 }
423 
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 			  u32 set)
426 {
427 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 		     enum_index);
429 }
430 
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
432 {
433 	return mdp->reg_offset[enum_index];
434 }
435 
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 			     int enum_index)
438 {
439 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
440 
441 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 		return;
443 
444 	iowrite32(data, mdp->tsu_addr + offset);
445 }
446 
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
448 {
449 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
450 
451 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 		return ~0U;
453 
454 	return ioread32(mdp->tsu_addr + offset);
455 }
456 
457 static void sh_eth_soft_swap(char *src, int len)
458 {
459 #ifdef __LITTLE_ENDIAN
460 	u32 *p = (u32 *)src;
461 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
462 
463 	for (; p < maxp; p++)
464 		*p = swab32(*p);
465 #endif
466 }
467 
468 static void sh_eth_select_mii(struct net_device *ndev)
469 {
470 	struct sh_eth_private *mdp = netdev_priv(ndev);
471 	u32 value;
472 
473 	switch (mdp->phy_interface) {
474 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 		value = 0x3;
476 		break;
477 	case PHY_INTERFACE_MODE_GMII:
478 		value = 0x2;
479 		break;
480 	case PHY_INTERFACE_MODE_MII:
481 		value = 0x1;
482 		break;
483 	case PHY_INTERFACE_MODE_RMII:
484 		value = 0x0;
485 		break;
486 	default:
487 		netdev_warn(ndev,
488 			    "PHY interface mode was not setup. Set to MII.\n");
489 		value = 0x1;
490 		break;
491 	}
492 
493 	sh_eth_write(ndev, value, RMII_MII);
494 }
495 
496 static void sh_eth_set_duplex(struct net_device *ndev)
497 {
498 	struct sh_eth_private *mdp = netdev_priv(ndev);
499 
500 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
501 }
502 
503 static void sh_eth_chip_reset(struct net_device *ndev)
504 {
505 	struct sh_eth_private *mdp = netdev_priv(ndev);
506 
507 	/* reset device */
508 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 	mdelay(1);
510 }
511 
512 static int sh_eth_soft_reset(struct net_device *ndev)
513 {
514 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 	mdelay(3);
516 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
517 
518 	return 0;
519 }
520 
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
522 {
523 	int cnt;
524 
525 	for (cnt = 100; cnt > 0; cnt--) {
526 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 			return 0;
528 		mdelay(1);
529 	}
530 
531 	netdev_err(ndev, "Device reset failed\n");
532 	return -ETIMEDOUT;
533 }
534 
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
536 {
537 	struct sh_eth_private *mdp = netdev_priv(ndev);
538 	int ret;
539 
540 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
542 
543 	ret = sh_eth_check_soft_reset(ndev);
544 	if (ret)
545 		return ret;
546 
547 	/* Table Init */
548 	sh_eth_write(ndev, 0, TDLAR);
549 	sh_eth_write(ndev, 0, TDFAR);
550 	sh_eth_write(ndev, 0, TDFXR);
551 	sh_eth_write(ndev, 0, TDFFR);
552 	sh_eth_write(ndev, 0, RDLAR);
553 	sh_eth_write(ndev, 0, RDFAR);
554 	sh_eth_write(ndev, 0, RDFXR);
555 	sh_eth_write(ndev, 0, RDFFR);
556 
557 	/* Reset HW CRC register */
558 	if (mdp->cd->csmr)
559 		sh_eth_write(ndev, 0, CSMR);
560 
561 	/* Select MII mode */
562 	if (mdp->cd->select_mii)
563 		sh_eth_select_mii(ndev);
564 
565 	return ret;
566 }
567 
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
569 {
570 	struct sh_eth_private *mdp = netdev_priv(ndev);
571 
572 	switch (mdp->speed) {
573 	case 10: /* 10BASE */
574 		sh_eth_write(ndev, GECMR_10, GECMR);
575 		break;
576 	case 100:/* 100BASE */
577 		sh_eth_write(ndev, GECMR_100, GECMR);
578 		break;
579 	case 1000: /* 1000BASE */
580 		sh_eth_write(ndev, GECMR_1000, GECMR);
581 		break;
582 	}
583 }
584 
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 	.soft_reset	= sh_eth_soft_reset_gether,
589 
590 	.chip_reset	= sh_eth_chip_reset,
591 	.set_duplex	= sh_eth_set_duplex,
592 
593 	.register_type	= SH_ETH_REG_FAST_RZ,
594 
595 	.edtrr_trns	= EDTRR_TRNS_GETHER,
596 	.ecsr_value	= ECSR_ICD,
597 	.ecsipr_value	= ECSIPR_ICDIP,
598 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 			  EESIPR_ECIIP |
601 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 			  EESIPR_RMAFIP | EESIPR_RRFIP |
604 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
605 			  EESIPR_PREIP | EESIPR_CERFIP,
606 
607 	.tx_check	= EESR_TC1 | EESR_FTC,
608 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 			  EESR_TDE,
611 	.fdr_value	= 0x0000070f,
612 
613 	.no_psr		= 1,
614 	.apr		= 1,
615 	.mpr		= 1,
616 	.tpauser	= 1,
617 	.hw_swap	= 1,
618 	.rpadir		= 1,
619 	.no_trimd	= 1,
620 	.no_ade		= 1,
621 	.xdfar_rw	= 1,
622 	.csmr		= 1,
623 	.rx_csum	= 1,
624 	.tsu		= 1,
625 	.no_tx_cntrs	= 1,
626 };
627 
628 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
629 {
630 	sh_eth_chip_reset(ndev);
631 
632 	sh_eth_select_mii(ndev);
633 }
634 
635 /* R8A7740 */
636 static struct sh_eth_cpu_data r8a7740_data = {
637 	.soft_reset	= sh_eth_soft_reset_gether,
638 
639 	.chip_reset	= sh_eth_chip_reset_r8a7740,
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_gether,
642 
643 	.register_type	= SH_ETH_REG_GIGABIT,
644 
645 	.edtrr_trns	= EDTRR_TRNS_GETHER,
646 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
647 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
648 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
649 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
652 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
653 			  EESIPR_CEEFIP | EESIPR_CELFIP |
654 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
655 			  EESIPR_PREIP | EESIPR_CERFIP,
656 
657 	.tx_check	= EESR_TC1 | EESR_FTC,
658 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
659 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
660 			  EESR_TDE,
661 	.fdr_value	= 0x0000070f,
662 
663 	.apr		= 1,
664 	.mpr		= 1,
665 	.tpauser	= 1,
666 	.bculr		= 1,
667 	.hw_swap	= 1,
668 	.rpadir		= 1,
669 	.no_trimd	= 1,
670 	.no_ade		= 1,
671 	.xdfar_rw	= 1,
672 	.csmr		= 1,
673 	.rx_csum	= 1,
674 	.tsu		= 1,
675 	.select_mii	= 1,
676 	.magic		= 1,
677 	.cexcr		= 1,
678 };
679 
680 /* There is CPU dependent code */
681 static void sh_eth_set_rate_rcar(struct net_device *ndev)
682 {
683 	struct sh_eth_private *mdp = netdev_priv(ndev);
684 
685 	switch (mdp->speed) {
686 	case 10: /* 10BASE */
687 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
688 		break;
689 	case 100:/* 100BASE */
690 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
691 		break;
692 	}
693 }
694 
695 /* R-Car Gen1 */
696 static struct sh_eth_cpu_data rcar_gen1_data = {
697 	.soft_reset	= sh_eth_soft_reset,
698 
699 	.set_duplex	= sh_eth_set_duplex,
700 	.set_rate	= sh_eth_set_rate_rcar,
701 
702 	.register_type	= SH_ETH_REG_FAST_RCAR,
703 
704 	.edtrr_trns	= EDTRR_TRNS_ETHER,
705 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
706 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
707 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
708 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
709 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
710 			  EESIPR_RMAFIP | EESIPR_RRFIP |
711 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
712 			  EESIPR_PREIP | EESIPR_CERFIP,
713 
714 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
715 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
716 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
717 	.fdr_value	= 0x00000f0f,
718 
719 	.apr		= 1,
720 	.mpr		= 1,
721 	.tpauser	= 1,
722 	.hw_swap	= 1,
723 	.no_xdfar	= 1,
724 };
725 
726 /* R-Car Gen2 and RZ/G1 */
727 static struct sh_eth_cpu_data rcar_gen2_data = {
728 	.soft_reset	= sh_eth_soft_reset,
729 
730 	.set_duplex	= sh_eth_set_duplex,
731 	.set_rate	= sh_eth_set_rate_rcar,
732 
733 	.register_type	= SH_ETH_REG_FAST_RCAR,
734 
735 	.edtrr_trns	= EDTRR_TRNS_ETHER,
736 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
737 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
738 			  ECSIPR_MPDIP,
739 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
740 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
741 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
742 			  EESIPR_RMAFIP | EESIPR_RRFIP |
743 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
744 			  EESIPR_PREIP | EESIPR_CERFIP,
745 
746 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
747 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
748 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
749 	.fdr_value	= 0x00000f0f,
750 
751 	.trscer_err_mask = DESC_I_RINT8,
752 
753 	.apr		= 1,
754 	.mpr		= 1,
755 	.tpauser	= 1,
756 	.hw_swap	= 1,
757 	.no_xdfar	= 1,
758 	.rmiimode	= 1,
759 	.magic		= 1,
760 };
761 
762 /* R8A77980 */
763 static struct sh_eth_cpu_data r8a77980_data = {
764 	.soft_reset	= sh_eth_soft_reset_gether,
765 
766 	.set_duplex	= sh_eth_set_duplex,
767 	.set_rate	= sh_eth_set_rate_gether,
768 
769 	.register_type  = SH_ETH_REG_GIGABIT,
770 
771 	.edtrr_trns	= EDTRR_TRNS_GETHER,
772 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
773 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
774 			  ECSIPR_MPDIP,
775 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
776 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
777 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
778 			  EESIPR_RMAFIP | EESIPR_RRFIP |
779 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
780 			  EESIPR_PREIP | EESIPR_CERFIP,
781 
782 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
783 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
785 			  EESR_TFE | EESR_TDE | EESR_ECI,
786 	.fdr_value	= 0x0000070f,
787 
788 	.apr		= 1,
789 	.mpr		= 1,
790 	.tpauser	= 1,
791 	.bculr		= 1,
792 	.hw_swap	= 1,
793 	.nbst		= 1,
794 	.rpadir		= 1,
795 	.no_trimd	= 1,
796 	.no_ade		= 1,
797 	.xdfar_rw	= 1,
798 	.csmr		= 1,
799 	.rx_csum	= 1,
800 	.select_mii	= 1,
801 	.magic		= 1,
802 	.cexcr		= 1,
803 };
804 
805 /* R7S9210 */
806 static struct sh_eth_cpu_data r7s9210_data = {
807 	.soft_reset	= sh_eth_soft_reset,
808 
809 	.set_duplex	= sh_eth_set_duplex,
810 	.set_rate	= sh_eth_set_rate_rcar,
811 
812 	.register_type	= SH_ETH_REG_FAST_SH4,
813 
814 	.edtrr_trns	= EDTRR_TRNS_ETHER,
815 	.ecsr_value	= ECSR_ICD,
816 	.ecsipr_value	= ECSIPR_ICDIP,
817 	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
818 			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
819 			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
820 			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
821 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
822 			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
823 			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
824 
825 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
826 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
