1 /* SuperH Ethernet device driver 2 * 3 * Copyright (C) 2014 Renesas Electronics Corporation 4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 5 * Copyright (C) 2008-2014 Renesas Solutions Corp. 6 * Copyright (C) 2013-2017 Cogent Embedded, Inc. 7 * Copyright (C) 2014 Codethink Limited 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 */ 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/spinlock.h> 25 #include <linux/interrupt.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/etherdevice.h> 28 #include <linux/delay.h> 29 #include <linux/platform_device.h> 30 #include <linux/mdio-bitbang.h> 31 #include <linux/netdevice.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 #include <linux/of_irq.h> 35 #include <linux/of_net.h> 36 #include <linux/phy.h> 37 #include <linux/cache.h> 38 #include <linux/io.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/slab.h> 41 #include <linux/ethtool.h> 42 #include <linux/if_vlan.h> 43 #include <linux/clk.h> 44 #include <linux/sh_eth.h> 45 #include <linux/of_mdio.h> 46 47 #include "sh_eth.h" 48 49 #define SH_ETH_DEF_MSG_ENABLE \ 50 (NETIF_MSG_LINK | \ 51 NETIF_MSG_TIMER | \ 52 NETIF_MSG_RX_ERR| \ 53 NETIF_MSG_TX_ERR) 54 55 #define SH_ETH_OFFSET_INVALID ((u16)~0) 56 57 #define SH_ETH_OFFSET_DEFAULTS \ 58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID 59 60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 61 SH_ETH_OFFSET_DEFAULTS, 62 63 [EDSR] = 0x0000, 64 [EDMR] = 0x0400, 65 [EDTRR] = 0x0408, 66 [EDRRR] = 0x0410, 67 [EESR] = 0x0428, 68 [EESIPR] = 0x0430, 69 [TDLAR] = 0x0010, 70 [TDFAR] = 0x0014, 71 [TDFXR] = 0x0018, 72 [TDFFR] = 0x001c, 73 [RDLAR] = 0x0030, 74 [RDFAR] = 0x0034, 75 [RDFXR] = 0x0038, 76 [RDFFR] = 0x003c, 77 [TRSCER] = 0x0438, 78 [RMFCR] = 0x0440, 79 [TFTR] = 0x0448, 80 [FDR] = 0x0450, 81 [RMCR] = 0x0458, 82 [RPADIR] = 0x0460, 83 [FCFTR] = 0x0468, 84 [CSMR] = 0x04E4, 85 86 [ECMR] = 0x0500, 87 [ECSR] = 0x0510, 88 [ECSIPR] = 0x0518, 89 [PIR] = 0x0520, 90 [PSR] = 0x0528, 91 [PIPR] = 0x052c, 92 [RFLR] = 0x0508, 93 [APR] = 0x0554, 94 [MPR] = 0x0558, 95 [PFTCR] = 0x055c, 96 [PFRCR] = 0x0560, 97 [TPAUSER] = 0x0564, 98 [GECMR] = 0x05b0, 99 [BCULR] = 0x05b4, 100 [MAHR] = 0x05c0, 101 [MALR] = 0x05c8, 102 [TROCR] = 0x0700, 103 [CDCR] = 0x0708, 104 [LCCR] = 0x0710, 105 [CEFCR] = 0x0740, 106 [FRECR] = 0x0748, 107 [TSFRCR] = 0x0750, 108 [TLFRCR] = 0x0758, 109 [RFCR] = 0x0760, 110 [CERCR] = 0x0768, 111 [CEECR] = 0x0770, 112 [MAFCR] = 0x0778, 113 [RMII_MII] = 0x0790, 114 115 [ARSTR] = 0x0000, 116 [TSU_CTRST] = 0x0004, 117 [TSU_FWEN0] = 0x0010, 118 [TSU_FWEN1] = 0x0014, 119 [TSU_FCM] = 0x0018, 120 [TSU_BSYSL0] = 0x0020, 121 [TSU_BSYSL1] = 0x0024, 122 [TSU_PRISL0] = 0x0028, 123 [TSU_PRISL1] = 0x002c, 124 [TSU_FWSL0] = 0x0030, 125 [TSU_FWSL1] = 0x0034, 126 [TSU_FWSLC] = 0x0038, 127 [TSU_QTAG0] = 0x0040, 128 [TSU_QTAG1] = 0x0044, 129 [TSU_FWSR] = 0x0050, 130 [TSU_FWINMK] = 0x0054, 131 [TSU_ADQT0] = 0x0048, 132 [TSU_ADQT1] = 0x004c, 133 [TSU_VTAG0] = 0x0058, 134 [TSU_VTAG1] = 0x005c, 135 [TSU_ADSBSY] = 0x0060, 136 [TSU_TEN] = 0x0064, 137 [TSU_POST1] = 0x0070, 138 [TSU_POST2] = 0x0074, 139 [TSU_POST3] = 0x0078, 140 [TSU_POST4] = 0x007c, 141 [TSU_ADRH0] = 0x0100, 142 143 [TXNLCR0] = 0x0080, 144 [TXALCR0] = 0x0084, 145 [RXNLCR0] = 0x0088, 146 [RXALCR0] = 0x008c, 147 [FWNLCR0] = 0x0090, 148 [FWALCR0] = 0x0094, 149 [TXNLCR1] = 0x00a0, 150 [TXALCR1] = 0x00a0, 151 [RXNLCR1] = 0x00a8, 152 [RXALCR1] = 0x00ac, 153 [FWNLCR1] = 0x00b0, 154 [FWALCR1] = 0x00b4, 155 }; 156 157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = { 158 SH_ETH_OFFSET_DEFAULTS, 159 160 [EDSR] = 0x0000, 161 [EDMR] = 0x0400, 162 [EDTRR] = 0x0408, 163 [EDRRR] = 0x0410, 164 [EESR] = 0x0428, 165 [EESIPR] = 0x0430, 166 [TDLAR] = 0x0010, 167 [TDFAR] = 0x0014, 168 [TDFXR] = 0x0018, 169 [TDFFR] = 0x001c, 170 [RDLAR] = 0x0030, 171 [RDFAR] = 0x0034, 172 [RDFXR] = 0x0038, 173 [RDFFR] = 0x003c, 174 [TRSCER] = 0x0438, 175 [RMFCR] = 0x0440, 176 [TFTR] = 0x0448, 177 [FDR] = 0x0450, 178 [RMCR] = 0x0458, 179 [RPADIR] = 0x0460, 180 [FCFTR] = 0x0468, 181 [CSMR] = 0x04E4, 182 183 [ECMR] = 0x0500, 184 [RFLR] = 0x0508, 185 [ECSR] = 0x0510, 186 [ECSIPR] = 0x0518, 187 [PIR] = 0x0520, 188 [APR] = 0x0554, 189 [MPR] = 0x0558, 190 [PFTCR] = 0x055c, 191 [PFRCR] = 0x0560, 192 [TPAUSER] = 0x0564, 193 [MAHR] = 0x05c0, 194 [MALR] = 0x05c8, 195 [CEFCR] = 0x0740, 196 [FRECR] = 0x0748, 197 [TSFRCR] = 0x0750, 198 [TLFRCR] = 0x0758, 199 [RFCR] = 0x0760, 200 [MAFCR] = 0x0778, 201 202 [ARSTR] = 0x0000, 203 [TSU_CTRST] = 0x0004, 204 [TSU_FWSLC] = 0x0038, 205 [TSU_VTAG0] = 0x0058, 206 [TSU_ADSBSY] = 0x0060, 207 [TSU_TEN] = 0x0064, 208 [TSU_POST1] = 0x0070, 209 [TSU_POST2] = 0x0074, 210 [TSU_POST3] = 0x0078, 211 [TSU_POST4] = 0x007c, 212 [TSU_ADRH0] = 0x0100, 213 214 [TXNLCR0] = 0x0080, 215 [TXALCR0] = 0x0084, 216 [RXNLCR0] = 0x0088, 217 [RXALCR0] = 0x008C, 218 }; 219 220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 221 SH_ETH_OFFSET_DEFAULTS, 222 223 [ECMR] = 0x0300, 224 [RFLR] = 0x0308, 225 [ECSR] = 0x0310, 226 [ECSIPR] = 0x0318, 227 [PIR] = 0x0320, 228 [PSR] = 0x0328, 229 [RDMLR] = 0x0340, 230 [IPGR] = 0x0350, 231 [APR] = 0x0354, 232 [MPR] = 0x0358, 233 [RFCF] = 0x0360, 234 [TPAUSER] = 0x0364, 235 [TPAUSECR] = 0x0368, 236 [MAHR] = 0x03c0, 237 [MALR] = 0x03c8, 238 [TROCR] = 0x03d0, 239 [CDCR] = 0x03d4, 240 [LCCR] = 0x03d8, 241 [CNDCR] = 0x03dc, 242 [CEFCR] = 0x03e4, 243 [FRECR] = 0x03e8, 244 [TSFRCR] = 0x03ec, 245 [TLFRCR] = 0x03f0, 246 [RFCR] = 0x03f4, 247 [MAFCR] = 0x03f8, 248 249 [EDMR] = 0x0200, 250 [EDTRR] = 0x0208, 251 [EDRRR] = 0x0210, 252 [TDLAR] = 0x0218, 253 [RDLAR] = 0x0220, 254 [EESR] = 0x0228, 255 [EESIPR] = 0x0230, 256 [TRSCER] = 0x0238, 257 [RMFCR] = 0x0240, 258 [TFTR] = 0x0248, 259 [FDR] = 0x0250, 260 [RMCR] = 0x0258, 261 [TFUCR] = 0x0264, 262 [RFOCR] = 0x0268, 263 [RMIIMODE] = 0x026c, 264 [FCFTR] = 0x0270, 265 [TRIMD] = 0x027c, 266 }; 267 268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 269 SH_ETH_OFFSET_DEFAULTS, 270 271 [ECMR] = 0x0100, 272 [RFLR] = 0x0108, 273 [ECSR] = 0x0110, 274 [ECSIPR] = 0x0118, 275 [PIR] = 0x0120, 276 [PSR] = 0x0128, 277 [RDMLR] = 0x0140, 278 [IPGR] = 0x0150, 279 [APR] = 0x0154, 280 [MPR] = 0x0158, 281 [TPAUSER] = 0x0164, 282 [RFCF] = 0x0160, 283 [TPAUSECR] = 0x0168, 284 [BCFRR] = 0x016c, 285 [MAHR] = 0x01c0, 286 [MALR] = 0x01c8, 287 [TROCR] = 0x01d0, 288 [CDCR] = 0x01d4, 289 [LCCR] = 0x01d8, 290 [CNDCR] = 0x01dc, 291 [CEFCR] = 0x01e4, 292 [FRECR] = 0x01e8, 293 [TSFRCR] = 0x01ec, 294 [TLFRCR] = 0x01f0, 295 [RFCR] = 0x01f4, 296 [MAFCR] = 0x01f8, 297 [RTRATE] = 0x01fc, 298 299 [EDMR] = 0x0000, 300 [EDTRR] = 0x0008, 301 [EDRRR] = 0x0010, 302 [TDLAR] = 0x0018, 303 [RDLAR] = 0x0020, 304 [EESR] = 0x0028, 305 [EESIPR] = 0x0030, 306 [TRSCER] = 0x0038, 307 [RMFCR] = 0x0040, 308 [TFTR] = 0x0048, 309 [FDR] = 0x0050, 310 [RMCR] = 0x0058, 311 [TFUCR] = 0x0064, 312 [RFOCR] = 0x0068, 313 [FCFTR] = 0x0070, 314 [RPADIR] = 0x0078, 315 [TRIMD] = 0x007c, 316 [RBWAR] = 0x00c8, 317 [RDFAR] = 0x00cc, 318 [TBRAR] = 0x00d4, 319 [TDFAR] = 0x00d8, 320 }; 321 322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 323 SH_ETH_OFFSET_DEFAULTS, 324 325 [EDMR] = 0x0000, 326 [EDTRR] = 0x0004, 327 [EDRRR] = 