1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6  *  Copyright (C) 2013 Cogent Embedded, Inc.
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *  You should have received a copy of the GNU General Public License along with
17  *  this program; if not, write to the Free Software Foundation, Inc.,
18  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  *  The full GNU General Public License is included in this distribution in
21  *  the file called "COPYING".
22  */
23 
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 
45 #include "sh_eth.h"
46 
47 #define SH_ETH_DEF_MSG_ENABLE \
48 		(NETIF_MSG_LINK	| \
49 		NETIF_MSG_TIMER	| \
50 		NETIF_MSG_RX_ERR| \
51 		NETIF_MSG_TX_ERR)
52 
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 	[EDSR]		= 0x0000,
55 	[EDMR]		= 0x0400,
56 	[EDTRR]		= 0x0408,
57 	[EDRRR]		= 0x0410,
58 	[EESR]		= 0x0428,
59 	[EESIPR]	= 0x0430,
60 	[TDLAR]		= 0x0010,
61 	[TDFAR]		= 0x0014,
62 	[TDFXR]		= 0x0018,
63 	[TDFFR]		= 0x001c,
64 	[RDLAR]		= 0x0030,
65 	[RDFAR]		= 0x0034,
66 	[RDFXR]		= 0x0038,
67 	[RDFFR]		= 0x003c,
68 	[TRSCER]	= 0x0438,
69 	[RMFCR]		= 0x0440,
70 	[TFTR]		= 0x0448,
71 	[FDR]		= 0x0450,
72 	[RMCR]		= 0x0458,
73 	[RPADIR]	= 0x0460,
74 	[FCFTR]		= 0x0468,
75 	[CSMR]		= 0x04E4,
76 
77 	[ECMR]		= 0x0500,
78 	[ECSR]		= 0x0510,
79 	[ECSIPR]	= 0x0518,
80 	[PIR]		= 0x0520,
81 	[PSR]		= 0x0528,
82 	[PIPR]		= 0x052c,
83 	[RFLR]		= 0x0508,
84 	[APR]		= 0x0554,
85 	[MPR]		= 0x0558,
86 	[PFTCR]		= 0x055c,
87 	[PFRCR]		= 0x0560,
88 	[TPAUSER]	= 0x0564,
89 	[GECMR]		= 0x05b0,
90 	[BCULR]		= 0x05b4,
91 	[MAHR]		= 0x05c0,
92 	[MALR]		= 0x05c8,
93 	[TROCR]		= 0x0700,
94 	[CDCR]		= 0x0708,
95 	[LCCR]		= 0x0710,
96 	[CEFCR]		= 0x0740,
97 	[FRECR]		= 0x0748,
98 	[TSFRCR]	= 0x0750,
99 	[TLFRCR]	= 0x0758,
100 	[RFCR]		= 0x0760,
101 	[CERCR]		= 0x0768,
102 	[CEECR]		= 0x0770,
103 	[MAFCR]		= 0x0778,
104 	[RMII_MII]	= 0x0790,
105 
106 	[ARSTR]		= 0x0000,
107 	[TSU_CTRST]	= 0x0004,
108 	[TSU_FWEN0]	= 0x0010,
109 	[TSU_FWEN1]	= 0x0014,
110 	[TSU_FCM]	= 0x0018,
111 	[TSU_BSYSL0]	= 0x0020,
112 	[TSU_BSYSL1]	= 0x0024,
113 	[TSU_PRISL0]	= 0x0028,
114 	[TSU_PRISL1]	= 0x002c,
115 	[TSU_FWSL0]	= 0x0030,
116 	[TSU_FWSL1]	= 0x0034,
117 	[TSU_FWSLC]	= 0x0038,
118 	[TSU_QTAG0]	= 0x0040,
119 	[TSU_QTAG1]	= 0x0044,
120 	[TSU_FWSR]	= 0x0050,
121 	[TSU_FWINMK]	= 0x0054,
122 	[TSU_ADQT0]	= 0x0048,
123 	[TSU_ADQT1]	= 0x004c,
124 	[TSU_VTAG0]	= 0x0058,
125 	[TSU_VTAG1]	= 0x005c,
126 	[TSU_ADSBSY]	= 0x0060,
127 	[TSU_TEN]	= 0x0064,
128 	[TSU_POST1]	= 0x0070,
129 	[TSU_POST2]	= 0x0074,
130 	[TSU_POST3]	= 0x0078,
131 	[TSU_POST4]	= 0x007c,
132 	[TSU_ADRH0]	= 0x0100,
133 	[TSU_ADRL0]	= 0x0104,
134 	[TSU_ADRH31]	= 0x01f8,
135 	[TSU_ADRL31]	= 0x01fc,
136 
137 	[TXNLCR0]	= 0x0080,
138 	[TXALCR0]	= 0x0084,
139 	[RXNLCR0]	= 0x0088,
140 	[RXALCR0]	= 0x008c,
141 	[FWNLCR0]	= 0x0090,
142 	[FWALCR0]	= 0x0094,
143 	[TXNLCR1]	= 0x00a0,
144 	[TXALCR1]	= 0x00a0,
145 	[RXNLCR1]	= 0x00a8,
146 	[RXALCR1]	= 0x00ac,
147 	[FWNLCR1]	= 0x00b0,
148 	[FWALCR1]	= 0x00b4,
149 };
150 
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 	[ECMR]		= 0x0300,
153 	[RFLR]		= 0x0308,
154 	[ECSR]		= 0x0310,
155 	[ECSIPR]	= 0x0318,
156 	[PIR]		= 0x0320,
157 	[PSR]		= 0x0328,
158 	[RDMLR]		= 0x0340,
159 	[IPGR]		= 0x0350,
160 	[APR]		= 0x0354,
161 	[MPR]		= 0x0358,
162 	[RFCF]		= 0x0360,
163 	[TPAUSER]	= 0x0364,
164 	[TPAUSECR]	= 0x0368,
165 	[MAHR]		= 0x03c0,
166 	[MALR]		= 0x03c8,
167 	[TROCR]		= 0x03d0,
168 	[CDCR]		= 0x03d4,
169 	[LCCR]		= 0x03d8,
170 	[CNDCR]		= 0x03dc,
171 	[CEFCR]		= 0x03e4,
172 	[FRECR]		= 0x03e8,
173 	[TSFRCR]	= 0x03ec,
174 	[TLFRCR]	= 0x03f0,
175 	[RFCR]		= 0x03f4,
176 	[MAFCR]		= 0x03f8,
177 
178 	[EDMR]		= 0x0200,
179 	[EDTRR]		= 0x0208,
180 	[EDRRR]		= 0x0210,
181 	[TDLAR]		= 0x0218,
182 	[RDLAR]		= 0x0220,
183 	[EESR]		= 0x0228,
184 	[EESIPR]	= 0x0230,
185 	[TRSCER]	= 0x0238,
186 	[RMFCR]		= 0x0240,
187 	[TFTR]		= 0x0248,
188 	[FDR]		= 0x0250,
189 	[RMCR]		= 0x0258,
190 	[TFUCR]		= 0x0264,
191 	[RFOCR]		= 0x0268,
192 	[FCFTR]		= 0x0270,
193 	[TRIMD]		= 0x027c,
194 };
195 
196 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
197 	[ECMR]		= 0x0100,
198 	[RFLR]		= 0x0108,
199 	[ECSR]		= 0x0110,
200 	[ECSIPR]	= 0x0118,
201 	[PIR]		= 0x0120,
202 	[PSR]		= 0x0128,
203 	[RDMLR]		= 0x0140,
204 	[IPGR]		= 0x0150,
205 	[APR]		= 0x0154,
206 	[MPR]		= 0x0158,
207 	[TPAUSER]	= 0x0164,
208 	[RFCF]		= 0x0160,
209 	[TPAUSECR]	= 0x0168,
210 	[BCFRR]		= 0x016c,
211 	[MAHR]		= 0x01c0,
212 	[MALR]		= 0x01c8,
213 	[TROCR]		= 0x01d0,
214 	[CDCR]		= 0x01d4,
215 	[LCCR]		= 0x01d8,
216 	[CNDCR]		= 0x01dc,
217 	[CEFCR]		= 0x01e4,
218 	[FRECR]		= 0x01e8,
219 	[TSFRCR]	= 0x01ec,
220 	[TLFRCR]	= 0x01f0,
221 	[RFCR]		= 0x01f4,
222 	[MAFCR]		= 0x01f8,
223 	[RTRATE]	= 0x01fc,
224 
225 	[EDMR]		= 0x0000,
226 	[EDTRR]		= 0x0008,
227 	[EDRRR]		= 0x0010,
228 	[TDLAR]		= 0x0018,
229 	[RDLAR]		= 0x0020,
230 	[EESR]		= 0x0028,
231 	[EESIPR]	= 0x0030,
232 	[TRSCER]	= 0x0038,
233 	[RMFCR]		= 0x0040,
234 	[TFTR]		= 0x0048,
235 	[FDR]		= 0x0050,
236 	[RMCR]		= 0x0058,
237 	[TFUCR]		= 0x0064,
238 	[RFOCR]		= 0x0068,
239 	[FCFTR]		= 0x0070,
240 	[RPADIR]	= 0x0078,
241 	[TRIMD]		= 0x007c,
242 	[RBWAR]		= 0x00c8,
243 	[RDFAR]		= 0x00cc,
244 	[TBRAR]		= 0x00d4,
245 	[TDFAR]		= 0x00d8,
246 };
247 
248 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
249 	[ECMR]		= 0x0160,
250 	[ECSR]		= 0x0164,
251 	[ECSIPR]	= 0x0168,
252 	[PIR]		= 0x016c,
253 	[MAHR]		= 0x0170,
254 	[MALR]		= 0x0174,
255 	[RFLR]		= 0x0178,
256 	[PSR]		= 0x017c,
257 	[TROCR]		= 0x0180,
258 	[CDCR]		= 0x0184,
259 	[LCCR]		= 0x0188,
260 	[CNDCR]		= 0x018c,
261 	[CEFCR]		= 0x0194,
262 	[FRECR]		= 0x0198,
263 	[TSFRCR]	= 0x019c,
264 	[TLFRCR]	= 0x01a0,
265 	[RFCR]		= 0x01a4,
266 	[MAFCR]		= 0x01a8,
267 	[IPGR]		= 0x01b4,
268 	[APR]		= 0x01b8,
269 	[MPR]		= 0x01bc,
270 	[TPAUSER]	= 0x01c4,
271 	[BCFR]		= 0x01cc,
272 
273 	[ARSTR]		= 0x0000,
274 	[TSU_CTRST]	= 0x0004,
275 	[TSU_FWEN0]	= 0x0010,
276 	[TSU_FWEN1]	= 0x0014,
277 	[TSU_FCM]	= 0x0018,
278 	[TSU_BSYSL0]	= 0x0020,
279 	[TSU_BSYSL1]	= 0x0024,
280 	[TSU_PRISL0]	= 0x0028,
281 	[TSU_PRISL1]	= 0x002c,
282 	[TSU_FWSL0]	= 0x0030,
283 	[TSU_FWSL1]	= 0x0034,
284 	[TSU_FWSLC]	= 0x0038,
285 	[TSU_QTAGM0]	= 0x0040,
286 	[TSU_QTAGM1]	= 0x0044,
287 	[TSU_ADQT0]	= 0x0048,
288 	[TSU_ADQT1]	= 0x004c,
289 	[TSU_FWSR]	= 0x0050,
290 	[TSU_FWINMK]	= 0x0054,
291 	[TSU_ADSBSY]	= 0x0060,
292 	[TSU_TEN]	= 0x0064,
293 	[TSU_POST1]	= 0x0070,
294 	[TSU_POST2]	= 0x0074,
295 	[TSU_POST3]	= 0x0078,
296 	[TSU_POST4]	= 0x007c,
297 
298 	[TXNLCR0]	= 0x0080,
299 	[TXALCR0]	= 0x0084,
300 	[RXNLCR0]	= 0x0088,
301 	[RXALCR0]	= 0x008c,
302 	[FWNLCR0]	= 0x0090,
303 	[FWALCR0]	= 0x0094,
304 	[TXNLCR1]	= 0x00a0,
305 	[TXALCR1]	= 0x00a0,
306 	[RXNLCR1]	= 0x00a8,
307 	[RXALCR1]	= 0x00ac,
308 	[FWNLCR1]	= 0x00b0,
309 	[FWALCR1]	= 0x00b4,
310 
311 	[TSU_ADRH0]	= 0x0100,
312 	[TSU_ADRL0]	= 0x0104,
313 	[TSU_ADRL31]	= 0x01fc,
314 };
315 
316 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
317 	defined(CONFIG_CPU_SUBTYPE_SH7763) || \
318 	defined(CONFIG_ARCH_R8A7740)
319 static void sh_eth_select_mii(struct net_device *ndev)
320 {
321 	u32 value = 0x0;
322 	struct sh_eth_private *mdp = netdev_priv(ndev);
323 
324 	switch (mdp->phy_interface) {
325 	case PHY_INTERFACE_MODE_GMII:
326 		value = 0x2;
327 		break;
328 	case PHY_INTERFACE_MODE_MII:
329 		value = 0x1;
330 		break;
331 	case PHY_INTERFACE_MODE_RMII:
332 		value = 0x0;
333 		break;
334 	default:
335 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
336 		value = 0x1;
337 		break;
338 	}
339 
340 	sh_eth_write(ndev, value, RMII_MII);
341 }
342 #endif
343 
344 /* There is CPU dependent code */
345 #if defined(CONFIG_ARCH_R8A7778) || defined(CONFIG_ARCH_R8A7779)
346 #define SH_ETH_RESET_DEFAULT	1
347 static void sh_eth_set_duplex(struct net_device *ndev)
348 {
349 	struct sh_eth_private *mdp = netdev_priv(ndev);
350 
351 	if (mdp->duplex) /* Full */
352 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
353 	else		/* Half */
354 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
355 }
356 
357 static void sh_eth_set_rate(struct net_device *ndev)
358 {
359 	struct sh_eth_private *mdp = netdev_priv(ndev);
360 
361 	switch (mdp->speed) {
362 	case 10: /* 10BASE */
363 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
364 		break;
365 	case 100:/* 100BASE */