827 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
828 
829 	.fdr_value	= 0x0000070f,
830 
831 	.apr		= 1,
832 	.mpr		= 1,
833 	.tpauser	= 1,
834 	.hw_swap	= 1,
835 	.rpadir		= 1,
836 	.no_ade		= 1,
837 	.xdfar_rw	= 1,
838 };
839 #endif /* CONFIG_OF */
840 
841 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
842 {
843 	struct sh_eth_private *mdp = netdev_priv(ndev);
844 
845 	switch (mdp->speed) {
846 	case 10: /* 10BASE */
847 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
848 		break;
849 	case 100:/* 100BASE */
850 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
851 		break;
852 	}
853 }
854 
855 /* SH7724 */
856 static struct sh_eth_cpu_data sh7724_data = {
857 	.soft_reset	= sh_eth_soft_reset,
858 
859 	.set_duplex	= sh_eth_set_duplex,
860 	.set_rate	= sh_eth_set_rate_sh7724,
861 
862 	.register_type	= SH_ETH_REG_FAST_SH4,
863 
864 	.edtrr_trns	= EDTRR_TRNS_ETHER,
865 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
866 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
867 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
868 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
869 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
870 			  EESIPR_RMAFIP | EESIPR_RRFIP |
871 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
872 			  EESIPR_PREIP | EESIPR_CERFIP,
873 
874 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
875 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
876 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
877 
878 	.apr		= 1,
879 	.mpr		= 1,
880 	.tpauser	= 1,
881 	.hw_swap	= 1,
882 	.rpadir		= 1,
883 };
884 
885 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
886 {
887 	struct sh_eth_private *mdp = netdev_priv(ndev);
888 
889 	switch (mdp->speed) {
890 	case 10: /* 10BASE */
891 		sh_eth_write(ndev, 0, RTRATE);
892 		break;
893 	case 100:/* 100BASE */
894 		sh_eth_write(ndev, 1, RTRATE);
895 		break;
896 	}
897 }
898 
899 /* SH7757 */
900 static struct sh_eth_cpu_data sh7757_data = {
901 	.soft_reset	= sh_eth_soft_reset,
902 
903 	.set_duplex	= sh_eth_set_duplex,
904 	.set_rate	= sh_eth_set_rate_sh7757,
905 
906 	.register_type	= SH_ETH_REG_FAST_SH4,
907 
908 	.edtrr_trns	= EDTRR_TRNS_ETHER,
909 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
910 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 			  EESIPR_CEEFIP | EESIPR_CELFIP |
915 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 			  EESIPR_PREIP | EESIPR_CERFIP,
917 
918 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
919 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
920 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
921 
922 	.irq_flags	= IRQF_SHARED,
923 	.apr		= 1,
924 	.mpr		= 1,
925 	.tpauser	= 1,
926 	.hw_swap	= 1,
927 	.no_ade		= 1,
928 	.rpadir		= 1,
929 	.rtrate		= 1,
930 	.dual_port	= 1,
931 };
932 
933 #define SH_GIGA_ETH_BASE	0xfee00000UL
934 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
935 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
936 static void sh_eth_chip_reset_giga(struct net_device *ndev)
937 {
938 	u32 mahr[2], malr[2];
939 	int i;
940 
941 	/* save MAHR and MALR */
942 	for (i = 0; i < 2; i++) {
943 		malr[i] = ioread32((void *)GIGA_MALR(i));
944 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
945 	}
946 
947 	sh_eth_chip_reset(ndev);
948 
949 	/* restore MAHR and MALR */
950 	for (i = 0; i < 2; i++) {
951 		iowrite32(malr[i], (void *)GIGA_MALR(i));
952 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
953 	}
954 }
955 
956 static void sh_eth_set_rate_giga(struct net_device *ndev)
957 {
958 	struct sh_eth_private *mdp = netdev_priv(ndev);
959 
960 	switch (mdp->speed) {
961 	case 10: /* 10BASE */
962 		sh_eth_write(ndev, 0x00000000, GECMR);
963 		break;
964 	case 100:/* 100BASE */
965 		sh_eth_write(ndev, 0x00000010, GECMR);
966 		break;
967 	case 1000: /* 1000BASE */
968 		sh_eth_write(ndev, 0x00000020, GECMR);
969 		break;
970 	}
971 }
972 
973 /* SH7757(GETHERC) */
974 static struct sh_eth_cpu_data sh7757_data_giga = {
975 	.soft_reset	= sh_eth_soft_reset_gether,
976 
977 	.chip_reset	= sh_eth_chip_reset_giga,
978 	.set_duplex	= sh_eth_set_duplex,
979 	.set_rate	= sh_eth_set_rate_giga,
980 
981 	.register_type	= SH_ETH_REG_GIGABIT,
982 
983 	.edtrr_trns	= EDTRR_TRNS_GETHER,
984 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
985 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
986 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
987 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
988 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
989 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
990 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
991 			  EESIPR_CEEFIP | EESIPR_CELFIP |
992 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 			  EESIPR_PREIP | EESIPR_CERFIP,
994 
995 	.tx_check	= EESR_TC1 | EESR_FTC,
996 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
998 			  EESR_TDE,
999 	.fdr_value	= 0x0000072f,
1000 
1001 	.irq_flags	= IRQF_SHARED,
1002 	.apr		= 1,
1003 	.mpr		= 1,
1004 	.tpauser	= 1,
1005 	.bculr		= 1,
1006 	.hw_swap	= 1,
1007 	.rpadir		= 1,
1008 	.no_trimd	= 1,
1009 	.no_ade		= 1,
1010 	.xdfar_rw	= 1,
1011 	.tsu		= 1,
1012 	.cexcr		= 1,
1013 	.dual_port	= 1,
1014 };
1015 
1016 /* SH7734 */
1017 static struct sh_eth_cpu_data sh7734_data = {
1018 	.soft_reset	= sh_eth_soft_reset_gether,
1019 
1020 	.chip_reset	= sh_eth_chip_reset,
1021 	.set_duplex	= sh_eth_set_duplex,
1022 	.set_rate	= sh_eth_set_rate_gether,
1023 
1024 	.register_type	= SH_ETH_REG_GIGABIT,
1025 
1026 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1027 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1028 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1029 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1030 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1031 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1032 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1033 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1034 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1035 			  EESIPR_PREIP | EESIPR_CERFIP,
1036 
1037 	.tx_check	= EESR_TC1 | EESR_FTC,
1038 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1039 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1040 			  EESR_TDE,
1041 
1042 	.apr		= 1,
1043 	.mpr		= 1,
1044 	.tpauser	= 1,
1045 	.bculr		= 1,
1046 	.hw_swap	= 1,
1047 	.no_trimd	= 1,
1048 	.no_ade		= 1,
1049 	.xdfar_rw	= 1,
1050 	.tsu		= 1,
1051 	.csmr		= 1,
1052 	.rx_csum	= 1,
1053 	.select_mii	= 1,
1054 	.magic		= 1,
1055 	.cexcr		= 1,
1056 };
1057 
1058 /* SH7763 */
1059 static struct sh_eth_cpu_data sh7763_data = {
1060 	.soft_reset	= sh_eth_soft_reset_gether,
1061 
1062 	.chip_reset	= sh_eth_chip_reset,
1063 	.set_duplex	= sh_eth_set_duplex,
1064 	.set_rate	= sh_eth_set_rate_gether,
1065 
1066 	.register_type	= SH_ETH_REG_GIGABIT,
1067 
1068 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1069 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1070 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1071 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1072 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1073 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1074 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1075 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1076 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1077 			  EESIPR_PREIP | EESIPR_CERFIP,
1078 
1079 	.tx_check	= EESR_TC1 | EESR_FTC,
1080 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1081 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1082 
1083 	.apr		= 1,
1084 	.mpr		= 1,
1085 	.tpauser	= 1,
1086 	.bculr		= 1,
1087 	.hw_swap	= 1,
1088 	.no_trimd	= 1,
1089 	.no_ade		= 1,
1090 	.xdfar_rw	= 1,
1091 	.tsu		= 1,
1092 	.irq_flags	= IRQF_SHARED,
1093 	.magic		= 1,
1094 	.cexcr		= 1,
1095 	.rx_csum	= 1,
1096 	.dual_port	= 1,
1097 };
1098 
1099 static struct sh_eth_cpu_data sh7619_data = {
1100 	.soft_reset	= sh_eth_soft_reset,
1101 
1102 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1103 
1104 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1105 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1106 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1107 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1108 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1109 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1110 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1111 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1112 			  EESIPR_PREIP | EESIPR_CERFIP,
1113 
1114 	.apr		= 1,
1115 	.mpr		= 1,
1116 	.tpauser	= 1,
1117 	.hw_swap	= 1,
1118 };
1119 
1120 static struct sh_eth_cpu_data sh771x_data = {
1121 	.soft_reset	= sh_eth_soft_reset,
1122 
1123 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1124 
1125 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1126 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1127 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1128 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1129 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1130 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1131 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1132 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1133 			  EESIPR_PREIP | EESIPR_CERFIP,
1134 	.tsu		= 1,
1135 	.dual_port	= 1,
1136 };
1137 
1138 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1139 {
1140 	if (!cd->ecsr_value)
1141 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1142 
1143 	if (!cd->ecsipr_value)
1144 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1145 
1146 	if (!cd->fcftr_value)
1147 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1148 				  DEFAULT_FIFO_F_D_RFD;
1149 
1150 	if (!cd->fdr_value)
1151 		cd->fdr_value = DEFAULT_FDR_INIT;
1152 
1153 	if (!cd->tx_check)
1154 		cd->tx_check = DEFAULT_TX_CHECK;
1155 
1156 	if (!cd->eesr_err_check)
1157 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1158 
1159 	if (!cd->trscer_err_mask)
1160 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1161 }
1162 
1163 static void sh_eth_set_receive_align(struct sk_buff *skb)
1164 {
1165 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1166 
1167 	if (reserve)
1168 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1169 }
1170 
1171 /* Program the hardware MAC address from dev->dev_addr. */
1172 static void update_mac_address(struct net_device *ndev)
1173 {
1174 	sh_eth_write(ndev,
1175 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1176 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1177 	sh_eth_write(ndev,
1178 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1179 }
1180 
1181 /* Get MAC address from SuperH MAC address register
1182  *
1183  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1184  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1185  * When you want use this device, you must set MAC address in bootloader.