0x0008, 328 [TDLAR] = 0x000c, 329 [RDLAR] = 0x0010, 330 [EESR] = 0x0014, 331 [EESIPR] = 0x0018, 332 [TRSCER] = 0x001c, 333 [RMFCR] = 0x0020, 334 [TFTR] = 0x0024, 335 [FDR] = 0x0028, 336 [RMCR] = 0x002c, 337 [EDOCR] = 0x0030, 338 [FCFTR] = 0x0034, 339 [RPADIR] = 0x0038, 340 [TRIMD] = 0x003c, 341 [RBWAR] = 0x0040, 342 [RDFAR] = 0x0044, 343 [TBRAR] = 0x004c, 344 [TDFAR] = 0x0050, 345 346 [ECMR] = 0x0160, 347 [ECSR] = 0x0164, 348 [ECSIPR] = 0x0168, 349 [PIR] = 0x016c, 350 [MAHR] = 0x0170, 351 [MALR] = 0x0174, 352 [RFLR] = 0x0178, 353 [PSR] = 0x017c, 354 [TROCR] = 0x0180, 355 [CDCR] = 0x0184, 356 [LCCR] = 0x0188, 357 [CNDCR] = 0x018c, 358 [CEFCR] = 0x0194, 359 [FRECR] = 0x0198, 360 [TSFRCR] = 0x019c, 361 [TLFRCR] = 0x01a0, 362 [RFCR] = 0x01a4, 363 [MAFCR] = 0x01a8, 364 [IPGR] = 0x01b4, 365 [APR] = 0x01b8, 366 [MPR] = 0x01bc, 367 [TPAUSER] = 0x01c4, 368 [BCFR] = 0x01cc, 369 370 [ARSTR] = 0x0000, 371 [TSU_CTRST] = 0x0004, 372 [TSU_FWEN0] = 0x0010, 373 [TSU_FWEN1] = 0x0014, 374 [TSU_FCM] = 0x0018, 375 [TSU_BSYSL0] = 0x0020, 376 [TSU_BSYSL1] = 0x0024, 377 [TSU_PRISL0] = 0x0028, 378 [TSU_PRISL1] = 0x002c, 379 [TSU_FWSL0] = 0x0030, 380 [TSU_FWSL1] = 0x0034, 381 [TSU_FWSLC] = 0x0038, 382 [TSU_QTAGM0] = 0x0040, 383 [TSU_QTAGM1] = 0x0044, 384 [TSU_ADQT0] = 0x0048, 385 [TSU_ADQT1] = 0x004c, 386 [TSU_FWSR] = 0x0050, 387 [TSU_FWINMK] = 0x0054, 388 [TSU_ADSBSY] = 0x0060, 389 [TSU_TEN] = 0x0064, 390 [TSU_POST1] = 0x0070, 391 [TSU_POST2] = 0x0074, 392 [TSU_POST3] = 0x0078, 393 [TSU_POST4] = 0x007c, 394 395 [TXNLCR0] = 0x0080, 396 [TXALCR0] = 0x0084, 397 [RXNLCR0] = 0x0088, 398 [RXALCR0] = 0x008c, 399 [FWNLCR0] = 0x0090, 400 [FWALCR0] = 0x0094, 401 [TXNLCR1] = 0x00a0, 402 [TXALCR1] = 0x00a0, 403 [RXNLCR1] = 0x00a8, 404 [RXALCR1] = 0x00ac, 405 [FWNLCR1] = 0x00b0, 406 [FWALCR1] = 0x00b4, 407 408 [TSU_ADRH0] = 0x0100, 409 }; 410 411 static void sh_eth_rcv_snd_disable(struct net_device *ndev); 412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); 413 414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) 415 { 416 struct sh_eth_private *mdp = netdev_priv(ndev); 417 u16 offset = mdp->reg_offset[enum_index]; 418 419 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 420 return; 421 422 iowrite32(data, mdp->addr + offset); 423 } 424 425 static u32 sh_eth_read(struct net_device *ndev, int enum_index) 426 { 427 struct sh_eth_private *mdp = netdev_priv(ndev); 428 u16 offset = mdp->reg_offset[enum_index]; 429 430 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 431 return ~0U; 432 433 return ioread32(mdp->addr + offset); 434 } 435 436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, 437 u32 set) 438 { 439 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, 440 enum_index); 441 } 442 443 static bool sh_eth_is_gether(struct sh_eth_private *mdp) 444 { 445 return mdp->reg_offset == sh_eth_offset_gigabit; 446 } 447 448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp) 449 { 450 return mdp->reg_offset == sh_eth_offset_fast_rz; 451 } 452 453 static void sh_eth_select_mii(struct net_device *ndev) 454 { 455 struct sh_eth_private *mdp = netdev_priv(ndev); 456 u32 value; 457 458 switch (mdp->phy_interface) { 459 case PHY_INTERFACE_MODE_GMII: 460 value = 0x2; 461 break; 462 case PHY_INTERFACE_MODE_MII: 463 value = 0x1; 464 break; 465 case PHY_INTERFACE_MODE_RMII: 466 value = 0x0; 467 break; 468 default: 469 netdev_warn(ndev, 470 "PHY interface mode was not setup. Set to MII.