366 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
367 		break;
368 	default:
369 		break;
370 	}
371 }
372 
373 /* R8A7778/9 */
374 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
375 	.set_duplex	= sh_eth_set_duplex,
376 	.set_rate	= sh_eth_set_rate,
377 
378 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
379 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
380 	.eesipr_value	= 0x01ff009f,
381 
382 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
383 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
384 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
385 			  EESR_ECI,
386 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
387 
388 	.apr		= 1,
389 	.mpr		= 1,
390 	.tpauser	= 1,
391 	.hw_swap	= 1,
392 };
393 #elif defined(CONFIG_CPU_SUBTYPE_SH7724)
394 #define SH_ETH_RESET_DEFAULT	1
395 static void sh_eth_set_duplex(struct net_device *ndev)
396 {
397 	struct sh_eth_private *mdp = netdev_priv(ndev);
398 
399 	if (mdp->duplex) /* Full */
400 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
401 	else		/* Half */
402 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
403 }
404 
405 static void sh_eth_set_rate(struct net_device *ndev)
406 {
407 	struct sh_eth_private *mdp = netdev_priv(ndev);
408 
409 	switch (mdp->speed) {
410 	case 10: /* 10BASE */
411 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
412 		break;
413 	case 100:/* 100BASE */
414 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
415 		break;
416 	default:
417 		break;
418 	}
419 }
420 
421 /* SH7724 */
422 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
423 	.set_duplex	= sh_eth_set_duplex,
424 	.set_rate	= sh_eth_set_rate,
425 
426 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
427 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
428 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
429 
430 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
431 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
432 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
433 			  EESR_ECI,
434 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
435 
436 	.apr		= 1,
437 	.mpr		= 1,
438 	.tpauser	= 1,
439 	.hw_swap	= 1,
440 	.rpadir		= 1,
441 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
442 };
443 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
444 #define SH_ETH_HAS_BOTH_MODULES	1
445 #define SH_ETH_HAS_TSU	1
446 static int sh_eth_check_reset(struct net_device *ndev);
447 
448 static void sh_eth_set_duplex(struct net_device *ndev)
449 {
450 	struct sh_eth_private *mdp = netdev_priv(ndev);
451 
452 	if (mdp->duplex) /* Full */
453 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
454 	else		/* Half */
455 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
456 }
457 
458 static void sh_eth_set_rate(struct net_device *ndev)
459 {
460 	struct sh_eth_private *mdp = netdev_priv(ndev);
461 
462 	switch (mdp->speed) {
463 	case 10: /* 10BASE */
464 		sh_eth_write(ndev, 0, RTRATE);
465 		break;
466 	case 100:/* 100BASE */
467 		sh_eth_write(ndev, 1, RTRATE);
468 		break;
469 	default:
470 		break;
471 	}
472 }
473 
474 /* SH7757 */
475 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
476 	.set_duplex		= sh_eth_set_duplex,
477 	.set_rate		= sh_eth_set_rate,
478 
479 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
480 	.rmcr_value	= 0x00000001,
481 
482 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
483 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
484 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
485 			  EESR_ECI,
486 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
487 
488 	.apr		= 1,
489 	.mpr		= 1,
490 	.tpauser	= 1,
491 	.hw_swap	= 1,
492 	.no_ade		= 1,
493 	.rpadir		= 1,
494 	.rpadir_value   = 2 << 16,
495 };
496 
497 #define SH_GIGA_ETH_BASE	0xfee00000
498 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
499 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
500 static void sh_eth_chip_reset_giga(struct net_device *ndev)
501 {
502 	int i;
503 	unsigned long mahr[2], malr[2];
504 
505 	/* save MAHR and MALR */
506 	for (i = 0; i < 2; i++) {
507 		malr[i] = ioread32((void *)GIGA_MALR(i));
508 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
509 	}
510 
511 	/* reset device */
512 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
513 	mdelay(1);
514 
515 	/* restore MAHR and MALR */
516 	for (i = 0; i < 2; i++) {
517 		iowrite32(malr[i], (void *)GIGA_MALR(i));
518 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
519 	}
520 }
521 
522 static int sh_eth_is_gether(struct sh_eth_private *mdp);
523 static int sh_eth_reset(struct net_device *ndev)
524 {
525 	struct sh_eth_private *mdp = netdev_priv(ndev);
526 	int ret = 0;
527 
528 	if (sh_eth_is_gether(mdp)) {
529 		sh_eth_write(ndev, 0x03, EDSR);
530 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
531 				EDMR);
532 
533 		ret = sh_eth_check_reset(ndev);
534 		if (ret)
535 			goto out;
536 
537 		/* Table Init */
538 		sh_eth_write(ndev, 0x0, TDLAR);
539 		sh_eth_write(ndev, 0x0, TDFAR);
540 		sh_eth_write(ndev, 0x0, TDFXR);
541 		sh_eth_write(ndev, 0x0, TDFFR);
542 		sh_eth_write(ndev, 0x0, RDLAR);
543 		sh_eth_write(ndev, 0x0, RDFAR);
544 		sh_eth_write(ndev, 0x0, RDFXR);
545 		sh_eth_write(ndev, 0x0, RDFFR);
546 	} else {
547 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
548 				EDMR);
549 		mdelay(3);
550 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
551 				EDMR);
552 	}
553 
554 out:
555 	return ret;
556 }
557 
558 static void sh_eth_set_duplex_giga(struct net_device *ndev)
559 {
560 	struct sh_eth_private *mdp = netdev_priv(ndev);
561 
562 	if (mdp->duplex) /* Full */
563 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
564 	else		/* Half */
565 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
566 }
567 
568 static void sh_eth_set_rate_giga(struct net_device *ndev)
569 {
570 	struct sh_eth_private *mdp = netdev_priv(ndev);
571 
572 	switch (mdp->speed) {
573 	case 10: /* 10BASE */
574 		sh_eth_write(ndev, 0x00000000, GECMR);
575 		break;
576 	case 100:/* 100BASE */
577 		sh_eth_write(ndev, 0x00000010, GECMR);
578 		break;
579 	case 1000: /* 1000BASE */
580 		sh_eth_write(ndev, 0x00000020, GECMR);
581 		break;
582 	default:
583 		break;
584 	}
585 }
586 
587 /* SH7757(GETHERC) */
588 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
589 	.chip_reset	= sh_eth_chip_reset_giga,
590 	.set_duplex	= sh_eth_set_duplex_giga,
591 	.set_rate	= sh_eth_set_rate_giga,
592 
593 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
594 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
595 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
596 
597 	.tx_check	= EESR_TC1 | EESR_FTC,
598 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
599 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
600 			  EESR_TDE | EESR_ECI,
601 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
602 			  EESR_TFE,
603 	.fdr_value	= 0x0000072f,
604 	.rmcr_value	= 0x00000001,
605 
606 	.apr		= 1,
607 	.mpr		= 1,
608 	.tpauser	= 1,
609 	.bculr		= 1,
610 	.hw_swap	= 1,
611 	.rpadir		= 1,
612 	.rpadir_value   = 2 << 16,
613 	.no_trimd	= 1,
614 	.no_ade		= 1,
615 	.tsu		= 1,
616 };
617 
618 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
619 {
620 	if (sh_eth_is_gether(mdp))
621 		return &sh_eth_my_cpu_data_giga;
622 	else
623 		return &sh_eth_my_cpu_data;
624 }
625 
626 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
627 #define SH_ETH_HAS_TSU	1
628 static int sh_eth_check_reset(struct net_device *ndev);
629 static void sh_eth_reset_hw_crc(struct net_device *ndev);
630 
631 static void sh_eth_chip_reset(struct net_device *ndev)
632 {
633 	struct sh_eth_private *mdp = netdev_priv(ndev);
634 
635 	/* reset device */
636 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
637 	mdelay(1);
638 }
639 
640 static void sh_eth_set_duplex(struct net_device *ndev)
641 {
642 	struct sh_eth_private *mdp = netdev_priv(ndev);
643 
644 	if (mdp->duplex) /* Full */
645 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
646 	else		/* Half */
647 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
648 }
649 
650 static void sh_eth_set_rate(struct net_device *ndev)
651 {
652 	struct sh_eth_private *mdp = netdev_priv(ndev);
653 
654 	switch (mdp->speed) {
655 	case 10: /* 10BASE */
