1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4  *  Copyright (C) 2008-2013 Renesas Solutions Corp.
5  *  Copyright (C) 2013 Cogent Embedded, Inc.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *
16  *  The full GNU General Public License is included in this distribution in
17  *  the file called "COPYING".
18  */
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/etherdevice.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/mdio-bitbang.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/cache.h>
32 #include <linux/io.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/slab.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/clk.h>
38 #include <linux/sh_eth.h>
39 
40 #include "sh_eth.h"
41 
42 #define SH_ETH_DEF_MSG_ENABLE \
43 		(NETIF_MSG_LINK	| \
44 		NETIF_MSG_TIMER	| \
45 		NETIF_MSG_RX_ERR| \
46 		NETIF_MSG_TX_ERR)
47 
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 	[EDSR]		= 0x0000,
50 	[EDMR]		= 0x0400,
51 	[EDTRR]		= 0x0408,
52 	[EDRRR]		= 0x0410,
53 	[EESR]		= 0x0428,
54 	[EESIPR]	= 0x0430,
55 	[TDLAR]		= 0x0010,
56 	[TDFAR]		= 0x0014,
57 	[TDFXR]		= 0x0018,
58 	[TDFFR]		= 0x001c,
59 	[RDLAR]		= 0x0030,
60 	[RDFAR]		= 0x0034,
61 	[RDFXR]		= 0x0038,
62 	[RDFFR]		= 0x003c,
63 	[TRSCER]	= 0x0438,
64 	[RMFCR]		= 0x0440,
65 	[TFTR]		= 0x0448,
66 	[FDR]		= 0x0450,
67 	[RMCR]		= 0x0458,
68 	[RPADIR]	= 0x0460,
69 	[FCFTR]		= 0x0468,
70 	[CSMR]		= 0x04E4,
71 
72 	[ECMR]		= 0x0500,
73 	[ECSR]		= 0x0510,
74 	[ECSIPR]	= 0x0518,
75 	[PIR]		= 0x0520,
76 	[PSR]		= 0x0528,
77 	[PIPR]		= 0x052c,
78 	[RFLR]		= 0x0508,
79 	[APR]		= 0x0554,
80 	[MPR]		= 0x0558,
81 	[PFTCR]		= 0x055c,
82 	[PFRCR]		= 0x0560,
83 	[TPAUSER]	= 0x0564,
84 	[GECMR]		= 0x05b0,
85 	[BCULR]		= 0x05b4,
86 	[MAHR]		= 0x05c0,
87 	[MALR]		= 0x05c8,
88 	[TROCR]		= 0x0700,
89 	[CDCR]		= 0x0708,
90 	[LCCR]		= 0x0710,
91 	[CEFCR]		= 0x0740,
92 	[FRECR]		= 0x0748,
93 	[TSFRCR]	= 0x0750,
94 	[TLFRCR]	= 0x0758,
95 	[RFCR]		= 0x0760,
96 	[CERCR]		= 0x0768,
97 	[CEECR]		= 0x0770,
98 	[MAFCR]		= 0x0778,
99 	[RMII_MII]	= 0x0790,
100 
101 	[ARSTR]		= 0x0000,
102 	[TSU_CTRST]	= 0x0004,
103 	[TSU_FWEN0]	= 0x0010,
104 	[TSU_FWEN1]	= 0x0014,
105 	[TSU_FCM]	= 0x0018,
106 	[TSU_BSYSL0]	= 0x0020,
107 	[TSU_BSYSL1]	= 0x0024,
108 	[TSU_PRISL0]	= 0x0028,
109 	[TSU_PRISL1]	= 0x002c,
110 	[TSU_FWSL0]	= 0x0030,
111 	[TSU_FWSL1]	= 0x0034,
112 	[TSU_FWSLC]	= 0x0038,
113 	[TSU_QTAG0]	= 0x0040,
114 	[TSU_QTAG1]	= 0x0044,
115 	[TSU_FWSR]	= 0x0050,
116 	[TSU_FWINMK]	= 0x0054,
117 	[TSU_ADQT0]	= 0x0048,
118 	[TSU_ADQT1]	= 0x004c,
119 	[TSU_VTAG0]	= 0x0058,
120 	[TSU_VTAG1]	= 0x005c,
121 	[TSU_ADSBSY]	= 0x0060,
122 	[TSU_TEN]	= 0x0064,
123 	[TSU_POST1]	= 0x0070,
124 	[TSU_POST2]	= 0x0074,
125 	[TSU_POST3]	= 0x0078,
126 	[TSU_POST4]	= 0x007c,
127 	[TSU_ADRH0]	= 0x0100,
128 	[TSU_ADRL0]	= 0x0104,
129 	[TSU_ADRH31]	= 0x01f8,
130 	[TSU_ADRL31]	= 0x01fc,
131 
132 	[TXNLCR0]	= 0x0080,
133 	[TXALCR0]	= 0x0084,
134 	[RXNLCR0]	= 0x0088,
135 	[RXALCR0]	= 0x008c,
136 	[FWNLCR0]	= 0x0090,
137 	[FWALCR0]	= 0x0094,
138 	[TXNLCR1]	= 0x00a0,
139 	[TXALCR1]	= 0x00a0,
140 	[RXNLCR1]	= 0x00a8,
141 	[RXALCR1]	= 0x00ac,
142 	[FWNLCR1]	= 0x00b0,
143 	[FWALCR1]	= 0x00b4,
144 };
145 
146 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
147 	[EDSR]		= 0x0000,
148 	[EDMR]		= 0x0400,
149 	[EDTRR]		= 0x0408,
150 	[EDRRR]		= 0x0410,
151 	[EESR]		= 0x0428,
152 	[EESIPR]	= 0x0430,
153 	[TDLAR]		= 0x0010,
154 	[TDFAR]		= 0x0014,
155 	[TDFXR]		= 0x0018,
156 	[TDFFR]		= 0x001c,
157 	[RDLAR]		= 0x0030,
158 	[RDFAR]		= 0x0034,
159 	[RDFXR]		= 0x0038,
160 	[RDFFR]		= 0x003c,
161 	[TRSCER]	= 0x0438,
162 	[RMFCR]		= 0x0440,
163 	[TFTR]		= 0x0448,
164 	[FDR]		= 0x0450,
165 	[RMCR]		= 0x0458,
166 	[RPADIR]	= 0x0460,
167 	[FCFTR]		= 0x0468,
168 	[CSMR]		= 0x04E4,
169 
170 	[ECMR]		= 0x0500,
171 	[RFLR]		= 0x0508,
172 	[ECSR]		= 0x0510,
173 	[ECSIPR]	= 0x0518,
174 	[PIR]		= 0x0520,
175 	[APR]		= 0x0554,
176 	[MPR]		= 0x0558,
177 	[PFTCR]		= 0x055c,
178 	[PFRCR]		= 0x0560,
179 	[TPAUSER]	= 0x0564,
180 	[MAHR]		= 0x05c0,
181 	[MALR]		= 0x05c8,
182 	[CEFCR]		= 0x0740,
183 	[FRECR]		= 0x0748,
184 	[TSFRCR]	= 0x0750,
185 	[TLFRCR]	= 0x0758,
186 	[RFCR]		= 0x0760,
187 	[MAFCR]		= 0x0778,
188 
189 	[ARSTR]		= 0x0000,
190 	[TSU_CTRST]	= 0x0004,
191 	[TSU_VTAG0]	= 0x0058,
192 	[TSU_ADSBSY]	= 0x0060,
193 	[TSU_TEN]	= 0x0064,
194 	[TSU_ADRH0]	= 0x0100,
195 	[TSU_ADRL0]	= 0x0104,
196 	[TSU_ADRH31]	= 0x01f8,
197 	[TSU_ADRL31]	= 0x01fc,
198 
199 	[TXNLCR0]	= 0x0080,
200 	[TXALCR0]	= 0x0084,
201 	[RXNLCR0]	= 0x0088,
202 	[RXALCR0]	= 0x008C,
203 };
204 
205 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
206 	[ECMR]		= 0x0300,
207 	[RFLR]		= 0x0308,
208 	[ECSR]		= 0x0310,
209 	[ECSIPR]	= 0x0318,
210 	[PIR]		= 0x0320,
211 	[PSR]		= 0x0328,
212 	[RDMLR]		= 0x0340,
213 	[IPGR]		= 0x0350,
214 	[APR]		= 0x0354,
215 	[MPR]		= 0x0358,
216 	[RFCF]		= 0x0360,
217 	[TPAUSER]	= 0x0364,
218 	[TPAUSECR]	= 0x0368,
219 	[MAHR]		= 0x03c0,
220 	[MALR]		= 0x03c8,
221 	[TROCR]		= 0x03d0,
222 	[CDCR]		= 0x03d4,
223 	[LCCR]		= 0x03d8,
224 	[CNDCR]		= 0x03dc,
225 	[CEFCR]		= 0x03e4,
226 	[FRECR]		= 0x03e8,
227 	[TSFRCR]	= 0x03ec,
228 	[TLFRCR]	= 0x03f0,
229 	[RFCR]		= 0x03f4,
230 	[MAFCR]		= 0x03f8,
231 
232 	[EDMR]		= 0x0200,
233 	[EDTRR]		= 0x0208,
234 	[EDRRR]		= 0x0210,
235 	[TDLAR]		= 0x0218,
236 	[RDLAR]		= 0x0220,
237 	[EESR]		= 0x0228,
238 	[EESIPR]	= 0x0230,
239 	[TRSCER]	= 0x0238,
240 	[RMFCR]		= 0x0240,
241 	[TFTR]		= 0x0248,
242 	[FDR]		= 0x0250,
243 	[RMCR]		= 0x0258,
244 	[TFUCR]		= 0x0264,
245 	[RFOCR]		= 0x0268,
246 	[RMIIMODE]      = 0x026c,
247 	[FCFTR]		= 0x0270,
248 	[TRIMD]		= 0x027c,
249 };
250 
251 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
252 	[ECMR]		= 0x0100,
253 	[RFLR]		= 0x0108,
254 	[ECSR]		= 0x0110,
255 	[ECSIPR]	= 0x0118,
256 	[PIR]		= 0x0120,
257 	[PSR]		= 0x0128,
258 	[RDMLR]		= 0x0140,
259 	[IPGR]		= 0x0150,
260 	[APR]		= 0x0154,
261 	[MPR]		= 0x0158,
262 	[TPAUSER]	= 0x0164,
263 	[RFCF]		= 0x0160,
264 	[TPAUSECR]	= 0x0168,
265 	[BCFRR]		= 0x016c,
266 	[MAHR]		= 0x01c0,
267 	[MALR]		= 0x01c8,
268 	[TROCR]		= 0x01d0,
269 	[CDCR]		= 0x01d4,
270 	[LCCR]		= 0x01d8,
271 	[CNDCR]		= 0x01dc,
272 	[CEFCR]		= 0x01e4,
273 	[FRECR]		= 0x01e8,
274 	[TSFRCR]	= 0x01ec,
275 	[TLFRCR]	= 0x01f0,
276 	[RFCR]		= 0x01f4,
277 	[MAFCR]		= 0x01f8,
278 	[RTRATE]	= 0x01fc,
279 
280 	[EDMR]		= 0x0000,
281 	[EDTRR]		= 0x0008,
282 	[EDRRR]		= 0x0010,
283 	[TDLAR]		= 0x0018,
284 	[RDLAR]		= 0x0020,
285 	[EESR]		= 0x0028,
286 	[EESIPR]	= 0x0030,
287 	[TRSCER]	= 0x0038,
288 	[RMFCR]		= 0x0040,
289 	[TFTR]		= 0x0048,
290 	[FDR]		= 0x0050,
291 	[RMCR]		= 0x0058,
292 	[TFUCR]		= 0x0064,
293 	[RFOCR]		= 0x0068,
294 	[FCFTR]		= 0x0070,
295 	[RPADIR]	= 0x0078,
296 	[TRIMD]		= 0x007c,
297 	[RBWAR]		= 0x00c8,
298 	[RDFAR]		= 0x00cc,
299 	[TBRAR]		= 0x00d4,
300 	[TDFAR]		= 0x00d8,
301 };
302 
303 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
304 	[ECMR]		= 0x0160,
305 	[ECSR]		= 0x0164,
306 	[ECSIPR]	= 0x0168,
307 	[PIR]		= 0x016c,
308 	[MAHR]		= 0x0170,
309 	[MALR]		= 0x0174,
310 	[RFLR]		= 0x0178,
311 	[PSR]		= 0x017c,
312 	[TROCR]		= 0x0180,
313 	[CDCR]		= 0x0184,
314 	[LCCR]		= 0x0188,
315 	[CNDCR]		= 0x018c,
316 	[CEFCR]		= 0x0194,
317 	[FRECR]		= 0x0198,
318 	[TSFRCR]	= 0x019c,
319 	[TLFRCR]	= 0x01a0,
320 	[RFCR]		= 0x01a4,
321 	[MAFCR]		= 0x01a8,
322 	[IPGR]		= 0x01b4,
323 	[APR]		= 0x01b8,
324 	[MPR]		= 0x01bc,
325 	[TPAUSER]	= 0x01c4,
326 	[BCFR]		= 0x01cc,
327 
328 	[ARSTR]		= 0x0000,
329 	[TSU_CTRST]	= 0x0004,
330 	[TSU_FWEN0]	= 0x0010,
331 	[TSU_FWEN1]	= 0x0014,
332 	[TSU_FCM]	= 0x0018,
333 	[TSU_BSYSL0]	= 0x0020,
334 	[TSU_BSYSL1]	= 0x0024,
335 	[TSU_PRISL0]	= 0x0028,
336 	[TSU_PRISL1]	= 0x002c,
337 	[TSU_FWSL0]	= 0x0030,
338 	[TSU_FWSL1]	= 0x0034,
339 	[TSU_FWSLC]	= 0x0038,
340 	[TSU_QTAGM0]	= 0x0040,
341 	[TSU_QTAGM1]	= 0x0044,
342 	[TSU_ADQT0]	= 0x0048,
343 	[TSU_ADQT1]	= 0x004c,
344 	[TSU_FWSR]	= 0x0050,
345 	[TSU_FWINMK]	= 0x0054,
346 	[TSU_ADSBSY]	= 0x0060,
347 	[TSU_TEN]	= 0x0064,
348 	[TSU_POST1]	= 0x0070,
349 	[TSU_POST2]	= 0x0074,