1186  *
1187  */
1188 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1189 {
1190 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1191 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1192 	} else {
1193 		u32 mahr = sh_eth_read(ndev, MAHR);
1194 		u32 malr = sh_eth_read(ndev, MALR);
1195 
1196 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1197 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1198 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1199 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1200 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1201 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1202 	}
1203 }
1204 
1205 struct bb_info {
1206 	void (*set_gate)(void *addr);
1207 	struct mdiobb_ctrl ctrl;
1208 	void *addr;
1209 };
1210 
1211 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1212 {
1213 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1214 	u32 pir;
1215 
1216 	if (bitbang->set_gate)
1217 		bitbang->set_gate(bitbang->addr);
1218 
1219 	pir = ioread32(bitbang->addr);
1220 	if (set)
1221 		pir |=  mask;
1222 	else
1223 		pir &= ~mask;
1224 	iowrite32(pir, bitbang->addr);
1225 }
1226 
1227 /* Data I/O pin control */
1228 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1229 {
1230 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1231 }
1232 
1233 /* Set bit data*/
1234 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1235 {
1236 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1237 }
1238 
1239 /* Get bit data*/
1240 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1241 {
1242 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1243 
1244 	if (bitbang->set_gate)
1245 		bitbang->set_gate(bitbang->addr);
1246 
1247 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1248 }
1249 
1250 /* MDC pin control */
1251 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1252 {
1253 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1254 }
1255 
1256 /* mdio bus control struct */
1257 static struct mdiobb_ops bb_ops = {
1258 	.owner = THIS_MODULE,
1259 	.set_mdc = sh_mdc_ctrl,
1260 	.set_mdio_dir = sh_mmd_ctrl,
1261 	.set_mdio_data = sh_set_mdio,
1262 	.get_mdio_data = sh_get_mdio,
1263 };
1264 
1265 /* free Tx skb function */
1266 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1267 {
1268 	struct sh_eth_private *mdp = netdev_priv(ndev);
1269 	struct sh_eth_txdesc *txdesc;
1270 	int free_num = 0;
1271 	int entry;
1272 	bool sent;
1273 
1274 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1275 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1276 		txdesc = &mdp->tx_ring[entry];
1277 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1278 		if (sent_only && !sent)
1279 			break;
1280 		/* TACT bit must be checked before all the following reads */
1281 		dma_rmb();
1282 		netif_info(mdp, tx_done, ndev,
1283 			   "tx entry %d status 0x%08x\n",
1284 			   entry, le32_to_cpu(txdesc->status));
1285 		/* Free the original skb. */
1286 		if (mdp->tx_skbuff[entry]) {
1287 			dma_unmap_single(&mdp->pdev->dev,
1288 					 le32_to_cpu(txdesc->addr),
1289 					 le32_to_cpu(txdesc->len) >> 16,
1290 					 DMA_TO_DEVICE);
1291 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1292 			mdp->tx_skbuff[entry] = NULL;
1293 			free_num++;
1294 		}
1295 		txdesc->status = cpu_to_le32(TD_TFP);
1296 		if (entry >= mdp->num_tx_ring - 1)
1297 			txdesc->status |= cpu_to_le32(TD_TDLE);
1298 
1299 		if (sent) {
1300 			ndev->stats.tx_packets++;
1301 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1302 		}
1303 	}
1304 	return free_num;
1305 }
1306 
1307 /* free skb and descriptor buffer */
1308 static void sh_eth_ring_free(struct net_device *ndev)
1309 {
1310 	struct sh_eth_private *mdp = netdev_priv(ndev);
1311 	int ringsize, i;
1312 
1313 	if (mdp->rx_ring) {
1314 		for (i = 0; i < mdp->num_rx_ring; i++) {
1315 			if (mdp->rx_skbuff[i]) {
1316 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1317 
1318 				dma_unmap_single(&mdp->pdev->dev,
1319 						 le32_to_cpu(rxdesc->addr),
1320 						 ALIGN(mdp->rx_buf_sz, 32),
1321 						 DMA_FROM_DEVICE);
1322 			}
1323 		}
1324 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1325 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1326 				  mdp->rx_desc_dma);
1327 		mdp->rx_ring = NULL;
1328 	}
1329 
1330 	/* Free Rx skb ringbuffer */
1331 	if (mdp->rx_skbuff) {
1332 		for (i = 0; i < mdp->num_rx_ring; i++)
1333 			dev_kfree_skb(mdp->rx_skbuff[i]);
1334 	}
1335 	kfree(mdp->rx_skbuff);
1336 	mdp->rx_skbuff = NULL;
1337 
1338 	if (mdp->tx_ring) {
1339 		sh_eth_tx_free(ndev, false);
1340 
1341 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1342 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1343 				  mdp->tx_desc_dma);
1344 		mdp->tx_ring = NULL;
1345 	}
1346 
1347 	/* Free Tx skb ringbuffer */
1348 	kfree(mdp->tx_skbuff);
1349 	mdp->tx_skbuff = NULL;
1350 }
1351 
1352 /* format skb and descriptor buffer */
1353 static void sh_eth_ring_format(struct net_device *ndev)
1354 {
1355 	struct sh_eth_private *mdp = netdev_priv(ndev);
1356 	int i;
1357 	struct sk_buff *skb;
1358 	struct sh_eth_rxdesc *rxdesc = NULL;
1359 	struct sh_eth_txdesc *txdesc = NULL;
1360 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1361 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1362 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1363 	dma_addr_t dma_addr;
1364 	u32 buf_len;
1365 
1366 	mdp->cur_rx = 0;
1367 	mdp->cur_tx = 0;
1368 	mdp->dirty_rx = 0;
1369 	mdp->dirty_tx = 0;
1370 
1371 	memset(mdp->rx_ring, 0, rx_ringsize);
1372 
1373 	/* build Rx ring buffer */
1374 	for (i = 0; i < mdp->num_rx_ring; i++) {
1375 		/* skb */
1376 		mdp->rx_skbuff[i] = NULL;
1377 		skb = netdev_alloc_skb(ndev, skbuff_size);
1378 		if (skb == NULL)
1379 			break;
1380 		sh_eth_set_receive_align(skb);
1381 
1382 		/* The size of the buffer is a multiple of 32 bytes. */
1383 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1384 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1385 					  DMA_FROM_DEVICE);
1386 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1387 			kfree_skb(skb);
1388 			break;
1389 		}
1390 		mdp->rx_skbuff[i] = skb;
1391 
1392 		/* RX descriptor */
1393 		rxdesc = &mdp->rx_ring[i];
1394 		rxdesc->len = cpu_to_le32(buf_len << 16);
1395 		rxdesc->addr = cpu_to_le32(dma_addr);
1396 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1397 
1398 		/* Rx descriptor address set */
1399 		if (i == 0) {
1400 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1401 			if (mdp->cd->xdfar_rw)
1402 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1403 		}
1404 	}
1405 
1406 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1407 
1408 	/* Mark the last entry as wrapping the ring. */
1409 	if (rxdesc)
1410 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1411 
1412 	memset(mdp->tx_ring, 0, tx_ringsize);
1413 
1414 	/* build Tx ring buffer */
1415 	for (i = 0; i < mdp->num_tx_ring; i++) {
1416 		mdp->tx_skbuff[i] = NULL;
1417 		txdesc = &mdp->tx_ring[i];
1418 		txdesc->status = cpu_to_le32(TD_TFP);
1419 		txdesc->len = cpu_to_le32(0);
1420 		if (i == 0) {
1421 			/* Tx descriptor address set */
1422 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1423 			if (mdp->cd->xdfar_rw)
1424 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1425 		}
1426 	}
1427 
1428 	txdesc->status |= cpu_to_le32(TD_TDLE);
1429 }
1430 
1431 /* Get skb and descriptor buffer */
1432 static int sh_eth_ring_init(struct net_device *ndev)
1433 {
1434 	struct sh_eth_private *mdp = netdev_priv(ndev);
1435 	int rx_ringsize, tx_ringsize;
1436 
1437 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1438 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1439 	 * the first 2 bytes, and +16 gets room for the status word from the
1440 	 * card.
1441 	 */
1442 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1443 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1444 	if (mdp->cd->rpadir)
1445 		mdp->rx_buf_sz += NET_IP_ALIGN;
1446 
1447 	/* Allocate RX and TX skb rings */
1448 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1449 				 GFP_KERNEL);
1450 	if (!mdp->rx_skbuff)
1451 		return -ENOMEM;
1452 
1453 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1454 				 GFP_KERNEL);
1455 	if (!mdp->tx_skbuff)
1456 		goto ring_free;
1457 
1458 	/* Allocate all Rx descriptors. */
1459 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1460 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1461 					  &mdp->rx_desc_dma, GFP_KERNEL);
1462 	if (!mdp->rx_ring)
1463 		goto ring_free;
1464 
1465 	mdp->dirty_rx = 0;
1466 
1467 	/* Allocate all Tx descriptors. */
1468 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1469 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1470 					  &mdp->tx_desc_dma, GFP_KERNEL);
1471 	if (!mdp->tx_ring)
1472 		goto ring_free;
1473 	return 0;
1474 
1475 ring_free:
1476 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1477 	sh_eth_ring_free(ndev);
1478 
1479 	return -ENOMEM;
1480 }
1481 
1482 static int sh_eth_dev_init(struct net_device *ndev)
1483 {
1484 	struct sh_eth_private *mdp = netdev_priv(ndev);
1485 	int ret;
1486 
1487 	/* Soft Reset */
1488 	ret = mdp->cd->soft_reset(ndev);
1489 	if (ret)
1490 		return ret;
1491 
1492 	if (mdp->cd->rmiimode)
1493 		sh_eth_write(ndev, 0x1, RMIIMODE);
1494 
1495 	/* Descriptor format */
1496 	sh_eth_ring_format(ndev);
1497 	if (mdp->cd->rpadir)
1498 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1499 
1500 	/* all sh_eth int mask */
1501 	sh_eth_write(ndev, 0, EESIPR);
1502 
1503 #if defined(__LITTLE_ENDIAN)
1504 	if (mdp->cd->hw_swap)
1505 		sh_eth_write(ndev, EDMR_EL, EDMR);
1506 	else
1507 #endif
1508 		sh_eth_write(ndev, 0, EDMR);
1509 
1510 	/* FIFO size set */
1511 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1512 	sh_eth_write(ndev, 0, TFTR);
1513 
1514 	/* Frame recv control (enable multiple-packets per rx irq) */
1515 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1516 
1517 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1518 
1519 	/* DMA transfer burst mode */
1520 	if (mdp->cd->nbst)
1521 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1522 
1523 	/* Burst cycle count upper-limit */
1524 	if (mdp->cd->bculr)
1525 		sh_eth_write(ndev, 0x800, BCULR);
1526 
1527 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1528 
1529 	if (!mdp->cd->no_trimd)
1530 		sh_eth_write(ndev, 0, TRIMD);
1531 
1532 	/* Recv frame limit set register */
1533 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1534 		     RFLR);
1535 
1536 	sh_eth_modify(ndev, EESR, 0, 0);
1537 	mdp->irq_enabled = true;
1538 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1539 
1540 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1541 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1542 		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1543 		     ECMR_TE | ECMR_RE, ECMR);
1544 
1545 	if (mdp->cd->set_rate)
1546 		mdp->cd->set_rate(ndev);
1547 
1548 	/* E-MAC Status Register clear */
1549 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1550 
1551 	/* E-MAC Interrupt Enable register */
1552 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1553 
1554 	/* Set MAC address */
1555 	update_mac_address(ndev);
1556 
1557 	/* mask reset */
1558 	if (mdp->cd->apr)
1559 		sh_eth_write(ndev, 1, APR);
1560 	if (mdp->cd->mpr)
1561 		sh_eth_write(ndev, 1, MPR);
1562 	if (mdp->cd->tpauser)
1563 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1564 
1565 	/* Setting the Rx mode will start the Rx process. */
1566 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1567 
1568 	return ret;
1569 }
1570 
1571 static void sh_eth_dev_exit(struct net_device *ndev)
1572 {
1573 	struct sh_eth_private *mdp = netdev_priv(ndev);
1574 	int i;
1575 
1576 	/* Deactivate all TX descriptors, so DMA should stop at next
1577 	 * packet boundary if it's currently running
1578 	 */
1579 	for (i = 0; i < mdp->num_tx_ring; i++)
1580 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1581 
1582 	/* Disable TX FIFO egress to MAC */
1583 	sh_eth_rcv_snd_disable(ndev);
1584 
1585 	/* Stop RX DMA at next packet boundary */
1586 	sh_eth_write(ndev, 0, EDRRR);
1587 
1588 	/* Aside from TX DMA, we can't tell when the hardware is
1589 	 * really stopped, so we need to reset to make sure.
1590 	 * Before doing that, wait for long enough to *probably*
1591 	 * finish transmitting the last packet and poll stats.
1592 	 */
1593 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1594 	sh_eth_get_stats(ndev);
1595 	mdp->cd->soft_reset(ndev);
1596 
1597 	/* Set the RMII mode again if required */
1598 	if (mdp->cd->rmiimode)
1599 		sh_eth_write(ndev, 0x1, RMIIMODE);
1600 
1601 	/* Set MAC address again */
1602 	update_mac_address(ndev);
1603 }
1604 
1605 static void sh_eth_rx_csum(struct sk_buff *skb)
1606 {
1607 	u8 *hw_csum;
1608 
1609 	/* The hardware checksum is 2 bytes appended to packet data */
1610 	if (unlikely(skb->len < sizeof(__sum16)))
1611 		return;
1612 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1613 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1614 	skb->ip_summed = CHECKSUM_COMPLETE;
1615 	skb_trim(skb, skb->len - sizeof(__sum16));
1616 }
1617 
1618 /* Packet receive function */
1619 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1620 {
1621 	struct sh_eth_private *mdp = netdev_priv(ndev);
1622 	struct sh_eth_rxdesc *rxdesc;
1623 
1624 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1625 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1626 	int limit;
1627 	struct sk_buff *skb;
1628 	u32 desc_status;
1629 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1630 	dma_addr_t dma_addr;
1631 	u16 pkt_len;
1632 	u32 buf_len;
1633 
1634 	boguscnt = min(boguscnt, *quota);
1635 	limit = boguscnt;
1636 	rxdesc = &mdp->rx_ring[entry];
1637 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1638 		/* RACT bit must be checked before all the following reads */
1639 		dma_rmb();
1640 		desc_status = le32_to_cpu(rxdesc->status);
1641 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1642 
1643 		if (--boguscnt < 0)
1644 			break;
1645 
1646 		netif_info(mdp, rx_status, ndev,
1647 			   "rx entry %d status 0x%08x len %d\n",
1648 			   entry, desc_status, pkt_len);
1649 
1650 		if (!(desc_status & RDFEND))
1651 			ndev->stats.rx_length_errors++;
1652 
1653 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1654 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1655 		 * bit 0. However, in case of the R8A7740 and R7S72100
1656 		 * the RFS bits are from bit 25 to bit 16. So, the
1657 		 * driver needs right shifting by 16.
