1 // SPDX-License-Identifier: GPL-2.0 2 /* SuperH Ethernet device driver 3 * 4 * Copyright (C) 2014 Renesas Electronics Corporation 5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 6 * Copyright (C) 2008-2014 Renesas Solutions Corp. 7 * Copyright (C) 2013-2017 Cogent Embedded, Inc. 8 * Copyright (C) 2014 Codethink Limited 9 */ 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/etherdevice.h> 17 #include <linux/delay.h> 18 #include <linux/platform_device.h> 19 #include <linux/mdio-bitbang.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_net.h> 25 #include <linux/phy.h> 26 #include <linux/cache.h> 27 #include <linux/io.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/ethtool.h> 31 #include <linux/if_vlan.h> 32 #include <linux/sh_eth.h> 33 #include <linux/of_mdio.h> 34 35 #include "sh_eth.h" 36 37 #define SH_ETH_DEF_MSG_ENABLE \ 38 (NETIF_MSG_LINK | \ 39 NETIF_MSG_TIMER | \ 40 NETIF_MSG_RX_ERR| \ 41 NETIF_MSG_TX_ERR) 42 43 #define SH_ETH_OFFSET_INVALID ((u16)~0) 44 45 #define SH_ETH_OFFSET_DEFAULTS \ 46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID 47 48 /* use some intentionally tricky logic here to initialize the whole struct to 49 * 0xffff, but then override certain fields, requiring us to indicate that we 50 * "know" that there are overrides in this structure, and we'll need to disable 51 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but 52 * the macros available to do this only define GCC 8. 53 */ 54 __diag_push(); 55 __diag_ignore(GCC, 8, "-Woverride-init", 56 "logic to initialize all and then override some is OK"); 57 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 58 SH_ETH_OFFSET_DEFAULTS, 59 60 [EDSR] = 0x0000, 61 [EDMR] = 0x0400, 62 [EDTRR] = 0x0408, 63 [EDRRR] = 0x0410, 64 [EESR] = 0x0428, 65 [EESIPR] = 0x0430, 66 [TDLAR] = 0x0010, 67 [TDFAR] = 0x0014, 68 [TDFXR] = 0x0018, 69 [TDFFR] = 0x001c, 70 [RDLAR] = 0x0030, 71 [RDFAR] = 0x0034, 72 [RDFXR] = 0x0038, 73 [RDFFR] = 0x003c, 74 [TRSCER] = 0x0438, 75 [RMFCR] = 0x0440, 76 [TFTR] = 0x0448, 77 [FDR] = 0x0450, 78 [RMCR] = 0x0458, 79 [RPADIR] = 0x0460, 80 [FCFTR] = 0x0468, 81 [CSMR] = 0x04E4, 82 83 [ECMR] = 0x0500, 84 [ECSR] = 0x0510, 85 [ECSIPR] = 0x0518, 86 [PIR] = 0x0520, 87 [PSR] = 0x0528, 88 [PIPR] = 0x052c, 89 [RFLR] = 0x0508, 90 [APR] = 0x0554, 91 [MPR] = 0x0558, 92 [PFTCR] = 0x055c, 93 [PFRCR] = 0x0560, 94 [TPAUSER] = 0x0564, 95 [GECMR] = 0x05b0, 96 [BCULR] = 0x05b4, 97 [MAHR] = 0x05c0, 98 [MALR] = 0x05c8, 99 [TROCR] = 0x0700, 100 [CDCR] = 0x0708, 101 [LCCR] = 0x0710, 102 [CEFCR] = 0x0740, 103 [FRECR] = 0x0748, 104 [TSFRCR] = 0x0750, 105 [TLFRCR] = 0x0758, 106 [RFCR] = 0x0760, 107 [CERCR] = 0x0768, 108 [CEECR] = 0x0770, 109 [MAFCR] = 0x0778, 110 [RMII_MII] = 0x0790, 111 112 [ARSTR] = 0x0000, 113 [TSU_CTRST] = 0x0004, 114 [TSU_FWEN0] = 0x0010, 115 [TSU_FWEN1] = 0x0014, 116 [TSU_FCM] = 0x0018, 117 [TSU_BSYSL0] = 0x0020, 118 [TSU_BSYSL1] = 0x0024, 119 [TSU_PRISL0] = 0x0028, 120 [TSU_PRISL1] = 0x002c, 121 [TSU_FWSL0] = 0x0030, 122 [TSU_FWSL1] = 0x0034, 123 [TSU_FWSLC] = 0x0038, 124 [TSU_QTAGM0] = 0x0040, 125 [TSU_QTAGM1] = 0x0044, 126 [TSU_FWSR] = 0x0050, 127 [TSU_FWINMK] = 0x0054, 128 [TSU_ADQT0] = 0x0048, 129 [TSU_ADQT1] = 0x004c, 130 [TSU_VTAG0] = 0x0058, 131 [TSU_VTAG1] = 0x005c, 132 [TSU_ADSBSY] = 0x0060, 133 [TSU_TEN] = 0x0064, 134 [TSU_POST1] = 0x0070, 135 [TSU_POST2] = 0x0074, 136 [TSU_POST3] = 0x0078, 137 [TSU_POST4] = 0x007c, 138 [TSU_ADRH0] = 0x0100, 139 140 [TXNLCR0] = 0x0080, 141 [TXALCR0] = 0x0084, 142 [RXNLCR0] = 0x0088, 143 [RXALCR0] = 0x008c, 144 [FWNLCR0] = 0x0090, 145 [FWALCR0] = 0x0094, 146 [TXNLCR1] = 0x00a0, 147 [TXALCR1] = 0x00a4, 148 [RXNLCR1] = 0x00a8, 149 [RXALCR1] = 0x00ac, 150 [FWNLCR1] = 0x00b0, 151 [FWALCR1] = 0x00b4, 152 }; 153 154 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 155 SH_ETH_OFFSET_DEFAULTS, 156 157 [ECMR] = 0x0300, 158 [RFLR] = 0x0308, 159 [ECSR] = 0x0310, 160 [ECSIPR] = 0x0318, 161 [PIR] = 0x0320, 162 [PSR] = 0x0328, 163 [RDMLR] = 0x0340, 164 [IPGR] = 0x0350, 165 [APR] = 0x0354, 166 [MPR] = 0x0358, 167 [RFCF] = 0x0360, 168 [TPAUSER] = 0x0364, 169 [TPAUSECR] = 0x0368, 170 [MAHR] = 0x03c0, 171 [MALR] = 0x03c8, 172 [TROCR] = 0x03d0, 173 [CDCR] = 0x03d4, 174 [LCCR] = 0x03d8, 175 [CNDCR] = 0x03dc, 176 [CEFCR] = 0x03e4, 177 [FRECR] = 0x03e8, 178 [TSFRCR] = 0x03ec, 179 [TLFRCR] = 0x03f0, 180 [RFCR] = 0x03f4, 181 [MAFCR] = 0x03f8, 182 183 [EDMR] = 0x0200, 184 [EDTRR] = 0x0208, 185 [EDRRR] = 0x0210, 186 [TDLAR] = 0x0218, 187 [RDLAR] = 0x0220, 188 [EESR] = 0x0228, 189 [EESIPR] = 0x0230, 190 [TRSCER] = 0x0238, 191 [RMFCR] = 0x0240, 192 [TFTR] = 0x0248, 193 [FDR] = 0x0250, 194 [RMCR] = 0x0258, 195 [TFUCR] = 0x0264, 196 [RFOCR] = 0x0268, 197 [RMIIMODE] = 0x026c, 198 [FCFTR] = 0x0270, 199 [TRIMD] = 0x027c, 200 }; 201 202 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 203 SH_ETH_OFFSET_DEFAULTS, 204 205 [ECMR] = 0x0100, 206 [RFLR] = 0x0108, 207 [ECSR] = 0x0110, 208 [ECSIPR] = 0x0118, 209 [PIR] = 0x0120, 210 [PSR] = 0x0128, 211 [RDMLR] = 0x0140, 212 [IPGR] = 0x0150, 213 [APR] = 0x0154, 214 [MPR] = 0x0158, 215 [TPAUSER] = 0x0164, 216 [RFCF] = 0x0160, 217 [TPAUSECR] = 0x0168, 218 [BCFRR] = 0x016c, 219 [MAHR] = 0x01c0, 220 [MALR] = 0x01c8, 221 [TROCR] = 0x01d0, 222 [CDCR] = 0x01d4, 223 [LCCR] = 0x01d8, 224 [CNDCR] = 0x01dc, 225 [CEFCR] = 0x01e4, 226 [FRECR] = 0x01e8, 227 [TSFRCR] = 0x01ec, 228 [TLFRCR] = 0x01f0, 229 [RFCR] = 0x01f4, 230 [MAFCR] = 0x01f8, 231 [RTRATE] = 0x01fc, 232 233 [EDMR] = 0x0000, 234 [EDTRR] = 0x0008, 235 [EDRRR] = 0x0010, 236 [TDLAR] = 0x0018, 237 [RDLAR] = 0x0020, 238 [EESR] = 0x0028, 239 [EESIPR] = 0x0030, 240 [TRSCER] = 0x0038, 241 [RMFCR] = 0x0040, 242 [TFTR] = 0x0048, 243 [FDR] = 0x0050, 244 [RMCR] = 0x0058, 245 [TFUCR] = 0x0064, 246 [RFOCR] = 0x0068, 247 [FCFTR] = 0x0070, 248 [RPADIR] = 0x0078, 249 [TRIMD] = 0x007c, 250 [RBWAR] = 0x00c8, 251 [RDFAR] = 0x00cc, 252 [TBRAR] = 0x00d4, 253 [TDFAR] = 0x00d8, 254 }; 255 256 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 257 SH_ETH_OFFSET_DEFAULTS, 258 259 [EDMR] = 0x0000, 260 [EDTRR] = 0x0004, 261 [EDRRR] = 0x0008, 262 [TDLAR] = 0x000c, 263 [RDLAR] = 0x0010, 264 [EESR] = 0x0014, 265 [EESIPR] = 0x0018, 266 [TRSCER] = 0x001c, 267 [RMFCR] = 0x0020, 268 [TFTR] = 0x0024, 269 [FDR] = 0x0028, 270 [RMCR] = 0x002c, 271 [EDOCR] = 0x0030, 272 [FCFTR] = 0x0034, 273 [RPADIR] = 0x0038, 274 [TRIMD] = 0x003c, 275 [RBWAR] = 0x0040, 276 [RDFAR] = 0x0044, 277 [TBRAR] = 0x004c, 278 [TDFAR] = 0x0050, 279 280 [ECMR] = 0x0160, 281 [ECSR] = 0x0164, 282 [ECSIPR] = 0x0168, 283 [PIR] = 0x016c, 284 [MAHR] = 0x0170, 285 [MALR] = 0x0174, 286 [RFLR] = 0x0178, 287 [PSR] = 0x017c, 288 [TROCR] = 0x0180, 289 [CDCR] = 0x0184, 290 [LCCR] = 0x0188, 291 [CNDCR] = 0x018c, 292 [CEFCR] = 0x0194, 293 [FRECR] = 0x0198, 294 [TSFRCR] = 0x019c, 295 [TLFRCR] = 0x01a0, 296 [RFCR] = 0x01a4, 297 [MAFCR] = 0x01a8, 298 [IPGR] = 0x01b4, 299 [APR] = 0x01b8, 300 [MPR] = 0x01bc, 301 [TPAUSER] = 0x01c4, 302 [BCFR] = 0x01cc, 303 304 [ARSTR] = 0x0000, 305 [TSU_CTRST] = 0x0004, 306 [TSU_FWEN0] = 0x0010, 307 [TSU_FWEN1] = 0x0014, 308 [TSU_FCM] = 0x0018, 309 [TSU_BSYSL0] = 0x0020, 310 [TSU_BSYSL1] = 0x0024, 311 [TSU_PRISL0] = 0x0028, 312 [TSU_PRISL1] = 0x002c, 313 [TSU_FWSL0] = 0x0030, 314 [TSU_FWSL1] = 0x0034, 315 [TSU_FWSLC] = 0x0038, 316 [TSU_QTAGM0] = 0x0040, 317 [TSU_QTAGM1] = 0x0044, 318 [TSU_ADQT0] = 0x0048, 319 [TSU_ADQT1] = 0x004c, 320 [TSU_FWSR] = 0x0050, 321 [TSU_FWINMK] = 0x0054, 322 [TSU_ADSBSY] = 0x0060, 323 [TSU_TEN] = 0x0064, 324 [TSU_POST1] = 0x0070, 325 [TSU_POST2] = 0x0074, 326 [TSU_POST3] = 0x0078, 327 [TSU_POST4] = 0x007c, 328 329 [TXNLCR0] = 0x0080, 330 [TXALCR0] = 0x0084, 331 [RXNLCR0] = 0x0088, 332 [RXALCR0] = 0x008c, 333 [FWNLCR0] = 0x0090, 334 [FWALCR0] = 0x0094, 335 [TXNLCR1] = 0x00a0, 336 [TXALCR1] = 0x00a4, 337 [RXNLCR1] = 0x00a8, 338 [RXALCR1] = 0x00ac, 339 [FWNLCR1] = 0x00b0, 340 [FWALCR1] = 0x00b4, 341 342 [TSU_ADRH0] = 0x0100, 343 }; 344 __diag_pop(); 345 346 static void sh_eth_rcv_snd_disable(struct net_device *ndev); 347 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); 348 349 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) 350 { 351 struct sh_eth_private *mdp = netdev_priv(ndev); 352 u16 offset = mdp->reg_offset[enum_index]; 353 354 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 355 return; 356 357 iowrite32(data, mdp->addr + offset); 358 } 359 360 static u32 sh_eth_read(struct net_device *ndev, int enum_index) 361 { 362 struct sh_eth_private *mdp = netdev_priv(ndev); 363 u16 offset = mdp->reg_offset[enum_index]; 364 365 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 366 return ~0U; 367 368 return ioread32(mdp->addr + offset); 369 } 370 371 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, 372 u32 set) 373 { 374 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, 375 enum_index); 376 } 377 378 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index) 379 { 380 return mdp->reg_offset[enum_index]; 381 } 382 383 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data, 384 int enum_index) 385 { 386 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 387 388 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 389 return; 390 391 iowrite32(data, mdp->tsu_addr + offset); 392 } 393 394 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index) 395 { 396 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); 397 398 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 399 return ~0U; 400 401 return ioread32(mdp->tsu_addr + offset); 402 } 403 404 static void sh_eth_soft_swap(char *src, int len) 405 { 406 #ifdef __LITTLE_ENDIAN 407 u32 *p = (u32 *)src; 408 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32)); 409 410 for (; p < maxp; p++) 411 *p = swab32(*p); 412 #endif 413 } 414 415 static void sh_eth_select_mii(struct net_device *ndev) 416 { 417 struct sh_eth_private *mdp = netdev_priv(ndev); 418 u32 value; 419 420 switch (mdp->phy_interface) { 421 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID: 422 value = 0x3; 423 break; 424 case PHY_INTERFACE_MODE_GMII: 425 value = 0x2; 426 break; 427 case PHY_INTERFACE_MODE_MII: 428 value = 0x1; 429 break; 430 case PHY_INTERFACE_MODE_RMII: 431 value = 0x0; 432 break; 433 default: 434 netdev_warn(ndev, 435 "PHY interface mode was not setup. Set to MII.\n"); 436 value = 0x1; 437 break; 438 } 439 440 sh_eth_write(ndev, value, RMII_MII); 441 } 442 443 static void sh_eth_set_duplex(struct net_device *ndev) 444 { 445 struct sh_eth_private *mdp = netdev_priv(ndev); 446 447 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); 448 } 449 450 static void sh_eth_chip_reset(struct net_device *ndev) 451 { 452 struct sh_eth_private *mdp = netdev_priv(ndev); 453 454 /* reset device */ 455 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR); 456 mdelay(1); 457 } 458 459 static int sh_eth_soft_reset(struct net_device *ndev) 460 { 461 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); 462 mdelay(3); 463 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); 464 465 return 0; 466 } 467 468 static int sh_eth_check_soft_reset(struct net_device *ndev) 469 { 470 int cnt; 471 472 for (cnt = 100; cnt > 0; cnt--) { 473 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER)) 474 return 0; 475 mdelay(1); 476 } 477 478 netdev_err(ndev, "Device reset failed\n"); 479 return -ETIMEDOUT; 480 } 481 482 static int sh_eth_soft_reset_gether(struct net_device *ndev) 483 { 484 struct sh_eth_private *mdp = netdev_priv(ndev); 485 int ret; 486 487 sh_eth_write(ndev, EDSR_ENALL, EDSR); 488 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); 489 490 ret = sh_eth_check_soft_reset(ndev); 491 if (ret) 492 return ret; 493 494 /* Table Init */ 495 sh_eth_write(ndev, 0, TDLAR); 496 sh_eth_write(ndev, 0, TDFAR); 497 sh_eth_write(ndev, 0, TDFXR); 498 sh_eth_write(ndev, 0, TDFFR); 499 sh_eth_write(ndev, 0, RDLAR); 500 sh_eth_write(ndev, 0, RDFAR); 501 sh_eth_write(ndev, 0, RDFXR); 502 sh_eth_write(ndev, 0, RDFFR); 503 504 /* Reset HW CRC register */ 505 if (mdp->cd->csmr) 506 sh_eth_write(ndev, 0, CSMR); 507 508 /* Select MII mode */ 509 if (mdp->cd->select_mii) 510 sh_eth_select_mii(ndev); 511 512 return ret; 513 } 514 515 static void sh_eth_set_rate_gether(struct net_device *ndev) 516 { 517 struct sh_eth_private *mdp = netdev_priv(ndev); 518 519 if (WARN_ON(!mdp->cd->gecmr)) 520 return; 521 522 switch (mdp->speed) { 523 case 10: /* 10BASE */ 524 