1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_FWSLC]	= 0x0038,
205 	[TSU_VTAG0]	= 0x0058,
206 	[TSU_ADSBSY]	= 0x0060,
207 	[TSU_TEN]	= 0x0064,
208 	[TSU_POST1]	= 0x0070,
209 	[TSU_POST2]	= 0x0074,
210 	[TSU_POST3]	= 0x0078,
211 	[TSU_POST4]	= 0x007c,
212 	[TSU_ADRH0]	= 0x0100,
213 
214 	[TXNLCR0]	= 0x0080,
215 	[TXALCR0]	= 0x0084,
216 	[RXNLCR0]	= 0x0088,
217 	[RXALCR0]	= 0x008C,
218 };
219 
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 	SH_ETH_OFFSET_DEFAULTS,
222 
223 	[ECMR]		= 0x0300,
224 	[RFLR]		= 0x0308,
225 	[ECSR]		= 0x0310,
226 	[ECSIPR]	= 0x0318,
227 	[PIR]		= 0x0320,
228 	[PSR]		= 0x0328,
229 	[RDMLR]		= 0x0340,
230 	[IPGR]		= 0x0350,
231 	[APR]		= 0x0354,
232 	[MPR]		= 0x0358,
233 	[RFCF]		= 0x0360,
234 	[TPAUSER]	= 0x0364,
235 	[TPAUSECR]	= 0x0368,
236 	[MAHR]		= 0x03c0,
237 	[MALR]		= 0x03c8,
238 	[TROCR]		= 0x03d0,
239 	[CDCR]		= 0x03d4,
240 	[LCCR]		= 0x03d8,
241 	[CNDCR]		= 0x03dc,
242 	[CEFCR]		= 0x03e4,
243 	[FRECR]		= 0x03e8,
244 	[TSFRCR]	= 0x03ec,
245 	[TLFRCR]	= 0x03f0,
246 	[RFCR]		= 0x03f4,
247 	[MAFCR]		= 0x03f8,
248 
249 	[EDMR]		= 0x0200,
250 	[EDTRR]		= 0x0208,
251 	[EDRRR]		= 0x0210,
252 	[TDLAR]		= 0x0218,
253 	[RDLAR]		= 0x0220,
254 	[EESR]		= 0x0228,
255 	[EESIPR]	= 0x0230,
256 	[TRSCER]	= 0x0238,
257 	[RMFCR]		= 0x0240,
258 	[TFTR]		= 0x0248,
259 	[FDR]		= 0x0250,
260 	[RMCR]		= 0x0258,
261 	[TFUCR]		= 0x0264,
262 	[RFOCR]		= 0x0268,
263 	[RMIIMODE]      = 0x026c,
264 	[FCFTR]		= 0x0270,
265 	[TRIMD]		= 0x027c,
266 };
267 
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 	SH_ETH_OFFSET_DEFAULTS,
270 
271 	[ECMR]		= 0x0100,
272 	[RFLR]		= 0x0108,
273 	[ECSR]		= 0x0110,
274 	[ECSIPR]	= 0x0118,
275 	[PIR]		= 0x0120,
276 	[PSR]		= 0x0128,
277 	[RDMLR]		= 0x0140,
278 	[IPGR]		= 0x0150,
279 	[APR]		= 0x0154,
280 	[MPR]		= 0x0158,
281 	[TPAUSER]	= 0x0164,
282 	[RFCF]		= 0x0160,
283 	[TPAUSECR]	= 0x0168,
284 	[BCFRR]		= 0x016c,
285 	[MAHR]		= 0x01c0,
286 	[MALR]		= 0x01c8,
287 	[TROCR]		= 0x01d0,
288 	[CDCR]		= 0x01d4,
289 	[LCCR]		= 0x01d8,
290 	[CNDCR]		= 0x01dc,
291 	[CEFCR]		= 0x01e4,
292 	[FRECR]		= 0x01e8,
293 	[TSFRCR]	= 0x01ec,
294 	[TLFRCR]	= 0x01f0,
295 	[RFCR]		= 0x01f4,
296 	[MAFCR]		= 0x01f8,
297 	[RTRATE]	= 0x01fc,
298 
299 	[EDMR]		= 0x0000,
300 	[EDTRR]		= 0x0008,
301 	[EDRRR]		= 0x0010,
302 	[TDLAR]		= 0x0018,
303 	[RDLAR]		= 0x0020,
304 	[EESR]		= 0x0028,
305 	[EESIPR]	= 0x0030,
306 	[TRSCER]	= 0x0038,
307 	[RMFCR]		= 0x0040,
308 	[TFTR]		= 0x0048,
309 	[FDR]		= 0x0050,
310 	[RMCR]		= 0x0058,
311 	[TFUCR]		= 0x0064,
312 	[RFOCR]		= 0x0068,
313 	[FCFTR]		= 0x0070,
314 	[RPADIR]	= 0x0078,
315 	[TRIMD]		= 0x007c,
316 	[RBWAR]		= 0x00c8,
317 	[RDFAR]		= 0x00cc,
318 	[TBRAR]		= 0x00d4,
319 	[TDFAR]		= 0x00d8,
320 };
321 
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 	SH_ETH_OFFSET_DEFAULTS,
324 
325 	[EDMR]		= 0x0000,
326 	[EDTRR]		= 0x0004,
327 	[EDRRR]		= 0x0008,
328 	[TDLAR]		= 0x000c,
329 	[RDLAR]		= 0x0010,
330 	[EESR]		= 0x0014,
331 	[EESIPR]	= 0x0018,
332 	[TRSCER]	= 0x001c,
333 	[RMFCR]		= 0x0020,
334 	[TFTR]		= 0x0024,
335 	[FDR]		= 0x0028,
336 	[RMCR]		= 0x002c,
337 	[EDOCR]		= 0x0030,
338 	[FCFTR]		= 0x0034,
339 	[RPADIR]	= 0x0038,
340 	[TRIMD]		= 0x003c,
341 	[RBWAR]		= 0x0040,
342 	[RDFAR]		= 0x0044,
343 	[TBRAR]		= 0x004c,
344 	[TDFAR]		= 0x0050,
345 
346 	[ECMR]		= 0x0160,
347 	[ECSR]		= 0x0164,
348 	[ECSIPR]	= 0x0168,
349 	[PIR]		= 0x016c,
350 	[MAHR]		= 0x0170,
351 	[MALR]		= 0x0174,
352 	[RFLR]		= 0x0178,
353 	[PSR]		= 0x017c,
354 	[TROCR]		= 0x0180,
355 	[CDCR]		= 0x0184,
356 	[LCCR]		= 0x0188,
357 	[CNDCR]		= 0x018c,
358 	[CEFCR]		= 0x0194,
359 	[FRECR]		= 0x0198,
360 	[TSFRCR]	= 0x019c,
361 	[TLFRCR]	= 0x01a0,
362 	[RFCR]		= 0x01a4,
363 	[MAFCR]		= 0x01a8,
364 	[IPGR]		= 0x01b4,
365 	[APR]		= 0x01b8,
366 	[MPR]		= 0x01bc,
367 	[TPAUSER]	= 0x01c4,
368 	[BCFR]		= 0x01cc,
369 
370 	[ARSTR]		= 0x0000,
371 	[TSU_CTRST]	= 0x0004,
372 	[TSU_FWEN0]	= 0x0010,
373 	[TSU_FWEN1]	= 0x0014,
374 	[TSU_FCM]	= 0x0018,
375 	[TSU_BSYSL0]	= 0x0020,
376 	[TSU_BSYSL1]	= 0x0024,
377 	[TSU_PRISL0]	= 0x0028,
378 	[TSU_PRISL1]	= 0x002c,
379 	[TSU_FWSL0]	= 0x0030,
380 	[TSU_FWSL1]	= 0x0034,
381 	[TSU_FWSLC]	= 0x0038,
382 	[TSU_QTAGM0]	= 0x0040,
383 	[TSU_QTAGM1]	= 0x0044,
384 	[TSU_ADQT0]	= 0x0048,
385 	[TSU_ADQT1]	= 0x004c,
386 	[TSU_FWSR]	= 0x0050,
387 	[TSU_FWINMK]	= 0x0054,
388 	[TSU_ADSBSY]	= 0x0060,
389 	[TSU_TEN]	= 0x0064,
390 	[TSU_POST1]	= 0x0070,
391 	[TSU_POST2]	= 0x0074,
392 	[TSU_POST3]	= 0x0078,
393 	[TSU_POST4]	= 0x007c,
394 
395 	[TXNLCR0]	= 0x0080,
396 	[TXALCR0]	= 0x0084,
397 	[RXNLCR0]	= 0x0088,
398 	[RXALCR0]	= 0x008c,
399 	[FWNLCR0]	= 0x0090,
400 	[FWALCR0]	= 0x0094,
401 	[TXNLCR1]	= 0x00a0,
402 	[TXALCR1]	= 0x00a0,
403 	[RXNLCR1]	= 0x00a8,
404 	[RXALCR1]	= 0x00ac,
405 	[FWNLCR1]	= 0x00b0,
406 	[FWALCR1]	= 0x00b4,
407 
408 	[TSU_ADRH0]	= 0x0100,
409 };
410 
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413 
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 	struct sh_eth_private *mdp = netdev_priv(ndev);
417 	u16 offset = mdp->reg_offset[enum_index];
418 
419 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 		return;
421 
422 	iowrite32(data, mdp->addr + offset);
423 }
424 
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 	struct sh_eth_private *mdp = netdev_priv(ndev);
428 	u16 offset = mdp->reg_offset[enum_index];
429 
430 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 		return ~0U;
432 
433 	return ioread32(mdp->addr + offset);
434 }
435 
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 			  u32 set)
438 {
439 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 		     enum_index);
441 }
442 
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447 
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 	return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 	struct sh_eth_private *mdp = netdev_priv(ndev);
497 
498 	switch (mdp->speed) {
499 	case 10: /* 10BASE */
500 		sh_eth_write(ndev, GECMR_10, GECMR);
501 		break;
502 	case 100:/* 100BASE */
503 		sh_eth_write(ndev, GECMR_100, GECMR);
504 		break;
505 	case 1000: /* 1000BASE */
506 		sh_eth_write(ndev, GECMR_1000, GECMR);
507 		break;
508 	}
509 }
510 
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 	.chip_reset	= sh_eth_chip_reset,
515 	.set_duplex	= sh_eth_set_duplex,
516 
517 	.register_type	= SH_ETH_REG_FAST_RZ,
518 
519 	.ecsr_value	= ECSR_ICD,
520 	.ecsipr_value	= ECSIPR_ICDIP,
521 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
522 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
523 			  EESIPR_ECIIP |
524 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
525 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
526 			  EESIPR_RMAFIP | EESIPR_RRFIP |
527 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
528 			  EESIPR_PREIP | EESIPR_CERFIP,
529 
530 	.tx_check	= EESR_TC1 | EESR_FTC,
531 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
532 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
533 			  EESR_TDE,
534 	.fdr_value	= 0x0000070f,
535 
536 	.no_psr		= 1,
537 	.apr		= 1,
538 	.mpr		= 1,
539 	.tpauser	= 1,
540 	.hw_swap	= 1,
541 	.rpadir		= 1,
542 	.rpadir_value   = 2 << 16,
543 	.no_trimd	= 1,
544 	.no_ade		= 1,
545 	.hw_checksum	= 1,
546 	.tsu		= 1,
547 };
548 
549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
550 {
551 	sh_eth_chip_reset(ndev);
552 
553 	sh_eth_select_mii(ndev);
554 }
555 
556 /* R8A7740 */
557 static struct sh_eth_cpu_data r8a7740_data = {
558 	.chip_reset	= sh_eth_chip_reset_r8a7740,
559 	.set_duplex	= sh_eth_set_duplex,
560 	.set_rate	= sh_eth_set_rate_gether,
561 
562 	.register_type	= SH_ETH_REG_GIGABIT,
563 
564 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
565 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
566 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
567 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
568 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
569 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
570 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
571 			  EESIPR_CEEFIP | EESIPR_CELFIP |
572 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
573 			  EESIPR_PREIP | EESIPR_CERFIP,
574 
575 	.tx_check	= EESR_TC1 | EESR_FTC,
576 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
577 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
578 			  EESR_TDE,
579 	.fdr_value	= 0x0000070f,
580 
581 	.apr		= 1,
582 	.mpr		= 1,
583 	.tpauser	= 1,
584 	.bculr		= 1,
585 	.hw_swap	= 1,
586 	.rpadir		= 1,
587 	.rpadir_value   = 2 << 16,
588 	.no_trimd	= 1,
589 	.no_ade		= 1,
590 	.hw_checksum	= 1,
591 	.tsu		= 1,
592 	.select_mii	= 1,
593 	.magic		= 1,
594 };
595 
596 /* There is CPU dependent code */
597 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
598 {
599 	struct sh_eth_private *mdp = netdev_priv(ndev);
600 
601 	switch (mdp->speed) {
602 	case 10: /* 10BASE */
603 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
604 		break;
605 	case 100:/* 100BASE */
606 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
607 		break;
608 	}
609 }
610 
611 /* R8A7778/9 */
612 static struct sh_eth_cpu_data r8a777x_data = {
613 	.set_duplex	= sh_eth_set_duplex,
614 	.set_rate	= sh_eth_set_rate_r8a777x,
615 
616 	.register_type	= SH_ETH_REG_FAST_RCAR,
617 
618 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
619 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
620 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
621 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
622 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
623 			  EESIPR_RMAFIP | EESIPR_RRFIP |
624 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
625 			  EESIPR_PREIP | EESIPR_CERFIP,
626 
627 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
628 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
629 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
630 	.fdr_value	= 0x00000f0f,
631 
632 	.apr		= 1,
633 	.mpr		= 1,
634 	.tpauser	= 1,
635 	.hw_swap	= 1,
636 };
637 
638 /* R8A7790/1 */
639 static struct sh_eth_cpu_data r8a779x_data = {
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_r8a777x,
642 
643 	.register_type	= SH_ETH_REG_FAST_RCAR,
644 
645 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
647 			  ECSIPR_MPDIP,
648 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 			  EESIPR_RMAFIP | EESIPR_RRFIP |
652 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
653 			  EESIPR_PREIP | EESIPR_CERFIP,
654 
655 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
656 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 	.fdr_value	= 0x00000f0f,
659 
660 	.trscer_err_mask = DESC_I_RINT8,
661 
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.hw_swap	= 1,
666 	.rmiimode	= 1,
667 	.magic		= 1,
668 };
669 #endif /* CONFIG_OF */
670 
671 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
672 {
673 	struct sh_eth_private *mdp = netdev_priv(ndev);