656 		sh_eth_write(ndev, GECMR_10, GECMR);
657 		break;
658 	case 100:/* 100BASE */
659 		sh_eth_write(ndev, GECMR_100, GECMR);
660 		break;
661 	case 1000: /* 1000BASE */
662 		sh_eth_write(ndev, GECMR_1000, GECMR);
663 		break;
664 	default:
665 		break;
666 	}
667 }
668 
669 /* sh7763 */
670 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
671 	.chip_reset	= sh_eth_chip_reset,
672 	.set_duplex	= sh_eth_set_duplex,
673 	.set_rate	= sh_eth_set_rate,
674 
675 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
676 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
677 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
678 
679 	.tx_check	= EESR_TC1 | EESR_FTC,
680 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
681 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
682 			  EESR_TDE | EESR_ECI,
683 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
684 			  EESR_TFE,
685 
686 	.apr		= 1,
687 	.mpr		= 1,
688 	.tpauser	= 1,
689 	.bculr		= 1,
690 	.hw_swap	= 1,
691 	.no_trimd	= 1,
692 	.no_ade		= 1,
693 	.tsu		= 1,
694 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
695 	.hw_crc     = 1,
696 	.select_mii = 1,
697 #endif
698 };
699 
700 static int sh_eth_reset(struct net_device *ndev)
701 {
702 	int ret = 0;
703 
704 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
705 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
706 
707 	ret = sh_eth_check_reset(ndev);
708 	if (ret)
709 		goto out;
710 
711 	/* Table Init */
712 	sh_eth_write(ndev, 0x0, TDLAR);
713 	sh_eth_write(ndev, 0x0, TDFAR);
714 	sh_eth_write(ndev, 0x0, TDFXR);
715 	sh_eth_write(ndev, 0x0, TDFFR);
716 	sh_eth_write(ndev, 0x0, RDLAR);
717 	sh_eth_write(ndev, 0x0, RDFAR);
718 	sh_eth_write(ndev, 0x0, RDFXR);
719 	sh_eth_write(ndev, 0x0, RDFFR);
720 
721 	/* Reset HW CRC register */
722 	sh_eth_reset_hw_crc(ndev);
723 
724 	/* Select MII mode */
725 	if (sh_eth_my_cpu_data.select_mii)
726 		sh_eth_select_mii(ndev);
727 out:
728 	return ret;
729 }
730 
731 static void sh_eth_reset_hw_crc(struct net_device *ndev)
732 {
733 	if (sh_eth_my_cpu_data.hw_crc)
734 		sh_eth_write(ndev, 0x0, CSMR);
735 }
736 
737 #elif defined(CONFIG_ARCH_R8A7740)
738 #define SH_ETH_HAS_TSU	1
739 static int sh_eth_check_reset(struct net_device *ndev);
740 
741 static void sh_eth_chip_reset(struct net_device *ndev)
742 {
743 	struct sh_eth_private *mdp = netdev_priv(ndev);
744 
745 	/* reset device */
746 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
747 	mdelay(1);
748 
749 	sh_eth_select_mii(ndev);
750 }
751 
752 static int sh_eth_reset(struct net_device *ndev)
753 {
754 	int ret = 0;
755 
756 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
757 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
758 
759 	ret = sh_eth_check_reset(ndev);
760 	if (ret)
761 		goto out;
762 
763 	/* Table Init */
764 	sh_eth_write(ndev, 0x0, TDLAR);
765 	sh_eth_write(ndev, 0x0, TDFAR);
766 	sh_eth_write(ndev, 0x0, TDFXR);
767 	sh_eth_write(ndev, 0x0, TDFFR);
768 	sh_eth_write(ndev, 0x0, RDLAR);
769 	sh_eth_write(ndev, 0x0, RDFAR);
770 	sh_eth_write(ndev, 0x0, RDFXR);
771 	sh_eth_write(ndev, 0x0, RDFFR);
772 
773 out:
774 	return ret;
775 }
776 
777 static void sh_eth_set_duplex(struct net_device *ndev)
778 {
779 	struct sh_eth_private *mdp = netdev_priv(ndev);
780 
781 	if (mdp->duplex) /* Full */
782 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
783 	else		/* Half */
784 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
785 }
786 
787 static void sh_eth_set_rate(struct net_device *ndev)
788 {
789 	struct sh_eth_private *mdp = netdev_priv(ndev);
790 
791 	switch (mdp->speed) {
792 	case 10: /* 10BASE */
793 		sh_eth_write(ndev, GECMR_10, GECMR);
794 		break;
795 	case 100:/* 100BASE */
796 		sh_eth_write(ndev, GECMR_100, GECMR);
797 		break;
798 	case 1000: /* 1000BASE */
799 		sh_eth_write(ndev, GECMR_1000, GECMR);
800 		break;
801 	default:
802 		break;
803 	}
804 }
805 
806 /* R8A7740 */
807 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
808 	.chip_reset	= sh_eth_chip_reset,
809 	.set_duplex	= sh_eth_set_duplex,
810 	.set_rate	= sh_eth_set_rate,
811 
812 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
813 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
814 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
815 
816 	.tx_check	= EESR_TC1 | EESR_FTC,
817 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
818 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
819 			  EESR_TDE | EESR_ECI,
820 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
821 			  EESR_TFE,
822 
823 	.apr		= 1,
824 	.mpr		= 1,
825 	.tpauser	= 1,
826 	.bculr		= 1,
827 	.hw_swap	= 1,
828 	.no_trimd	= 1,
829 	.no_ade		= 1,
830 	.tsu		= 1,
831 	.select_mii	= 1,
832 };
833 
834 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
835 #define SH_ETH_RESET_DEFAULT	1
836 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
837 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
838 
839 	.apr		= 1,
840 	.mpr		= 1,
841 	.tpauser	= 1,
842 	.hw_swap	= 1,
843 };
844 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
845 #define SH_ETH_RESET_DEFAULT	1
846 #define SH_ETH_HAS_TSU	1
847 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
848 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
849 	.tsu		= 1,
850 };
851 #endif
852 
853 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
854 {
855 	if (!cd->ecsr_value)
856 		cd->ecsr_value = DEFAULT_ECSR_INIT;
857 
858 	if (!cd->ecsipr_value)
859 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
860 
861 	if (!cd->fcftr_value)
862 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
863 				  DEFAULT_FIFO_F_D_RFD;
864 
865 	if (!cd->fdr_value)
866 		cd->fdr_value = DEFAULT_FDR_INIT;
867 
868 	if (!cd->rmcr_value)
869 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
870 
871 	if (!cd->tx_check)
872 		cd->tx_check = DEFAULT_TX_CHECK;
873 
874 	if (!cd->eesr_err_check)
875 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
876 
877 	if (!cd->tx_error_check)
878 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
879 }
880 
881 #if defined(SH_ETH_RESET_DEFAULT)
882 /* Chip Reset */
883 static int  sh_eth_reset(struct net_device *ndev)
884 {
885 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
886 	mdelay(3);
887 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
888 
889 	return 0;
890 }
891 #else
892 static int sh_eth_check_reset(struct net_device *ndev)
893 {
894 	int ret = 0;
895 	int cnt = 100;
896 
897 	while (cnt > 0) {
898 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
899 			break;
900 		mdelay(1);
901 		cnt--;
902 	}
903 	if (cnt <= 0) {
904 		pr_err("Device reset failed\n");
905 		ret = -ETIMEDOUT;
906 	}
907 	return ret;
908 }
909 #endif
910 
911 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
912 static void sh_eth_set_receive_align(struct sk_buff *skb)
913 {
914 	int reserve;
915 
916 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
917 	if (reserve)
918 		skb_reserve(skb, reserve);
919 }
920 #else
921 static void sh_eth_set_receive_align(struct sk_buff *skb)
922 {
923 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
924 }
925 #endif
926 
927 
928 /* CPU <-> EDMAC endian convert */
929 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
930 {
931 	switch (mdp->edmac_endian) {
932 	case EDMAC_LITTLE_ENDIAN:
933 		return cpu_to_le32(x);
934 	case EDMAC_BIG_ENDIAN:
935 		return cpu_to_be32(x);
936 	}
937 	return x;
938 }
939 
940 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
941 {
942 	switch (mdp->edmac_endian) {
943 	case EDMAC_LITTLE_ENDIAN:
944 		return le32_to_cpu(x);
945 	case EDMAC_BIG_ENDIAN:
946 		return be32_to_cpu(x);
947 	}
948 	return x;
949 }
950 
951 /*
952  * Program the hardware MAC address from dev->dev_addr.
953  */
954 static void update_mac_address(struct net_device *ndev)
955 {
956 	sh_eth_write(ndev,
957 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
958 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
959 	sh_eth_write(ndev,
960 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
961 }
962 
963 /*
964  * Get MAC address from SuperH MAC address register
965  *
966  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
967  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
968  * When you want use this device, you must set MAC address in bootloader.