sh_eth_write(ndev, GECMR_10, GECMR); 525 break; 526 case 100:/* 100BASE */ 527 sh_eth_write(ndev, GECMR_100, GECMR); 528 break; 529 case 1000: /* 1000BASE */ 530 sh_eth_write(ndev, GECMR_1000, GECMR); 531 break; 532 } 533 } 534 535 #ifdef CONFIG_OF 536 /* R7S72100 */ 537 static struct sh_eth_cpu_data r7s72100_data = { 538 .soft_reset = sh_eth_soft_reset_gether, 539 540 .chip_reset = sh_eth_chip_reset, 541 .set_duplex = sh_eth_set_duplex, 542 543 .register_type = SH_ETH_REG_GIGABIT, 544 545 .edtrr_trns = EDTRR_TRNS_GETHER, 546 .ecsr_value = ECSR_ICD, 547 .ecsipr_value = ECSIPR_ICDIP, 548 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP | 549 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | 550 EESIPR_ECIIP | 551 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 552 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 553 EESIPR_RMAFIP | EESIPR_RRFIP | 554 EESIPR_RTLFIP | EESIPR_RTSFIP | 555 EESIPR_PREIP | EESIPR_CERFIP, 556 557 .tx_check = EESR_TC1 | EESR_FTC, 558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 560 EESR_TDE, 561 .fdr_value = 0x0000070f, 562 563 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 564 565 .no_psr = 1, 566 .apr = 1, 567 .mpr = 1, 568 .tpauser = 1, 569 .hw_swap = 1, 570 .rpadir = 1, 571 .no_trimd = 1, 572 .no_ade = 1, 573 .xdfar_rw = 1, 574 .csmr = 1, 575 .rx_csum = 1, 576 .tsu = 1, 577 .no_tx_cntrs = 1, 578 }; 579 580 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 581 { 582 sh_eth_chip_reset(ndev); 583 584 sh_eth_select_mii(ndev); 585 } 586 587 /* R8A7740 */ 588 static struct sh_eth_cpu_data r8a7740_data = { 589 .soft_reset = sh_eth_soft_reset_gether, 590 591 .chip_reset = sh_eth_chip_reset_r8a7740, 592 .set_duplex = sh_eth_set_duplex, 593 .set_rate = sh_eth_set_rate_gether, 594 595 .register_type = SH_ETH_REG_GIGABIT, 596 597 .edtrr_trns = EDTRR_TRNS_GETHER, 598 .ecsr_value = ECSR_ICD | ECSR_MPD, 599 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 600 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 603 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 604 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 605 EESIPR_CEEFIP | EESIPR_CELFIP | 606 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 607 EESIPR_PREIP | EESIPR_CERFIP, 608 609 .tx_check = EESR_TC1 | EESR_FTC, 610 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 611 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 612 EESR_TDE, 613 .fdr_value = 0x0000070f, 614 615 .apr = 1, 616 .mpr = 1, 617 .tpauser = 1, 618 .gecmr = 1, 619 .bculr = 1, 620 .hw_swap = 1, 621 .rpadir = 1, 622 .no_trimd = 1, 623 .no_ade = 1, 624 .xdfar_rw = 1, 625 .csmr = 1, 626 .rx_csum = 1, 627 .tsu = 1, 628 .select_mii = 1, 629 .magic = 1, 630 .cexcr = 1, 631 }; 632 633 /* There is CPU dependent code */ 634 static void sh_eth_set_rate_rcar(struct net_device *ndev) 635 { 636 struct sh_eth_private *mdp = netdev_priv(ndev); 637 638 switch (mdp->speed) { 639 case 10: /* 10BASE */ 640 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); 641 break; 642 case 100:/* 100BASE */ 643 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); 644 break; 645 } 646 } 647 648 /* R-Car Gen1 */ 649 static struct sh_eth_cpu_data rcar_gen1_data = { 650 .soft_reset = sh_eth_soft_reset, 651 652 .set_duplex = sh_eth_set_duplex, 653 .set_rate = sh_eth_set_rate_rcar, 654 655 .register_type = SH_ETH_REG_FAST_RCAR, 656 657 .edtrr_trns = EDTRR_TRNS_ETHER, 658 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 659 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 660 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 661 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 662 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 663 EESIPR_RMAFIP | EESIPR_RRFIP | 664 EESIPR_RTLFIP | EESIPR_RTSFIP | 665 EESIPR_PREIP | EESIPR_CERFIP, 666 667 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 668 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 669 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 670 .fdr_value = 0x00000f0f, 671 672 .apr = 1, 673 .mpr = 1, 674 .tpauser = 1, 675 .hw_swap = 1, 676 .no_xdfar = 1, 677 }; 678 679 /* R-Car Gen2 and RZ/G1 */ 680 static struct sh_eth_cpu_data rcar_gen2_data = { 681 .soft_reset = sh_eth_soft_reset, 682 683 .set_duplex = sh_eth_set_duplex, 684 .set_rate = sh_eth_set_rate_rcar, 685 686 .register_type = SH_ETH_REG_FAST_RCAR, 687 688 .edtrr_trns = EDTRR_TRNS_ETHER, 689 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 690 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 691 ECSIPR_MPDIP, 692 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 693 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 694 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 695 EESIPR_RMAFIP | EESIPR_RRFIP | 696 EESIPR_RTLFIP | EESIPR_RTSFIP | 697 EESIPR_PREIP | EESIPR_CERFIP, 698 699 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 700 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 701 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 702 .fdr_value = 0x00000f0f, 703 704 .trscer_err_mask = TRSCER_RMAFCE, 705 706 .apr = 1, 707 .mpr = 1, 708 .tpauser = 1, 709 .hw_swap = 1, 710 .no_xdfar = 1, 711 .rmiimode = 1, 712 .magic = 1, 713 }; 714 715 /* R8A77980 */ 716 static struct sh_eth_cpu_data r8a77980_data = { 717 .soft_reset = sh_eth_soft_reset_gether, 718 719 .set_duplex = sh_eth_set_duplex, 720 .set_rate = sh_eth_set_rate_gether, 721 722 .register_type = SH_ETH_REG_GIGABIT, 723 724 .edtrr_trns = EDTRR_TRNS_GETHER, 725 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 726 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 727 ECSIPR_MPDIP, 728 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 729 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 730 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 731 EESIPR_RMAFIP | EESIPR_RRFIP | 732 EESIPR_RTLFIP | EESIPR_RTSFIP | 733 EESIPR_PREIP | EESIPR_CERFIP, 734 735 .tx_check = EESR_FTC | EESR_CD | EESR_TRO, 736 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 737 EESR_RFE | EESR_RDE | EESR_RFRMER | 738 EESR_TFE | EESR_TDE | EESR_ECI, 739 .fdr_value = 0x0000070f, 740 741 .apr = 1, 742 .mpr = 1, 743 .tpauser = 1, 744 .gecmr = 1, 745 .bculr = 1, 746 .hw_swap = 1, 747 .nbst = 1, 748 .rpadir = 1, 749 .no_trimd = 1, 750 .no_ade = 1, 751 .xdfar_rw = 1, 752 .csmr = 1, 753 .rx_csum = 1, 754 .select_mii = 1, 755 .magic = 1, 756 .cexcr = 1, 757 }; 758 759 /* R7S9210 */ 760 static struct sh_eth_cpu_data r7s9210_data = { 761 .soft_reset = sh_eth_soft_reset, 762 763 .set_duplex = sh_eth_set_duplex, 764 .set_rate = sh_eth_set_rate_rcar, 765 766 .register_type = SH_ETH_REG_FAST_SH4, 767 768 .edtrr_trns = EDTRR_TRNS_ETHER, 769 .ecsr_value = ECSR_ICD, 770 .ecsipr_value = ECSIPR_ICDIP, 771 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP | 772 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | 773 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | 774 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP | 775 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 776 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | 777 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, 778 779 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 780 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 781 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 782 783 .fdr_value = 0x0000070f, 784 785 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, 786 787 .apr = 1, 788 .mpr = 1, 789 .tpauser = 1, 790 .hw_swap = 1, 791 .rpadir = 1, 792 .no_ade = 1, 793 .xdfar_rw = 1, 794 }; 795 #endif /* CONFIG_OF */ 796 797 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 798 { 799 struct sh_eth_private *mdp = netdev_priv(ndev); 800 801 switch (mdp->speed) { 802 case 10: /* 10BASE */ 803 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); 804 break; 805 case 100:/* 100BASE */ 806 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); 807 break; 808 } 809 } 810 811 /* SH7724 */ 812 static struct sh_eth_cpu_data sh7724_data = { 813 .soft_reset = sh_eth_soft_reset, 814 815 .set_duplex = sh_eth_set_duplex, 816 .set_rate = sh_eth_set_rate_sh7724, 817 818 .register_type = SH_ETH_REG_FAST_SH4, 819 820 .edtrr_trns = EDTRR_TRNS_ETHER, 821 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 822 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 823 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 824 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 825 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 826 EESIPR_RMAFIP | EESIPR_RRFIP | 827 EESIPR_RTLFIP | EESIPR_RTSFIP | 828 EESIPR_PREIP | EESIPR_CERFIP, 829 830 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 831 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 832 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 833 834 .apr = 1, 835 .mpr = 1, 836 .tpauser = 1, 837 .hw_swap = 1, 838 .rpadir = 1, 839 }; 840 841 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 842 { 843 struct sh_eth_private *mdp = netdev_priv(ndev); 844 845 switch (mdp->speed) { 846 case 10: /* 10BASE */ 847 sh_eth_write(ndev, 0, RTRATE); 848 break; 849 case 100:/* 100BASE */ 850 sh_eth_write(ndev, 1, RTRATE); 851 break; 852 } 853 } 854 855 /* SH7757 */ 856 static struct sh_eth_cpu_data sh7757_data = { 857 .soft_reset = sh_eth_soft_reset, 858 859 .set_duplex = sh_eth_set_duplex, 860 .set_rate = sh_eth_set_rate_sh7757, 861 862 .register_type = SH_ETH_REG_FAST_SH4, 863 864 .edtrr_trns = EDTRR_TRNS_ETHER, 865 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 866 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 867 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 868 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 869 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 870 EESIPR_CEEFIP | EESIPR_CELFIP | 871 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 872 EESIPR_PREIP | EESIPR_CERFIP, 873 874 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, 875 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 876 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 877 878 .irq_flags = IRQF_SHARED, 879 .apr = 1, 880 .mpr = 1, 881 .tpauser = 1, 882 .hw_swap = 1, 883 .no_ade = 1, 884 .rpadir = 1, 885 .rtrate = 1, 886 .dual_port = 1, 887 }; 888 889 #define SH_GIGA_ETH_BASE 0xfee00000UL 890 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 891 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 892 static void sh_eth_chip_reset_giga(struct net_device *ndev) 893 { 894 u32 mahr[2], malr[2]; 895 int i; 896 897 /* save MAHR and MALR */ 898 for (i = 0; i < 2; i++) { 899 malr[i] = ioread32((void *)GIGA_MALR(i)); 900 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 901 } 902 903 sh_eth_chip_reset(ndev); 904 905 /* restore MAHR and MALR */ 906 for (i = 0; i < 2; i++) { 907 iowrite32(malr[i], (void *)GIGA_MALR(i)); 908 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 909 } 910 } 911 912 static void sh_eth_set_rate_giga(struct net_device *ndev) 913 { 914 struct sh_eth_private *mdp = netdev_priv(ndev); 915 916 if (WARN_ON(!mdp->cd->gecmr)) 917 return; 918 919 switch (mdp->speed) { 920 case 10: /* 10BASE */ 921 sh_eth_write(ndev, 0x00000000, GECMR); 922 break; 923 case 100:/* 100BASE */ 924 sh_eth_write(ndev, 0x00000010, GECMR); 925 break; 926 case 1000: /* 1000BASE */ 927 sh_eth_write(ndev, 0x00000020, GECMR); 928 break; 929 } 930 } 931 932 /* SH7757(GETHERC) */ 933 static struct sh_eth_cpu_data sh7757_data_giga = { 934 .soft_reset = sh_eth_soft_reset_gether, 935 936 .chip_reset = sh_eth_chip_reset_giga, 937 .set_duplex = sh_eth_set_duplex, 938 .set_rate = sh_eth_set_rate_giga, 939 940 .register_type = SH_ETH_REG_GIGABIT, 941 942 .edtrr_trns = EDTRR_TRNS_GETHER, 943 .ecsr_value = ECSR_ICD | ECSR_MPD, 944 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 945 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 946 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 947 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 948 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 949 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 950 EESIPR_CEEFIP | EESIPR_CELFIP | 951 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 952 EESIPR_PREIP | EESIPR_CERFIP, 953 954 .tx_check = EESR_TC1 | EESR_FTC, 955 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 956 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 