1658 		 */
1659 		if (mdp->cd->csmr)
1660 			desc_status >>= 16;
1661 
1662 		skb = mdp->rx_skbuff[entry];
1663 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1664 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1665 			ndev->stats.rx_errors++;
1666 			if (desc_status & RD_RFS1)
1667 				ndev->stats.rx_crc_errors++;
1668 			if (desc_status & RD_RFS2)
1669 				ndev->stats.rx_frame_errors++;
1670 			if (desc_status & RD_RFS3)
1671 				ndev->stats.rx_length_errors++;
1672 			if (desc_status & RD_RFS4)
1673 				ndev->stats.rx_length_errors++;
1674 			if (desc_status & RD_RFS6)
1675 				ndev->stats.rx_missed_errors++;
1676 			if (desc_status & RD_RFS10)
1677 				ndev->stats.rx_over_errors++;
1678 		} else	if (skb) {
1679 			dma_addr = le32_to_cpu(rxdesc->addr);
1680 			if (!mdp->cd->hw_swap)
1681 				sh_eth_soft_swap(
1682 					phys_to_virt(ALIGN(dma_addr, 4)),
1683 					pkt_len + 2);
1684 			mdp->rx_skbuff[entry] = NULL;
1685 			if (mdp->cd->rpadir)
1686 				skb_reserve(skb, NET_IP_ALIGN);
1687 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1688 					 ALIGN(mdp->rx_buf_sz, 32),
1689 					 DMA_FROM_DEVICE);
1690 			skb_put(skb, pkt_len);
1691 			skb->protocol = eth_type_trans(skb, ndev);
1692 			if (ndev->features & NETIF_F_RXCSUM)
1693 				sh_eth_rx_csum(skb);
1694 			netif_receive_skb(skb);
1695 			ndev->stats.rx_packets++;
1696 			ndev->stats.rx_bytes += pkt_len;
1697 			if (desc_status & RD_RFS8)
1698 				ndev->stats.multicast++;
1699 		}
1700 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1701 		rxdesc = &mdp->rx_ring[entry];
1702 	}
1703 
1704 	/* Refill the Rx ring buffers. */
1705 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1706 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1707 		rxdesc = &mdp->rx_ring[entry];
1708 		/* The size of the buffer is 32 byte boundary. */
1709 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1710 		rxdesc->len = cpu_to_le32(buf_len << 16);
1711 
1712 		if (mdp->rx_skbuff[entry] == NULL) {
1713 			skb = netdev_alloc_skb(ndev, skbuff_size);
1714 			if (skb == NULL)
1715 				break;	/* Better luck next round. */
1716 			sh_eth_set_receive_align(skb);
1717 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1718 						  buf_len, DMA_FROM_DEVICE);
1719 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1720 				kfree_skb(skb);
1721 				break;
1722 			}
1723 			mdp->rx_skbuff[entry] = skb;
1724 
1725 			skb_checksum_none_assert(skb);
1726 			rxdesc->addr = cpu_to_le32(dma_addr);
1727 		}
1728 		dma_wmb(); /* RACT bit must be set after all the above writes */
1729 		if (entry >= mdp->num_rx_ring - 1)
1730 			rxdesc->status |=
1731 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1732 		else
1733 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1734 	}
1735 
1736 	/* Restart Rx engine if stopped. */
1737 	/* If we don't need to check status, don't. -KDU */
1738 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1739 		/* fix the values for the next receiving if RDE is set */
1740 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1741 			u32 count = (sh_eth_read(ndev, RDFAR) -
1742 				     sh_eth_read(ndev, RDLAR)) >> 4;
1743 
1744 			mdp->cur_rx = count;
1745 			mdp->dirty_rx = count;
1746 		}
1747 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1748 	}
1749 
1750 	*quota -= limit - boguscnt - 1;
1751 
1752 	return *quota <= 0;
1753 }
1754 
1755 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1756 {
1757 	/* disable tx and rx */
1758 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1759 }
1760 
1761 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1762 {
1763 	/* enable tx and rx */
1764 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1765 }
1766 
1767 /* E-MAC interrupt handler */
1768 static void sh_eth_emac_interrupt(struct net_device *ndev)
1769 {
1770 	struct sh_eth_private *mdp = netdev_priv(ndev);
1771 	u32 felic_stat;
1772 	u32 link_stat;
1773 
1774 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1775 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1776 	if (felic_stat & ECSR_ICD)
1777 		ndev->stats.tx_carrier_errors++;
1778 	if (felic_stat & ECSR_MPD)
1779 		pm_wakeup_event(&mdp->pdev->dev, 0);
1780 	if (felic_stat & ECSR_LCHNG) {
1781 		/* Link Changed */
1782 		if (mdp->cd->no_psr || mdp->no_ether_link)
1783 			return;
1784 		link_stat = sh_eth_read(ndev, PSR);
1785 		if (mdp->ether_link_active_low)
1786 			link_stat = ~link_stat;
1787 		if (!(link_stat & PHY_ST_LINK)) {
1788 			sh_eth_rcv_snd_disable(ndev);
1789 		} else {
1790 			/* Link Up */
1791 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1792 			/* clear int */
1793 			sh_eth_modify(ndev, ECSR, 0, 0);
1794 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1795 			/* enable tx and rx */
1796 			sh_eth_rcv_snd_enable(ndev);
1797 		}
1798 	}
1799 }
1800 
1801 /* error control function */
1802 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1803 {
1804 	struct sh_eth_private *mdp = netdev_priv(ndev);
1805 	u32 mask;
1806 
1807 	if (intr_status & EESR_TWB) {
1808 		/* Unused write back interrupt */
1809 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1810 			ndev->stats.tx_aborted_errors++;
1811 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1812 		}
1813 	}
1814 
1815 	if (intr_status & EESR_RABT) {
1816 		/* Receive Abort int */
1817 		if (intr_status & EESR_RFRMER) {
1818 			/* Receive Frame Overflow int */
1819 			ndev->stats.rx_frame_errors++;
1820 		}
1821 	}
1822 
1823 	if (intr_status & EESR_TDE) {
1824 		/* Transmit Descriptor Empty int */
1825 		ndev->stats.tx_fifo_errors++;
1826 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1827 	}
1828 
1829 	if (intr_status & EESR_TFE) {
1830 		/* FIFO under flow */
1831 		ndev->stats.tx_fifo_errors++;
1832 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1833 	}
1834 
1835 	if (intr_status & EESR_RDE) {
1836 		/* Receive Descriptor Empty int */
1837 		ndev->stats.rx_over_errors++;
1838 	}
1839 
1840 	if (intr_status & EESR_RFE) {
1841 		/* Receive FIFO Overflow int */
1842 		ndev->stats.rx_fifo_errors++;
1843 	}
1844 
1845 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1846 		/* Address Error */
1847 		ndev->stats.tx_fifo_errors++;
1848 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1849 	}
1850 
1851 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1852 	if (mdp->cd->no_ade)
1853 		mask &= ~EESR_ADE;
1854 	if (intr_status & mask) {
1855 		/* Tx error */
1856 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1857 
1858 		/* dmesg */
1859 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1860 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1861 			   (u32)ndev->state, edtrr);
1862 		/* dirty buffer free */
1863 		sh_eth_tx_free(ndev, true);
1864 
1865 		/* SH7712 BUG */
1866 		if (edtrr ^ mdp->cd->edtrr_trns) {
1867 			/* tx dma start */
1868 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1869 		}
1870 		/* wakeup */
1871 		netif_wake_queue(ndev);
1872 	}
1873 }
1874 
1875 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1876 {
1877 	struct net_device *ndev = netdev;
1878 	struct sh_eth_private *mdp = netdev_priv(ndev);
1879 	struct sh_eth_cpu_data *cd = mdp->cd;
1880 	irqreturn_t ret = IRQ_NONE;
1881 	u32 intr_status, intr_enable;
1882 
1883 	spin_lock(&mdp->lock);
1884 
1885 	/* Get interrupt status */
1886 	intr_status = sh_eth_read(ndev, EESR);
1887 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1888 	 * enabled since it's the one that  comes  thru regardless of the mask,
1889 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1890 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1891 	 * bit...
1892 	 */
1893 	intr_enable = sh_eth_read(ndev, EESIPR);
1894 	intr_status &= intr_enable | EESIPR_ECIIP;
1895 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1896 			   cd->eesr_err_check))
1897 		ret = IRQ_HANDLED;
1898 	else
1899 		goto out;
1900 
1901 	if (unlikely(!mdp->irq_enabled)) {
1902 		sh_eth_write(ndev, 0, EESIPR);
1903 		goto out;
1904 	}
1905 
1906 	if (intr_status & EESR_RX_CHECK) {
1907 		if (napi_schedule_prep(&mdp->napi)) {
1908 			/* Mask Rx interrupts */
1909 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1910 				     EESIPR);
1911 			__napi_schedule(&mdp->napi);
1912 		} else {
1913 			netdev_warn(ndev,
1914 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1915 				    intr_status, intr_enable);
1916 		}
1917 	}
1918 
1919 	/* Tx Check */
1920 	if (intr_status & cd->tx_check) {
1921 		/* Clear Tx interrupts */
1922 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1923 
1924 		sh_eth_tx_free(ndev, true);
1925 		netif_wake_queue(ndev);
1926 	}
1927 
1928 	/* E-MAC interrupt */
1929 	if (intr_status & EESR_ECI)
1930 		sh_eth_emac_interrupt(ndev);
1931 
1932 	if (intr_status & cd->eesr_err_check) {
1933 		/* Clear error interrupts */
1934 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1935 
1936 		sh_eth_error(ndev, intr_status);
1937 	}
1938 
1939 out:
1940 	spin_unlock(&mdp->lock);
1941 
1942 	return ret;
1943 }
1944 
1945 static int sh_eth_poll(struct napi_struct *napi, int budget)
1946 {
1947 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1948 						  napi);
1949 	struct net_device *ndev = napi->dev;
1950 	int quota = budget;
1951 	u32 intr_status;
1952 
1953 	for (;;) {
1954 		intr_status = sh_eth_read(ndev, EESR);
1955 		if (!(intr_status & EESR_RX_CHECK))
1956 			break;
1957 		/* Clear Rx interrupts */
1958 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1959 
1960 		if (sh_eth_rx(ndev, intr_status, &quota))
1961 			goto out;
1962 	}
1963 
1964 	napi_complete(napi);
1965 
1966 	/* Reenable Rx interrupts */
1967 	if (mdp->irq_enabled)
1968 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1969 out:
1970 	return budget - quota;
1971 }
1972 
1973 /* PHY state control function */
1974 static void sh_eth_adjust_link(struct net_device *ndev)
1975 {
1976 	struct sh_eth_private *mdp = netdev_priv(ndev);
1977 	struct phy_device *phydev = ndev->phydev;
1978 	unsigned long flags;
1979 	int new_state = 0;
1980 
1981 	spin_lock_irqsave(&mdp->lock, flags);
1982 
1983 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1984 	if (mdp->cd->no_psr || mdp->no_ether_link)
1985 		sh_eth_rcv_snd_disable(ndev);
1986 
1987 	if (phydev->link) {
1988 		if (phydev->duplex != mdp->duplex) {
1989 			new_state = 1;
1990 			mdp->duplex = phydev->duplex;
1991 			if (mdp->cd->set_duplex)
1992 				mdp->cd->set_duplex(ndev);
1993 		}
1994 
1995 		if (phydev->speed != mdp->speed) {
1996 			new_state = 1;
1997 			mdp->speed = phydev->speed;
1998 			if (mdp->cd->set_rate)
1999 				mdp->cd->set_rate(ndev);
2000 		}
2001 		if (!mdp->link) {
2002 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
2003 			new_state = 1;
2004 			mdp->link = phydev->link;
2005 		}
2006 	} else if (mdp->link) {
2007 		new_state = 1;
2008 		mdp->link = 0;
2009 		mdp->speed = 0;
2010 		mdp->duplex = -1;
2011 	}
2012 
2013 	/* Enable TX and RX right over here, if E-MAC change is ignored */
2014 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
2015 		sh_eth_rcv_snd_enable(ndev);
2016 
2017 	spin_unlock_irqrestore(&mdp->lock, flags);
2018 
2019 	if (new_state && netif_msg_link(mdp))
2020 		phy_print_status(phydev);
2021 }
2022 
2023 /* PHY init function */
2024 static int sh_eth_phy_init(struct net_device *ndev)
2025 {
2026 	struct device_node *np = ndev->dev.parent->of_node;
2027 	struct sh_eth_private *mdp = netdev_priv(ndev);
2028 	struct phy_device *phydev;
2029 
2030 	mdp->link = 0;
2031 	mdp->speed = 0;
2032 	mdp->duplex = -1;
2033 
2034 	/* Try connect to PHY */
2035 	if (np) {
2036 		struct device_node *pn;
2037 
2038 		pn = of_parse_phandle(np, "phy-handle", 0);
2039 		phydev = of_phy_connect(ndev, pn,
2040 					sh_eth_adjust_link, 0,
2041 					mdp->phy_interface);
2042 
2043 		of_node_put(pn);
2044 		if (!phydev)
2045 			phydev = ERR_PTR(-ENOENT);
2046 	} else {
2047 		char phy_id[MII_BUS_ID_SIZE + 3];
2048 
2049 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2050 			 mdp->mii_bus->id, mdp->phy_id);
2051 
2052 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2053 				     mdp->phy_interface);
2054 	}
2055 
2056 	if (IS_ERR(phydev)) {
2057 		netdev_err(ndev, "failed to connect PHY\n");
2058 		return PTR_ERR(phydev);
2059 	}
2060 
2061 	/* mask with MAC supported features */
2062 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2063 		int err = phy_set_max_speed(phydev, SPEED_100);
2064 		if (err) {
2065 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2066 			phy_disconnect(phydev);
2067 			return err;
2068 		}
2069 	}
2070 
2071 	phy_attached_info(phydev);
2072 
2073 	return 0;
2074 }
2075 
2076 /* PHY control start function */
2077 static int sh_eth_phy_start(struct net_device *ndev)
2078 {
2079 	int ret;
2080 
2081 	ret = sh_eth_phy_init(ndev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	phy_start(ndev->phydev);
2086 
2087 	return 0;
2088 }
2089 
2090 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2091  * version must be bumped as well.  Just adding registers up to that
2092  * limit is fine, as long as the existing register indices don't
2093  * change.