350 	[TSU_POST3]	= 0x0078,
351 	[TSU_POST4]	= 0x007c,
352 
353 	[TXNLCR0]	= 0x0080,
354 	[TXALCR0]	= 0x0084,
355 	[RXNLCR0]	= 0x0088,
356 	[RXALCR0]	= 0x008c,
357 	[FWNLCR0]	= 0x0090,
358 	[FWALCR0]	= 0x0094,
359 	[TXNLCR1]	= 0x00a0,
360 	[TXALCR1]	= 0x00a0,
361 	[RXNLCR1]	= 0x00a8,
362 	[RXALCR1]	= 0x00ac,
363 	[FWNLCR1]	= 0x00b0,
364 	[FWALCR1]	= 0x00b4,
365 
366 	[TSU_ADRH0]	= 0x0100,
367 	[TSU_ADRL0]	= 0x0104,
368 	[TSU_ADRL31]	= 0x01fc,
369 };
370 
371 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
372 {
373 	return mdp->reg_offset == sh_eth_offset_gigabit;
374 }
375 
376 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
377 {
378 	return mdp->reg_offset == sh_eth_offset_fast_rz;
379 }
380 
381 static void sh_eth_select_mii(struct net_device *ndev)
382 {
383 	u32 value = 0x0;
384 	struct sh_eth_private *mdp = netdev_priv(ndev);
385 
386 	switch (mdp->phy_interface) {
387 	case PHY_INTERFACE_MODE_GMII:
388 		value = 0x2;
389 		break;
390 	case PHY_INTERFACE_MODE_MII:
391 		value = 0x1;
392 		break;
393 	case PHY_INTERFACE_MODE_RMII:
394 		value = 0x0;
395 		break;
396 	default:
397 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
398 		value = 0x1;
399 		break;
400 	}
401 
402 	sh_eth_write(ndev, value, RMII_MII);
403 }
404 
405 static void sh_eth_set_duplex(struct net_device *ndev)
406 {
407 	struct sh_eth_private *mdp = netdev_priv(ndev);
408 
409 	if (mdp->duplex) /* Full */
410 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
411 	else		/* Half */
412 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
413 }
414 
415 /* There is CPU dependent code */
416 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
417 {
418 	struct sh_eth_private *mdp = netdev_priv(ndev);
419 
420 	switch (mdp->speed) {
421 	case 10: /* 10BASE */
422 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
423 		break;
424 	case 100:/* 100BASE */
425 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
426 		break;
427 	default:
428 		break;
429 	}
430 }
431 
432 /* R8A7778/9 */
433 static struct sh_eth_cpu_data r8a777x_data = {
434 	.set_duplex	= sh_eth_set_duplex,
435 	.set_rate	= sh_eth_set_rate_r8a777x,
436 
437 	.register_type	= SH_ETH_REG_FAST_RCAR,
438 
439 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
440 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
441 	.eesipr_value	= 0x01ff009f,
442 
443 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
444 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
445 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
446 			  EESR_ECI,
447 
448 	.apr		= 1,
449 	.mpr		= 1,
450 	.tpauser	= 1,
451 	.hw_swap	= 1,
452 };
453 
454 /* R8A7790/1 */
455 static struct sh_eth_cpu_data r8a779x_data = {
456 	.set_duplex	= sh_eth_set_duplex,
457 	.set_rate	= sh_eth_set_rate_r8a777x,
458 
459 	.register_type	= SH_ETH_REG_FAST_RCAR,
460 
461 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
462 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
463 	.eesipr_value	= 0x01ff009f,
464 
465 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
466 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
467 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
468 			  EESR_ECI,
469 
470 	.apr		= 1,
471 	.mpr		= 1,
472 	.tpauser	= 1,
473 	.hw_swap	= 1,
474 	.rmiimode	= 1,
475 	.shift_rd0	= 1,
476 };
477 
478 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	switch (mdp->speed) {
483 	case 10: /* 10BASE */
484 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
485 		break;
486 	case 100:/* 100BASE */
487 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
488 		break;
489 	default:
490 		break;
491 	}
492 }
493 
494 /* SH7724 */
495 static struct sh_eth_cpu_data sh7724_data = {
496 	.set_duplex	= sh_eth_set_duplex,
497 	.set_rate	= sh_eth_set_rate_sh7724,
498 
499 	.register_type	= SH_ETH_REG_FAST_SH4,
500 
501 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
502 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
503 	.eesipr_value	= 0x01ff009f,
504 
505 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
506 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
507 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
508 			  EESR_ECI,
509 
510 	.apr		= 1,
511 	.mpr		= 1,
512 	.tpauser	= 1,
513 	.hw_swap	= 1,
514 	.rpadir		= 1,
515 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
516 };
517 
518 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
519 {
520 	struct sh_eth_private *mdp = netdev_priv(ndev);
521 
522 	switch (mdp->speed) {
523 	case 10: /* 10BASE */
524 		sh_eth_write(ndev, 0, RTRATE);
525 		break;
526 	case 100:/* 100BASE */
527 		sh_eth_write(ndev, 1, RTRATE);
528 		break;
529 	default:
530 		break;
531 	}
532 }
533 
534 /* SH7757 */
535 static struct sh_eth_cpu_data sh7757_data = {
536 	.set_duplex	= sh_eth_set_duplex,
537 	.set_rate	= sh_eth_set_rate_sh7757,
538 
539 	.register_type	= SH_ETH_REG_FAST_SH4,
540 
541 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
542 	.rmcr_value	= RMCR_RNC,
543 
544 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
545 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
546 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
547 			  EESR_ECI,
548 
549 	.irq_flags	= IRQF_SHARED,
550 	.apr		= 1,
551 	.mpr		= 1,
552 	.tpauser	= 1,
553 	.hw_swap	= 1,
554 	.no_ade		= 1,
555 	.rpadir		= 1,
556 	.rpadir_value   = 2 << 16,
557 };
558 
559 #define SH_GIGA_ETH_BASE	0xfee00000UL
560 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
561 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
562 static void sh_eth_chip_reset_giga(struct net_device *ndev)
563 {
564 	int i;
565 	unsigned long mahr[2], malr[2];
566 
567 	/* save MAHR and MALR */
568 	for (i = 0; i < 2; i++) {
569 		malr[i] = ioread32((void *)GIGA_MALR(i));
570 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
571 	}
572 
573 	/* reset device */
574 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
575 	mdelay(1);
576 
577 	/* restore MAHR and MALR */
578 	for (i = 0; i < 2; i++) {
579 		iowrite32(malr[i], (void *)GIGA_MALR(i));
580 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
581 	}
582 }
583 
584 static void sh_eth_set_rate_giga(struct net_device *ndev)
585 {
586 	struct sh_eth_private *mdp = netdev_priv(ndev);
587 
588 	switch (mdp->speed) {
589 	case 10: /* 10BASE */
590 		sh_eth_write(ndev, 0x00000000, GECMR);
591 		break;
592 	case 100:/* 100BASE */
593 		sh_eth_write(ndev, 0x00000010, GECMR);
594 		break;
595 	case 1000: /* 1000BASE */
596 		sh_eth_write(ndev, 0x00000020, GECMR);
597 		break;
598 	default:
599 		break;
600 	}
601 }
602 
603 /* SH7757(GETHERC) */
604 static struct sh_eth_cpu_data sh7757_data_giga = {
605 	.chip_reset	= sh_eth_chip_reset_giga,
606 	.set_duplex	= sh_eth_set_duplex,
607 	.set_rate	= sh_eth_set_rate_giga,
608 
609 	.register_type	= SH_ETH_REG_GIGABIT,
610 
611 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
612 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
613 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
614 
615 	.tx_check	= EESR_TC1 | EESR_FTC,
616 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
617 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
618 			  EESR_TDE | EESR_ECI,
619 	.fdr_value	= 0x0000072f,
620 	.rmcr_value	= RMCR_RNC,
621 
622 	.irq_flags	= IRQF_SHARED,
623 	.apr		= 1,
624 	.mpr		= 1,
625 	.tpauser	= 1,
626 	.bculr		= 1,
627 	.hw_swap	= 1,
628 	.rpadir		= 1,
629 	.rpadir_value   = 2 << 16,
630 	.no_trimd	= 1,
631 	.no_ade		= 1,
632 	.tsu		= 1,
633 };
634 
635 static void sh_eth_chip_reset(struct net_device *ndev)
636 {
637 	struct sh_eth_private *mdp = netdev_priv(ndev);
638 
639 	/* reset device */
640 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
641 	mdelay(1);
642 }
643 
644 static void sh_eth_set_rate_gether(struct net_device *ndev)
645 {
646 	struct sh_eth_private *mdp = netdev_priv(ndev);
647 
648 	switch (mdp->speed) {
649 	case 10: /* 10BASE */
650 		sh_eth_write(ndev, GECMR_10, GECMR);
651 		break;
652 	case 100:/* 100BASE */