957 EESR_TDE, 958 .fdr_value = 0x0000072f, 959 960 .irq_flags = IRQF_SHARED, 961 .apr = 1, 962 .mpr = 1, 963 .tpauser = 1, 964 .gecmr = 1, 965 .bculr = 1, 966 .hw_swap = 1, 967 .rpadir = 1, 968 .no_trimd = 1, 969 .no_ade = 1, 970 .xdfar_rw = 1, 971 .tsu = 1, 972 .cexcr = 1, 973 .dual_port = 1, 974 }; 975 976 /* SH7734 */ 977 static struct sh_eth_cpu_data sh7734_data = { 978 .soft_reset = sh_eth_soft_reset_gether, 979 980 .chip_reset = sh_eth_chip_reset, 981 .set_duplex = sh_eth_set_duplex, 982 .set_rate = sh_eth_set_rate_gether, 983 984 .register_type = SH_ETH_REG_GIGABIT, 985 986 .edtrr_trns = EDTRR_TRNS_GETHER, 987 .ecsr_value = ECSR_ICD | ECSR_MPD, 988 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 989 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 990 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 991 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 992 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 993 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 994 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 995 EESIPR_PREIP | EESIPR_CERFIP, 996 997 .tx_check = EESR_TC1 | EESR_FTC, 998 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 999 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 1000 EESR_TDE, 1001 1002 .apr = 1, 1003 .mpr = 1, 1004 .tpauser = 1, 1005 .gecmr = 1, 1006 .bculr = 1, 1007 .hw_swap = 1, 1008 .no_trimd = 1, 1009 .no_ade = 1, 1010 .xdfar_rw = 1, 1011 .tsu = 1, 1012 .csmr = 1, 1013 .rx_csum = 1, 1014 .select_mii = 1, 1015 .magic = 1, 1016 .cexcr = 1, 1017 }; 1018 1019 /* SH7763 */ 1020 static struct sh_eth_cpu_data sh7763_data = { 1021 .soft_reset = sh_eth_soft_reset_gether, 1022 1023 .chip_reset = sh_eth_chip_reset, 1024 .set_duplex = sh_eth_set_duplex, 1025 .set_rate = sh_eth_set_rate_gether, 1026 1027 .register_type = SH_ETH_REG_GIGABIT, 1028 1029 .edtrr_trns = EDTRR_TRNS_GETHER, 1030 .ecsr_value = ECSR_ICD | ECSR_MPD, 1031 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 1032 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1033 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1034 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1035 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 1036 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 1037 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1038 EESIPR_PREIP | EESIPR_CERFIP, 1039 1040 .tx_check = EESR_TC1 | EESR_FTC, 1041 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 1042 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 1043 1044 .apr = 1, 1045 .mpr = 1, 1046 .tpauser = 1, 1047 .gecmr = 1, 1048 .bculr = 1, 1049 .hw_swap = 1, 1050 .no_trimd = 1, 1051 .no_ade = 1, 1052 .xdfar_rw = 1, 1053 .tsu = 1, 1054 .irq_flags = IRQF_SHARED, 1055 .magic = 1, 1056 .cexcr = 1, 1057 .rx_csum = 1, 1058 .dual_port = 1, 1059 }; 1060 1061 static struct sh_eth_cpu_data sh7619_data = { 1062 .soft_reset = sh_eth_soft_reset, 1063 1064 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1065 1066 .edtrr_trns = EDTRR_TRNS_ETHER, 1067 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1068 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1069 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1070 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1071 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1072 EESIPR_CEEFIP | EESIPR_CELFIP | 1073 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1074 EESIPR_PREIP | EESIPR_CERFIP, 1075 1076 .apr = 1, 1077 .mpr = 1, 1078 .tpauser = 1, 1079 .hw_swap = 1, 1080 }; 1081 1082 static struct sh_eth_cpu_data sh771x_data = { 1083 .soft_reset = sh_eth_soft_reset, 1084 1085 .register_type = SH_ETH_REG_FAST_SH3_SH2, 1086 1087 .edtrr_trns = EDTRR_TRNS_ETHER, 1088 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 1089 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 1090 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 1091 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 1092 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 1093 EESIPR_CEEFIP | EESIPR_CELFIP | 1094 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 1095 EESIPR_PREIP | EESIPR_CERFIP, 1096 1097 .trscer_err_mask = TRSCER_RMAFCE, 1098 1099 .tsu = 1, 1100 .dual_port = 1, 1101 }; 1102 1103 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 1104 { 1105 if (!cd->ecsr_value) 1106 cd->ecsr_value = DEFAULT_ECSR_INIT; 1107 1108 if (!cd->ecsipr_value) 1109 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 1110 1111 if (!cd->fcftr_value) 1112 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 1113 DEFAULT_FIFO_F_D_RFD; 1114 1115 if (!cd->fdr_value) 1116 cd->fdr_value = DEFAULT_FDR_INIT; 1117 1118 if (!cd->tx_check) 1119 cd->tx_check = DEFAULT_TX_CHECK; 1120 1121 if (!cd->eesr_err_check) 1122 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 1123 1124 if (!cd->trscer_err_mask) 1125 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; 1126 } 1127 1128 static void sh_eth_set_receive_align(struct sk_buff *skb) 1129 { 1130 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); 1131 1132 if (reserve) 1133 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); 1134 } 1135 1136 /* Program the hardware MAC address from dev->dev_addr. */ 1137 static void update_mac_address(struct net_device *ndev) 1138 { 1139 sh_eth_write(ndev, 1140 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 1141 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 1142 sh_eth_write(ndev, 1143 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 1144 } 1145 1146 /* Get MAC address from SuperH MAC address register 1147 * 1148 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 1149 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 1150 * When you want use this device, you must set MAC address in bootloader. 1151 * 1152 */ 1153 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 1154 { 1155 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 1156 eth_hw_addr_set(ndev, mac); 1157 } else { 1158 u32 mahr = sh_eth_read(ndev, MAHR); 1159 u32 malr = sh_eth_read(ndev, MALR); 1160 u8 addr[ETH_ALEN]; 1161 1162 addr[0] = (mahr >> 24) & 0xFF; 1163 addr[1] = (mahr >> 16) & 0xFF; 1164 addr[2] = (mahr >> 8) & 0xFF; 1165 addr[3] = (mahr >> 0) & 0xFF; 1166 addr[4] = (malr >> 8) & 0xFF; 1167 addr[5] = (malr >> 0) & 0xFF; 1168 eth_hw_addr_set(ndev, addr); 1169 } 1170 } 1171 1172 struct bb_info { 1173 void (*set_gate)(void *addr); 1174 struct mdiobb_ctrl ctrl; 1175 void *addr; 1176 }; 1177 1178 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 1179 { 1180 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1181 u32 pir; 1182 1183 if (bitbang->set_gate) 1184 bitbang->set_gate(bitbang->addr); 1185 1186 pir = ioread32(bitbang->addr); 1187 if (set) 1188 pir |= mask; 1189 else 1190 pir &= ~mask; 1191 iowrite32(pir, bitbang->addr); 1192 } 1193 1194 /* Data I/O pin control */ 1195 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1196 { 1197 sh_mdio_ctrl(ctrl, PIR_MMD, bit); 1198 } 1199 1200 /* Set bit data*/ 1201 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1202 { 1203 sh_mdio_ctrl(ctrl, PIR_MDO, bit); 1204 } 1205 1206 /* Get bit data*/ 1207 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1208 { 1209 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1210 1211 if (bitbang->set_gate) 1212 bitbang->set_gate(bitbang->addr); 1213 1214 return (ioread32(bitbang->addr) & PIR_MDI) != 0; 1215 } 1216 1217 /* MDC pin control */ 1218 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1219 { 1220 sh_mdio_ctrl(ctrl, PIR_MDC, bit); 1221 } 1222 1223 /* mdio bus control struct */ 1224 static const struct mdiobb_ops bb_ops = { 1225 .owner = THIS_MODULE, 1226 .set_mdc = sh_mdc_ctrl, 1227 .set_mdio_dir = sh_mmd_ctrl, 1228 .set_mdio_data = sh_set_mdio, 1229 .get_mdio_data = sh_get_mdio, 1230 }; 1231 1232 /* free Tx skb function */ 1233 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only) 1234 { 1235 struct sh_eth_private *mdp = netdev_priv(ndev); 1236 struct sh_eth_txdesc *txdesc; 1237 int free_num = 0; 1238 int entry; 1239 bool sent; 1240 1241 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1242 entry = mdp->dirty_tx % mdp->num_tx_ring; 1243 txdesc = &mdp->tx_ring[entry]; 1244 sent = !(txdesc->status & cpu_to_le32(TD_TACT)); 1245 if (sent_only && !sent) 1246 break; 1247 /* TACT bit must be checked before all the following reads */ 1248 dma_rmb(); 1249 netif_info(mdp, tx_done, ndev, 1250 "tx entry %d status 0x%08x\n", 1251 entry, le32_to_cpu(txdesc->status)); 1252 /* Free the original skb. */ 1253 if (mdp->tx_skbuff[entry]) { 1254 dma_unmap_single(&mdp->pdev->dev, 1255 le32_to_cpu(txdesc->addr), 1256 le32_to_cpu(txdesc->len) >> 16, 1257 DMA_TO_DEVICE); 1258 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1259 mdp->tx_skbuff[entry] = NULL; 1260 free_num++; 1261 } 1262 txdesc->status = cpu_to_le32(TD_TFP); 1263 if (entry >= mdp->num_tx_ring - 1) 1264 txdesc->status |= cpu_to_le32(TD_TDLE); 1265 1266 if (sent) { 1267 ndev->stats.tx_packets++; 1268 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; 1269 } 1270 } 1271 return free_num; 1272 } 1273 1274 /* free skb and descriptor buffer */ 1275 static void sh_eth_ring_free(struct net_device *ndev) 1276 { 1277 struct sh_eth_private *mdp = netdev_priv(ndev); 1278 int ringsize, i; 1279 1280 if (mdp->rx_ring) { 1281 for (i = 0; i < mdp->num_rx_ring; i++) { 1282 if (mdp->rx_skbuff[i]) { 1283 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i]; 1284 1285 dma_unmap_single(&mdp->pdev->dev, 1286 le32_to_cpu(rxdesc->addr), 1287 ALIGN(mdp->rx_buf_sz, 32), 1288 DMA_FROM_DEVICE); 1289 } 1290 } 1291 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1292 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring, 1293 mdp->rx_desc_dma); 1294 mdp->rx_ring = NULL; 1295 } 1296 1297 /* Free Rx skb ringbuffer */ 1298 if (mdp->rx_skbuff) { 1299 for (i = 0; i < mdp->num_rx_ring; i++) 1300 dev_kfree_skb(mdp->rx_skbuff[i]); 1301 } 1302 kfree(mdp->rx_skbuff); 1303 mdp->rx_skbuff = NULL; 1304 1305 if (mdp->tx_ring) { 1306 sh_eth_tx_free(ndev, false); 1307 1308 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1309 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring, 1310 mdp->tx_desc_dma); 1311 mdp->tx_ring = NULL; 1312 } 1313 1314 /* Free Tx skb ringbuffer */ 1315 kfree(mdp->tx_skbuff); 1316 mdp->tx_skbuff = NULL; 1317 } 1318 1319 /* format skb and descriptor buffer */ 1320 static void sh_eth_ring_format(struct net_device *ndev) 1321 { 1322 struct sh_eth_private *mdp = netdev_priv(ndev); 1323 int i; 1324 struct sk_buff *skb; 1325 struct sh_eth_rxdesc *rxdesc = NULL; 1326 struct sh_eth_txdesc *txdesc = NULL; 1327 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1328 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1329 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1330 dma_addr_t dma_addr; 1331 u32 buf_len; 1332 1333 mdp->cur_rx = 0; 1334 mdp->cur_tx = 0; 1335 mdp->dirty_rx = 0; 1336 mdp->dirty_tx = 0; 1337 1338 memset(mdp->rx_ring, 0, rx_ringsize); 1339 1340 /* build Rx ring buffer */ 1341 for (i = 0; i < mdp->num_rx_ring; i++) { 1342 /* skb */ 1343 mdp->rx_skbuff[i] = NULL; 1344 skb = netdev_alloc_skb(ndev, skbuff_size); 1345 if (skb == NULL) 1346 break; 1347 sh_eth_set_receive_align(skb); 1348 1349 /* The size of the buffer is a multiple of 32 bytes. */ 1350 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1351 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len, 1352 DMA_FROM_DEVICE); 1353 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1354 kfree_skb(skb); 1355 break; 1356 } 1357 mdp->rx_skbuff[i] = skb; 1358 1359 /* RX descriptor */ 1360 rxdesc = &mdp->rx_ring[i]; 1361 rxdesc->len = cpu_to_le32(buf_len << 16); 1362 rxdesc->addr = cpu_to_le32(dma_addr); 1363 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); 1364 1365 /* Rx descriptor address set */ 1366 if (i == 0) { 1367 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1368 if (mdp->cd->xdfar_rw) 1369 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1370 } 1371 } 1372 1373 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1374 1375 /* Mark the last entry as wrapping the ring. */ 1376 if (rxdesc) 1377 rxdesc->status |= cpu_to_le32(RD_RDLE); 1378 1379 memset(mdp->tx_ring, 0, tx_ringsize); 1380 1381 /* build Tx ring buffer */ 1382 for (i = 0; i < mdp->num_tx_ring; i++) { 1383 mdp->tx_skbuff[i] = NULL; 