674 
675 	switch (mdp->speed) {
676 	case 10: /* 10BASE */
677 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
678 		break;
679 	case 100:/* 100BASE */
680 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
681 		break;
682 	}
683 }
684 
685 /* SH7724 */
686 static struct sh_eth_cpu_data sh7724_data = {
687 	.set_duplex	= sh_eth_set_duplex,
688 	.set_rate	= sh_eth_set_rate_sh7724,
689 
690 	.register_type	= SH_ETH_REG_FAST_SH4,
691 
692 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
693 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
694 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
695 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
696 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
697 			  EESIPR_RMAFIP | EESIPR_RRFIP |
698 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
699 			  EESIPR_PREIP | EESIPR_CERFIP,
700 
701 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
702 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
703 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
704 
705 	.apr		= 1,
706 	.mpr		= 1,
707 	.tpauser	= 1,
708 	.hw_swap	= 1,
709 	.rpadir		= 1,
710 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
711 };
712 
713 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
714 {
715 	struct sh_eth_private *mdp = netdev_priv(ndev);
716 
717 	switch (mdp->speed) {
718 	case 10: /* 10BASE */
719 		sh_eth_write(ndev, 0, RTRATE);
720 		break;
721 	case 100:/* 100BASE */
722 		sh_eth_write(ndev, 1, RTRATE);
723 		break;
724 	}
725 }
726 
727 /* SH7757 */
728 static struct sh_eth_cpu_data sh7757_data = {
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_sh7757,
731 
732 	.register_type	= SH_ETH_REG_FAST_SH4,
733 
734 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
735 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
738 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
739 			  EESIPR_CEEFIP | EESIPR_CELFIP |
740 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
741 			  EESIPR_PREIP | EESIPR_CERFIP,
742 
743 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
744 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
745 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
746 
747 	.irq_flags	= IRQF_SHARED,
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.hw_swap	= 1,
752 	.no_ade		= 1,
753 	.rpadir		= 1,
754 	.rpadir_value   = 2 << 16,
755 	.rtrate		= 1,
756 };
757 
758 #define SH_GIGA_ETH_BASE	0xfee00000UL
759 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
760 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
761 static void sh_eth_chip_reset_giga(struct net_device *ndev)
762 {
763 	u32 mahr[2], malr[2];
764 	int i;
765 
766 	/* save MAHR and MALR */
767 	for (i = 0; i < 2; i++) {
768 		malr[i] = ioread32((void *)GIGA_MALR(i));
769 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
770 	}
771 
772 	sh_eth_chip_reset(ndev);
773 
774 	/* restore MAHR and MALR */
775 	for (i = 0; i < 2; i++) {
776 		iowrite32(malr[i], (void *)GIGA_MALR(i));
777 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
778 	}
779 }
780 
781 static void sh_eth_set_rate_giga(struct net_device *ndev)
782 {
783 	struct sh_eth_private *mdp = netdev_priv(ndev);
784 
785 	switch (mdp->speed) {
786 	case 10: /* 10BASE */
787 		sh_eth_write(ndev, 0x00000000, GECMR);
788 		break;
789 	case 100:/* 100BASE */
790 		sh_eth_write(ndev, 0x00000010, GECMR);
791 		break;
792 	case 1000: /* 1000BASE */
793 		sh_eth_write(ndev, 0x00000020, GECMR);
794 		break;
795 	}
796 }
797 
798 /* SH7757(GETHERC) */
799 static struct sh_eth_cpu_data sh7757_data_giga = {
800 	.chip_reset	= sh_eth_chip_reset_giga,
801 	.set_duplex	= sh_eth_set_duplex,
802 	.set_rate	= sh_eth_set_rate_giga,
803 
804 	.register_type	= SH_ETH_REG_GIGABIT,
805 
806 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
807 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
808 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
809 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
810 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
811 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
812 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
813 			  EESIPR_CEEFIP | EESIPR_CELFIP |
814 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
815 			  EESIPR_PREIP | EESIPR_CERFIP,
816 
817 	.tx_check	= EESR_TC1 | EESR_FTC,
818 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
819 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 			  EESR_TDE,
821 	.fdr_value	= 0x0000072f,
822 
823 	.irq_flags	= IRQF_SHARED,
824 	.apr		= 1,
825 	.mpr		= 1,
826 	.tpauser	= 1,
827 	.bculr		= 1,
828 	.hw_swap	= 1,
829 	.rpadir		= 1,
830 	.rpadir_value   = 2 << 16,
831 	.no_trimd	= 1,
832 	.no_ade		= 1,
833 	.tsu		= 1,
834 };
835 
836 /* SH7734 */
837 static struct sh_eth_cpu_data sh7734_data = {
838 	.chip_reset	= sh_eth_chip_reset,
839 	.set_duplex	= sh_eth_set_duplex,
840 	.set_rate	= sh_eth_set_rate_gether,
841 
842 	.register_type	= SH_ETH_REG_GIGABIT,
843 
844 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
845 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
846 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
847 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
848 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
849 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
850 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
851 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
852 			  EESIPR_PREIP | EESIPR_CERFIP,
853 
854 	.tx_check	= EESR_TC1 | EESR_FTC,
855 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
856 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
857 			  EESR_TDE,
858 
859 	.apr		= 1,
860 	.mpr		= 1,
861 	.tpauser	= 1,
862 	.bculr		= 1,
863 	.hw_swap	= 1,
864 	.no_trimd	= 1,
865 	.no_ade		= 1,
866 	.tsu		= 1,
867 	.hw_checksum	= 1,
868 	.select_mii	= 1,
869 	.magic		= 1,
870 };
871 
872 /* SH7763 */
873 static struct sh_eth_cpu_data sh7763_data = {
874 	.chip_reset	= sh_eth_chip_reset,
875 	.set_duplex	= sh_eth_set_duplex,
876 	.set_rate	= sh_eth_set_rate_gether,
877 
878 	.register_type	= SH_ETH_REG_GIGABIT,
879 
880 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
881 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
882 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
883 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
886 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
887 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 			  EESIPR_PREIP | EESIPR_CERFIP,
889 
890 	.tx_check	= EESR_TC1 | EESR_FTC,
891 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
892 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893 
894 	.apr		= 1,
895 	.mpr		= 1,
896 	.tpauser	= 1,
897 	.bculr		= 1,
898 	.hw_swap	= 1,
899 	.no_trimd	= 1,
900 	.no_ade		= 1,
901 	.tsu		= 1,
902 	.irq_flags	= IRQF_SHARED,
903 	.magic		= 1,
904 };
905 
906 static struct sh_eth_cpu_data sh7619_data = {
907 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
908 
909 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
910 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 			  EESIPR_CEEFIP | EESIPR_CELFIP |
915 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 			  EESIPR_PREIP | EESIPR_CERFIP,
917 
918 	.apr		= 1,
919 	.mpr		= 1,
920 	.tpauser	= 1,
921 	.hw_swap	= 1,
922 };
923 
924 static struct sh_eth_cpu_data sh771x_data = {
925 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
926 
927 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
928 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
929 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
930 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
931 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
932 			  EESIPR_CEEFIP | EESIPR_CELFIP |
933 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
934 			  EESIPR_PREIP | EESIPR_CERFIP,
935 	.tsu		= 1,
936 };
937 
938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
939 {
940 	if (!cd->ecsr_value)
941 		cd->ecsr_value = DEFAULT_ECSR_INIT;
942 
943 	if (!cd->ecsipr_value)
944 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
945 
946 	if (!cd->fcftr_value)
947 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
948 				  DEFAULT_FIFO_F_D_RFD;
949 
950 	if (!cd->fdr_value)
951 		cd->fdr_value = DEFAULT_FDR_INIT;
952 
953 	if (!cd->tx_check)
954 		cd->tx_check = DEFAULT_TX_CHECK;
955 
956 	if (!cd->eesr_err_check)
957 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
958 
959 	if (!cd->trscer_err_mask)
960 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
961 }
962 
963 static int sh_eth_check_reset(struct net_device *ndev)
964 {
965 	int ret = 0;
966 	int cnt = 100;
967 
968 	while (cnt > 0) {
969 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
970 			break;
971 		mdelay(1);
972 		cnt--;
973 	}
974 	if (cnt <= 0) {
975 		netdev_err(ndev, "Device reset failed\n");
976 		ret = -ETIMEDOUT;
977 	}
978 	return ret;
979 }
980 
981 static int sh_eth_reset(struct net_device *ndev)
982 {
983 	struct sh_eth_private *mdp = netdev_priv(ndev);
984 	int ret = 0;
985 
986 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
987 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
988 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
989 
990 		ret = sh_eth_check_reset(ndev);
991 		if (ret)
992 			return ret;
993 
994 		/* Table Init */
995 		sh_eth_write(ndev, 0x0, TDLAR);
996 		sh_eth_write(ndev, 0x0, TDFAR);
997 		sh_eth_write(ndev, 0x0, TDFXR);
998 		sh_eth_write(ndev, 0x0, TDFFR);
999 		sh_eth_write(ndev, 0x0, RDLAR);
1000 		sh_eth_write(ndev, 0x0, RDFAR);
1001 		sh_eth_write(ndev, 0x0, RDFXR);
1002 		sh_eth_write(ndev, 0x0, RDFFR);
1003 
1004 		/* Reset HW CRC register */
1005 		if (mdp->cd->hw_checksum)
1006 			sh_eth_write(ndev, 0x0, CSMR);
1007 
1008 		/* Select MII mode */
1009 		if (mdp->cd->select_mii)
1010 			sh_eth_select_mii(ndev);
1011 	} else {
1012 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1013 		mdelay(3);
1014 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 static void sh_eth_set_receive_align(struct sk_buff *skb)
1021 {
1022 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1023 
1024 	if (reserve)
1025 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1026 }
1027 
1028 /* Program the hardware MAC address from dev->dev_addr. */
1029 static void update_mac_address(struct net_device *ndev)
1030 {
1031 	sh_eth_write(ndev,
1032 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1033 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1034 	sh_eth_write(ndev,
1035 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1036 }
1037 
1038 /* Get MAC address from SuperH MAC address register
1039  *
1040  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1041  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1042  * When you want use this device, you must set MAC address in bootloader.