653 		sh_eth_write(ndev, GECMR_100, GECMR);
654 		break;
655 	case 1000: /* 1000BASE */
656 		sh_eth_write(ndev, GECMR_1000, GECMR);
657 		break;
658 	default:
659 		break;
660 	}
661 }
662 
663 /* SH7734 */
664 static struct sh_eth_cpu_data sh7734_data = {
665 	.chip_reset	= sh_eth_chip_reset,
666 	.set_duplex	= sh_eth_set_duplex,
667 	.set_rate	= sh_eth_set_rate_gether,
668 
669 	.register_type	= SH_ETH_REG_GIGABIT,
670 
671 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
672 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
673 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
674 
675 	.tx_check	= EESR_TC1 | EESR_FTC,
676 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
677 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
678 			  EESR_TDE | EESR_ECI,
679 
680 	.apr		= 1,
681 	.mpr		= 1,
682 	.tpauser	= 1,
683 	.bculr		= 1,
684 	.hw_swap	= 1,
685 	.no_trimd	= 1,
686 	.no_ade		= 1,
687 	.tsu		= 1,
688 	.hw_crc		= 1,
689 	.select_mii	= 1,
690 };
691 
692 /* SH7763 */
693 static struct sh_eth_cpu_data sh7763_data = {
694 	.chip_reset	= sh_eth_chip_reset,
695 	.set_duplex	= sh_eth_set_duplex,
696 	.set_rate	= sh_eth_set_rate_gether,
697 
698 	.register_type	= SH_ETH_REG_GIGABIT,
699 
700 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
701 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
702 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
703 
704 	.tx_check	= EESR_TC1 | EESR_FTC,
705 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
706 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
707 			  EESR_ECI,
708 
709 	.apr		= 1,
710 	.mpr		= 1,
711 	.tpauser	= 1,
712 	.bculr		= 1,
713 	.hw_swap	= 1,
714 	.no_trimd	= 1,
715 	.no_ade		= 1,
716 	.tsu		= 1,
717 	.irq_flags	= IRQF_SHARED,
718 };
719 
720 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
721 {
722 	struct sh_eth_private *mdp = netdev_priv(ndev);
723 
724 	/* reset device */
725 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
726 	mdelay(1);
727 
728 	sh_eth_select_mii(ndev);
729 }
730 
731 /* R8A7740 */
732 static struct sh_eth_cpu_data r8a7740_data = {
733 	.chip_reset	= sh_eth_chip_reset_r8a7740,
734 	.set_duplex	= sh_eth_set_duplex,
735 	.set_rate	= sh_eth_set_rate_gether,
736 
737 	.register_type	= SH_ETH_REG_GIGABIT,
738 
739 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
740 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
741 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
742 
743 	.tx_check	= EESR_TC1 | EESR_FTC,
744 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
745 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
746 			  EESR_TDE | EESR_ECI,
747 	.fdr_value	= 0x0000070f,
748 	.rmcr_value	= RMCR_RNC,
749 
750 	.apr		= 1,
751 	.mpr		= 1,
752 	.tpauser	= 1,
753 	.bculr		= 1,
754 	.hw_swap	= 1,
755 	.rpadir		= 1,
756 	.rpadir_value   = 2 << 16,
757 	.no_trimd	= 1,
758 	.no_ade		= 1,
759 	.tsu		= 1,
760 	.select_mii	= 1,
761 	.shift_rd0	= 1,
762 };
763 
764 /* R7S72100 */
765 static struct sh_eth_cpu_data r7s72100_data = {
766 	.chip_reset	= sh_eth_chip_reset,
767 	.set_duplex	= sh_eth_set_duplex,
768 
769 	.register_type	= SH_ETH_REG_FAST_RZ,
770 
771 	.ecsr_value	= ECSR_ICD,
772 	.ecsipr_value	= ECSIPR_ICDIP,
773 	.eesipr_value	= 0xff7f009f,
774 
775 	.tx_check	= EESR_TC1 | EESR_FTC,
776 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
777 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
778 			  EESR_TDE | EESR_ECI,
779 	.fdr_value	= 0x0000070f,
780 	.rmcr_value	= RMCR_RNC,
781 
782 	.no_psr		= 1,
783 	.apr		= 1,
784 	.mpr		= 1,
785 	.tpauser	= 1,
786 	.hw_swap	= 1,
787 	.rpadir		= 1,
788 	.rpadir_value   = 2 << 16,
789 	.no_trimd	= 1,
790 	.no_ade		= 1,
791 	.hw_crc		= 1,
792 	.tsu		= 1,
793 	.shift_rd0	= 1,
794 };
795 
796 static struct sh_eth_cpu_data sh7619_data = {
797 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
798 
799 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
800 
801 	.apr		= 1,
802 	.mpr		= 1,
803 	.tpauser	= 1,
804 	.hw_swap	= 1,
805 };
806 
807 static struct sh_eth_cpu_data sh771x_data = {
808 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
809 
810 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
811 	.tsu		= 1,
812 };
813 
814 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
815 {
816 	if (!cd->ecsr_value)
817 		cd->ecsr_value = DEFAULT_ECSR_INIT;
818 
819 	if (!cd->ecsipr_value)
820 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
821 
822 	if (!cd->fcftr_value)
823 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
824 				  DEFAULT_FIFO_F_D_RFD;
825 
826 	if (!cd->fdr_value)
827 		cd->fdr_value = DEFAULT_FDR_INIT;
828 
829 	if (!cd->rmcr_value)
830 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
831 
832 	if (!cd->tx_check)
833 		cd->tx_check = DEFAULT_TX_CHECK;
834 
835 	if (!cd->eesr_err_check)
836 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
837 }
838 
839 static int sh_eth_check_reset(struct net_device *ndev)
840 {
841 	int ret = 0;
842 	int cnt = 100;
843 
844 	while (cnt > 0) {
845 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
846 			break;
847 		mdelay(1);
848 		cnt--;
849 	}
850 	if (cnt <= 0) {
851 		pr_err("Device reset failed\n");
852 		ret = -ETIMEDOUT;
853 	}
854 	return ret;
855 }
856 
857 static int sh_eth_reset(struct net_device *ndev)
858 {
859 	struct sh_eth_private *mdp = netdev_priv(ndev);
860 	int ret = 0;
861 
862 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
863 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
864 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
865 			     EDMR);
866 
867 		ret = sh_eth_check_reset(ndev);
868 		if (ret)
869 			goto out;
870 
871 		/* Table Init */
872 		sh_eth_write(ndev, 0x0, TDLAR);
873 		sh_eth_write(ndev, 0x0, TDFAR);
874 		sh_eth_write(ndev, 0x0, TDFXR);
875 		sh_eth_write(ndev, 0x0, TDFFR);
876 		sh_eth_write(ndev, 0x0, RDLAR);
877 		sh_eth_write(ndev, 0x0, RDFAR);
878 		sh_eth_write(ndev, 0x0, RDFXR);
879 		sh_eth_write(ndev, 0x0, RDFFR);
880 
881 		/* Reset HW CRC register */
882 		if (mdp->cd->hw_crc)
883 			sh_eth_write(ndev, 0x0, CSMR);
884 
885 		/* Select MII mode */
886 		if (mdp->cd->select_mii)
887 			sh_eth_select_mii(ndev);
888 	} else {
889 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
890 			     EDMR);
891 		mdelay(3);
892 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
893 			     EDMR);
894 	}
895 
896 out:
897 	return ret;
898 }
899 
900 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
901 static void sh_eth_set_receive_align(struct sk_buff *skb)
902 {
903 	int reserve;
904 
905 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
906 	if (reserve)
907 		skb_reserve(skb, reserve);
908 }
909 #else
910 static void sh_eth_set_receive_align(struct sk_buff *skb)
911 {
912 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
913 }
914 #endif
915 
916 
917 /* CPU <-> EDMAC endian convert */
918 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
919 {
920 	switch (mdp->edmac_endian) {
921 	case EDMAC_LITTLE_ENDIAN:
922 		return cpu_to_le32(x);
923 	case EDMAC_BIG_ENDIAN:
924 		return cpu_to_be32(x);
925 	}
926 	return x;
927 }
928 
929 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
930 {
931 	switch (mdp->edmac_endian) {
932 	case EDMAC_LITTLE_ENDIAN:
933 		return le32_to_cpu(x);
934 	case EDMAC_BIG_ENDIAN:
935 		return be32_to_cpu(x);
936 	}
937 	return x;
938 }
939 
940 /* Program the hardware MAC address from dev->dev_addr. */
941 static void update_mac_address(struct net_device *ndev)
942 {
943 	sh_eth_write(ndev,
944 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
945 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
946 	sh_eth_write(ndev,
947 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
948 }
949 
950 /* Get MAC address from SuperH MAC address register
951  *
952  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
953  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
954  * When you want use this device, you must set MAC address in bootloader.