1384 txdesc = &mdp->tx_ring[i]; 1385 txdesc->status = cpu_to_le32(TD_TFP); 1386 txdesc->len = cpu_to_le32(0); 1387 if (i == 0) { 1388 /* Tx descriptor address set */ 1389 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1390 if (mdp->cd->xdfar_rw) 1391 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1392 } 1393 } 1394 1395 txdesc->status |= cpu_to_le32(TD_TDLE); 1396 } 1397 1398 /* Get skb and descriptor buffer */ 1399 static int sh_eth_ring_init(struct net_device *ndev) 1400 { 1401 struct sh_eth_private *mdp = netdev_priv(ndev); 1402 int rx_ringsize, tx_ringsize; 1403 1404 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1405 * card needs room to do 8 byte alignment, +2 so we can reserve 1406 * the first 2 bytes, and +16 gets room for the status word from the 1407 * card. 1408 */ 1409 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1410 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1411 if (mdp->cd->rpadir) 1412 mdp->rx_buf_sz += NET_IP_ALIGN; 1413 1414 /* Allocate RX and TX skb rings */ 1415 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), 1416 GFP_KERNEL); 1417 if (!mdp->rx_skbuff) 1418 return -ENOMEM; 1419 1420 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), 1421 GFP_KERNEL); 1422 if (!mdp->tx_skbuff) 1423 goto ring_free; 1424 1425 /* Allocate all Rx descriptors. */ 1426 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1427 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize, 1428 &mdp->rx_desc_dma, GFP_KERNEL); 1429 if (!mdp->rx_ring) 1430 goto ring_free; 1431 1432 mdp->dirty_rx = 0; 1433 1434 /* Allocate all Tx descriptors. */ 1435 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1436 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize, 1437 &mdp->tx_desc_dma, GFP_KERNEL); 1438 if (!mdp->tx_ring) 1439 goto ring_free; 1440 return 0; 1441 1442 ring_free: 1443 /* Free Rx and Tx skb ring buffer and DMA buffer */ 1444 sh_eth_ring_free(ndev); 1445 1446 return -ENOMEM; 1447 } 1448 1449 static int sh_eth_dev_init(struct net_device *ndev) 1450 { 1451 struct sh_eth_private *mdp = netdev_priv(ndev); 1452 int ret; 1453 1454 /* Soft Reset */ 1455 ret = mdp->cd->soft_reset(ndev); 1456 if (ret) 1457 return ret; 1458 1459 if (mdp->cd->rmiimode) 1460 sh_eth_write(ndev, 0x1, RMIIMODE); 1461 1462 /* Descriptor format */ 1463 sh_eth_ring_format(ndev); 1464 if (mdp->cd->rpadir) 1465 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR); 1466 1467 /* all sh_eth int mask */ 1468 sh_eth_write(ndev, 0, EESIPR); 1469 1470 #if defined(__LITTLE_ENDIAN) 1471 if (mdp->cd->hw_swap) 1472 sh_eth_write(ndev, EDMR_EL, EDMR); 1473 else 1474 #endif 1475 sh_eth_write(ndev, 0, EDMR); 1476 1477 /* FIFO size set */ 1478 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1479 sh_eth_write(ndev, 0, TFTR); 1480 1481 /* Frame recv control (enable multiple-packets per rx irq) */ 1482 sh_eth_write(ndev, RMCR_RNC, RMCR); 1483 1484 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); 1485 1486 /* DMA transfer burst mode */ 1487 if (mdp->cd->nbst) 1488 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST); 1489 1490 /* Burst cycle count upper-limit */ 1491 if (mdp->cd->bculr) 1492 sh_eth_write(ndev, 0x800, BCULR); 1493 1494 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1495 1496 if (!mdp->cd->no_trimd) 1497 sh_eth_write(ndev, 0, TRIMD); 1498 1499 /* Recv frame limit set register */ 1500 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1501 RFLR); 1502 1503 sh_eth_modify(ndev, EESR, 0, 0); 1504 mdp->irq_enabled = true; 1505 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1506 1507 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ 1508 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | 1509 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | 1510 ECMR_TE | ECMR_RE, ECMR); 1511 1512 if (mdp->cd->set_rate) 1513 mdp->cd->set_rate(ndev); 1514 1515 /* E-MAC Status Register clear */ 1516 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1517 1518 /* E-MAC Interrupt Enable register */ 1519 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1520 1521 /* Set MAC address */ 1522 update_mac_address(ndev); 1523 1524 /* mask reset */ 1525 if (mdp->cd->apr) 1526 sh_eth_write(ndev, 1, APR); 1527 if (mdp->cd->mpr) 1528 sh_eth_write(ndev, 1, MPR); 1529 if (mdp->cd->tpauser) 1530 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1531 1532 /* Setting the Rx mode will start the Rx process. */ 1533 sh_eth_write(ndev, EDRRR_R, EDRRR); 1534 1535 return ret; 1536 } 1537 1538 static void sh_eth_dev_exit(struct net_device *ndev) 1539 { 1540 struct sh_eth_private *mdp = netdev_priv(ndev); 1541 int i; 1542 1543 /* Deactivate all TX descriptors, so DMA should stop at next 1544 * packet boundary if it's currently running 1545 */ 1546 for (i = 0; i < mdp->num_tx_ring; i++) 1547 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); 1548 1549 /* Disable TX FIFO egress to MAC */ 1550 sh_eth_rcv_snd_disable(ndev); 1551 1552 /* Stop RX DMA at next packet boundary */ 1553 sh_eth_write(ndev, 0, EDRRR); 1554 1555 /* Aside from TX DMA, we can't tell when the hardware is 1556 * really stopped, so we need to reset to make sure. 1557 * Before doing that, wait for long enough to *probably* 1558 * finish transmitting the last packet and poll stats. 1559 */ 1560 msleep(2); /* max frame time at 10 Mbps < 1250 us */ 1561 sh_eth_get_stats(ndev); 1562 mdp->cd->soft_reset(ndev); 1563 1564 /* Set the RMII mode again if required */ 1565 if (mdp->cd->rmiimode) 1566 sh_eth_write(ndev, 0x1, RMIIMODE); 1567 1568 /* Set MAC address again */ 1569 update_mac_address(ndev); 1570 } 1571 1572 static void sh_eth_rx_csum(struct sk_buff *skb) 1573 { 1574 u8 *hw_csum; 1575 1576 /* The hardware checksum is 2 bytes appended to packet data */ 1577 if (unlikely(skb->len < sizeof(__sum16))) 1578 return; 1579 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); 1580 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); 1581 skb->ip_summed = CHECKSUM_COMPLETE; 1582 skb_trim(skb, skb->len - sizeof(__sum16)); 1583 } 1584 1585 /* Packet receive function */ 1586 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1587 { 1588 struct sh_eth_private *mdp = netdev_priv(ndev); 1589 struct sh_eth_rxdesc *rxdesc; 1590 1591 int entry = mdp->cur_rx % mdp->num_rx_ring; 1592 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1593 int limit; 1594 struct sk_buff *skb; 1595 u32 desc_status; 1596 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1597 dma_addr_t dma_addr; 1598 u16 pkt_len; 1599 u32 buf_len; 1600 1601 boguscnt = min(boguscnt, *quota); 1602 limit = boguscnt; 1603 rxdesc = &mdp->rx_ring[entry]; 1604 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { 1605 /* RACT bit must be checked before all the following reads */ 1606 dma_rmb(); 1607 desc_status = le32_to_cpu(rxdesc->status); 1608 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; 1609 1610 if (--boguscnt < 0) 1611 break; 1612 1613 netif_info(mdp, rx_status, ndev, 1614 "rx entry %d status 0x%08x len %d\n", 1615 entry, desc_status, pkt_len); 1616 1617 if (!(desc_status & RDFEND)) 1618 ndev->stats.rx_length_errors++; 1619 1620 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1621 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1622 * bit 0. However, in case of the R8A7740 and R7S72100 1623 * the RFS bits are from bit 25 to bit 16. So, the 1624 * driver needs right shifting by 16. 1625 */ 1626 if (mdp->cd->csmr) 1627 desc_status >>= 16; 1628 1629 skb = mdp->rx_skbuff[entry]; 1630 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1631 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1632 ndev->stats.rx_errors++; 1633 if (desc_status & RD_RFS1) 1634 ndev->stats.rx_crc_errors++; 1635 if (desc_status & RD_RFS2) 1636 ndev->stats.rx_frame_errors++; 1637 if (desc_status & RD_RFS3) 1638 ndev->stats.rx_length_errors++; 1639 if (desc_status & RD_RFS4) 1640 ndev->stats.rx_length_errors++; 1641 if (desc_status & RD_RFS6) 1642 ndev->stats.rx_missed_errors++; 1643 if (desc_status & RD_RFS10) 1644 ndev->stats.rx_over_errors++; 1645 } else if (skb) { 1646 dma_addr = le32_to_cpu(rxdesc->addr); 1647 if (!mdp->cd->hw_swap) 1648 sh_eth_soft_swap( 1649 phys_to_virt(ALIGN(dma_addr, 4)), 1650 pkt_len + 2); 1651 mdp->rx_skbuff[entry] = NULL; 1652 if (mdp->cd->rpadir) 1653 skb_reserve(skb, NET_IP_ALIGN); 1654 dma_unmap_single(&mdp->pdev->dev, dma_addr, 1655 ALIGN(mdp->rx_buf_sz, 32), 1656 DMA_FROM_DEVICE); 1657 skb_put(skb, pkt_len); 1658 skb->protocol = eth_type_trans(skb, ndev); 1659 if (ndev->features & NETIF_F_RXCSUM) 1660 sh_eth_rx_csum(skb); 1661 netif_receive_skb(skb); 1662 ndev->stats.rx_packets++; 1663 ndev->stats.rx_bytes += pkt_len; 1664 if (desc_status & RD_RFS8) 1665 ndev->stats.multicast++; 1666 } 1667 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1668 rxdesc = &mdp->rx_ring[entry]; 1669 } 1670 1671 /* Refill the Rx ring buffers. */ 1672 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1673 entry = mdp->dirty_rx % mdp->num_rx_ring; 1674 rxdesc = &mdp->rx_ring[entry]; 1675 /* The size of the buffer is 32 byte boundary. */ 1676 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1677 rxdesc->len = cpu_to_le32(buf_len << 16); 1678 1679 if (mdp->rx_skbuff[entry] == NULL) { 1680 skb = netdev_alloc_skb(ndev, skbuff_size); 1681 if (skb == NULL) 1682 break; /* Better luck next round. */ 1683 sh_eth_set_receive_align(skb); 1684 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, 1685 buf_len, DMA_FROM_DEVICE); 1686 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 1687 kfree_skb(skb); 1688 break; 1689 } 1690 mdp->rx_skbuff[entry] = skb; 1691 1692 skb_checksum_none_assert(skb); 1693 rxdesc->addr = cpu_to_le32(dma_addr); 1694 } 1695 dma_wmb(); /* RACT bit must be set after all the above writes */ 1696 if (entry >= mdp->num_rx_ring - 1) 1697 rxdesc->status |= 1698 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); 1699 else 1700 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); 1701 } 1702 1703 /* Restart Rx engine if stopped. */ 1704 /* If we don't need to check status, don't. -KDU */ 1705 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1706 /* fix the values for the next receiving if RDE is set */ 1707 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) { 1708 u32 count = (sh_eth_read(ndev, RDFAR) - 1709 sh_eth_read(ndev, RDLAR)) >> 4; 1710 1711 mdp->cur_rx = count; 1712 mdp->dirty_rx = count; 1713 } 1714 sh_eth_write(ndev, EDRRR_R, EDRRR); 1715 } 1716 1717 *quota -= limit - boguscnt - 1; 1718 1719 return *quota <= 0; 1720 } 1721 1722 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1723 { 1724 /* disable tx and rx */ 1725 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1726 } 1727 1728 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1729 { 1730 /* enable tx and rx */ 1731 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1732 } 1733 1734 /* E-MAC interrupt handler */ 1735 static void sh_eth_emac_interrupt(struct net_device *ndev) 1736 { 1737 struct sh_eth_private *mdp = netdev_priv(ndev); 1738 u32 felic_stat; 1739 u32 link_stat; 1740 1741 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR); 1742 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1743 if (felic_stat & ECSR_ICD) 1744 ndev->stats.tx_carrier_errors++; 1745 if (felic_stat & ECSR_MPD) 1746 pm_wakeup_event(&mdp->pdev->dev, 0); 1747 if (felic_stat & ECSR_LCHNG) { 1748 /* Link Changed */ 1749 if (mdp->cd->no_psr || mdp->no_ether_link) 1750 return; 1751 link_stat = sh_eth_read(ndev, PSR); 1752 if (mdp->ether_link_active_low) 1753 link_stat = ~link_stat; 1754 if (!