1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34 
35 #include "sh_eth.h"
36 
37 #define SH_ETH_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	| \
39 		NETIF_MSG_TIMER	| \
40 		NETIF_MSG_RX_ERR| \
41 		NETIF_MSG_TX_ERR)
42 
43 #define SH_ETH_OFFSET_INVALID	((u16)~0)
44 
45 #define SH_ETH_OFFSET_DEFAULTS			\
46 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47 
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 	SH_ETH_OFFSET_DEFAULTS,
50 
51 	[EDSR]		= 0x0000,
52 	[EDMR]		= 0x0400,
53 	[EDTRR]		= 0x0408,
54 	[EDRRR]		= 0x0410,
55 	[EESR]		= 0x0428,
56 	[EESIPR]	= 0x0430,
57 	[TDLAR]		= 0x0010,
58 	[TDFAR]		= 0x0014,
59 	[TDFXR]		= 0x0018,
60 	[TDFFR]		= 0x001c,
61 	[RDLAR]		= 0x0030,
62 	[RDFAR]		= 0x0034,
63 	[RDFXR]		= 0x0038,
64 	[RDFFR]		= 0x003c,
65 	[TRSCER]	= 0x0438,
66 	[RMFCR]		= 0x0440,
67 	[TFTR]		= 0x0448,
68 	[FDR]		= 0x0450,
69 	[RMCR]		= 0x0458,
70 	[RPADIR]	= 0x0460,
71 	[FCFTR]		= 0x0468,
72 	[CSMR]		= 0x04E4,
73 
74 	[ECMR]		= 0x0500,
75 	[ECSR]		= 0x0510,
76 	[ECSIPR]	= 0x0518,
77 	[PIR]		= 0x0520,
78 	[PSR]		= 0x0528,
79 	[PIPR]		= 0x052c,
80 	[RFLR]		= 0x0508,
81 	[APR]		= 0x0554,
82 	[MPR]		= 0x0558,
83 	[PFTCR]		= 0x055c,
84 	[PFRCR]		= 0x0560,
85 	[TPAUSER]	= 0x0564,
86 	[GECMR]		= 0x05b0,
87 	[BCULR]		= 0x05b4,
88 	[MAHR]		= 0x05c0,
89 	[MALR]		= 0x05c8,
90 	[TROCR]		= 0x0700,
91 	[CDCR]		= 0x0708,
92 	[LCCR]		= 0x0710,
93 	[CEFCR]		= 0x0740,
94 	[FRECR]		= 0x0748,
95 	[TSFRCR]	= 0x0750,
96 	[TLFRCR]	= 0x0758,
97 	[RFCR]		= 0x0760,
98 	[CERCR]		= 0x0768,
99 	[CEECR]		= 0x0770,
100 	[MAFCR]		= 0x0778,
101 	[RMII_MII]	= 0x0790,
102 
103 	[ARSTR]		= 0x0000,
104 	[TSU_CTRST]	= 0x0004,
105 	[TSU_FWEN0]	= 0x0010,
106 	[TSU_FWEN1]	= 0x0014,
107 	[TSU_FCM]	= 0x0018,
108 	[TSU_BSYSL0]	= 0x0020,
109 	[TSU_BSYSL1]	= 0x0024,
110 	[TSU_PRISL0]	= 0x0028,
111 	[TSU_PRISL1]	= 0x002c,
112 	[TSU_FWSL0]	= 0x0030,
113 	[TSU_FWSL1]	= 0x0034,
114 	[TSU_FWSLC]	= 0x0038,
115 	[TSU_QTAGM0]	= 0x0040,
116 	[TSU_QTAGM1]	= 0x0044,
117 	[TSU_FWSR]	= 0x0050,
118 	[TSU_FWINMK]	= 0x0054,
119 	[TSU_ADQT0]	= 0x0048,
120 	[TSU_ADQT1]	= 0x004c,
121 	[TSU_VTAG0]	= 0x0058,
122 	[TSU_VTAG1]	= 0x005c,
123 	[TSU_ADSBSY]	= 0x0060,
124 	[TSU_TEN]	= 0x0064,
125 	[TSU_POST1]	= 0x0070,
126 	[TSU_POST2]	= 0x0074,
127 	[TSU_POST3]	= 0x0078,
128 	[TSU_POST4]	= 0x007c,
129 	[TSU_ADRH0]	= 0x0100,
130 
131 	[TXNLCR0]	= 0x0080,
132 	[TXALCR0]	= 0x0084,
133 	[RXNLCR0]	= 0x0088,
134 	[RXALCR0]	= 0x008c,
135 	[FWNLCR0]	= 0x0090,
136 	[FWALCR0]	= 0x0094,
137 	[TXNLCR1]	= 0x00a0,
138 	[TXALCR1]	= 0x00a4,
139 	[RXNLCR1]	= 0x00a8,
140 	[RXALCR1]	= 0x00ac,
141 	[FWNLCR1]	= 0x00b0,
142 	[FWALCR1]	= 0x00b4,
143 };
144 
145 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
146 	SH_ETH_OFFSET_DEFAULTS,
147 
148 	[ECMR]		= 0x0300,
149 	[RFLR]		= 0x0308,
150 	[ECSR]		= 0x0310,
151 	[ECSIPR]	= 0x0318,
152 	[PIR]		= 0x0320,
153 	[PSR]		= 0x0328,
154 	[RDMLR]		= 0x0340,
155 	[IPGR]		= 0x0350,
156 	[APR]		= 0x0354,
157 	[MPR]		= 0x0358,
158 	[RFCF]		= 0x0360,
159 	[TPAUSER]	= 0x0364,
160 	[TPAUSECR]	= 0x0368,
161 	[MAHR]		= 0x03c0,
162 	[MALR]		= 0x03c8,
163 	[TROCR]		= 0x03d0,
164 	[CDCR]		= 0x03d4,
165 	[LCCR]		= 0x03d8,
166 	[CNDCR]		= 0x03dc,
167 	[CEFCR]		= 0x03e4,
168 	[FRECR]		= 0x03e8,
169 	[TSFRCR]	= 0x03ec,
170 	[TLFRCR]	= 0x03f0,
171 	[RFCR]		= 0x03f4,
172 	[MAFCR]		= 0x03f8,
173 
174 	[EDMR]		= 0x0200,
175 	[EDTRR]		= 0x0208,
176 	[EDRRR]		= 0x0210,
177 	[TDLAR]		= 0x0218,
178 	[RDLAR]		= 0x0220,
179 	[EESR]		= 0x0228,
180 	[EESIPR]	= 0x0230,
181 	[TRSCER]	= 0x0238,
182 	[RMFCR]		= 0x0240,
183 	[TFTR]		= 0x0248,
184 	[FDR]		= 0x0250,
185 	[RMCR]		= 0x0258,
186 	[TFUCR]		= 0x0264,
187 	[RFOCR]		= 0x0268,
188 	[RMIIMODE]      = 0x026c,
189 	[FCFTR]		= 0x0270,
190 	[TRIMD]		= 0x027c,
191 };
192 
193 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
194 	SH_ETH_OFFSET_DEFAULTS,
195 
196 	[ECMR]		= 0x0100,
197 	[RFLR]		= 0x0108,
198 	[ECSR]		= 0x0110,
199 	[ECSIPR]	= 0x0118,
200 	[PIR]		= 0x0120,
201 	[PSR]		= 0x0128,
202 	[RDMLR]		= 0x0140,
203 	[IPGR]		= 0x0150,
204 	[APR]		= 0x0154,
205 	[MPR]		= 0x0158,
206 	[TPAUSER]	= 0x0164,
207 	[RFCF]		= 0x0160,
208 	[TPAUSECR]	= 0x0168,
209 	[BCFRR]		= 0x016c,
210 	[MAHR]		= 0x01c0,
211 	[MALR]		= 0x01c8,
212 	[TROCR]		= 0x01d0,
213 	[CDCR]		= 0x01d4,
214 	[LCCR]		= 0x01d8,
215 	[CNDCR]		= 0x01dc,
216 	[CEFCR]		= 0x01e4,
217 	[FRECR]		= 0x01e8,
218 	[TSFRCR]	= 0x01ec,
219 	[TLFRCR]	= 0x01f0,
220 	[RFCR]		= 0x01f4,
221 	[MAFCR]		= 0x01f8,
222 	[RTRATE]	= 0x01fc,
223 
224 	[EDMR]		= 0x0000,
225 	[EDTRR]		= 0x0008,
226 	[EDRRR]		= 0x0010,
227 	[TDLAR]		= 0x0018,
228 	[RDLAR]		= 0x0020,
229 	[EESR]		= 0x0028,
230 	[EESIPR]	= 0x0030,
231 	[TRSCER]	= 0x0038,
232 	[RMFCR]		= 0x0040,
233 	[TFTR]		= 0x0048,
234 	[FDR]		= 0x0050,
235 	[RMCR]		= 0x0058,
236 	[TFUCR]		= 0x0064,
237 	[RFOCR]		= 0x0068,
238 	[FCFTR]		= 0x0070,
239 	[RPADIR]	= 0x0078,
240 	[TRIMD]		= 0x007c,
241 	[RBWAR]		= 0x00c8,
242 	[RDFAR]		= 0x00cc,
243 	[TBRAR]		= 0x00d4,
244 	[TDFAR]		= 0x00d8,
245 };
246 
247 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
248 	SH_ETH_OFFSET_DEFAULTS,
249 
250 	[EDMR]		= 0x0000,
251 	[EDTRR]		= 0x0004,
252 	[EDRRR]		= 0x0008,
253 	[TDLAR]		= 0x000c,
254 	[RDLAR]		= 0x0010,
255 	[EESR]		= 0x0014,
256 	[EESIPR]	= 0x0018,
257 	[TRSCER]	= 0x001c,
258 	[RMFCR]		= 0x0020,
259 	[TFTR]		= 0x0024,
260 	[FDR]		= 0x0028,
261 	[RMCR]		= 0x002c,
262 	[EDOCR]		= 0x0030,
263 	[FCFTR]		= 0x0034,
264 	[RPADIR]	= 0x0038,
265 	[TRIMD]		= 0x003c,
266 	[RBWAR]		= 0x0040,
267 	[RDFAR]		= 0x0044,
268 	[TBRAR]		= 0x004c,
269 	[TDFAR]		= 0x0050,
270 
271 	[ECMR]		= 0x0160,
272 	[ECSR]		= 0x0164,
273 	[ECSIPR]	= 0x0168,
274 	[PIR]		= 0x016c,
275 	[MAHR]		= 0x0170,
276 	[MALR]		= 0x0174,
277 	[RFLR]		= 0x0178,
278 	[PSR]		= 0x017c,
279 	[TROCR]		= 0x0180,
280 	[CDCR]		= 0x0184,
281 	[LCCR]		= 0x0188,
282 	[CNDCR]		= 0x018c,
283 	[CEFCR]		= 0x0194,
284 	[FRECR]		= 0x0198,
285 	[TSFRCR]	= 0x019c,
286 	[TLFRCR]	= 0x01a0,
287 	[RFCR]		= 0x01a4,
288 	[MAFCR]		= 0x01a8,
289 	[IPGR]		= 0x01b4,
290 	[APR]		= 0x01b8,
291 	[MPR]		= 0x01bc,
292 	[TPAUSER]	= 0x01c4,
293 	[BCFR]		= 0x01cc,
294 
295 	[ARSTR]		= 0x0000,
296 	[TSU_CTRST]	= 0x0004,
297 	[TSU_FWEN0]	= 0x0010,
298 	[TSU_FWEN1]	= 0x0014,
299 	[TSU_FCM]	= 0x0018,
300 	[TSU_BSYSL0]	= 0x0020,
301 	[TSU_BSYSL1]	= 0x0024,
302 	[TSU_PRISL0]	= 0x0028,
303 	[TSU_PRISL1]	= 0x002c,
304 	[TSU_FWSL0]	= 0x0030,
305 	[TSU_FWSL1]	= 0x0034,
306 	[TSU_FWSLC]	= 0x0038,
307 	[TSU_QTAGM0]	= 0x0040,
308 	[TSU_QTAGM1]	= 0x0044,
309 	[TSU_ADQT0]	= 0x0048,
310 	[TSU_ADQT1]	= 0x004c,
311 	[TSU_FWSR]	= 0x0050,
312 	[TSU_FWINMK]	= 0x0054,
313 	[TSU_ADSBSY]	= 0x0060,
314 	[TSU_TEN]	= 0x0064,
315 	[TSU_POST1]	= 0x0070,
316 	[TSU_POST2]	= 0x0074,
317 	[TSU_POST3]	= 0x0078,
318 	[TSU_POST4]	= 0x007c,
319 
320 	[TXNLCR0]	= 0x0080,
321 	[TXALCR0]	= 0x0084,
322 	[RXNLCR0]	= 0x0088,
323 	[RXALCR0]	= 0x008c,
324 	[FWNLCR0]	= 0x0090,
325 	[FWALCR0]	= 0x0094,
326 	[TXNLCR1]	= 0x00a0,
327 	[TXALCR1]	= 0x00a4,
328 	[RXNLCR1]	= 0x00a8,
329 	[RXALCR1]	= 0x00ac,
330 	[FWNLCR1]	= 0x00b0,
331 	[FWALCR1]	= 0x00b4,
332 
333 	[TSU_ADRH0]	= 0x0100,
334 };
335 
336 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
337 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
338 
339 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
340 {
341 	struct sh_eth_private *mdp = netdev_priv(ndev);
342 	u16 offset = mdp->reg_offset[enum_index];
343 
344 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
345 		return;
346 
347 	iowrite32(data, mdp->addr + offset);
348 }
349 
350 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
351 {
352 	struct sh_eth_private *mdp = netdev_priv(ndev);
353 	u16 offset = mdp->reg_offset[enum_index];
354 
355 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
356 		return ~0U;
357 
358 	return ioread32(mdp->addr + offset);
359 }
360 
361 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
362 			  u32 set)
363 {
364 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
365 		     enum_index);
366 }
367 
368 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
369 {
370 	return mdp->reg_offset[enum_index];
371 }
372 
373 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
374 			     int enum_index)
375 {
376 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
377 
378 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
379 		return;
380 
381 	iowrite32(data, mdp->tsu_addr + offset);
382 }
383 
384 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
385 {
386 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
387 
388 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
389 		return ~0U;
390 
391 	return ioread32(mdp->tsu_addr + offset);
392 }
393 
394 static void sh_eth_soft_swap(char *src, int len)
395 {
396 #ifdef __LITTLE_ENDIAN
397 	u32 *p = (u32 *)src;
398 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
399 
400 	for (; p < maxp; p++)
401 		*p = swab32(*p);
402 #endif
403 }
404 
405 static void sh_eth_select_mii(struct net_device *ndev)
406 {
407 	struct sh_eth_private *mdp = netdev_priv(ndev);
408 	u32 value;
409 
410 	switch (mdp->phy_interface) {
411 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
412 		value = 0x3;
413 		break;
414 	case PHY_INTERFACE_MODE_GMII:
415 		value = 0x2;
416 		break;
417 	case PHY_INTERFACE_MODE_MII:
418 		value = 0x1;
419 		break;
420 	case PHY_INTERFACE_MODE_RMII:
421 		value = 0x0;
422 		break;
423 	default:
424 		netdev_warn(ndev,
425 			    "PHY interface mode was not setup. Set to MII.\n");
426 		value = 0x1;
427 		break;
428 	}
429 
430 	sh_eth_write(ndev, value, RMII_MII);
431 }
432 
433 static void sh_eth_set_duplex(struct net_device *ndev)
434 {
435 	struct sh_eth_private *mdp = netdev_priv(ndev);
436 
437 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
438 }
439 
440 static void sh_eth_chip_reset(struct net_device *ndev)
441 {
442 	struct sh_eth_private *mdp = netdev_priv(ndev);
443 
444 	/* reset device */
445 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
446 	mdelay(1);
447 }
448 
449 static int sh_eth_soft_reset(struct net_device *ndev)
450 {
451 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
452 	mdelay(3);
453 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
454 
455 	return 0;
456 }
457 
458 static int sh_eth_check_soft_reset(struct net_device *ndev)
459 {
460 	int cnt;
461 
462 	for (cnt = 100; cnt > 0; cnt--) {
463 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
464 			return 0;
465 		mdelay(1);
466 	}
467 
468 	netdev_err(ndev, "Device reset failed\n");
469 	return -ETIMEDOUT;
470 }
471 
472 static int sh_eth_soft_reset_gether(struct net_device *ndev)
473 {
474 	struct sh_eth_private *mdp = netdev_priv(ndev);
475 	int ret;
476 
477 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
478 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
479 
480 	ret = sh_eth_check_soft_reset(ndev);
481 	if (ret)
482 		return ret;
483 
484 	/* Table Init */
485 	sh_eth_write(ndev, 0, TDLAR);
486 	sh_eth_write(ndev, 0, TDFAR);
487 	sh_eth_write(ndev, 0, TDFXR);
488 	sh_eth_write(ndev, 0, TDFFR);
489 	sh_eth_write(ndev, 0, RDLAR);
490 	sh_eth_write(ndev, 0, RDFAR);
491 	sh_eth_write(ndev, 0, RDFXR);
492 	sh_eth_write(ndev, 0, RDFFR);
493 
494 	/* Reset HW CRC register */
495 	if (mdp->cd->csmr)
496 		sh_eth_write(ndev, 0, CSMR);
497 
498 	/* Select MII mode */
499 	if (mdp->cd->select_mii)
500 		sh_eth_select_mii(ndev);
501 
502 	return ret;
503 }
504 
505 static void sh_eth_set_rate_gether(struct net_device *ndev)
506 {
507 	struct sh_eth_private *mdp = netdev_priv(ndev);
508 
509 	if (WARN_ON(!mdp->cd->gecmr))
510 		return;
511 
512 	switch (mdp->speed) {
513 	case 10: /* 10BASE */
514 		sh_eth_write(ndev, GECMR_10, GECMR);
515 		break;
516 	case 100:/* 100BASE */
517 		sh_eth_write(ndev, GECMR_100, GECMR);
518 		break;
519 	case 1000: /* 1000BASE */
520 		sh_eth_write(ndev, GECMR_1000, GECMR);
521 		break;
522 	}
523 }
524 
525 #ifdef CONFIG_OF
526 /* R7S72100 */
527 static struct sh_eth_cpu_data r7s72100_data = {
528 	.soft_reset	= sh_eth_soft_reset_gether,
529 
530 	.chip_reset	= sh_eth_chip_reset,
531 	.set_duplex	= sh_eth_set_duplex,
532 
533 	.register_type	= SH_ETH_REG_GIGABIT,
534 
535 	.edtrr_trns	= EDTRR_TRNS_GETHER,
536 	.ecsr_value	= ECSR_ICD,
537 	.ecsipr_value	= ECSIPR_ICDIP,
538 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
539 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
540 			  EESIPR_ECIIP |
541 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
542 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
543 			  EESIPR_RMAFIP | EESIPR_RRFIP |
544 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
545 			  EESIPR_PREIP | EESIPR_CERFIP,
546 
547 	.tx_check	= EESR_TC1 | EESR_FTC,
548 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