969  *
970  */
971 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
972 {
973 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
974 		memcpy(ndev->dev_addr, mac, 6);
975 	} else {
976 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
977 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
978 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
979 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
980 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
981 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
982 	}
983 }
984 
985 static int sh_eth_is_gether(struct sh_eth_private *mdp)
986 {
987 	if (mdp->reg_offset == sh_eth_offset_gigabit)
988 		return 1;
989 	else
990 		return 0;
991 }
992 
993 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
994 {
995 	if (sh_eth_is_gether(mdp))
996 		return EDTRR_TRNS_GETHER;
997 	else
998 		return EDTRR_TRNS_ETHER;
999 }
1000 
1001 struct bb_info {
1002 	void (*set_gate)(void *addr);
1003 	struct mdiobb_ctrl ctrl;
1004 	void *addr;
1005 	u32 mmd_msk;/* MMD */
1006 	u32 mdo_msk;
1007 	u32 mdi_msk;
1008 	u32 mdc_msk;
1009 };
1010 
1011 /* PHY bit set */
1012 static void bb_set(void *addr, u32 msk)
1013 {
1014 	iowrite32(ioread32(addr) | msk, addr);
1015 }
1016 
1017 /* PHY bit clear */
1018 static void bb_clr(void *addr, u32 msk)
1019 {
1020 	iowrite32((ioread32(addr) & ~msk), addr);
1021 }
1022 
1023 /* PHY bit read */
1024 static int bb_read(void *addr, u32 msk)
1025 {
1026 	return (ioread32(addr) & msk) != 0;
1027 }
1028 
1029 /* Data I/O pin control */
1030 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1031 {
1032 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1033 
1034 	if (bitbang->set_gate)
1035 		bitbang->set_gate(bitbang->addr);
1036 
1037 	if (bit)
1038 		bb_set(bitbang->addr, bitbang->mmd_msk);
1039 	else
1040 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1041 }
1042 
1043 /* Set bit data*/
1044 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1045 {
1046 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1047 
1048 	if (bitbang->set_gate)
1049 		bitbang->set_gate(bitbang->addr);
1050 
1051 	if (bit)
1052 		bb_set(bitbang->addr, bitbang->mdo_msk);
1053 	else
1054 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1055 }
1056 
1057 /* Get bit data*/
1058 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1059 {
1060 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1061 
1062 	if (bitbang->set_gate)
1063 		bitbang->set_gate(bitbang->addr);
1064 
1065 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1066 }
1067 
1068 /* MDC pin control */
1069 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1070 {
1071 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1072 
1073 	if (bitbang->set_gate)
1074 		bitbang->set_gate(bitbang->addr);
1075 
1076 	if (bit)
1077 		bb_set(bitbang->addr, bitbang->mdc_msk);
1078 	else
1079 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1080 }
1081 
1082 /* mdio bus control struct */
1083 static struct mdiobb_ops bb_ops = {
1084 	.owner = THIS_MODULE,
1085 	.set_mdc = sh_mdc_ctrl,
1086 	.set_mdio_dir = sh_mmd_ctrl,
1087 	.set_mdio_data = sh_set_mdio,
1088 	.get_mdio_data = sh_get_mdio,
1089 };
1090 
1091 /* free skb and descriptor buffer */
1092 static void sh_eth_ring_free(struct net_device *ndev)
1093 {
1094 	struct sh_eth_private *mdp = netdev_priv(ndev);
1095 	int i;
1096 
1097 	/* Free Rx skb ringbuffer */
1098 	if (mdp->rx_skbuff) {
1099 		for (i = 0; i < mdp->num_rx_ring; i++) {
1100 			if (mdp->rx_skbuff[i])
1101 				dev_kfree_skb(mdp->rx_skbuff[i]);
1102 		}
1103 	}
1104 	kfree(mdp->rx_skbuff);
1105 	mdp->rx_skbuff = NULL;
1106 
1107 	/* Free Tx skb ringbuffer */
1108 	if (mdp->tx_skbuff) {
1109 		for (i = 0; i < mdp->num_tx_ring; i++) {
1110 			if (mdp->tx_skbuff[i])
1111 				dev_kfree_skb(mdp->tx_skbuff[i]);
1112 		}
1113 	}
1114 	kfree(mdp->tx_skbuff);
1115 	mdp->tx_skbuff = NULL;
1116 }
1117 
1118 /* format skb and descriptor buffer */
1119 static void sh_eth_ring_format(struct net_device *ndev)
1120 {
1121 	struct sh_eth_private *mdp = netdev_priv(ndev);
1122 	int i;
1123 	struct sk_buff *skb;
1124 	struct sh_eth_rxdesc *rxdesc = NULL;
1125 	struct sh_eth_txdesc *txdesc = NULL;
1126 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1127 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1128 
1129 	mdp->cur_rx = mdp->cur_tx = 0;
1130 	mdp->dirty_rx = mdp->dirty_tx = 0;
1131 
1132 	memset(mdp->rx_ring, 0, rx_ringsize);
1133 
1134 	/* build Rx ring buffer */
1135 	for (i = 0; i < mdp->num_rx_ring; i++) {
1136 		/* skb */
1137 		mdp->rx_skbuff[i] = NULL;
1138 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1139 		mdp->rx_skbuff[i] = skb;
1140 		if (skb == NULL)
1141 			break;
1142 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1143 				DMA_FROM_DEVICE);
1144 		sh_eth_set_receive_align(skb);
1145 
1146 		/* RX descriptor */
1147 		rxdesc = &mdp->rx_ring[i];
1148 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1149 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1150 
1151 		/* The size of the buffer is 16 byte boundary. */
1152 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1153 		/* Rx descriptor address set */
1154 		if (i == 0) {
1155 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1156 			if (sh_eth_is_gether(mdp))
1157 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1158 		}
1159 	}
1160 
1161 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1162 
1163 	/* Mark the last entry as wrapping the ring. */
1164 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1165 
1166 	memset(mdp->tx_ring, 0, tx_ringsize);
1167 
1168 	/* build Tx ring buffer */
1169 	for (i = 0; i < mdp->num_tx_ring; i++) {
1170 		mdp->tx_skbuff[i] = NULL;
1171 		txdesc = &mdp->tx_ring[i];
1172 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1173 		txdesc->buffer_length = 0;
1174 		if (i == 0) {
1175 			/* Tx descriptor address set */
1176 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1177 			if (sh_eth_is_gether(mdp))
1178 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1179 		}
1180 	}
1181 
1182 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1183 }
1184 
1185 /* Get skb and descriptor buffer */
1186 static int sh_eth_ring_init(struct net_device *ndev)
1187 {
1188 	struct sh_eth_private *mdp = netdev_priv(ndev);
1189 	int rx_ringsize, tx_ringsize, ret = 0;
1190 
1191 	/*
1192 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1193 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1194 	 * the first 2 bytes, and +16 gets room for the status word from the
1195 	 * card.
1196 	 */
1197 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1198 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1199 	if (mdp->cd->rpadir)
1200 		mdp->rx_buf_sz += NET_IP_ALIGN;
1201 
1202 	/* Allocate RX and TX skb rings */
1203 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1204 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1205 	if (!mdp->rx_skbuff) {
1206 		ret = -ENOMEM;
1207 		return ret;
1208 	}
1209 
1210 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1211 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1212 	if (!mdp->tx_skbuff) {
1213 		ret = -ENOMEM;
1214 		goto skb_ring_free;
1215 	}
1216 
1217 	/* Allocate all Rx descriptors. */
1218 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1219 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1220 					  GFP_KERNEL);
1221 	if (!mdp->rx_ring) {
1222 		ret = -ENOMEM;
1223 		goto desc_ring_free;
1224 	}
1225 
1226 	mdp->dirty_rx = 0;
1227 
1228 	/* Allocate all Tx descriptors. */
1229 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1230 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1231 					  GFP_KERNEL);
1232 	if (!mdp->tx_ring) {
1233 		ret = -ENOMEM;
1234 		goto desc_ring_free;
1235 	}
1236 	return ret;
1237 
1238 desc_ring_free:
1239 	/* free DMA buffer */
1240 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1241 
1242 skb_ring_free:
1243 	/* Free Rx and Tx skb ring buffer */
1244 	sh_eth_ring_free(ndev);
1245 	mdp->tx_ring = NULL;
1246 	mdp->rx_ring = NULL;
1247 
1248 	return ret;
1249 }
1250 
1251 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1252 {
1253 	int ringsize;
1254 
1255 	if (mdp->rx_ring) {
1256 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1257 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1258 				  mdp->rx_desc_dma);
1259 		mdp->rx_ring = NULL;
1260 	}
1261 
1262 	if (mdp->tx_ring) {
1263 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1264 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1265 				  mdp->tx_desc_dma);
1266 		mdp->tx_ring = NULL;
1267 	}
1268 }
1269 
1270 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1271 {
1272 	int ret = 0;
1273 	struct sh_eth_private *mdp = netdev_priv(ndev);
1274 	u32 val;
1275 
1276 	/* Soft Reset */
1277 	ret = sh_eth_reset(ndev);
1278 	if (ret)
1279 		goto out;
1280 
1281 	/* Descriptor format */
1282 	sh_eth_ring_format(ndev);
1283 	if (mdp->cd->rpadir)
1284 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1285 
1286 	/* all sh_eth int mask */
1287 	sh_eth_write(ndev, 0, EESIPR);
1288 
1289 #if defined(__LITTLE_ENDIAN)
1290 	if (mdp->cd->hw_swap)
1291 		sh_eth_write(ndev, EDMR_EL, EDMR);
1292 	else
1293 #endif
1294 		sh_eth_write(ndev, 0, EDMR);
1295 
1296 	/* FIFO size set */
1297 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1298 	sh_eth_write(ndev, 0, TFTR);
1299 
1300 	/* Frame recv control */
1301 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1302 
1303 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1304 
1305 	if (mdp->cd->bculr)
1306 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1307 
1308 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1309 
1310 	if (!mdp->cd->no_trimd)
1311 		sh_eth_write(ndev, 0, TRIMD);
1312 
1313 	/* Recv frame limit set register */
1314 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1315 		     RFLR);
1316 
1317 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1318 	if (start)
1319 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1320 
1321 	/* PAUSE Prohibition */
1322 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1323 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1324 
1325 	sh_eth_write(ndev, val, ECMR);
1326 
1327 	if (mdp->cd->set_rate)
1328 		mdp->cd->set_rate(ndev);
1329 
1330 	/* E-MAC Status Register clear */
1331 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1332 
1333 	/* E-MAC Interrupt Enable register */
1334 	if (start)
1335 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1336 
1337 	/* Set MAC address */
1338 	update_mac_address(ndev);
1339 
1340 	/* mask reset */
1341 	if (mdp->cd->apr)
1342 		sh_eth_write(ndev, APR_AP, APR);
1343 	if (mdp->cd->mpr)
1344 		sh_eth_write(ndev, MPR_MP, MPR);
1345 	if (mdp->cd->tpauser)
1346 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1347 
1348 	if (start) {
1349 		/* Setting the Rx mode will start the Rx process. */
1350 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1351 
1352 		netif_start_queue(ndev);
1353 	}
1354 
1355 out:
1356 	return ret;
1357 }
1358 
1359 /* free Tx skb function */
1360 static int sh_eth_txfree(struct net_device *ndev)
1361 {
1362 	struct sh_eth_private *mdp = netdev_priv(ndev);
1363 	struct sh_eth_txdesc *txdesc;
1364 	int freeNum = 0;
1365 	int entry = 0;
1366 
1367 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1368 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1369 		txdesc = &mdp->tx_ring[entry];
1370 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1371 			break;
1372 		/* Free the original skb. */
1373 		if (mdp->tx_skbuff[entry]) {
1374 			dma_unmap_single(&ndev->dev, txdesc->addr,
1375 					 txdesc->buffer_length, DMA_TO_DEVICE);
1376 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1377 			mdp->tx_skbuff[entry] = NULL;
1378 			freeNum++;
1379 		}
1380 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1381 		if (entry >= mdp->num_tx_ring - 1)
1382 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1383 
1384 		ndev->stats.tx_packets++;
1385 		ndev->stats.tx_bytes += txdesc->buffer_length;
1386 	}
1387 	return freeNum;
1388 }
1389 
1390 /* Packet receive function */
1391 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1392 {
1393 	struct sh_eth_private *mdp = netdev_priv(ndev);
1394 	struct sh_eth_rxdesc *rxdesc;
1395 
1396 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1397 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1398 	struct sk_buff *skb;
1399 	u16 pkt_len = 0;
1400 	u32 desc_status;
1401 
1402 	rxdesc = &mdp->rx_ring[entry];
1403 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1404 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1405 		pkt_len = rxdesc->frame_length;
1406 
1407 		if (--boguscnt < 0)
1408 			break;
1409 
1410 		if (!(desc_status & RDFEND))
1411 			ndev->stats.rx_length_errors++;
1412 
1413 #if defined(CONFIG_ARCH_R8A7740)
1414 		/*
1415 		 * In case of almost all GETHER/ETHERs, the Receive Frame State
1416 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1417 		 * bit 0. However, in case of the R8A7740's GETHER, the RFS
1418 		 * bits are from bit 25 to bit 16. So, the driver needs right
1419 		 * shifting by 16.