1043  *
1044  */
1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1046 {
1047 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1048 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1049 	} else {
1050 		u32 mahr = sh_eth_read(ndev, MAHR);
1051 		u32 malr = sh_eth_read(ndev, MALR);
1052 
1053 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1054 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1055 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1056 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1057 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1058 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1059 	}
1060 }
1061 
1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1063 {
1064 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1065 		return EDTRR_TRNS_GETHER;
1066 	else
1067 		return EDTRR_TRNS_ETHER;
1068 }
1069 
1070 struct bb_info {
1071 	void (*set_gate)(void *addr);
1072 	struct mdiobb_ctrl ctrl;
1073 	void *addr;
1074 };
1075 
1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1077 {
1078 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1079 	u32 pir;
1080 
1081 	if (bitbang->set_gate)
1082 		bitbang->set_gate(bitbang->addr);
1083 
1084 	pir = ioread32(bitbang->addr);
1085 	if (set)
1086 		pir |=  mask;
1087 	else
1088 		pir &= ~mask;
1089 	iowrite32(pir, bitbang->addr);
1090 }
1091 
1092 /* Data I/O pin control */
1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1094 {
1095 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1096 }
1097 
1098 /* Set bit data*/
1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1102 }
1103 
1104 /* Get bit data*/
1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1106 {
1107 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1108 
1109 	if (bitbang->set_gate)
1110 		bitbang->set_gate(bitbang->addr);
1111 
1112 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1113 }
1114 
1115 /* MDC pin control */
1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1117 {
1118 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1119 }
1120 
1121 /* mdio bus control struct */
1122 static struct mdiobb_ops bb_ops = {
1123 	.owner = THIS_MODULE,
1124 	.set_mdc = sh_mdc_ctrl,
1125 	.set_mdio_dir = sh_mmd_ctrl,
1126 	.set_mdio_data = sh_set_mdio,
1127 	.get_mdio_data = sh_get_mdio,
1128 };
1129 
1130 /* free skb and descriptor buffer */
1131 static void sh_eth_ring_free(struct net_device *ndev)
1132 {
1133 	struct sh_eth_private *mdp = netdev_priv(ndev);
1134 	int ringsize, i;
1135 
1136 	/* Free Rx skb ringbuffer */
1137 	if (mdp->rx_skbuff) {
1138 		for (i = 0; i < mdp->num_rx_ring; i++)
1139 			dev_kfree_skb(mdp->rx_skbuff[i]);
1140 	}
1141 	kfree(mdp->rx_skbuff);
1142 	mdp->rx_skbuff = NULL;
1143 
1144 	/* Free Tx skb ringbuffer */
1145 	if (mdp->tx_skbuff) {
1146 		for (i = 0; i < mdp->num_tx_ring; i++)
1147 			dev_kfree_skb(mdp->tx_skbuff[i]);
1148 	}
1149 	kfree(mdp->tx_skbuff);
1150 	mdp->tx_skbuff = NULL;
1151 
1152 	if (mdp->rx_ring) {
1153 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1154 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1155 				  mdp->rx_desc_dma);
1156 		mdp->rx_ring = NULL;
1157 	}
1158 
1159 	if (mdp->tx_ring) {
1160 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1161 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1162 				  mdp->tx_desc_dma);
1163 		mdp->tx_ring = NULL;
1164 	}
1165 }
1166 
1167 /* format skb and descriptor buffer */
1168 static void sh_eth_ring_format(struct net_device *ndev)
1169 {
1170 	struct sh_eth_private *mdp = netdev_priv(ndev);
1171 	int i;
1172 	struct sk_buff *skb;
1173 	struct sh_eth_rxdesc *rxdesc = NULL;
1174 	struct sh_eth_txdesc *txdesc = NULL;
1175 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1176 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1177 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1178 	dma_addr_t dma_addr;
1179 	u32 buf_len;
1180 
1181 	mdp->cur_rx = 0;
1182 	mdp->cur_tx = 0;
1183 	mdp->dirty_rx = 0;
1184 	mdp->dirty_tx = 0;
1185 
1186 	memset(mdp->rx_ring, 0, rx_ringsize);
1187 
1188 	/* build Rx ring buffer */
1189 	for (i = 0; i < mdp->num_rx_ring; i++) {
1190 		/* skb */
1191 		mdp->rx_skbuff[i] = NULL;
1192 		skb = netdev_alloc_skb(ndev, skbuff_size);
1193 		if (skb == NULL)
1194 			break;
1195 		sh_eth_set_receive_align(skb);
1196 
1197 		/* The size of the buffer is a multiple of 32 bytes. */
1198 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1199 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1200 					  DMA_FROM_DEVICE);
1201 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1202 			kfree_skb(skb);
1203 			break;
1204 		}
1205 		mdp->rx_skbuff[i] = skb;
1206 
1207 		/* RX descriptor */
1208 		rxdesc = &mdp->rx_ring[i];
1209 		rxdesc->len = cpu_to_le32(buf_len << 16);
1210 		rxdesc->addr = cpu_to_le32(dma_addr);
1211 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1212 
1213 		/* Rx descriptor address set */
1214 		if (i == 0) {
1215 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1216 			if (sh_eth_is_gether(mdp) ||
1217 			    sh_eth_is_rz_fast_ether(mdp))
1218 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1219 		}
1220 	}
1221 
1222 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1223 
1224 	/* Mark the last entry as wrapping the ring. */
1225 	if (rxdesc)
1226 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1227 
1228 	memset(mdp->tx_ring, 0, tx_ringsize);
1229 
1230 	/* build Tx ring buffer */
1231 	for (i = 0; i < mdp->num_tx_ring; i++) {
1232 		mdp->tx_skbuff[i] = NULL;
1233 		txdesc = &mdp->tx_ring[i];
1234 		txdesc->status = cpu_to_le32(TD_TFP);
1235 		txdesc->len = cpu_to_le32(0);
1236 		if (i == 0) {
1237 			/* Tx descriptor address set */
1238 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1239 			if (sh_eth_is_gether(mdp) ||
1240 			    sh_eth_is_rz_fast_ether(mdp))
1241 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1242 		}
1243 	}
1244 
1245 	txdesc->status |= cpu_to_le32(TD_TDLE);
1246 }
1247 
1248 /* Get skb and descriptor buffer */
1249 static int sh_eth_ring_init(struct net_device *ndev)
1250 {
1251 	struct sh_eth_private *mdp = netdev_priv(ndev);
1252 	int rx_ringsize, tx_ringsize;
1253 
1254 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1255 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1256 	 * the first 2 bytes, and +16 gets room for the status word from the
1257 	 * card.
1258 	 */
1259 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1260 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1261 	if (mdp->cd->rpadir)
1262 		mdp->rx_buf_sz += NET_IP_ALIGN;
1263 
1264 	/* Allocate RX and TX skb rings */
1265 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1266 				 GFP_KERNEL);
1267 	if (!mdp->rx_skbuff)
1268 		return -ENOMEM;
1269 
1270 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1271 				 GFP_KERNEL);
1272 	if (!mdp->tx_skbuff)
1273 		goto ring_free;
1274 
1275 	/* Allocate all Rx descriptors. */
1276 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1277 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1278 					  GFP_KERNEL);
1279 	if (!mdp->rx_ring)
1280 		goto ring_free;
1281 
1282 	mdp->dirty_rx = 0;
1283 
1284 	/* Allocate all Tx descriptors. */
1285 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1286 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1287 					  GFP_KERNEL);
1288 	if (!mdp->tx_ring)
1289 		goto ring_free;
1290 	return 0;
1291 
1292 ring_free:
1293 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1294 	sh_eth_ring_free(ndev);
1295 
1296 	return -ENOMEM;
1297 }
1298 
1299 static int sh_eth_dev_init(struct net_device *ndev)
1300 {
1301 	struct sh_eth_private *mdp = netdev_priv(ndev);
1302 	int ret;
1303 
1304 	/* Soft Reset */
1305 	ret = sh_eth_reset(ndev);
1306 	if (ret)
1307 		return ret;
1308 
1309 	if (mdp->cd->rmiimode)
1310 		sh_eth_write(ndev, 0x1, RMIIMODE);
1311 
1312 	/* Descriptor format */
1313 	sh_eth_ring_format(ndev);
1314 	if (mdp->cd->rpadir)
1315 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1316 
1317 	/* all sh_eth int mask */
1318 	sh_eth_write(ndev, 0, EESIPR);
1319 
1320 #if defined(__LITTLE_ENDIAN)
1321 	if (mdp->cd->hw_swap)
1322 		sh_eth_write(ndev, EDMR_EL, EDMR);
1323 	else
1324 #endif
1325 		sh_eth_write(ndev, 0, EDMR);
1326 
1327 	/* FIFO size set */
1328 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1329 	sh_eth_write(ndev, 0, TFTR);
1330 
1331 	/* Frame recv control (enable multiple-packets per rx irq) */
1332 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1333 
1334 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1335 
1336 	if (mdp->cd->bculr)
1337 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1338 
1339 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1340 
1341 	if (!mdp->cd->no_trimd)
1342 		sh_eth_write(ndev, 0, TRIMD);
1343 
1344 	/* Recv frame limit set register */
1345 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1346 		     RFLR);
1347 
1348 	sh_eth_modify(ndev, EESR, 0, 0);
1349 	mdp->irq_enabled = true;
1350 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1351 
1352 	/* PAUSE Prohibition */
1353 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1354 		     ECMR_TE | ECMR_RE, ECMR);
1355 
1356 	if (mdp->cd->set_rate)
1357 		mdp->cd->set_rate(ndev);
1358 
1359 	/* E-MAC Status Register clear */
1360 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1361 
1362 	/* E-MAC Interrupt Enable register */
1363 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1364 
1365 	/* Set MAC address */
1366 	update_mac_address(ndev);
1367 
1368 	/* mask reset */
1369 	if (mdp->cd->apr)
1370 		sh_eth_write(ndev, APR_AP, APR);
1371 	if (mdp->cd->mpr)
1372 		sh_eth_write(ndev, MPR_MP, MPR);
1373 	if (mdp->cd->tpauser)
1374 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1375 
1376 	/* Setting the Rx mode will start the Rx process. */
1377 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1378 
1379 	return ret;
1380 }
1381 
1382 static void sh_eth_dev_exit(struct net_device *ndev)
1383 {
1384 	struct sh_eth_private *mdp = netdev_priv(ndev);
1385 	int i;
1386 
1387 	/* Deactivate all TX descriptors, so DMA should stop at next
1388 	 * packet boundary if it's currently running
1389 	 */
1390 	for (i = 0; i < mdp->num_tx_ring; i++)
1391 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1392 
1393 	/* Disable TX FIFO egress to MAC */
1394 	sh_eth_rcv_snd_disable(ndev);
1395 
1396 	/* Stop RX DMA at next packet boundary */
1397 	sh_eth_write(ndev, 0, EDRRR);
1398 
1399 	/* Aside from TX DMA, we can't tell when the hardware is
1400 	 * really stopped, so we need to reset to make sure.
1401 	 * Before doing that, wait for long enough to *probably*
1402 	 * finish transmitting the last packet and poll stats.