955  *
956  */
957 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
958 {
959 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
960 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
961 	} else {
962 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
963 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
964 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
965 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
966 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
967 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
968 	}
969 }
970 
971 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
972 {
973 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
974 		return EDTRR_TRNS_GETHER;
975 	else
976 		return EDTRR_TRNS_ETHER;
977 }
978 
979 struct bb_info {
980 	void (*set_gate)(void *addr);
981 	struct mdiobb_ctrl ctrl;
982 	void *addr;
983 	u32 mmd_msk;/* MMD */
984 	u32 mdo_msk;
985 	u32 mdi_msk;
986 	u32 mdc_msk;
987 };
988 
989 /* PHY bit set */
990 static void bb_set(void *addr, u32 msk)
991 {
992 	iowrite32(ioread32(addr) | msk, addr);
993 }
994 
995 /* PHY bit clear */
996 static void bb_clr(void *addr, u32 msk)
997 {
998 	iowrite32((ioread32(addr) & ~msk), addr);
999 }
1000 
1001 /* PHY bit read */
1002 static int bb_read(void *addr, u32 msk)
1003 {
1004 	return (ioread32(addr) & msk) != 0;
1005 }
1006 
1007 /* Data I/O pin control */
1008 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1009 {
1010 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1011 
1012 	if (bitbang->set_gate)
1013 		bitbang->set_gate(bitbang->addr);
1014 
1015 	if (bit)
1016 		bb_set(bitbang->addr, bitbang->mmd_msk);
1017 	else
1018 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1019 }
1020 
1021 /* Set bit data*/
1022 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1023 {
1024 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1025 
1026 	if (bitbang->set_gate)
1027 		bitbang->set_gate(bitbang->addr);
1028 
1029 	if (bit)
1030 		bb_set(bitbang->addr, bitbang->mdo_msk);
1031 	else
1032 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1033 }
1034 
1035 /* Get bit data*/
1036 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1037 {
1038 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039 
1040 	if (bitbang->set_gate)
1041 		bitbang->set_gate(bitbang->addr);
1042 
1043 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1044 }
1045 
1046 /* MDC pin control */
1047 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1048 {
1049 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1050 
1051 	if (bitbang->set_gate)
1052 		bitbang->set_gate(bitbang->addr);
1053 
1054 	if (bit)
1055 		bb_set(bitbang->addr, bitbang->mdc_msk);
1056 	else
1057 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1058 }
1059 
1060 /* mdio bus control struct */
1061 static struct mdiobb_ops bb_ops = {
1062 	.owner = THIS_MODULE,
1063 	.set_mdc = sh_mdc_ctrl,
1064 	.set_mdio_dir = sh_mmd_ctrl,
1065 	.set_mdio_data = sh_set_mdio,
1066 	.get_mdio_data = sh_get_mdio,
1067 };
1068 
1069 /* free skb and descriptor buffer */
1070 static void sh_eth_ring_free(struct net_device *ndev)
1071 {
1072 	struct sh_eth_private *mdp = netdev_priv(ndev);
1073 	int i;
1074 
1075 	/* Free Rx skb ringbuffer */
1076 	if (mdp->rx_skbuff) {
1077 		for (i = 0; i < mdp->num_rx_ring; i++) {
1078 			if (mdp->rx_skbuff[i])
1079 				dev_kfree_skb(mdp->rx_skbuff[i]);
1080 		}
1081 	}
1082 	kfree(mdp->rx_skbuff);
1083 	mdp->rx_skbuff = NULL;
1084 
1085 	/* Free Tx skb ringbuffer */
1086 	if (mdp->tx_skbuff) {
1087 		for (i = 0; i < mdp->num_tx_ring; i++) {
1088 			if (mdp->tx_skbuff[i])
1089 				dev_kfree_skb(mdp->tx_skbuff[i]);
1090 		}
1091 	}
1092 	kfree(mdp->tx_skbuff);
1093 	mdp->tx_skbuff = NULL;
1094 }
1095 
1096 /* format skb and descriptor buffer */
1097 static void sh_eth_ring_format(struct net_device *ndev)
1098 {
1099 	struct sh_eth_private *mdp = netdev_priv(ndev);
1100 	int i;
1101 	struct sk_buff *skb;
1102 	struct sh_eth_rxdesc *rxdesc = NULL;
1103 	struct sh_eth_txdesc *txdesc = NULL;
1104 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1105 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1106 
1107 	mdp->cur_rx = 0;
1108 	mdp->cur_tx = 0;
1109 	mdp->dirty_rx = 0;
1110 	mdp->dirty_tx = 0;
1111 
1112 	memset(mdp->rx_ring, 0, rx_ringsize);
1113 
1114 	/* build Rx ring buffer */
1115 	for (i = 0; i < mdp->num_rx_ring; i++) {
1116 		/* skb */
1117 		mdp->rx_skbuff[i] = NULL;
1118 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1119 		mdp->rx_skbuff[i] = skb;
1120 		if (skb == NULL)
1121 			break;
1122 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1123 			       DMA_FROM_DEVICE);
1124 		sh_eth_set_receive_align(skb);
1125 
1126 		/* RX descriptor */
1127 		rxdesc = &mdp->rx_ring[i];
1128 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1129 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1130 
1131 		/* The size of the buffer is 16 byte boundary. */
1132 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1133 		/* Rx descriptor address set */
1134 		if (i == 0) {
1135 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1136 			if (sh_eth_is_gether(mdp) ||
1137 			    sh_eth_is_rz_fast_ether(mdp))
1138 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1139 		}
1140 	}
1141 
1142 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1143 
1144 	/* Mark the last entry as wrapping the ring. */
1145 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1146 
1147 	memset(mdp->tx_ring, 0, tx_ringsize);
1148 
1149 	/* build Tx ring buffer */
1150 	for (i = 0; i < mdp->num_tx_ring; i++) {
1151 		mdp->tx_skbuff[i] = NULL;
1152 		txdesc = &mdp->tx_ring[i];
1153 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1154 		txdesc->buffer_length = 0;
1155 		if (i == 0) {
1156 			/* Tx descriptor address set */
1157 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1158 			if (sh_eth_is_gether(mdp) ||
1159 			    sh_eth_is_rz_fast_ether(mdp))
1160 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1161 		}
1162 	}
1163 
1164 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1165 }
1166 
1167 /* Get skb and descriptor buffer */
1168 static int sh_eth_ring_init(struct net_device *ndev)
1169 {
1170 	struct sh_eth_private *mdp = netdev_priv(ndev);
1171 	int rx_ringsize, tx_ringsize, ret = 0;
1172 
1173 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1174 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1175 	 * the first 2 bytes, and +16 gets room for the status word from the
1176 	 * card.
1177 	 */
1178 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1179 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1180 	if (mdp->cd->rpadir)
1181 		mdp->rx_buf_sz += NET_IP_ALIGN;
1182 
1183 	/* Allocate RX and TX skb rings */
1184 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1185 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1186 	if (!mdp->rx_skbuff) {
1187 		ret = -ENOMEM;
1188 		return ret;
1189 	}
1190 
1191 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1192 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1193 	if (!mdp->tx_skbuff) {
1194 		ret = -ENOMEM;
1195 		goto skb_ring_free;
1196 	}
1197 
1198 	/* Allocate all Rx descriptors. */
1199 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1200 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1201 					  GFP_KERNEL);
1202 	if (!mdp->rx_ring) {
1203 		ret = -ENOMEM;
1204 		goto desc_ring_free;
1205 	}
1206 
1207 	mdp->dirty_rx = 0;
1208 
1209 	/* Allocate all Tx descriptors. */
1210 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1211 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1212 					  GFP_KERNEL);
1213 	if (!mdp->tx_ring) {
1214 		ret = -ENOMEM;
1215 		goto desc_ring_free;
1216 	}
1217 	return ret;
1218 
1219 desc_ring_free:
1220 	/* free DMA buffer */
1221 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1222 
1223 skb_ring_free:
1224 	/* Free Rx and Tx skb ring buffer */
1225 	sh_eth_ring_free(ndev);
1226 	mdp->tx_ring = NULL;
1227 	mdp->rx_ring = NULL;
1228 
1229 	return ret;
1230 }
1231 
1232 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1233 {
1234 	int ringsize;
1235 
1236 	if (mdp->rx_ring) {
1237 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1238 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1239 				  mdp->rx_desc_dma);
1240 		mdp->rx_ring = NULL;
1241 	}
1242 
1243 	if (mdp->tx_ring) {
1244 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1245 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1246 				  mdp->tx_desc_dma);
1247 		mdp->tx_ring = NULL;
1248 	}
1249 }
1250 
1251 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1252 {
1253 	int ret = 0;
1254 	struct sh_eth_private *mdp = netdev_priv(ndev);
1255 	u32 val;
1256 
1257 	/* Soft Reset */
1258 	ret = sh_eth_reset(ndev);
1259 	if (ret)
1260 		goto out;
1261 
1262 	if (mdp->cd->rmiimode)
1263 		sh_eth_write(ndev, 0x1, RMIIMODE);
1264 
1265 	/* Descriptor format */
1266 	sh_eth_ring_format(ndev);
1267 	if (mdp->cd->rpadir)
1268 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1269 
1270 	/* all sh_eth int mask */
1271 	sh_eth_write(ndev, 0, EESIPR);
1272 
1273 #if defined(__LITTLE_ENDIAN)
1274 	if (mdp->cd->hw_swap)
1275 		sh_eth_write(ndev, EDMR_EL, EDMR);
1276 	else
1277 #endif
1278 		sh_eth_write(ndev, 0, EDMR);
1279 
1280 	/* FIFO size set */
1281 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1282 	sh_eth_write(ndev, 0, TFTR);
1283 
1284 	/* Frame recv control */
1285 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1286 
1287 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1288 
1289 	if (mdp->cd->bculr)
1290 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1291 
1292 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1293 
1294 	if (!mdp->cd->no_trimd)
1295 		sh_eth_write(ndev, 0, TRIMD);
1296 
1297 	/* Recv frame limit set register */
1298 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1299 		     RFLR);
1300 
1301 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1302 	if (start)
1303 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1304 
1305 	/* PAUSE Prohibition */
1306 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1307 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1308 
1309 	sh_eth_write(ndev, val, ECMR);
1310 
1311 	if (mdp->cd->set_rate)
1312 		mdp->cd->set_rate(ndev);
1313 
1314 	/* E-MAC Status Register clear */
1315 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1316 
1317 	/* E-MAC Interrupt Enable register */
1318 	if (start)
1319 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1320 
1321 	/* Set MAC address */
1322 	update_mac_address(ndev);
1323 
1324 	/* mask reset */
1325 	if (mdp->cd->apr)
1326 		sh_eth_write(ndev, APR_AP, APR);
1327 	if (mdp->cd->mpr)
1328 		sh_eth_write(ndev, MPR_MP, MPR);
1329 	if (mdp->cd->tpauser)
1330 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1331 
1332 	if (start) {
1333 		/* Setting the Rx mode will start the Rx process. */
1334 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1335 
1336 		netif_start_queue(ndev);
1337 	}
1338 
1339 out:
1340 	return ret;
1341 }
1342 
1343 /* free Tx skb function */
1344 static int sh_eth_txfree(struct net_device *ndev)
1345 {
1346 	struct sh_eth_private *mdp = netdev_priv(ndev);
1347 	struct sh_eth_txdesc *txdesc;
1348 	int free_num = 0;
1349 	int entry = 0;
1350 
1351 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1352 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1353 		txdesc = &mdp->tx_ring[entry];
1354 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1355 			break;
1356 		/* Free the original skb. */
1357 		if (mdp->tx_skbuff[entry]) {
1358 			dma_unmap_single(&ndev->dev, txdesc->addr,
1359 					 txdesc->buffer_length, DMA_TO_DEVICE);
1360 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1361 			mdp->tx_skbuff[entry] = NULL;
1362 			free_num++;
1363 		}
1364 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1365 		if (entry >= mdp->num_tx_ring - 1)
1366 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1367 
1368 		ndev->stats.tx_packets++;
1369 		ndev->stats.tx_bytes += txdesc->buffer_length;
1370 	}
1371 	return free_num;
1372 }
1373 
1374 /* Packet receive function */
1375 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1376 {
1377 	struct sh_eth_private *mdp = netdev_priv(ndev);
1378 	struct sh_eth_rxdesc *rxdesc;
1379 
1380 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1381 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1382 	struct sk_buff *skb;
1383 	int exceeded = 0;
1384 	u16 pkt_len = 0;
1385 	u32 desc_status;
1386 
1387 	rxdesc = &mdp->rx_ring[entry];
1388 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1389 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1390 		pkt_len = rxdesc->frame_length;
1391 
1392 		if (--boguscnt < 0)
1393 			break;
1394 
1395 		if (*quota <= 0) {
1396 			exceeded = 1;
1397 			break;
1398 		}
1399 		(*quota)--;
1400 
1401 		if (!(desc_status & RDFEND))
1402 			ndev->stats.rx_length_errors++;
1403 
1404 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1405 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1406 		 * bit 0. However, in case of the R8A7740, R8A779x, and
1407 		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1408 		 * driver needs right shifting by 16.