1420 		 */
1421 		desc_status >>= 16;
1422 #endif
1423 
1424 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1425 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1426 			ndev->stats.rx_errors++;
1427 			if (desc_status & RD_RFS1)
1428 				ndev->stats.rx_crc_errors++;
1429 			if (desc_status & RD_RFS2)
1430 				ndev->stats.rx_frame_errors++;
1431 			if (desc_status & RD_RFS3)
1432 				ndev->stats.rx_length_errors++;
1433 			if (desc_status & RD_RFS4)
1434 				ndev->stats.rx_length_errors++;
1435 			if (desc_status & RD_RFS6)
1436 				ndev->stats.rx_missed_errors++;
1437 			if (desc_status & RD_RFS10)
1438 				ndev->stats.rx_over_errors++;
1439 		} else {
1440 			if (!mdp->cd->hw_swap)
1441 				sh_eth_soft_swap(
1442 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1443 					pkt_len + 2);
1444 			skb = mdp->rx_skbuff[entry];
1445 			mdp->rx_skbuff[entry] = NULL;
1446 			if (mdp->cd->rpadir)
1447 				skb_reserve(skb, NET_IP_ALIGN);
1448 			skb_put(skb, pkt_len);
1449 			skb->protocol = eth_type_trans(skb, ndev);
1450 			netif_rx(skb);
1451 			ndev->stats.rx_packets++;
1452 			ndev->stats.rx_bytes += pkt_len;
1453 		}
1454 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1455 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1456 		rxdesc = &mdp->rx_ring[entry];
1457 	}
1458 
1459 	/* Refill the Rx ring buffers. */
1460 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1461 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1462 		rxdesc = &mdp->rx_ring[entry];
1463 		/* The size of the buffer is 16 byte boundary. */
1464 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1465 
1466 		if (mdp->rx_skbuff[entry] == NULL) {
1467 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1468 			mdp->rx_skbuff[entry] = skb;
1469 			if (skb == NULL)
1470 				break;	/* Better luck next round. */
1471 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1472 					DMA_FROM_DEVICE);
1473 			sh_eth_set_receive_align(skb);
1474 
1475 			skb_checksum_none_assert(skb);
1476 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1477 		}
1478 		if (entry >= mdp->num_rx_ring - 1)
1479 			rxdesc->status |=
1480 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1481 		else
1482 			rxdesc->status |=
1483 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1484 	}
1485 
1486 	/* Restart Rx engine if stopped. */
1487 	/* If we don't need to check status, don't. -KDU */
1488 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1489 		/* fix the values for the next receiving if RDE is set */
1490 		if (intr_status & EESR_RDE)
1491 			mdp->cur_rx = mdp->dirty_rx =
1492 				(sh_eth_read(ndev, RDFAR) -
1493 				 sh_eth_read(ndev, RDLAR)) >> 4;
1494 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1501 {
1502 	/* disable tx and rx */
1503 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1504 		~(ECMR_RE | ECMR_TE), ECMR);
1505 }
1506 
1507 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1508 {
1509 	/* enable tx and rx */
1510 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1511 		(ECMR_RE | ECMR_TE), ECMR);
1512 }
1513 
1514 /* error control function */
1515 static void sh_eth_error(struct net_device *ndev, int intr_status)
1516 {
1517 	struct sh_eth_private *mdp = netdev_priv(ndev);
1518 	u32 felic_stat;
1519 	u32 link_stat;
1520 	u32 mask;
1521 
1522 	if (intr_status & EESR_ECI) {
1523 		felic_stat = sh_eth_read(ndev, ECSR);
1524 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1525 		if (felic_stat & ECSR_ICD)
1526 			ndev->stats.tx_carrier_errors++;
1527 		if (felic_stat & ECSR_LCHNG) {
1528 			/* Link Changed */
1529 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1530 				goto ignore_link;
1531 			} else {
1532 				link_stat = (sh_eth_read(ndev, PSR));
1533 				if (mdp->ether_link_active_low)
1534 					link_stat = ~link_stat;
1535 			}
1536 			if (!(link_stat & PHY_ST_LINK))
1537 				sh_eth_rcv_snd_disable(ndev);
1538 			else {
1539 				/* Link Up */
1540 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1541 					  ~DMAC_M_ECI, EESIPR);
1542 				/*clear int */
1543 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1544 					  ECSR);
1545 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1546 					  DMAC_M_ECI, EESIPR);
1547 				/* enable tx and rx */
1548 				sh_eth_rcv_snd_enable(ndev);
1549 			}
1550 		}
1551 	}
1552 
1553 ignore_link:
1554 	if (intr_status & EESR_TWB) {
1555 		/* Unused write back interrupt */
1556 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1557 			ndev->stats.tx_aborted_errors++;
1558 			if (netif_msg_tx_err(mdp))
1559 				dev_err(&ndev->dev, "Transmit Abort\n");
1560 		}
1561 	}
1562 
1563 	if (intr_status & EESR_RABT) {
1564 		/* Receive Abort int */
1565 		if (intr_status & EESR_RFRMER) {
1566 			/* Receive Frame Overflow int */
1567 			ndev->stats.rx_frame_errors++;
1568 			if (netif_msg_rx_err(mdp))
1569 				dev_err(&ndev->dev, "Receive Abort\n");
1570 		}
1571 	}
1572 
1573 	if (intr_status & EESR_TDE) {
1574 		/* Transmit Descriptor Empty int */
1575 		ndev->stats.tx_fifo_errors++;
1576 		if (netif_msg_tx_err(mdp))
1577 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1578 	}
1579 
1580 	if (intr_status & EESR_TFE) {
1581 		/* FIFO under flow */
1582 		ndev->stats.tx_fifo_errors++;
1583 		if (netif_msg_tx_err(mdp))
1584 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1585 	}
1586 
1587 	if (intr_status & EESR_RDE) {
1588 		/* Receive Descriptor Empty int */
1589 		ndev->stats.rx_over_errors++;
1590 
1591 		if (netif_msg_rx_err(mdp))
1592 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1593 	}
1594 
1595 	if (intr_status & EESR_RFE) {
1596 		/* Receive FIFO Overflow int */
1597 		ndev->stats.rx_fifo_errors++;
1598 		if (netif_msg_rx_err(mdp))
1599 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1600 	}
1601 
1602 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1603 		/* Address Error */
1604 		ndev->stats.tx_fifo_errors++;
1605 		if (netif_msg_tx_err(mdp))
1606 			dev_err(&ndev->dev, "Address Error\n");
1607 	}
1608 
1609 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1610 	if (mdp->cd->no_ade)
1611 		mask &= ~EESR_ADE;
1612 	if (intr_status & mask) {
1613 		/* Tx error */
1614 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1615 		/* dmesg */
1616 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1617 				intr_status, mdp->cur_tx);
1618 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1619 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1620 		/* dirty buffer free */
1621 		sh_eth_txfree(ndev);
1622 
1623 		/* SH7712 BUG */
1624 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1625 			/* tx dma start */
1626 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1627 		}
1628 		/* wakeup */
1629 		netif_wake_queue(ndev);
1630 	}
1631 }
1632 
1633 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1634 {
1635 	struct net_device *ndev = netdev;
1636 	struct sh_eth_private *mdp = netdev_priv(ndev);
1637 	struct sh_eth_cpu_data *cd = mdp->cd;
1638 	irqreturn_t ret = IRQ_NONE;
1639 	unsigned long intr_status;
1640 
1641 	spin_lock(&mdp->lock);
1642 
1643 	/* Get interrupt status */
1644 	intr_status = sh_eth_read(ndev, EESR);
1645 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1646 	 * enabled since it's the one that  comes thru regardless of the mask,
1647 	 * and we need to fully handle it in sh_eth_error() in order to quench
1648 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1649 	 */
1650 	intr_status &= sh_eth_read(ndev, EESIPR) | DMAC_M_ECI;
1651 	/* Clear interrupt */
1652 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1653 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1654 			cd->tx_check | cd->eesr_err_check)) {
1655 		sh_eth_write(ndev, intr_status, EESR);
1656 		ret = IRQ_HANDLED;
1657 	} else
1658 		goto other_irq;
1659 
1660 	if (intr_status & (EESR_FRC | /* Frame recv*/
1661 			EESR_RMAF | /* Multi cast address recv*/
1662 			EESR_RRF  | /* Bit frame recv */
1663 			EESR_RTLF | /* Long frame recv*/
1664 			EESR_RTSF | /* short frame recv */
1665 			EESR_PRE  | /* PHY-LSI recv error */
1666 			EESR_CERF)){ /* recv frame CRC error */
1667 		sh_eth_rx(ndev, intr_status);
1668 	}
1669 
1670 	/* Tx Check */
1671 	if (intr_status & cd->tx_check) {
1672 		sh_eth_txfree(ndev);
1673 		netif_wake_queue(ndev);
1674 	}
1675 
1676 	if (intr_status & cd->eesr_err_check)
1677 		sh_eth_error(ndev, intr_status);
1678 
1679 other_irq:
1680 	spin_unlock(&mdp->lock);
1681 
1682 	return ret;
1683 }
1684 
1685 /* PHY state control function */
1686 static void sh_eth_adjust_link(struct net_device *ndev)
1687 {
1688 	struct sh_eth_private *mdp = netdev_priv(ndev);
1689 	struct phy_device *phydev = mdp->phydev;
1690 	int new_state = 0;
1691 
1692 	if (phydev->link) {
1693 		if (phydev->duplex != mdp->duplex) {
1694 			new_state = 1;
1695 			mdp->duplex = phydev->duplex;
1696 			if (mdp->cd->set_duplex)
1697 				mdp->cd->set_duplex(ndev);
1698 		}
1699 
1700 		if (phydev->speed != mdp->speed) {
1701 			new_state = 1;
1702 			mdp->speed = phydev->speed;
1703 			if (mdp->cd->set_rate)
1704 				mdp->cd->set_rate(ndev);
1705 		}
1706 		if (!mdp->link) {
1707 			sh_eth_write(ndev,
1708 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1709 			new_state = 1;
1710 			mdp->link = phydev->link;
1711 			if (mdp->cd->no_psr || mdp->no_ether_link)
1712 				sh_eth_rcv_snd_enable(ndev);
1713 		}
1714 	} else if (mdp->link) {
1715 		new_state = 1;
1716 		mdp->link = 0;
1717 		mdp->speed = 0;
1718 		mdp->duplex = -1;
1719 		if (mdp->cd->no_psr || mdp->no_ether_link)
1720 			sh_eth_rcv_snd_disable(ndev);
1721 	}
1722 