1403 	 */
1404 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1405 	sh_eth_get_stats(ndev);
1406 	sh_eth_reset(ndev);
1407 
1408 	/* Set MAC address again */
1409 	update_mac_address(ndev);
1410 }
1411 
1412 /* free Tx skb function */
1413 static int sh_eth_txfree(struct net_device *ndev)
1414 {
1415 	struct sh_eth_private *mdp = netdev_priv(ndev);
1416 	struct sh_eth_txdesc *txdesc;
1417 	int free_num = 0;
1418 	int entry;
1419 
1420 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1421 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1422 		txdesc = &mdp->tx_ring[entry];
1423 		if (txdesc->status & cpu_to_le32(TD_TACT))
1424 			break;
1425 		/* TACT bit must be checked before all the following reads */
1426 		dma_rmb();
1427 		netif_info(mdp, tx_done, ndev,
1428 			   "tx entry %d status 0x%08x\n",
1429 			   entry, le32_to_cpu(txdesc->status));
1430 		/* Free the original skb. */
1431 		if (mdp->tx_skbuff[entry]) {
1432 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1433 					 le32_to_cpu(txdesc->len) >> 16,
1434 					 DMA_TO_DEVICE);
1435 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1436 			mdp->tx_skbuff[entry] = NULL;
1437 			free_num++;
1438 		}
1439 		txdesc->status = cpu_to_le32(TD_TFP);
1440 		if (entry >= mdp->num_tx_ring - 1)
1441 			txdesc->status |= cpu_to_le32(TD_TDLE);
1442 
1443 		ndev->stats.tx_packets++;
1444 		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1445 	}
1446 	return free_num;
1447 }
1448 
1449 /* Packet receive function */
1450 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1451 {
1452 	struct sh_eth_private *mdp = netdev_priv(ndev);
1453 	struct sh_eth_rxdesc *rxdesc;
1454 
1455 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1456 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1457 	int limit;
1458 	struct sk_buff *skb;
1459 	u32 desc_status;
1460 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1461 	dma_addr_t dma_addr;
1462 	u16 pkt_len;
1463 	u32 buf_len;
1464 
1465 	boguscnt = min(boguscnt, *quota);
1466 	limit = boguscnt;
1467 	rxdesc = &mdp->rx_ring[entry];
1468 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1469 		/* RACT bit must be checked before all the following reads */
1470 		dma_rmb();
1471 		desc_status = le32_to_cpu(rxdesc->status);
1472 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1473 
1474 		if (--boguscnt < 0)
1475 			break;
1476 
1477 		netif_info(mdp, rx_status, ndev,
1478 			   "rx entry %d status 0x%08x len %d\n",
1479 			   entry, desc_status, pkt_len);
1480 
1481 		if (!(desc_status & RDFEND))
1482 			ndev->stats.rx_length_errors++;
1483 
1484 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1485 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1486 		 * bit 0. However, in case of the R8A7740 and R7S72100
1487 		 * the RFS bits are from bit 25 to bit 16. So, the
1488 		 * driver needs right shifting by 16.
1489 		 */
1490 		if (mdp->cd->hw_checksum)
1491 			desc_status >>= 16;
1492 
1493 		skb = mdp->rx_skbuff[entry];
1494 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1495 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1496 			ndev->stats.rx_errors++;
1497 			if (desc_status & RD_RFS1)
1498 				ndev->stats.rx_crc_errors++;
1499 			if (desc_status & RD_RFS2)
1500 				ndev->stats.rx_frame_errors++;
1501 			if (desc_status & RD_RFS3)
1502 				ndev->stats.rx_length_errors++;
1503 			if (desc_status & RD_RFS4)
1504 				ndev->stats.rx_length_errors++;
1505 			if (desc_status & RD_RFS6)
1506 				ndev->stats.rx_missed_errors++;
1507 			if (desc_status & RD_RFS10)
1508 				ndev->stats.rx_over_errors++;
1509 		} else	if (skb) {
1510 			dma_addr = le32_to_cpu(rxdesc->addr);
1511 			if (!mdp->cd->hw_swap)
1512 				sh_eth_soft_swap(
1513 					phys_to_virt(ALIGN(dma_addr, 4)),
1514 					pkt_len + 2);
1515 			mdp->rx_skbuff[entry] = NULL;
1516 			if (mdp->cd->rpadir)
1517 				skb_reserve(skb, NET_IP_ALIGN);
1518 			dma_unmap_single(&ndev->dev, dma_addr,
1519 					 ALIGN(mdp->rx_buf_sz, 32),
1520 					 DMA_FROM_DEVICE);
1521 			skb_put(skb, pkt_len);
1522 			skb->protocol = eth_type_trans(skb, ndev);
1523 			netif_receive_skb(skb);
1524 			ndev->stats.rx_packets++;
1525 			ndev->stats.rx_bytes += pkt_len;
1526 			if (desc_status & RD_RFS8)
1527 				ndev->stats.multicast++;
1528 		}
1529 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1530 		rxdesc = &mdp->rx_ring[entry];
1531 	}
1532 
1533 	/* Refill the Rx ring buffers. */
1534 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1535 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1536 		rxdesc = &mdp->rx_ring[entry];
1537 		/* The size of the buffer is 32 byte boundary. */
1538 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1539 		rxdesc->len = cpu_to_le32(buf_len << 16);
1540 
1541 		if (mdp->rx_skbuff[entry] == NULL) {
1542 			skb = netdev_alloc_skb(ndev, skbuff_size);
1543 			if (skb == NULL)
1544 				break;	/* Better luck next round. */
1545 			sh_eth_set_receive_align(skb);
1546 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1547 						  buf_len, DMA_FROM_DEVICE);
1548 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1549 				kfree_skb(skb);
1550 				break;
1551 			}
1552 			mdp->rx_skbuff[entry] = skb;
1553 
1554 			skb_checksum_none_assert(skb);
1555 			rxdesc->addr = cpu_to_le32(dma_addr);
1556 		}
1557 		dma_wmb(); /* RACT bit must be set after all the above writes */
1558 		if (entry >= mdp->num_rx_ring - 1)
1559 			rxdesc->status |=
1560 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1561 		else
1562 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1563 	}
1564 
1565 	/* Restart Rx engine if stopped. */
1566 	/* If we don't need to check status, don't. -KDU */
1567 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1568 		/* fix the values for the next receiving if RDE is set */
1569 		if (intr_status & EESR_RDE &&
1570 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1571 			u32 count = (sh_eth_read(ndev, RDFAR) -
1572 				     sh_eth_read(ndev, RDLAR)) >> 4;
1573 
1574 			mdp->cur_rx = count;
1575 			mdp->dirty_rx = count;
1576 		}
1577 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1578 	}
1579 
1580 	*quota -= limit - boguscnt - 1;
1581 
1582 	return *quota <= 0;
1583 }
1584 
1585 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1586 {
1587 	/* disable tx and rx */
1588 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1589 }
1590 
1591 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1592 {
1593 	/* enable tx and rx */
1594 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1595 }
1596 
1597 /* E-MAC interrupt handler */
1598 static void sh_eth_emac_interrupt(struct net_device *ndev)
1599 {
1600 	struct sh_eth_private *mdp = netdev_priv(ndev);
1601 	u32 felic_stat;
1602 	u32 link_stat;
1603 
1604 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1605 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1606 	if (felic_stat & ECSR_ICD)
1607 		ndev->stats.tx_carrier_errors++;
1608 	if (felic_stat & ECSR_MPD)
1609 		pm_wakeup_event(&mdp->pdev->dev, 0);
1610 	if (felic_stat & ECSR_LCHNG) {
1611 		/* Link Changed */
1612 		if (mdp->cd->no_psr || mdp->no_ether_link)
1613 			return;
1614 		link_stat = sh_eth_read(ndev, PSR);
1615 		if (mdp->ether_link_active_low)
1616 			link_stat = ~link_stat;
1617 		if (!(link_stat & PHY_ST_LINK)) {
1618 			sh_eth_rcv_snd_disable(ndev);
1619 		} else {
1620 			/* Link Up */
1621 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1622 			/* clear int */
1623 			sh_eth_modify(ndev, ECSR, 0, 0);
1624 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1625 			/* enable tx and rx */
1626 			sh_eth_rcv_snd_enable(ndev);
1627 		}
1628 	}
1629 }
1630 
1631 /* error control function */
1632 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1633 {
1634 	struct sh_eth_private *mdp = netdev_priv(ndev);
1635 	u32 mask;
1636 
1637 	if (intr_status & EESR_TWB) {
1638 		/* Unused write back interrupt */
1639 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1640 			ndev->stats.tx_aborted_errors++;
1641 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1642 		}
1643 	}
1644 
1645 	if (intr_status & EESR_RABT) {
1646 		/* Receive Abort int */
1647 		if (intr_status & EESR_RFRMER) {
1648 			/* Receive Frame Overflow int */
1649 			ndev->stats.rx_frame_errors++;
1650 		}
1651 	}
1652 
1653 	if (intr_status & EESR_TDE) {
1654 		/* Transmit Descriptor Empty int */
1655 		ndev->stats.tx_fifo_errors++;
1656 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1657 	}
1658 
1659 	if (intr_status & EESR_TFE) {
1660 		/* FIFO under flow */
1661 		ndev->stats.tx_fifo_errors++;
1662 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1663 	}
1664 
1665 	if (intr_status & EESR_RDE) {
1666 		/* Receive Descriptor Empty int */
1667 		ndev->stats.rx_over_errors++;
1668 	}
1669 
1670 	if (intr_status & EESR_RFE) {
1671 		/* Receive FIFO Overflow int */
1672 		ndev->stats.rx_fifo_errors++;
1673 	}
1674 
1675 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1676 		/* Address Error */
1677 		ndev->stats.tx_fifo_errors++;
1678 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1679 	}
1680 
1681 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1682 	if (mdp->cd->no_ade)
1683 		mask &= ~EESR_ADE;
1684 	if (intr_status & mask) {
1685 		/* Tx error */
1686 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1687 
1688 		/* dmesg */
1689 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1690 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1691 			   (u32)ndev->state, edtrr);
1692 		/* dirty buffer free */
1693 		sh_eth_txfree(ndev);
1694 
1695 		/* SH7712 BUG */
1696 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1697 			/* tx dma start */
1698 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1699 		}
1700 		/* wakeup */
1701 		netif_wake_queue(ndev);
1702 	}
1703 }
1704 
1705 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1706 {
1707 	struct net_device *ndev = netdev;
1708 	struct sh_eth_private *mdp = netdev_priv(ndev);
1709 	struct sh_eth_cpu_data *cd = mdp->cd;
1710 	irqreturn_t ret = IRQ_NONE;
1711 	u32 intr_status, intr_enable;
1712 
1713 	spin_lock(&mdp->lock);
1714 
1715 	/* Get interrupt status */
1716 	intr_status = sh_eth_read(ndev, EESR);
1717 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1718 	 * enabled since it's the one that  comes  thru regardless of the mask,
1719 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1720 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1721 	 * bit...