549 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
550 			  EESR_TDE,
551 	.fdr_value	= 0x0000070f,
552 
553 	.no_psr		= 1,
554 	.apr		= 1,
555 	.mpr		= 1,
556 	.tpauser	= 1,
557 	.hw_swap	= 1,
558 	.rpadir		= 1,
559 	.no_trimd	= 1,
560 	.no_ade		= 1,
561 	.xdfar_rw	= 1,
562 	.csmr		= 1,
563 	.rx_csum	= 1,
564 	.tsu		= 1,
565 	.no_tx_cntrs	= 1,
566 };
567 
568 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
569 {
570 	sh_eth_chip_reset(ndev);
571 
572 	sh_eth_select_mii(ndev);
573 }
574 
575 /* R8A7740 */
576 static struct sh_eth_cpu_data r8a7740_data = {
577 	.soft_reset	= sh_eth_soft_reset_gether,
578 
579 	.chip_reset	= sh_eth_chip_reset_r8a7740,
580 	.set_duplex	= sh_eth_set_duplex,
581 	.set_rate	= sh_eth_set_rate_gether,
582 
583 	.register_type	= SH_ETH_REG_GIGABIT,
584 
585 	.edtrr_trns	= EDTRR_TRNS_GETHER,
586 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
587 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
588 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
589 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
590 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
591 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
592 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
593 			  EESIPR_CEEFIP | EESIPR_CELFIP |
594 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
595 			  EESIPR_PREIP | EESIPR_CERFIP,
596 
597 	.tx_check	= EESR_TC1 | EESR_FTC,
598 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
599 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
600 			  EESR_TDE,
601 	.fdr_value	= 0x0000070f,
602 
603 	.apr		= 1,
604 	.mpr		= 1,
605 	.tpauser	= 1,
606 	.gecmr		= 1,
607 	.bculr		= 1,
608 	.hw_swap	= 1,
609 	.rpadir		= 1,
610 	.no_trimd	= 1,
611 	.no_ade		= 1,
612 	.xdfar_rw	= 1,
613 	.csmr		= 1,
614 	.rx_csum	= 1,
615 	.tsu		= 1,
616 	.select_mii	= 1,
617 	.magic		= 1,
618 	.cexcr		= 1,
619 };
620 
621 /* There is CPU dependent code */
622 static void sh_eth_set_rate_rcar(struct net_device *ndev)
623 {
624 	struct sh_eth_private *mdp = netdev_priv(ndev);
625 
626 	switch (mdp->speed) {
627 	case 10: /* 10BASE */
628 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
629 		break;
630 	case 100:/* 100BASE */
631 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
632 		break;
633 	}
634 }
635 
636 /* R-Car Gen1 */
637 static struct sh_eth_cpu_data rcar_gen1_data = {
638 	.soft_reset	= sh_eth_soft_reset,
639 
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_rcar,
642 
643 	.register_type	= SH_ETH_REG_FAST_RCAR,
644 
645 	.edtrr_trns	= EDTRR_TRNS_ETHER,
646 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
647 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
648 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 			  EESIPR_RMAFIP | EESIPR_RRFIP |
652 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
653 			  EESIPR_PREIP | EESIPR_CERFIP,
654 
655 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
656 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 	.fdr_value	= 0x00000f0f,
659 
660 	.apr		= 1,
661 	.mpr		= 1,
662 	.tpauser	= 1,
663 	.hw_swap	= 1,
664 	.no_xdfar	= 1,
665 };
666 
667 /* R-Car Gen2 and RZ/G1 */
668 static struct sh_eth_cpu_data rcar_gen2_data = {
669 	.soft_reset	= sh_eth_soft_reset,
670 
671 	.set_duplex	= sh_eth_set_duplex,
672 	.set_rate	= sh_eth_set_rate_rcar,
673 
674 	.register_type	= SH_ETH_REG_FAST_RCAR,
675 
676 	.edtrr_trns	= EDTRR_TRNS_ETHER,
677 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
678 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
679 			  ECSIPR_MPDIP,
680 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
681 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
682 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
683 			  EESIPR_RMAFIP | EESIPR_RRFIP |
684 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
685 			  EESIPR_PREIP | EESIPR_CERFIP,
686 
687 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
688 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
689 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
690 	.fdr_value	= 0x00000f0f,
691 
692 	.trscer_err_mask = DESC_I_RINT8,
693 
694 	.apr		= 1,
695 	.mpr		= 1,
696 	.tpauser	= 1,
697 	.hw_swap	= 1,
698 	.no_xdfar	= 1,
699 	.rmiimode	= 1,
700 	.magic		= 1,
701 };
702 
703 /* R8A77980 */
704 static struct sh_eth_cpu_data r8a77980_data = {
705 	.soft_reset	= sh_eth_soft_reset_gether,
706 
707 	.set_duplex	= sh_eth_set_duplex,
708 	.set_rate	= sh_eth_set_rate_gether,
709 
710 	.register_type  = SH_ETH_REG_GIGABIT,
711 
712 	.edtrr_trns	= EDTRR_TRNS_GETHER,
713 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
714 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
715 			  ECSIPR_MPDIP,
716 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
717 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
718 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
719 			  EESIPR_RMAFIP | EESIPR_RRFIP |
720 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
721 			  EESIPR_PREIP | EESIPR_CERFIP,
722 
723 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
724 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
725 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
726 			  EESR_TFE | EESR_TDE | EESR_ECI,
727 	.fdr_value	= 0x0000070f,
728 
729 	.apr		= 1,
730 	.mpr		= 1,
731 	.tpauser	= 1,
732 	.gecmr		= 1,
733 	.bculr		= 1,
734 	.hw_swap	= 1,
735 	.nbst		= 1,
736 	.rpadir		= 1,
737 	.no_trimd	= 1,
738 	.no_ade		= 1,
739 	.xdfar_rw	= 1,
740 	.csmr		= 1,
741 	.rx_csum	= 1,
742 	.select_mii	= 1,
743 	.magic		= 1,
744 	.cexcr		= 1,
745 };
746 
747 /* R7S9210 */
748 static struct sh_eth_cpu_data r7s9210_data = {
749 	.soft_reset	= sh_eth_soft_reset,
750 
751 	.set_duplex	= sh_eth_set_duplex,
752 	.set_rate	= sh_eth_set_rate_rcar,
753 
754 	.register_type	= SH_ETH_REG_FAST_SH4,
755 
756 	.edtrr_trns	= EDTRR_TRNS_ETHER,
757 	.ecsr_value	= ECSR_ICD,
758 	.ecsipr_value	= ECSIPR_ICDIP,
759 	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
760 			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
761 			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
762 			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
763 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
764 			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
765 			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
766 
767 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
768 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
769 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
770 
771 	.fdr_value	= 0x0000070f,
772 
773 	.apr		= 1,
774 	.mpr		= 1,
775 	.tpauser	= 1,
776 	.hw_swap	= 1,
777 	.rpadir		= 1,
778 	.no_ade		= 1,
779 	.xdfar_rw	= 1,
780 };
781 #endif /* CONFIG_OF */
782 
783 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
784 {
785 	struct sh_eth_private *mdp = netdev_priv(ndev);
786 
787 	switch (mdp->speed) {
788 	case 10: /* 10BASE */
789 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
790 		break;
791 	case 100:/* 100BASE */
792 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
793 		break;
794 	}
795 }
796 
797 /* SH7724 */
798 static struct sh_eth_cpu_data sh7724_data = {
799 	.soft_reset	= sh_eth_soft_reset,
800 
801 	.set_duplex	= sh_eth_set_duplex,
802 	.set_rate	= sh_eth_set_rate_sh7724,
803 
804 	.register_type	= SH_ETH_REG_FAST_SH4,
805 
806 	.edtrr_trns	= EDTRR_TRNS_ETHER,
807 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
808 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
809 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
810 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
811 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
812 			  EESIPR_RMAFIP | EESIPR_RRFIP |
813 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
814 			  EESIPR_PREIP | EESIPR_CERFIP,
815 
816 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
817 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
818 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
819 
820 	.apr		= 1,
821 	.mpr		= 1,
822 	.tpauser	= 1,
823 	.hw_swap	= 1,
824 	.rpadir		= 1,
825 };
826 
827 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
828 {
829 	struct sh_eth_private *mdp = netdev_priv(ndev);
830 
831 	switch (mdp->speed) {
832 	case 10: /* 10BASE */
833 		sh_eth_write(ndev, 0, RTRATE);
834 		break;
835 	case 100:/* 100BASE */
836 		sh_eth_write(ndev, 1, RTRATE);
837 		break;
838 	}
839 }
840 
841 /* SH7757 */
842 static struct sh_eth_cpu_data sh7757_data = {
843 	.soft_reset	= sh_eth_soft_reset,
844 
845 	.set_duplex	= sh_eth_set_duplex,
846 	.set_rate	= sh_eth_set_rate_sh7757,
847 
848 	.register_type	= SH_ETH_REG_FAST_SH4,
849 
850 	.edtrr_trns	= EDTRR_TRNS_ETHER,
851 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
852 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
853 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
854 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
855 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
856 			  EESIPR_CEEFIP | EESIPR_CELFIP |
857 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
858 			  EESIPR_PREIP | EESIPR_CERFIP,
859 
860 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
861 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
862 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
863 
864 	.irq_flags	= IRQF_SHARED,
865 	.apr		= 1,
866 	.mpr		= 1,
867 	.tpauser	= 1,
868 	.hw_swap	= 1,
869 	.no_ade		= 1,
870 	.rpadir		= 1,
871 	.rtrate		= 1,
872 	.dual_port	= 1,
873 };
874 
875 #define SH_GIGA_ETH_BASE	0xfee00000UL
876 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
877 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
878 static void sh_eth_chip_reset_giga(struct net_device *ndev)
879 {
880 	u32 mahr[2], malr[2];
881 	int i;
882 
883 	/* save MAHR and MALR */
884 	for (i = 0; i < 2; i++) {
885 		malr[i] = ioread32((void *)GIGA_MALR(i));
886 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
887 	}
888 
889 	sh_eth_chip_reset(ndev);
890 
891 	/* restore MAHR and MALR */
892 	for (i = 0; i < 2; i++) {
893 		iowrite32(malr[i], (void *)GIGA_MALR(i));
894 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
895 	}
896 }
897 
898 static void sh_eth_set_rate_giga(struct net_device *ndev)
899 {
900 	struct sh_eth_private *mdp = netdev_priv(ndev);
901 
902 	if (WARN_ON(!mdp->cd->gecmr))
903 		return;
904 
905 	switch (mdp->speed) {
906 	case 10: /* 10BASE */
907 		sh_eth_write(ndev, 0x00000000, GECMR);
908 		break;
909 	case 100:/* 100BASE */
910 		sh_eth_write(ndev, 0x00000010, GECMR);
911 		break;
912 	case 1000: /* 1000BASE */
913 		sh_eth_write(ndev, 0x00000020, GECMR);
914 		break;
915 	}
916 }
917 
918 /* SH7757(GETHERC) */
919 static struct sh_eth_cpu_data sh7757_data_giga = {
920 	.soft_reset	= sh_eth_soft_reset_gether,
921 
922 	.chip_reset	= sh_eth_chip_reset_giga,
923 	.set_duplex	= sh_eth_set_duplex,
924 	.set_rate	= sh_eth_set_rate_giga,
925 
926 	.register_type	= SH_ETH_REG_GIGABIT,
927 
928 	.edtrr_trns	= EDTRR_TRNS_GETHER,
929 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
930 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
931 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
932 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
933 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
934 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
935 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
936 			  EESIPR_CEEFIP | EESIPR_CELFIP |
937 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
938 			  EESIPR_PREIP | EESIPR_CERFIP,
939 
940 	.tx_check	= EESR_TC1 | EESR_FTC,
941 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
942 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
943 			  EESR_TDE,
944 	.fdr_value	= 0x0000072f,
945 
946 	.irq_flags	= IRQF_SHARED,
947 	.apr		= 1,
948 	.mpr		= 1,
949 	.tpauser	= 1,
950 	.gecmr		= 1,
951 	.bculr		= 1,
952 	.hw_swap	= 1,
953 	.rpadir		= 1,
954 	.no_trimd	= 1,
955 	.no_ade		= 1,
956 	.xdfar_rw	= 1,
957 	.tsu		= 1,
958 	.cexcr		= 1,
959 	.dual_port	= 1,
960 };
961 
962 /* SH7734 */
963 static struct sh_eth_cpu_data sh7734_data = {
964 	.soft_reset	= sh_eth_soft_reset_gether,
965 
966 	.chip_reset	= sh_eth_chip_reset,
967 	.set_duplex	= sh_eth_set_duplex,
968 	.set_rate	= sh_eth_set_rate_gether,
969 
970 	.register_type	= SH_ETH_REG_GIGABIT,
971 
972 	.edtrr_trns	= EDTRR_TRNS_GETHER,
973 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
974 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
975 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
976 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
977 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
978 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
979 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