2094  */
2095 #define SH_ETH_REG_DUMP_VERSION		1
2096 #define SH_ETH_REG_DUMP_MAX_REGS	256
2097 
2098 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2099 {
2100 	struct sh_eth_private *mdp = netdev_priv(ndev);
2101 	struct sh_eth_cpu_data *cd = mdp->cd;
2102 	u32 *valid_map;
2103 	size_t len;
2104 
2105 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2106 
2107 	/* Dump starts with a bitmap that tells ethtool which
2108 	 * registers are defined for this chip.
2109 	 */
2110 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2111 	if (buf) {
2112 		valid_map = buf;
2113 		buf += len;
2114 	} else {
2115 		valid_map = NULL;
2116 	}
2117 
2118 	/* Add a register to the dump, if it has a defined offset.
2119 	 * This automatically skips most undefined registers, but for
2120 	 * some it is also necessary to check a capability flag in
2121 	 * struct sh_eth_cpu_data.
2122 	 */
2123 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2124 #define add_reg_from(reg, read_expr) do {				\
2125 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2126 			if (buf) {					\
2127 				mark_reg_valid(reg);			\
2128 				*buf++ = read_expr;			\
2129 			}						\
2130 			++len;						\
2131 		}							\
2132 	} while (0)
2133 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2134 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2135 
2136 	add_reg(EDSR);
2137 	add_reg(EDMR);
2138 	add_reg(EDTRR);
2139 	add_reg(EDRRR);
2140 	add_reg(EESR);
2141 	add_reg(EESIPR);
2142 	add_reg(TDLAR);
2143 	add_reg(TDFAR);
2144 	add_reg(TDFXR);
2145 	add_reg(TDFFR);
2146 	add_reg(RDLAR);
2147 	add_reg(RDFAR);
2148 	add_reg(RDFXR);
2149 	add_reg(RDFFR);
2150 	add_reg(TRSCER);
2151 	add_reg(RMFCR);
2152 	add_reg(TFTR);
2153 	add_reg(FDR);
2154 	add_reg(RMCR);
2155 	add_reg(TFUCR);
2156 	add_reg(RFOCR);
2157 	if (cd->rmiimode)
2158 		add_reg(RMIIMODE);
2159 	add_reg(FCFTR);
2160 	if (cd->rpadir)
2161 		add_reg(RPADIR);
2162 	if (!cd->no_trimd)
2163 		add_reg(TRIMD);
2164 	add_reg(ECMR);
2165 	add_reg(ECSR);
2166 	add_reg(ECSIPR);
2167 	add_reg(PIR);
2168 	if (!cd->no_psr)
2169 		add_reg(PSR);
2170 	add_reg(RDMLR);
2171 	add_reg(RFLR);
2172 	add_reg(IPGR);
2173 	if (cd->apr)
2174 		add_reg(APR);
2175 	if (cd->mpr)
2176 		add_reg(MPR);
2177 	add_reg(RFCR);
2178 	add_reg(RFCF);
2179 	if (cd->tpauser)
2180 		add_reg(TPAUSER);
2181 	add_reg(TPAUSECR);
2182 	add_reg(GECMR);
2183 	if (cd->bculr)
2184 		add_reg(BCULR);
2185 	add_reg(MAHR);
2186 	add_reg(MALR);
2187 	add_reg(TROCR);
2188 	add_reg(CDCR);
2189 	add_reg(LCCR);
2190 	add_reg(CNDCR);
2191 	add_reg(CEFCR);
2192 	add_reg(FRECR);
2193 	add_reg(TSFRCR);
2194 	add_reg(TLFRCR);
2195 	add_reg(CERCR);
2196 	add_reg(CEECR);
2197 	add_reg(MAFCR);
2198 	if (cd->rtrate)
2199 		add_reg(RTRATE);
2200 	if (cd->csmr)
2201 		add_reg(CSMR);
2202 	if (cd->select_mii)
2203 		add_reg(RMII_MII);
2204 	if (cd->tsu) {
2205 		add_tsu_reg(ARSTR);
2206 		add_tsu_reg(TSU_CTRST);
2207 		add_tsu_reg(TSU_FWEN0);
2208 		add_tsu_reg(TSU_FWEN1);
2209 		add_tsu_reg(TSU_FCM);
2210 		add_tsu_reg(TSU_BSYSL0);
2211 		add_tsu_reg(TSU_BSYSL1);
2212 		add_tsu_reg(TSU_PRISL0);
2213 		add_tsu_reg(TSU_PRISL1);
2214 		add_tsu_reg(TSU_FWSL0);
2215 		add_tsu_reg(TSU_FWSL1);
2216 		add_tsu_reg(TSU_FWSLC);
2217 		add_tsu_reg(TSU_QTAGM0);
2218 		add_tsu_reg(TSU_QTAGM1);
2219 		add_tsu_reg(TSU_FWSR);
2220 		add_tsu_reg(TSU_FWINMK);
2221 		add_tsu_reg(TSU_ADQT0);
2222 		add_tsu_reg(TSU_ADQT1);
2223 		add_tsu_reg(TSU_VTAG0);
2224 		add_tsu_reg(TSU_VTAG1);
2225 		add_tsu_reg(TSU_ADSBSY);
2226 		add_tsu_reg(TSU_TEN);
2227 		add_tsu_reg(TSU_POST1);
2228 		add_tsu_reg(TSU_POST2);
2229 		add_tsu_reg(TSU_POST3);
2230 		add_tsu_reg(TSU_POST4);
2231 		/* This is the start of a table, not just a single register. */
2232 		if (buf) {
2233 			unsigned int i;
2234 
2235 			mark_reg_valid(TSU_ADRH0);
2236 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2237 				*buf++ = ioread32(mdp->tsu_addr +
2238 						  mdp->reg_offset[TSU_ADRH0] +
2239 						  i * 4);
2240 		}
2241 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2242 	}
2243 
2244 #undef mark_reg_valid
2245 #undef add_reg_from
2246 #undef add_reg
2247 #undef add_tsu_reg
2248 
2249 	return len * 4;
2250 }
2251 
2252 static int sh_eth_get_regs_len(struct net_device *ndev)
2253 {
2254 	return __sh_eth_get_regs(ndev, NULL);
2255 }
2256 
2257 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2258 			    void *buf)
2259 {
2260 	struct sh_eth_private *mdp = netdev_priv(ndev);
2261 
2262 	regs->version = SH_ETH_REG_DUMP_VERSION;
2263 
2264 	pm_runtime_get_sync(&mdp->pdev->dev);
2265 	__sh_eth_get_regs(ndev, buf);
2266 	pm_runtime_put_sync(&mdp->pdev->dev);
2267 }
2268 
2269 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2270 {
2271 	struct sh_eth_private *mdp = netdev_priv(ndev);
2272 	return mdp->msg_enable;
2273 }
2274 
2275 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2276 {
2277 	struct sh_eth_private *mdp = netdev_priv(ndev);
2278 	mdp->msg_enable = value;
2279 }
2280 
2281 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2282 	"rx_current", "tx_current",
2283 	"rx_dirty", "tx_dirty",
2284 };
2285 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2286 
2287 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2288 {
2289 	switch (sset) {
2290 	case ETH_SS_STATS:
2291 		return SH_ETH_STATS_LEN;
2292 	default:
2293 		return -EOPNOTSUPP;
2294 	}
2295 }
2296 
2297 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2298 				     struct ethtool_stats *stats, u64 *data)
2299 {
2300 	struct sh_eth_private *mdp = netdev_priv(ndev);
2301 	int i = 0;
2302 
2303 	/* device-specific stats */
2304 	data[i++] = mdp->cur_rx;
2305 	data[i++] = mdp->cur_tx;
2306 	data[i++] = mdp->dirty_rx;
2307 	data[i++] = mdp->dirty_tx;
2308 }
2309 
2310 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2311 {
2312 	switch (stringset) {
2313 	case ETH_SS_STATS:
2314 		memcpy(data, *sh_eth_gstrings_stats,
2315 		       sizeof(sh_eth_gstrings_stats));
2316 		break;
2317 	}
2318 }
2319 
2320 static void sh_eth_get_ringparam(struct net_device *ndev,
2321 				 struct ethtool_ringparam *ring)
2322 {
2323 	struct sh_eth_private *mdp = netdev_priv(ndev);
2324 
2325 	ring->rx_max_pending = RX_RING_MAX;
2326 	ring->tx_max_pending = TX_RING_MAX;
2327 	ring->rx_pending = mdp->num_rx_ring;
2328 	ring->tx_pending = mdp->num_tx_ring;
2329 }
2330 
2331 static int sh_eth_set_ringparam(struct net_device *ndev,
2332 				struct ethtool_ringparam *ring)
2333 {
2334 	struct sh_eth_private *mdp = netdev_priv(ndev);
2335 	int ret;
2336 
2337 	if (ring->tx_pending > TX_RING_MAX ||
2338 	    ring->rx_pending > RX_RING_MAX ||
2339 	    ring->tx_pending < TX_RING_MIN ||
2340 	    ring->rx_pending < RX_RING_MIN)
2341 		return -EINVAL;
2342 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2343 		return -EINVAL;
2344 
2345 	if (netif_running(ndev)) {
2346 		netif_device_detach(ndev);
2347 		netif_tx_disable(ndev);
2348 
2349 		/* Serialise with the interrupt handler and NAPI, then
2350 		 * disable interrupts.  We have to clear the
2351 		 * irq_enabled flag first to ensure that interrupts
2352 		 * won't be re-enabled.