1722 	 */
1723 	intr_enable = sh_eth_read(ndev, EESIPR);
1724 	intr_status &= intr_enable | EESIPR_ECIIP;
1725 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1726 			   cd->eesr_err_check))
1727 		ret = IRQ_HANDLED;
1728 	else
1729 		goto out;
1730 
1731 	if (unlikely(!mdp->irq_enabled)) {
1732 		sh_eth_write(ndev, 0, EESIPR);
1733 		goto out;
1734 	}
1735 
1736 	if (intr_status & EESR_RX_CHECK) {
1737 		if (napi_schedule_prep(&mdp->napi)) {
1738 			/* Mask Rx interrupts */
1739 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1740 				     EESIPR);
1741 			__napi_schedule(&mdp->napi);
1742 		} else {
1743 			netdev_warn(ndev,
1744 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1745 				    intr_status, intr_enable);
1746 		}
1747 	}
1748 
1749 	/* Tx Check */
1750 	if (intr_status & cd->tx_check) {
1751 		/* Clear Tx interrupts */
1752 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1753 
1754 		sh_eth_txfree(ndev);
1755 		netif_wake_queue(ndev);
1756 	}
1757 
1758 	/* E-MAC interrupt */
1759 	if (intr_status & EESR_ECI)
1760 		sh_eth_emac_interrupt(ndev);
1761 
1762 	if (intr_status & cd->eesr_err_check) {
1763 		/* Clear error interrupts */
1764 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1765 
1766 		sh_eth_error(ndev, intr_status);
1767 	}
1768 
1769 out:
1770 	spin_unlock(&mdp->lock);
1771 
1772 	return ret;
1773 }
1774 
1775 static int sh_eth_poll(struct napi_struct *napi, int budget)
1776 {
1777 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1778 						  napi);
1779 	struct net_device *ndev = napi->dev;
1780 	int quota = budget;
1781 	u32 intr_status;
1782 
1783 	for (;;) {
1784 		intr_status = sh_eth_read(ndev, EESR);
1785 		if (!(intr_status & EESR_RX_CHECK))
1786 			break;
1787 		/* Clear Rx interrupts */
1788 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1789 
1790 		if (sh_eth_rx(ndev, intr_status, &quota))
1791 			goto out;
1792 	}
1793 
1794 	napi_complete(napi);
1795 
1796 	/* Reenable Rx interrupts */
1797 	if (mdp->irq_enabled)
1798 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1799 out:
1800 	return budget - quota;
1801 }
1802 
1803 /* PHY state control function */
1804 static void sh_eth_adjust_link(struct net_device *ndev)
1805 {
1806 	struct sh_eth_private *mdp = netdev_priv(ndev);
1807 	struct phy_device *phydev = ndev->phydev;
1808 	int new_state = 0;
1809 
1810 	if (phydev->link) {
1811 		if (phydev->duplex != mdp->duplex) {
1812 			new_state = 1;
1813 			mdp->duplex = phydev->duplex;
1814 			if (mdp->cd->set_duplex)
1815 				mdp->cd->set_duplex(ndev);
1816 		}
1817 
1818 		if (phydev->speed != mdp->speed) {
1819 			new_state = 1;
1820 			mdp->speed = phydev->speed;
1821 			if (mdp->cd->set_rate)
1822 				mdp->cd->set_rate(ndev);
1823 		}
1824 		if (!mdp->link) {
1825 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1826 			new_state = 1;
1827 			mdp->link = phydev->link;
1828 			if (mdp->cd->no_psr || mdp->no_ether_link)
1829 				sh_eth_rcv_snd_enable(ndev);
1830 		}
1831 	} else if (mdp->link) {
1832 		new_state = 1;
1833 		mdp->link = 0;
1834 		mdp->speed = 0;
1835 		mdp->duplex = -1;
1836 		if (mdp->cd->no_psr || mdp->no_ether_link)
1837 			sh_eth_rcv_snd_disable(ndev);
1838 	}
1839 
1840 	if (new_state && netif_msg_link(mdp))
1841 		phy_print_status(phydev);
1842 }
1843 
1844 /* PHY init function */
1845 static int sh_eth_phy_init(struct net_device *ndev)
1846 {
1847 	struct device_node *np = ndev->dev.parent->of_node;
1848 	struct sh_eth_private *mdp = netdev_priv(ndev);
1849 	struct phy_device *phydev;
1850 
1851 	mdp->link = 0;
1852 	mdp->speed = 0;
1853 	mdp->duplex = -1;
1854 
1855 	/* Try connect to PHY */
1856 	if (np) {
1857 		struct device_node *pn;
1858 
1859 		pn = of_parse_phandle(np, "phy-handle", 0);
1860 		phydev = of_phy_connect(ndev, pn,
1861 					sh_eth_adjust_link, 0,
1862 					mdp->phy_interface);
1863 
1864 		of_node_put(pn);
1865 		if (!phydev)
1866 			phydev = ERR_PTR(-ENOENT);
1867 	} else {
1868 		char phy_id[MII_BUS_ID_SIZE + 3];
1869 
1870 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1871 			 mdp->mii_bus->id, mdp->phy_id);
1872 
1873 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1874 				     mdp->phy_interface);
1875 	}
1876 
1877 	if (IS_ERR(phydev)) {
1878 		netdev_err(ndev, "failed to connect PHY\n");
1879 		return PTR_ERR(phydev);
1880 	}
1881 
1882 	phy_attached_info(phydev);
1883 
1884 	return 0;
1885 }
1886 
1887 /* PHY control start function */
1888 static int sh_eth_phy_start(struct net_device *ndev)
1889 {
1890 	int ret;
1891 
1892 	ret = sh_eth_phy_init(ndev);
1893 	if (ret)
1894 		return ret;
1895 
1896 	phy_start(ndev->phydev);
1897 
1898 	return 0;
1899 }
1900 
1901 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1902 				     struct ethtool_link_ksettings *cmd)
1903 {
1904 	struct sh_eth_private *mdp = netdev_priv(ndev);
1905 	unsigned long flags;
1906 	int ret;
1907 
1908 	if (!ndev->phydev)
1909 		return -ENODEV;
1910 
1911 	spin_lock_irqsave(&mdp->lock, flags);
1912 	ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1913 	spin_unlock_irqrestore(&mdp->lock, flags);
1914 
1915 	return ret;
1916 }
1917 
1918 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1919 				     const struct ethtool_link_ksettings *cmd)
1920 {
1921 	struct sh_eth_private *mdp = netdev_priv(ndev);
1922 	unsigned long flags;
1923 	int ret;
1924 
1925 	if (!ndev->phydev)
1926 		return -ENODEV;
1927 
1928 	spin_lock_irqsave(&mdp->lock, flags);
1929 
1930 	/* disable tx and rx */
1931 	sh_eth_rcv_snd_disable(ndev);
1932 
1933 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1934 	if (ret)
1935 		goto error_exit;
1936 
1937 	if (cmd->base.duplex == DUPLEX_FULL)
1938 		mdp->duplex = 1;
1939 	else
1940 		mdp->duplex = 0;
1941 
1942 	if (mdp->cd->set_duplex)
1943 		mdp->cd->set_duplex(ndev);
1944 
1945 error_exit:
1946 	mdelay(1);
1947 
1948 	/* enable tx and rx */
1949 	sh_eth_rcv_snd_enable(ndev);
1950 
1951 	spin_unlock_irqrestore(&mdp->lock, flags);
1952 
1953 	return ret;
1954 }
1955 
1956 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1957  * version must be bumped as well.  Just adding registers up to that
1958  * limit is fine, as long as the existing register indices don't
1959  * change.
1960  */
1961 #define SH_ETH_REG_DUMP_VERSION		1
1962 #define SH_ETH_REG_DUMP_MAX_REGS	256
1963 
1964 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1965 {
1966 	struct sh_eth_private *mdp = netdev_priv(ndev);
1967 	struct sh_eth_cpu_data *cd = mdp->cd;
1968 	u32 *valid_map;
1969 	size_t len;
1970 
1971 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1972 
1973 	/* Dump starts with a bitmap that tells ethtool which
1974 	 * registers are defined for this chip.
1975 	 */
1976 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1977 	if (buf) {
1978 		valid_map = buf;
1979 		buf += len;
1980 	} else {
1981 		valid_map = NULL;
1982 	}
1983 
1984 	/* Add a register to the dump, if it has a defined offset.
1985 	 * This automatically skips most undefined registers, but for
1986 	 * some it is also necessary to check a capability flag in
1987 	 * struct sh_eth_cpu_data.
1988 	 */
1989 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1990 #define add_reg_from(reg, read_expr) do {				\
1991 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1992 			if (buf) {					\
1993 				mark_reg_valid(reg);			\
1994 				*buf++ = read_expr;			\
1995 			}						\
1996 			++len;						\
1997 		}							\
1998 	} while (0)
1999 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2000 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2001 
2002 	add_reg(EDSR);
2003 	add_reg(EDMR);
2004 	add_reg(EDTRR);
2005 	add_reg(EDRRR);
2006 	add_reg(EESR);
2007 	add_reg(EESIPR);
2008 	add_reg(TDLAR);
2009 	add_reg(TDFAR);
2010 	add_reg(TDFXR);
2011 	add_reg(TDFFR);
2012 	add_reg(RDLAR);
2013 	add_reg(RDFAR);
2014 	add_reg(RDFXR);
2015 	add_reg(RDFFR);
2016 	add_reg(TRSCER);
2017 	add_reg(RMFCR);
2018 	add_reg(TFTR);
2019 	add_reg(FDR);
2020 	add_reg(RMCR);
2021 	add_reg(TFUCR);
2022 	add_reg(RFOCR);
2023 	if (cd->rmiimode)
2024 		add_reg(RMIIMODE);
2025 	add_reg(FCFTR);
2026 	if (cd->rpadir)
2027 		add_reg(RPADIR);
2028 	if (!cd->no_trimd)
2029 		add_reg(TRIMD);
2030 	add_reg(ECMR);
2031 	add_reg(ECSR);
2032 	add_reg(ECSIPR);
2033 	add_reg(PIR);
2034 	if (!cd->no_psr)
2035 		add_reg(PSR);
2036 	add_reg(RDMLR);
2037 	add_reg(RFLR);
2038 	add_reg(IPGR);
2039 	if (cd->apr)
2040 		add_reg(APR);
2041 	if (cd->mpr)
2042 		add_reg(MPR);
2043 	add_reg(RFCR);
2044 	add_reg(RFCF);
2045 	if (cd->tpauser)
2046 		add_reg(TPAUSER);
2047 	add_reg(TPAUSECR);
2048 	add_reg(GECMR);
2049 	if (cd->bculr)
2050 		add_reg(BCULR);
2051 	add_reg(MAHR);
2052 	add_reg(MALR);
2053 	add_reg(TROCR);
2054 	add_reg(CDCR);
2055 	add_reg(LCCR);
2056 	add_reg(CNDCR);
2057 	add_reg(CEFCR);
2058 	add_reg(FRECR);
2059 	add_reg(TSFRCR);
2060 	add_reg(TLFRCR);
2061 	add_reg(CERCR);
2062 	add_reg(CEECR);
2063 	add_reg(MAFCR);
2064 	if (cd->rtrate)
2065 		add_reg(RTRATE);
2066 	if (cd->hw_checksum)
2067 		add_reg(CSMR);
2068 	if (cd->select_mii)
2069 		add_reg(RMII_MII);
2070 	add_reg(ARSTR);
2071 	if (cd->tsu) {
2072 		add_tsu_reg(TSU_CTRST);
2073 		add_tsu_reg(TSU_FWEN0);
2074 		add_tsu_reg(TSU_FWEN1);
2075 		add_tsu_reg(TSU_FCM);
2076 		add_tsu_reg(TSU_BSYSL0);
2077 		add_tsu_reg(TSU_BSYSL1);
2078 		add_tsu_reg(TSU_PRISL0);
2079 		add_tsu_reg(TSU_PRISL1);
2080 		add_tsu_reg(TSU_FWSL0);
2081 		add_tsu_reg(TSU_FWSL1);
2082 		add_tsu_reg(TSU_FWSLC);
2083 		add_tsu_reg(TSU_QTAG0);
2084 		add_tsu_reg(TSU_QTAG1);
2085 		add_tsu_reg(TSU_QTAGM0);
2086 		add_tsu_reg(TSU_QTAGM1);
2087 		add_tsu_reg(TSU_FWSR);
2088 		add_tsu_reg(TSU_FWINMK);
2089 		add_tsu_reg(TSU_ADQT0);
2090 		add_tsu_reg(TSU_ADQT1);
2091 		add_tsu_reg(TSU_VTAG0);
2092 		add_tsu_reg(TSU_VTAG1);
2093 		add_tsu_reg(TSU_ADSBSY);
2094 		add_tsu_reg(TSU_TEN);
2095 		add_tsu_reg(TSU_POST1);
2096 		add_tsu_reg(TSU_POST2);
2097 		add_tsu_reg(TSU_POST3);
2098 		add_tsu_reg(TSU_POST4);
2099 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2100 			/* This is the start of a table, not just a single
2101 			 * register.