980 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
981 			  EESIPR_PREIP | EESIPR_CERFIP,
982 
983 	.tx_check	= EESR_TC1 | EESR_FTC,
984 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
985 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
986 			  EESR_TDE,
987 
988 	.apr		= 1,
989 	.mpr		= 1,
990 	.tpauser	= 1,
991 	.gecmr		= 1,
992 	.bculr		= 1,
993 	.hw_swap	= 1,
994 	.no_trimd	= 1,
995 	.no_ade		= 1,
996 	.xdfar_rw	= 1,
997 	.tsu		= 1,
998 	.csmr		= 1,
999 	.rx_csum	= 1,
1000 	.select_mii	= 1,
1001 	.magic		= 1,
1002 	.cexcr		= 1,
1003 };
1004 
1005 /* SH7763 */
1006 static struct sh_eth_cpu_data sh7763_data = {
1007 	.soft_reset	= sh_eth_soft_reset_gether,
1008 
1009 	.chip_reset	= sh_eth_chip_reset,
1010 	.set_duplex	= sh_eth_set_duplex,
1011 	.set_rate	= sh_eth_set_rate_gether,
1012 
1013 	.register_type	= SH_ETH_REG_GIGABIT,
1014 
1015 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1016 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1017 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1018 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1019 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1020 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1021 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1022 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1023 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1024 			  EESIPR_PREIP | EESIPR_CERFIP,
1025 
1026 	.tx_check	= EESR_TC1 | EESR_FTC,
1027 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1028 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1029 
1030 	.apr		= 1,
1031 	.mpr		= 1,
1032 	.tpauser	= 1,
1033 	.gecmr		= 1,
1034 	.bculr		= 1,
1035 	.hw_swap	= 1,
1036 	.no_trimd	= 1,
1037 	.no_ade		= 1,
1038 	.xdfar_rw	= 1,
1039 	.tsu		= 1,
1040 	.irq_flags	= IRQF_SHARED,
1041 	.magic		= 1,
1042 	.cexcr		= 1,
1043 	.rx_csum	= 1,
1044 	.dual_port	= 1,
1045 };
1046 
1047 static struct sh_eth_cpu_data sh7619_data = {
1048 	.soft_reset	= sh_eth_soft_reset,
1049 
1050 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1051 
1052 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1053 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1054 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1055 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1056 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1057 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1058 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1059 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1060 			  EESIPR_PREIP | EESIPR_CERFIP,
1061 
1062 	.apr		= 1,
1063 	.mpr		= 1,
1064 	.tpauser	= 1,
1065 	.hw_swap	= 1,
1066 };
1067 
1068 static struct sh_eth_cpu_data sh771x_data = {
1069 	.soft_reset	= sh_eth_soft_reset,
1070 
1071 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1072 
1073 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1074 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1075 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1076 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1077 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1078 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1079 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1080 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1081 			  EESIPR_PREIP | EESIPR_CERFIP,
1082 	.tsu		= 1,
1083 	.dual_port	= 1,
1084 };
1085 
1086 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1087 {
1088 	if (!cd->ecsr_value)
1089 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1090 
1091 	if (!cd->ecsipr_value)
1092 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1093 
1094 	if (!cd->fcftr_value)
1095 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1096 				  DEFAULT_FIFO_F_D_RFD;
1097 
1098 	if (!cd->fdr_value)
1099 		cd->fdr_value = DEFAULT_FDR_INIT;
1100 
1101 	if (!cd->tx_check)
1102 		cd->tx_check = DEFAULT_TX_CHECK;
1103 
1104 	if (!cd->eesr_err_check)
1105 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1106 
1107 	if (!cd->trscer_err_mask)
1108 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1109 }
1110 
1111 static void sh_eth_set_receive_align(struct sk_buff *skb)
1112 {
1113 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1114 
1115 	if (reserve)
1116 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1117 }
1118 
1119 /* Program the hardware MAC address from dev->dev_addr. */
1120 static void update_mac_address(struct net_device *ndev)
1121 {
1122 	sh_eth_write(ndev,
1123 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1124 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1125 	sh_eth_write(ndev,
1126 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1127 }
1128 
1129 /* Get MAC address from SuperH MAC address register
1130  *
1131  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1132  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1133  * When you want use this device, you must set MAC address in bootloader.
1134  *
1135  */
1136 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1137 {
1138 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1139 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1140 	} else {
1141 		u32 mahr = sh_eth_read(ndev, MAHR);
1142 		u32 malr = sh_eth_read(ndev, MALR);
1143 
1144 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1145 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1146 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1147 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1148 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1149 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1150 	}
1151 }
1152 
1153 struct bb_info {
1154 	void (*set_gate)(void *addr);
1155 	struct mdiobb_ctrl ctrl;
1156 	void *addr;
1157 };
1158 
1159 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1160 {
1161 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1162 	u32 pir;
1163 
1164 	if (bitbang->set_gate)
1165 		bitbang->set_gate(bitbang->addr);
1166 
1167 	pir = ioread32(bitbang->addr);
1168 	if (set)
1169 		pir |=  mask;
1170 	else
1171 		pir &= ~mask;
1172 	iowrite32(pir, bitbang->addr);
1173 }
1174 
1175 /* Data I/O pin control */
1176 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1177 {
1178 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1179 }
1180 
1181 /* Set bit data*/
1182 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1183 {
1184 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1185 }
1186 
1187 /* Get bit data*/
1188 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1189 {
1190 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1191 
1192 	if (bitbang->set_gate)
1193 		bitbang->set_gate(bitbang->addr);
1194 
1195 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1196 }
1197 
1198 /* MDC pin control */
1199 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1200 {
1201 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1202 }
1203 
1204 /* mdio bus control struct */
1205 static struct mdiobb_ops bb_ops = {
1206 	.owner = THIS_MODULE,
1207 	.set_mdc = sh_mdc_ctrl,
1208 	.set_mdio_dir = sh_mmd_ctrl,
1209 	.set_mdio_data = sh_set_mdio,
1210 	.get_mdio_data = sh_get_mdio,
1211 };
1212 
1213 /* free Tx skb function */
1214 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1215 {
1216 	struct sh_eth_private *mdp = netdev_priv(ndev);
1217 	struct sh_eth_txdesc *txdesc;
1218 	int free_num = 0;
1219 	int entry;
1220 	bool sent;
1221 
1222 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1223 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1224 		txdesc = &mdp->tx_ring[entry];
1225 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1226 		if (sent_only && !sent)
1227 			break;
1228 		/* TACT bit must be checked before all the following reads */
1229 		dma_rmb();
1230 		netif_info(mdp, tx_done, ndev,
1231 			   "tx entry %d status 0x%08x\n",
1232 			   entry, le32_to_cpu(txdesc->status));
1233 		/* Free the original skb. */
1234 		if (mdp->tx_skbuff[entry]) {
1235 			dma_unmap_single(&mdp->pdev->dev,
1236 					 le32_to_cpu(txdesc->addr),
1237 					 le32_to_cpu(txdesc->len) >> 16,
1238 					 DMA_TO_DEVICE);
1239 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1240 			mdp->tx_skbuff[entry] = NULL;
1241 			free_num++;
1242 		}
1243 		txdesc->status = cpu_to_le32(TD_TFP);
1244 		if (entry >= mdp->num_tx_ring - 1)
1245 			txdesc->status |= cpu_to_le32(TD_TDLE);
1246 
1247 		if (sent) {
1248 			ndev->stats.tx_packets++;
1249 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1250 		}
1251 	}
1252 	return free_num;
1253 }
1254 
1255 /* free skb and descriptor buffer */
1256 static void sh_eth_ring_free(struct net_device *ndev)
1257 {
1258 	struct sh_eth_private *mdp = netdev_priv(ndev);
1259 	int ringsize, i;
1260 
1261 	if (mdp->rx_ring) {
1262 		for (i = 0; i < mdp->num_rx_ring; i++) {
1263 			if (mdp->rx_skbuff[i]) {
1264 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1265 
1266 				dma_unmap_single(&mdp->pdev->dev,
1267 						 le32_to_cpu(rxdesc->addr),
1268 						 ALIGN(mdp->rx_buf_sz, 32),
1269 						 DMA_FROM_DEVICE);
1270 			}
1271 		}
1272 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1273 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1274 				  mdp->rx_desc_dma);
1275 		mdp->rx_ring = NULL;
1276 	}
1277 
1278 	/* Free Rx skb ringbuffer */
1279 	if (mdp->rx_skbuff) {
1280 		for (i = 0; i < mdp->num_rx_ring; i++)
1281 			dev_kfree_skb(mdp->rx_skbuff[i]);
1282 	}
1283 	kfree(mdp->rx_skbuff);
1284 	mdp->rx_skbuff = NULL;
1285 
1286 	if (mdp->tx_ring) {
1287 		sh_eth_tx_free(ndev, false);
1288 
1289 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1290 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1291 				  mdp->tx_desc_dma);
1292 		mdp->tx_ring = NULL;
1293 	}
1294 
1295 	/* Free Tx skb ringbuffer */
1296 	kfree(mdp->tx_skbuff);
1297 	mdp->tx_skbuff = NULL;
1298 }
1299 
1300 /* format skb and descriptor buffer */
1301 static void sh_eth_ring_format(struct net_device *ndev)
1302 {
1303 	struct sh_eth_private *mdp = netdev_priv(ndev);
1304 	int i;
1305 	struct sk_buff *skb;
1306 	struct sh_eth_rxdesc *rxdesc = NULL;
1307 	struct sh_eth_txdesc *txdesc = NULL;
1308 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1309 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1310 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1311 	dma_addr_t dma_addr;
1312 	u32 buf_len;
1313 
1314 	mdp->cur_rx = 0;
1315 	mdp->cur_tx = 0;
1316 	mdp->dirty_rx = 0;
1317 	mdp->dirty_tx = 0;
1318 
1319 	memset(mdp->rx_ring, 0, rx_ringsize);
1320 
1321 	/* build Rx ring buffer */
1322 	for (i = 0; i < mdp->num_rx_ring; i++) {
1323 		/* skb */
1324 		mdp->rx_skbuff[i] = NULL;
1325 		skb = netdev_alloc_skb(ndev, skbuff_size);
1326 		if (skb == NULL)
1327 			break;
1328 		sh_eth_set_receive_align(skb);
1329 
1330 		/* The size of the buffer is a multiple of 32 bytes. */
1331 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1332 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1333 					  DMA_FROM_DEVICE);
1334 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1335 			kfree_skb(skb);
1336 			break;
1337 		}
1338 		mdp->rx_skbuff[i] = skb;
1339 
1340 		/* RX descriptor */
1341 		rxdesc = &mdp->rx_ring[i];
1342 		rxdesc->len = cpu_to_le32(buf_len << 16);
1343 		rxdesc->addr = cpu_to_le32(dma_addr);
1344 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1345 
1346 		/* Rx descriptor address set */
1347 		if (i == 0) {
1348 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1349 			if (mdp->cd->xdfar_rw)
1350 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1351 		}
1352 	}
1353 
1354 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1355 
1356 	/* Mark the last entry as wrapping the ring. */
1357 	if (rxdesc)
1358 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1359 
1360 	memset(mdp->tx_ring, 0, tx_ringsize);
1361 
1362 	/* build Tx ring buffer */
1363 	for (i = 0; i < mdp->num_tx_ring; i++) {
1364 		mdp->tx_skbuff[i] = NULL;
1365 		txdesc = &mdp->tx_ring[i];
1366 		txdesc->status = cpu_to_le32(TD_TFP);
1367 		txdesc->len = cpu_to_le32(0);
1368 		if (i == 0) {
1369 			/* Tx descriptor address set */
1370 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1371 			if (mdp->cd->xdfar_rw)
1372 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1373 		}
1374 	}
1375 
1376 	txdesc->status |= cpu_to_le32(TD_TDLE);
1377 }
1378 
1379 /* Get skb and descriptor buffer */
1380 static int sh_eth_ring_init(struct net_device *ndev)
1381 {
1382 	struct sh_eth_private *mdp = netdev_priv(ndev);
1383 	int rx_ringsize, tx_ringsize;
1384 
1385 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1386 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1387 	 * the first 2 bytes, and +16 gets room for the status word from the
1388 	 * card.