\n"); 471 value = 0x1; 472 break; 473 } 474 475 sh_eth_write(ndev, value, RMII_MII); 476 } 477 478 static void sh_eth_set_duplex(struct net_device *ndev) 479 { 480 struct sh_eth_private *mdp = netdev_priv(ndev); 481 482 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); 483 } 484 485 static void sh_eth_chip_reset(struct net_device *ndev) 486 { 487 struct sh_eth_private *mdp = netdev_priv(ndev); 488 489 /* reset device */ 490 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR); 491 mdelay(1); 492 } 493 494 static void sh_eth_set_rate_gether(struct net_device *ndev) 495 { 496 struct sh_eth_private *mdp = netdev_priv(ndev); 497 498 switch (mdp->speed) { 499 case 10: /* 10BASE */ 500 sh_eth_write(ndev, GECMR_10, GECMR); 501 break; 502 case 100:/* 100BASE */ 503 sh_eth_write(ndev, GECMR_100, GECMR); 504 break; 505 case 1000: /* 1000BASE */ 506 sh_eth_write(ndev, GECMR_1000, GECMR); 507 break; 508 } 509 } 510 511 #ifdef CONFIG_OF 512 /* R7S72100 */ 513 static struct sh_eth_cpu_data r7s72100_data = { 514 .chip_reset = sh_eth_chip_reset, 515 .set_duplex = sh_eth_set_duplex, 516 517 .register_type = SH_ETH_REG_FAST_RZ, 518 519 .ecsr_value = ECSR_ICD, 520 .ecsipr_value = ECSIPR_ICDIP, 521 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP | 522 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | 523 EESIPR_ECIIP | 524 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 525 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 526 EESIPR_RMAFIP | EESIPR_RRFIP | 527 EESIPR_RTLFIP | EESIPR_RTSFIP | 528 EESIPR_PREIP | EESIPR_CERFIP, 529 530 .tx_check = EESR_TC1 | EESR_FTC, 531 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 532 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 533 EESR_TDE, 534 .fdr_value = 0x0000070f, 535 536 .no_psr = 1, 537 .apr = 1, 538 .mpr = 1, 539 .tpauser = 1, 540 .hw_swap = 1, 541 .rpadir = 1, 542 .rpadir_value = 2 << 16, 543 .no_trimd = 1, 544 .no_ade = 1, 545 .hw_checksum = 1, 546 .tsu = 1, 547 }; 548 549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 550 { 551 sh_eth_chip_reset(ndev); 552 553 sh_eth_select_mii(ndev); 554 } 555 556 /* R8A7740 */ 557 static struct sh_eth_cpu_data r8a7740_data = { 558 .chip_reset = sh_eth_chip_reset_r8a7740, 559 .set_duplex = sh_eth_set_duplex, 560 .set_rate = sh_eth_set_rate_gether, 561 562 .register_type = SH_ETH_REG_GIGABIT, 563 564 .ecsr_value = ECSR_ICD | ECSR_MPD, 565 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 566 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 567 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 568 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 569 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 570 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 571 EESIPR_CEEFIP | EESIPR_CELFIP | 572 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 573 EESIPR_PREIP | EESIPR_CERFIP, 574 575 .tx_check = EESR_TC1 | EESR_FTC, 576 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 577 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 578 EESR_TDE, 579 .fdr_value = 0x0000070f, 580 581 .apr = 1, 582 .mpr = 1, 583 .tpauser = 1, 584 .bculr = 1, 585 .hw_swap = 1, 586 .rpadir = 1, 587 .rpadir_value = 2 << 16, 588 .no_trimd = 1, 589 .no_ade = 1, 590 .hw_checksum = 1, 591 .tsu = 1, 592 .select_mii = 1, 593 .magic = 1, 594 }; 595 596 /* There is CPU dependent code */ 597 static void sh_eth_set_rate_r8a777x(struct net_device *ndev) 598 { 599 struct sh_eth_private *mdp = netdev_priv(ndev); 600 601 switch (mdp->speed) { 602 case 10: /* 10BASE */ 603 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); 604 break; 605 case 100:/* 100BASE */ 606 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); 607 break; 608 } 609 } 610 611 /* R8A7778/9 */ 612 static struct sh_eth_cpu_data r8a777x_data = { 613 .set_duplex = sh_eth_set_duplex, 614 .set_rate = sh_eth_set_rate_r8a777x, 615 616 .register_type = SH_ETH_REG_FAST_RCAR, 617 618 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 619 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 620 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 621 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 622 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 623 EESIPR_RMAFIP | EESIPR_RRFIP | 624 EESIPR_RTLFIP | EESIPR_RTSFIP | 625 EESIPR_PREIP | EESIPR_CERFIP, 626 627 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 628 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 629 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 630 .fdr_value = 0x00000f0f, 631 632 .apr = 1, 633 .mpr = 1, 634 .tpauser = 1, 635 .hw_swap = 1, 636 }; 637 638 /* R8A7790/1 */ 639 static struct sh_eth_cpu_data r8a779x_data = { 640 .set_duplex = sh_eth_set_duplex, 641 .set_rate = sh_eth_set_rate_r8a777x, 642 643 .register_type = SH_ETH_REG_FAST_RCAR, 644 645 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, 646 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | 647 ECSIPR_MPDIP, 648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 651 EESIPR_RMAFIP | EESIPR_RRFIP | 652 EESIPR_RTLFIP | EESIPR_RTSFIP | 653 EESIPR_PREIP | EESIPR_CERFIP, 654 655 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 656 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 657 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 658 .fdr_value = 0x00000f0f, 659 660 .trscer_err_mask = DESC_I_RINT8, 661 662 .apr = 1, 663 .mpr = 1, 664 .tpauser = 1, 665 .hw_swap = 1, 666 .rmiimode = 1, 667 .magic = 1, 668 }; 669 #endif /* CONFIG_OF */ 670 671 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 672 { 673 struct sh_eth_private *mdp = netdev_priv(ndev); 674 675 switch (mdp->speed) { 676 case 10: /* 10BASE */ 677 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); 678 break; 679 case 100:/* 100BASE */ 680 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); 681 break; 682 } 683 } 684 685 /* SH7724 */ 686 static struct sh_eth_cpu_data sh7724_data = { 687 .set_duplex = sh_eth_set_duplex, 688 .set_rate = sh_eth_set_rate_sh7724, 689 690 .register_type = SH_ETH_REG_FAST_SH4, 691 692 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 693 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 694 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | 695 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 696 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 697 EESIPR_RMAFIP | EESIPR_RRFIP | 698 EESIPR_RTLFIP | EESIPR_RTSFIP | 699 EESIPR_PREIP | EESIPR_CERFIP, 700 701 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 702 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 703 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 704 705 .apr = 1, 706 .mpr = 1, 707 .tpauser = 1, 708 .hw_swap = 1, 709 .rpadir = 1, 710 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */ 711 }; 712 713 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 714 { 715 struct sh_eth_private *mdp = netdev_priv(ndev); 716 717 switch (mdp->speed) { 718 case 10: /* 10BASE */ 719 sh_eth_write(ndev, 0, RTRATE); 720 break; 721 case 100:/* 100BASE */ 722 sh_eth_write(ndev, 1, RTRATE); 723 break; 724 } 725 } 726 727 /* SH7757 */ 728 static struct sh_eth_cpu_data sh7757_data = { 729 .set_duplex = sh_eth_set_duplex, 730 .set_rate = sh_eth_set_rate_sh7757, 731 732 .register_type = SH_ETH_REG_FAST_SH4, 733 734 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 