1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43 
44 #include "sh_eth.h"
45 
46 #define SH_ETH_DEF_MSG_ENABLE \
47 		(NETIF_MSG_LINK	| \
48 		NETIF_MSG_TIMER	| \
49 		NETIF_MSG_RX_ERR| \
50 		NETIF_MSG_TX_ERR)
51 
52 /* There is CPU dependent code */
53 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
54 #define SH_ETH_RESET_DEFAULT	1
55 static void sh_eth_set_duplex(struct net_device *ndev)
56 {
57 	struct sh_eth_private *mdp = netdev_priv(ndev);
58 
59 	if (mdp->duplex) /* Full */
60 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
61 	else		/* Half */
62 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
63 }
64 
65 static void sh_eth_set_rate(struct net_device *ndev)
66 {
67 	struct sh_eth_private *mdp = netdev_priv(ndev);
68 
69 	switch (mdp->speed) {
70 	case 10: /* 10BASE */
71 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
72 		break;
73 	case 100:/* 100BASE */
74 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
75 		break;
76 	default:
77 		break;
78 	}
79 }
80 
81 /* SH7724 */
82 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
83 	.set_duplex	= sh_eth_set_duplex,
84 	.set_rate	= sh_eth_set_rate,
85 
86 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
87 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
88 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
89 
90 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
91 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
92 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
93 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
94 
95 	.apr		= 1,
96 	.mpr		= 1,
97 	.tpauser	= 1,
98 	.hw_swap	= 1,
99 	.rpadir		= 1,
100 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
101 };
102 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
103 #define SH_ETH_HAS_BOTH_MODULES	1
104 #define SH_ETH_HAS_TSU	1
105 static void sh_eth_set_duplex(struct net_device *ndev)
106 {
107 	struct sh_eth_private *mdp = netdev_priv(ndev);
108 
109 	if (mdp->duplex) /* Full */
110 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
111 	else		/* Half */
112 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
113 }
114 
115 static void sh_eth_set_rate(struct net_device *ndev)
116 {
117 	struct sh_eth_private *mdp = netdev_priv(ndev);
118 
119 	switch (mdp->speed) {
120 	case 10: /* 10BASE */
121 		sh_eth_write(ndev, 0, RTRATE);
122 		break;
123 	case 100:/* 100BASE */
124 		sh_eth_write(ndev, 1, RTRATE);
125 		break;
126 	default:
127 		break;
128 	}
129 }
130 
131 /* SH7757 */
132 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
133 	.set_duplex		= sh_eth_set_duplex,
134 	.set_rate		= sh_eth_set_rate,
135 
136 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
137 	.rmcr_value	= 0x00000001,
138 
139 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
140 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
141 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
142 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
143 
144 	.apr		= 1,
145 	.mpr		= 1,
146 	.tpauser	= 1,
147 	.hw_swap	= 1,
148 	.no_ade		= 1,
149 	.rpadir		= 1,
150 	.rpadir_value   = 2 << 16,
151 };
152 
153 #define SH_GIGA_ETH_BASE	0xfee00000
154 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
155 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
156 static void sh_eth_chip_reset_giga(struct net_device *ndev)
157 {
158 	int i;
159 	unsigned long mahr[2], malr[2];
160 
161 	/* save MAHR and MALR */
162 	for (i = 0; i < 2; i++) {
163 		malr[i] = ioread32((void *)GIGA_MALR(i));
164 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
165 	}
166 
167 	/* reset device */
168 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
169 	mdelay(1);
170 
171 	/* restore MAHR and MALR */
172 	for (i = 0; i < 2; i++) {
173 		iowrite32(malr[i], (void *)GIGA_MALR(i));
174 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
175 	}
176 }
177 
178 static int sh_eth_is_gether(struct sh_eth_private *mdp);
179 static void sh_eth_reset(struct net_device *ndev)
180 {
181 	struct sh_eth_private *mdp = netdev_priv(ndev);
182 	int cnt = 100;
183 
184 	if (sh_eth_is_gether(mdp)) {
185 		sh_eth_write(ndev, 0x03, EDSR);
186 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
187 				EDMR);
188 		while (cnt > 0) {
189 			if (!(sh_eth_read(ndev, EDMR) & 0x3))
190 				break;
191 			mdelay(1);
192 			cnt--;
193 		}
194 		if (cnt < 0)
195 			printk(KERN_ERR "Device reset fail\n");
196 
197 		/* Table Init */
198 		sh_eth_write(ndev, 0x0, TDLAR);
199 		sh_eth_write(ndev, 0x0, TDFAR);
200 		sh_eth_write(ndev, 0x0, TDFXR);
201 		sh_eth_write(ndev, 0x0, TDFFR);
202 		sh_eth_write(ndev, 0x0, RDLAR);
203 		sh_eth_write(ndev, 0x0, RDFAR);
204 		sh_eth_write(ndev, 0x0, RDFXR);
205 		sh_eth_write(ndev, 0x0, RDFFR);
206 	} else {
207 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
208 				EDMR);
209 		mdelay(3);
210 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
211 				EDMR);
212 	}
213 }
214 
215 static void sh_eth_set_duplex_giga(struct net_device *ndev)
216 {
217 	struct sh_eth_private *mdp = netdev_priv(ndev);
218 
219 	if (mdp->duplex) /* Full */
220 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
221 	else		/* Half */
222 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
223 }
224 
225 static void sh_eth_set_rate_giga(struct net_device *ndev)
226 {
227 	struct sh_eth_private *mdp = netdev_priv(ndev);
228 
229 	switch (mdp->speed) {
230 	case 10: /* 10BASE */
231 		sh_eth_write(ndev, 0x00000000, GECMR);
232 		break;
233 	case 100:/* 100BASE */
234 		sh_eth_write(ndev, 0x00000010, GECMR);
235 		break;
236 	case 1000: /* 1000BASE */
237 		sh_eth_write(ndev, 0x00000020, GECMR);
238 		break;
239 	default:
240 		break;
241 	}
242 }
243 
244 /* SH7757(GETHERC) */
245 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
246 	.chip_reset	= sh_eth_chip_reset_giga,
247 	.set_duplex	= sh_eth_set_duplex_giga,
248 	.set_rate	= sh_eth_set_rate_giga,
249 
250 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
251 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
252 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
253 
254 	.tx_check	= EESR_TC1 | EESR_FTC,
255 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
256 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
257 			  EESR_ECI,
258 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
259 			  EESR_TFE,
260 	.fdr_value	= 0x0000072f,
261 	.rmcr_value	= 0x00000001,
262 
263 	.apr		= 1,
264 	.mpr		= 1,
265 	.tpauser	= 1,
266 	.bculr		= 1,
267 	.hw_swap	= 1,
268 	.rpadir		= 1,
269 	.rpadir_value   = 2 << 16,
270 	.no_trimd	= 1,
271 	.no_ade		= 1,
272 	.tsu		= 1,
273 };
274 
275 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
276 {
277 	if (sh_eth_is_gether(mdp))
278 		return &sh_eth_my_cpu_data_giga;
279 	else
280 		return &sh_eth_my_cpu_data;
281 }
282 
283 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
284 #define SH_ETH_HAS_TSU	1
285 static void sh_eth_reset_hw_crc(struct net_device *ndev);
286 static void sh_eth_chip_reset(struct net_device *ndev)
287 {
288 	struct sh_eth_private *mdp = netdev_priv(ndev);
289 
290 	/* reset device */
291 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
292 	mdelay(1);
293 }
294 
295 static void sh_eth_reset(struct net_device *ndev)
296 {
297 	int cnt = 100;
298 
299 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
300 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
301 	while (cnt > 0) {
302 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
303 			break;
304 		mdelay(1);
305 		cnt--;
306 	}
307 	if (cnt == 0)
308 		printk(KERN_ERR "Device reset fail\n");
309 
310 	/* Table Init */
311 	sh_eth_write(ndev, 0x0, TDLAR);
312 	sh_eth_write(ndev, 0x0, TDFAR);
313 	sh_eth_write(ndev, 0x0, TDFXR);
314 	sh_eth_write(ndev, 0x0, TDFFR);
315 	sh_eth_write(ndev, 0x0, RDLAR);
316 	sh_eth_write(ndev, 0x0, RDFAR);
317 	sh_eth_write(ndev, 0x0, RDFXR);
318 	sh_eth_write(ndev, 0x0, RDFFR);
319 
320 	/* Reset HW CRC register */
321 	sh_eth_reset_hw_crc(ndev);
322 }
323 
324 static void sh_eth_set_duplex(struct net_device *ndev)
325 {
326 	struct sh_eth_private *mdp = netdev_priv(ndev);
327 
328 	if (mdp->duplex) /* Full */