1389 	 */
1390 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1391 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1392 	if (mdp->cd->rpadir)
1393 		mdp->rx_buf_sz += NET_IP_ALIGN;
1394 
1395 	/* Allocate RX and TX skb rings */
1396 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1397 				 GFP_KERNEL);
1398 	if (!mdp->rx_skbuff)
1399 		return -ENOMEM;
1400 
1401 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1402 				 GFP_KERNEL);
1403 	if (!mdp->tx_skbuff)
1404 		goto ring_free;
1405 
1406 	/* Allocate all Rx descriptors. */
1407 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1408 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1409 					  &mdp->rx_desc_dma, GFP_KERNEL);
1410 	if (!mdp->rx_ring)
1411 		goto ring_free;
1412 
1413 	mdp->dirty_rx = 0;
1414 
1415 	/* Allocate all Tx descriptors. */
1416 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1417 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1418 					  &mdp->tx_desc_dma, GFP_KERNEL);
1419 	if (!mdp->tx_ring)
1420 		goto ring_free;
1421 	return 0;
1422 
1423 ring_free:
1424 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1425 	sh_eth_ring_free(ndev);
1426 
1427 	return -ENOMEM;
1428 }
1429 
1430 static int sh_eth_dev_init(struct net_device *ndev)
1431 {
1432 	struct sh_eth_private *mdp = netdev_priv(ndev);
1433 	int ret;
1434 
1435 	/* Soft Reset */
1436 	ret = mdp->cd->soft_reset(ndev);
1437 	if (ret)
1438 		return ret;
1439 
1440 	if (mdp->cd->rmiimode)
1441 		sh_eth_write(ndev, 0x1, RMIIMODE);
1442 
1443 	/* Descriptor format */
1444 	sh_eth_ring_format(ndev);
1445 	if (mdp->cd->rpadir)
1446 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1447 
1448 	/* all sh_eth int mask */
1449 	sh_eth_write(ndev, 0, EESIPR);
1450 
1451 #if defined(__LITTLE_ENDIAN)
1452 	if (mdp->cd->hw_swap)
1453 		sh_eth_write(ndev, EDMR_EL, EDMR);
1454 	else
1455 #endif
1456 		sh_eth_write(ndev, 0, EDMR);
1457 
1458 	/* FIFO size set */
1459 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1460 	sh_eth_write(ndev, 0, TFTR);
1461 
1462 	/* Frame recv control (enable multiple-packets per rx irq) */
1463 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1464 
1465 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1466 
1467 	/* DMA transfer burst mode */
1468 	if (mdp->cd->nbst)
1469 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1470 
1471 	/* Burst cycle count upper-limit */
1472 	if (mdp->cd->bculr)
1473 		sh_eth_write(ndev, 0x800, BCULR);
1474 
1475 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1476 
1477 	if (!mdp->cd->no_trimd)
1478 		sh_eth_write(ndev, 0, TRIMD);
1479 
1480 	/* Recv frame limit set register */
1481 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1482 		     RFLR);
1483 
1484 	sh_eth_modify(ndev, EESR, 0, 0);
1485 	mdp->irq_enabled = true;
1486 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1487 
1488 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1489 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1490 		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1491 		     ECMR_TE | ECMR_RE, ECMR);
1492 
1493 	if (mdp->cd->set_rate)
1494 		mdp->cd->set_rate(ndev);
1495 
1496 	/* E-MAC Status Register clear */
1497 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1498 
1499 	/* E-MAC Interrupt Enable register */
1500 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1501 
1502 	/* Set MAC address */
1503 	update_mac_address(ndev);
1504 
1505 	/* mask reset */
1506 	if (mdp->cd->apr)
1507 		sh_eth_write(ndev, 1, APR);
1508 	if (mdp->cd->mpr)
1509 		sh_eth_write(ndev, 1, MPR);
1510 	if (mdp->cd->tpauser)
1511 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1512 
1513 	/* Setting the Rx mode will start the Rx process. */
1514 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1515 
1516 	return ret;
1517 }
1518 
1519 static void sh_eth_dev_exit(struct net_device *ndev)
1520 {
1521 	struct sh_eth_private *mdp = netdev_priv(ndev);
1522 	int i;
1523 
1524 	/* Deactivate all TX descriptors, so DMA should stop at next
1525 	 * packet boundary if it's currently running
1526 	 */
1527 	for (i = 0; i < mdp->num_tx_ring; i++)
1528 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1529 
1530 	/* Disable TX FIFO egress to MAC */
1531 	sh_eth_rcv_snd_disable(ndev);
1532 
1533 	/* Stop RX DMA at next packet boundary */
1534 	sh_eth_write(ndev, 0, EDRRR);
1535 
1536 	/* Aside from TX DMA, we can't tell when the hardware is
1537 	 * really stopped, so we need to reset to make sure.
1538 	 * Before doing that, wait for long enough to *probably*
1539 	 * finish transmitting the last packet and poll stats.
1540 	 */
1541 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1542 	sh_eth_get_stats(ndev);
1543 	mdp->cd->soft_reset(ndev);
1544 
1545 	/* Set the RMII mode again if required */
1546 	if (mdp->cd->rmiimode)
1547 		sh_eth_write(ndev, 0x1, RMIIMODE);
1548 
1549 	/* Set MAC address again */
1550 	update_mac_address(ndev);
1551 }
1552 
1553 static void sh_eth_rx_csum(struct sk_buff *skb)
1554 {
1555 	u8 *hw_csum;
1556 
1557 	/* The hardware checksum is 2 bytes appended to packet data */
1558 	if (unlikely(skb->len < sizeof(__sum16)))
1559 		return;
1560 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1561 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1562 	skb->ip_summed = CHECKSUM_COMPLETE;
1563 	skb_trim(skb, skb->len - sizeof(__sum16));
1564 }
1565 
1566 /* Packet receive function */
1567 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1568 {
1569 	struct sh_eth_private *mdp = netdev_priv(ndev);
1570 	struct sh_eth_rxdesc *rxdesc;
1571 
1572 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1573 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1574 	int limit;
1575 	struct sk_buff *skb;
1576 	u32 desc_status;
1577 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1578 	dma_addr_t dma_addr;
1579 	u16 pkt_len;
1580 	u32 buf_len;
1581 
1582 	boguscnt = min(boguscnt, *quota);
1583 	limit = boguscnt;
1584 	rxdesc = &mdp->rx_ring[entry];
1585 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1586 		/* RACT bit must be checked before all the following reads */
1587 		dma_rmb();
1588 		desc_status = le32_to_cpu(rxdesc->status);
1589 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1590 
1591 		if (--boguscnt < 0)
1592 			break;
1593 
1594 		netif_info(mdp, rx_status, ndev,
1595 			   "rx entry %d status 0x%08x len %d\n",
1596 			   entry, desc_status, pkt_len);
1597 
1598 		if (!(desc_status & RDFEND))
1599 			ndev->stats.rx_length_errors++;
1600 
1601 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1602 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1603 		 * bit 0. However, in case of the R8A7740 and R7S72100
1604 		 * the RFS bits are from bit 25 to bit 16. So, the
1605 		 * driver needs right shifting by 16.
1606 		 */
1607 		if (mdp->cd->csmr)
1608 			desc_status >>= 16;
1609 
1610 		skb = mdp->rx_skbuff[entry];
1611 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1612 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1613 			ndev->stats.rx_errors++;
1614 			if (desc_status & RD_RFS1)
1615 				ndev->stats.rx_crc_errors++;
1616 			if (desc_status & RD_RFS2)
1617 				ndev->stats.rx_frame_errors++;
1618 			if (desc_status & RD_RFS3)
1619 				ndev->stats.rx_length_errors++;
1620 			if (desc_status & RD_RFS4)
1621 				ndev->stats.rx_length_errors++;
1622 			if (desc_status & RD_RFS6)
1623 				ndev->stats.rx_missed_errors++;
1624 			if (desc_status & RD_RFS10)
1625 				ndev->stats.rx_over_errors++;
1626 		} else	if (skb) {
1627 			dma_addr = le32_to_cpu(rxdesc->addr);
1628 			if (!mdp->cd->hw_swap)
1629 				sh_eth_soft_swap(
1630 					phys_to_virt(ALIGN(dma_addr, 4)),
1631 					pkt_len + 2);
1632 			mdp->rx_skbuff[entry] = NULL;
1633 			if (mdp->cd->rpadir)
1634 				skb_reserve(skb, NET_IP_ALIGN);
1635 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1636 					 ALIGN(mdp->rx_buf_sz, 32),
1637 					 DMA_FROM_DEVICE);
1638 			skb_put(skb, pkt_len);
1639 			skb->protocol = eth_type_trans(skb, ndev);
1640 			if (ndev->features & NETIF_F_RXCSUM)
1641 				sh_eth_rx_csum(skb);
1642 			netif_receive_skb(skb);
1643 			ndev->stats.rx_packets++;
1644 			ndev->stats.rx_bytes += pkt_len;
1645 			if (desc_status & RD_RFS8)
1646 				ndev->stats.multicast++;
1647 		}
1648 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1649 		rxdesc = &mdp->rx_ring[entry];
1650 	}
1651 
1652 	/* Refill the Rx ring buffers. */
1653 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1654 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1655 		rxdesc = &mdp->rx_ring[entry];
1656 		/* The size of the buffer is 32 byte boundary. */
1657 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1658 		rxdesc->len = cpu_to_le32(buf_len << 16);
1659 
1660 		if (mdp->rx_skbuff[entry] == NULL) {
1661 			skb = netdev_alloc_skb(ndev, skbuff_size);
1662 			if (skb == NULL)
1663 				break;	/* Better luck next round. */
1664 			sh_eth_set_receive_align(skb);
1665 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1666 						  buf_len, DMA_FROM_DEVICE);
1667 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1668 				kfree_skb(skb);
1669 				break;
1670 			}
1671 			mdp->rx_skbuff[entry] = skb;
1672 
1673 			skb_checksum_none_assert(skb);
1674 			rxdesc->addr = cpu_to_le32(dma_addr);
1675 		}
1676 		dma_wmb(); /* RACT bit must be set after all the above writes */
1677 		if (entry >= mdp->num_rx_ring - 1)
1678 			rxdesc->status |=
1679 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1680 		else
1681 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1682 	}
1683 
1684 	/* Restart Rx engine if stopped. */
1685 	/* If we don't need to check status, don't. -KDU */
1686 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1687 		/* fix the values for the next receiving if RDE is set */
1688 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1689 			u32 count = (sh_eth_read(ndev, RDFAR) -
1690 				     sh_eth_read(ndev, RDLAR)) >> 4;
1691 
1692 			mdp->cur_rx = count;
1693 			mdp->dirty_rx = count;
1694 		}
1695 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1696 	}
1697 
1698 	*quota -= limit - boguscnt - 1;
1699 
1700 	return *quota <= 0;
1701 }
1702 
1703 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1704 {
1705 	/* disable tx and rx */
1706 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1707 }
1708 
1709 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1710 {
1711 	/* enable tx and rx */
1712 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1713 }
1714 
1715 /* E-MAC interrupt handler */
1716 static void sh_eth_emac_interrupt(struct net_device *ndev)
1717 {
1718 	struct sh_eth_private *mdp = netdev_priv(ndev);
1719 	u32 felic_stat;
1720 	u32 link_stat;
1721 
1722 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1723 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1724 	if (felic_stat & ECSR_ICD)
1725 		ndev->stats.tx_carrier_errors++;
1726 	if (felic_stat & ECSR_MPD)
1727 		pm_wakeup_event(&mdp->pdev->dev, 0);
1728 	if (felic_stat & ECSR_LCHNG) {
1729 		/* Link Changed */
1730 		if (mdp->cd->no_psr || mdp->no_ether_link)
1731 			return;
1732 		link_stat = sh_eth_read(ndev, PSR);
1733 		if (mdp->ether_link_active_low)
1734 			link_stat = ~link_stat;
1735 		if (!(link_stat & PHY_ST_LINK)) {
1736 			sh_eth_rcv_snd_disable(ndev);
1737 		} else {
1738 			/* Link Up */
1739 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1740 			/* clear int */
1741 			sh_eth_modify(ndev, ECSR, 0, 0);
1742 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1743 			/* enable tx and rx */
1744 			sh_eth_rcv_snd_enable(ndev);
1745 		}
1746 	}
1747 }
1748 
1749 /* error control function */
1750 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1751 {
1752 	struct sh_eth_private *mdp = netdev_priv(ndev);
1753 	u32 mask;
1754 
1755 	if (intr_status & EESR_TWB) {
1756 		/* Unused write back interrupt */
1757 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1758 			ndev->stats.tx_aborted_errors++;
1759 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1760 		}
1761 	}
1762 
1763 	if (intr_status & EESR_RABT) {
1764 		/* Receive Abort int */
1765 		if (intr_status & EESR_RFRMER) {
1766 			/* Receive Frame Overflow int */
1767 			ndev->stats.rx_frame_errors++;
1768 		}
1769 	}
1770 
1771 	if (intr_status & EESR_TDE) {
1772 		/* Transmit Descriptor Empty int */
1773 		ndev->stats.tx_fifo_errors++;
1774 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1775 	}
1776 
1777 	if (intr_status & EESR_TFE) {
1778 		/* FIFO under flow */
1779 		ndev->stats.tx_fifo_errors++;
1780 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1781 	}
1782 
1783 	if (intr_status & EESR_RDE) {
1784 		/* Receive Descriptor Empty int */
1785 		ndev->stats.rx_over_errors++;
1786 	}
1787 
1788 	if (intr_status & EESR_RFE) {
1789 		/* Receive FIFO Overflow int */
1790 		ndev->stats.rx_fifo_errors++;
1791 	}
1792 
1793 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1794 		/* Address Error */
1795 		ndev->stats.tx_fifo_errors++;
1796 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1797 	}
1798 
1799 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1800 	if (mdp->cd->no_ade)
1801 		mask &= ~EESR_ADE;
1802 	if (intr_status & mask) {
1803 		/* Tx error */
1804 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1805 
1806 		/* dmesg */
1807 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1808 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1809 			   (u32)ndev->state, edtrr);
1810 		/* dirty buffer free */
1811 		sh_eth_tx_free(ndev, true);
1812 
1813 		/* SH7712 BUG */
1814 		if (edtrr ^ mdp->cd->edtrr_trns) {
1815 			/* tx dma start */
1816 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1817 		}
1818 		/* wakeup */
1819 		netif_wake_queue(ndev);
1820 	}
1821 }
1822 
1823 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1824 {
1825 	struct net_device *ndev = netdev;
1826 	struct sh_eth_private *mdp = netdev_priv(ndev);
1827 	struct sh_eth_cpu_data *cd = mdp->cd;
1828 	irqreturn_t ret = IRQ_NONE;
1829 	u32 intr_status, intr_enable;
1830 
1831 	spin_lock(&mdp->lock);
1832 
1833 	/* Get interrupt status */
1834 	intr_status = sh_eth_read(ndev, EESR);
1835 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1836 	 * enabled since it's the one that  comes  thru regardless of the mask,
1837 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1838 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1839 	 * bit...