735 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 736 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 737 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 738 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 739 EESIPR_CEEFIP | EESIPR_CELFIP | 740 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 741 EESIPR_PREIP | EESIPR_CERFIP, 742 743 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 744 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 745 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 746 747 .irq_flags = IRQF_SHARED, 748 .apr = 1, 749 .mpr = 1, 750 .tpauser = 1, 751 .hw_swap = 1, 752 .no_ade = 1, 753 .rpadir = 1, 754 .rpadir_value = 2 << 16, 755 .rtrate = 1, 756 }; 757 758 #define SH_GIGA_ETH_BASE 0xfee00000UL 759 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 760 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 761 static void sh_eth_chip_reset_giga(struct net_device *ndev) 762 { 763 u32 mahr[2], malr[2]; 764 int i; 765 766 /* save MAHR and MALR */ 767 for (i = 0; i < 2; i++) { 768 malr[i] = ioread32((void *)GIGA_MALR(i)); 769 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 770 } 771 772 sh_eth_chip_reset(ndev); 773 774 /* restore MAHR and MALR */ 775 for (i = 0; i < 2; i++) { 776 iowrite32(malr[i], (void *)GIGA_MALR(i)); 777 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 778 } 779 } 780 781 static void sh_eth_set_rate_giga(struct net_device *ndev) 782 { 783 struct sh_eth_private *mdp = netdev_priv(ndev); 784 785 switch (mdp->speed) { 786 case 10: /* 10BASE */ 787 sh_eth_write(ndev, 0x00000000, GECMR); 788 break; 789 case 100:/* 100BASE */ 790 sh_eth_write(ndev, 0x00000010, GECMR); 791 break; 792 case 1000: /* 1000BASE */ 793 sh_eth_write(ndev, 0x00000020, GECMR); 794 break; 795 } 796 } 797 798 /* SH7757(GETHERC) */ 799 static struct sh_eth_cpu_data sh7757_data_giga = { 800 .chip_reset = sh_eth_chip_reset_giga, 801 .set_duplex = sh_eth_set_duplex, 802 .set_rate = sh_eth_set_rate_giga, 803 804 .register_type = SH_ETH_REG_GIGABIT, 805 806 .ecsr_value = ECSR_ICD | ECSR_MPD, 807 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 808 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 809 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 810 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 811 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 812 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 813 EESIPR_CEEFIP | EESIPR_CELFIP | 814 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 815 EESIPR_PREIP | EESIPR_CERFIP, 816 817 .tx_check = EESR_TC1 | EESR_FTC, 818 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 819 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 820 EESR_TDE, 821 .fdr_value = 0x0000072f, 822 823 .irq_flags = IRQF_SHARED, 824 .apr = 1, 825 .mpr = 1, 826 .tpauser = 1, 827 .bculr = 1, 828 .hw_swap = 1, 829 .rpadir = 1, 830 .rpadir_value = 2 << 16, 831 .no_trimd = 1, 832 .no_ade = 1, 833 .tsu = 1, 834 }; 835 836 /* SH7734 */ 837 static struct sh_eth_cpu_data sh7734_data = { 838 .chip_reset = sh_eth_chip_reset, 839 .set_duplex = sh_eth_set_duplex, 840 .set_rate = sh_eth_set_rate_gether, 841 842 .register_type = SH_ETH_REG_GIGABIT, 843 844 .ecsr_value = ECSR_ICD | ECSR_MPD, 845 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 846 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 847 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 848 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 849 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 850 