(link_stat & PSR_LMON)) { 1755 sh_eth_rcv_snd_disable(ndev); 1756 } else { 1757 /* Link Up */ 1758 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0); 1759 /* clear int */ 1760 sh_eth_modify(ndev, ECSR, 0, 0); 1761 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP); 1762 /* enable tx and rx */ 1763 sh_eth_rcv_snd_enable(ndev); 1764 } 1765 } 1766 } 1767 1768 /* error control function */ 1769 static void sh_eth_error(struct net_device *ndev, u32 intr_status) 1770 { 1771 struct sh_eth_private *mdp = netdev_priv(ndev); 1772 u32 mask; 1773 1774 if (intr_status & EESR_TWB) { 1775 /* Unused write back interrupt */ 1776 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1777 ndev->stats.tx_aborted_errors++; 1778 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1779 } 1780 } 1781 1782 if (intr_status & EESR_RABT) { 1783 /* Receive Abort int */ 1784 if (intr_status & EESR_RFRMER) { 1785 /* Receive Frame Overflow int */ 1786 ndev->stats.rx_frame_errors++; 1787 } 1788 } 1789 1790 if (intr_status & EESR_TDE) { 1791 /* Transmit Descriptor Empty int */ 1792 ndev->stats.tx_fifo_errors++; 1793 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1794 } 1795 1796 if (intr_status & EESR_TFE) { 1797 /* FIFO under flow */ 1798 ndev->stats.tx_fifo_errors++; 1799 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1800 } 1801 1802 if (intr_status & EESR_RDE) { 1803 /* Receive Descriptor Empty int */ 1804 ndev->stats.rx_over_errors++; 1805 } 1806 1807 if (intr_status & EESR_RFE) { 1808 /* Receive FIFO Overflow int */ 1809 ndev->stats.rx_fifo_errors++; 1810 } 1811 1812 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1813 /* Address Error */ 1814 ndev->stats.tx_fifo_errors++; 1815 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1816 } 1817 1818 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1819 if (mdp->cd->no_ade) 1820 mask &= ~EESR_ADE; 1821 if (intr_status & mask) { 1822 /* Tx error */ 1823 u32 edtrr = sh_eth_read(ndev, EDTRR); 1824 1825 /* dmesg */ 1826 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1827 intr_status, mdp->cur_tx, mdp->dirty_tx, 1828 (u32)ndev->state, edtrr); 1829 /* dirty buffer free */ 1830 sh_eth_tx_free(ndev, true); 1831 1832 /* SH7712 BUG */ 1833 if (edtrr ^ mdp->cd->edtrr_trns) { 1834 /* tx dma start */ 1835 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 1836 } 1837 /* wakeup */ 1838 netif_wake_queue(ndev); 1839 } 1840 } 1841 1842 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1843 { 1844 struct net_device *ndev = netdev; 1845 struct sh_eth_private *mdp = netdev_priv(ndev); 1846 struct sh_eth_cpu_data *cd = mdp->cd; 1847 irqreturn_t ret = IRQ_NONE; 1848 u32 intr_status, intr_enable; 1849 1850 spin_lock(&mdp->lock); 1851 1852 /* Get interrupt status */ 1853 intr_status = sh_eth_read(ndev, EESR); 1854 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1855 * enabled since it's the one that comes thru regardless of the mask, 1856 * and we need to fully handle it in sh_eth_emac_interrupt() in order 1857 * to quench it as it doesn't get cleared by just writing 1 to the ECI 1858 * bit... 1859 */ 1860 intr_enable = sh_eth_read(ndev, EESIPR); 1861 intr_status &= intr_enable | EESIPR_ECIIP; 1862 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI | 1863 cd->eesr_err_check)) 1864 ret = IRQ_HANDLED; 1865 else 1866 goto out; 1867 1868 if (unlikely(!mdp->irq_enabled)) { 1869 sh_eth_write(ndev, 0, EESIPR); 1870 goto out; 1871 } 1872 1873 if (intr_status & EESR_RX_CHECK) { 1874 if (napi_schedule_prep(&mdp->napi)) { 1875 /* Mask Rx interrupts */ 1876 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1877 EESIPR); 1878 __napi_schedule(&mdp->napi); 1879 } else { 1880 netdev_warn(ndev, 1881 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", 1882 intr_status, intr_enable); 1883 } 1884 } 1885 1886 /* Tx Check */ 1887 if (intr_status & cd->tx_check) { 1888 /* Clear Tx interrupts */ 1889 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1890 1891 sh_eth_tx_free(ndev, true); 1892 netif_wake_queue(ndev); 1893 } 1894 1895 /* E-MAC interrupt */ 1896 if (intr_status & EESR_ECI) 1897 sh_eth_emac_interrupt(ndev); 1898 1899 if (intr_status & cd->eesr_err_check) { 1900 /* Clear error interrupts */ 1901 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1902 1903 sh_eth_error(ndev, intr_status); 1904 } 1905 1906 out: 1907 spin_unlock(&mdp->lock); 1908 1909 return ret; 1910 } 1911 1912 static int sh_eth_poll(struct napi_struct *napi, int budget) 1913 { 1914 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1915 napi); 1916 struct net_device *ndev = napi->dev; 1917 int quota = budget; 1918 u32 intr_status; 1919 1920 for (;;) { 1921 intr_status = sh_eth_read(ndev, EESR); 1922 if (!(intr_status & EESR_RX_CHECK)) 1923 break; 1924 /* Clear Rx interrupts */ 1925 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1926 1927 if (sh_eth_rx(ndev, intr_status, "a)) 1928 goto out; 1929 } 1930 1931 napi_complete(napi); 1932 1933 /* Reenable Rx interrupts */ 1934 if (mdp->irq_enabled) 1935 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1936 out: 1937 return budget - quota; 1938 } 1939 1940 /* PHY state control function */ 1941 static void sh_eth_adjust_link(struct net_device *ndev) 1942 { 1943 struct sh_eth_private *mdp = netdev_priv(ndev); 1944 struct phy_device *phydev = ndev->phydev; 1945 unsigned long flags; 1946 int new_state = 0; 1947 1948 spin_lock_irqsave(&mdp->lock, flags); 1949 1950 /* Disable TX and RX right over here, if E-MAC change is ignored */ 1951 if (mdp->cd->no_psr || mdp->no_ether_link) 1952 sh_eth_rcv_snd_disable(ndev); 1953 1954 if (phydev->link) { 1955 if (phydev->duplex != mdp->duplex) { 1956 new_state = 1; 1957 mdp->duplex = phydev->duplex; 1958 if (mdp->cd->set_duplex) 1959 mdp->cd->set_duplex(ndev); 1960 } 1961 1962 if (phydev->speed != mdp->speed) { 1963 new_state = 1; 1964 mdp->speed = phydev->speed; 1965 if (mdp->cd->set_rate) 1966 mdp->cd->set_rate(ndev); 1967 } 1968 if (!mdp->link) { 1969 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); 1970 new_state = 1; 1971 mdp->link = phydev->link; 1972 } 1973 } else if (mdp->link) { 1974 new_state = 1; 1975 mdp->link = 0; 1976 mdp->speed = 0; 1977 mdp->duplex = -1; 1978 } 1979 1980 /* Enable TX and RX right over here, if E-MAC change is ignored */ 1981 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link) 1982 sh_eth_rcv_snd_enable(ndev); 1983 1984 spin_unlock_irqrestore(&mdp->lock, flags); 1985 1986 if (new_state && netif_msg_link(mdp)) 1987 phy_print_status(phydev); 1988 } 1989 1990 /* PHY init function */ 1991 static int sh_eth_phy_init(struct net_device *ndev) 1992 { 1993 struct device_node *np = ndev->dev.parent->of_node; 1994 struct sh_eth_private *mdp = netdev_priv(ndev); 1995 struct phy_device *phydev; 1996 1997 mdp->link = 0; 1998 mdp->speed = 0; 1999 mdp->duplex = -1; 2000 2001 /* Try connect to PHY */ 2002 if (np) { 2003 struct device_node *pn; 2004 2005 pn = of_parse_phandle(np, "phy-handle", 0); 2006 phydev = of_phy_connect(ndev, pn, 2007 sh_eth_adjust_link, 0, 2008 mdp->phy_interface); 2009 2010 of_node_put(pn); 2011 if (!phydev) 2012 phydev = ERR_PTR(-ENOENT); 2013 } else { 2014 char phy_id[MII_BUS_ID_SIZE + 3]; 2015 2016 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 2017 mdp->mii_bus->id, mdp->phy_id); 2018 2019 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 2020 mdp->phy_interface); 2021 } 2022 2023 if (IS_ERR(phydev)) { 2024 netdev_err(ndev, "failed to connect PHY\n"); 2025 return PTR_ERR(phydev); 2026 } 2027 2028 /* mask with MAC supported features */ 2029 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) { 2030 int err = phy_set_max_speed(phydev, SPEED_100); 2031 if (err) { 2032 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n"); 2033 phy_disconnect(phydev); 2034 return err; 2035 } 2036 } 2037 2038 phy_attached_info(phydev); 2039 2040 return 0; 2041 } 2042 2043 /* PHY control start function */ 2044 static int sh_eth_phy_start(struct net_device *ndev) 2045 { 2046 int ret; 2047 2048 ret = sh_eth_phy_init(ndev); 2049 if (ret) 2050 return ret; 2051 2052 phy_start(ndev->phydev); 2053 2054 return 0; 2055 } 2056 2057 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the 2058 * version must be bumped as well. Just adding registers up to that 2059 * limit is fine, as long as the existing register indices don't 2060 * change. 2061 */ 2062 #define SH_ETH_REG_DUMP_VERSION 1 2063 #define SH_ETH_REG_DUMP_MAX_REGS 256 2064 2065 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) 2066 { 2067 struct sh_eth_private *mdp = netdev_priv(ndev); 2068 struct sh_eth_cpu_data *cd = mdp->cd; 2069 u32 *valid_map; 2070 size_t len; 2071 2072 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); 2073 2074 /* Dump starts with a bitmap that tells ethtool which 2075 * registers are defined for this chip. 2076 */ 2077 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); 2078 if (buf) { 2079 valid_map = buf; 2080 buf += len; 2081 } else { 2082 valid_map = NULL; 2083 } 2084 2085 /* Add a register to the dump, if it has a defined offset. 2086 * This automatically skips most undefined registers, but for 2087 * some it is also necessary to check a capability flag in 2088 * struct sh_eth_cpu_data. 2089 */ 2090 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) 2091 #define add_reg_from(reg, read_expr) do { \ 2092 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ 2093 if (buf) { \ 2094 mark_reg_valid(reg); \ 2095 *buf++ = read_expr; \ 2096 } \ 2097 ++len; \ 2098 } \ 2099 } while (0) 2100 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) 2101 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) 2102 2103 add_reg(EDSR); 2104 add_reg(EDMR); 2105 add_reg(EDTRR); 2106 add_reg(EDRRR); 2107 add_reg(EESR); 2108 add_reg(EESIPR); 2109 add_reg(TDLAR); 2110 if (!cd->no_xdfar) 2111 add_reg(TDFAR); 2112 add_reg(TDFXR); 2113 add_reg(TDFFR); 2114 add_reg(RDLAR); 2115 if (!cd->no_xdfar) 2116 add_reg(RDFAR); 2117 add_reg(RDFXR); 2118 add_reg(RDFFR); 2119 add_reg(TRSCER); 2120 add_reg(RMFCR); 2121 add_reg(TFTR); 2122 add_reg(FDR); 2123 add_reg(RMCR); 2124 add_reg(TFUCR); 2125 add_reg(RFOCR); 2126 if (cd->rmiimode) 2127 add_reg(RMIIMODE); 2128 add_reg(FCFTR); 2129 if (cd->rpadir) 2130 add_reg(RPADIR); 2131 if (!cd->no_trimd) 2132 add_reg(TRIMD); 2133 add_reg(ECMR); 2134 add_reg(ECSR); 2135 add_reg(ECSIPR); 2136 add_reg(PIR); 2137 if (!cd->no_psr) 2138 add_reg(PSR); 2139 add_reg(RDMLR); 2140 add_reg(RFLR); 2141 add_reg(IPGR); 2142 if (cd->apr) 2143 add_reg(APR); 2144 if (cd->mpr) 2145 add_reg(MPR); 2146 add_reg(RFCR); 2147 add_reg(RFCF); 2148 if (cd->tpauser) 2149 add_reg(TPAUSER); 2150 add_reg(TPAUSECR); 2151 if (cd->gecmr) 2152 add_reg(GECMR); 2153 if (cd->bculr) 2154 add_reg(BCULR); 2155 add_reg(MAHR); 2156 add_reg(MALR); 2157 if (!cd->no_tx_cntrs) { 2158 add_reg(TROCR); 2159 add_reg(CDCR); 2160 add_reg(LCCR); 2161 add_reg(CNDCR); 2162 } 2163 add_reg(CEFCR); 2164 add_reg(FRECR); 2165 add_reg(TSFRCR); 2166 add_reg(TLFRCR); 2167 if (cd->cexcr) { 2168 add_reg(CERCR); 2169 add_reg(CEECR); 2170 } 2171 add_reg(MAFCR); 2172 if (cd->rtrate) 2173 add_reg(RTRATE); 2174 if (cd->csmr) 2175 add_reg(CSMR); 2176 if (cd->select_mii) 2177 add_reg(RMII_MII); 2178 if (cd->tsu) { 2179 add_tsu_reg(ARSTR); 2180 add_tsu_reg(TSU_CTRST); 2181 if (cd->dual_port) { 2182 add_tsu_reg(TSU_FWEN0); 2183 add_tsu_reg(TSU_FWEN1); 2184 add_tsu_reg(TSU_FCM); 2185 add_tsu_reg(TSU_BSYSL0); 2186 add_tsu_reg(TSU_BSYSL1); 2187 add_tsu_reg(TSU_PRISL0); 2188 add_tsu_reg(TSU_PRISL1); 2189 add_tsu_reg(TSU_FWSL0); 2190 add_tsu_reg(TSU_FWSL1); 2191 } 2192 add_tsu_reg(TSU_FWSLC); 2193 if (cd->dual_port) { 2194 add_tsu_reg(TSU_QTAGM0); 2195 add_tsu_reg(TSU_QTAGM1); 2196 add_tsu_reg(TSU_FWSR); 2197 add_tsu_reg(TSU_FWINMK); 2198 add_tsu_reg(TSU_ADQT0); 2199 add_tsu_reg(TSU_ADQT1); 2200 add_tsu_reg(TSU_VTAG0); 2201 add_tsu_reg(TSU_VTAG1); 2202 } 2203 add_tsu_reg(TSU_ADSBSY); 2204 add_tsu_reg(TSU_TEN); 2205 add_tsu_reg(TSU_POST1); 2206 add_tsu_reg(TSU_POST2); 2207 add_tsu_reg(TSU_POST3); 2208 add_tsu_reg(TSU_POST4); 2209 /* This is the start of a table, not just a single register. */ 2210 if (buf) { 2211 unsigned int i; 2212 2213 mark_reg_valid(TSU_ADRH0); 2214 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) 2215 *buf++ = ioread32(mdp->tsu_addr + 2216 mdp->reg_offset[TSU_ADRH0] + 2217 i * 4); 2218 } 2219 len += SH_ETH_TSU_CAM_ENTRIES * 2; 2220 } 2221 2222 #undef mark_reg_valid 2223 #undef add_reg_from 2224 #undef add_reg 2225 #undef add_tsu_reg 2226 2227 return len * 4; 2228 } 2229 2230 static int sh_eth_get_regs_len(struct net_device *ndev) 2231 { 2232 return __sh_eth_get_regs(ndev, NULL); 2233 } 2234 2235 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, 2236 void *buf) 2237 { 2238 struct sh_eth_private *mdp = netdev_priv(ndev); 2239 2240 regs->version = SH_ETH_REG_DUMP_VERSION; 2241 2242 pm_runtime_get_sync(&mdp->pdev->dev); 2243 __sh_eth_get_regs(ndev, buf); 2244 pm_runtime_put_sync(&mdp->pdev->dev); 2245 } 2246 2247 static u32 sh_eth_get_msglevel(struct net_device *ndev) 2248 { 2249 struct sh_eth_private *mdp = netdev_priv(ndev); 2250 return mdp->msg_enable; 2251 } 2252 2253 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 2254 { 2255 struct sh_eth_private *mdp = netdev_priv(ndev); 2256 mdp->msg_enable = value; 2257 } 2258 2259 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 2260 "rx_current", "tx_current", 2261 "rx_dirty", "tx_dirty", 2262 }; 2263 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 2264 2265 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 2266 { 2267 switch (sset) { 2268 case ETH_SS_STATS: 2269 return SH_ETH_STATS_LEN; 2270 default: 2271 return -EOPNOTSUPP; 2272 } 2273 } 2274 2275 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 2276 struct ethtool_stats *stats, u64 *data) 2277 { 2278 struct sh_eth_private *mdp = netdev_priv(ndev); 2279 int i = 0; 2280 2281 /* device-specific stats */ 2282 data[i++] = mdp->cur_rx; 2283 data[i++] = mdp->cur_tx; 2284 data[i++] = mdp->dirty_rx; 2285 data[i++] = mdp->dirty_tx; 2286 } 2287 2288 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 2289 { 2290 switch (stringset) { 2291 case ETH_SS_STATS: 2292 memcpy(data, sh_eth_gstrings_stats, 2293 sizeof(sh_eth_gstrings_stats)); 2294 break; 2295 } 2296 } 2297 2298 static void sh_eth_get_ringparam(struct net_device *ndev, 2299 struct ethtool_ringparam *ring, 2300 struct kernel_ethtool_ringparam *kernel_ring, 2301 struct netlink_ext_ack *extack) 2302 { 2303 struct sh_eth_private *mdp = netdev_priv(ndev); 2304 2305 ring->rx_max_pending = RX_RING_MAX; 2306 ring->tx_max_pending = TX_RING_MAX; 2307 ring->rx_pending = mdp->num_rx_ring; 2308 ring->tx_pending = mdp->num_tx_ring; 2309 } 2310 2311 static int sh_eth_set_ringparam(struct net_device *ndev, 2312 struct ethtool_ringparam *ring, 2313 struct kernel_ethtool_ringparam *kernel_ring, 2314 struct netlink_ext_ack *extack) 2315 { 2316 struct sh_eth_private *mdp = netdev_priv(ndev); 2317 int ret; 2318 2319 if (ring->tx_pending > TX_RING_MAX || 2320 ring->rx_pending > RX_RING_MAX || 2321 ring->tx_pending < TX_RING_MIN || 2322 ring->rx_pending < RX_RING_MIN) 2323 return -EINVAL; 2324 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 2325 return -EINVAL; 2326 2327 if (netif_running(ndev)) { 2328 netif_device_detach(ndev); 2329 netif_tx_disable(ndev); 2330 2331 /* Serialise with the interrupt handler and NAPI, then 2332 * disable interrupts. We have to clear the 2333 * irq_enabled flag first to ensure that interrupts 2334 * won't be re-enabled. 2335 */ 2336 mdp->irq_enabled = false; 2337 synchronize_irq(ndev->irq); 2338 napi_synchronize(&mdp->napi); 2339 sh_eth_write(ndev, 0x0000, EESIPR); 2340 2341 sh_eth_dev_exit(ndev); 2342 2343 /* Free all the skbuffs in the Rx queue and the DMA buffers. */ 2344 sh_eth_ring_free(ndev); 2345 } 2346 2347 /* Set new parameters */ 2348 mdp->num_rx_ring = ring->rx_pending; 2349 mdp->num_tx_ring = ring->tx_pending; 2350 2351 if (netif_running(ndev)) { 2352 ret = sh_eth_ring_init(ndev); 2353 if (ret < 0) { 2354 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", 2355 __func__); 2356 return ret; 2357 } 2358 ret = sh_eth_dev_init(ndev); 2359 if (ret < 0) { 2360 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", 2361 __func__); 2362 return ret; 2363 } 2364 2365 netif_device_attach(ndev); 2366 } 2367 2368 return 0; 2369 } 2370 2371 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2372 { 2373 struct sh_eth_private *mdp = netdev_priv(ndev); 2374 2375 wol->supported = 0; 2376 wol->wolopts = 0; 2377 2378 if (mdp->cd->magic) { 2379 wol->supported = WAKE_MAGIC; 2380 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0; 2381 } 2382 } 2383 2384 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2385 { 2386 struct sh_eth_private *mdp = netdev_priv(ndev); 2387 2388 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC) 2389 return -EOPNOTSUPP; 2390 2391 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); 2392 2393 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled); 2394 2395 return 0; 2396 } 2397 2398 static const struct ethtool_ops sh_eth_ethtool_ops = { 2399 .get_regs_len = sh_eth_get_regs_len, 2400 .get_regs = sh_eth_get_regs, 2401 .nway_reset = phy_ethtool_nway_reset, 2402 .get_msglevel = sh_eth_get_msglevel, 2403 .set_msglevel = sh_eth_set_msglevel, 2404 .get_link = ethtool_op_get_link, 2405 .get_strings = sh_eth_get_strings, 2406 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2407 .get_sset_count = sh_eth_get_sset_count, 2408 .get_ringparam = sh_eth_get_ringparam, 2409 .set_ringparam = sh_eth_set_ringparam, 2410 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2411 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2412 .get_wol = sh_eth_get_wol, 2413 .set_wol = sh_eth_set_wol, 2414 }; 2415 2416 /* network device open function */ 2417 static int sh_eth_open(struct net_device *ndev) 2418 { 2419 struct sh_eth_private *mdp = netdev_priv(ndev); 2420 int ret; 2421 2422 pm_runtime_get_sync(&mdp->pdev->dev); 2423 2424 napi_enable(&mdp->napi); 2425 2426 ret = request_irq(ndev->irq, sh_eth_interrupt, 2427 mdp->cd->irq_flags, ndev->name, ndev); 2428 if (ret) { 2429 netdev_err(ndev, "Can not assign IRQ number\n"); 2430 goto out_napi_off; 2431 } 2432 2433 /* Descriptor set */ 2434 ret = sh_eth_ring_init(ndev); 2435 if (ret) 2436 goto out_free_irq; 2437 2438 /* device init */ 2439 ret = sh_eth_dev_init(ndev); 2440 if (ret) 2441 goto out_free_irq; 2442 2443 /* PHY control start*/ 2444 ret = sh_eth_phy_start(ndev); 2445 if (ret) 2446 goto out_free_irq; 2447 2448 netif_start_queue(ndev); 2449 2450 mdp->is_opened = 1; 2451 2452 return ret; 2453 2454 out_free_irq: 2455 free_irq(ndev->irq, ndev); 2456 out_napi_off: 2457 napi_disable(&mdp->napi); 2458 pm_runtime_put_sync(&mdp->pdev->dev); 2459 return ret; 2460 } 2461 2462 /* Timeout function */ 2463 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue) 2464 { 2465 struct sh_eth_private *mdp = netdev_priv(ndev); 2466 struct sh_eth_rxdesc *rxdesc; 2467 int i; 2468 2469 netif_stop_queue(ndev); 2470 2471 netif_err(mdp, timer, ndev, 2472 "transmit timed out, status %8.8x, resetting...\n", 2473 sh_eth_read(ndev, EESR)); 2474 2475 /* tx_errors count up */ 2476 ndev->stats.tx_errors++; 2477 2478 /* Free all the skbuffs in the Rx queue. */ 2479 for (i = 0; i < mdp->num_rx_ring; i++) { 2480 rxdesc = &mdp->rx_ring[i]; 2481 rxdesc->status = cpu_to_le32(0); 2482 rxdesc->addr = cpu_to_le32(0xBADF00D0); 2483 dev_kfree_skb(mdp->rx_skbuff[i]); 2484 mdp->rx_skbuff[i] = NULL; 2485 } 2486 for (i = 0; i < mdp->num_tx_ring; i++) { 2487 dev_kfree_skb(mdp->tx_skbuff[i]); 2488 mdp->tx_skbuff[i] = NULL; 2489 } 2490 2491 /* device init */ 2492 sh_eth_dev_init(ndev); 2493 2494 netif_start_queue(ndev); 2495 } 2496 2497 /* Packet transmit function */ 2498 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb, 2499 struct net_device *ndev) 2500 { 2501 struct sh_eth_private *mdp = netdev_priv(ndev); 2502 struct sh_eth_txdesc *txdesc; 2503 dma_addr_t dma_addr; 2504 u32 entry; 2505 unsigned long flags; 2506 2507 spin_lock_irqsave(&mdp->lock, flags); 2508 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2509 if (!sh_eth_tx_free(ndev, true)) { 2510 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2511 netif_stop_queue(ndev); 2512 spin_unlock_irqrestore(&mdp->lock, flags); 2513 return NETDEV_TX_BUSY; 2514 } 2515 } 2516 spin_unlock_irqrestore(&mdp->lock, flags); 2517 2518 if (skb_put_padto(skb, ETH_ZLEN)) 2519 return NETDEV_TX_OK; 2520 2521 entry = mdp->cur_tx % mdp->num_tx_ring; 2522 mdp->tx_skbuff[entry] = skb; 2523 txdesc = &mdp->tx_ring[entry]; 2524 /* soft swap. */ 2525 if (!mdp->cd->hw_swap) 2526 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); 2527 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len, 2528 DMA_TO_DEVICE); 2529 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { 2530 kfree_skb(skb); 2531 return NETDEV_TX_OK; 2532 } 2533 txdesc->addr = cpu_to_le32(dma_addr); 2534 txdesc->len = cpu_to_le32(skb->len << 16); 2535 2536 dma_wmb(); /* TACT bit must be set after all the above writes */ 2537 if (entry >= mdp->num_tx_ring - 1) 2538 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); 2539 else 2540 txdesc->status |= cpu_to_le32(TD_TACT); 2541 2542 wmb(); /* cur_tx must be incremented after TACT bit was set */ 2543 mdp->cur_tx++; 2544 2545 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns)) 2546 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); 2547 2548 return NETDEV_TX_OK; 2549 } 2550 2551 /* The statistics registers have write-clear behaviour, which means we 2552 * will lose any increment between the read and write. We mitigate 2553 * this by only clearing when we read a non-zero value, so we will 2554 * never falsely report a total of zero. 2555 */ 2556 static void 2557 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) 2558 { 2559 u32 delta = sh_eth_read(ndev, reg); 2560 2561 if (delta) { 2562 *stat += delta; 2563 sh_eth_write(ndev, 0, reg); 2564 } 2565 } 2566 2567 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2568 { 2569 struct sh_eth_private *mdp = netdev_priv(ndev); 2570 2571 if (mdp->cd->no_tx_cntrs) 2572 return &ndev->stats; 2573 2574 if (!mdp->is_opened) 2575 return &ndev->stats; 2576 2577 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); 2578 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); 2579 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); 2580 2581 if (mdp->cd->cexcr) { 2582 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2583 CERCR); 2584 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2585 CEECR); 2586 } else { 2587 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2588 CNDCR); 2589 } 2590 2591 return &ndev->stats; 2592 } 2593 2594 /* device close function */ 2595 static int sh_eth_close(struct net_device *ndev) 2596 { 2597 struct sh_eth_private *mdp = netdev_priv(ndev); 2598 2599 netif_stop_queue(ndev); 2600 2601 /* Serialise with the interrupt handler and NAPI, then disable 2602 * interrupts. We have to clear the irq_enabled flag first to 2603 * ensure that interrupts won't be re-enabled. 2604 */ 2605 mdp->irq_enabled = false; 2606 synchronize_irq(ndev->irq); 2607 napi_disable(&mdp->napi); 2608 sh_eth_write(ndev, 0x0000, EESIPR); 2609 2610 sh_eth_dev_exit(ndev); 2611 2612 /* PHY Disconnect */ 2613 if (ndev->phydev) { 2614 phy_stop(ndev->phydev); 2615 phy_disconnect(ndev->phydev); 2616 } 2617 2618 free_irq(ndev->irq, ndev); 2619 2620 /* Free all the skbuffs in the Rx queue and the DMA buffer. */ 2621 sh_eth_ring_free(ndev); 2622 2623 mdp->is_opened = 0; 2624 2625 pm_runtime_put(&mdp->pdev->dev); 2626 2627 return 0; 2628 } 2629 2630 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu) 2631 { 2632 if (netif_running(ndev)) 2633 return -EBUSY; 2634 2635 ndev->mtu = new_mtu; 2636 netdev_update_features(ndev); 2637 2638 return 0; 2639 } 2640 2641 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2642 static u32 sh_eth_tsu_get_post_mask(int entry) 2643 { 2644 return 0x0f << (28 - ((entry % 8) * 4)); 2645 } 2646 2647 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2648 { 2649 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2650 } 2651 2652 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2653 int entry) 2654 { 2655 struct sh_eth_private *mdp = netdev_priv(ndev); 2656 int reg = TSU_POST1 + entry / 8; 2657 u32 tmp; 2658 2659 tmp = sh_eth_tsu_read(mdp, reg); 2660 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg); 2661 } 2662 2663 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2664 int entry) 2665 { 2666 struct sh_eth_private *mdp = netdev_priv(ndev); 2667 int reg = TSU_POST1 + entry / 8; 2668 u32 post_mask, ref_mask, tmp; 2669 2670 post_mask = sh_eth_tsu_get_post_mask(entry); 2671 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2672 2673 tmp = sh_eth_tsu_read(mdp, reg); 2674 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg); 2675 2676 /* If other port enables, the function returns "true" */ 2677 return tmp & ref_mask; 2678 } 2679 2680 static int sh_eth_tsu_busy(struct net_device *ndev) 2681 { 2682 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2683 struct sh_eth_private *mdp = netdev_priv(ndev); 2684 2685 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2686 udelay(10); 2687 timeout--; 2688 if (timeout <= 0) { 2689 netdev_err(ndev, "%s: timeout\n", __func__); 2690 return -ETIMEDOUT; 2691 } 2692 } 2693 2694 return 0; 2695 } 2696 2697 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset, 