1840 	 */
1841 	intr_enable = sh_eth_read(ndev, EESIPR);
1842 	intr_status &= intr_enable | EESIPR_ECIIP;
1843 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1844 			   cd->eesr_err_check))
1845 		ret = IRQ_HANDLED;
1846 	else
1847 		goto out;
1848 
1849 	if (unlikely(!mdp->irq_enabled)) {
1850 		sh_eth_write(ndev, 0, EESIPR);
1851 		goto out;
1852 	}
1853 
1854 	if (intr_status & EESR_RX_CHECK) {
1855 		if (napi_schedule_prep(&mdp->napi)) {
1856 			/* Mask Rx interrupts */
1857 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1858 				     EESIPR);
1859 			__napi_schedule(&mdp->napi);
1860 		} else {
1861 			netdev_warn(ndev,
1862 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1863 				    intr_status, intr_enable);
1864 		}
1865 	}
1866 
1867 	/* Tx Check */
1868 	if (intr_status & cd->tx_check) {
1869 		/* Clear Tx interrupts */
1870 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1871 
1872 		sh_eth_tx_free(ndev, true);
1873 		netif_wake_queue(ndev);
1874 	}
1875 
1876 	/* E-MAC interrupt */
1877 	if (intr_status & EESR_ECI)
1878 		sh_eth_emac_interrupt(ndev);
1879 
1880 	if (intr_status & cd->eesr_err_check) {
1881 		/* Clear error interrupts */
1882 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1883 
1884 		sh_eth_error(ndev, intr_status);
1885 	}
1886 
1887 out:
1888 	spin_unlock(&mdp->lock);
1889 
1890 	return ret;
1891 }
1892 
1893 static int sh_eth_poll(struct napi_struct *napi, int budget)
1894 {
1895 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1896 						  napi);
1897 	struct net_device *ndev = napi->dev;
1898 	int quota = budget;
1899 	u32 intr_status;
1900 
1901 	for (;;) {
1902 		intr_status = sh_eth_read(ndev, EESR);
1903 		if (!(intr_status & EESR_RX_CHECK))
1904 			break;
1905 		/* Clear Rx interrupts */
1906 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1907 
1908 		if (sh_eth_rx(ndev, intr_status, &quota))
1909 			goto out;
1910 	}
1911 
1912 	napi_complete(napi);
1913 
1914 	/* Reenable Rx interrupts */
1915 	if (mdp->irq_enabled)
1916 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1917 out:
1918 	return budget - quota;
1919 }
1920 
1921 /* PHY state control function */
1922 static void sh_eth_adjust_link(struct net_device *ndev)
1923 {
1924 	struct sh_eth_private *mdp = netdev_priv(ndev);
1925 	struct phy_device *phydev = ndev->phydev;
1926 	unsigned long flags;
1927 	int new_state = 0;
1928 
1929 	spin_lock_irqsave(&mdp->lock, flags);
1930 
1931 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1932 	if (mdp->cd->no_psr || mdp->no_ether_link)
1933 		sh_eth_rcv_snd_disable(ndev);
1934 
1935 	if (phydev->link) {
1936 		if (phydev->duplex != mdp->duplex) {
1937 			new_state = 1;
1938 			mdp->duplex = phydev->duplex;
1939 			if (mdp->cd->set_duplex)
1940 				mdp->cd->set_duplex(ndev);
1941 		}
1942 
1943 		if (phydev->speed != mdp->speed) {
1944 			new_state = 1;
1945 			mdp->speed = phydev->speed;
1946 			if (mdp->cd->set_rate)
1947 				mdp->cd->set_rate(ndev);
1948 		}
1949 		if (!mdp->link) {
1950 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1951 			new_state = 1;
1952 			mdp->link = phydev->link;
1953 		}
1954 	} else if (mdp->link) {
1955 		new_state = 1;
1956 		mdp->link = 0;
1957 		mdp->speed = 0;
1958 		mdp->duplex = -1;
1959 	}
1960 
1961 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1962 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1963 		sh_eth_rcv_snd_enable(ndev);
1964 
1965 	spin_unlock_irqrestore(&mdp->lock, flags);
1966 
1967 	if (new_state && netif_msg_link(mdp))
1968 		phy_print_status(phydev);
1969 }
1970 
1971 /* PHY init function */
1972 static int sh_eth_phy_init(struct net_device *ndev)
1973 {
1974 	struct device_node *np = ndev->dev.parent->of_node;
1975 	struct sh_eth_private *mdp = netdev_priv(ndev);
1976 	struct phy_device *phydev;
1977 
1978 	mdp->link = 0;
1979 	mdp->speed = 0;
1980 	mdp->duplex = -1;
1981 
1982 	/* Try connect to PHY */
1983 	if (np) {
1984 		struct device_node *pn;
1985 
1986 		pn = of_parse_phandle(np, "phy-handle", 0);
1987 		phydev = of_phy_connect(ndev, pn,
1988 					sh_eth_adjust_link, 0,
1989 					mdp->phy_interface);
1990 
1991 		of_node_put(pn);
1992 		if (!phydev)
1993 			phydev = ERR_PTR(-ENOENT);
1994 	} else {
1995 		char phy_id[MII_BUS_ID_SIZE + 3];
1996 
1997 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1998 			 mdp->mii_bus->id, mdp->phy_id);
1999 
2000 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2001 				     mdp->phy_interface);
2002 	}
2003 
2004 	if (IS_ERR(phydev)) {
2005 		netdev_err(ndev, "failed to connect PHY\n");
2006 		return PTR_ERR(phydev);
2007 	}
2008 
2009 	/* mask with MAC supported features */
2010 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2011 		int err = phy_set_max_speed(phydev, SPEED_100);
2012 		if (err) {
2013 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2014 			phy_disconnect(phydev);
2015 			return err;
2016 		}
2017 	}
2018 
2019 	phy_attached_info(phydev);
2020 
2021 	return 0;
2022 }
2023 
2024 /* PHY control start function */
2025 static int sh_eth_phy_start(struct net_device *ndev)
2026 {
2027 	int ret;
2028 
2029 	ret = sh_eth_phy_init(ndev);
2030 	if (ret)
2031 		return ret;
2032 
2033 	phy_start(ndev->phydev);
2034 
2035 	return 0;
2036 }
2037 
2038 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2039  * version must be bumped as well.  Just adding registers up to that
2040  * limit is fine, as long as the existing register indices don't
2041  * change.
2042  */
2043 #define SH_ETH_REG_DUMP_VERSION		1
2044 #define SH_ETH_REG_DUMP_MAX_REGS	256
2045 
2046 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2047 {
2048 	struct sh_eth_private *mdp = netdev_priv(ndev);
2049 	struct sh_eth_cpu_data *cd = mdp->cd;
2050 	u32 *valid_map;
2051 	size_t len;
2052 
2053 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2054 
2055 	/* Dump starts with a bitmap that tells ethtool which
2056 	 * registers are defined for this chip.
2057 	 */
2058 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2059 	if (buf) {
2060 		valid_map = buf;
2061 		buf += len;
2062 	} else {
2063 		valid_map = NULL;
2064 	}
2065 
2066 	/* Add a register to the dump, if it has a defined offset.
2067 	 * This automatically skips most undefined registers, but for
2068 	 * some it is also necessary to check a capability flag in
2069 	 * struct sh_eth_cpu_data.