1409 		 */
1410 		if (mdp->cd->shift_rd0)
1411 			desc_status >>= 16;
1412 
1413 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1414 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1415 			ndev->stats.rx_errors++;
1416 			if (desc_status & RD_RFS1)
1417 				ndev->stats.rx_crc_errors++;
1418 			if (desc_status & RD_RFS2)
1419 				ndev->stats.rx_frame_errors++;
1420 			if (desc_status & RD_RFS3)
1421 				ndev->stats.rx_length_errors++;
1422 			if (desc_status & RD_RFS4)
1423 				ndev->stats.rx_length_errors++;
1424 			if (desc_status & RD_RFS6)
1425 				ndev->stats.rx_missed_errors++;
1426 			if (desc_status & RD_RFS10)
1427 				ndev->stats.rx_over_errors++;
1428 		} else {
1429 			if (!mdp->cd->hw_swap)
1430 				sh_eth_soft_swap(
1431 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1432 					pkt_len + 2);
1433 			skb = mdp->rx_skbuff[entry];
1434 			mdp->rx_skbuff[entry] = NULL;
1435 			if (mdp->cd->rpadir)
1436 				skb_reserve(skb, NET_IP_ALIGN);
1437 			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1438 						mdp->rx_buf_sz,
1439 						DMA_FROM_DEVICE);
1440 			skb_put(skb, pkt_len);
1441 			skb->protocol = eth_type_trans(skb, ndev);
1442 			netif_receive_skb(skb);
1443 			ndev->stats.rx_packets++;
1444 			ndev->stats.rx_bytes += pkt_len;
1445 		}
1446 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1447 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1448 		rxdesc = &mdp->rx_ring[entry];
1449 	}
1450 
1451 	/* Refill the Rx ring buffers. */
1452 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1453 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1454 		rxdesc = &mdp->rx_ring[entry];
1455 		/* The size of the buffer is 16 byte boundary. */
1456 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1457 
1458 		if (mdp->rx_skbuff[entry] == NULL) {
1459 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1460 			mdp->rx_skbuff[entry] = skb;
1461 			if (skb == NULL)
1462 				break;	/* Better luck next round. */
1463 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1464 				       DMA_FROM_DEVICE);
1465 			sh_eth_set_receive_align(skb);
1466 
1467 			skb_checksum_none_assert(skb);
1468 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1469 		}
1470 		if (entry >= mdp->num_rx_ring - 1)
1471 			rxdesc->status |=
1472 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1473 		else
1474 			rxdesc->status |=
1475 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1476 	}
1477 
1478 	/* Restart Rx engine if stopped. */
1479 	/* If we don't need to check status, don't. -KDU */
1480 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1481 		/* fix the values for the next receiving if RDE is set */
1482 		if (intr_status & EESR_RDE) {
1483 			u32 count = (sh_eth_read(ndev, RDFAR) -
1484 				     sh_eth_read(ndev, RDLAR)) >> 4;
1485 
1486 			mdp->cur_rx = count;
1487 			mdp->dirty_rx = count;
1488 		}
1489 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1490 	}
1491 
1492 	return exceeded;
1493 }
1494 
1495 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1496 {
1497 	/* disable tx and rx */
1498 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1499 		~(ECMR_RE | ECMR_TE), ECMR);
1500 }
1501 
1502 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1503 {
1504 	/* enable tx and rx */
1505 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1506 		(ECMR_RE | ECMR_TE), ECMR);
1507 }
1508 
1509 /* error control function */
1510 static void sh_eth_error(struct net_device *ndev, int intr_status)
1511 {
1512 	struct sh_eth_private *mdp = netdev_priv(ndev);
1513 	u32 felic_stat;
1514 	u32 link_stat;
1515 	u32 mask;
1516 
1517 	if (intr_status & EESR_ECI) {
1518 		felic_stat = sh_eth_read(ndev, ECSR);
1519 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1520 		if (felic_stat & ECSR_ICD)
1521 			ndev->stats.tx_carrier_errors++;
1522 		if (felic_stat & ECSR_LCHNG) {
1523 			/* Link Changed */
1524 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1525 				goto ignore_link;
1526 			} else {
1527 				link_stat = (sh_eth_read(ndev, PSR));
1528 				if (mdp->ether_link_active_low)
1529 					link_stat = ~link_stat;
1530 			}
1531 			if (!(link_stat & PHY_ST_LINK)) {
1532 				sh_eth_rcv_snd_disable(ndev);
1533 			} else {
1534 				/* Link Up */
1535 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1536 						   ~DMAC_M_ECI, EESIPR);
1537 				/* clear int */
1538 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1539 					     ECSR);
1540 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1541 						   DMAC_M_ECI, EESIPR);
1542 				/* enable tx and rx */
1543 				sh_eth_rcv_snd_enable(ndev);
1544 			}
1545 		}
1546 	}
1547 
1548 ignore_link:
1549 	if (intr_status & EESR_TWB) {
1550 		/* Unused write back interrupt */
1551 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1552 			ndev->stats.tx_aborted_errors++;
1553 			if (netif_msg_tx_err(mdp))
1554 				dev_err(&ndev->dev, "Transmit Abort\n");
1555 		}
1556 	}
1557 
1558 	if (intr_status & EESR_RABT) {
1559 		/* Receive Abort int */
1560 		if (intr_status & EESR_RFRMER) {
1561 			/* Receive Frame Overflow int */
1562 			ndev->stats.rx_frame_errors++;
1563 			if (netif_msg_rx_err(mdp))
1564 				dev_err(&ndev->dev, "Receive Abort\n");
1565 		}
1566 	}
1567 
1568 	if (intr_status & EESR_TDE) {
1569 		/* Transmit Descriptor Empty int */
1570 		ndev->stats.tx_fifo_errors++;
1571 		if (netif_msg_tx_err(mdp))
1572 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1573 	}
1574 
1575 	if (intr_status & EESR_TFE) {
1576 		/* FIFO under flow */
1577 		ndev->stats.tx_fifo_errors++;
1578 		if (netif_msg_tx_err(mdp))
1579 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1580 	}
1581 
1582 	if (intr_status & EESR_RDE) {
1583 		/* Receive Descriptor Empty int */
1584 		ndev->stats.rx_over_errors++;
1585 
1586 		if (netif_msg_rx_err(mdp))
1587 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1588 	}
1589 
1590 	if (intr_status & EESR_RFE) {
1591 		/* Receive FIFO Overflow int */
1592 		ndev->stats.rx_fifo_errors++;
1593 		if (netif_msg_rx_err(mdp))
1594 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1595 	}
1596 
1597 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1598 		/* Address Error */
1599 		ndev->stats.tx_fifo_errors++;
1600 		if (netif_msg_tx_err(mdp))
1601 			dev_err(&ndev->dev, "Address Error\n");
1602 	}
1603 
1604 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1605 	if (mdp->cd->no_ade)
1606 		mask &= ~EESR_ADE;
1607 	if (intr_status & mask) {
1608 		/* Tx error */
1609 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1610 
1611 		/* dmesg */
1612 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1613 			intr_status, mdp->cur_tx, mdp->dirty_tx,
1614 			(u32)ndev->state, edtrr);
1615 		/* dirty buffer free */
1616 		sh_eth_txfree(ndev);
1617 
1618 		/* SH7712 BUG */
1619 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1620 			/* tx dma start */
1621 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1622 		}
1623 		/* wakeup */
1624 		netif_wake_queue(ndev);
1625 	}
1626 }
1627 
1628 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1629 {
1630 	struct net_device *ndev = netdev;
1631 	struct sh_eth_private *mdp = netdev_priv(ndev);
1632 	struct sh_eth_cpu_data *cd = mdp->cd;
1633 	irqreturn_t ret = IRQ_NONE;
1634 	unsigned long intr_status, intr_enable;
1635 
1636 	spin_lock(&mdp->lock);
1637 
1638 	/* Get interrupt status */
1639 	intr_status = sh_eth_read(ndev, EESR);
1640 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1641 	 * enabled since it's the one that  comes thru regardless of the mask,
1642 	 * and we need to fully handle it in sh_eth_error() in order to quench
1643 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1644 	 */
1645 	intr_enable = sh_eth_read(ndev, EESIPR);
1646 	intr_status &= intr_enable | DMAC_M_ECI;
1647 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1648 		ret = IRQ_HANDLED;
1649 	else
1650 		goto other_irq;
1651 
1652 	if (intr_status & EESR_RX_CHECK) {
1653 		if (napi_schedule_prep(&mdp->napi)) {
1654 			/* Mask Rx interrupts */
1655 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1656 				     EESIPR);
1657 			__napi_schedule(&mdp->napi);
1658 		} else {
1659 			dev_warn(&ndev->dev,
1660 				 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1661 				 intr_status, intr_enable);
1662 		}
1663 	}
1664 
1665 	/* Tx Check */
1666 	if (intr_status & cd->tx_check) {
1667 		/* Clear Tx interrupts */
1668 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1669 
1670 		sh_eth_txfree(ndev);
1671 		netif_wake_queue(ndev);
1672 	}
1673 
1674 	if (intr_status & cd->eesr_err_check) {
1675 		/* Clear error interrupts */
1676 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1677 
1678 		sh_eth_error(ndev, intr_status);
1679 	}
1680 
1681 other_irq:
1682 	spin_unlock(&mdp->lock);
1683 
1684 	return ret;
1685 }
1686 
1687 static int sh_eth_poll(struct napi_struct *napi, int budget)
1688 {
1689 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1690 						  napi);
1691 	struct net_device *ndev = napi->dev;
1692 	int quota = budget;
1693 	unsigned long intr_status;
1694 
1695 	for (;;) {
1696 		intr_status = sh_eth_read(ndev, EESR);
1697 		if (!(intr_status & EESR_RX_CHECK))
1698 			break;
1699 		/* Clear Rx interrupts */
1700 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1701 
1702 		if (sh_eth_rx(ndev, intr_status, &quota))
1703 			goto out;
1704 	}
1705 
1706 	napi_complete(napi);
1707 
1708 	/* Reenable Rx interrupts */
1709 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1710 out:
1711 	return budget - quota;
1712 }
1713 
1714 /* PHY state control function */
1715 static void sh_eth_adjust_link(struct net_device *ndev)
1716 {
1717 	struct sh_eth_private *mdp = netdev_priv(ndev);
1718 	struct phy_device *phydev = mdp->phydev;
1719 	int new_state = 0;
1720 
1721 	if (phydev->link) {
1722 		if (phydev->duplex != mdp->duplex) {
1723 			new_state = 1;
1724 			mdp->duplex = phydev->duplex;