329 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
330 	else		/* Half */
331 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
332 }
333 
334 static void sh_eth_set_rate(struct net_device *ndev)
335 {
336 	struct sh_eth_private *mdp = netdev_priv(ndev);
337 
338 	switch (mdp->speed) {
339 	case 10: /* 10BASE */
340 		sh_eth_write(ndev, GECMR_10, GECMR);
341 		break;
342 	case 100:/* 100BASE */
343 		sh_eth_write(ndev, GECMR_100, GECMR);
344 		break;
345 	case 1000: /* 1000BASE */
346 		sh_eth_write(ndev, GECMR_1000, GECMR);
347 		break;
348 	default:
349 		break;
350 	}
351 }
352 
353 /* sh7763 */
354 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
355 	.chip_reset	= sh_eth_chip_reset,
356 	.set_duplex	= sh_eth_set_duplex,
357 	.set_rate	= sh_eth_set_rate,
358 
359 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
360 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
361 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
362 
363 	.tx_check	= EESR_TC1 | EESR_FTC,
364 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
365 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
366 			  EESR_ECI,
367 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
368 			  EESR_TFE,
369 
370 	.apr		= 1,
371 	.mpr		= 1,
372 	.tpauser	= 1,
373 	.bculr		= 1,
374 	.hw_swap	= 1,
375 	.no_trimd	= 1,
376 	.no_ade		= 1,
377 	.tsu		= 1,
378 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
379 	.hw_crc     = 1,
380 #endif
381 };
382 
383 static void sh_eth_reset_hw_crc(struct net_device *ndev)
384 {
385 	if (sh_eth_my_cpu_data.hw_crc)
386 		sh_eth_write(ndev, 0x0, CSMR);
387 }
388 
389 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
390 #define SH_ETH_RESET_DEFAULT	1
391 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
392 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
393 
394 	.apr		= 1,
395 	.mpr		= 1,
396 	.tpauser	= 1,
397 	.hw_swap	= 1,
398 };
399 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
400 #define SH_ETH_RESET_DEFAULT	1
401 #define SH_ETH_HAS_TSU	1
402 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
403 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
404 	.tsu		= 1,
405 };
406 #endif
407 
408 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
409 {
410 	if (!cd->ecsr_value)
411 		cd->ecsr_value = DEFAULT_ECSR_INIT;
412 
413 	if (!cd->ecsipr_value)
414 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
415 
416 	if (!cd->fcftr_value)
417 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
418 				  DEFAULT_FIFO_F_D_RFD;
419 
420 	if (!cd->fdr_value)
421 		cd->fdr_value = DEFAULT_FDR_INIT;
422 
423 	if (!cd->rmcr_value)
424 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
425 
426 	if (!cd->tx_check)
427 		cd->tx_check = DEFAULT_TX_CHECK;
428 
429 	if (!cd->eesr_err_check)
430 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
431 
432 	if (!cd->tx_error_check)
433 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
434 }
435 
436 #if defined(SH_ETH_RESET_DEFAULT)
437 /* Chip Reset */
438 static void sh_eth_reset(struct net_device *ndev)
439 {
440 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
441 	mdelay(3);
442 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
443 }
444 #endif
445 
446 #if defined(CONFIG_CPU_SH4)
447 static void sh_eth_set_receive_align(struct sk_buff *skb)
448 {
449 	int reserve;
450 
451 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
452 	if (reserve)
453 		skb_reserve(skb, reserve);
454 }
455 #else
456 static void sh_eth_set_receive_align(struct sk_buff *skb)
457 {
458 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
459 }
460 #endif
461 
462 
463 /* CPU <-> EDMAC endian convert */
464 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
465 {
466 	switch (mdp->edmac_endian) {
467 	case EDMAC_LITTLE_ENDIAN:
468 		return cpu_to_le32(x);
469 	case EDMAC_BIG_ENDIAN:
470 		return cpu_to_be32(x);
471 	}
472 	return x;
473 }
474 
475 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
476 {
477 	switch (mdp->edmac_endian) {
478 	case EDMAC_LITTLE_ENDIAN:
479 		return le32_to_cpu(x);
480 	case EDMAC_BIG_ENDIAN:
481 		return be32_to_cpu(x);
482 	}
483 	return x;
484 }
485 
486 /*
487  * Program the hardware MAC address from dev->dev_addr.
488  */
489 static void update_mac_address(struct net_device *ndev)
490 {
491 	sh_eth_write(ndev,
492 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
493 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
494 	sh_eth_write(ndev,
495 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
496 }
497 
498 /*
499  * Get MAC address from SuperH MAC address register
500  *
501  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
502  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
503  * When you want use this device, you must set MAC address in bootloader.
504  *
505  */
506 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
507 {
508 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
509 		memcpy(ndev->dev_addr, mac, 6);
510 	} else {
511 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
512 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
513 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
514 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
515 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
516 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
517 	}
518 }
519 
520 static int sh_eth_is_gether(struct sh_eth_private *mdp)
521 {
522 	if (mdp->reg_offset == sh_eth_offset_gigabit)
523 		return 1;
524 	else
525 		return 0;
526 }
527 
528 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
529 {
530 	if (sh_eth_is_gether(mdp))
531 		return EDTRR_TRNS_GETHER;
532 	else
533 		return EDTRR_TRNS_ETHER;
534 }
535 
536 struct bb_info {
537 	void (*set_gate)(void *addr);
538 	struct mdiobb_ctrl ctrl;
539 	void *addr;
540 	u32 mmd_msk;/* MMD */
541 	u32 mdo_msk;
542 	u32 mdi_msk;
543 	u32 mdc_msk;
544 };
545 
546 /* PHY bit set */
547 static void bb_set(void *addr, u32 msk)
548 {
549 	iowrite32(ioread32(addr) | msk, addr);
550 }
551 
552 /* PHY bit clear */
553 static void bb_clr(void *addr, u32 msk)
554 {
555 	iowrite32((ioread32(addr) & ~msk), addr);
556 }
557 
558 /* PHY bit read */
559 static int bb_read(void *addr, u32 msk)
560 {
561 	return (ioread32(addr) & msk) != 0;
562 }
563 
564 /* Data I/O pin control */
565 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
566 {
567 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
568 
569 	if (bitbang->set_gate)
570 		bitbang->set_gate(bitbang->addr);
571 
572 	if (bit)
573 		bb_set(bitbang->addr, bitbang->mmd_msk);
574 	else
575 		bb_clr(bitbang->addr, bitbang->mmd_msk);
576 }
577 
578 /* Set bit data*/
579 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
580 {
581 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
582 
583 	if (bitbang->set_gate)
584 		bitbang->set_gate(bitbang->addr);
585 
586 	if (bit)
587 		bb_set(bitbang->addr, bitbang->mdo_msk);
588 	else
589 		bb_clr(bitbang->addr, bitbang->mdo_msk);
590 }
591 
592 /* Get bit data*/
593 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
594 {
595 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
596 
597 	if (bitbang->set_gate)
598 		bitbang->set_gate(bitbang->addr);
599 
600 	return bb_read(bitbang->addr, bitbang->mdi_msk);
601 }
602 
603 /* MDC pin control */
604 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
605 {
606 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
607 
608 	if (bitbang->set_gate)
609 		bitbang->set_gate(bitbang->addr);
610 
611 	if (bit)
612 		bb_set(bitbang->addr, bitbang->mdc_msk);
613 	else
614 		bb_clr(bitbang->addr, bitbang->mdc_msk);
615 }
616 
617 /* mdio bus control struct */
618 static struct mdiobb_ops bb_ops = {
619 	.owner = THIS_MODULE,
620 	.set_mdc = sh_mdc_ctrl,
621 	.set_mdio_dir = sh_mmd_ctrl,
622 	.set_mdio_data = sh_set_mdio,
623 	.get_mdio_data = sh_get_mdio,
624 };
625 
626 /* free skb and descriptor buffer */
627 static void sh_eth_ring_free(struct net_device *ndev)
628 {
629 	struct sh_eth_private *mdp = netdev_priv(ndev);
630 	int i;
631 
632 	/* Free Rx skb ringbuffer */
633 	if (mdp->rx_skbuff) {