2070 	 */
2071 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2072 #define add_reg_from(reg, read_expr) do {				\
2073 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2074 			if (buf) {					\
2075 				mark_reg_valid(reg);			\
2076 				*buf++ = read_expr;			\
2077 			}						\
2078 			++len;						\
2079 		}							\
2080 	} while (0)
2081 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2082 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2083 
2084 	add_reg(EDSR);
2085 	add_reg(EDMR);
2086 	add_reg(EDTRR);
2087 	add_reg(EDRRR);
2088 	add_reg(EESR);
2089 	add_reg(EESIPR);
2090 	add_reg(TDLAR);
2091 	if (!cd->no_xdfar)
2092 		add_reg(TDFAR);
2093 	add_reg(TDFXR);
2094 	add_reg(TDFFR);
2095 	add_reg(RDLAR);
2096 	if (!cd->no_xdfar)
2097 		add_reg(RDFAR);
2098 	add_reg(RDFXR);
2099 	add_reg(RDFFR);
2100 	add_reg(TRSCER);
2101 	add_reg(RMFCR);
2102 	add_reg(TFTR);
2103 	add_reg(FDR);
2104 	add_reg(RMCR);
2105 	add_reg(TFUCR);
2106 	add_reg(RFOCR);
2107 	if (cd->rmiimode)
2108 		add_reg(RMIIMODE);
2109 	add_reg(FCFTR);
2110 	if (cd->rpadir)
2111 		add_reg(RPADIR);
2112 	if (!cd->no_trimd)
2113 		add_reg(TRIMD);
2114 	add_reg(ECMR);
2115 	add_reg(ECSR);
2116 	add_reg(ECSIPR);
2117 	add_reg(PIR);
2118 	if (!cd->no_psr)
2119 		add_reg(PSR);
2120 	add_reg(RDMLR);
2121 	add_reg(RFLR);
2122 	add_reg(IPGR);
2123 	if (cd->apr)
2124 		add_reg(APR);
2125 	if (cd->mpr)
2126 		add_reg(MPR);
2127 	add_reg(RFCR);
2128 	add_reg(RFCF);
2129 	if (cd->tpauser)
2130 		add_reg(TPAUSER);
2131 	add_reg(TPAUSECR);
2132 	if (cd->gecmr)
2133 		add_reg(GECMR);
2134 	if (cd->bculr)
2135 		add_reg(BCULR);
2136 	add_reg(MAHR);
2137 	add_reg(MALR);
2138 	if (!cd->no_tx_cntrs) {
2139 		add_reg(TROCR);
2140 		add_reg(CDCR);
2141 		add_reg(LCCR);
2142 		add_reg(CNDCR);
2143 	}
2144 	add_reg(CEFCR);
2145 	add_reg(FRECR);
2146 	add_reg(TSFRCR);
2147 	add_reg(TLFRCR);
2148 	if (cd->cexcr) {
2149 		add_reg(CERCR);
2150 		add_reg(CEECR);
2151 	}
2152 	add_reg(MAFCR);
2153 	if (cd->rtrate)
2154 		add_reg(RTRATE);
2155 	if (cd->csmr)
2156 		add_reg(CSMR);
2157 	if (cd->select_mii)
2158 		add_reg(RMII_MII);
2159 	if (cd->tsu) {
2160 		add_tsu_reg(ARSTR);
2161 		add_tsu_reg(TSU_CTRST);
2162 		if (cd->dual_port) {
2163 			add_tsu_reg(TSU_FWEN0);
2164 			add_tsu_reg(TSU_FWEN1);
2165 			add_tsu_reg(TSU_FCM);
2166 			add_tsu_reg(TSU_BSYSL0);
2167 			add_tsu_reg(TSU_BSYSL1);
2168 			add_tsu_reg(TSU_PRISL0);
2169 			add_tsu_reg(TSU_PRISL1);
2170 			add_tsu_reg(TSU_FWSL0);
2171 			add_tsu_reg(TSU_FWSL1);
2172 		}
2173 		add_tsu_reg(TSU_FWSLC);
2174 		if (cd->dual_port) {
2175 			add_tsu_reg(TSU_QTAGM0);
2176 			add_tsu_reg(TSU_QTAGM1);
2177 			add_tsu_reg(TSU_FWSR);
2178 			add_tsu_reg(TSU_FWINMK);
2179 			add_tsu_reg(TSU_ADQT0);
2180 			add_tsu_reg(TSU_ADQT1);
2181 			add_tsu_reg(TSU_VTAG0);
2182 			add_tsu_reg(TSU_VTAG1);
2183 		}
2184 		add_tsu_reg(TSU_ADSBSY);
2185 		add_tsu_reg(TSU_TEN);
2186 		add_tsu_reg(TSU_POST1);
2187 		add_tsu_reg(TSU_POST2);
2188 		add_tsu_reg(TSU_POST3);
2189 		add_tsu_reg(TSU_POST4);
2190 		/* This is the start of a table, not just a single register. */
2191 		if (buf) {
2192 			unsigned int i;
2193 
2194 			mark_reg_valid(TSU_ADRH0);
2195 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2196 				*buf++ = ioread32(mdp->tsu_addr +
2197 						  mdp->reg_offset[TSU_ADRH0] +
2198 						  i * 4);
2199 		}
2200 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2201 	}
2202 
2203 #undef mark_reg_valid
2204 #undef add_reg_from
2205 #undef add_reg
2206 #undef add_tsu_reg
2207 
2208 	return len * 4;
2209 }
2210 
2211 static int sh_eth_get_regs_len(struct net_device *ndev)
2212 {
2213 	return __sh_eth_get_regs(ndev, NULL);
2214 }
2215 
2216 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2217 			    void *buf)
2218 {
2219 	struct sh_eth_private *mdp = netdev_priv(ndev);
2220 
2221 	regs->version = SH_ETH_REG_DUMP_VERSION;
2222 
2223 	pm_runtime_get_sync(&mdp->pdev->dev);
2224 	__sh_eth_get_regs(ndev, buf);
2225 	pm_runtime_put_sync(&mdp->pdev->dev);
2226 }
2227 
2228 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2229 {
2230 	struct sh_eth_private *mdp = netdev_priv(ndev);
2231 	return mdp->msg_enable;
2232 }
2233 
2234 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2235 {
2236 	struct sh_eth_private *mdp = netdev_priv(ndev);
2237 	mdp->msg_enable = value;
2238 }
2239 
2240 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2241 	"rx_current", "tx_current",
2242 	"rx_dirty", "tx_dirty",
2243 };
2244 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2245 
2246 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2247 {
2248 	switch (sset) {
2249 	case ETH_SS_STATS:
2250 		return SH_ETH_STATS_LEN;
2251 	default:
2252 		return -EOPNOTSUPP;
2253 	}
2254 }
2255 
2256 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2257 				     struct ethtool_stats *stats, u64 *data)
2258 {
2259 	struct sh_eth_private *mdp = netdev_priv(ndev);
2260 	int i = 0;
2261 
2262 	/* device-specific stats */
2263 	data[i++] = mdp->cur_rx;
2264 	data[i++] = mdp->cur_tx;
2265 	data[i++] = mdp->dirty_rx;
2266 	data[i++] = mdp->dirty_tx;
2267 }
2268 
2269 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2270 {
2271 	switch (stringset) {
2272 	case ETH_SS_STATS:
2273 		memcpy(data, *sh_eth_gstrings_stats,
2274 		       sizeof(sh_eth_gstrings_stats));
2275 		break;
2276 	}
2277 }
2278 
2279 static void sh_eth_get_ringparam(struct net_device *ndev,
2280 				 struct ethtool_ringparam *ring)
2281 {
2282 	struct sh_eth_private *mdp = netdev_priv(ndev);
2283 
2284 	ring->rx_max_pending = RX_RING_MAX;
2285 	ring->tx_max_pending = TX_RING_MAX;
2286 	ring->rx_pending = mdp->num_rx_ring;
2287 	ring->tx_pending = mdp->num_tx_ring;
2288 }
2289 
2290 static int sh_eth_set_ringparam(struct net_device *ndev,
2291 				struct ethtool_ringparam *ring)
2292 {
2293 	struct sh_eth_private *mdp = netdev_priv(ndev);
2294 	int ret;
2295 
2296 	if (ring->tx_pending > TX_RING_MAX ||
2297 	    ring->rx_pending > RX_RING_MAX ||
2298 	    ring->tx_pending < TX_RING_MIN ||
2299 	    ring->rx_pending < RX_RING_MIN)
2300 		return -EINVAL;
2301 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2302 		return -EINVAL;
2303 
2304 	if (netif_running(ndev)) {
2305 		netif_device_detach(ndev);
2306 		netif_tx_disable(ndev);
2307 
2308 		/* Serialise with the interrupt handler and NAPI, then
2309 		 * disable interrupts.  We have to clear the
2310 		 * irq_enabled flag first to ensure that interrupts
2311 		 * won't be re-enabled.
2312 		 */
2313 		mdp->irq_enabled = false;
2314 		synchronize_irq(ndev->irq);
2315 		napi_synchronize(&mdp->napi);
2316 		sh_eth_write(ndev, 0x0000, EESIPR);
2317 
2318 		sh_eth_dev_exit(ndev);
2319 
2320 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2321 		sh_eth_ring_free(ndev);
2322 	}
2323 
2324 	/* Set new parameters */
2325 	mdp->num_rx_ring = ring->rx_pending;
2326 	mdp->num_tx_ring = ring->tx_pending;
2327 
2328 	if (netif_running(ndev)) {
2329 		ret = sh_eth_ring_init(ndev);
2330 		if (ret < 0) {
2331 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2332 				   __func__);
2333 			return ret;
2334 		}
2335 		ret = sh_eth_dev_init(ndev);
2336 		if (ret < 0) {
2337 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2338 				   __func__);
2339 			return ret;
2340 		}
2341 
2342 		netif_device_attach(ndev);
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2349 {
2350 	struct sh_eth_private *mdp = netdev_priv(ndev);
2351 
2352 	wol->supported = 0;
2353 	wol->wolopts = 0;
2354 
2355 	if (mdp->cd->magic) {
2356 		wol->supported = WAKE_MAGIC;
2357 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2358 	}
2359 }
2360 
2361 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2362 {
2363 	struct sh_eth_private *mdp = netdev_priv(ndev);
2364 
2365 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2366 		return -EOPNOTSUPP;
2367 
2368 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2369 
2370 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2371 
2372 	return 0;
2373 }
2374 
2375 static const struct ethtool_ops sh_eth_ethtool_ops = {
2376 	.get_regs_len	= sh_eth_get_regs_len,
2377 	.get_regs	= sh_eth_get_regs,
2378 	.nway_reset	= phy_ethtool_nway_reset,
2379 	.get_msglevel	= sh_eth_get_msglevel,
2380 	.set_msglevel	= sh_eth_set_msglevel,
2381 	.get_link	= ethtool_op_get_link,
2382 	.get_strings	= sh_eth_get_strings,
2383 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2384 	.get_sset_count     = sh_eth_get_sset_count,
2385 	.get_ringparam	= sh_eth_get_ringparam,
2386 	.set_ringparam	= sh_eth_set_ringparam,
2387 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2388 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2389 	.get_wol	= sh_eth_get_wol,
2390 	.set_wol	= sh_eth_set_wol,
2391 };
2392 
2393 /* network device open function */
2394 static int sh_eth_open(struct net_device *ndev)
2395 {
2396 	struct sh_eth_private *mdp = netdev_priv(ndev);
2397 	int ret;
2398 
2399 	pm_runtime_get_sync(&mdp->pdev->dev);
2400 
2401 	napi_enable(&mdp->napi);
2402 
2403 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2404 			  mdp->cd->irq_flags, ndev->name, ndev);
2405 	if (ret) {
2406 		netdev_err(ndev, "Can not assign IRQ number\n");
2407 		goto out_napi_off;
2408 	}
2409 
2410 	/* Descriptor set */
2411 	ret = sh_eth_ring_init(ndev);
2412 	if (ret)
2413 		goto out_free_irq;
2414 
2415 	/* device init */
2416 	ret = sh_eth_dev_init(ndev);
2417 	if (ret)
2418 		goto out_free_irq;
2419 
2420 	/* PHY control start*/
2421 	ret = sh_eth_phy_start(ndev);
2422 	if (ret)
2423 		goto out_free_irq;
2424 
2425 	netif_start_queue(ndev);
2426 
2427 	mdp->is_opened = 1;
2428 
2429 	return ret;
2430 
2431 out_free_irq:
2432 	free_irq(ndev->irq, ndev);
2433 out_napi_off:
2434 	napi_disable(&mdp->napi);
2435 	pm_runtime_put_sync(&mdp->pdev->dev);
2436 	return ret;
2437 }
2438 
2439 /* Timeout function */
2440 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2441 {
2442 	struct sh_eth_private *mdp = netdev_priv(ndev);
2443 	struct sh_eth_rxdesc *rxdesc;
2444 	int i;
2445 
2446 	netif_stop_queue(ndev);
2447 
2448 	netif_err(mdp, timer, ndev,
2449 		  "transmit timed out, status %8.8x, resetting...\n",
2450 		  sh_eth_read(ndev, EESR));
2451 
2452 	/* tx_errors count up */
2453 	ndev->stats.tx_errors++;
2454 
2455 	/* Free all the skbuffs in the Rx queue. */
2456 	for (i = 0; i < mdp->num_rx_ring; i++) {
2457 		rxdesc = &mdp->rx_ring[i];
2458 		rxdesc->status = cpu_to_le32(0);
2459 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2460 		dev_kfree_skb(mdp->rx_skbuff[i]);
2461 		mdp->rx_skbuff[i] = NULL;
2462 	}
2463 	for (i = 0; i < mdp->num_tx_ring; i++) {
2464 		dev_kfree_skb(mdp->tx_skbuff[i]);
2465 		mdp->tx_skbuff[i] = NULL;
2466 	}
2467 
2468 	/* device init */
2469 	sh_eth_dev_init(ndev);
2470 
2471 	netif_start_queue(ndev);
2472 }
2473 
2474 /* Packet transmit function */
2475 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2476 				     struct net_device *ndev)
2477 {
2478 	struct sh_eth_private *mdp = netdev_priv(ndev);
2479 	struct sh_eth_txdesc *txdesc;
2480 	dma_addr_t dma_addr;
2481 	u32 entry;
2482 	unsigned long flags;
2483 
2484 	spin_lock_irqsave(&mdp->lock, flags);
2485 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2486 		if (!sh_eth_tx_free(ndev, true)) {
2487 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2488 			netif_stop_queue(ndev);
2489 			spin_unlock_irqrestore(&mdp->lock, flags);
2490 			return NETDEV_TX_BUSY;
2491 		}
2492 	}
2493 	spin_unlock_irqrestore(&mdp->lock, flags);
2494 
2495 	if (skb_put_padto(skb, ETH_ZLEN))
2496 		return NETDEV_TX_OK;
2497 
2498 	entry = mdp->cur_tx % mdp->num_tx_ring;
2499 	mdp->tx_skbuff[entry] = skb;
2500 	txdesc = &mdp->tx_ring[entry];
2501 	/* soft swap. */
2502 	if (!mdp->cd->hw_swap)
2503 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2504 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2505 				  DMA_TO_DEVICE);
2506 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2507 		kfree_skb(skb);
2508 		return NETDEV_TX_OK;
2509 	}
2510 	txdesc->addr = cpu_to_le32(dma_addr);
2511 	txdesc->len  = cpu_to_le32(skb->len << 16);
2512 
2513 	dma_wmb(); /* TACT bit must be set after all the above writes */
2514 	if (entry >= mdp->num_tx_ring - 1)
2515 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2516 	else
2517 		txdesc->status |= cpu_to_le32(TD_TACT);
2518 
2519 	mdp->cur_tx++;
2520 
2521 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2522 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2523 
2524 	return NETDEV_TX_OK;
2525 }
2526 
2527 /* The statistics registers have write-clear behaviour, which means we
2528  * will lose any increment between the read and write.  We mitigate
2529  * this by only clearing when we read a non-zero value, so we will
2530  * never falsely report a total of zero.
2531  */
2532 static void
2533 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2534 {
2535 	u32 delta = sh_eth_read(ndev, reg);
2536 
2537 	if (delta) {
2538 		*stat += delta;
2539 		sh_eth_write(ndev, 0, reg);
2540 	}
2541 }
2542 
2543 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2544 {
2545 	struct sh_eth_private *mdp = netdev_priv(ndev);
2546 
2547 	if (mdp->cd->no_tx_cntrs)
2548 		return &ndev->stats;
2549 
2550 	if (!mdp->is_opened)
2551 		return &ndev->stats;
2552 
2553 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2554 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2555 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2556 
2557 	if (mdp->cd->cexcr) {
2558 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2559 				   CERCR);
2560 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2561 				   CEECR);
2562 	} else {
2563 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2564 				   CNDCR);
2565 	}
2566 
2567 	return &ndev->stats;
2568 }
2569 
2570 /* device close function */
2571 static int sh_eth_close(struct net_device *ndev)
2572 {
2573 	struct sh_eth_private *mdp = netdev_priv(ndev);
2574 
2575 	netif_stop_queue(ndev);
2576 
2577 	/* Serialise with the interrupt handler and NAPI, then disable
2578 	 * interrupts.  We have to clear the irq_enabled flag first to
2579 	 * ensure that interrupts won't be re-enabled.