2698 const u8 *addr) 2699 { 2700 struct sh_eth_private *mdp = netdev_priv(ndev); 2701 u32 val; 2702 2703 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2704 iowrite32(val, mdp->tsu_addr + offset); 2705 if (sh_eth_tsu_busy(ndev) < 0) 2706 return -EBUSY; 2707 2708 val = addr[4] << 8 | addr[5]; 2709 iowrite32(val, mdp->tsu_addr + offset + 4); 2710 if (sh_eth_tsu_busy(ndev) < 0) 2711 return -EBUSY; 2712 2713 return 0; 2714 } 2715 2716 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr) 2717 { 2718 struct sh_eth_private *mdp = netdev_priv(ndev); 2719 u32 val; 2720 2721 val = ioread32(mdp->tsu_addr + offset); 2722 addr[0] = (val >> 24) & 0xff; 2723 addr[1] = (val >> 16) & 0xff; 2724 addr[2] = (val >> 8) & 0xff; 2725 addr[3] = val & 0xff; 2726 val = ioread32(mdp->tsu_addr + offset + 4); 2727 addr[4] = (val >> 8) & 0xff; 2728 addr[5] = val & 0xff; 2729 } 2730 2731 2732 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2733 { 2734 struct sh_eth_private *mdp = netdev_priv(ndev); 2735 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2736 int i; 2737 u8 c_addr[ETH_ALEN]; 2738 2739 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2740 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr); 2741 if (ether_addr_equal(addr, c_addr)) 2742 return i; 2743 } 2744 2745 return -ENOENT; 2746 } 2747 2748 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2749 { 2750 u8 blank[ETH_ALEN]; 2751 int entry; 2752 2753 memset(blank, 0, sizeof(blank)); 2754 entry = sh_eth_tsu_find_entry(ndev, blank); 2755 return (entry < 0) ? -ENOMEM : entry; 2756 } 2757 2758 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2759 int entry) 2760 { 2761 struct sh_eth_private *mdp = netdev_priv(ndev); 2762 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2763 int ret; 2764 u8 blank[ETH_ALEN]; 2765 2766 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2767 ~(1 << (31 - entry)), TSU_TEN); 2768 2769 memset(blank, 0, sizeof(blank)); 2770 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2771 if (ret < 0) 2772 return ret; 2773 return 0; 2774 } 2775 2776 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2777 { 2778 struct sh_eth_private *mdp = netdev_priv(ndev); 2779 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2780 int i, ret; 2781 2782 if (!mdp->cd->tsu) 2783 return 0; 2784 2785 i = sh_eth_tsu_find_entry(ndev, addr); 2786 if (i < 0) { 2787 /* No entry found, create one */ 2788 i = sh_eth_tsu_find_empty(ndev); 2789 if (i < 0) 2790 return -ENOMEM; 2791 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2792 if (ret < 0) 2793 return ret; 2794 2795 /* Enable the entry */ 2796 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2797 (1 << (31 - i)), TSU_TEN); 2798 } 2799 2800 /* Entry found or created, enable POST */ 2801 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2802 2803 return 0; 2804 } 2805 2806 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2807 { 2808 struct sh_eth_private *mdp = netdev_priv(ndev); 2809 int i, ret; 2810 2811 if (!mdp->cd->tsu) 2812 return 0; 2813 2814 i = sh_eth_tsu_find_entry(ndev, addr); 2815 if (i) { 2816 /* Entry found */ 2817 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2818 goto done; 2819 2820 /* Disable the entry if both ports was disabled */ 2821 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2822 if (ret < 0) 2823 return ret; 2824 } 2825 done: 2826 return 0; 2827 } 2828 2829 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2830 { 2831 struct sh_eth_private *mdp = netdev_priv(ndev); 2832 int i, ret; 2833 2834 if (!mdp->cd->tsu) 2835 return 0; 2836 2837 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2838 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2839 continue; 2840 2841 /* Disable the entry if both ports was disabled */ 2842 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2843 if (ret < 0) 2844 return ret; 2845 } 2846 2847 return 0; 2848 } 2849 2850 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2851 { 2852 struct sh_eth_private *mdp = netdev_priv(ndev); 2853 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2854 u8 addr[ETH_ALEN]; 2855 int i; 2856 2857 if (!mdp->cd->tsu) 2858 return; 2859 2860 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2861 sh_eth_tsu_read_entry(ndev, reg_offset, addr); 2862 if (is_multicast_ether_addr(addr)) 2863 sh_eth_tsu_del_entry(ndev, addr); 2864 } 2865 } 2866 2867 /* Update promiscuous flag and multicast filter */ 2868 static void sh_eth_set_rx_mode(struct net_device *ndev) 2869 { 2870 struct sh_eth_private *mdp = netdev_priv(ndev); 2871 u32 ecmr_bits; 2872 int mcast_all = 0; 2873 unsigned long flags; 2874 2875 spin_lock_irqsave(&mdp->lock, flags); 2876 /* Initial condition is MCT = 1, PRM = 0. 2877 * Depending on ndev->flags, set PRM or clear MCT 2878 */ 2879 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; 2880 if (mdp->cd->tsu) 2881 ecmr_bits |= ECMR_MCT; 2882 2883 if (!(ndev->flags & IFF_MULTICAST)) { 2884 sh_eth_tsu_purge_mcast(ndev); 2885 mcast_all = 1; 2886 } 2887 if (ndev->flags & IFF_ALLMULTI) { 2888 sh_eth_tsu_purge_mcast(ndev); 2889 ecmr_bits &= ~ECMR_MCT; 2890 mcast_all = 1; 2891 } 2892 2893 if (ndev->flags & IFF_PROMISC) { 2894 sh_eth_tsu_purge_all(ndev); 2895 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2896 } else if (mdp->cd->tsu) { 2897 struct netdev_hw_addr *ha; 2898 netdev_for_each_mc_addr(ha, ndev) { 2899 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2900 continue; 2901 2902 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2903 if (!mcast_all) { 2904 sh_eth_tsu_purge_mcast(ndev); 2905 ecmr_bits &= ~ECMR_MCT; 2906 mcast_all = 1; 2907 } 2908 } 2909 } 2910 } 2911 2912 /* update the ethernet mode */ 2913 sh_eth_write(ndev, ecmr_bits, ECMR); 2914 2915 spin_unlock_irqrestore(&mdp->lock, flags); 2916 } 2917 2918 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable) 2919 { 2920 struct sh_eth_private *mdp = netdev_priv(ndev); 2921 unsigned long flags; 2922 2923 spin_lock_irqsave(&mdp->lock, flags); 2924 2925 /* Disable TX and RX */ 2926 sh_eth_rcv_snd_disable(ndev); 2927 2928 /* Modify RX Checksum setting */ 2929 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); 2930 2931 /* Enable TX and RX */ 2932 sh_eth_rcv_snd_enable(ndev); 2933 2934 spin_unlock_irqrestore(&mdp->lock, flags); 2935 } 2936 2937 static int sh_eth_set_features(struct net_device *ndev, 2938 netdev_features_t features) 2939 { 2940 netdev_features_t changed = ndev->features ^ features; 2941 struct sh_eth_private *mdp = netdev_priv(ndev); 2942 2943 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum) 2944 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM); 2945 2946 ndev->features = features; 2947 2948 return 0; 2949 } 2950 2951 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2952 { 2953 if (!mdp->port) 2954 return TSU_VTAG0; 2955 else 2956 return TSU_VTAG1; 2957 } 2958 2959 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2960 __be16 proto, u16 vid) 2961 { 2962 struct sh_eth_private *mdp = netdev_priv(ndev); 2963 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2964 2965 if (unlikely(!mdp->cd->tsu)) 2966 return -EPERM; 2967 2968 /* No filtering if vid = 0 */ 2969 if (!vid) 2970 return 0; 2971 2972 mdp->vlan_num_ids++; 2973 2974 /* The controller has one VLAN tag HW filter. So, if the filter is 2975 * already enabled, the driver disables it and the filte 2976 */ 2977 if (mdp->vlan_num_ids > 1) { 2978 /* disable VLAN filter */ 2979 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2980 return 0; 2981 } 2982 2983 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2984 vtag_reg_index); 2985 2986 return 0; 2987 } 2988 2989 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2990 __be16 proto, u16 vid) 2991 { 2992 struct sh_eth_private *mdp = netdev_priv(ndev); 2993 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2994 2995 if (unlikely(!mdp->cd->tsu)) 2996 return -EPERM; 2997 2998 /* No filtering if vid = 0 */ 2999 if (!vid) 3000 return 0; 3001 3002 mdp->vlan_num_ids--; 3003 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 3004 3005 return 0; 3006 } 3007 3008 /* SuperH's TSU register init function */ 3009 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 3010 { 3011 if (!mdp->cd->dual_port) { 3012 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3013 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, 3014 TSU_FWSLC); /* Enable POST registers */ 3015 return; 3016 } 3017 3018 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 3019 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 3020 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 3021 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 3022 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 3023 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 3024 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 3025 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 3026 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 3027 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 3028 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 3029 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 3030 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 3031 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 3032 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 3033 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 3034 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 3035 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 3036 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 3037 } 3038 3039 /* MDIO bus release function */ 3040 static int sh_mdio_release(struct sh_eth_private *mdp) 3041 { 3042 /* unregister mdio bus */ 3043 mdiobus_unregister(mdp->mii_bus); 3044 3045 /* free bitbang info */ 3046 free_mdio_bitbang(mdp->mii_bus); 3047 3048 return 0; 3049 } 3050 3051 static int sh_mdiobb_read(struct mii_bus *bus, int phy, int reg) 3052 { 3053 int res; 3054 3055 pm_runtime_get_sync(bus->parent); 3056 res = mdiobb_read(bus, phy, reg); 3057 pm_runtime_put(bus->parent); 3058 3059 return res; 3060 } 3061 3062 static int sh_mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val) 3063 { 3064 int res; 3065 3066 pm_runtime_get_sync(bus->parent); 3067 res = mdiobb_write(bus, phy, reg, val); 3068 pm_runtime_put(bus->parent); 3069 3070 return res; 3071 } 3072 3073 /* MDIO bus init function */ 3074 static int sh_mdio_init(struct sh_eth_private *mdp, 3075 struct sh_eth_plat_data *pd) 3076 { 3077 int ret; 3078 struct bb_info *bitbang; 3079 struct platform_device *pdev = mdp->pdev; 3080 struct device *dev = &mdp->pdev->dev; 3081 3082 /* create bit control struct for PHY */ 3083 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 3084 if (!bitbang) 3085 return -ENOMEM; 3086 3087 /* bitbang init */ 3088 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 3089 bitbang->set_gate = pd->set_mdio_gate; 3090 bitbang->ctrl.ops = &bb_ops; 3091 3092 /* MII controller setting */ 3093 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 3094 if (!mdp->mii_bus) 3095 return -ENOMEM; 3096 3097 /* Wrap accessors with Runtime PM-aware ops */ 3098 mdp->mii_bus->read = sh_mdiobb_read; 3099 mdp->mii_bus->write = sh_mdiobb_write; 3100 3101 /* Hook up MII support for ethtool */ 3102 mdp->mii_bus->name = "sh_mii"; 3103 mdp->mii_bus->parent = dev; 3104 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 3105 pdev->name, pdev->id); 3106 3107 /* register MDIO bus */ 3108 if (pd->phy_irq > 0) 3109 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 3110 3111 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 3112 if (ret) 3113 goto out_free_bus; 3114 3115 return 0; 3116 3117 out_free_bus: 3118 free_mdio_bitbang(mdp->mii_bus); 3119 return ret; 3120 } 3121 3122 static const u16 *sh_eth_get_register_offset(int register_type) 3123 { 3124 const u16 *reg_offset = NULL; 3125 3126 switch (register_type) { 3127 case SH_ETH_REG_GIGABIT: 3128 reg_offset = sh_eth_offset_gigabit; 3129 break; 3130 case SH_ETH_REG_FAST_RCAR: 3131 reg_offset = sh_eth_offset_fast_rcar; 3132 break; 3133 case SH_ETH_REG_FAST_SH4: 3134 reg_offset = sh_eth_offset_fast_sh4; 3135 break; 3136 case SH_ETH_REG_FAST_SH3_SH2: 3137 reg_offset = sh_eth_offset_fast_sh3_sh2; 3138 break; 3139 } 3140 3141 return reg_offset; 3142 } 3143 3144 static const struct net_device_ops sh_eth_netdev_ops = { 3145 .ndo_open = sh_eth_open, 3146 .ndo_stop = sh_eth_close, 3147 .ndo_start_xmit = sh_eth_start_xmit, 3148 .ndo_get_stats = sh_eth_get_stats, 3149 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3150 .ndo_tx_timeout = sh_eth_tx_timeout, 3151 .ndo_eth_ioctl = phy_do_ioctl_running, 3152 .ndo_change_mtu = sh_eth_change_mtu, 3153 .ndo_validate_addr = eth_validate_addr, 3154 .ndo_set_mac_address = eth_mac_addr, 3155 .ndo_set_features = sh_eth_set_features, 3156 }; 3157 3158 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 3159 .ndo_open = sh_eth_open, 3160 .ndo_stop = sh_eth_close, 3161 .ndo_start_xmit = sh_eth_start_xmit, 3162 .ndo_get_stats = sh_eth_get_stats, 3163 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3164 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 3165 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 3166 .ndo_tx_timeout = sh_eth_tx_timeout, 3167 .ndo_eth_ioctl = phy_do_ioctl_running, 3168 .ndo_change_mtu = sh_eth_change_mtu, 3169 .ndo_validate_addr = eth_validate_addr, 3170 .ndo_set_mac_address = eth_mac_addr, 3171 .ndo_set_features = sh_eth_set_features, 3172 }; 3173 3174 #ifdef CONFIG_OF 3175 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3176 { 3177 struct device_node *np = dev->of_node; 3178 struct sh_eth_plat_data *pdata; 3179 phy_interface_t interface; 3180 int ret; 3181 3182 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3183 if (!pdata) 3184 return NULL; 3185 3186 ret = of_get_phy_mode(np, &interface); 3187 if (ret) 3188 return NULL; 3189 pdata->phy_interface = interface; 3190 3191 of_get_mac_address(np, pdata->mac_addr); 3192 3193 pdata->no_ether_link = 3194 of_property_read_bool(np, "renesas,no-ether-link"); 3195 pdata->ether_link_active_low = 3196 of_property_read_bool(np, "renesas,ether-link-active-low"); 3197 3198 return pdata; 3199 } 3200 3201 static const struct of_device_id sh_eth_match_table[] = { 3202 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 3203 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data }, 3204 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data }, 3205 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data }, 3206 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data }, 3207 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data }, 3208 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data }, 3209 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data }, 3210 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data }, 3211 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data }, 3212 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 3213 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data }, 3214 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data }, 3215 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data }, 3216 { } 3217 }; 3218 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 3219 #else 3220 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3221 { 3222 return NULL; 3223 } 3224 #endif 3225 3226 static int sh_eth_drv_probe(struct platform_device *pdev) 3227 { 3228 struct resource *res; 3229 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 3230 const struct platform_device_id *id = platform_get_device_id(pdev); 3231 struct sh_eth_private *mdp; 3232 struct net_device *ndev; 3233 int ret; 3234 3235 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 3236 if (!ndev) 3237 return -ENOMEM; 3238 3239 pm_runtime_enable(&pdev->dev); 3240 pm_runtime_get_sync(&pdev->dev); 3241 3242 ret = platform_get_irq(pdev, 0); 3243 if (ret < 0) 3244 goto out_release; 3245 ndev->irq = ret; 3246 3247 SET_NETDEV_DEV(ndev, &pdev->dev); 3248 3249 mdp = netdev_priv(ndev); 3250 mdp->num_tx_ring = TX_RING_SIZE; 3251 mdp->num_rx_ring = RX_RING_SIZE; 3252 mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 3253 if (IS_ERR(mdp->addr)) { 3254 ret = PTR_ERR(mdp->addr); 3255 goto out_release; 3256 } 3257 3258 ndev->base_addr = res->start; 3259 3260 spin_lock_init(&mdp->lock); 3261 mdp->pdev = pdev; 3262 3263 if (pdev->dev.of_node) 3264 pd = sh_eth_parse_dt(&pdev->dev); 3265 if (!pd) { 3266 dev_err(&pdev->dev, "no platform data\n"); 3267 ret = -EINVAL; 3268 goto out_release; 3269 } 3270 3271 /* get PHY ID */ 3272 mdp->phy_id = pd->phy; 3273 mdp->phy_interface = pd->phy_interface; 3274 mdp->no_ether_link = pd->no_ether_link; 3275 mdp->ether_link_active_low = pd->ether_link_active_low; 3276 3277 /* set cpu data */ 3278 if (id) 3279 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 3280 else 3281 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); 3282 3283 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 3284 if (!mdp->reg_offset) { 3285 dev_err(&pdev->dev, "Unknown register type (%d)\n", 3286 mdp->cd->register_type); 3287 ret = -EINVAL; 3288 goto out_release; 3289 } 3290 sh_eth_set_default_cpu_data(mdp->cd); 3291 3292 /* User's manual states max MTU should be 2048 but due to the 3293 * alignment calculations in sh_eth_ring_init() the practical 3294 * MTU is a bit less. Maybe this can be optimized some more. 3295 */ 3296 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); 3297 ndev->min_mtu = ETH_MIN_MTU; 3298 3299 if (mdp->cd->rx_csum) { 3300 ndev->features = NETIF_F_RXCSUM; 3301 ndev->hw_features = NETIF_F_RXCSUM; 3302 } 3303 3304 /* set function */ 3305 if (mdp->cd->tsu) 3306 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 3307 else 3308 ndev->netdev_ops = &sh_eth_netdev_ops; 3309 ndev->ethtool_ops = &sh_eth_ethtool_ops; 3310 ndev->watchdog_timeo = TX_TIMEOUT; 3311 3312 /* debug message level */ 3313 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 3314 3315 /* read and set MAC address */ 3316 read_mac_address(ndev, pd->mac_addr); 3317 if (!is_valid_ether_addr(ndev->dev_addr)) { 3318 dev_warn(&pdev->dev, 3319 "no valid MAC address supplied, using a random one.\n"); 3320 eth_hw_addr_random(ndev); 3321 } 3322 3323 if (mdp->cd->tsu) { 3324 int port = pdev->id < 0 ? 0 : pdev->id % 2; 3325 struct resource *rtsu; 3326 3327 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3328 if (!rtsu) { 3329 dev_err(&pdev->dev, "no TSU resource\n"); 3330 ret = -ENODEV; 3331 goto out_release; 3332 } 3333 /* We can only request the TSU region for the first port 3334 * of the two sharing this TSU for the probe to succeed... 3335 */ 3336 if (port == 0 && 3337 !devm_request_mem_region(&pdev->dev, rtsu->start, 3338 resource_size(rtsu), 3339 dev_name(&pdev->dev))) { 3340 dev_err(&pdev->dev, "can't request TSU resource.\n"); 3341 ret = -EBUSY; 3342 goto out_release; 3343 } 3344 /* ioremap the TSU registers */ 3345 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start, 3346 resource_size(rtsu)); 3347 if (!mdp->tsu_addr) { 3348 dev_err(&pdev->dev, "TSU region ioremap() failed.\n"); 3349 ret = -ENOMEM; 3350 goto out_release; 3351 } 3352 mdp->port = port; 3353 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3354 3355 /* Need to init only the first port of the two sharing a TSU */ 3356 if (port == 0) { 3357 if (mdp->cd->chip_reset) 3358 mdp->cd->chip_reset(ndev); 3359 3360 /* TSU init (Init only)*/ 3361 sh_eth_tsu_init(mdp); 3362 } 3363 } 3364 3365 if (mdp->cd->rmiimode) 3366 sh_eth_write(ndev, 0x1, RMIIMODE); 3367 3368 /* MDIO bus init */ 3369 ret = sh_mdio_init(mdp, pd); 3370 if (ret) { 3371 dev_err_probe(&pdev->dev, ret, "MDIO init failed\n"); 3372 goto out_release; 3373 } 3374 3375 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 3376 3377 /* network device register */ 3378 ret = register_netdev(ndev); 3379 if (ret) 3380 goto out_napi_del; 3381 3382 if (mdp->cd->magic) 3383 device_set_wakeup_capable(&pdev->dev, 1); 3384 3385 /* print device information */ 3386 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 3387 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 3388 3389 pm_runtime_put(&pdev->dev); 3390 platform_set_drvdata(pdev, ndev); 3391 3392 return ret; 3393 3394 out_napi_del: 3395 netif_napi_del(&mdp->napi); 3396 sh_mdio_release(mdp); 3397 3398 out_release: 3399 /* net_dev free */ 3400 free_netdev(ndev); 3401 3402 pm_runtime_put(&pdev->dev); 3403 pm_runtime_disable(&pdev->dev); 3404 return ret; 3405 } 3406 3407 static int sh_eth_drv_remove(struct platform_device *pdev) 3408 { 3409 struct net_device *ndev = platform_get_drvdata(pdev); 3410 struct sh_eth_private *mdp = netdev_priv(ndev); 3411 3412 unregister_netdev(ndev); 3413 netif_napi_del(&mdp->napi); 3414 sh_mdio_release(mdp); 3415 pm_runtime_disable(&pdev->dev); 3416 free_netdev(ndev); 3417 3418 return 0; 3419 } 3420 3421 #ifdef CONFIG_PM 3422 #ifdef CONFIG_PM_SLEEP 3423 static int sh_eth_wol_setup(struct net_device *ndev) 3424 { 3425 struct sh_eth_private *mdp = netdev_priv(ndev); 3426 3427 /* Only allow ECI interrupts */ 3428 synchronize_irq(ndev->irq); 3429 napi_disable(&mdp->napi); 3430 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR); 3431 3432 /* Enable MagicPacket */ 3433 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); 3434 3435 return enable_irq_wake(ndev->irq); 3436 } 3437 3438 static int sh_eth_wol_restore(struct net_device *ndev) 3439 { 3440 struct sh_eth_private *mdp = netdev_priv(ndev); 3441 int ret; 3442 3443 napi_enable(&mdp->napi); 3444 3445 /* Disable MagicPacket */ 3446 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0); 3447 3448 /* The device needs to be reset to restore MagicPacket logic 3449 * for next wakeup. If we close and open the device it will 3450 * both be reset and all registers restored. This is what 3451 * happens during suspend and resume without WoL enabled. 3452 */ 3453 ret = sh_eth_close(ndev); 3454 if (ret < 0) 3455 return ret; 3456 ret = sh_eth_open(ndev); 3457 if (ret < 0) 3458 return ret; 3459 3460 return disable_irq_wake(ndev->irq); 3461 } 3462 3463 static int sh_eth_suspend(struct device *dev) 3464 { 3465 struct net_device *ndev = dev_get_drvdata(dev); 3466 struct sh_eth_private *mdp = netdev_priv(ndev); 3467 int ret = 0; 3468 3469 if (!netif_running(ndev)) 3470 return 0; 3471 3472 netif_device_detach(ndev); 3473 3474 if (mdp->wol_enabled) 3475 ret = sh_eth_wol_setup(ndev); 3476 else 3477 ret = sh_eth_close(ndev); 3478 3479 return ret; 3480 } 3481 3482 static int sh_eth_resume(struct device *dev) 3483 { 3484 struct net_device *ndev = dev_get_drvdata(dev); 3485 struct sh_eth_private *mdp = netdev_priv(ndev); 3486 int ret = 0; 3487 3488 if (!netif_running(ndev)) 3489 return 0; 3490 3491 if (mdp->wol_enabled) 3492 ret = sh_eth_wol_restore(ndev); 3493 else 3494 ret = sh_eth_open(ndev); 3495 3496 if (ret < 0) 3497 return ret; 3498 3499 netif_device_attach(ndev); 3500 3501 return ret; 3502 } 3503 #endif 3504 3505 static int sh_eth_runtime_nop(struct device *dev) 3506 { 3507 /* Runtime PM callback shared between ->runtime_suspend() 3508 * and ->runtime_resume(). Simply returns success. 3509 * 3510 * This driver re-initializes all registers after 3511 * pm_runtime_get_sync() anyway so there is no need 3512 * to save and restore registers here. 3513 */ 3514 return 0; 3515 } 3516 3517 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 3518 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) 3519 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) 3520 }; 3521 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 3522 #else 3523 #define SH_ETH_PM_OPS NULL 3524 #endif 3525 3526 static const struct platform_device_id sh_eth_id_table[] = { 3527 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 3528 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 3529 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 3530 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 3531 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 3532 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 3533 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 3534 { } 3535 }; 3536 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 3537 3538 static struct platform_driver sh_eth_driver = { 3539 .probe = sh_eth_drv_probe, 3540 .remove = sh_eth_drv_remove, 3541 .id_table = sh_eth_id_table, 3542 .driver = { 3543 .name = CARDNAME, 3544 .pm = SH_ETH_PM_OPS, 3545 .of_match_table = of_match_ptr(sh_eth_match_table), 3546 }, 3547 }; 3548 3549 module_platform_driver(sh_eth_driver); 3550 3551 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 3552 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 3553 MODULE_LICENSE("GPL v2"); 3554