2353 		 */
2354 		mdp->irq_enabled = false;
2355 		synchronize_irq(ndev->irq);
2356 		napi_synchronize(&mdp->napi);
2357 		sh_eth_write(ndev, 0x0000, EESIPR);
2358 
2359 		sh_eth_dev_exit(ndev);
2360 
2361 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2362 		sh_eth_ring_free(ndev);
2363 	}
2364 
2365 	/* Set new parameters */
2366 	mdp->num_rx_ring = ring->rx_pending;
2367 	mdp->num_tx_ring = ring->tx_pending;
2368 
2369 	if (netif_running(ndev)) {
2370 		ret = sh_eth_ring_init(ndev);
2371 		if (ret < 0) {
2372 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2373 				   __func__);
2374 			return ret;
2375 		}
2376 		ret = sh_eth_dev_init(ndev);
2377 		if (ret < 0) {
2378 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2379 				   __func__);
2380 			return ret;
2381 		}
2382 
2383 		netif_device_attach(ndev);
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2390 {
2391 	struct sh_eth_private *mdp = netdev_priv(ndev);
2392 
2393 	wol->supported = 0;
2394 	wol->wolopts = 0;
2395 
2396 	if (mdp->cd->magic) {
2397 		wol->supported = WAKE_MAGIC;
2398 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2399 	}
2400 }
2401 
2402 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2403 {
2404 	struct sh_eth_private *mdp = netdev_priv(ndev);
2405 
2406 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2407 		return -EOPNOTSUPP;
2408 
2409 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2410 
2411 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2412 
2413 	return 0;
2414 }
2415 
2416 static const struct ethtool_ops sh_eth_ethtool_ops = {
2417 	.get_regs_len	= sh_eth_get_regs_len,
2418 	.get_regs	= sh_eth_get_regs,
2419 	.nway_reset	= phy_ethtool_nway_reset,
2420 	.get_msglevel	= sh_eth_get_msglevel,
2421 	.set_msglevel	= sh_eth_set_msglevel,
2422 	.get_link	= ethtool_op_get_link,
2423 	.get_strings	= sh_eth_get_strings,
2424 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2425 	.get_sset_count     = sh_eth_get_sset_count,
2426 	.get_ringparam	= sh_eth_get_ringparam,
2427 	.set_ringparam	= sh_eth_set_ringparam,
2428 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2429 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2430 	.get_wol	= sh_eth_get_wol,
2431 	.set_wol	= sh_eth_set_wol,
2432 };
2433 
2434 /* network device open function */
2435 static int sh_eth_open(struct net_device *ndev)
2436 {
2437 	struct sh_eth_private *mdp = netdev_priv(ndev);
2438 	int ret;
2439 
2440 	pm_runtime_get_sync(&mdp->pdev->dev);
2441 
2442 	napi_enable(&mdp->napi);
2443 
2444 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2445 			  mdp->cd->irq_flags, ndev->name, ndev);
2446 	if (ret) {
2447 		netdev_err(ndev, "Can not assign IRQ number\n");
2448 		goto out_napi_off;
2449 	}
2450 
2451 	/* Descriptor set */
2452 	ret = sh_eth_ring_init(ndev);
2453 	if (ret)
2454 		goto out_free_irq;
2455 
2456 	/* device init */
2457 	ret = sh_eth_dev_init(ndev);
2458 	if (ret)
2459 		goto out_free_irq;
2460 
2461 	/* PHY control start*/
2462 	ret = sh_eth_phy_start(ndev);
2463 	if (ret)
2464 		goto out_free_irq;
2465 
2466 	netif_start_queue(ndev);
2467 
2468 	mdp->is_opened = 1;
2469 
2470 	return ret;
2471 
2472 out_free_irq:
2473 	free_irq(ndev->irq, ndev);
2474 out_napi_off:
2475 	napi_disable(&mdp->napi);
2476 	pm_runtime_put_sync(&mdp->pdev->dev);
2477 	return ret;
2478 }
2479 
2480 /* Timeout function */
2481 static void sh_eth_tx_timeout(struct net_device *ndev)
2482 {
2483 	struct sh_eth_private *mdp = netdev_priv(ndev);
2484 	struct sh_eth_rxdesc *rxdesc;
2485 	int i;
2486 
2487 	netif_stop_queue(ndev);
2488 
2489 	netif_err(mdp, timer, ndev,
2490 		  "transmit timed out, status %8.8x, resetting...\n",
2491 		  sh_eth_read(ndev, EESR));
2492 
2493 	/* tx_errors count up */
2494 	ndev->stats.tx_errors++;
2495 
2496 	/* Free all the skbuffs in the Rx queue. */
2497 	for (i = 0; i < mdp->num_rx_ring; i++) {
2498 		rxdesc = &mdp->rx_ring[i];
2499 		rxdesc->status = cpu_to_le32(0);
2500 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2501 		dev_kfree_skb(mdp->rx_skbuff[i]);
2502 		mdp->rx_skbuff[i] = NULL;
2503 	}
2504 	for (i = 0; i < mdp->num_tx_ring; i++) {
2505 		dev_kfree_skb(mdp->tx_skbuff[i]);
2506 		mdp->tx_skbuff[i] = NULL;
2507 	}
2508 
2509 	/* device init */
2510 	sh_eth_dev_init(ndev);
2511 
2512 	netif_start_queue(ndev);
2513 }
2514 
2515 /* Packet transmit function */
2516 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2517 {
2518 	struct sh_eth_private *mdp = netdev_priv(ndev);
2519 	struct sh_eth_txdesc *txdesc;
2520 	dma_addr_t dma_addr;
2521 	u32 entry;
2522 	unsigned long flags;
2523 
2524 	spin_lock_irqsave(&mdp->lock, flags);
2525 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2526 		if (!sh_eth_tx_free(ndev, true)) {
2527 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2528 			netif_stop_queue(ndev);
2529 			spin_unlock_irqrestore(&mdp->lock, flags);
2530 			return NETDEV_TX_BUSY;
2531 		}
2532 	}
2533 	spin_unlock_irqrestore(&mdp->lock, flags);
2534 
2535 	if (skb_put_padto(skb, ETH_ZLEN))
2536 		return NETDEV_TX_OK;
2537 
2538 	entry = mdp->cur_tx % mdp->num_tx_ring;
2539 	mdp->tx_skbuff[entry] = skb;
2540 	txdesc = &mdp->tx_ring[entry];
2541 	/* soft swap. */
2542 	if (!mdp->cd->hw_swap)
2543 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2544 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2545 				  DMA_TO_DEVICE);
2546 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2547 		kfree_skb(skb);
2548 		return NETDEV_TX_OK;
2549 	}
2550 	txdesc->addr = cpu_to_le32(dma_addr);
2551 	txdesc->len  = cpu_to_le32(skb->len << 16);
2552 
2553 	dma_wmb(); /* TACT bit must be set after all the above writes */
2554 	if (entry >= mdp->num_tx_ring - 1)
2555 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2556 	else
2557 		txdesc->status |= cpu_to_le32(TD_TACT);
2558 
2559 	mdp->cur_tx++;
2560 
2561 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2562 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2563 
2564 	return NETDEV_TX_OK;
2565 }
2566 
2567 /* The statistics registers have write-clear behaviour, which means we
2568  * will lose any increment between the read and write.  We mitigate
2569  * this by only clearing when we read a non-zero value, so we will
2570  * never falsely report a total of zero.
2571  */
2572 static void
2573 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2574 {
2575 	u32 delta = sh_eth_read(ndev, reg);
2576 
2577 	if (delta) {
2578 		*stat += delta;
2579 		sh_eth_write(ndev, 0, reg);
2580 	}
2581 }
2582 
2583 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2584 {
2585 	struct sh_eth_private *mdp = netdev_priv(ndev);
2586 
2587 	if (mdp->cd->no_tx_cntrs)
2588 		return &ndev->stats;
2589 
2590 	if (!mdp->is_opened)
2591 		return &ndev->stats;
2592 
2593 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2594 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2595 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2596 
2597 	if (mdp->cd->cexcr) {
2598 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2599 				   CERCR);
2600 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2601 				   CEECR);
2602 	} else {
2603 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2604 				   CNDCR);
2605 	}
2606 
2607 	return &ndev->stats;
2608 }
2609 
2610 /* device close function */
2611 static int sh_eth_close(struct net_device *ndev)
2612 {
2613 	struct sh_eth_private *mdp = netdev_priv(ndev);
2614 
2615 	netif_stop_queue(ndev);
2616 
2617 	/* Serialise with the interrupt handler and NAPI, then disable
2618 	 * interrupts.  We have to clear the irq_enabled flag first to
2619 	 * ensure that interrupts won't be re-enabled.