634 		for (i = 0; i < RX_RING_SIZE; i++) {
635 			if (mdp->rx_skbuff[i])
636 				dev_kfree_skb(mdp->rx_skbuff[i]);
637 		}
638 	}
639 	kfree(mdp->rx_skbuff);
640 
641 	/* Free Tx skb ringbuffer */
642 	if (mdp->tx_skbuff) {
643 		for (i = 0; i < TX_RING_SIZE; i++) {
644 			if (mdp->tx_skbuff[i])
645 				dev_kfree_skb(mdp->tx_skbuff[i]);
646 		}
647 	}
648 	kfree(mdp->tx_skbuff);
649 }
650 
651 /* format skb and descriptor buffer */
652 static void sh_eth_ring_format(struct net_device *ndev)
653 {
654 	struct sh_eth_private *mdp = netdev_priv(ndev);
655 	int i;
656 	struct sk_buff *skb;
657 	struct sh_eth_rxdesc *rxdesc = NULL;
658 	struct sh_eth_txdesc *txdesc = NULL;
659 	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
660 	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
661 
662 	mdp->cur_rx = mdp->cur_tx = 0;
663 	mdp->dirty_rx = mdp->dirty_tx = 0;
664 
665 	memset(mdp->rx_ring, 0, rx_ringsize);
666 
667 	/* build Rx ring buffer */
668 	for (i = 0; i < RX_RING_SIZE; i++) {
669 		/* skb */
670 		mdp->rx_skbuff[i] = NULL;
671 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
672 		mdp->rx_skbuff[i] = skb;
673 		if (skb == NULL)
674 			break;
675 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
676 				DMA_FROM_DEVICE);
677 		sh_eth_set_receive_align(skb);
678 
679 		/* RX descriptor */
680 		rxdesc = &mdp->rx_ring[i];
681 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
682 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
683 
684 		/* The size of the buffer is 16 byte boundary. */
685 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
686 		/* Rx descriptor address set */
687 		if (i == 0) {
688 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
689 			if (sh_eth_is_gether(mdp))
690 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
691 		}
692 	}
693 
694 	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
695 
696 	/* Mark the last entry as wrapping the ring. */
697 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
698 
699 	memset(mdp->tx_ring, 0, tx_ringsize);
700 
701 	/* build Tx ring buffer */
702 	for (i = 0; i < TX_RING_SIZE; i++) {
703 		mdp->tx_skbuff[i] = NULL;
704 		txdesc = &mdp->tx_ring[i];
705 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
706 		txdesc->buffer_length = 0;
707 		if (i == 0) {
708 			/* Tx descriptor address set */
709 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
710 			if (sh_eth_is_gether(mdp))
711 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
712 		}
713 	}
714 
715 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
716 }
717 
718 /* Get skb and descriptor buffer */
719 static int sh_eth_ring_init(struct net_device *ndev)
720 {
721 	struct sh_eth_private *mdp = netdev_priv(ndev);
722 	int rx_ringsize, tx_ringsize, ret = 0;
723 
724 	/*
725 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
726 	 * card needs room to do 8 byte alignment, +2 so we can reserve
727 	 * the first 2 bytes, and +16 gets room for the status word from the
728 	 * card.
729 	 */
730 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
731 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
732 	if (mdp->cd->rpadir)
733 		mdp->rx_buf_sz += NET_IP_ALIGN;
734 
735 	/* Allocate RX and TX skb rings */
736 	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
737 				GFP_KERNEL);
738 	if (!mdp->rx_skbuff) {
739 		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
740 		ret = -ENOMEM;
741 		return ret;
742 	}
743 
744 	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
745 				GFP_KERNEL);
746 	if (!mdp->tx_skbuff) {
747 		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
748 		ret = -ENOMEM;
749 		goto skb_ring_free;
750 	}
751 
752 	/* Allocate all Rx descriptors. */
753 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
754 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
755 			GFP_KERNEL);
756 
757 	if (!mdp->rx_ring) {
758 		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
759 			rx_ringsize);
760 		ret = -ENOMEM;
761 		goto desc_ring_free;
762 	}
763 
764 	mdp->dirty_rx = 0;
765 
766 	/* Allocate all Tx descriptors. */
767 	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
768 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
769 			GFP_KERNEL);
770 	if (!mdp->tx_ring) {
771 		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
772 			tx_ringsize);
773 		ret = -ENOMEM;
774 		goto desc_ring_free;
775 	}
776 	return ret;
777 
778 desc_ring_free:
779 	/* free DMA buffer */
780 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
781 
782 skb_ring_free:
783 	/* Free Rx and Tx skb ring buffer */
784 	sh_eth_ring_free(ndev);
785 
786 	return ret;
787 }
788 
789 static int sh_eth_dev_init(struct net_device *ndev)
790 {
791 	int ret = 0;
792 	struct sh_eth_private *mdp = netdev_priv(ndev);
793 	u_int32_t rx_int_var, tx_int_var;
794 	u32 val;
795 
796 	/* Soft Reset */
797 	sh_eth_reset(ndev);
798 
799 	/* Descriptor format */
800 	sh_eth_ring_format(ndev);
801 	if (mdp->cd->rpadir)
802 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
803 
804 	/* all sh_eth int mask */
805 	sh_eth_write(ndev, 0, EESIPR);
806 
807 #if defined(__LITTLE_ENDIAN)
808 	if (mdp->cd->hw_swap)
809 		sh_eth_write(ndev, EDMR_EL, EDMR);
810 	else
811 #endif
812 		sh_eth_write(ndev, 0, EDMR);
813 
814 	/* FIFO size set */
815 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
816 	sh_eth_write(ndev, 0, TFTR);
817 
818 	/* Frame recv control */
819 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
820 
821 	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
822 	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
823 	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
824 
825 	if (mdp->cd->bculr)
826 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
827 
828 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
829 
830 	if (!mdp->cd->no_trimd)
831 		sh_eth_write(ndev, 0, TRIMD);
832 
833 	/* Recv frame limit set register */
834 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
835 		     RFLR);
836 
837 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
838 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
839 
840 	/* PAUSE Prohibition */
841 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
842 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
843 
844 	sh_eth_write(ndev, val, ECMR);
845 
846 	if (mdp->cd->set_rate)
847 		mdp->cd->set_rate(ndev);
848 
849 	/* E-MAC Status Register clear */
850 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
851 
852 	/* E-MAC Interrupt Enable register */
853 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
854 
855 	/* Set MAC address */
856 	update_mac_address(ndev);
857 
858 	/* mask reset */
859 	if (mdp->cd->apr)
860 		sh_eth_write(ndev, APR_AP, APR);
861 	if (mdp->cd->mpr)
862 		sh_eth_write(ndev, MPR_MP, MPR);
863 	if (mdp->cd->tpauser)
864 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
865 
866 	/* Setting the Rx mode will start the Rx process. */
867 	sh_eth_write(ndev, EDRRR_R, EDRRR);
868 
869 	netif_start_queue(ndev);
870 
871 	return ret;
872 }
873 
874 /* free Tx skb function */
875 static int sh_eth_txfree(struct net_device *ndev)
876 {
877 	struct sh_eth_private *mdp = netdev_priv(ndev);
878 	struct sh_eth_txdesc *txdesc;
879 	int freeNum = 0;
880 	int entry = 0;
881 
882 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
883 		entry = mdp->dirty_tx % TX_RING_SIZE;
884 		txdesc = &mdp->tx_ring[entry];
885 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
886 			break;
887 		/* Free the original skb. */
888 		if (mdp->tx_skbuff[entry]) {
889 			dma_unmap_single(&ndev->dev, txdesc->addr,
890 					 txdesc->buffer_length, DMA_TO_DEVICE);
891 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
892 			mdp->tx_skbuff[entry] = NULL;
893 			freeNum++;
894 		}
895 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
896 		if (entry >= TX_RING_SIZE - 1)
897 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
898 
899 		ndev->stats.tx_packets++;
900 		ndev->stats.tx_bytes += txdesc->buffer_length;
901 	}
902 	return freeNum;
903 }
904 
905 /* Packet receive function */
906 static int sh_eth_rx(struct net_device *ndev)