1725 			if (mdp->cd->set_duplex)
1726 				mdp->cd->set_duplex(ndev);
1727 		}
1728 
1729 		if (phydev->speed != mdp->speed) {
1730 			new_state = 1;
1731 			mdp->speed = phydev->speed;
1732 			if (mdp->cd->set_rate)
1733 				mdp->cd->set_rate(ndev);
1734 		}
1735 		if (!mdp->link) {
1736 			sh_eth_write(ndev,
1737 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1738 				     ECMR);
1739 			new_state = 1;
1740 			mdp->link = phydev->link;
1741 			if (mdp->cd->no_psr || mdp->no_ether_link)
1742 				sh_eth_rcv_snd_enable(ndev);
1743 		}
1744 	} else if (mdp->link) {
1745 		new_state = 1;
1746 		mdp->link = 0;
1747 		mdp->speed = 0;
1748 		mdp->duplex = -1;
1749 		if (mdp->cd->no_psr || mdp->no_ether_link)
1750 			sh_eth_rcv_snd_disable(ndev);
1751 	}
1752 
1753 	if (new_state && netif_msg_link(mdp))
1754 		phy_print_status(phydev);
1755 }
1756 
1757 /* PHY init function */
1758 static int sh_eth_phy_init(struct net_device *ndev)
1759 {
1760 	struct sh_eth_private *mdp = netdev_priv(ndev);
1761 	char phy_id[MII_BUS_ID_SIZE + 3];
1762 	struct phy_device *phydev = NULL;
1763 
1764 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1765 		 mdp->mii_bus->id, mdp->phy_id);
1766 
1767 	mdp->link = 0;
1768 	mdp->speed = 0;
1769 	mdp->duplex = -1;
1770 
1771 	/* Try connect to PHY */
1772 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1773 			     mdp->phy_interface);
1774 	if (IS_ERR(phydev)) {
1775 		dev_err(&ndev->dev, "phy_connect failed\n");
1776 		return PTR_ERR(phydev);
1777 	}
1778 
1779 	dev_info(&ndev->dev, "attached PHY %d (IRQ %d) to driver %s\n",
1780 		 phydev->addr, phydev->irq, phydev->drv->name);
1781 
1782 	mdp->phydev = phydev;
1783 
1784 	return 0;
1785 }
1786 
1787 /* PHY control start function */
1788 static int sh_eth_phy_start(struct net_device *ndev)
1789 {
1790 	struct sh_eth_private *mdp = netdev_priv(ndev);
1791 	int ret;
1792 
1793 	ret = sh_eth_phy_init(ndev);
1794 	if (ret)
1795 		return ret;
1796 
1797 	phy_start(mdp->phydev);
1798 
1799 	return 0;
1800 }
1801 
1802 static int sh_eth_get_settings(struct net_device *ndev,
1803 			       struct ethtool_cmd *ecmd)
1804 {
1805 	struct sh_eth_private *mdp = netdev_priv(ndev);
1806 	unsigned long flags;
1807 	int ret;
1808 
1809 	spin_lock_irqsave(&mdp->lock, flags);
1810 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1811 	spin_unlock_irqrestore(&mdp->lock, flags);
1812 
1813 	return ret;
1814 }
1815 
1816 static int sh_eth_set_settings(struct net_device *ndev,
1817 			       struct ethtool_cmd *ecmd)
1818 {
1819 	struct sh_eth_private *mdp = netdev_priv(ndev);
1820 	unsigned long flags;
1821 	int ret;
1822 
1823 	spin_lock_irqsave(&mdp->lock, flags);
1824 
1825 	/* disable tx and rx */
1826 	sh_eth_rcv_snd_disable(ndev);
1827 
1828 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1829 	if (ret)
1830 		goto error_exit;
1831 
1832 	if (ecmd->duplex == DUPLEX_FULL)
1833 		mdp->duplex = 1;
1834 	else
1835 		mdp->duplex = 0;
1836 
1837 	if (mdp->cd->set_duplex)
1838 		mdp->cd->set_duplex(ndev);
1839 
1840 error_exit:
1841 	mdelay(1);
1842 
1843 	/* enable tx and rx */
1844 	sh_eth_rcv_snd_enable(ndev);
1845 
1846 	spin_unlock_irqrestore(&mdp->lock, flags);
1847 
1848 	return ret;
1849 }
1850 
1851 static int sh_eth_nway_reset(struct net_device *ndev)
1852 {
1853 	struct sh_eth_private *mdp = netdev_priv(ndev);
1854 	unsigned long flags;
1855 	int ret;
1856 
1857 	spin_lock_irqsave(&mdp->lock, flags);
1858 	ret = phy_start_aneg(mdp->phydev);
1859 	spin_unlock_irqrestore(&mdp->lock, flags);
1860 
1861 	return ret;
1862 }
1863 
1864 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1865 {
1866 	struct sh_eth_private *mdp = netdev_priv(ndev);
1867 	return mdp->msg_enable;
1868 }
1869 
1870 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1871 {
1872 	struct sh_eth_private *mdp = netdev_priv(ndev);
1873 	mdp->msg_enable = value;
1874 }
1875 
1876 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1877 	"rx_current", "tx_current",
1878 	"rx_dirty", "tx_dirty",
1879 };
1880 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1881 
1882 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1883 {
1884 	switch (sset) {
1885 	case ETH_SS_STATS:
1886 		return SH_ETH_STATS_LEN;
1887 	default:
1888 		return -EOPNOTSUPP;
1889 	}
1890 }
1891 
1892 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1893 				     struct ethtool_stats *stats, u64 *data)
1894 {
1895 	struct sh_eth_private *mdp = netdev_priv(ndev);
1896 	int i = 0;
1897 
1898 	/* device-specific stats */
1899 	data[i++] = mdp->cur_rx;
1900 	data[i++] = mdp->cur_tx;
1901 	data[i++] = mdp->dirty_rx;
1902 	data[i++] = mdp->dirty_tx;
1903 }
1904 
1905 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1906 {
1907 	switch (stringset) {
1908 	case ETH_SS_STATS:
1909 		memcpy(data, *sh_eth_gstrings_stats,
1910 		       sizeof(sh_eth_gstrings_stats));
1911 		break;
1912 	}
1913 }
1914 
1915 static void sh_eth_get_ringparam(struct net_device *ndev,
1916 				 struct ethtool_ringparam *ring)
1917 {
1918 	struct sh_eth_private *mdp = netdev_priv(ndev);
1919 
1920 	ring->rx_max_pending = RX_RING_MAX;
1921 	ring->tx_max_pending = TX_RING_MAX;
1922 	ring->rx_pending = mdp->num_rx_ring;
1923 	ring->tx_pending = mdp->num_tx_ring;
1924 }
1925 
1926 static int sh_eth_set_ringparam(struct net_device *ndev,
1927 				struct ethtool_ringparam *ring)
1928 {
1929 	struct sh_eth_private *mdp = netdev_priv(ndev);
1930 	int ret;
1931 
1932 	if (ring->tx_pending > TX_RING_MAX ||
1933 	    ring->rx_pending > RX_RING_MAX ||
1934 	    ring->tx_pending < TX_RING_MIN ||
1935 	    ring->rx_pending < RX_RING_MIN)
1936 		return -EINVAL;
1937 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1938 		return -EINVAL;
1939 
1940 	if (netif_running(ndev)) {
1941 		netif_tx_disable(ndev);
1942 		/* Disable interrupts by clearing the interrupt mask. */
1943 		sh_eth_write(ndev, 0x0000, EESIPR);
1944 		/* Stop the chip's Tx and Rx processes. */
1945 		sh_eth_write(ndev, 0, EDTRR);
1946 		sh_eth_write(ndev, 0, EDRRR);
1947 		synchronize_irq(ndev->irq);
1948 	}
1949 
1950 	/* Free all the skbuffs in the Rx queue. */
1951 	sh_eth_ring_free(ndev);
1952 	/* Free DMA buffer */
1953 	sh_eth_free_dma_buffer(mdp);
1954 
1955 	/* Set new parameters */
1956 	mdp->num_rx_ring = ring->rx_pending;
1957 	mdp->num_tx_ring = ring->tx_pending;
1958 
1959 	ret = sh_eth_ring_init(ndev);
1960 	if (ret < 0) {
1961 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1962 		return ret;
1963 	}
1964 	ret = sh_eth_dev_init(ndev, false);
1965 	if (ret < 0) {
1966 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1967 		return ret;
1968 	}
1969 
1970 	if (netif_running(ndev)) {
1971 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1972 		/* Setting the Rx mode will start the Rx process. */
1973 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1974 		netif_wake_queue(ndev);
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static const struct ethtool_ops sh_eth_ethtool_ops = {
1981 	.get_settings	= sh_eth_get_settings,
1982 	.set_settings	= sh_eth_set_settings,
1983 	.nway_reset	= sh_eth_nway_reset,
1984 	.get_msglevel	= sh_eth_get_msglevel,
1985 	.set_msglevel	= sh_eth_set_msglevel,
1986 	.get_link	= ethtool_op_get_link,
1987 	.get_strings	= sh_eth_get_strings,
1988 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1989 	.get_sset_count     = sh_eth_get_sset_count,
1990 	.get_ringparam	= sh_eth_get_ringparam,
1991 	.set_ringparam	= sh_eth_set_ringparam,
1992 };
1993 
1994 /* network device open function */
1995 static int sh_eth_open(struct net_device *ndev)
1996 {
1997 	int ret = 0;
1998 	struct sh_eth_private *mdp = netdev_priv(ndev);
1999 
2000 	pm_runtime_get_sync(&mdp->pdev->dev);
2001 
2002 	napi_enable(&mdp->napi);
2003 
2004 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2005 			  mdp->cd->irq_flags, ndev->name, ndev);
2006 	if (ret) {
2007 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
2008 		goto out_napi_off;
2009 	}
2010 
2011 	/* Descriptor set */
2012 	ret = sh_eth_ring_init(ndev);
2013 	if (ret)
2014 		goto out_free_irq;
2015 
2016 	/* device init */
2017 	ret = sh_eth_dev_init(ndev, true);
2018 	if (ret)
2019 		goto out_free_irq;
2020 
2021 	/* PHY control start*/
2022 	ret = sh_eth_phy_start(ndev);
2023 	if (ret)
2024 		goto out_free_irq;
2025 
2026 	return ret;
2027 
2028 out_free_irq:
2029 	free_irq(ndev->irq, ndev);
2030 out_napi_off:
2031 	napi_disable(&mdp->napi);
2032 	pm_runtime_put_sync(&mdp->pdev->dev);
2033 	return ret;
2034 }
2035 
2036 /* Timeout function */
2037 static void sh_eth_tx_timeout(struct net_device *ndev)
2038 {
2039 	struct sh_eth_private *mdp = netdev_priv(ndev);
2040 	struct sh_eth_rxdesc *rxdesc;
2041 	int i;
2042 
2043 	netif_stop_queue(ndev);
2044 
2045 	if (netif_msg_timer(mdp)) {
2046 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x, resetting...\n",
2047 			ndev->name, (int)sh_eth_read(ndev, EESR));
2048 	}
2049 
2050 	/* tx_errors count up */
2051 	ndev->stats.tx_errors++;
2052 
2053 	/* Free all the skbuffs in the Rx queue. */
2054 	for (i = 0; i < mdp->num_rx_ring; i++) {
2055 		rxdesc = &mdp->rx_ring[i];
2056 		rxdesc->status = 0;
2057 		rxdesc->addr = 0xBADF00D0;
2058 		if (mdp->rx_skbuff[i])
2059 			dev_kfree_skb(mdp->rx_skbuff[i]);
2060 		mdp->rx_skbuff[i] = NULL;
2061 	}
2062 	for (i = 0; i < mdp->num_tx_ring; i++) {
2063 		if (mdp->tx_skbuff[i])
2064 			dev_kfree_skb(mdp->tx_skbuff[i]);
2065 		mdp->tx_skbuff[i] = NULL;
2066 	}
2067 
2068 	/* device init */
2069 	sh_eth_dev_init(ndev, true);
2070 }
2071 
2072 /* Packet transmit function */
2073 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2074 {
2075 	struct sh_eth_private *mdp = netdev_priv(ndev);
2076 	struct sh_eth_txdesc *txdesc;
2077 	u32 entry;
2078 	unsigned long flags;
2079 
2080 	spin_lock_irqsave(&mdp->lock, flags);
2081 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2082 		if (!sh_eth_txfree(ndev)) {