2620 	 */
2621 	mdp->irq_enabled = false;
2622 	synchronize_irq(ndev->irq);
2623 	napi_disable(&mdp->napi);
2624 	sh_eth_write(ndev, 0x0000, EESIPR);
2625 
2626 	sh_eth_dev_exit(ndev);
2627 
2628 	/* PHY Disconnect */
2629 	if (ndev->phydev) {
2630 		phy_stop(ndev->phydev);
2631 		phy_disconnect(ndev->phydev);
2632 	}
2633 
2634 	free_irq(ndev->irq, ndev);
2635 
2636 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2637 	sh_eth_ring_free(ndev);
2638 
2639 	pm_runtime_put_sync(&mdp->pdev->dev);
2640 
2641 	mdp->is_opened = 0;
2642 
2643 	return 0;
2644 }
2645 
2646 /* ioctl to device function */
2647 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2648 {
2649 	struct phy_device *phydev = ndev->phydev;
2650 
2651 	if (!netif_running(ndev))
2652 		return -EINVAL;
2653 
2654 	if (!phydev)
2655 		return -ENODEV;
2656 
2657 	return phy_mii_ioctl(phydev, rq, cmd);
2658 }
2659 
2660 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2661 {
2662 	if (netif_running(ndev))
2663 		return -EBUSY;
2664 
2665 	ndev->mtu = new_mtu;
2666 	netdev_update_features(ndev);
2667 
2668 	return 0;
2669 }
2670 
2671 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2672 static u32 sh_eth_tsu_get_post_mask(int entry)
2673 {
2674 	return 0x0f << (28 - ((entry % 8) * 4));
2675 }
2676 
2677 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2678 {
2679 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2680 }
2681 
2682 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2683 					     int entry)
2684 {
2685 	struct sh_eth_private *mdp = netdev_priv(ndev);
2686 	int reg = TSU_POST1 + entry / 8;
2687 	u32 tmp;
2688 
2689 	tmp = sh_eth_tsu_read(mdp, reg);
2690 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2691 }
2692 
2693 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2694 					      int entry)
2695 {
2696 	struct sh_eth_private *mdp = netdev_priv(ndev);
2697 	int reg = TSU_POST1 + entry / 8;
2698 	u32 post_mask, ref_mask, tmp;
2699 
2700 	post_mask = sh_eth_tsu_get_post_mask(entry);
2701 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2702 
2703 	tmp = sh_eth_tsu_read(mdp, reg);
2704 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2705 
2706 	/* If other port enables, the function returns "true" */
2707 	return tmp & ref_mask;
2708 }
2709 
2710 static int sh_eth_tsu_busy(struct net_device *ndev)
2711 {
2712 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2713 	struct sh_eth_private *mdp = netdev_priv(ndev);
2714 
2715 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2716 		udelay(10);
2717 		timeout--;
2718 		if (timeout <= 0) {
2719 			netdev_err(ndev, "%s: timeout\n", __func__);
2720 			return -ETIMEDOUT;
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2728 				  const u8 *addr)
2729 {
2730 	struct sh_eth_private *mdp = netdev_priv(ndev);
2731 	u32 val;
2732 
2733 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2734 	iowrite32(val, mdp->tsu_addr + offset);
2735 	if (sh_eth_tsu_busy(ndev) < 0)
2736 		return -EBUSY;
2737 
2738 	val = addr[4] << 8 | addr[5];
2739 	iowrite32(val, mdp->tsu_addr + offset + 4);
2740 	if (sh_eth_tsu_busy(ndev) < 0)
2741 		return -EBUSY;
2742 
2743 	return 0;
2744 }
2745 
2746 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2747 {
2748 	struct sh_eth_private *mdp = netdev_priv(ndev);
2749 	u32 val;
2750 
2751 	val = ioread32(mdp->tsu_addr + offset);
2752 	addr[0] = (val >> 24) & 0xff;
2753 	addr[1] = (val >> 16) & 0xff;
2754 	addr[2] = (val >> 8) & 0xff;
2755 	addr[3] = val & 0xff;
2756 	val = ioread32(mdp->tsu_addr + offset + 4);
2757 	addr[4] = (val >> 8) & 0xff;
2758 	addr[5] = val & 0xff;
2759 }
2760 
2761 
2762 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2763 {
2764 	struct sh_eth_private *mdp = netdev_priv(ndev);
2765 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2766 	int i;
2767 	u8 c_addr[ETH_ALEN];
2768 
2769 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2770 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2771 		if (ether_addr_equal(addr, c_addr))
2772 			return i;
2773 	}
2774 
2775 	return -ENOENT;
2776 }
2777 
2778 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2779 {
2780 	u8 blank[ETH_ALEN];
2781 	int entry;
2782 
2783 	memset(blank, 0, sizeof(blank));
2784 	entry = sh_eth_tsu_find_entry(ndev, blank);
2785 	return (entry < 0) ? -ENOMEM : entry;
2786 }
2787 
2788 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2789 					      int entry)
2790 {
2791 	struct sh_eth_private *mdp = netdev_priv(ndev);
2792 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2793 	int ret;
2794 	u8 blank[ETH_ALEN];
2795 
2796 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2797 			 ~(1 << (31 - entry)), TSU_TEN);
2798 
2799 	memset(blank, 0, sizeof(blank));
2800 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2801 	if (ret < 0)
2802 		return ret;
2803 	return 0;
2804 }
2805 
2806 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2807 {
2808 	struct sh_eth_private *mdp = netdev_priv(ndev);
2809 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2810 	int i, ret;
2811 
2812 	if (!mdp->cd->tsu)
2813 		return 0;
2814 
2815 	i = sh_eth_tsu_find_entry(ndev, addr);
2816 	if (i < 0) {
2817 		/* No entry found, create one */
2818 		i = sh_eth_tsu_find_empty(ndev);
2819 		if (i < 0)
2820 			return -ENOMEM;
2821 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2822 		if (ret < 0)
2823 			return ret;
2824 
2825 		/* Enable the entry */
2826 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2827 				 (1 << (31 - i)), TSU_TEN);
2828 	}
2829 
2830 	/* Entry found or created, enable POST */
2831 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2832 
2833 	return 0;
2834 }
2835 
2836 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2837 {
2838 	struct sh_eth_private *mdp = netdev_priv(ndev);
2839 	int i, ret;
2840 
2841 	if (!mdp->cd->tsu)
2842 		return 0;
2843 
2844 	i = sh_eth_tsu_find_entry(ndev, addr);
2845 	if (i) {
2846 		/* Entry found */
2847 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2848 			goto done;
2849 
2850 		/* Disable the entry if both ports was disabled */
2851 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2852 		if (ret < 0)
2853 			return ret;
2854 	}
2855 done:
2856 	return 0;
2857 }
2858 
2859 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2860 {
2861 	struct sh_eth_private *mdp = netdev_priv(ndev);
2862 	int i, ret;
2863 
2864 	if (!mdp->cd->tsu)
2865 		return 0;
2866 
2867 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2868 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2869 			continue;
2870 
2871 		/* Disable the entry if both ports was disabled */
2872 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2873 		if (ret < 0)
2874 			return ret;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2881 {
2882 	struct sh_eth_private *mdp = netdev_priv(ndev);
2883 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2884 	u8 addr[ETH_ALEN];
2885 	int i;
2886 
2887 	if (!mdp->cd->tsu)
2888 		return;
2889 
2890 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2891 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2892 		if (is_multicast_ether_addr(addr))
2893 			sh_eth_tsu_del_entry(ndev, addr);
2894 	}
2895 }
2896 
2897 /* Update promiscuous flag and multicast filter */
2898 static void sh_eth_set_rx_mode(struct net_device *ndev)
2899 {
2900 	struct sh_eth_private *mdp = netdev_priv(ndev);
2901 	u32 ecmr_bits;
2902 	int mcast_all = 0;
2903 	unsigned long flags;
2904 
2905 	spin_lock_irqsave(&mdp->lock, flags);
2906 	/* Initial condition is MCT = 1, PRM = 0.
2907 	 * Depending on ndev->flags, set PRM or clear MCT
2908 	 */
2909 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2910 	if (mdp->cd->tsu)
2911 		ecmr_bits |= ECMR_MCT;
2912 
2913 	if (!(ndev->flags & IFF_MULTICAST)) {
2914 		sh_eth_tsu_purge_mcast(ndev);
2915 		mcast_all = 1;
2916 	}
2917 	if (ndev->flags & IFF_ALLMULTI) {
2918 		sh_eth_tsu_purge_mcast(ndev);
2919 		ecmr_bits &= ~ECMR_MCT;
2920 		mcast_all = 1;
2921 	}
2922 
2923 	if (ndev->flags & IFF_PROMISC) {
2924 		sh_eth_tsu_purge_all(ndev);
2925 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2926 	} else if (mdp->cd->tsu) {
2927 		struct netdev_hw_addr *ha;
2928 		netdev_for_each_mc_addr(ha, ndev) {
2929 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2930 				continue;
2931 
2932 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2933 				if (!mcast_all) {
2934 					sh_eth_tsu_purge_mcast(ndev);
2935 					ecmr_bits &= ~ECMR_MCT;
2936 					mcast_all = 1;
2937 				}
2938 			}
2939 		}
2940 	}
2941 
2942 	/* update the ethernet mode */
2943 	sh_eth_write(ndev, ecmr_bits, ECMR);
2944 
2945 	spin_unlock_irqrestore(&mdp->lock, flags);
2946 }
2947 
2948 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2949 {
2950 	struct sh_eth_private *mdp = netdev_priv(ndev);
2951 	unsigned long flags;
2952 
2953 	spin_lock_irqsave(&mdp->lock, flags);
2954 
2955 	/* Disable TX and RX */
2956 	sh_eth_rcv_snd_disable(ndev);
2957 
2958 	/* Modify RX Checksum setting */
2959 	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2960 
2961 	/* Enable TX and RX */
2962 	sh_eth_rcv_snd_enable(ndev);
2963 
2964 	spin_unlock_irqrestore(&mdp->lock, flags);
2965 }
2966 
2967 static int sh_eth_set_features(struct net_device *ndev,
2968 			       netdev_features_t features)
2969 {
2970 	netdev_features_t changed = ndev->features ^ features;
2971 	struct sh_eth_private *mdp = netdev_priv(ndev);
2972 
2973 	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2974 		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2975 
2976 	ndev->features = features;
2977 
2978 	return 0;
2979 }
2980 
2981 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2982 {
2983 	if (!mdp->port)
2984 		return TSU_VTAG0;
2985 	else
2986 		return TSU_VTAG1;
2987 }
2988 
2989 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2990 				  __be16 proto, u16 vid)
2991 {
2992 	struct sh_eth_private *mdp = netdev_priv(ndev);
2993 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2994 
2995 	if (unlikely(!mdp->cd->tsu))
2996 		return -EPERM;
2997 
2998 	/* No filtering if vid = 0 */
2999 	if (!vid)
3000 		return 0;
3001 
3002 	mdp->vlan_num_ids++;
3003 
3004 	/* The controller has one VLAN tag HW filter. So, if the filter is
3005 	 * already enabled, the driver disables it and the filte
3006 	 */
3007 	if (mdp->vlan_num_ids > 1) {
3008 		/* disable VLAN filter */
3009 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3010 		return 0;
3011 	}
3012 
3013 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
3014 			 vtag_reg_index);
3015 
3016 	return 0;
3017 }
3018 
3019 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
3020 				   __be16 proto, u16 vid)
3021 {
3022 	struct sh_eth_private *mdp = netdev_priv(ndev);
3023 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
3024 
3025 	if (unlikely(!mdp->cd->tsu))
3026 		return -EPERM;
3027 
3028 	/* No filtering if vid = 0 */
3029 	if (!vid)
3030 		return 0;
3031 
3032 	mdp->vlan_num_ids--;
3033 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3034 
3035 	return 0;
3036 }
3037 
3038 /* SuperH's TSU register init function */
3039 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3040 {
3041 	if (!mdp->cd->dual_port) {
3042 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3043 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3044 				 TSU_FWSLC);	/* Enable POST registers */
3045 		return;
3046 	}
3047 
3048 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3049 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3050 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3051 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3052 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3053 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3054 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3055 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3056 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3057 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3058 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3059 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3060 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3061 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3062 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3063 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3064 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3065 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3066 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3067 }
3068 
3069 /* MDIO bus release function */
3070 static int sh_mdio_release(struct sh_eth_private *mdp)
3071 {
3072 	/* unregister mdio bus */
3073 	mdiobus_unregister(mdp->mii_bus);
3074 
3075 	/* free bitbang info */
3076 	free_mdio_bitbang(mdp->mii_bus);
3077 
3078 	return 0;
3079 }
3080 
3081 /* MDIO bus init function */
3082 static int sh_mdio_init(struct sh_eth_private *mdp,
3083 			struct sh_eth_plat_data *pd)
3084 {
3085 	int ret;
3086 	struct bb_info *bitbang;
3087 	struct platform_device *pdev = mdp->pdev;
3088 	struct device *dev = &mdp->pdev->dev;
3089 
3090 	/* create bit control struct for PHY */
3091 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3092 	if (!bitbang)
3093 		return -ENOMEM;
3094 
3095 	/* bitbang init */
3096 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3097 	bitbang->set_gate = pd->set_mdio_gate;
3098 	bitbang->ctrl.ops = &bb_ops;
3099 
3100 	/* MII controller setting */
3101 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3102 	if (!mdp->mii_bus)
3103 		return -ENOMEM;
3104 
3105 	/* Hook up MII support for ethtool */
3106 	mdp->mii_bus->name = "sh_mii";
3107 	mdp->mii_bus->parent = dev;
3108 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3109 		 pdev->name, pdev->id);
3110 
3111 	/* register MDIO bus */
3112 	if (pd->phy_irq > 0)
3113 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3114 