1723 	if (new_state && netif_msg_link(mdp))
1724 		phy_print_status(phydev);
1725 }
1726 
1727 /* PHY init function */
1728 static int sh_eth_phy_init(struct net_device *ndev)
1729 {
1730 	struct sh_eth_private *mdp = netdev_priv(ndev);
1731 	char phy_id[MII_BUS_ID_SIZE + 3];
1732 	struct phy_device *phydev = NULL;
1733 
1734 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1735 		mdp->mii_bus->id , mdp->phy_id);
1736 
1737 	mdp->link = 0;
1738 	mdp->speed = 0;
1739 	mdp->duplex = -1;
1740 
1741 	/* Try connect to PHY */
1742 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1743 			     mdp->phy_interface);
1744 	if (IS_ERR(phydev)) {
1745 		dev_err(&ndev->dev, "phy_connect failed\n");
1746 		return PTR_ERR(phydev);
1747 	}
1748 
1749 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1750 		phydev->addr, phydev->drv->name);
1751 
1752 	mdp->phydev = phydev;
1753 
1754 	return 0;
1755 }
1756 
1757 /* PHY control start function */
1758 static int sh_eth_phy_start(struct net_device *ndev)
1759 {
1760 	struct sh_eth_private *mdp = netdev_priv(ndev);
1761 	int ret;
1762 
1763 	ret = sh_eth_phy_init(ndev);
1764 	if (ret)
1765 		return ret;
1766 
1767 	/* reset phy - this also wakes it from PDOWN */
1768 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1769 	phy_start(mdp->phydev);
1770 
1771 	return 0;
1772 }
1773 
1774 static int sh_eth_get_settings(struct net_device *ndev,
1775 			struct ethtool_cmd *ecmd)
1776 {
1777 	struct sh_eth_private *mdp = netdev_priv(ndev);
1778 	unsigned long flags;
1779 	int ret;
1780 
1781 	spin_lock_irqsave(&mdp->lock, flags);
1782 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1783 	spin_unlock_irqrestore(&mdp->lock, flags);
1784 
1785 	return ret;
1786 }
1787 
1788 static int sh_eth_set_settings(struct net_device *ndev,
1789 		struct ethtool_cmd *ecmd)
1790 {
1791 	struct sh_eth_private *mdp = netdev_priv(ndev);
1792 	unsigned long flags;
1793 	int ret;
1794 
1795 	spin_lock_irqsave(&mdp->lock, flags);
1796 
1797 	/* disable tx and rx */
1798 	sh_eth_rcv_snd_disable(ndev);
1799 
1800 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1801 	if (ret)
1802 		goto error_exit;
1803 
1804 	if (ecmd->duplex == DUPLEX_FULL)
1805 		mdp->duplex = 1;
1806 	else
1807 		mdp->duplex = 0;
1808 
1809 	if (mdp->cd->set_duplex)
1810 		mdp->cd->set_duplex(ndev);
1811 
1812 error_exit:
1813 	mdelay(1);
1814 
1815 	/* enable tx and rx */
1816 	sh_eth_rcv_snd_enable(ndev);
1817 
1818 	spin_unlock_irqrestore(&mdp->lock, flags);
1819 
1820 	return ret;
1821 }
1822 
1823 static int sh_eth_nway_reset(struct net_device *ndev)
1824 {
1825 	struct sh_eth_private *mdp = netdev_priv(ndev);
1826 	unsigned long flags;
1827 	int ret;
1828 
1829 	spin_lock_irqsave(&mdp->lock, flags);
1830 	ret = phy_start_aneg(mdp->phydev);
1831 	spin_unlock_irqrestore(&mdp->lock, flags);
1832 
1833 	return ret;
1834 }
1835 
1836 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1837 {
1838 	struct sh_eth_private *mdp = netdev_priv(ndev);
1839 	return mdp->msg_enable;
1840 }
1841 
1842 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1843 {
1844 	struct sh_eth_private *mdp = netdev_priv(ndev);
1845 	mdp->msg_enable = value;
1846 }
1847 
1848 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1849 	"rx_current", "tx_current",
1850 	"rx_dirty", "tx_dirty",
1851 };
1852 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1853 
1854 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1855 {
1856 	switch (sset) {
1857 	case ETH_SS_STATS:
1858 		return SH_ETH_STATS_LEN;
1859 	default:
1860 		return -EOPNOTSUPP;
1861 	}
1862 }
1863 
1864 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1865 			struct ethtool_stats *stats, u64 *data)
1866 {
1867 	struct sh_eth_private *mdp = netdev_priv(ndev);
1868 	int i = 0;
1869 
1870 	/* device-specific stats */
1871 	data[i++] = mdp->cur_rx;
1872 	data[i++] = mdp->cur_tx;
1873 	data[i++] = mdp->dirty_rx;
1874 	data[i++] = mdp->dirty_tx;
1875 }
1876 
1877 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1878 {
1879 	switch (stringset) {
1880 	case ETH_SS_STATS:
1881 		memcpy(data, *sh_eth_gstrings_stats,
1882 					sizeof(sh_eth_gstrings_stats));
1883 		break;
1884 	}
1885 }
1886 
1887 static void sh_eth_get_ringparam(struct net_device *ndev,
1888 				 struct ethtool_ringparam *ring)
1889 {
1890 	struct sh_eth_private *mdp = netdev_priv(ndev);
1891 
1892 	ring->rx_max_pending = RX_RING_MAX;
1893 	ring->tx_max_pending = TX_RING_MAX;
1894 	ring->rx_pending = mdp->num_rx_ring;
1895 	ring->tx_pending = mdp->num_tx_ring;
1896 }
1897 
1898 static int sh_eth_set_ringparam(struct net_device *ndev,
1899 				struct ethtool_ringparam *ring)
1900 {
1901 	struct sh_eth_private *mdp = netdev_priv(ndev);
1902 	int ret;
1903 
1904 	if (ring->tx_pending > TX_RING_MAX ||
1905 	    ring->rx_pending > RX_RING_MAX ||
1906 	    ring->tx_pending < TX_RING_MIN ||
1907 	    ring->rx_pending < RX_RING_MIN)
1908 		return -EINVAL;
1909 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1910 		return -EINVAL;
1911 
1912 	if (netif_running(ndev)) {
1913 		netif_tx_disable(ndev);
1914 		/* Disable interrupts by clearing the interrupt mask. */
1915 		sh_eth_write(ndev, 0x0000, EESIPR);
1916 		/* Stop the chip's Tx and Rx processes. */
1917 		sh_eth_write(ndev, 0, EDTRR);
1918 		sh_eth_write(ndev, 0, EDRRR);
1919 		synchronize_irq(ndev->irq);
1920 	}
1921 
1922 	/* Free all the skbuffs in the Rx queue. */
1923 	sh_eth_ring_free(ndev);
1924 	/* Free DMA buffer */
1925 	sh_eth_free_dma_buffer(mdp);
1926 
1927 	/* Set new parameters */
1928 	mdp->num_rx_ring = ring->rx_pending;
1929 	mdp->num_tx_ring = ring->tx_pending;
1930 
1931 	ret = sh_eth_ring_init(ndev);
1932 	if (ret < 0) {
1933 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1934 		return ret;
1935 	}
1936 	ret = sh_eth_dev_init(ndev, false);
1937 	if (ret < 0) {
1938 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1939 		return ret;
1940 	}
1941 
1942 	if (netif_running(ndev)) {
1943 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1944 		/* Setting the Rx mode will start the Rx process. */
1945 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1946 		netif_wake_queue(ndev);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static const struct ethtool_ops sh_eth_ethtool_ops = {
1953 	.get_settings	= sh_eth_get_settings,
1954 	.set_settings	= sh_eth_set_settings,
1955 	.nway_reset	= sh_eth_nway_reset,
1956 	.get_msglevel	= sh_eth_get_msglevel,
1957 	.set_msglevel	= sh_eth_set_msglevel,
1958 	.get_link	= ethtool_op_get_link,
1959 	.get_strings	= sh_eth_get_strings,
1960 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1961 	.get_sset_count     = sh_eth_get_sset_count,
1962 	.get_ringparam	= sh_eth_get_ringparam,
1963 	.set_ringparam	= sh_eth_set_ringparam,
1964 };
1965 
1966 /* network device open function */
1967 static int sh_eth_open(struct net_device *ndev)
1968 {
1969 	int ret = 0;
1970 	struct sh_eth_private *mdp = netdev_priv(ndev);
1971 
1972 	pm_runtime_get_sync(&mdp->pdev->dev);
1973 
1974 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1975 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1976 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1977 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1978 				IRQF_SHARED,
1979 #else
1980 				0,
1981 #endif
1982 				ndev->name, ndev);
1983 	if (ret) {
1984 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1985 		return ret;
1986 	}
1987 
1988 	/* Descriptor set */
1989 	ret = sh_eth_ring_init(ndev);
1990 	if (ret)
1991 		goto out_free_irq;
1992 
1993 	/* device init */
1994 	ret = sh_eth_dev_init(ndev, true);
1995 	if (ret)
1996 		goto out_free_irq;
1997 
1998 	/* PHY control start*/
1999 	ret = sh_eth_phy_start(ndev);
2000 	if (ret)
2001 		goto out_free_irq;
2002 
2003 	return ret;
2004 
2005 out_free_irq:
2006 	free_irq(ndev->irq, ndev);
2007 	pm_runtime_put_sync(&mdp->pdev->dev);
2008 	return ret;
2009 }
2010 
2011 /* Timeout function */
2012 static void sh_eth_tx_timeout(struct net_device *ndev)
2013 {
2014 	struct sh_eth_private *mdp = netdev_priv(ndev);
2015 	struct sh_eth_rxdesc *rxdesc;
2016 	int i;
2017 
2018 	netif_stop_queue(ndev);
2019 
2020 	if (netif_msg_timer(mdp))
2021 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
2022 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
2023 
2024 	/* tx_errors count up */
2025 	ndev->stats.tx_errors++;
2026 
2027 	/* Free all the skbuffs in the Rx queue. */
2028 	for (i = 0; i < mdp->num_rx_ring; i++) {
2029 		rxdesc = &mdp->rx_ring[i];
2030 		rxdesc->status = 0;
2031 		rxdesc->addr = 0xBADF00D0;
2032 		if (mdp->rx_skbuff[i])
2033 			dev_kfree_skb(mdp->rx_skbuff[i]);
2034 		mdp->rx_skbuff[i] = NULL;
2035 	}
2036 	for (i = 0; i < mdp->num_tx_ring; i++) {
2037 		if (mdp->tx_skbuff[i])
2038 			dev_kfree_skb(mdp->tx_skbuff[i]);
2039 		mdp->tx_skbuff[i] = NULL;
2040 	}
2041 
2042 	/* device init */
2043 	sh_eth_dev_init(ndev, true);
2044 }
2045 
2046 /* Packet transmit function */
2047 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2048 {
2049 	struct sh_eth_private *mdp = netdev_priv(ndev);
2050 	struct sh_eth_txdesc *txdesc;
2051 	u32 entry;
2052 	unsigned long flags;
2053 
2054 	spin_lock_irqsave(&mdp->lock, flags);
2055 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2056 		if (!sh_eth_txfree(ndev)) {
2057 			if (netif_msg_tx_queued(mdp))
2058 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
2059 			netif_stop_queue(ndev);
2060 			spin_unlock_irqrestore(&mdp->lock, flags);
2061 			return NETDEV_TX_BUSY;
2062 		}
2063 	}
2064 	spin_unlock_irqrestore(&mdp->lock, flags);
2065 
2066 	entry = mdp->cur_tx % mdp->num_tx_ring;