2083 			if (netif_msg_tx_queued(mdp))
2084 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
2085 			netif_stop_queue(ndev);
2086 			spin_unlock_irqrestore(&mdp->lock, flags);
2087 			return NETDEV_TX_BUSY;
2088 		}
2089 	}
2090 	spin_unlock_irqrestore(&mdp->lock, flags);
2091 
2092 	entry = mdp->cur_tx % mdp->num_tx_ring;
2093 	mdp->tx_skbuff[entry] = skb;
2094 	txdesc = &mdp->tx_ring[entry];
2095 	/* soft swap. */
2096 	if (!mdp->cd->hw_swap)
2097 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2098 				 skb->len + 2);
2099 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2100 				      DMA_TO_DEVICE);
2101 	if (skb->len < ETHERSMALL)
2102 		txdesc->buffer_length = ETHERSMALL;
2103 	else
2104 		txdesc->buffer_length = skb->len;
2105 
2106 	if (entry >= mdp->num_tx_ring - 1)
2107 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2108 	else
2109 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2110 
2111 	mdp->cur_tx++;
2112 
2113 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2114 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2115 
2116 	return NETDEV_TX_OK;
2117 }
2118 
2119 /* device close function */
2120 static int sh_eth_close(struct net_device *ndev)
2121 {
2122 	struct sh_eth_private *mdp = netdev_priv(ndev);
2123 
2124 	netif_stop_queue(ndev);
2125 
2126 	/* Disable interrupts by clearing the interrupt mask. */
2127 	sh_eth_write(ndev, 0x0000, EESIPR);
2128 
2129 	/* Stop the chip's Tx and Rx processes. */
2130 	sh_eth_write(ndev, 0, EDTRR);
2131 	sh_eth_write(ndev, 0, EDRRR);
2132 
2133 	/* PHY Disconnect */
2134 	if (mdp->phydev) {
2135 		phy_stop(mdp->phydev);
2136 		phy_disconnect(mdp->phydev);
2137 	}
2138 
2139 	free_irq(ndev->irq, ndev);
2140 
2141 	napi_disable(&mdp->napi);
2142 
2143 	/* Free all the skbuffs in the Rx queue. */
2144 	sh_eth_ring_free(ndev);
2145 
2146 	/* free DMA buffer */
2147 	sh_eth_free_dma_buffer(mdp);
2148 
2149 	pm_runtime_put_sync(&mdp->pdev->dev);
2150 
2151 	return 0;
2152 }
2153 
2154 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2155 {
2156 	struct sh_eth_private *mdp = netdev_priv(ndev);
2157 
2158 	if (sh_eth_is_rz_fast_ether(mdp))
2159 		return &ndev->stats;
2160 
2161 	pm_runtime_get_sync(&mdp->pdev->dev);
2162 
2163 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2164 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2165 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2166 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2167 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2168 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2169 	if (sh_eth_is_gether(mdp)) {
2170 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2171 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2172 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2173 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2174 	} else {
2175 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2176 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2177 	}
2178 	pm_runtime_put_sync(&mdp->pdev->dev);
2179 
2180 	return &ndev->stats;
2181 }
2182 
2183 /* ioctl to device function */
2184 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2185 {
2186 	struct sh_eth_private *mdp = netdev_priv(ndev);
2187 	struct phy_device *phydev = mdp->phydev;
2188 
2189 	if (!netif_running(ndev))
2190 		return -EINVAL;
2191 
2192 	if (!phydev)
2193 		return -ENODEV;
2194 
2195 	return phy_mii_ioctl(phydev, rq, cmd);
2196 }
2197 
2198 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2199 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2200 					    int entry)
2201 {
2202 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2203 }
2204 
2205 static u32 sh_eth_tsu_get_post_mask(int entry)
2206 {
2207 	return 0x0f << (28 - ((entry % 8) * 4));
2208 }
2209 
2210 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2211 {
2212 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2213 }
2214 
2215 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2216 					     int entry)
2217 {
2218 	struct sh_eth_private *mdp = netdev_priv(ndev);
2219 	u32 tmp;
2220 	void *reg_offset;
2221 
2222 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2223 	tmp = ioread32(reg_offset);
2224 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2225 }
2226 
2227 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2228 					      int entry)
2229 {
2230 	struct sh_eth_private *mdp = netdev_priv(ndev);
2231 	u32 post_mask, ref_mask, tmp;
2232 	void *reg_offset;
2233 
2234 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2235 	post_mask = sh_eth_tsu_get_post_mask(entry);
2236 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2237 
2238 	tmp = ioread32(reg_offset);
2239 	iowrite32(tmp & ~post_mask, reg_offset);
2240 
2241 	/* If other port enables, the function returns "true" */
2242 	return tmp & ref_mask;
2243 }
2244 
2245 static int sh_eth_tsu_busy(struct net_device *ndev)
2246 {
2247 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2248 	struct sh_eth_private *mdp = netdev_priv(ndev);
2249 
2250 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2251 		udelay(10);
2252 		timeout--;
2253 		if (timeout <= 0) {
2254 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2255 			return -ETIMEDOUT;
2256 		}
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2263 				  const u8 *addr)
2264 {
2265 	u32 val;
2266 
2267 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2268 	iowrite32(val, reg);
2269 	if (sh_eth_tsu_busy(ndev) < 0)
2270 		return -EBUSY;
2271 
2272 	val = addr[4] << 8 | addr[5];
2273 	iowrite32(val, reg + 4);
2274 	if (sh_eth_tsu_busy(ndev) < 0)
2275 		return -EBUSY;
2276 
2277 	return 0;
2278 }
2279 
2280 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2281 {
2282 	u32 val;
2283 
2284 	val = ioread32(reg);
2285 	addr[0] = (val >> 24) & 0xff;
2286 	addr[1] = (val >> 16) & 0xff;
2287 	addr[2] = (val >> 8) & 0xff;
2288 	addr[3] = val & 0xff;
2289 	val = ioread32(reg + 4);
2290 	addr[4] = (val >> 8) & 0xff;
2291 	addr[5] = val & 0xff;
2292 }
2293 
2294 
2295 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2296 {
2297 	struct sh_eth_private *mdp = netdev_priv(ndev);
2298 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2299 	int i;
2300 	u8 c_addr[ETH_ALEN];
2301 
2302 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2303 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2304 		if (ether_addr_equal(addr, c_addr))
2305 			return i;
2306 	}
2307 
2308 	return -ENOENT;
2309 }
2310 
2311 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2312 {
2313 	u8 blank[ETH_ALEN];
2314 	int entry;
2315 
2316 	memset(blank, 0, sizeof(blank));
2317 	entry = sh_eth_tsu_find_entry(ndev, blank);
2318 	return (entry < 0) ? -ENOMEM : entry;
2319 }
2320 
2321 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2322 					      int entry)
2323 {
2324 	struct sh_eth_private *mdp = netdev_priv(ndev);
2325 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2326 	int ret;
2327 	u8 blank[ETH_ALEN];
2328 
2329 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2330 			 ~(1 << (31 - entry)), TSU_TEN);
2331 
2332 	memset(blank, 0, sizeof(blank));
2333 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2334 	if (ret < 0)
2335 		return ret;
2336 	return 0;
2337 }
2338 
2339 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2340 {
2341 	struct sh_eth_private *mdp = netdev_priv(ndev);
2342 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2343 	int i, ret;
2344 
2345 	if (!mdp->cd->tsu)
2346 		return 0;
2347 
2348 	i = sh_eth_tsu_find_entry(ndev, addr);
2349 	if (i < 0) {
2350 		/* No entry found, create one */
2351 		i = sh_eth_tsu_find_empty(ndev);
2352 		if (i < 0)
2353 			return -ENOMEM;
2354 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2355 		if (ret < 0)
2356 			return ret;
2357 
2358 		/* Enable the entry */
2359 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2360 				 (1 << (31 - i)), TSU_TEN);
2361 	}
2362 
2363 	/* Entry found or created, enable POST */
2364 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2365 
2366 	return 0;
2367 }
2368 
2369 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2370 {
2371 	struct sh_eth_private *mdp = netdev_priv(ndev);
2372 	int i, ret;
2373 
2374 	if (!mdp->cd->tsu)
2375 		return 0;
2376 
2377 	i = sh_eth_tsu_find_entry(ndev, addr);
2378 	if (i) {
2379 		/* Entry found */
2380 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2381 			goto done;
2382 
2383 		/* Disable the entry if both ports was disabled */
2384 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2385 		if (ret < 0)
2386 			return ret;
2387 	}
2388 done:
2389 	return 0;
2390 }
2391 
2392 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2393 {
2394 	struct sh_eth_private *mdp = netdev_priv(ndev);
2395 	int i, ret;
2396 
2397 	if (unlikely(!mdp->cd->tsu))
2398 		return 0;
2399 
2400 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2401 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2402 			continue;
2403 
2404 		/* Disable the entry if both ports was disabled */
2405 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2406 		if (ret < 0)
2407 			return ret;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2414 {
2415 	struct sh_eth_private *mdp = netdev_priv(ndev);
2416 	u8 addr[ETH_ALEN];
2417 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2418 	int i;
2419 
2420 	if (unlikely(!mdp->cd->tsu))
2421 		return;
2422 
2423 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2424 		sh_eth_tsu_read_entry(reg_offset, addr);
2425 		if (is_multicast_ether_addr(addr))
2426 			sh_eth_tsu_del_entry(ndev, addr);
2427 	}
2428 }
2429 
2430 /* Multicast reception directions set */
2431 static void sh_eth_set_multicast_list(struct net_device *ndev)
2432 {
2433 	struct sh_eth_private *mdp = netdev_priv(ndev);
2434 	u32 ecmr_bits;
2435 	int mcast_all = 0;
2436 	unsigned long flags;
2437 
2438 	spin_lock_irqsave(&mdp->lock, flags);
2439 	/* Initial condition is MCT = 1, PRM = 0.