2102 			 */
2103 			if (buf) {
2104 				unsigned int i;
2105 
2106 				mark_reg_valid(TSU_ADRH0);
2107 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2108 					*buf++ = ioread32(
2109 						mdp->tsu_addr +
2110 						mdp->reg_offset[TSU_ADRH0] +
2111 						i * 4);
2112 			}
2113 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2114 		}
2115 	}
2116 
2117 #undef mark_reg_valid
2118 #undef add_reg_from
2119 #undef add_reg
2120 #undef add_tsu_reg
2121 
2122 	return len * 4;
2123 }
2124 
2125 static int sh_eth_get_regs_len(struct net_device *ndev)
2126 {
2127 	return __sh_eth_get_regs(ndev, NULL);
2128 }
2129 
2130 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2131 			    void *buf)
2132 {
2133 	struct sh_eth_private *mdp = netdev_priv(ndev);
2134 
2135 	regs->version = SH_ETH_REG_DUMP_VERSION;
2136 
2137 	pm_runtime_get_sync(&mdp->pdev->dev);
2138 	__sh_eth_get_regs(ndev, buf);
2139 	pm_runtime_put_sync(&mdp->pdev->dev);
2140 }
2141 
2142 static int sh_eth_nway_reset(struct net_device *ndev)
2143 {
2144 	struct sh_eth_private *mdp = netdev_priv(ndev);
2145 	unsigned long flags;
2146 	int ret;
2147 
2148 	if (!ndev->phydev)
2149 		return -ENODEV;
2150 
2151 	spin_lock_irqsave(&mdp->lock, flags);
2152 	ret = phy_start_aneg(ndev->phydev);
2153 	spin_unlock_irqrestore(&mdp->lock, flags);
2154 
2155 	return ret;
2156 }
2157 
2158 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2159 {
2160 	struct sh_eth_private *mdp = netdev_priv(ndev);
2161 	return mdp->msg_enable;
2162 }
2163 
2164 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2165 {
2166 	struct sh_eth_private *mdp = netdev_priv(ndev);
2167 	mdp->msg_enable = value;
2168 }
2169 
2170 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2171 	"rx_current", "tx_current",
2172 	"rx_dirty", "tx_dirty",
2173 };
2174 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2175 
2176 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2177 {
2178 	switch (sset) {
2179 	case ETH_SS_STATS:
2180 		return SH_ETH_STATS_LEN;
2181 	default:
2182 		return -EOPNOTSUPP;
2183 	}
2184 }
2185 
2186 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2187 				     struct ethtool_stats *stats, u64 *data)
2188 {
2189 	struct sh_eth_private *mdp = netdev_priv(ndev);
2190 	int i = 0;
2191 
2192 	/* device-specific stats */
2193 	data[i++] = mdp->cur_rx;
2194 	data[i++] = mdp->cur_tx;
2195 	data[i++] = mdp->dirty_rx;
2196 	data[i++] = mdp->dirty_tx;
2197 }
2198 
2199 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2200 {
2201 	switch (stringset) {
2202 	case ETH_SS_STATS:
2203 		memcpy(data, *sh_eth_gstrings_stats,
2204 		       sizeof(sh_eth_gstrings_stats));
2205 		break;
2206 	}
2207 }
2208 
2209 static void sh_eth_get_ringparam(struct net_device *ndev,
2210 				 struct ethtool_ringparam *ring)
2211 {
2212 	struct sh_eth_private *mdp = netdev_priv(ndev);
2213 
2214 	ring->rx_max_pending = RX_RING_MAX;
2215 	ring->tx_max_pending = TX_RING_MAX;
2216 	ring->rx_pending = mdp->num_rx_ring;
2217 	ring->tx_pending = mdp->num_tx_ring;
2218 }
2219 
2220 static int sh_eth_set_ringparam(struct net_device *ndev,
2221 				struct ethtool_ringparam *ring)
2222 {
2223 	struct sh_eth_private *mdp = netdev_priv(ndev);
2224 	int ret;
2225 
2226 	if (ring->tx_pending > TX_RING_MAX ||
2227 	    ring->rx_pending > RX_RING_MAX ||
2228 	    ring->tx_pending < TX_RING_MIN ||
2229 	    ring->rx_pending < RX_RING_MIN)
2230 		return -EINVAL;
2231 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2232 		return -EINVAL;
2233 
2234 	if (netif_running(ndev)) {
2235 		netif_device_detach(ndev);
2236 		netif_tx_disable(ndev);
2237 
2238 		/* Serialise with the interrupt handler and NAPI, then
2239 		 * disable interrupts.  We have to clear the
2240 		 * irq_enabled flag first to ensure that interrupts
2241 		 * won't be re-enabled.
2242 		 */
2243 		mdp->irq_enabled = false;
2244 		synchronize_irq(ndev->irq);
2245 		napi_synchronize(&mdp->napi);
2246 		sh_eth_write(ndev, 0x0000, EESIPR);
2247 
2248 		sh_eth_dev_exit(ndev);
2249 
2250 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2251 		sh_eth_ring_free(ndev);
2252 	}
2253 
2254 	/* Set new parameters */
2255 	mdp->num_rx_ring = ring->rx_pending;
2256 	mdp->num_tx_ring = ring->tx_pending;
2257 
2258 	if (netif_running(ndev)) {
2259 		ret = sh_eth_ring_init(ndev);
2260 		if (ret < 0) {
2261 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2262 				   __func__);
2263 			return ret;
2264 		}
2265 		ret = sh_eth_dev_init(ndev);
2266 		if (ret < 0) {
2267 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2268 				   __func__);
2269 			return ret;
2270 		}
2271 
2272 		netif_device_attach(ndev);
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2279 {
2280 	struct sh_eth_private *mdp = netdev_priv(ndev);
2281 
2282 	wol->supported = 0;
2283 	wol->wolopts = 0;
2284 
2285 	if (mdp->cd->magic && mdp->clk) {
2286 		wol->supported = WAKE_MAGIC;
2287 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2288 	}
2289 }
2290 
2291 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2292 {
2293 	struct sh_eth_private *mdp = netdev_priv(ndev);
2294 
2295 	if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2296 		return -EOPNOTSUPP;
2297 
2298 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2299 
2300 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2301 
2302 	return 0;
2303 }
2304 
2305 static const struct ethtool_ops sh_eth_ethtool_ops = {
2306 	.get_regs_len	= sh_eth_get_regs_len,
2307 	.get_regs	= sh_eth_get_regs,
2308 	.nway_reset	= sh_eth_nway_reset,
2309 	.get_msglevel	= sh_eth_get_msglevel,
2310 	.set_msglevel	= sh_eth_set_msglevel,
2311 	.get_link	= ethtool_op_get_link,
2312 	.get_strings	= sh_eth_get_strings,
2313 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2314 	.get_sset_count     = sh_eth_get_sset_count,
2315 	.get_ringparam	= sh_eth_get_ringparam,
2316 	.set_ringparam	= sh_eth_set_ringparam,
2317 	.get_link_ksettings = sh_eth_get_link_ksettings,
2318 	.set_link_ksettings = sh_eth_set_link_ksettings,
2319 	.get_wol	= sh_eth_get_wol,
2320 	.set_wol	= sh_eth_set_wol,
2321 };
2322 
2323 /* network device open function */
2324 static int sh_eth_open(struct net_device *ndev)
2325 {
2326 	struct sh_eth_private *mdp = netdev_priv(ndev);
2327 	int ret;
2328 
2329 	pm_runtime_get_sync(&mdp->pdev->dev);
2330 
2331 	napi_enable(&mdp->napi);
2332 
2333 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2334 			  mdp->cd->irq_flags, ndev->name, ndev);
2335 	if (ret) {
2336 		netdev_err(ndev, "Can not assign IRQ number\n");
2337 		goto out_napi_off;
2338 	}
2339 
2340 	/* Descriptor set */
2341 	ret = sh_eth_ring_init(ndev);
2342 	if (ret)
2343 		goto out_free_irq;
2344 
2345 	/* device init */
2346 	ret = sh_eth_dev_init(ndev);
2347 	if (ret)
2348 		goto out_free_irq;
2349 
2350 	/* PHY control start*/
2351 	ret = sh_eth_phy_start(ndev);
2352 	if (ret)
2353 		goto out_free_irq;
2354 
2355 	netif_start_queue(ndev);
2356 
2357 	mdp->is_opened = 1;
2358 
2359 	return ret;
2360 
2361 out_free_irq:
2362 	free_irq(ndev->irq, ndev);
2363 out_napi_off:
2364 	napi_disable(&mdp->napi);
2365 	pm_runtime_put_sync(&mdp->pdev->dev);
2366 	return ret;
2367 }
2368 
2369 /* Timeout function */
2370 static void sh_eth_tx_timeout(struct net_device *ndev)
2371 {
2372 	struct sh_eth_private *mdp = netdev_priv(ndev);
2373 	struct sh_eth_rxdesc *rxdesc;
2374 	int i;
2375 
2376 	netif_stop_queue(ndev);
2377 
2378 	netif_err(mdp, timer, ndev,
2379 		  "transmit timed out, status %8.8x, resetting...\n",
2380 		  sh_eth_read(ndev, EESR));
2381 
2382 	/* tx_errors count up */
2383 	ndev->stats.tx_errors++;
2384 
2385 	/* Free all the skbuffs in the Rx queue. */
2386 	for (i = 0; i < mdp->num_rx_ring; i++) {
2387 		rxdesc = &mdp->rx_ring[i];
2388 		rxdesc->status = cpu_to_le32(0);
2389 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2390 		dev_kfree_skb(mdp->rx_skbuff[i]);
2391 		mdp->rx_skbuff[i] = NULL;
2392 	}
2393 	for (i = 0; i < mdp->num_tx_ring; i++) {
2394 		dev_kfree_skb(mdp->tx_skbuff[i]);
2395 		mdp->tx_skbuff[i] = NULL;
2396 	}
2397 
2398 	/* device init */
2399 	sh_eth_dev_init(ndev);
2400 
2401 	netif_start_queue(ndev);
2402 }
2403 
2404 /* Packet transmit function */
2405 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2406 {
2407 	struct sh_eth_private *mdp = netdev_priv(ndev);
2408 	struct sh_eth_txdesc *txdesc;
2409 	dma_addr_t dma_addr;
2410 	u32 entry;
2411 	unsigned long flags;
2412 
2413 	spin_lock_irqsave(&mdp->lock, flags);
2414 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2415 		if (!sh_eth_txfree(ndev)) {
2416 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2417 			netif_stop_queue(ndev);
2418 			spin_unlock_irqrestore(&mdp->lock, flags);
2419 			return NETDEV_TX_BUSY;
2420 		}
2421 	}
2422 	spin_unlock_irqrestore(&mdp->lock, flags);
2423 
2424 	if (skb_put_padto(skb, ETH_ZLEN))
2425 		return NETDEV_TX_OK;
2426 
2427 	entry = mdp->cur_tx % mdp->num_tx_ring;
2428 	mdp->tx_skbuff[entry] = skb;
2429 	txdesc = &mdp->tx_ring[entry];
2430 	/* soft swap. */
2431 	if (!mdp->cd->hw_swap)
2432 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2433 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2434 				  DMA_TO_DEVICE);
2435 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2436 		kfree_skb(skb);
2437 		return NETDEV_TX_OK;
2438 	}
2439 	txdesc->addr = cpu_to_le32(dma_addr);
2440 	txdesc->len  = cpu_to_le32(skb->len << 16);
2441 
2442 	dma_wmb(); /* TACT bit must be set after all the above writes */
2443 	if (entry >= mdp->num_tx_ring - 1)
2444 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2445 	else
2446 		txdesc->status |= cpu_to_le32(TD_TACT);
2447 
2448 	mdp->cur_tx++;
2449 
2450 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2451 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2452 
2453 	return NETDEV_TX_OK;
2454 }
2455 
2456 /* The statistics registers have write-clear behaviour, which means we
2457  * will lose any increment between the read and write.  We mitigate
2458  * this by only clearing when we read a non-zero value, so we will
2459  * never falsely report a total of zero.
2460  */
2461 static void
2462 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2463 {
2464 	u32 delta = sh_eth_read(ndev, reg);
2465 
2466 	if (delta) {
2467 		*stat += delta;
2468 		sh_eth_write(ndev, 0, reg);
2469 	}
2470 }
2471 
2472 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2473 {
2474 	struct sh_eth_private *mdp = netdev_priv(ndev);
2475 
2476 	if (sh_eth_is_rz_fast_ether(mdp))
2477 		return &ndev->stats;
2478 
2479 	if (!mdp->is_opened)
2480 		return &ndev->stats;
2481 
2482 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2483 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2484 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2485 
2486 	if (sh_eth_is_gether(mdp)) {
2487 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2488 				   CERCR);
2489 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2490 				   CEECR);
2491 	} else {
2492 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2493 				   CNDCR);
2494 	}
2495 
2496 	return &ndev->stats;
2497 }
2498 
2499 /* device close function */
2500 static int sh_eth_close(struct net_device *ndev)
2501 {
2502 	struct sh_eth_private *mdp = netdev_priv(ndev);
2503 
2504 	netif_stop_queue(ndev);
2505 
2506 	/* Serialise with the interrupt handler and NAPI, then disable
2507 	 * interrupts.  We have to clear the irq_enabled flag first to
2508 	 * ensure that interrupts won't be re-enabled.