2580 	 */
2581 	mdp->irq_enabled = false;
2582 	synchronize_irq(ndev->irq);
2583 	napi_disable(&mdp->napi);
2584 	sh_eth_write(ndev, 0x0000, EESIPR);
2585 
2586 	sh_eth_dev_exit(ndev);
2587 
2588 	/* PHY Disconnect */
2589 	if (ndev->phydev) {
2590 		phy_stop(ndev->phydev);
2591 		phy_disconnect(ndev->phydev);
2592 	}
2593 
2594 	free_irq(ndev->irq, ndev);
2595 
2596 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2597 	sh_eth_ring_free(ndev);
2598 
2599 	pm_runtime_put_sync(&mdp->pdev->dev);
2600 
2601 	mdp->is_opened = 0;
2602 
2603 	return 0;
2604 }
2605 
2606 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2607 {
2608 	if (netif_running(ndev))
2609 		return -EBUSY;
2610 
2611 	ndev->mtu = new_mtu;
2612 	netdev_update_features(ndev);
2613 
2614 	return 0;
2615 }
2616 
2617 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2618 static u32 sh_eth_tsu_get_post_mask(int entry)
2619 {
2620 	return 0x0f << (28 - ((entry % 8) * 4));
2621 }
2622 
2623 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2624 {
2625 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2626 }
2627 
2628 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2629 					     int entry)
2630 {
2631 	struct sh_eth_private *mdp = netdev_priv(ndev);
2632 	int reg = TSU_POST1 + entry / 8;
2633 	u32 tmp;
2634 
2635 	tmp = sh_eth_tsu_read(mdp, reg);
2636 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2637 }
2638 
2639 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2640 					      int entry)
2641 {
2642 	struct sh_eth_private *mdp = netdev_priv(ndev);
2643 	int reg = TSU_POST1 + entry / 8;
2644 	u32 post_mask, ref_mask, tmp;
2645 
2646 	post_mask = sh_eth_tsu_get_post_mask(entry);
2647 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2648 
2649 	tmp = sh_eth_tsu_read(mdp, reg);
2650 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2651 
2652 	/* If other port enables, the function returns "true" */
2653 	return tmp & ref_mask;
2654 }
2655 
2656 static int sh_eth_tsu_busy(struct net_device *ndev)
2657 {
2658 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2659 	struct sh_eth_private *mdp = netdev_priv(ndev);
2660 
2661 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2662 		udelay(10);
2663 		timeout--;
2664 		if (timeout <= 0) {
2665 			netdev_err(ndev, "%s: timeout\n", __func__);
2666 			return -ETIMEDOUT;
2667 		}
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2674 				  const u8 *addr)
2675 {
2676 	struct sh_eth_private *mdp = netdev_priv(ndev);
2677 	u32 val;
2678 
2679 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2680 	iowrite32(val, mdp->tsu_addr + offset);
2681 	if (sh_eth_tsu_busy(ndev) < 0)
2682 		return -EBUSY;
2683 
2684 	val = addr[4] << 8 | addr[5];
2685 	iowrite32(val, mdp->tsu_addr + offset + 4);
2686 	if (sh_eth_tsu_busy(ndev) < 0)
2687 		return -EBUSY;
2688 
2689 	return 0;
2690 }
2691 
2692 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2693 {
2694 	struct sh_eth_private *mdp = netdev_priv(ndev);
2695 	u32 val;
2696 
2697 	val = ioread32(mdp->tsu_addr + offset);
2698 	addr[0] = (val >> 24) & 0xff;
2699 	addr[1] = (val >> 16) & 0xff;
2700 	addr[2] = (val >> 8) & 0xff;
2701 	addr[3] = val & 0xff;
2702 	val = ioread32(mdp->tsu_addr + offset + 4);
2703 	addr[4] = (val >> 8) & 0xff;
2704 	addr[5] = val & 0xff;
2705 }
2706 
2707 
2708 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2709 {
2710 	struct sh_eth_private *mdp = netdev_priv(ndev);
2711 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2712 	int i;
2713 	u8 c_addr[ETH_ALEN];
2714 
2715 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2716 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2717 		if (ether_addr_equal(addr, c_addr))
2718 			return i;
2719 	}
2720 
2721 	return -ENOENT;
2722 }
2723 
2724 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2725 {
2726 	u8 blank[ETH_ALEN];
2727 	int entry;
2728 
2729 	memset(blank, 0, sizeof(blank));
2730 	entry = sh_eth_tsu_find_entry(ndev, blank);
2731 	return (entry < 0) ? -ENOMEM : entry;
2732 }
2733 
2734 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2735 					      int entry)
2736 {
2737 	struct sh_eth_private *mdp = netdev_priv(ndev);
2738 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2739 	int ret;
2740 	u8 blank[ETH_ALEN];
2741 
2742 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2743 			 ~(1 << (31 - entry)), TSU_TEN);
2744 
2745 	memset(blank, 0, sizeof(blank));
2746 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2747 	if (ret < 0)
2748 		return ret;
2749 	return 0;
2750 }
2751 
2752 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2753 {
2754 	struct sh_eth_private *mdp = netdev_priv(ndev);
2755 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2756 	int i, ret;
2757 
2758 	if (!mdp->cd->tsu)
2759 		return 0;
2760 
2761 	i = sh_eth_tsu_find_entry(ndev, addr);
2762 	if (i < 0) {
2763 		/* No entry found, create one */
2764 		i = sh_eth_tsu_find_empty(ndev);
2765 		if (i < 0)
2766 			return -ENOMEM;
2767 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2768 		if (ret < 0)
2769 			return ret;
2770 
2771 		/* Enable the entry */
2772 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2773 				 (1 << (31 - i)), TSU_TEN);
2774 	}
2775 
2776 	/* Entry found or created, enable POST */
2777 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2778 
2779 	return 0;
2780 }
2781 
2782 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2783 {
2784 	struct sh_eth_private *mdp = netdev_priv(ndev);
2785 	int i, ret;
2786 
2787 	if (!mdp->cd->tsu)
2788 		return 0;
2789 
2790 	i = sh_eth_tsu_find_entry(ndev, addr);
2791 	if (i) {
2792 		/* Entry found */
2793 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2794 			goto done;
2795 
2796 		/* Disable the entry if both ports was disabled */
2797 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2798 		if (ret < 0)
2799 			return ret;
2800 	}
2801 done:
2802 	return 0;
2803 }
2804 
2805 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2806 {
2807 	struct sh_eth_private *mdp = netdev_priv(ndev);
2808 	int i, ret;
2809 
2810 	if (!mdp->cd->tsu)
2811 		return 0;
2812 
2813 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2814 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2815 			continue;
2816 
2817 		/* Disable the entry if both ports was disabled */
2818 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2819 		if (ret < 0)
2820 			return ret;
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2827 {
2828 	struct sh_eth_private *mdp = netdev_priv(ndev);
2829 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2830 	u8 addr[ETH_ALEN];
2831 	int i;
2832 
2833 	if (!mdp->cd->tsu)
2834 		return;
2835 
2836 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2837 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2838 		if (is_multicast_ether_addr(addr))
2839 			sh_eth_tsu_del_entry(ndev, addr);
2840 	}
2841 }
2842 
2843 /* Update promiscuous flag and multicast filter */
2844 static void sh_eth_set_rx_mode(struct net_device *ndev)
2845 {
2846 	struct sh_eth_private *mdp = netdev_priv(ndev);
2847 	u32 ecmr_bits;
2848 	int mcast_all = 0;
2849 	unsigned long flags;
2850 
2851 	spin_lock_irqsave(&mdp->lock, flags);
2852 	/* Initial condition is MCT = 1, PRM = 0.
2853 	 * Depending on ndev->flags, set PRM or clear MCT
2854 	 */
2855 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2856 	if (mdp->cd->tsu)
2857 		ecmr_bits |= ECMR_MCT;
2858 
2859 	if (!(ndev->flags & IFF_MULTICAST)) {
2860 		sh_eth_tsu_purge_mcast(ndev);
2861 		mcast_all = 1;
2862 	}
2863 	if (ndev->flags & IFF_ALLMULTI) {
2864 		sh_eth_tsu_purge_mcast(ndev);
2865 		ecmr_bits &= ~ECMR_MCT;
2866 		mcast_all = 1;
2867 	}
2868 
2869 	if (ndev->flags & IFF_PROMISC) {
2870 		sh_eth_tsu_purge_all(ndev);
2871 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2872 	} else if (mdp->cd->tsu) {
2873 		struct netdev_hw_addr *ha;
2874 		netdev_for_each_mc_addr(ha, ndev) {
2875 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2876 				continue;
2877 
2878 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2879 				if (!mcast_all) {
2880 					sh_eth_tsu_purge_mcast(ndev);
2881 					ecmr_bits &= ~ECMR_MCT;
2882 					mcast_all = 1;
2883 				}
2884 			}
2885 		}
2886 	}
2887 
2888 	/* update the ethernet mode */
2889 	sh_eth_write(ndev, ecmr_bits, ECMR);
2890 
2891 	spin_unlock_irqrestore(&mdp->lock, flags);
2892 }
2893 
2894 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2895 {
2896 	struct sh_eth_private *mdp = netdev_priv(ndev);
2897 	unsigned long flags;
2898 
2899 	spin_lock_irqsave(&mdp->lock, flags);
2900 
2901 	/* Disable TX and RX */
2902 	sh_eth_rcv_snd_disable(ndev);
2903 
2904 	/* Modify RX Checksum setting */
2905 	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2906 
2907 	/* Enable TX and RX */
2908 	sh_eth_rcv_snd_enable(ndev);
2909 
2910 	spin_unlock_irqrestore(&mdp->lock, flags);
2911 }
2912 
2913 static int sh_eth_set_features(struct net_device *ndev,
2914 			       netdev_features_t features)
2915 {
2916 	netdev_features_t changed = ndev->features ^ features;
2917 	struct sh_eth_private *mdp = netdev_priv(ndev);
2918 
2919 	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2920 		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2921 
2922 	ndev->features = features;
2923 
2924 	return 0;
2925 }
2926 
2927 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2928 {
2929 	if (!mdp->port)
2930 		return TSU_VTAG0;
2931 	else
2932 		return TSU_VTAG1;
2933 }
2934 
2935 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2936 				  __be16 proto, u16 vid)
2937 {
2938 	struct sh_eth_private *mdp = netdev_priv(ndev);
2939 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2940 
2941 	if (unlikely(!mdp->cd->tsu))
2942 		return -EPERM;
2943 
2944 	/* No filtering if vid = 0 */
2945 	if (!vid)
2946 		return 0;
2947 
2948 	mdp->vlan_num_ids++;
2949 
2950 	/* The controller has one VLAN tag HW filter. So, if the filter is
2951 	 * already enabled, the driver disables it and the filte
2952 	 */
2953 	if (mdp->vlan_num_ids > 1) {
2954 		/* disable VLAN filter */
2955 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2956 		return 0;
2957 	}
2958 
2959 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2960 			 vtag_reg_index);
2961 
2962 	return 0;
2963 }
2964 
2965 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2966 				   __be16 proto, u16 vid)
2967 {
2968 	struct sh_eth_private *mdp = netdev_priv(ndev);
2969 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2970 
2971 	if (unlikely(!mdp->cd->tsu))
2972 		return -EPERM;
2973 
2974 	/* No filtering if vid = 0 */
2975 	if (!vid)
2976 		return 0;
2977 
2978 	mdp->vlan_num_ids--;
2979 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2980 
2981 	return 0;
2982 }
2983 
2984 /* SuperH's TSU register init function */
2985 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2986 {
2987 	if (!mdp->cd->dual_port) {
2988 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2989 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2990 				 TSU_FWSLC);	/* Enable POST registers */
2991 		return;
2992 	}
2993 
2994 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2995 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2996 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2997 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2998 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2999 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3000 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3001 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3002 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3003 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3004 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3005 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3006 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3007 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3008 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3009 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3010 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3011 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3012 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3013 }
3014 
3015 /* MDIO bus release function */
3016 static int sh_mdio_release(struct sh_eth_private *mdp)
3017 {
3018 	/* unregister mdio bus */
3019 	mdiobus_unregister(mdp->mii_bus);
3020 
3021 	/* free bitbang info */
3022 	free_mdio_bitbang(mdp->mii_bus);
3023 
3024 	return 0;
3025 }
3026 
3027 /* MDIO bus init function */
3028 static int sh_mdio_init(struct sh_eth_private *mdp,
3029 			struct sh_eth_plat_data *pd)
3030 {
3031 	int ret;
3032 	struct bb_info *bitbang;
3033 	struct platform_device *pdev = mdp->pdev;
3034 	struct device *dev = &mdp->pdev->dev;
3035 
3036 	/* create bit control struct for PHY */
3037 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3038 	if (!bitbang)
3039 		return -ENOMEM;
3040 
3041 	/* bitbang init */
3042 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3043 	bitbang->set_gate = pd->set_mdio_gate;
3044 	bitbang->ctrl.ops = &bb_ops;
3045 
3046 	/* MII controller setting */
3047 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3048 	if (!mdp->mii_bus)
3049 		return -ENOMEM;
3050 
3051 	/* Hook up MII support for ethtool */
3052 	mdp->mii_bus->name = "sh_mii";
3053 	mdp->mii_bus->parent = dev;
3054 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3055 		 pdev->name, pdev->id);
3056 
3057 	/* register MDIO bus */
3058 	if (pd->phy_irq > 0)
3059 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3060 
3061 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3062 	if (ret)