2440 	 * Depending on ndev->flags, set PRM or clear MCT
2441 	 */
2442 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2443 
2444 	if (!(ndev->flags & IFF_MULTICAST)) {
2445 		sh_eth_tsu_purge_mcast(ndev);
2446 		mcast_all = 1;
2447 	}
2448 	if (ndev->flags & IFF_ALLMULTI) {
2449 		sh_eth_tsu_purge_mcast(ndev);
2450 		ecmr_bits &= ~ECMR_MCT;
2451 		mcast_all = 1;
2452 	}
2453 
2454 	if (ndev->flags & IFF_PROMISC) {
2455 		sh_eth_tsu_purge_all(ndev);
2456 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2457 	} else if (mdp->cd->tsu) {
2458 		struct netdev_hw_addr *ha;
2459 		netdev_for_each_mc_addr(ha, ndev) {
2460 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2461 				continue;
2462 
2463 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2464 				if (!mcast_all) {
2465 					sh_eth_tsu_purge_mcast(ndev);
2466 					ecmr_bits &= ~ECMR_MCT;
2467 					mcast_all = 1;
2468 				}
2469 			}
2470 		}
2471 	} else {
2472 		/* Normal, unicast/broadcast-only mode. */
2473 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2474 	}
2475 
2476 	/* update the ethernet mode */
2477 	sh_eth_write(ndev, ecmr_bits, ECMR);
2478 
2479 	spin_unlock_irqrestore(&mdp->lock, flags);
2480 }
2481 
2482 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2483 {
2484 	if (!mdp->port)
2485 		return TSU_VTAG0;
2486 	else
2487 		return TSU_VTAG1;
2488 }
2489 
2490 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2491 				  __be16 proto, u16 vid)
2492 {
2493 	struct sh_eth_private *mdp = netdev_priv(ndev);
2494 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2495 
2496 	if (unlikely(!mdp->cd->tsu))
2497 		return -EPERM;
2498 
2499 	/* No filtering if vid = 0 */
2500 	if (!vid)
2501 		return 0;
2502 
2503 	mdp->vlan_num_ids++;
2504 
2505 	/* The controller has one VLAN tag HW filter. So, if the filter is
2506 	 * already enabled, the driver disables it and the filte
2507 	 */
2508 	if (mdp->vlan_num_ids > 1) {
2509 		/* disable VLAN filter */
2510 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2511 		return 0;
2512 	}
2513 
2514 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2515 			 vtag_reg_index);
2516 
2517 	return 0;
2518 }
2519 
2520 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2521 				   __be16 proto, u16 vid)
2522 {
2523 	struct sh_eth_private *mdp = netdev_priv(ndev);
2524 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2525 
2526 	if (unlikely(!mdp->cd->tsu))
2527 		return -EPERM;
2528 
2529 	/* No filtering if vid = 0 */
2530 	if (!vid)
2531 		return 0;
2532 
2533 	mdp->vlan_num_ids--;
2534 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2535 
2536 	return 0;
2537 }
2538 
2539 /* SuperH's TSU register init function */
2540 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2541 {
2542 	if (sh_eth_is_rz_fast_ether(mdp)) {
2543 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2544 		return;
2545 	}
2546 
2547 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2548 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2549 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2550 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2551 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2552 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2553 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2554 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2555 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2556 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2557 	if (sh_eth_is_gether(mdp)) {
2558 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2559 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2560 	} else {
2561 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2562 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2563 	}
2564 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2565 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2566 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2567 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2568 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2569 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2570 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2571 }
2572 
2573 /* MDIO bus release function */
2574 static int sh_mdio_release(struct net_device *ndev)
2575 {
2576 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2577 
2578 	/* unregister mdio bus */
2579 	mdiobus_unregister(bus);
2580 
2581 	/* remove mdio bus info from net_device */
2582 	dev_set_drvdata(&ndev->dev, NULL);
2583 
2584 	/* free bitbang info */
2585 	free_mdio_bitbang(bus);
2586 
2587 	return 0;
2588 }
2589 
2590 /* MDIO bus init function */
2591 static int sh_mdio_init(struct net_device *ndev, int id,
2592 			struct sh_eth_plat_data *pd)
2593 {
2594 	int ret, i;
2595 	struct bb_info *bitbang;
2596 	struct sh_eth_private *mdp = netdev_priv(ndev);
2597 
2598 	/* create bit control struct for PHY */
2599 	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2600 			       GFP_KERNEL);
2601 	if (!bitbang) {
2602 		ret = -ENOMEM;
2603 		goto out;
2604 	}
2605 
2606 	/* bitbang init */
2607 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2608 	bitbang->set_gate = pd->set_mdio_gate;
2609 	bitbang->mdi_msk = PIR_MDI;
2610 	bitbang->mdo_msk = PIR_MDO;
2611 	bitbang->mmd_msk = PIR_MMD;
2612 	bitbang->mdc_msk = PIR_MDC;
2613 	bitbang->ctrl.ops = &bb_ops;
2614 
2615 	/* MII controller setting */
2616 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2617 	if (!mdp->mii_bus) {
2618 		ret = -ENOMEM;
2619 		goto out;
2620 	}
2621 
2622 	/* Hook up MII support for ethtool */
2623 	mdp->mii_bus->name = "sh_mii";
2624 	mdp->mii_bus->parent = &ndev->dev;
2625 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2626 		 mdp->pdev->name, id);
2627 
2628 	/* PHY IRQ */
2629 	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2630 					 sizeof(int) * PHY_MAX_ADDR,
2631 					 GFP_KERNEL);
2632 	if (!mdp->mii_bus->irq) {
2633 		ret = -ENOMEM;
2634 		goto out_free_bus;
2635 	}
2636 
2637 	for (i = 0; i < PHY_MAX_ADDR; i++)
2638 		mdp->mii_bus->irq[i] = PHY_POLL;
2639 	if (pd->phy_irq > 0)
2640 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2641 
2642 	/* register mdio bus */
2643 	ret = mdiobus_register(mdp->mii_bus);
2644 	if (ret)
2645 		goto out_free_bus;
2646 
2647 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2648 
2649 	return 0;
2650 
2651 out_free_bus:
2652 	free_mdio_bitbang(mdp->mii_bus);
2653 
2654 out:
2655 	return ret;
2656 }
2657 
2658 static const u16 *sh_eth_get_register_offset(int register_type)
2659 {
2660 	const u16 *reg_offset = NULL;
2661 
2662 	switch (register_type) {
2663 	case SH_ETH_REG_GIGABIT:
2664 		reg_offset = sh_eth_offset_gigabit;
2665 		break;
2666 	case SH_ETH_REG_FAST_RZ:
2667 		reg_offset = sh_eth_offset_fast_rz;
2668 		break;
2669 	case SH_ETH_REG_FAST_RCAR:
2670 		reg_offset = sh_eth_offset_fast_rcar;
2671 		break;
2672 	case SH_ETH_REG_FAST_SH4:
2673 		reg_offset = sh_eth_offset_fast_sh4;
2674 		break;
2675 	case SH_ETH_REG_FAST_SH3_SH2:
2676 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2677 		break;
2678 	default:
2679 		pr_err("Unknown register type (%d)\n", register_type);
2680 		break;
2681 	}
2682 
2683 	return reg_offset;
2684 }
2685 
2686 static const struct net_device_ops sh_eth_netdev_ops = {
2687 	.ndo_open		= sh_eth_open,
2688 	.ndo_stop		= sh_eth_close,
2689 	.ndo_start_xmit		= sh_eth_start_xmit,
2690 	.ndo_get_stats		= sh_eth_get_stats,
2691 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2692 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2693 	.ndo_validate_addr	= eth_validate_addr,
2694 	.ndo_set_mac_address	= eth_mac_addr,
2695 	.ndo_change_mtu		= eth_change_mtu,
2696 };
2697 
2698 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2699 	.ndo_open		= sh_eth_open,
2700 	.ndo_stop		= sh_eth_close,
2701 	.ndo_start_xmit		= sh_eth_start_xmit,
2702 	.ndo_get_stats		= sh_eth_get_stats,
2703 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2704 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2705 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2706 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2707 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2708 	.ndo_validate_addr	= eth_validate_addr,
2709 	.ndo_set_mac_address	= eth_mac_addr,
2710 	.ndo_change_mtu		= eth_change_mtu,
2711 };
2712 
2713 static int sh_eth_drv_probe(struct platform_device *pdev)
2714 {
2715 	int ret, devno = 0;
2716 	struct resource *res;
2717 	struct net_device *ndev = NULL;
2718 	struct sh_eth_private *mdp = NULL;
2719 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2720 	const struct platform_device_id *id = platform_get_device_id(pdev);
2721 
2722 	/* get base addr */
2723 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2724 	if (unlikely(res == NULL)) {
2725 		dev_err(&pdev->dev, "invalid resource\n");
2726 		ret = -EINVAL;
2727 		goto out;
2728 	}
2729 
2730 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2731 	if (!ndev) {
2732 		ret = -ENOMEM;
2733 		goto out;
2734 	}
2735 
2736 	/* The sh Ether-specific entries in the device structure. */
2737 	ndev->base_addr = res->start;
2738 	devno = pdev->id;
2739 	if (devno < 0)
2740 		devno = 0;
2741 
2742 	ndev->dma = -1;
2743 	ret = platform_get_irq(pdev, 0);
2744 	if (ret < 0) {
2745 		ret = -ENODEV;
2746 		goto out_release;
2747 	}
2748 	ndev->irq = ret;
2749 
2750 	SET_NETDEV_DEV(ndev, &pdev->dev);
2751 
2752 	mdp = netdev_priv(ndev);
2753 	mdp->num_tx_ring = TX_RING_SIZE;
2754 	mdp->num_rx_ring = RX_RING_SIZE;
2755 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2756 	if (IS_ERR(mdp->addr)) {
2757 		ret = PTR_ERR(mdp->addr);
2758 		goto out_release;
2759 	}
2760 
2761 	spin_lock_init(&mdp->lock);
2762 	mdp->pdev = pdev;
2763 	pm_runtime_enable(&pdev->dev);
2764 	pm_runtime_resume(&pdev->dev);
2765 
2766 	if (!pd) {
2767 		dev_err(&pdev->dev, "no platform data\n");
2768 		ret = -EINVAL;
2769 		goto out_release;
2770 	}
2771 
2772 	/* get PHY ID */
2773 	mdp->phy_id = pd->phy;
2774 	mdp->phy_interface = pd->phy_interface;
2775 	/* EDMAC endian */
2776 	mdp->edmac_endian = pd->edmac_endian;
2777 	mdp->no_ether_link = pd->no_ether_link;
2778 	mdp->ether_link_active_low = pd->ether_link_active_low;
2779 
2780 	/* set cpu data */
2781 	mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2782 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2783 	sh_eth_set_default_cpu_data(mdp->cd);
2784 
2785 	/* set function */
2786 	if (mdp->cd->tsu)
2787 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2788 	else
2789 		ndev->netdev_ops = &sh_eth_netdev_ops;
2790 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2791 	ndev->watchdog_timeo = TX_TIMEOUT;
2792 
2793 	/* debug message level */
2794 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2795 
2796 	/* read and set MAC address */
2797 	read_mac_address(ndev, pd->mac_addr);
2798 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2799 		dev_warn(&pdev->dev,
2800 			 "no valid MAC address supplied, using a random one.\n");
2801 		eth_hw_addr_random(ndev);
2802 	}
2803 
2804 	/* ioremap the TSU registers */
2805 	if (mdp->cd->tsu) {
2806 		struct resource *rtsu;
2807 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2808 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2809 		if (IS_ERR(mdp->tsu_addr)) {
2810 			ret = PTR_ERR(mdp->tsu_addr);
2811 			goto out_release;
2812 		}
2813 		mdp->port = devno % 2;
2814 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2815 	}
2816 
2817 	/* initialize first or needed device */
2818 	if (!devno || pd->needs_init) {
2819 		if (mdp->cd->chip_reset)
2820 			mdp->cd->chip_reset(ndev);
2821 
2822 		if (mdp->cd->tsu) {
2823 			/* TSU init (Init only)*/
2824 			sh_eth_tsu_init(mdp);
2825 		}
2826 	}
2827 
2828 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2829 
2830 	/* network device register */
2831 	ret = register_netdev(ndev);
2832 	if (ret)
2833 		goto out_napi_del;
2834 
2835 	/* mdio bus init */
2836 	ret = sh_mdio_init(ndev, pdev->id, pd);
2837 	if (ret)
2838 		goto out_unregister;
2839 
2840 	/* print device information */
2841 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2842 		(u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2843 
2844 	platform_set_drvdata(pdev, ndev);
2845 
2846 	return ret;
2847 
2848 out_unregister:
2849 	unregister_netdev(ndev);
2850 
2851 out_napi_del:
2852 	netif_napi_del(&mdp->napi);
2853 
2854 out_release:
2855 	/* net_dev free */
2856 	if (ndev)
2857 		free_netdev(ndev);
2858 
2859 out:
2860 	return ret;
2861 }
2862 
2863 static int sh_eth_drv_remove(struct platform_device *pdev)
2864 {
2865 	struct net_device *ndev = platform_get_drvdata(pdev);
2866 	struct sh_eth_private *mdp = netdev_priv(ndev);
2867 
2868 	sh_mdio_release(ndev);
2869 	unregister_netdev(ndev);
2870 	netif_napi_del(&mdp->napi);
2871 	pm_runtime_disable(&pdev->dev);
2872 	free_netdev(ndev);
2873 
2874 	return 0;
2875 }
2876 
2877 #ifdef CONFIG_PM
2878 static int sh_eth_runtime_nop(struct device *dev)
2879 {
2880 	/* Runtime PM callback shared between ->runtime_suspend()
2881 	 * and ->runtime_resume(). Simply returns success.
2882 	 *
2883 	 * This driver re-initializes all registers after
2884 	 * pm_runtime_get_sync() anyway so there is no need
2885 	 * to save and restore registers here.
2886 	 */
2887 	return 0;
2888 }
2889 
2890 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2891 	.runtime_suspend = sh_eth_runtime_nop,
2892 	.runtime_resume = sh_eth_runtime_nop,
2893 };
2894 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2895 #else
2896 #define SH_ETH_PM_OPS NULL
2897 #endif
2898 
2899 static struct platform_device_id sh_eth_id_table[] = {
2900 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2901 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2902 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2903 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2904 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2905 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2906 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2907 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2908 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2909 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2910 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2911 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2912 	{ }
2913 };
2914 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2915 
2916 static struct platform_driver sh_eth_driver = {
2917 	.probe = sh_eth_drv_probe,
2918 	.remove = sh_eth_drv_remove,
2919 	.id_table = sh_eth_id_table,
2920 	.driver = {
2921 		   .name = CARDNAME,
2922 		   .pm = SH_ETH_PM_OPS,
2923 	},
2924 };
2925 
2926 module_platform_driver(sh_eth_driver);
2927 
2928 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2929 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2930 MODULE_LICENSE("GPL v2");
2931