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 851 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 852 EESIPR_PREIP | EESIPR_CERFIP, 853 854 .tx_check = EESR_TC1 | EESR_FTC, 855 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 856 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 857 EESR_TDE, 858 859 .apr = 1, 860 .mpr = 1, 861 .tpauser = 1, 862 .bculr = 1, 863 .hw_swap = 1, 864 .no_trimd = 1, 865 .no_ade = 1, 866 .tsu = 1, 867 .hw_checksum = 1, 868 .select_mii = 1, 869 .magic = 1, 870 }; 871 872 /* SH7763 */ 873 static struct sh_eth_cpu_data sh7763_data = { 874 .chip_reset = sh_eth_chip_reset, 875 .set_duplex = sh_eth_set_duplex, 876 .set_rate = sh_eth_set_rate_gether, 877 878 .register_type = SH_ETH_REG_GIGABIT, 879 880 .ecsr_value = ECSR_ICD | ECSR_MPD, 881 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 882 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 883 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 884 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 885 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | 886 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | 887 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 888 EESIPR_PREIP | EESIPR_CERFIP, 889 890 .tx_check = EESR_TC1 | EESR_FTC, 891 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 892 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, 893 894 .apr = 1, 895 .mpr = 1, 896 .tpauser = 1, 897 .bculr = 1, 898 .hw_swap = 1, 899 .no_trimd = 1, 900 .no_ade = 1, 901 .tsu = 1, 902 .irq_flags = IRQF_SHARED, 903 .magic = 1, 904 }; 905 906 static struct sh_eth_cpu_data sh7619_data = { 907 .register_type = SH_ETH_REG_FAST_SH3_SH2, 908 909 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 910 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 911 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 912 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 913 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 914 EESIPR_CEEFIP | EESIPR_CELFIP | 915 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 916 EESIPR_PREIP | EESIPR_CERFIP, 917 918 .apr = 1, 919 .mpr = 1, 920 .tpauser = 1, 921 .hw_swap = 1, 922 }; 923 924 static struct sh_eth_cpu_data sh771x_data = { 925 .register_type = SH_ETH_REG_FAST_SH3_SH2, 926 927 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | 928 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | 929 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 930 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | 931 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | 932 EESIPR_CEEFIP | EESIPR_CELFIP | 933 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | 934 EESIPR_PREIP | EESIPR_CERFIP, 935 .tsu = 1, 936 }; 937 938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 939 { 940 if (!cd->ecsr_value) 941 cd->ecsr_value = DEFAULT_ECSR_INIT; 942 943 if (!cd->ecsipr_value) 944 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 945 946 if (!cd->fcftr_value) 947 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 948 DEFAULT_FIFO_F_D_RFD; 949 950 if (!cd->fdr_value) 951 cd->fdr_value = DEFAULT_FDR_INIT; 952 953 if (!cd->tx_check) 954 cd->tx_check = DEFAULT_TX_CHECK; 955 956 if (!cd->eesr_err_check) 957 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 958 959 if (!cd->trscer_err_mask) 960 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; 961 } 962 963 static int sh_eth_check_reset(struct net_device *ndev) 964 { 965 int ret = 0; 966 int cnt = 100; 967 968 while (cnt > 0) { 969 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER)) 970 break; 971 mdelay(1); 