907 {
908 	struct sh_eth_private *mdp = netdev_priv(ndev);
909 	struct sh_eth_rxdesc *rxdesc;
910 
911 	int entry = mdp->cur_rx % RX_RING_SIZE;
912 	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
913 	struct sk_buff *skb;
914 	u16 pkt_len = 0;
915 	u32 desc_status;
916 
917 	rxdesc = &mdp->rx_ring[entry];
918 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
919 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
920 		pkt_len = rxdesc->frame_length;
921 
922 		if (--boguscnt < 0)
923 			break;
924 
925 		if (!(desc_status & RDFEND))
926 			ndev->stats.rx_length_errors++;
927 
928 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
929 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
930 			ndev->stats.rx_errors++;
931 			if (desc_status & RD_RFS1)
932 				ndev->stats.rx_crc_errors++;
933 			if (desc_status & RD_RFS2)
934 				ndev->stats.rx_frame_errors++;
935 			if (desc_status & RD_RFS3)
936 				ndev->stats.rx_length_errors++;
937 			if (desc_status & RD_RFS4)
938 				ndev->stats.rx_length_errors++;
939 			if (desc_status & RD_RFS6)
940 				ndev->stats.rx_missed_errors++;
941 			if (desc_status & RD_RFS10)
942 				ndev->stats.rx_over_errors++;
943 		} else {
944 			if (!mdp->cd->hw_swap)
945 				sh_eth_soft_swap(
946 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
947 					pkt_len + 2);
948 			skb = mdp->rx_skbuff[entry];
949 			mdp->rx_skbuff[entry] = NULL;
950 			if (mdp->cd->rpadir)
951 				skb_reserve(skb, NET_IP_ALIGN);
952 			skb_put(skb, pkt_len);
953 			skb->protocol = eth_type_trans(skb, ndev);
954 			netif_rx(skb);
955 			ndev->stats.rx_packets++;
956 			ndev->stats.rx_bytes += pkt_len;
957 		}
958 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
959 		entry = (++mdp->cur_rx) % RX_RING_SIZE;
960 		rxdesc = &mdp->rx_ring[entry];
961 	}
962 
963 	/* Refill the Rx ring buffers. */
964 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
965 		entry = mdp->dirty_rx % RX_RING_SIZE;
966 		rxdesc = &mdp->rx_ring[entry];
967 		/* The size of the buffer is 16 byte boundary. */
968 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
969 
970 		if (mdp->rx_skbuff[entry] == NULL) {
971 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
972 			mdp->rx_skbuff[entry] = skb;
973 			if (skb == NULL)
974 				break;	/* Better luck next round. */
975 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
976 					DMA_FROM_DEVICE);
977 			sh_eth_set_receive_align(skb);
978 
979 			skb_checksum_none_assert(skb);
980 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
981 		}
982 		if (entry >= RX_RING_SIZE - 1)
983 			rxdesc->status |=
984 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
985 		else
986 			rxdesc->status |=
987 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
988 	}
989 
990 	/* Restart Rx engine if stopped. */
991 	/* If we don't need to check status, don't. -KDU */
992 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
993 		sh_eth_write(ndev, EDRRR_R, EDRRR);
994 
995 	return 0;
996 }
997 
998 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
999 {
1000 	/* disable tx and rx */
1001 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1002 		~(ECMR_RE | ECMR_TE), ECMR);
1003 }
1004 
1005 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1006 {
1007 	/* enable tx and rx */
1008 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1009 		(ECMR_RE | ECMR_TE), ECMR);
1010 }
1011 
1012 /* error control function */
1013 static void sh_eth_error(struct net_device *ndev, int intr_status)
1014 {
1015 	struct sh_eth_private *mdp = netdev_priv(ndev);
1016 	u32 felic_stat;
1017 	u32 link_stat;
1018 	u32 mask;
1019 
1020 	if (intr_status & EESR_ECI) {
1021 		felic_stat = sh_eth_read(ndev, ECSR);
1022 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1023 		if (felic_stat & ECSR_ICD)
1024 			ndev->stats.tx_carrier_errors++;
1025 		if (felic_stat & ECSR_LCHNG) {
1026 			/* Link Changed */
1027 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1028 				if (mdp->link == PHY_DOWN)
1029 					link_stat = 0;
1030 				else
1031 					link_stat = PHY_ST_LINK;
1032 			} else {
1033 				link_stat = (sh_eth_read(ndev, PSR));
1034 				if (mdp->ether_link_active_low)
1035 					link_stat = ~link_stat;
1036 			}
1037 			if (!(link_stat & PHY_ST_LINK))
1038 				sh_eth_rcv_snd_disable(ndev);
1039 			else {
1040 				/* Link Up */
1041 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1042 					  ~DMAC_M_ECI, EESIPR);
1043 				/*clear int */
1044 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1045 					  ECSR);
1046 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1047 					  DMAC_M_ECI, EESIPR);
1048 				/* enable tx and rx */
1049 				sh_eth_rcv_snd_enable(ndev);
1050 			}
1051 		}
1052 	}
1053 
1054 	if (intr_status & EESR_TWB) {
1055 		/* Write buck end. unused write back interrupt */
1056 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1057 			ndev->stats.tx_aborted_errors++;
1058 			if (netif_msg_tx_err(mdp))
1059 				dev_err(&ndev->dev, "Transmit Abort\n");
1060 	}
1061 
1062 	if (intr_status & EESR_RABT) {
1063 		/* Receive Abort int */
1064 		if (intr_status & EESR_RFRMER) {
1065 			/* Receive Frame Overflow int */
1066 			ndev->stats.rx_frame_errors++;
1067 			if (netif_msg_rx_err(mdp))
1068 				dev_err(&ndev->dev, "Receive Abort\n");
1069 		}
1070 	}
1071 
1072 	if (intr_status & EESR_TDE) {
1073 		/* Transmit Descriptor Empty int */
1074 		ndev->stats.tx_fifo_errors++;
1075 		if (netif_msg_tx_err(mdp))
1076 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1077 	}
1078 
1079 	if (intr_status & EESR_TFE) {
1080 		/* FIFO under flow */
1081 		ndev->stats.tx_fifo_errors++;
1082 		if (netif_msg_tx_err(mdp))
1083 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1084 	}
1085 
1086 	if (intr_status & EESR_RDE) {
1087 		/* Receive Descriptor Empty int */
1088 		ndev->stats.rx_over_errors++;
1089 
1090 		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1091 			sh_eth_write(ndev, EDRRR_R, EDRRR);
1092 		if (netif_msg_rx_err(mdp))
1093 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1094 	}
1095 
1096 	if (intr_status & EESR_RFE) {
1097 		/* Receive FIFO Overflow int */
1098 		ndev->stats.rx_fifo_errors++;
1099 		if (netif_msg_rx_err(mdp))
1100 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1101 	}
1102 
1103 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1104 		/* Address Error */
1105 		ndev->stats.tx_fifo_errors++;
1106 		if (netif_msg_tx_err(mdp))
1107 			dev_err(&ndev->dev, "Address Error\n");
1108 	}
1109 
1110 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1111 	if (mdp->cd->no_ade)
1112 		mask &= ~EESR_ADE;
1113 	if (intr_status & mask) {
1114 		/* Tx error */
1115 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1116 		/* dmesg */
1117 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1118 				intr_status, mdp->cur_tx);
1119 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1120 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1121 		/* dirty buffer free */
1122 		sh_eth_txfree(ndev);
1123 
1124 		/* SH7712 BUG */
1125 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1126 			/* tx dma start */
1127 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1128 		}
1129 		/* wakeup */
1130 		netif_wake_queue(ndev);
1131 	}
1132 }
1133 
1134 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1135 {
1136 	struct net_device *ndev = netdev;
1137 	struct sh_eth_private *mdp = netdev_priv(ndev);
1138 	struct sh_eth_cpu_data *cd = mdp->cd;
1139 	irqreturn_t ret = IRQ_NONE;
1140 	u32 intr_status = 0;
1141 
1142 	spin_lock(&mdp->lock);
1143 
1144 	/* Get interrpt stat */
1145 	intr_status = sh_eth_read(ndev, EESR);
1146 	/* Clear interrupt */
1147 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1148 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1149 			cd->tx_check | cd->eesr_err_check)) {
1150 		sh_eth_write(ndev, intr_status, EESR);
1151 		ret = IRQ_HANDLED;
1152 	} else
1153 		goto other_irq;
1154 
1155 	if (intr_status & (EESR_FRC | /* Frame recv*/
1156 			EESR_RMAF | /* Multi cast address recv*/
1157 			EESR_RRF  | /* Bit frame recv */
1158 			EESR_RTLF | /* Long frame recv*/