2067 	mdp->tx_skbuff[entry] = skb;
2068 	txdesc = &mdp->tx_ring[entry];
2069 	/* soft swap. */
2070 	if (!mdp->cd->hw_swap)
2071 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2072 				 skb->len + 2);
2073 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2074 				      DMA_TO_DEVICE);
2075 	if (skb->len < ETHERSMALL)
2076 		txdesc->buffer_length = ETHERSMALL;
2077 	else
2078 		txdesc->buffer_length = skb->len;
2079 
2080 	if (entry >= mdp->num_tx_ring - 1)
2081 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2082 	else
2083 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2084 
2085 	mdp->cur_tx++;
2086 
2087 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2088 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2089 
2090 	return NETDEV_TX_OK;
2091 }
2092 
2093 /* device close function */
2094 static int sh_eth_close(struct net_device *ndev)
2095 {
2096 	struct sh_eth_private *mdp = netdev_priv(ndev);
2097 
2098 	netif_stop_queue(ndev);
2099 
2100 	/* Disable interrupts by clearing the interrupt mask. */
2101 	sh_eth_write(ndev, 0x0000, EESIPR);
2102 
2103 	/* Stop the chip's Tx and Rx processes. */
2104 	sh_eth_write(ndev, 0, EDTRR);
2105 	sh_eth_write(ndev, 0, EDRRR);
2106 
2107 	/* PHY Disconnect */
2108 	if (mdp->phydev) {
2109 		phy_stop(mdp->phydev);
2110 		phy_disconnect(mdp->phydev);
2111 	}
2112 
2113 	free_irq(ndev->irq, ndev);
2114 
2115 	/* Free all the skbuffs in the Rx queue. */
2116 	sh_eth_ring_free(ndev);
2117 
2118 	/* free DMA buffer */
2119 	sh_eth_free_dma_buffer(mdp);
2120 
2121 	pm_runtime_put_sync(&mdp->pdev->dev);
2122 
2123 	return 0;
2124 }
2125 
2126 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2127 {
2128 	struct sh_eth_private *mdp = netdev_priv(ndev);
2129 
2130 	pm_runtime_get_sync(&mdp->pdev->dev);
2131 
2132 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2133 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2134 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2135 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2136 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2137 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2138 	if (sh_eth_is_gether(mdp)) {
2139 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2140 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2141 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2142 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2143 	} else {
2144 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2145 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2146 	}
2147 	pm_runtime_put_sync(&mdp->pdev->dev);
2148 
2149 	return &ndev->stats;
2150 }
2151 
2152 /* ioctl to device function */
2153 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2154 				int cmd)
2155 {
2156 	struct sh_eth_private *mdp = netdev_priv(ndev);
2157 	struct phy_device *phydev = mdp->phydev;
2158 
2159 	if (!netif_running(ndev))
2160 		return -EINVAL;
2161 
2162 	if (!phydev)
2163 		return -ENODEV;
2164 
2165 	return phy_mii_ioctl(phydev, rq, cmd);
2166 }
2167 
2168 #if defined(SH_ETH_HAS_TSU)
2169 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2170 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2171 					    int entry)
2172 {
2173 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2174 }
2175 
2176 static u32 sh_eth_tsu_get_post_mask(int entry)
2177 {
2178 	return 0x0f << (28 - ((entry % 8) * 4));
2179 }
2180 
2181 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2182 {
2183 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2184 }
2185 
2186 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2187 					     int entry)
2188 {
2189 	struct sh_eth_private *mdp = netdev_priv(ndev);
2190 	u32 tmp;
2191 	void *reg_offset;
2192 
2193 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2194 	tmp = ioread32(reg_offset);
2195 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2196 }
2197 
2198 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2199 					      int entry)
2200 {
2201 	struct sh_eth_private *mdp = netdev_priv(ndev);
2202 	u32 post_mask, ref_mask, tmp;
2203 	void *reg_offset;
2204 
2205 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2206 	post_mask = sh_eth_tsu_get_post_mask(entry);
2207 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2208 
2209 	tmp = ioread32(reg_offset);
2210 	iowrite32(tmp & ~post_mask, reg_offset);
2211 
2212 	/* If other port enables, the function returns "true" */
2213 	return tmp & ref_mask;
2214 }
2215 
2216 static int sh_eth_tsu_busy(struct net_device *ndev)
2217 {
2218 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2219 	struct sh_eth_private *mdp = netdev_priv(ndev);
2220 
2221 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2222 		udelay(10);
2223 		timeout--;
2224 		if (timeout <= 0) {
2225 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2226 			return -ETIMEDOUT;
2227 		}
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2234 				  const u8 *addr)
2235 {
2236 	u32 val;
2237 
2238 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2239 	iowrite32(val, reg);
2240 	if (sh_eth_tsu_busy(ndev) < 0)
2241 		return -EBUSY;
2242 
2243 	val = addr[4] << 8 | addr[5];
2244 	iowrite32(val, reg + 4);
2245 	if (sh_eth_tsu_busy(ndev) < 0)
2246 		return -EBUSY;
2247 
2248 	return 0;
2249 }
2250 
2251 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2252 {
2253 	u32 val;
2254 
2255 	val = ioread32(reg);
2256 	addr[0] = (val >> 24) & 0xff;
2257 	addr[1] = (val >> 16) & 0xff;
2258 	addr[2] = (val >> 8) & 0xff;
2259 	addr[3] = val & 0xff;
2260 	val = ioread32(reg + 4);
2261 	addr[4] = (val >> 8) & 0xff;
2262 	addr[5] = val & 0xff;
2263 }
2264 
2265 
2266 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2267 {
2268 	struct sh_eth_private *mdp = netdev_priv(ndev);
2269 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2270 	int i;
2271 	u8 c_addr[ETH_ALEN];
2272 
2273 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2274 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2275 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2276 			return i;
2277 	}
2278 
2279 	return -ENOENT;
2280 }
2281 
2282 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2283 {
2284 	u8 blank[ETH_ALEN];
2285 	int entry;
2286 
2287 	memset(blank, 0, sizeof(blank));
2288 	entry = sh_eth_tsu_find_entry(ndev, blank);
2289 	return (entry < 0) ? -ENOMEM : entry;
2290 }
2291 
2292 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2293 					      int entry)
2294 {
2295 	struct sh_eth_private *mdp = netdev_priv(ndev);
2296 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2297 	int ret;
2298 	u8 blank[ETH_ALEN];
2299 
2300 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2301 			 ~(1 << (31 - entry)), TSU_TEN);
2302 
2303 	memset(blank, 0, sizeof(blank));
2304 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2305 	if (ret < 0)
2306 		return ret;
2307 	return 0;
2308 }
2309 
2310 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2311 {
2312 	struct sh_eth_private *mdp = netdev_priv(ndev);
2313 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2314 	int i, ret;
2315 
2316 	if (!mdp->cd->tsu)
2317 		return 0;
2318 
2319 	i = sh_eth_tsu_find_entry(ndev, addr);
2320 	if (i < 0) {
2321 		/* No entry found, create one */
2322 		i = sh_eth_tsu_find_empty(ndev);
2323 		if (i < 0)
2324 			return -ENOMEM;
2325 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2326 		if (ret < 0)
2327 			return ret;
2328 
2329 		/* Enable the entry */
2330 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2331 				 (1 << (31 - i)), TSU_TEN);
2332 	}
2333 
2334 	/* Entry found or created, enable POST */
2335 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2336 
2337 	return 0;
2338 }
2339 
2340 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2341 {
2342 	struct sh_eth_private *mdp = netdev_priv(ndev);
2343 	int i, ret;
2344 
2345 	if (!mdp->cd->tsu)
2346 		return 0;
2347 
2348 	i = sh_eth_tsu_find_entry(ndev, addr);
2349 	if (i) {
2350 		/* Entry found */
2351 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2352 			goto done;
2353 
2354 		/* Disable the entry if both ports was disabled */
2355 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2356 		if (ret < 0)
2357 			return ret;
2358 	}
2359 done:
2360 	return 0;
2361 }
2362 
2363 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2364 {
2365 	struct sh_eth_private *mdp = netdev_priv(ndev);
2366 	int i, ret;
2367 
2368 	if (unlikely(!mdp->cd->tsu))
2369 		return 0;
2370 
2371 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2372 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2373 			continue;
2374 
2375 		/* Disable the entry if both ports was disabled */
2376 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2377 		if (ret < 0)
2378 			return ret;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2385 {
2386 	struct sh_eth_private *mdp = netdev_priv(ndev);
2387 	u8 addr[ETH_ALEN];
2388 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2389 	int i;
2390 
2391 	if (unlikely(!mdp->cd->tsu))
2392 		return;
2393 
2394 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2395 		sh_eth_tsu_read_entry(reg_offset, addr);
2396 		if (is_multicast_ether_addr(addr))
2397 			sh_eth_tsu_del_entry(ndev, addr);
2398 	}
2399 }
2400 
2401 /* Multicast reception directions set */
2402 static void sh_eth_set_multicast_list(struct net_device *ndev)
2403 {
2404 	struct sh_eth_private *mdp = netdev_priv(ndev);
2405 	u32 ecmr_bits;
2406 	int mcast_all = 0;
2407 	unsigned long flags;
2408 
2409 	spin_lock_irqsave(&mdp->lock, flags);
2410 	/*
2411 	 * Initial condition is MCT = 1, PRM = 0.