3063 		goto out_free_bus;
3064 
3065 	return 0;
3066 
3067 out_free_bus:
3068 	free_mdio_bitbang(mdp->mii_bus);
3069 	return ret;
3070 }
3071 
3072 static const u16 *sh_eth_get_register_offset(int register_type)
3073 {
3074 	const u16 *reg_offset = NULL;
3075 
3076 	switch (register_type) {
3077 	case SH_ETH_REG_GIGABIT:
3078 		reg_offset = sh_eth_offset_gigabit;
3079 		break;
3080 	case SH_ETH_REG_FAST_RCAR:
3081 		reg_offset = sh_eth_offset_fast_rcar;
3082 		break;
3083 	case SH_ETH_REG_FAST_SH4:
3084 		reg_offset = sh_eth_offset_fast_sh4;
3085 		break;
3086 	case SH_ETH_REG_FAST_SH3_SH2:
3087 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3088 		break;
3089 	}
3090 
3091 	return reg_offset;
3092 }
3093 
3094 static const struct net_device_ops sh_eth_netdev_ops = {
3095 	.ndo_open		= sh_eth_open,
3096 	.ndo_stop		= sh_eth_close,
3097 	.ndo_start_xmit		= sh_eth_start_xmit,
3098 	.ndo_get_stats		= sh_eth_get_stats,
3099 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3100 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3101 	.ndo_do_ioctl		= phy_do_ioctl_running,
3102 	.ndo_change_mtu		= sh_eth_change_mtu,
3103 	.ndo_validate_addr	= eth_validate_addr,
3104 	.ndo_set_mac_address	= eth_mac_addr,
3105 	.ndo_set_features	= sh_eth_set_features,
3106 };
3107 
3108 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3109 	.ndo_open		= sh_eth_open,
3110 	.ndo_stop		= sh_eth_close,
3111 	.ndo_start_xmit		= sh_eth_start_xmit,
3112 	.ndo_get_stats		= sh_eth_get_stats,
3113 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3114 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3115 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3116 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3117 	.ndo_do_ioctl		= phy_do_ioctl_running,
3118 	.ndo_change_mtu		= sh_eth_change_mtu,
3119 	.ndo_validate_addr	= eth_validate_addr,
3120 	.ndo_set_mac_address	= eth_mac_addr,
3121 	.ndo_set_features	= sh_eth_set_features,
3122 };
3123 
3124 #ifdef CONFIG_OF
3125 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3126 {
3127 	struct device_node *np = dev->of_node;
3128 	struct sh_eth_plat_data *pdata;
3129 	phy_interface_t interface;
3130 	const char *mac_addr;
3131 	int ret;
3132 
3133 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3134 	if (!pdata)
3135 		return NULL;
3136 
3137 	ret = of_get_phy_mode(np, &interface);
3138 	if (ret)
3139 		return NULL;
3140 	pdata->phy_interface = interface;
3141 
3142 	mac_addr = of_get_mac_address(np);
3143 	if (!IS_ERR(mac_addr))
3144 		ether_addr_copy(pdata->mac_addr, mac_addr);
3145 
3146 	pdata->no_ether_link =
3147 		of_property_read_bool(np, "renesas,no-ether-link");
3148 	pdata->ether_link_active_low =
3149 		of_property_read_bool(np, "renesas,ether-link-active-low");
3150 
3151 	return pdata;
3152 }
3153 
3154 static const struct of_device_id sh_eth_match_table[] = {
3155 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3156 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3157 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3158 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3159 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3160 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3161 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3162 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3163 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3164 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3165 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3166 	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3167 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3168 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3169 	{ }
3170 };
3171 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3172 #else
3173 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3174 {
3175 	return NULL;
3176 }
3177 #endif
3178 
3179 static int sh_eth_drv_probe(struct platform_device *pdev)
3180 {
3181 	struct resource *res;
3182 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3183 	const struct platform_device_id *id = platform_get_device_id(pdev);
3184 	struct sh_eth_private *mdp;
3185 	struct net_device *ndev;
3186 	int ret;
3187 
3188 	/* get base addr */
3189 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3190 
3191 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3192 	if (!ndev)
3193 		return -ENOMEM;
3194 
3195 	pm_runtime_enable(&pdev->dev);
3196 	pm_runtime_get_sync(&pdev->dev);
3197 
3198 	ret = platform_get_irq(pdev, 0);
3199 	if (ret < 0)
3200 		goto out_release;
3201 	ndev->irq = ret;
3202 
3203 	SET_NETDEV_DEV(ndev, &pdev->dev);
3204 
3205 	mdp = netdev_priv(ndev);
3206 	mdp->num_tx_ring = TX_RING_SIZE;
3207 	mdp->num_rx_ring = RX_RING_SIZE;
3208 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3209 	if (IS_ERR(mdp->addr)) {
3210 		ret = PTR_ERR(mdp->addr);
3211 		goto out_release;
3212 	}
3213 
3214 	ndev->base_addr = res->start;
3215 
3216 	spin_lock_init(&mdp->lock);
3217 	mdp->pdev = pdev;
3218 
3219 	if (pdev->dev.of_node)
3220 		pd = sh_eth_parse_dt(&pdev->dev);
3221 	if (!pd) {
3222 		dev_err(&pdev->dev, "no platform data\n");
3223 		ret = -EINVAL;
3224 		goto out_release;
3225 	}
3226 
3227 	/* get PHY ID */
3228 	mdp->phy_id = pd->phy;
3229 	mdp->phy_interface = pd->phy_interface;
3230 	mdp->no_ether_link = pd->no_ether_link;
3231 	mdp->ether_link_active_low = pd->ether_link_active_low;
3232 
3233 	/* set cpu data */
3234 	if (id)
3235 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3236 	else
3237 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3238 
3239 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3240 	if (!mdp->reg_offset) {
3241 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3242 			mdp->cd->register_type);
3243 		ret = -EINVAL;
3244 		goto out_release;
3245 	}
3246 	sh_eth_set_default_cpu_data(mdp->cd);
3247 
3248 	/* User's manual states max MTU should be 2048 but due to the
3249 	 * alignment calculations in sh_eth_ring_init() the practical
3250 	 * MTU is a bit less. Maybe this can be optimized some more.
3251 	 */
3252 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3253 	ndev->min_mtu = ETH_MIN_MTU;
3254 
3255 	if (mdp->cd->rx_csum) {
3256 		ndev->features = NETIF_F_RXCSUM;
3257 		ndev->hw_features = NETIF_F_RXCSUM;
3258 	}
3259 
3260 	/* set function */
3261 	if (mdp->cd->tsu)
3262 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3263 	else
3264 		ndev->netdev_ops = &sh_eth_netdev_ops;
3265 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3266 	ndev->watchdog_timeo = TX_TIMEOUT;
3267 
3268 	/* debug message level */
3269 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3270 
3271 	/* read and set MAC address */
3272 	read_mac_address(ndev, pd->mac_addr);
3273 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3274 		dev_warn(&pdev->dev,
3275 			 "no valid MAC address supplied, using a random one.\n");
3276 		eth_hw_addr_random(ndev);
3277 	}
3278 
3279 	if (mdp->cd->tsu) {
3280 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3281 		struct resource *rtsu;
3282 
3283 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3284 		if (!rtsu) {
3285 			dev_err(&pdev->dev, "no TSU resource\n");
3286 			ret = -ENODEV;
3287 			goto out_release;
3288 		}
3289 		/* We can only request the  TSU region  for the first port
3290 		 * of the two  sharing this TSU for the probe to succeed...
3291 		 */
3292 		if (port == 0 &&
3293 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3294 					     resource_size(rtsu),
3295 					     dev_name(&pdev->dev))) {
3296 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3297 			ret = -EBUSY;
3298 			goto out_release;
3299 		}
3300 		/* ioremap the TSU registers */
3301 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3302 					     resource_size(rtsu));
3303 		if (!mdp->tsu_addr) {
3304 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3305 			ret = -ENOMEM;
3306 			goto out_release;
3307 		}
3308 		mdp->port = port;
3309 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3310 
3311 		/* Need to init only the first port of the two sharing a TSU */
3312 		if (port == 0) {
3313 			if (mdp->cd->chip_reset)
3314 				mdp->cd->chip_reset(ndev);
3315 
3316 			/* TSU init (Init only)*/
3317 			sh_eth_tsu_init(mdp);
3318 		}
3319 	}
3320 
3321 	if (mdp->cd->rmiimode)
3322 		sh_eth_write(ndev, 0x1, RMIIMODE);
3323 
3324 	/* MDIO bus init */
3325 	ret = sh_mdio_init(mdp, pd);
3326 	if (ret) {
3327 		if (ret != -EPROBE_DEFER)
3328 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3329 		goto out_release;
3330 	}
3331 
3332 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3333 
3334 	/* network device register */
3335 	ret = register_netdev(ndev);
3336 	if (ret)
3337 		goto out_napi_del;
3338 
3339 	if (mdp->cd->magic)
3340 		device_set_wakeup_capable(&pdev->dev, 1);
3341 
3342 	/* print device information */
3343 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3344 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3345 
3346 	pm_runtime_put(&pdev->dev);
3347 	platform_set_drvdata(pdev, ndev);
3348 
3349 	return ret;
3350 
3351 out_napi_del:
3352 	netif_napi_del(&mdp->napi);
3353 	sh_mdio_release(mdp);
3354 
3355 out_release:
3356 	/* net_dev free */
3357 	free_netdev(ndev);
3358 
3359 	pm_runtime_put(&pdev->dev);
3360 	pm_runtime_disable(&pdev->dev);
3361 	return ret;
3362 }
3363 
3364 static int sh_eth_drv_remove(struct platform_device *pdev)
3365 {
3366 	struct net_device *ndev = platform_get_drvdata(pdev);
3367 	struct sh_eth_private *mdp = netdev_priv(ndev);
3368 
3369 	unregister_netdev(ndev);
3370 	netif_napi_del(&mdp->napi);
3371 	sh_mdio_release(mdp);
3372 	pm_runtime_disable(&pdev->dev);
3373 	free_netdev(ndev);
3374 
3375 	return 0;
3376 }
3377 
3378 #ifdef CONFIG_PM
3379 #ifdef CONFIG_PM_SLEEP
3380 static int sh_eth_wol_setup(struct net_device *ndev)
3381 {
3382 	struct sh_eth_private *mdp = netdev_priv(ndev);
3383 
3384 	/* Only allow ECI interrupts */
3385 	synchronize_irq(ndev->irq);
3386 	napi_disable(&mdp->napi);
3387 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3388 
3389 	/* Enable MagicPacket */
3390 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3391 
3392 	return enable_irq_wake(ndev->irq);
3393 }
3394 
3395 static int sh_eth_wol_restore(struct net_device *ndev)
3396 {
3397 	struct sh_eth_private *mdp = netdev_priv(ndev);
3398 	int ret;
3399 
3400 	napi_enable(&mdp->napi);
3401 
3402 	/* Disable MagicPacket */
3403 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3404 
3405 	/* The device needs to be reset to restore MagicPacket logic
3406 	 * for next wakeup. If we close and open the device it will
3407 	 * both be reset and all registers restored. This is what
3408 	 * happens during suspend and resume without WoL enabled.
3409 	 */
3410 	ret = sh_eth_close(ndev);
3411 	if (ret < 0)
3412 		return ret;
3413 	ret = sh_eth_open(ndev);
3414 	if (ret < 0)
3415 		return ret;
3416 
3417 	return disable_irq_wake(ndev->irq);
3418 }
3419 
3420 static int sh_eth_suspend(struct device *dev)
3421 {
3422 	struct net_device *ndev = dev_get_drvdata(dev);
3423 	struct sh_eth_private *mdp = netdev_priv(ndev);
3424 	int ret = 0;
3425 
3426 	if (!netif_running(ndev))
3427 		return 0;
3428 
3429 	netif_device_detach(ndev);
3430 
3431 	if (mdp->wol_enabled)
3432 		ret = sh_eth_wol_setup(ndev);
3433 	else
3434 		ret = sh_eth_close(ndev);
3435 
3436 	return ret;
3437 }
3438 
3439 static int sh_eth_resume(struct device *dev)
3440 {
3441 	struct net_device *ndev = dev_get_drvdata(dev);
3442 	struct sh_eth_private *mdp = netdev_priv(ndev);
3443 	int ret = 0;
3444 
3445 	if (!netif_running(ndev))
3446 		return 0;
3447 
3448 	if (mdp->wol_enabled)
3449 		ret = sh_eth_wol_restore(ndev);
3450 	else
3451 		ret = sh_eth_open(ndev);
3452 
3453 	if (ret < 0)
3454 		return ret;
3455 
3456 	netif_device_attach(ndev);
3457 
3458 	return ret;
3459 }
3460 #endif
3461 
3462 static int sh_eth_runtime_nop(struct device *dev)
3463 {
3464 	/* Runtime PM callback shared between ->runtime_suspend()
3465 	 * and ->runtime_resume(). Simply returns success.
3466 	 *
3467 	 * This driver re-initializes all registers after
3468 	 * pm_runtime_get_sync() anyway so there is no need
3469 	 * to save and restore registers here.
3470 	 */
3471 	return 0;
3472 }
3473 
3474 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3475 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3476 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3477 };
3478 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3479 #else
3480 #define SH_ETH_PM_OPS NULL
3481 #endif
3482 
3483 static const struct platform_device_id sh_eth_id_table[] = {
3484 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3485 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3486 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3487 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3488 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3489 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3490 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3491 	{ }
3492 };
3493 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3494 
3495 static struct platform_driver sh_eth_driver = {
3496 	.probe = sh_eth_drv_probe,
3497 	.remove = sh_eth_drv_remove,
3498 	.id_table = sh_eth_id_table,
3499 	.driver = {
3500 		   .name = CARDNAME,
3501 		   .pm = SH_ETH_PM_OPS,
3502 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3503 	},
3504 };
3505 
3506 module_platform_driver(sh_eth_driver);
3507 
3508 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3509 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3510 MODULE_LICENSE("GPL v2");
3511