1159 			EESR_RTSF | /* short frame recv */
1160 			EESR_PRE  | /* PHY-LSI recv error */
1161 			EESR_CERF)){ /* recv frame CRC error */
1162 		sh_eth_rx(ndev);
1163 	}
1164 
1165 	/* Tx Check */
1166 	if (intr_status & cd->tx_check) {
1167 		sh_eth_txfree(ndev);
1168 		netif_wake_queue(ndev);
1169 	}
1170 
1171 	if (intr_status & cd->eesr_err_check)
1172 		sh_eth_error(ndev, intr_status);
1173 
1174 other_irq:
1175 	spin_unlock(&mdp->lock);
1176 
1177 	return ret;
1178 }
1179 
1180 static void sh_eth_timer(unsigned long data)
1181 {
1182 	struct net_device *ndev = (struct net_device *)data;
1183 	struct sh_eth_private *mdp = netdev_priv(ndev);
1184 
1185 	mod_timer(&mdp->timer, jiffies + (10 * HZ));
1186 }
1187 
1188 /* PHY state control function */
1189 static void sh_eth_adjust_link(struct net_device *ndev)
1190 {
1191 	struct sh_eth_private *mdp = netdev_priv(ndev);
1192 	struct phy_device *phydev = mdp->phydev;
1193 	int new_state = 0;
1194 
1195 	if (phydev->link != PHY_DOWN) {
1196 		if (phydev->duplex != mdp->duplex) {
1197 			new_state = 1;
1198 			mdp->duplex = phydev->duplex;
1199 			if (mdp->cd->set_duplex)
1200 				mdp->cd->set_duplex(ndev);
1201 		}
1202 
1203 		if (phydev->speed != mdp->speed) {
1204 			new_state = 1;
1205 			mdp->speed = phydev->speed;
1206 			if (mdp->cd->set_rate)
1207 				mdp->cd->set_rate(ndev);
1208 		}
1209 		if (mdp->link == PHY_DOWN) {
1210 			sh_eth_write(ndev,
1211 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1212 			new_state = 1;
1213 			mdp->link = phydev->link;
1214 		}
1215 	} else if (mdp->link) {
1216 		new_state = 1;
1217 		mdp->link = PHY_DOWN;
1218 		mdp->speed = 0;
1219 		mdp->duplex = -1;
1220 	}
1221 
1222 	if (new_state && netif_msg_link(mdp))
1223 		phy_print_status(phydev);
1224 }
1225 
1226 /* PHY init function */
1227 static int sh_eth_phy_init(struct net_device *ndev)
1228 {
1229 	struct sh_eth_private *mdp = netdev_priv(ndev);
1230 	char phy_id[MII_BUS_ID_SIZE + 3];
1231 	struct phy_device *phydev = NULL;
1232 
1233 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1234 		mdp->mii_bus->id , mdp->phy_id);
1235 
1236 	mdp->link = PHY_DOWN;
1237 	mdp->speed = 0;
1238 	mdp->duplex = -1;
1239 
1240 	/* Try connect to PHY */
1241 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1242 				0, mdp->phy_interface);
1243 	if (IS_ERR(phydev)) {
1244 		dev_err(&ndev->dev, "phy_connect failed\n");
1245 		return PTR_ERR(phydev);
1246 	}
1247 
1248 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1249 		phydev->addr, phydev->drv->name);
1250 
1251 	mdp->phydev = phydev;
1252 
1253 	return 0;
1254 }
1255 
1256 /* PHY control start function */
1257 static int sh_eth_phy_start(struct net_device *ndev)
1258 {
1259 	struct sh_eth_private *mdp = netdev_priv(ndev);
1260 	int ret;
1261 
1262 	ret = sh_eth_phy_init(ndev);
1263 	if (ret)
1264 		return ret;
1265 
1266 	/* reset phy - this also wakes it from PDOWN */
1267 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1268 	phy_start(mdp->phydev);
1269 
1270 	return 0;
1271 }
1272 
1273 static int sh_eth_get_settings(struct net_device *ndev,
1274 			struct ethtool_cmd *ecmd)
1275 {
1276 	struct sh_eth_private *mdp = netdev_priv(ndev);
1277 	unsigned long flags;
1278 	int ret;
1279 
1280 	spin_lock_irqsave(&mdp->lock, flags);
1281 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1282 	spin_unlock_irqrestore(&mdp->lock, flags);
1283 
1284 	return ret;
1285 }
1286 
1287 static int sh_eth_set_settings(struct net_device *ndev,
1288 		struct ethtool_cmd *ecmd)
1289 {
1290 	struct sh_eth_private *mdp = netdev_priv(ndev);
1291 	unsigned long flags;
1292 	int ret;
1293 
1294 	spin_lock_irqsave(&mdp->lock, flags);
1295 
1296 	/* disable tx and rx */
1297 	sh_eth_rcv_snd_disable(ndev);
1298 
1299 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1300 	if (ret)
1301 		goto error_exit;
1302 
1303 	if (ecmd->duplex == DUPLEX_FULL)
1304 		mdp->duplex = 1;
1305 	else
1306 		mdp->duplex = 0;
1307 
1308 	if (mdp->cd->set_duplex)
1309 		mdp->cd->set_duplex(ndev);
1310 
1311 error_exit:
1312 	mdelay(1);
1313 
1314 	/* enable tx and rx */
1315 	sh_eth_rcv_snd_enable(ndev);
1316 
1317 	spin_unlock_irqrestore(&mdp->lock, flags);
1318 
1319 	return ret;
1320 }
1321 
1322 static int sh_eth_nway_reset(struct net_device *ndev)
1323 {
1324 	struct sh_eth_private *mdp = netdev_priv(ndev);
1325 	unsigned long flags;
1326 	int ret;
1327 
1328 	spin_lock_irqsave(&mdp->lock, flags);
1329 	ret = phy_start_aneg(mdp->phydev);
1330 	spin_unlock_irqrestore(&mdp->lock, flags);
1331 
1332 	return ret;
1333 }
1334 
1335 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1336 {
1337 	struct sh_eth_private *mdp = netdev_priv(ndev);
1338 	return mdp->msg_enable;
1339 }
1340 
1341 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1342 {
1343 	struct sh_eth_private *mdp = netdev_priv(ndev);
1344 	mdp->msg_enable = value;
1345 }
1346 
1347 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1348 	"rx_current", "tx_current",
1349 	"rx_dirty", "tx_dirty",
1350 };
1351 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1352 
1353 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1354 {
1355 	switch (sset) {
1356 	case ETH_SS_STATS:
1357 		return SH_ETH_STATS_LEN;
1358 	default:
1359 		return -EOPNOTSUPP;
1360 	}
1361 }
1362 
1363 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1364 			struct ethtool_stats *stats, u64 *data)
1365 {
1366 	struct sh_eth_private *mdp = netdev_priv(ndev);
1367 	int i = 0;
1368 
1369 	/* device-specific stats */
1370 	data[i++] = mdp->cur_rx;
1371 	data[i++] = mdp->cur_tx;
1372 	data[i++] = mdp->dirty_rx;
1373 	data[i++] = mdp->dirty_tx;
1374 }
1375 
1376 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1377 {
1378 	switch (stringset) {
1379 	case ETH_SS_STATS:
1380 		memcpy(data, *sh_eth_gstrings_stats,
1381 					sizeof(sh_eth_gstrings_stats));
1382 		break;
1383 	}
1384 }
1385 
1386 static const struct ethtool_ops sh_eth_ethtool_ops = {
1387 	.get_settings	= sh_eth_get_settings,
1388 	.set_settings	= sh_eth_set_settings,
1389 	.nway_reset	= sh_eth_nway_reset,
1390 	.get_msglevel	= sh_eth_get_msglevel,
1391 	.set_msglevel	= sh_eth_set_msglevel,
1392 	.get_link	= ethtool_op_get_link,
1393 	.get_strings	= sh_eth_get_strings,
1394 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1395 	.get_sset_count     = sh_eth_get_sset_count,
1396 };
1397 
1398 /* network device open function */
1399 static int sh_eth_open(struct net_device *ndev)
1400 {
1401 	int ret = 0;
1402 	struct sh_eth_private *mdp = netdev_priv(ndev);
1403 
1404 	pm_runtime_get_sync(&mdp->pdev->dev);
1405 
1406 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1407 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1408 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1409 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1410 				IRQF_SHARED,
1411 #else
1412 				0,
1413 #endif
1414 				ndev->name, ndev);
1415 	if (ret) {
1416 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1417 		return ret;
1418 	}
1419 
1420 	/* Descriptor set */
1421 	ret = sh_eth_ring_init(ndev);
1422 	if (ret)
1423 		goto out_free_irq;
1424 
1425 	/* device init */
1426 	ret = sh_eth_dev_init(ndev);
1427 	if (ret)
1428 		goto out_free_irq;
1429 
1430 	/* PHY control start*/
1431 	ret = sh_eth_phy_start(ndev);
1432 	if (ret)
1433 		goto out_free_irq;
1434 
1435 	/* Set the timer to check for link beat. */
1436 	init_timer(&mdp->timer);
1437 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1438 	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1439 
1440 	return ret;
1441 
1442 out_free_irq:
1443 	free_irq(ndev->irq, ndev);
1444 	pm_runtime_put_sync(&mdp->pdev->dev);
1445 	return ret;
1446 }
1447 
1448 /* Timeout function */
1449 static void sh_eth_tx_timeout(struct net_device *ndev)
1450 {
1451 	struct sh_eth_private *mdp = netdev_priv(ndev);
1452 	struct sh_eth_rxdesc *rxdesc;
1453 	int i;
1454 
1455 	netif_stop_queue(ndev);
1456 
1457 	if (netif_msg_timer(mdp))
1458 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1459 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1460 
1461 	/* tx_errors count up */