2509 	 */
2510 	mdp->irq_enabled = false;
2511 	synchronize_irq(ndev->irq);
2512 	napi_disable(&mdp->napi);
2513 	sh_eth_write(ndev, 0x0000, EESIPR);
2514 
2515 	sh_eth_dev_exit(ndev);
2516 
2517 	/* PHY Disconnect */
2518 	if (ndev->phydev) {
2519 		phy_stop(ndev->phydev);
2520 		phy_disconnect(ndev->phydev);
2521 	}
2522 
2523 	free_irq(ndev->irq, ndev);
2524 
2525 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2526 	sh_eth_ring_free(ndev);
2527 
2528 	pm_runtime_put_sync(&mdp->pdev->dev);
2529 
2530 	mdp->is_opened = 0;
2531 
2532 	return 0;
2533 }
2534 
2535 /* ioctl to device function */
2536 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2537 {
2538 	struct phy_device *phydev = ndev->phydev;
2539 
2540 	if (!netif_running(ndev))
2541 		return -EINVAL;
2542 
2543 	if (!phydev)
2544 		return -ENODEV;
2545 
2546 	return phy_mii_ioctl(phydev, rq, cmd);
2547 }
2548 
2549 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2550 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2551 					    int entry)
2552 {
2553 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2554 }
2555 
2556 static u32 sh_eth_tsu_get_post_mask(int entry)
2557 {
2558 	return 0x0f << (28 - ((entry % 8) * 4));
2559 }
2560 
2561 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2562 {
2563 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2564 }
2565 
2566 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2567 					     int entry)
2568 {
2569 	struct sh_eth_private *mdp = netdev_priv(ndev);
2570 	u32 tmp;
2571 	void *reg_offset;
2572 
2573 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2574 	tmp = ioread32(reg_offset);
2575 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2576 }
2577 
2578 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2579 					      int entry)
2580 {
2581 	struct sh_eth_private *mdp = netdev_priv(ndev);
2582 	u32 post_mask, ref_mask, tmp;
2583 	void *reg_offset;
2584 
2585 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2586 	post_mask = sh_eth_tsu_get_post_mask(entry);
2587 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2588 
2589 	tmp = ioread32(reg_offset);
2590 	iowrite32(tmp & ~post_mask, reg_offset);
2591 
2592 	/* If other port enables, the function returns "true" */
2593 	return tmp & ref_mask;
2594 }
2595 
2596 static int sh_eth_tsu_busy(struct net_device *ndev)
2597 {
2598 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2599 	struct sh_eth_private *mdp = netdev_priv(ndev);
2600 
2601 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2602 		udelay(10);
2603 		timeout--;
2604 		if (timeout <= 0) {
2605 			netdev_err(ndev, "%s: timeout\n", __func__);
2606 			return -ETIMEDOUT;
2607 		}
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2614 				  const u8 *addr)
2615 {
2616 	u32 val;
2617 
2618 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2619 	iowrite32(val, reg);
2620 	if (sh_eth_tsu_busy(ndev) < 0)
2621 		return -EBUSY;
2622 
2623 	val = addr[4] << 8 | addr[5];
2624 	iowrite32(val, reg + 4);
2625 	if (sh_eth_tsu_busy(ndev) < 0)
2626 		return -EBUSY;
2627 
2628 	return 0;
2629 }
2630 
2631 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2632 {
2633 	u32 val;
2634 
2635 	val = ioread32(reg);
2636 	addr[0] = (val >> 24) & 0xff;
2637 	addr[1] = (val >> 16) & 0xff;
2638 	addr[2] = (val >> 8) & 0xff;
2639 	addr[3] = val & 0xff;
2640 	val = ioread32(reg + 4);
2641 	addr[4] = (val >> 8) & 0xff;
2642 	addr[5] = val & 0xff;
2643 }
2644 
2645 
2646 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2647 {
2648 	struct sh_eth_private *mdp = netdev_priv(ndev);
2649 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2650 	int i;
2651 	u8 c_addr[ETH_ALEN];
2652 
2653 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2654 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2655 		if (ether_addr_equal(addr, c_addr))
2656 			return i;
2657 	}
2658 
2659 	return -ENOENT;
2660 }
2661 
2662 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2663 {
2664 	u8 blank[ETH_ALEN];
2665 	int entry;
2666 
2667 	memset(blank, 0, sizeof(blank));
2668 	entry = sh_eth_tsu_find_entry(ndev, blank);
2669 	return (entry < 0) ? -ENOMEM : entry;
2670 }
2671 
2672 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2673 					      int entry)
2674 {
2675 	struct sh_eth_private *mdp = netdev_priv(ndev);
2676 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2677 	int ret;
2678 	u8 blank[ETH_ALEN];
2679 
2680 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2681 			 ~(1 << (31 - entry)), TSU_TEN);
2682 
2683 	memset(blank, 0, sizeof(blank));
2684 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2685 	if (ret < 0)
2686 		return ret;
2687 	return 0;
2688 }
2689 
2690 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2691 {
2692 	struct sh_eth_private *mdp = netdev_priv(ndev);
2693 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2694 	int i, ret;
2695 
2696 	if (!mdp->cd->tsu)
2697 		return 0;
2698 
2699 	i = sh_eth_tsu_find_entry(ndev, addr);
2700 	if (i < 0) {
2701 		/* No entry found, create one */
2702 		i = sh_eth_tsu_find_empty(ndev);
2703 		if (i < 0)
2704 			return -ENOMEM;
2705 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2706 		if (ret < 0)
2707 			return ret;
2708 
2709 		/* Enable the entry */
2710 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2711 				 (1 << (31 - i)), TSU_TEN);
2712 	}
2713 
2714 	/* Entry found or created, enable POST */
2715 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2716 
2717 	return 0;
2718 }
2719 
2720 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2721 {
2722 	struct sh_eth_private *mdp = netdev_priv(ndev);
2723 	int i, ret;
2724 
2725 	if (!mdp->cd->tsu)
2726 		return 0;
2727 
2728 	i = sh_eth_tsu_find_entry(ndev, addr);
2729 	if (i) {
2730 		/* Entry found */
2731 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2732 			goto done;
2733 
2734 		/* Disable the entry if both ports was disabled */
2735 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2736 		if (ret < 0)
2737 			return ret;
2738 	}
2739 done:
2740 	return 0;
2741 }
2742 
2743 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2744 {
2745 	struct sh_eth_private *mdp = netdev_priv(ndev);
2746 	int i, ret;
2747 
2748 	if (!mdp->cd->tsu)
2749 		return 0;
2750 
2751 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2752 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2753 			continue;
2754 
2755 		/* Disable the entry if both ports was disabled */
2756 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2757 		if (ret < 0)
2758 			return ret;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2765 {
2766 	struct sh_eth_private *mdp = netdev_priv(ndev);
2767 	u8 addr[ETH_ALEN];
2768 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2769 	int i;
2770 
2771 	if (!mdp->cd->tsu)
2772 		return;
2773 
2774 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2775 		sh_eth_tsu_read_entry(reg_offset, addr);
2776 		if (is_multicast_ether_addr(addr))
2777 			sh_eth_tsu_del_entry(ndev, addr);
2778 	}
2779 }
2780 
2781 /* Update promiscuous flag and multicast filter */
2782 static void sh_eth_set_rx_mode(struct net_device *ndev)
2783 {
2784 	struct sh_eth_private *mdp = netdev_priv(ndev);
2785 	u32 ecmr_bits;
2786 	int mcast_all = 0;
2787 	unsigned long flags;
2788 
2789 	spin_lock_irqsave(&mdp->lock, flags);
2790 	/* Initial condition is MCT = 1, PRM = 0.
2791 	 * Depending on ndev->flags, set PRM or clear MCT
2792 	 */
2793 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2794 	if (mdp->cd->tsu)
2795 		ecmr_bits |= ECMR_MCT;
2796 
2797 	if (!(ndev->flags & IFF_MULTICAST)) {
2798 		sh_eth_tsu_purge_mcast(ndev);
2799 		mcast_all = 1;
2800 	}
2801 	if (ndev->flags & IFF_ALLMULTI) {
2802 		sh_eth_tsu_purge_mcast(ndev);
2803 		ecmr_bits &= ~ECMR_MCT;
2804 		mcast_all = 1;
2805 	}
2806 
2807 	if (ndev->flags & IFF_PROMISC) {
2808 		sh_eth_tsu_purge_all(ndev);
2809 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2810 	} else if (mdp->cd->tsu) {
2811 		struct netdev_hw_addr *ha;
2812 		netdev_for_each_mc_addr(ha, ndev) {
2813 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2814 				continue;
2815 
2816 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2817 				if (!mcast_all) {
2818 					sh_eth_tsu_purge_mcast(ndev);
2819 					ecmr_bits &= ~ECMR_MCT;
2820 					mcast_all = 1;
2821 				}
2822 			}
2823 		}
2824 	}
2825 
2826 	/* update the ethernet mode */
2827 	sh_eth_write(ndev, ecmr_bits, ECMR);
2828 
2829 	spin_unlock_irqrestore(&mdp->lock, flags);
2830 }
2831 
2832 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2833 {
2834 	if (!mdp->port)
2835 		return TSU_VTAG0;
2836 	else
2837 		return TSU_VTAG1;
2838 }
2839 
2840 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2841 				  __be16 proto, u16 vid)
2842 {
2843 	struct sh_eth_private *mdp = netdev_priv(ndev);
2844 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2845 
2846 	if (unlikely(!mdp->cd->tsu))
2847 		return -EPERM;
2848 
2849 	/* No filtering if vid = 0 */
2850 	if (!vid)
2851 		return 0;
2852 
2853 	mdp->vlan_num_ids++;
2854 
2855 	/* The controller has one VLAN tag HW filter. So, if the filter is
2856 	 * already enabled, the driver disables it and the filte
2857 	 */
2858 	if (mdp->vlan_num_ids > 1) {
2859 		/* disable VLAN filter */
2860 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2861 		return 0;
2862 	}
2863 
2864 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2865 			 vtag_reg_index);
2866 
2867 	return 0;
2868 }
2869 
2870 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2871 				   __be16 proto, u16 vid)
2872 {
2873 	struct sh_eth_private *mdp = netdev_priv(ndev);
2874 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2875 
2876 	if (unlikely(!mdp->cd->tsu))
2877 		return -EPERM;
2878 
2879 	/* No filtering if vid = 0 */
2880 	if (!vid)
2881 		return 0;
2882 
2883 	mdp->vlan_num_ids--;
2884 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2885 
2886 	return 0;
2887 }
2888 
2889 /* SuperH's TSU register init function */
2890 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2891 {
2892 	if (sh_eth_is_rz_fast_ether(mdp)) {
2893 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2894 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2895 				 TSU_FWSLC);	/* Enable POST registers */
2896 		return;
2897 	}
2898 
2899 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2900 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2901 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2902 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2903 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2904 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2905 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2906 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2907 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2908 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2909 	if (sh_eth_is_gether(mdp)) {
2910 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2911 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2912 	} else {
2913 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2914 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2915 	}
2916 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2917 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2918 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2919 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2920 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2921 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2922 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2923 }
2924 
2925 /* MDIO bus release function */
2926 static int sh_mdio_release(struct sh_eth_private *mdp)
2927 {
2928 	/* unregister mdio bus */
2929 	mdiobus_unregister(mdp->mii_bus);
2930 
2931 	/* free bitbang info */
2932 	free_mdio_bitbang(mdp->mii_bus);
2933 
2934 	return 0;
2935 }
2936 
2937 /* MDIO bus init function */
2938 static int sh_mdio_init(struct sh_eth_private *mdp,
2939 			struct sh_eth_plat_data *pd)
2940 {
2941 	int ret;
2942 	struct bb_info *bitbang;
2943 	struct platform_device *pdev = mdp->pdev;
2944 	struct device *dev = &mdp->pdev->dev;
2945 
2946 	/* create bit control struct for PHY */
2947 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2948 	if (!bitbang)
2949 		return -ENOMEM;
2950 
2951 	/* bitbang init */
2952 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2953 	bitbang->set_gate = pd->set_mdio_gate;
2954 	bitbang->ctrl.ops = &bb_ops;
2955 
2956 	/* MII controller setting */
2957 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2958 	if (!mdp->mii_bus)
2959 		return -ENOMEM;
2960 
2961 	/* Hook up MII support for ethtool */
2962 	mdp->mii_bus->name = "sh_mii";
2963 	mdp->mii_bus->parent = dev;
2964 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2965 		 pdev->name, pdev->id);
2966 