3115 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3116 	if (ret)
3117 		goto out_free_bus;
3118 
3119 	return 0;
3120 
3121 out_free_bus:
3122 	free_mdio_bitbang(mdp->mii_bus);
3123 	return ret;
3124 }
3125 
3126 static const u16 *sh_eth_get_register_offset(int register_type)
3127 {
3128 	const u16 *reg_offset = NULL;
3129 
3130 	switch (register_type) {
3131 	case SH_ETH_REG_GIGABIT:
3132 		reg_offset = sh_eth_offset_gigabit;
3133 		break;
3134 	case SH_ETH_REG_FAST_RZ:
3135 		reg_offset = sh_eth_offset_fast_rz;
3136 		break;
3137 	case SH_ETH_REG_FAST_RCAR:
3138 		reg_offset = sh_eth_offset_fast_rcar;
3139 		break;
3140 	case SH_ETH_REG_FAST_SH4:
3141 		reg_offset = sh_eth_offset_fast_sh4;
3142 		break;
3143 	case SH_ETH_REG_FAST_SH3_SH2:
3144 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3145 		break;
3146 	}
3147 
3148 	return reg_offset;
3149 }
3150 
3151 static const struct net_device_ops sh_eth_netdev_ops = {
3152 	.ndo_open		= sh_eth_open,
3153 	.ndo_stop		= sh_eth_close,
3154 	.ndo_start_xmit		= sh_eth_start_xmit,
3155 	.ndo_get_stats		= sh_eth_get_stats,
3156 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3157 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3158 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3159 	.ndo_change_mtu		= sh_eth_change_mtu,
3160 	.ndo_validate_addr	= eth_validate_addr,
3161 	.ndo_set_mac_address	= eth_mac_addr,
3162 	.ndo_set_features	= sh_eth_set_features,
3163 };
3164 
3165 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3166 	.ndo_open		= sh_eth_open,
3167 	.ndo_stop		= sh_eth_close,
3168 	.ndo_start_xmit		= sh_eth_start_xmit,
3169 	.ndo_get_stats		= sh_eth_get_stats,
3170 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3171 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3172 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3173 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3174 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3175 	.ndo_change_mtu		= sh_eth_change_mtu,
3176 	.ndo_validate_addr	= eth_validate_addr,
3177 	.ndo_set_mac_address	= eth_mac_addr,
3178 	.ndo_set_features	= sh_eth_set_features,
3179 };
3180 
3181 #ifdef CONFIG_OF
3182 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3183 {
3184 	struct device_node *np = dev->of_node;
3185 	struct sh_eth_plat_data *pdata;
3186 	phy_interface_t interface;
3187 	const char *mac_addr;
3188 	int ret;
3189 
3190 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3191 	if (!pdata)
3192 		return NULL;
3193 
3194 	ret = of_get_phy_mode(np, &interface);
3195 	if (ret)
3196 		return NULL;
3197 	pdata->phy_interface = interface;
3198 
3199 	mac_addr = of_get_mac_address(np);
3200 	if (!IS_ERR(mac_addr))
3201 		ether_addr_copy(pdata->mac_addr, mac_addr);
3202 
3203 	pdata->no_ether_link =
3204 		of_property_read_bool(np, "renesas,no-ether-link");
3205 	pdata->ether_link_active_low =
3206 		of_property_read_bool(np, "renesas,ether-link-active-low");
3207 
3208 	return pdata;
3209 }
3210 
3211 static const struct of_device_id sh_eth_match_table[] = {
3212 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3213 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3214 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3215 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3216 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3217 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3218 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3219 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3220 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3221 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3222 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3223 	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3224 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3225 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3226 	{ }
3227 };
3228 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3229 #else
3230 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3231 {
3232 	return NULL;
3233 }
3234 #endif
3235 
3236 static int sh_eth_drv_probe(struct platform_device *pdev)
3237 {
3238 	struct resource *res;
3239 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3240 	const struct platform_device_id *id = platform_get_device_id(pdev);
3241 	struct sh_eth_private *mdp;
3242 	struct net_device *ndev;
3243 	int ret;
3244 
3245 	/* get base addr */
3246 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3247 
3248 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3249 	if (!ndev)
3250 		return -ENOMEM;
3251 
3252 	pm_runtime_enable(&pdev->dev);
3253 	pm_runtime_get_sync(&pdev->dev);
3254 
3255 	ret = platform_get_irq(pdev, 0);
3256 	if (ret < 0)
3257 		goto out_release;
3258 	ndev->irq = ret;
3259 
3260 	SET_NETDEV_DEV(ndev, &pdev->dev);
3261 
3262 	mdp = netdev_priv(ndev);
3263 	mdp->num_tx_ring = TX_RING_SIZE;
3264 	mdp->num_rx_ring = RX_RING_SIZE;
3265 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3266 	if (IS_ERR(mdp->addr)) {
3267 		ret = PTR_ERR(mdp->addr);
3268 		goto out_release;
3269 	}
3270 
3271 	ndev->base_addr = res->start;
3272 
3273 	spin_lock_init(&mdp->lock);
3274 	mdp->pdev = pdev;
3275 
3276 	if (pdev->dev.of_node)
3277 		pd = sh_eth_parse_dt(&pdev->dev);
3278 	if (!pd) {
3279 		dev_err(&pdev->dev, "no platform data\n");
3280 		ret = -EINVAL;
3281 		goto out_release;
3282 	}
3283 
3284 	/* get PHY ID */
3285 	mdp->phy_id = pd->phy;
3286 	mdp->phy_interface = pd->phy_interface;
3287 	mdp->no_ether_link = pd->no_ether_link;
3288 	mdp->ether_link_active_low = pd->ether_link_active_low;
3289 
3290 	/* set cpu data */
3291 	if (id)
3292 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3293 	else
3294 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3295 
3296 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3297 	if (!mdp->reg_offset) {
3298 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3299 			mdp->cd->register_type);
3300 		ret = -EINVAL;
3301 		goto out_release;
3302 	}
3303 	sh_eth_set_default_cpu_data(mdp->cd);
3304 
3305 	/* User's manual states max MTU should be 2048 but due to the
3306 	 * alignment calculations in sh_eth_ring_init() the practical
3307 	 * MTU is a bit less. Maybe this can be optimized some more.
3308 	 */
3309 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3310 	ndev->min_mtu = ETH_MIN_MTU;
3311 
3312 	if (mdp->cd->rx_csum) {
3313 		ndev->features = NETIF_F_RXCSUM;
3314 		ndev->hw_features = NETIF_F_RXCSUM;
3315 	}
3316 
3317 	/* set function */
3318 	if (mdp->cd->tsu)
3319 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3320 	else
3321 		ndev->netdev_ops = &sh_eth_netdev_ops;
3322 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3323 	ndev->watchdog_timeo = TX_TIMEOUT;
3324 
3325 	/* debug message level */
3326 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3327 
3328 	/* read and set MAC address */
3329 	read_mac_address(ndev, pd->mac_addr);
3330 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3331 		dev_warn(&pdev->dev,
3332 			 "no valid MAC address supplied, using a random one.\n");
3333 		eth_hw_addr_random(ndev);
3334 	}
3335 
3336 	if (mdp->cd->tsu) {
3337 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3338 		struct resource *rtsu;
3339 
3340 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3341 		if (!rtsu) {
3342 			dev_err(&pdev->dev, "no TSU resource\n");
3343 			ret = -ENODEV;
3344 			goto out_release;
3345 		}
3346 		/* We can only request the  TSU region  for the first port
3347 		 * of the two  sharing this TSU for the probe to succeed...
3348 		 */
3349 		if (port == 0 &&
3350 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3351 					     resource_size(rtsu),
3352 					     dev_name(&pdev->dev))) {
3353 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3354 			ret = -EBUSY;
3355 			goto out_release;
3356 		}
3357 		/* ioremap the TSU registers */
3358 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3359 					     resource_size(rtsu));
3360 		if (!mdp->tsu_addr) {
3361 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3362 			ret = -ENOMEM;
3363 			goto out_release;
3364 		}
3365 		mdp->port = port;
3366 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3367 
3368 		/* Need to init only the first port of the two sharing a TSU */
3369 		if (port == 0) {
3370 			if (mdp->cd->chip_reset)
3371 				mdp->cd->chip_reset(ndev);
3372 
3373 			/* TSU init (Init only)*/
3374 			sh_eth_tsu_init(mdp);
3375 		}
3376 	}
3377 
3378 	if (mdp->cd->rmiimode)
3379 		sh_eth_write(ndev, 0x1, RMIIMODE);
3380 
3381 	/* MDIO bus init */
3382 	ret = sh_mdio_init(mdp, pd);
3383 	if (ret) {
3384 		if (ret != -EPROBE_DEFER)
3385 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3386 		goto out_release;
3387 	}
3388 
3389 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3390 
3391 	/* network device register */
3392 	ret = register_netdev(ndev);
3393 	if (ret)
3394 		goto out_napi_del;
3395 
3396 	if (mdp->cd->magic)
3397 		device_set_wakeup_capable(&pdev->dev, 1);
3398 
3399 	/* print device information */
3400 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3401 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3402 
3403 	pm_runtime_put(&pdev->dev);
3404 	platform_set_drvdata(pdev, ndev);
3405 
3406 	return ret;
3407 
3408 out_napi_del:
3409 	netif_napi_del(&mdp->napi);
3410 	sh_mdio_release(mdp);
3411 
3412 out_release:
3413 	/* net_dev free */
3414 	free_netdev(ndev);
3415 
3416 	pm_runtime_put(&pdev->dev);
3417 	pm_runtime_disable(&pdev->dev);
3418 	return ret;
3419 }
3420 
3421 static int sh_eth_drv_remove(struct platform_device *pdev)
3422 {
3423 	struct net_device *ndev = platform_get_drvdata(pdev);
3424 	struct sh_eth_private *mdp = netdev_priv(ndev);
3425 
3426 	unregister_netdev(ndev);
3427 	netif_napi_del(&mdp->napi);
3428 	sh_mdio_release(mdp);
3429 	pm_runtime_disable(&pdev->dev);
3430 	free_netdev(ndev);
3431 
3432 	return 0;
3433 }
3434 
3435 #ifdef CONFIG_PM
3436 #ifdef CONFIG_PM_SLEEP
3437 static int sh_eth_wol_setup(struct net_device *ndev)
3438 {
3439 	struct sh_eth_private *mdp = netdev_priv(ndev);
3440 
3441 	/* Only allow ECI interrupts */
3442 	synchronize_irq(ndev->irq);
3443 	napi_disable(&mdp->napi);
3444 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3445 
3446 	/* Enable MagicPacket */
3447 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3448 
3449 	return enable_irq_wake(ndev->irq);
3450 }
3451 
3452 static int sh_eth_wol_restore(struct net_device *ndev)
3453 {
3454 	struct sh_eth_private *mdp = netdev_priv(ndev);
3455 	int ret;
3456 
3457 	napi_enable(&mdp->napi);
3458 
3459 	/* Disable MagicPacket */
3460 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3461 
3462 	/* The device needs to be reset to restore MagicPacket logic
3463 	 * for next wakeup. If we close and open the device it will
3464 	 * both be reset and all registers restored. This is what
3465 	 * happens during suspend and resume without WoL enabled.
3466 	 */
3467 	ret = sh_eth_close(ndev);
3468 	if (ret < 0)
3469 		return ret;
3470 	ret = sh_eth_open(ndev);
3471 	if (ret < 0)
3472 		return ret;
3473 
3474 	return disable_irq_wake(ndev->irq);
3475 }
3476 
3477 static int sh_eth_suspend(struct device *dev)
3478 {
3479 	struct net_device *ndev = dev_get_drvdata(dev);
3480 	struct sh_eth_private *mdp = netdev_priv(ndev);
3481 	int ret = 0;
3482 
3483 	if (!netif_running(ndev))
3484 		return 0;
3485 
3486 	netif_device_detach(ndev);
3487 
3488 	if (mdp->wol_enabled)
3489 		ret = sh_eth_wol_setup(ndev);
3490 	else
3491 		ret = sh_eth_close(ndev);
3492 
3493 	return ret;
3494 }
3495 
3496 static int sh_eth_resume(struct device *dev)
3497 {
3498 	struct net_device *ndev = dev_get_drvdata(dev);
3499 	struct sh_eth_private *mdp = netdev_priv(ndev);
3500 	int ret = 0;
3501 
3502 	if (!netif_running(ndev))
3503 		return 0;
3504 
3505 	if (mdp->wol_enabled)
3506 		ret = sh_eth_wol_restore(ndev);
3507 	else
3508 		ret = sh_eth_open(ndev);
3509 
3510 	if (ret < 0)
3511 		return ret;
3512 
3513 	netif_device_attach(ndev);
3514 
3515 	return ret;
3516 }
3517 #endif
3518 
3519 static int sh_eth_runtime_nop(struct device *dev)
3520 {
3521 	/* Runtime PM callback shared between ->runtime_suspend()
3522 	 * and ->runtime_resume(). Simply returns success.
3523 	 *
3524 	 * This driver re-initializes all registers after
3525 	 * pm_runtime_get_sync() anyway so there is no need
3526 	 * to save and restore registers here.
3527 	 */
3528 	return 0;
3529 }
3530 
3531 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3532 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3533 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3534 };
3535 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3536 #else
3537 #define SH_ETH_PM_OPS NULL
3538 #endif
3539 
3540 static const struct platform_device_id sh_eth_id_table[] = {
3541 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3542 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3543 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3544 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3545 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3546 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3547 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3548 	{ }
3549 };
3550 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3551 
3552 static struct platform_driver sh_eth_driver = {
3553 	.probe = sh_eth_drv_probe,
3554 	.remove = sh_eth_drv_remove,
3555 	.id_table = sh_eth_id_table,
3556 	.driver = {
3557 		   .name = CARDNAME,
3558 		   .pm = SH_ETH_PM_OPS,
3559 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3560 	},
3561 };
3562 
3563 module_platform_driver(sh_eth_driver);
3564 
3565 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3566 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3567 MODULE_LICENSE("GPL v2");
3568