1462 	ndev->stats.tx_errors++;
1463 
1464 	/* timer off */
1465 	del_timer_sync(&mdp->timer);
1466 
1467 	/* Free all the skbuffs in the Rx queue. */
1468 	for (i = 0; i < RX_RING_SIZE; i++) {
1469 		rxdesc = &mdp->rx_ring[i];
1470 		rxdesc->status = 0;
1471 		rxdesc->addr = 0xBADF00D0;
1472 		if (mdp->rx_skbuff[i])
1473 			dev_kfree_skb(mdp->rx_skbuff[i]);
1474 		mdp->rx_skbuff[i] = NULL;
1475 	}
1476 	for (i = 0; i < TX_RING_SIZE; i++) {
1477 		if (mdp->tx_skbuff[i])
1478 			dev_kfree_skb(mdp->tx_skbuff[i]);
1479 		mdp->tx_skbuff[i] = NULL;
1480 	}
1481 
1482 	/* device init */
1483 	sh_eth_dev_init(ndev);
1484 
1485 	/* timer on */
1486 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1487 	add_timer(&mdp->timer);
1488 }
1489 
1490 /* Packet transmit function */
1491 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1492 {
1493 	struct sh_eth_private *mdp = netdev_priv(ndev);
1494 	struct sh_eth_txdesc *txdesc;
1495 	u32 entry;
1496 	unsigned long flags;
1497 
1498 	spin_lock_irqsave(&mdp->lock, flags);
1499 	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1500 		if (!sh_eth_txfree(ndev)) {
1501 			if (netif_msg_tx_queued(mdp))
1502 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1503 			netif_stop_queue(ndev);
1504 			spin_unlock_irqrestore(&mdp->lock, flags);
1505 			return NETDEV_TX_BUSY;
1506 		}
1507 	}
1508 	spin_unlock_irqrestore(&mdp->lock, flags);
1509 
1510 	entry = mdp->cur_tx % TX_RING_SIZE;
1511 	mdp->tx_skbuff[entry] = skb;
1512 	txdesc = &mdp->tx_ring[entry];
1513 	/* soft swap. */
1514 	if (!mdp->cd->hw_swap)
1515 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1516 				 skb->len + 2);
1517 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1518 				      DMA_TO_DEVICE);
1519 	if (skb->len < ETHERSMALL)
1520 		txdesc->buffer_length = ETHERSMALL;
1521 	else
1522 		txdesc->buffer_length = skb->len;
1523 
1524 	if (entry >= TX_RING_SIZE - 1)
1525 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1526 	else
1527 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1528 
1529 	mdp->cur_tx++;
1530 
1531 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1532 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1533 
1534 	return NETDEV_TX_OK;
1535 }
1536 
1537 /* device close function */
1538 static int sh_eth_close(struct net_device *ndev)
1539 {
1540 	struct sh_eth_private *mdp = netdev_priv(ndev);
1541 	int ringsize;
1542 
1543 	netif_stop_queue(ndev);
1544 
1545 	/* Disable interrupts by clearing the interrupt mask. */
1546 	sh_eth_write(ndev, 0x0000, EESIPR);
1547 
1548 	/* Stop the chip's Tx and Rx processes. */
1549 	sh_eth_write(ndev, 0, EDTRR);
1550 	sh_eth_write(ndev, 0, EDRRR);
1551 
1552 	/* PHY Disconnect */
1553 	if (mdp->phydev) {
1554 		phy_stop(mdp->phydev);
1555 		phy_disconnect(mdp->phydev);
1556 	}
1557 
1558 	free_irq(ndev->irq, ndev);
1559 
1560 	del_timer_sync(&mdp->timer);
1561 
1562 	/* Free all the skbuffs in the Rx queue. */
1563 	sh_eth_ring_free(ndev);
1564 
1565 	/* free DMA buffer */
1566 	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1567 	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1568 
1569 	/* free DMA buffer */
1570 	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1571 	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1572 
1573 	pm_runtime_put_sync(&mdp->pdev->dev);
1574 
1575 	return 0;
1576 }
1577 
1578 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1579 {
1580 	struct sh_eth_private *mdp = netdev_priv(ndev);
1581 
1582 	pm_runtime_get_sync(&mdp->pdev->dev);
1583 
1584 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1585 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1586 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1587 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1588 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1589 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1590 	if (sh_eth_is_gether(mdp)) {
1591 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1592 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1593 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1594 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1595 	} else {
1596 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1597 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1598 	}
1599 	pm_runtime_put_sync(&mdp->pdev->dev);
1600 
1601 	return &ndev->stats;
1602 }
1603 
1604 /* ioctl to device function */
1605 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1606 				int cmd)
1607 {
1608 	struct sh_eth_private *mdp = netdev_priv(ndev);
1609 	struct phy_device *phydev = mdp->phydev;
1610 
1611 	if (!netif_running(ndev))
1612 		return -EINVAL;
1613 
1614 	if (!phydev)
1615 		return -ENODEV;
1616 
1617 	return phy_mii_ioctl(phydev, rq, cmd);
1618 }
1619 
1620 #if defined(SH_ETH_HAS_TSU)
1621 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1622 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1623 					    int entry)
1624 {
1625 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1626 }
1627 
1628 static u32 sh_eth_tsu_get_post_mask(int entry)
1629 {
1630 	return 0x0f << (28 - ((entry % 8) * 4));
1631 }
1632 
1633 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1634 {
1635 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1636 }
1637 
1638 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1639 					     int entry)
1640 {
1641 	struct sh_eth_private *mdp = netdev_priv(ndev);
1642 	u32 tmp;
1643 	void *reg_offset;
1644 
1645 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1646 	tmp = ioread32(reg_offset);
1647 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1648 }
1649 
1650 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1651 					      int entry)
1652 {
1653 	struct sh_eth_private *mdp = netdev_priv(ndev);
1654 	u32 post_mask, ref_mask, tmp;
1655 	void *reg_offset;
1656 
1657 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1658 	post_mask = sh_eth_tsu_get_post_mask(entry);
1659 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1660 
1661 	tmp = ioread32(reg_offset);
1662 	iowrite32(tmp & ~post_mask, reg_offset);
1663 
1664 	/* If other port enables, the function returns "true" */
1665 	return tmp & ref_mask;
1666 }
1667 
1668 static int sh_eth_tsu_busy(struct net_device *ndev)
1669 {
1670 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1671 	struct sh_eth_private *mdp = netdev_priv(ndev);
1672 
1673 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1674 		udelay(10);
1675 		timeout--;
1676 		if (timeout <= 0) {
1677 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
1678 			return -ETIMEDOUT;
1679 		}
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1686 				  const u8 *addr)
1687 {
1688 	u32 val;
1689 
1690 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1691 	iowrite32(val, reg);
1692 	if (sh_eth_tsu_busy(ndev) < 0)
1693 		return -EBUSY;
1694 
1695 	val = addr[4] << 8 | addr[5];
1696 	iowrite32(val, reg + 4);
1697 	if (sh_eth_tsu_busy(ndev) < 0)
1698 		return -EBUSY;
1699 
1700 	return 0;
1701 }
1702 
1703 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1704 {
1705 	u32 val;
1706 
1707 	val = ioread32(reg);
1708 	addr[0] = (val >> 24) & 0xff;
1709 	addr[1] = (val >> 16) & 0xff;
1710 	addr[2] = (val >> 8) & 0xff;
1711 	addr[3] = val & 0xff;
1712 	val = ioread32(reg + 4);
1713 	addr[4] = (val >> 8) & 0xff;
1714 	addr[5] = val & 0xff;
1715 }
1716 
1717 
1718 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1719 {
1720 	struct sh_eth_private *mdp = netdev_priv(ndev);
1721 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1722 	int i;
1723 	u8 c_addr[ETH_ALEN];
1724 
1725 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1726 		sh_eth_tsu_read_entry(reg_offset, c_addr);
1727 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1728 			return i;
1729 	}
1730 
1731 	return -ENOENT;
1732 }
1733 
1734 static int sh_eth_tsu_find_empty(struct net_device *ndev)
1735 {
1736 	u8 blank[ETH_ALEN];
1737 	int entry;
1738 
1739 	memset(blank, 0, sizeof(blank));
1740 	entry = sh_eth_tsu_find_entry(ndev, blank);
1741 	return (entry < 0) ? -ENOMEM : entry;
1742 }
1743 