2412 	 * Depending on ndev->flags, set PRM or clear MCT
2413 	 */
2414 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2415 
2416 	if (!(ndev->flags & IFF_MULTICAST)) {
2417 		sh_eth_tsu_purge_mcast(ndev);
2418 		mcast_all = 1;
2419 	}
2420 	if (ndev->flags & IFF_ALLMULTI) {
2421 		sh_eth_tsu_purge_mcast(ndev);
2422 		ecmr_bits &= ~ECMR_MCT;
2423 		mcast_all = 1;
2424 	}
2425 
2426 	if (ndev->flags & IFF_PROMISC) {
2427 		sh_eth_tsu_purge_all(ndev);
2428 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2429 	} else if (mdp->cd->tsu) {
2430 		struct netdev_hw_addr *ha;
2431 		netdev_for_each_mc_addr(ha, ndev) {
2432 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2433 				continue;
2434 
2435 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2436 				if (!mcast_all) {
2437 					sh_eth_tsu_purge_mcast(ndev);
2438 					ecmr_bits &= ~ECMR_MCT;
2439 					mcast_all = 1;
2440 				}
2441 			}
2442 		}
2443 	} else {
2444 		/* Normal, unicast/broadcast-only mode. */
2445 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2446 	}
2447 
2448 	/* update the ethernet mode */
2449 	sh_eth_write(ndev, ecmr_bits, ECMR);
2450 
2451 	spin_unlock_irqrestore(&mdp->lock, flags);
2452 }
2453 
2454 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2455 {
2456 	if (!mdp->port)
2457 		return TSU_VTAG0;
2458 	else
2459 		return TSU_VTAG1;
2460 }
2461 
2462 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2463 				  __be16 proto, u16 vid)
2464 {
2465 	struct sh_eth_private *mdp = netdev_priv(ndev);
2466 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2467 
2468 	if (unlikely(!mdp->cd->tsu))
2469 		return -EPERM;
2470 
2471 	/* No filtering if vid = 0 */
2472 	if (!vid)
2473 		return 0;
2474 
2475 	mdp->vlan_num_ids++;
2476 
2477 	/*
2478 	 * The controller has one VLAN tag HW filter. So, if the filter is
2479 	 * already enabled, the driver disables it and the filte
2480 	 */
2481 	if (mdp->vlan_num_ids > 1) {
2482 		/* disable VLAN filter */
2483 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2484 		return 0;
2485 	}
2486 
2487 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2488 			 vtag_reg_index);
2489 
2490 	return 0;
2491 }
2492 
2493 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2494 				   __be16 proto, u16 vid)
2495 {
2496 	struct sh_eth_private *mdp = netdev_priv(ndev);
2497 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2498 
2499 	if (unlikely(!mdp->cd->tsu))
2500 		return -EPERM;
2501 
2502 	/* No filtering if vid = 0 */
2503 	if (!vid)
2504 		return 0;
2505 
2506 	mdp->vlan_num_ids--;
2507 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2508 
2509 	return 0;
2510 }
2511 #endif /* SH_ETH_HAS_TSU */
2512 
2513 /* SuperH's TSU register init function */
2514 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2515 {
2516 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2517 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2518 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2519 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2520 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2521 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2522 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2523 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2524 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2525 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2526 	if (sh_eth_is_gether(mdp)) {
2527 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2528 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2529 	} else {
2530 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2531 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2532 	}
2533 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2534 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2535 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2536 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2537 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2538 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2539 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2540 }
2541 
2542 /* MDIO bus release function */
2543 static int sh_mdio_release(struct net_device *ndev)
2544 {
2545 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2546 
2547 	/* unregister mdio bus */
2548 	mdiobus_unregister(bus);
2549 
2550 	/* remove mdio bus info from net_device */
2551 	dev_set_drvdata(&ndev->dev, NULL);
2552 
2553 	/* free bitbang info */
2554 	free_mdio_bitbang(bus);
2555 
2556 	return 0;
2557 }
2558 
2559 /* MDIO bus init function */
2560 static int sh_mdio_init(struct net_device *ndev, int id,
2561 			struct sh_eth_plat_data *pd)
2562 {
2563 	int ret, i;
2564 	struct bb_info *bitbang;
2565 	struct sh_eth_private *mdp = netdev_priv(ndev);
2566 
2567 	/* create bit control struct for PHY */
2568 	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2569 			       GFP_KERNEL);
2570 	if (!bitbang) {
2571 		ret = -ENOMEM;
2572 		goto out;
2573 	}
2574 
2575 	/* bitbang init */
2576 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2577 	bitbang->set_gate = pd->set_mdio_gate;
2578 	bitbang->mdi_msk = PIR_MDI;
2579 	bitbang->mdo_msk = PIR_MDO;
2580 	bitbang->mmd_msk = PIR_MMD;
2581 	bitbang->mdc_msk = PIR_MDC;
2582 	bitbang->ctrl.ops = &bb_ops;
2583 
2584 	/* MII controller setting */
2585 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2586 	if (!mdp->mii_bus) {
2587 		ret = -ENOMEM;
2588 		goto out;
2589 	}
2590 
2591 	/* Hook up MII support for ethtool */
2592 	mdp->mii_bus->name = "sh_mii";
2593 	mdp->mii_bus->parent = &ndev->dev;
2594 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2595 		mdp->pdev->name, id);
2596 
2597 	/* PHY IRQ */
2598 	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2599 					 sizeof(int) * PHY_MAX_ADDR,
2600 					 GFP_KERNEL);
2601 	if (!mdp->mii_bus->irq) {
2602 		ret = -ENOMEM;
2603 		goto out_free_bus;
2604 	}
2605 
2606 	for (i = 0; i < PHY_MAX_ADDR; i++)
2607 		mdp->mii_bus->irq[i] = PHY_POLL;
2608 
2609 	/* register mdio bus */
2610 	ret = mdiobus_register(mdp->mii_bus);
2611 	if (ret)
2612 		goto out_free_bus;
2613 
2614 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2615 
2616 	return 0;
2617 
2618 out_free_bus:
2619 	free_mdio_bitbang(mdp->mii_bus);
2620 
2621 out:
2622 	return ret;
2623 }
2624 
2625 static const u16 *sh_eth_get_register_offset(int register_type)
2626 {
2627 	const u16 *reg_offset = NULL;
2628 
2629 	switch (register_type) {
2630 	case SH_ETH_REG_GIGABIT:
2631 		reg_offset = sh_eth_offset_gigabit;
2632 		break;
2633 	case SH_ETH_REG_FAST_RCAR:
2634 		reg_offset = sh_eth_offset_fast_rcar;
2635 		break;
2636 	case SH_ETH_REG_FAST_SH4:
2637 		reg_offset = sh_eth_offset_fast_sh4;
2638 		break;
2639 	case SH_ETH_REG_FAST_SH3_SH2:
2640 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2641 		break;
2642 	default:
2643 		pr_err("Unknown register type (%d)\n", register_type);
2644 		break;
2645 	}
2646 
2647 	return reg_offset;
2648 }
2649 
2650 static const struct net_device_ops sh_eth_netdev_ops = {
2651 	.ndo_open		= sh_eth_open,
2652 	.ndo_stop		= sh_eth_close,
2653 	.ndo_start_xmit		= sh_eth_start_xmit,
2654 	.ndo_get_stats		= sh_eth_get_stats,
2655 #if defined(SH_ETH_HAS_TSU)
2656 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2657 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2658 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2659 #endif
2660 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2661 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2662 	.ndo_validate_addr	= eth_validate_addr,
2663 	.ndo_set_mac_address	= eth_mac_addr,
2664 	.ndo_change_mtu		= eth_change_mtu,
2665 };
2666 
2667 static int sh_eth_drv_probe(struct platform_device *pdev)
2668 {
2669 	int ret, devno = 0;
2670 	struct resource *res;
2671 	struct net_device *ndev = NULL;
2672 	struct sh_eth_private *mdp = NULL;
2673 	struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2674 
2675 	/* get base addr */
2676 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2677 	if (unlikely(res == NULL)) {
2678 		dev_err(&pdev->dev, "invalid resource\n");
2679 		ret = -EINVAL;
2680 		goto out;
2681 	}
2682 
2683 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2684 	if (!ndev) {
2685 		ret = -ENOMEM;
2686 		goto out;
2687 	}
2688 
2689 	/* The sh Ether-specific entries in the device structure. */
2690 	ndev->base_addr = res->start;
2691 	devno = pdev->id;
2692 	if (devno < 0)
2693 		devno = 0;
2694 
2695 	ndev->dma = -1;
2696 	ret = platform_get_irq(pdev, 0);
2697 	if (ret < 0) {
2698 		ret = -ENODEV;
2699 		goto out_release;
2700 	}
2701 	ndev->irq = ret;
2702 
2703 	SET_NETDEV_DEV(ndev, &pdev->dev);
2704 
2705 	/* Fill in the fields of the device structure with ethernet values. */
2706 	ether_setup(ndev);
2707 
2708 	mdp = netdev_priv(ndev);
2709 	mdp->num_tx_ring = TX_RING_SIZE;
2710 	mdp->num_rx_ring = RX_RING_SIZE;
2711 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2712 	if (IS_ERR(mdp->addr)) {
2713 		ret = PTR_ERR(mdp->addr);
2714 		goto out_release;
2715 	}
2716 
2717 	spin_lock_init(&mdp->lock);
2718 	mdp->pdev = pdev;
2719 	pm_runtime_enable(&pdev->dev);
2720 	pm_runtime_resume(&pdev->dev);
2721 
2722 	/* get PHY ID */
2723 	mdp->phy_id = pd->phy;
2724 	mdp->phy_interface = pd->phy_interface;
2725 	/* EDMAC endian */
2726 	mdp->edmac_endian = pd->edmac_endian;
2727 	mdp->no_ether_link = pd->no_ether_link;
2728 	mdp->ether_link_active_low = pd->ether_link_active_low;
2729 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2730 
2731 	/* set cpu data */
2732 #if defined(SH_ETH_HAS_BOTH_MODULES)
2733 	mdp->cd = sh_eth_get_cpu_data(mdp);
2734 #else
2735 	mdp->cd = &sh_eth_my_cpu_data;
2736 #endif
2737 	sh_eth_set_default_cpu_data(mdp->cd);
2738 
2739 	/* set function */
2740 	ndev->netdev_ops = &sh_eth_netdev_ops;
2741 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2742 	ndev->watchdog_timeo = TX_TIMEOUT;
2743 
2744 	/* debug message level */
2745 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2746 
2747 	/* read and set MAC address */
2748 	read_mac_address(ndev, pd->mac_addr);
2749 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2750 		dev_warn(&pdev->dev,
2751 			 "no valid MAC address supplied, using a random one.\n");
2752 		eth_hw_addr_random(ndev);
2753 	}
2754 
2755 	/* ioremap the TSU registers */
2756 	if (mdp->cd->tsu) {
2757 		struct resource *rtsu;
2758 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2759 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2760 		if (IS_ERR(mdp->tsu_addr)) {
2761 			ret = PTR_ERR(mdp->tsu_addr);
2762 			goto out_release;
2763 		}
2764 		mdp->port = devno % 2;
2765 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2766 	}
2767 
2768 	/* initialize first or needed device */
2769 	if (!devno || pd->needs_init) {
2770 		if (mdp->cd->chip_reset)
2771 			mdp->cd->chip_reset(ndev);
2772 
2773 		if (mdp->cd->tsu) {
2774 			/* TSU init (Init only)*/
2775 			sh_eth_tsu_init(mdp);
2776 		}
2777 	}
2778 
2779 	/* network device register */
2780 	ret = register_netdev(ndev);
2781 	if (ret)
2782 		goto out_release;
2783 
2784 	/* mdio bus init */
2785 	ret = sh_mdio_init(ndev, pdev->id, pd);
2786 	if (ret)
2787 		goto out_unregister;
2788 
2789 	/* print device information */
2790 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2791 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2792 
2793 	platform_set_drvdata(pdev, ndev);
2794 
2795 	return ret;
2796 
2797 out_unregister:
2798 	unregister_netdev(ndev);
2799 
2800 out_release:
2801 	/* net_dev free */
2802 	if (ndev)
2803 		free_netdev(ndev);
2804 
2805 out:
2806 	return ret;
2807 }
2808 
2809 static int sh_eth_drv_remove(struct platform_device *pdev)
2810 {
2811 	struct net_device *ndev = platform_get_drvdata(pdev);
2812 
2813 	sh_mdio_release(ndev);
2814 	unregister_netdev(ndev);
2815 	pm_runtime_disable(&pdev->dev);
2816 	free_netdev(ndev);
2817 	platform_set_drvdata(pdev, NULL);
2818 
2819 	return 0;
2820 }
2821 
2822 static int sh_eth_runtime_nop(struct device *dev)
2823 {
2824 	/*
2825 	 * Runtime PM callback shared between ->runtime_suspend()
2826 	 * and ->runtime_resume(). Simply returns success.
2827 	 *
2828 	 * This driver re-initializes all registers after
2829 	 * pm_runtime_get_sync() anyway so there is no need
2830 	 * to save and restore registers here.
2831 	 */
2832 	return 0;
2833 }
2834 
2835 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2836 	.runtime_suspend = sh_eth_runtime_nop,
2837 	.runtime_resume = sh_eth_runtime_nop,
2838 };
2839 
2840 static struct platform_driver sh_eth_driver = {
2841 	.probe = sh_eth_drv_probe,
2842 	.remove = sh_eth_drv_remove,
2843 	.driver = {
2844 		   .name = CARDNAME,
2845 		   .pm = &sh_eth_dev_pm_ops,
2846 	},
2847 };
2848 
2849 module_platform_driver(sh_eth_driver);
2850 
2851 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2852 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2853 MODULE_LICENSE("GPL v2");
2854