2967 	/* register MDIO bus */
2968 	if (dev->of_node) {
2969 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2970 	} else {
2971 		if (pd->phy_irq > 0)
2972 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2973 
2974 		ret = mdiobus_register(mdp->mii_bus);
2975 	}
2976 
2977 	if (ret)
2978 		goto out_free_bus;
2979 
2980 	return 0;
2981 
2982 out_free_bus:
2983 	free_mdio_bitbang(mdp->mii_bus);
2984 	return ret;
2985 }
2986 
2987 static const u16 *sh_eth_get_register_offset(int register_type)
2988 {
2989 	const u16 *reg_offset = NULL;
2990 
2991 	switch (register_type) {
2992 	case SH_ETH_REG_GIGABIT:
2993 		reg_offset = sh_eth_offset_gigabit;
2994 		break;
2995 	case SH_ETH_REG_FAST_RZ:
2996 		reg_offset = sh_eth_offset_fast_rz;
2997 		break;
2998 	case SH_ETH_REG_FAST_RCAR:
2999 		reg_offset = sh_eth_offset_fast_rcar;
3000 		break;
3001 	case SH_ETH_REG_FAST_SH4:
3002 		reg_offset = sh_eth_offset_fast_sh4;
3003 		break;
3004 	case SH_ETH_REG_FAST_SH3_SH2:
3005 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3006 		break;
3007 	}
3008 
3009 	return reg_offset;
3010 }
3011 
3012 static const struct net_device_ops sh_eth_netdev_ops = {
3013 	.ndo_open		= sh_eth_open,
3014 	.ndo_stop		= sh_eth_close,
3015 	.ndo_start_xmit		= sh_eth_start_xmit,
3016 	.ndo_get_stats		= sh_eth_get_stats,
3017 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3018 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3019 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3020 	.ndo_validate_addr	= eth_validate_addr,
3021 	.ndo_set_mac_address	= eth_mac_addr,
3022 };
3023 
3024 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3025 	.ndo_open		= sh_eth_open,
3026 	.ndo_stop		= sh_eth_close,
3027 	.ndo_start_xmit		= sh_eth_start_xmit,
3028 	.ndo_get_stats		= sh_eth_get_stats,
3029 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3030 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3031 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3032 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3033 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3034 	.ndo_validate_addr	= eth_validate_addr,
3035 	.ndo_set_mac_address	= eth_mac_addr,
3036 };
3037 
3038 #ifdef CONFIG_OF
3039 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3040 {
3041 	struct device_node *np = dev->of_node;
3042 	struct sh_eth_plat_data *pdata;
3043 	const char *mac_addr;
3044 
3045 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3046 	if (!pdata)
3047 		return NULL;
3048 
3049 	pdata->phy_interface = of_get_phy_mode(np);
3050 
3051 	mac_addr = of_get_mac_address(np);
3052 	if (mac_addr)
3053 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3054 
3055 	pdata->no_ether_link =
3056 		of_property_read_bool(np, "renesas,no-ether-link");
3057 	pdata->ether_link_active_low =
3058 		of_property_read_bool(np, "renesas,ether-link-active-low");
3059 
3060 	return pdata;
3061 }
3062 
3063 static const struct of_device_id sh_eth_match_table[] = {
3064 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3065 	{ .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
3066 	{ .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
3067 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3068 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3069 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3070 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3071 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3072 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3073 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3074 	{ }
3075 };
3076 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3077 #else
3078 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3079 {
3080 	return NULL;
3081 }
3082 #endif
3083 
3084 static int sh_eth_drv_probe(struct platform_device *pdev)
3085 {
3086 	struct resource *res;
3087 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3088 	const struct platform_device_id *id = platform_get_device_id(pdev);
3089 	struct sh_eth_private *mdp;
3090 	struct net_device *ndev;
3091 	int ret, devno;
3092 
3093 	/* get base addr */
3094 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3095 
3096 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3097 	if (!ndev)
3098 		return -ENOMEM;
3099 
3100 	pm_runtime_enable(&pdev->dev);
3101 	pm_runtime_get_sync(&pdev->dev);
3102 
3103 	devno = pdev->id;
3104 	if (devno < 0)
3105 		devno = 0;
3106 
3107 	ret = platform_get_irq(pdev, 0);
3108 	if (ret < 0)
3109 		goto out_release;
3110 	ndev->irq = ret;
3111 
3112 	SET_NETDEV_DEV(ndev, &pdev->dev);
3113 
3114 	mdp = netdev_priv(ndev);
3115 	mdp->num_tx_ring = TX_RING_SIZE;
3116 	mdp->num_rx_ring = RX_RING_SIZE;
3117 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3118 	if (IS_ERR(mdp->addr)) {
3119 		ret = PTR_ERR(mdp->addr);
3120 		goto out_release;
3121 	}
3122 
3123 	/* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3124 	mdp->clk = devm_clk_get(&pdev->dev, NULL);
3125 	if (IS_ERR(mdp->clk))
3126 		mdp->clk = NULL;
3127 
3128 	ndev->base_addr = res->start;
3129 
3130 	spin_lock_init(&mdp->lock);
3131 	mdp->pdev = pdev;
3132 
3133 	if (pdev->dev.of_node)
3134 		pd = sh_eth_parse_dt(&pdev->dev);
3135 	if (!pd) {
3136 		dev_err(&pdev->dev, "no platform data\n");
3137 		ret = -EINVAL;
3138 		goto out_release;
3139 	}
3140 
3141 	/* get PHY ID */
3142 	mdp->phy_id = pd->phy;
3143 	mdp->phy_interface = pd->phy_interface;
3144 	mdp->no_ether_link = pd->no_ether_link;
3145 	mdp->ether_link_active_low = pd->ether_link_active_low;
3146 
3147 	/* set cpu data */
3148 	if (id)
3149 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3150 	else
3151 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3152 
3153 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3154 	if (!mdp->reg_offset) {
3155 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3156 			mdp->cd->register_type);
3157 		ret = -EINVAL;
3158 		goto out_release;
3159 	}
3160 	sh_eth_set_default_cpu_data(mdp->cd);
3161 
3162 	/* set function */
3163 	if (mdp->cd->tsu)
3164 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3165 	else
3166 		ndev->netdev_ops = &sh_eth_netdev_ops;
3167 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3168 	ndev->watchdog_timeo = TX_TIMEOUT;
3169 
3170 	/* debug message level */
3171 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3172 
3173 	/* read and set MAC address */
3174 	read_mac_address(ndev, pd->mac_addr);
3175 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3176 		dev_warn(&pdev->dev,
3177 			 "no valid MAC address supplied, using a random one.\n");
3178 		eth_hw_addr_random(ndev);
3179 	}
3180 
3181 	/* ioremap the TSU registers */
3182 	if (mdp->cd->tsu) {
3183 		struct resource *rtsu;
3184 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3185 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3186 		if (IS_ERR(mdp->tsu_addr)) {
3187 			ret = PTR_ERR(mdp->tsu_addr);
3188 			goto out_release;
3189 		}
3190 		mdp->port = devno % 2;
3191 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3192 	}
3193 
3194 	/* initialize first or needed device */
3195 	if (!devno || pd->needs_init) {
3196 		if (mdp->cd->chip_reset)
3197 			mdp->cd->chip_reset(ndev);
3198 
3199 		if (mdp->cd->tsu) {
3200 			/* TSU init (Init only)*/
3201 			sh_eth_tsu_init(mdp);
3202 		}
3203 	}
3204 
3205 	if (mdp->cd->rmiimode)
3206 		sh_eth_write(ndev, 0x1, RMIIMODE);
3207 
3208 	/* MDIO bus init */
3209 	ret = sh_mdio_init(mdp, pd);
3210 	if (ret) {
3211 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3212 		goto out_release;
3213 	}
3214 
3215 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3216 
3217 	/* network device register */
3218 	ret = register_netdev(ndev);
3219 	if (ret)
3220 		goto out_napi_del;
3221 
3222 	if (mdp->cd->magic && mdp->clk)
3223 		device_set_wakeup_capable(&pdev->dev, 1);
3224 
3225 	/* print device information */
3226 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3227 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3228 
3229 	pm_runtime_put(&pdev->dev);
3230 	platform_set_drvdata(pdev, ndev);
3231 
3232 	return ret;
3233 
3234 out_napi_del:
3235 	netif_napi_del(&mdp->napi);
3236 	sh_mdio_release(mdp);
3237 
3238 out_release:
3239 	/* net_dev free */
3240 	if (ndev)
3241 		free_netdev(ndev);
3242 
3243 	pm_runtime_put(&pdev->dev);
3244 	pm_runtime_disable(&pdev->dev);
3245 	return ret;
3246 }
3247 
3248 static int sh_eth_drv_remove(struct platform_device *pdev)
3249 {
3250 	struct net_device *ndev = platform_get_drvdata(pdev);
3251 	struct sh_eth_private *mdp = netdev_priv(ndev);
3252 
3253 	unregister_netdev(ndev);
3254 	netif_napi_del(&mdp->napi);
3255 	sh_mdio_release(mdp);
3256 	pm_runtime_disable(&pdev->dev);
3257 	free_netdev(ndev);
3258 
3259 	return 0;
3260 }
3261 
3262 #ifdef CONFIG_PM
3263 #ifdef CONFIG_PM_SLEEP
3264 static int sh_eth_wol_setup(struct net_device *ndev)
3265 {
3266 	struct sh_eth_private *mdp = netdev_priv(ndev);
3267 
3268 	/* Only allow ECI interrupts */
3269 	synchronize_irq(ndev->irq);
3270 	napi_disable(&mdp->napi);
3271 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3272 
3273 	/* Enable MagicPacket */
3274 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3275 
3276 	/* Increased clock usage so device won't be suspended */
3277 	clk_enable(mdp->clk);
3278 
3279 	return enable_irq_wake(ndev->irq);
3280 }
3281 
3282 static int sh_eth_wol_restore(struct net_device *ndev)
3283 {
3284 	struct sh_eth_private *mdp = netdev_priv(ndev);
3285 	int ret;
3286 
3287 	napi_enable(&mdp->napi);
3288 
3289 	/* Disable MagicPacket */
3290 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3291 
3292 	/* The device needs to be reset to restore MagicPacket logic
3293 	 * for next wakeup. If we close and open the device it will
3294 	 * both be reset and all registers restored. This is what
3295 	 * happens during suspend and resume without WoL enabled.
3296 	 */
3297 	ret = sh_eth_close(ndev);
3298 	if (ret < 0)
3299 		return ret;
3300 	ret = sh_eth_open(ndev);
3301 	if (ret < 0)
3302 		return ret;
3303 
3304 	/* Restore clock usage count */
3305 	clk_disable(mdp->clk);
3306 
3307 	return disable_irq_wake(ndev->irq);
3308 }
3309 
3310 static int sh_eth_suspend(struct device *dev)
3311 {
3312 	struct net_device *ndev = dev_get_drvdata(dev);
3313 	struct sh_eth_private *mdp = netdev_priv(ndev);
3314 	int ret = 0;
3315 
3316 	if (!netif_running(ndev))
3317 		return 0;
3318 
3319 	netif_device_detach(ndev);
3320 
3321 	if (mdp->wol_enabled)
3322 		ret = sh_eth_wol_setup(ndev);
3323 	else
3324 		ret = sh_eth_close(ndev);
3325 
3326 	return ret;
3327 }
3328 
3329 static int sh_eth_resume(struct device *dev)
3330 {
3331 	struct net_device *ndev = dev_get_drvdata(dev);
3332 	struct sh_eth_private *mdp = netdev_priv(ndev);
3333 	int ret = 0;
3334 
3335 	if (!netif_running(ndev))
3336 		return 0;
3337 
3338 	if (mdp->wol_enabled)
3339 		ret = sh_eth_wol_restore(ndev);
3340 	else
3341 		ret = sh_eth_open(ndev);
3342 
3343 	if (ret < 0)
3344 		return ret;
3345 
3346 	netif_device_attach(ndev);
3347 
3348 	return ret;
3349 }
3350 #endif
3351 
3352 static int sh_eth_runtime_nop(struct device *dev)
3353 {
3354 	/* Runtime PM callback shared between ->runtime_suspend()
3355 	 * and ->runtime_resume(). Simply returns success.
3356 	 *
3357 	 * This driver re-initializes all registers after
3358 	 * pm_runtime_get_sync() anyway so there is no need
3359 	 * to save and restore registers here.
3360 	 */
3361 	return 0;
3362 }
3363 
3364 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3365 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3366 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3367 };
3368 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3369 #else
3370 #define SH_ETH_PM_OPS NULL
3371 #endif
3372 
3373 static struct platform_device_id sh_eth_id_table[] = {
3374 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3375 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3376 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3377 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3378 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3379 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3380 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3381 	{ }
3382 };
3383 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3384 
3385 static struct platform_driver sh_eth_driver = {
3386 	.probe = sh_eth_drv_probe,
3387 	.remove = sh_eth_drv_remove,
3388 	.id_table = sh_eth_id_table,
3389 	.driver = {
3390 		   .name = CARDNAME,
3391 		   .pm = SH_ETH_PM_OPS,
3392 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3393 	},
3394 };
3395 
3396 module_platform_driver(sh_eth_driver);
3397 
3398 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3399 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3400 MODULE_LICENSE("GPL v2");
3401