1744 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1745 					      int entry)
1746 {
1747 	struct sh_eth_private *mdp = netdev_priv(ndev);
1748 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1749 	int ret;
1750 	u8 blank[ETH_ALEN];
1751 
1752 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1753 			 ~(1 << (31 - entry)), TSU_TEN);
1754 
1755 	memset(blank, 0, sizeof(blank));
1756 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1757 	if (ret < 0)
1758 		return ret;
1759 	return 0;
1760 }
1761 
1762 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1763 {
1764 	struct sh_eth_private *mdp = netdev_priv(ndev);
1765 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1766 	int i, ret;
1767 
1768 	if (!mdp->cd->tsu)
1769 		return 0;
1770 
1771 	i = sh_eth_tsu_find_entry(ndev, addr);
1772 	if (i < 0) {
1773 		/* No entry found, create one */
1774 		i = sh_eth_tsu_find_empty(ndev);
1775 		if (i < 0)
1776 			return -ENOMEM;
1777 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
1778 		if (ret < 0)
1779 			return ret;
1780 
1781 		/* Enable the entry */
1782 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
1783 				 (1 << (31 - i)), TSU_TEN);
1784 	}
1785 
1786 	/* Entry found or created, enable POST */
1787 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
1788 
1789 	return 0;
1790 }
1791 
1792 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
1793 {
1794 	struct sh_eth_private *mdp = netdev_priv(ndev);
1795 	int i, ret;
1796 
1797 	if (!mdp->cd->tsu)
1798 		return 0;
1799 
1800 	i = sh_eth_tsu_find_entry(ndev, addr);
1801 	if (i) {
1802 		/* Entry found */
1803 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1804 			goto done;
1805 
1806 		/* Disable the entry if both ports was disabled */
1807 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1808 		if (ret < 0)
1809 			return ret;
1810 	}
1811 done:
1812 	return 0;
1813 }
1814 
1815 static int sh_eth_tsu_purge_all(struct net_device *ndev)
1816 {
1817 	struct sh_eth_private *mdp = netdev_priv(ndev);
1818 	int i, ret;
1819 
1820 	if (unlikely(!mdp->cd->tsu))
1821 		return 0;
1822 
1823 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
1824 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1825 			continue;
1826 
1827 		/* Disable the entry if both ports was disabled */
1828 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1829 		if (ret < 0)
1830 			return ret;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
1837 {
1838 	struct sh_eth_private *mdp = netdev_priv(ndev);
1839 	u8 addr[ETH_ALEN];
1840 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1841 	int i;
1842 
1843 	if (unlikely(!mdp->cd->tsu))
1844 		return;
1845 
1846 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1847 		sh_eth_tsu_read_entry(reg_offset, addr);
1848 		if (is_multicast_ether_addr(addr))
1849 			sh_eth_tsu_del_entry(ndev, addr);
1850 	}
1851 }
1852 
1853 /* Multicast reception directions set */
1854 static void sh_eth_set_multicast_list(struct net_device *ndev)
1855 {
1856 	struct sh_eth_private *mdp = netdev_priv(ndev);
1857 	u32 ecmr_bits;
1858 	int mcast_all = 0;
1859 	unsigned long flags;
1860 
1861 	spin_lock_irqsave(&mdp->lock, flags);
1862 	/*
1863 	 * Initial condition is MCT = 1, PRM = 0.
1864 	 * Depending on ndev->flags, set PRM or clear MCT
1865 	 */
1866 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
1867 
1868 	if (!(ndev->flags & IFF_MULTICAST)) {
1869 		sh_eth_tsu_purge_mcast(ndev);
1870 		mcast_all = 1;
1871 	}
1872 	if (ndev->flags & IFF_ALLMULTI) {
1873 		sh_eth_tsu_purge_mcast(ndev);
1874 		ecmr_bits &= ~ECMR_MCT;
1875 		mcast_all = 1;
1876 	}
1877 
1878 	if (ndev->flags & IFF_PROMISC) {
1879 		sh_eth_tsu_purge_all(ndev);
1880 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
1881 	} else if (mdp->cd->tsu) {
1882 		struct netdev_hw_addr *ha;
1883 		netdev_for_each_mc_addr(ha, ndev) {
1884 			if (mcast_all && is_multicast_ether_addr(ha->addr))
1885 				continue;
1886 
1887 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
1888 				if (!mcast_all) {
1889 					sh_eth_tsu_purge_mcast(ndev);
1890 					ecmr_bits &= ~ECMR_MCT;
1891 					mcast_all = 1;
1892 				}
1893 			}
1894 		}
1895 	} else {
1896 		/* Normal, unicast/broadcast-only mode. */
1897 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
1898 	}
1899 
1900 	/* update the ethernet mode */
1901 	sh_eth_write(ndev, ecmr_bits, ECMR);
1902 
1903 	spin_unlock_irqrestore(&mdp->lock, flags);
1904 }
1905 
1906 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
1907 {
1908 	if (!mdp->port)
1909 		return TSU_VTAG0;
1910 	else
1911 		return TSU_VTAG1;
1912 }
1913 
1914 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1915 {
1916 	struct sh_eth_private *mdp = netdev_priv(ndev);
1917 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
1918 
1919 	if (unlikely(!mdp->cd->tsu))
1920 		return -EPERM;
1921 
1922 	/* No filtering if vid = 0 */
1923 	if (!vid)
1924 		return 0;
1925 
1926 	mdp->vlan_num_ids++;
1927 
1928 	/*
1929 	 * The controller has one VLAN tag HW filter. So, if the filter is
1930 	 * already enabled, the driver disables it and the filte
1931 	 */
1932 	if (mdp->vlan_num_ids > 1) {
1933 		/* disable VLAN filter */
1934 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
1935 		return 0;
1936 	}
1937 
1938 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
1939 			 vtag_reg_index);
1940 
1941 	return 0;
1942 }
1943 
1944 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1945 {
1946 	struct sh_eth_private *mdp = netdev_priv(ndev);
1947 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
1948 
1949 	if (unlikely(!mdp->cd->tsu))
1950 		return -EPERM;
1951 
1952 	/* No filtering if vid = 0 */
1953 	if (!vid)
1954 		return 0;
1955 
1956 	mdp->vlan_num_ids--;
1957 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
1958 
1959 	return 0;
1960 }
1961 #endif /* SH_ETH_HAS_TSU */
1962 
1963 /* SuperH's TSU register init function */
1964 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1965 {
1966 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
1967 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
1968 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
1969 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
1970 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
1971 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
1972 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
1973 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
1974 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
1975 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1976 	if (sh_eth_is_gether(mdp)) {
1977 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
1978 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
1979 	} else {
1980 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
1981 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
1982 	}
1983 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
1984 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
1985 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
1986 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
1987 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
1988 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
1989 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
1990 }
1991 
1992 /* MDIO bus release function */
1993 static int sh_mdio_release(struct net_device *ndev)
1994 {
1995 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
1996 
1997 	/* unregister mdio bus */
1998 	mdiobus_unregister(bus);
1999 
2000 	/* remove mdio bus info from net_device */
2001 	dev_set_drvdata(&ndev->dev, NULL);
2002 
2003 	/* free interrupts memory */
2004 	kfree(bus->irq);
2005 
2006 	/* free bitbang info */
2007 	free_mdio_bitbang(bus);
2008 
2009 	return 0;
2010 }
2011 
2012 /* MDIO bus init function */
2013 static int sh_mdio_init(struct net_device *ndev, int id,
2014 			struct sh_eth_plat_data *pd)
2015 {
2016 	int ret, i;
2017 	struct bb_info *bitbang;
2018 	struct sh_eth_private *mdp = netdev_priv(ndev);
2019 
2020 	/* create bit control struct for PHY */
2021 	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2022 	if (!bitbang) {
2023 		ret = -ENOMEM;
2024 		goto out;
2025 	}
2026 
2027 	/* bitbang init */
2028 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2029 	bitbang->set_gate = pd->set_mdio_gate;
2030 	bitbang->mdi_msk = 0x08;
2031 	bitbang->mdo_msk = 0x04;
2032 	bitbang->mmd_msk = 0x02;/* MMD */
2033 	bitbang->mdc_msk = 0x01;
2034 	bitbang->ctrl.ops = &bb_ops;
2035 
2036 	/* MII controller setting */
2037 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2038 	if (!mdp->mii_bus) {
2039 		ret = -ENOMEM;
2040 		goto out_free_bitbang;
2041 	}
2042 
2043 	/* Hook up MII support for ethtool */
2044 	mdp->mii_bus->name = "sh_mii";
2045 	mdp->mii_bus->parent = &ndev->dev;
2046 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2047 		mdp->pdev->name, id);
2048 
2049 	/* PHY IRQ */
2050 	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2051 	if (!mdp->mii_bus->irq) {
2052 		ret = -ENOMEM;
2053 		goto out_free_bus;
2054 	}
2055 
2056 	for (i = 0; i < PHY_MAX_ADDR; i++)
2057 		mdp->mii_bus->irq[i] = PHY_POLL;
2058 
2059 	/* regist mdio bus */
2060 	ret = mdiobus_register(mdp->mii_bus);
2061 	if (ret)
2062 		goto out_free_irq;
2063 
2064 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2065 
2066 	return 0;
2067 
2068 out_free_irq:
2069 	kfree(mdp->mii_bus->irq);
2070 
2071 out_free_bus:
2072 	free_mdio_bitbang(mdp->mii_bus);
2073 
2074 out_free_bitbang:
2075 	kfree(bitbang);
2076 
2077 out:
2078 	return ret;
2079 }
2080 
2081 static const u16 *sh_eth_get_register_offset(int register_type)
2082 {
2083 	const u16 *reg_offset = NULL;
2084 
2085 	switch (register_type) {
2086 	case SH_ETH_REG_GIGABIT:
2087 		reg_offset = sh_eth_offset_gigabit;
2088 		break;
2089 	case SH_ETH_REG_FAST_SH4:
2090 		reg_offset = sh_eth_offset_fast_sh4;
2091 		break;
2092 	case SH_ETH_REG_FAST_SH3_SH2:
2093 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2094 		break;
2095 	default:
2096 		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2097 		break;
2098 	}
2099 
2100 	return reg_offset;
2101 }
2102 
2103 static const struct net_device_ops sh_eth_netdev_ops = {
2104 	.ndo_open		= sh_eth_open,
2105 	.ndo_stop		= sh_eth_close,
2106 	.ndo_start_xmit		= sh_eth_start_xmit,
2107 	.ndo_get_stats		= sh_eth_get_stats,
2108 #if defined(SH_ETH_HAS_TSU)
2109 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2110 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2111 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2112 #endif
2113 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2114 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2115 	.ndo_validate_addr	= eth_validate_addr,
2116 	.ndo_set_mac_address	= eth_mac_addr,
2117 	.ndo_change_mtu		= eth_change_mtu,
2118 };
2119 
2120 static int sh_eth_drv_probe(struct platform_device *pdev)
2121 {
2122 	int ret, devno = 0;
2123 	struct resource *res;
2124 	struct net_device *ndev = NULL;
2125 	struct sh_eth_private *mdp = NULL;
2126 	struct sh_eth_plat_data *pd;
2127 
2128 	/* get base addr */
2129 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2130 	if (unlikely(res == NULL)) {
2131 		dev_err(&pdev->dev, "invalid resource\n");
2132 		ret = -EINVAL;
2133 		goto out;
2134 	}
2135 
2136 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2137 	if (!ndev) {
2138 		ret = -ENOMEM;
2139 		goto out;
2140 	}
2141 
2142 	/* The sh Ether-specific entries in the device structure. */
2143 	ndev->base_addr = res->start;
2144 	devno = pdev->id;
2145 	if (devno < 0)
2146 		devno = 0;
2147 
2148 	ndev->dma = -1;
2149 	ret = platform_get_irq(pdev, 0);
2150 	if (ret < 0) {
2151 		ret = -ENODEV;
2152 		goto out_release;
2153 	}
2154 	ndev->irq = ret;
2155 
2156 	SET_NETDEV_DEV(ndev, &pdev->dev);
2157 
2158 	/* Fill in the fields of the device structure with ethernet values. */
2159 	ether_setup(ndev);
2160 
2161 	mdp = netdev_priv(ndev);
2162 	mdp->addr = ioremap(res->start, resource_size(res));
2163 	if (mdp->addr == NULL) {
2164 		ret = -ENOMEM;
2165 		dev_err(&pdev->dev, "ioremap failed.\n");
2166 		goto out_release;
2167 	}
2168 
2169 	spin_lock_init(&mdp->lock);
2170 	mdp->pdev = pdev;
2171 	pm_runtime_enable(&pdev->dev);
2172 	pm_runtime_resume(&pdev->dev);
2173 
2174 	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2175 	/* get PHY ID */
2176 	mdp->phy_id = pd->phy;
2177 	mdp->phy_interface = pd->phy_interface;
2178 	/* EDMAC endian */
2179 	mdp->edmac_endian = pd->edmac_endian;
2180 	mdp->no_ether_link = pd->no_ether_link;
2181 	mdp->ether_link_active_low = pd->ether_link_active_low;
2182 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2183 
2184 	/* set cpu data */
2185 #if defined(SH_ETH_HAS_BOTH_MODULES)
2186 	mdp->cd = sh_eth_get_cpu_data(mdp);
2187 #else
2188 	mdp->cd = &sh_eth_my_cpu_data;
2189 #endif
2190 	sh_eth_set_default_cpu_data(mdp->cd);
2191 
2192 	/* set function */
2193 	ndev->netdev_ops = &sh_eth_netdev_ops;
2194 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2195 	ndev->watchdog_timeo = TX_TIMEOUT;
2196 
2197 	/* debug message level */
2198 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2199 	mdp->post_rx = POST_RX >> (devno << 1);
2200 	mdp->post_fw = POST_FW >> (devno << 1);
2201 
2202 	/* read and set MAC address */
2203 	read_mac_address(ndev, pd->mac_addr);
2204 
2205 	/* ioremap the TSU registers */
2206 	if (mdp->cd->tsu) {
2207 		struct resource *rtsu;
2208 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2209 		if (!rtsu) {
2210 			dev_err(&pdev->dev, "Not found TSU resource\n");
2211 			goto out_release;
2212 		}
2213 		mdp->tsu_addr = ioremap(rtsu->start,
2214 					resource_size(rtsu));
2215 		mdp->port = devno % 2;
2216 		ndev->features = NETIF_F_HW_VLAN_FILTER;
2217 	}
2218 
2219 	/* initialize first or needed device */
2220 	if (!devno || pd->needs_init) {
2221 		if (mdp->cd->chip_reset)
2222 			mdp->cd->chip_reset(ndev);
2223 
2224 		if (mdp->cd->tsu) {
2225 			/* TSU init (Init only)*/
2226 			sh_eth_tsu_init(mdp);
2227 		}
2228 	}
2229 
2230 	/* network device register */
2231 	ret = register_netdev(ndev);
2232 	if (ret)
2233 		goto out_release;
2234 
2235 	/* mdio bus init */
2236 	ret = sh_mdio_init(ndev, pdev->id, pd);
2237 	if (ret)
2238 		goto out_unregister;
2239 
2240 	/* print device information */
2241 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2242 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2243 
2244 	platform_set_drvdata(pdev, ndev);
2245 
2246 	return ret;
2247 
2248 out_unregister:
2249 	unregister_netdev(ndev);
2250 
2251 out_release:
2252 	/* net_dev free */
2253 	if (mdp && mdp->addr)
2254 		iounmap(mdp->addr);
2255 	if (mdp && mdp->tsu_addr)
2256 		iounmap(mdp->tsu_addr);
2257 	if (ndev)
2258 		free_netdev(ndev);
2259 
2260 out:
2261 	return ret;
2262 }
2263 
2264 static int sh_eth_drv_remove(struct platform_device *pdev)
2265 {
2266 	struct net_device *ndev = platform_get_drvdata(pdev);
2267 	struct sh_eth_private *mdp = netdev_priv(ndev);
2268 
2269 	if (mdp->cd->tsu)
2270 		iounmap(mdp->tsu_addr);
2271 	sh_mdio_release(ndev);
2272 	unregister_netdev(ndev);
2273 	pm_runtime_disable(&pdev->dev);
2274 	iounmap(mdp->addr);
2275 	free_netdev(ndev);
2276 	platform_set_drvdata(pdev, NULL);
2277 
2278 	return 0;
2279 }
2280 
2281 static int sh_eth_runtime_nop(struct device *dev)
2282 {
2283 	/*
2284 	 * Runtime PM callback shared between ->runtime_suspend()
2285 	 * and ->runtime_resume(). Simply returns success.
2286 	 *
2287 	 * This driver re-initializes all registers after
2288 	 * pm_runtime_get_sync() anyway so there is no need
2289 	 * to save and restore registers here.
2290 	 */
2291 	return 0;
2292 }
2293 
2294 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2295 	.runtime_suspend = sh_eth_runtime_nop,
2296 	.runtime_resume = sh_eth_runtime_nop,
2297 };
2298 
2299 static struct platform_driver sh_eth_driver = {
2300 	.probe = sh_eth_drv_probe,
2301 	.remove = sh_eth_drv_remove,
2302 	.driver = {
2303 		   .name = CARDNAME,
2304 		   .pm = &sh_eth_dev_pm_ops,
2305 	},
2306 };
2307 
2308 module_platform_driver(sh_eth_driver);
2309 
2310 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2311 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2312 MODULE_LICENSE("GPL v2");
2313