972 cnt--; 973 } 974 if (cnt <= 0) { 975 netdev_err(ndev, "Device reset failed\n"); 976 ret = -ETIMEDOUT; 977 } 978 return ret; 979 } 980 981 static int sh_eth_reset(struct net_device *ndev) 982 { 983 struct sh_eth_private *mdp = netdev_priv(ndev); 984 int ret = 0; 985 986 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) { 987 sh_eth_write(ndev, EDSR_ENALL, EDSR); 988 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); 989 990 ret = sh_eth_check_reset(ndev); 991 if (ret) 992 return ret; 993 994 /* Table Init */ 995 sh_eth_write(ndev, 0x0, TDLAR); 996 sh_eth_write(ndev, 0x0, TDFAR); 997 sh_eth_write(ndev, 0x0, TDFXR); 998 sh_eth_write(ndev, 0x0, TDFFR); 999 sh_eth_write(ndev, 0x0, RDLAR); 1000 sh_eth_write(ndev, 0x0, RDFAR); 1001 sh_eth_write(ndev, 0x0, RDFXR); 1002 sh_eth_write(ndev, 0x0, RDFFR); 1003 1004 /* Reset HW CRC register */ 1005 if (mdp->cd->hw_checksum) 1006 sh_eth_write(ndev, 0x0, CSMR); 1007 1008 /* Select MII mode */ 1009 if (mdp->cd->select_mii) 1010 sh_eth_select_mii(ndev); 1011 } else { 1012 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); 1013 mdelay(3); 1014 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); 1015 } 1016 1017 return ret; 1018 } 1019 1020 static void sh_eth_set_receive_align(struct sk_buff *skb) 1021 { 1022 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); 1023 1024 if (reserve) 1025 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); 1026 } 1027 1028 /* Program the hardware MAC address from dev->dev_addr. */ 1029 static void update_mac_address(struct net_device *ndev) 1030 { 1031 sh_eth_write(ndev, 1032 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 1033 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 1034 sh_eth_write(ndev, 1035 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 1036 } 1037 1038 /* Get MAC address from SuperH MAC address register 1039 * 1040 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 1041 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 1042 * When you want use this device, you must set MAC address in bootloader. 1043 * 1044 */ 1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 1046 { 1047 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 1048 memcpy(ndev->dev_addr, mac, ETH_ALEN); 1049 } else { 1050 u32 mahr = sh_eth_read(ndev, MAHR); 1051 u32 malr = sh_eth_read(ndev, MALR); 1052 1053 ndev->dev_addr[0] = (mahr >> 24) & 0xFF; 1054 ndev->dev_addr[1] = (mahr >> 16) & 0xFF; 1055 ndev->dev_addr[2] = (mahr >> 8) & 0xFF; 1056 ndev->dev_addr[3] = (mahr >> 0) & 0xFF; 1057 ndev->dev_addr[4] = (malr >> 8) & 0xFF; 1058 ndev->dev_addr[5] = (malr >> 0) & 0xFF; 1059 } 1060 } 1061 1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp) 1063 { 1064 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) 1065 return EDTRR_TRNS_GETHER; 1066 else 1067 return EDTRR_TRNS_ETHER; 1068 } 1069 1070 struct bb_info { 1071 void (*set_gate)(void *addr); 1072 struct mdiobb_ctrl ctrl; 1073 void *addr; 1074 }; 1075 1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 1077 { 1078 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1079 u32 pir; 1080 1081 if (bitbang->set_gate) 1082 bitbang->set_gate(bitbang->addr); 1083 1084 pir = ioread32(bitbang->addr); 1085 if (set) 1086 pir |= mask; 1087 else 1088 pir &= ~mask; 1089 iowrite32(pir, bitbang->addr); 1090 } 1091 1092 /* Data I/O pin control */ 1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1094 { 1095 sh_mdio_ctrl(ctrl, PIR_MMD, bit); 1096 } 1097 1098 /* Set bit data*/ 1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1100 { 1101 sh_mdio_ctrl(ctrl, PIR_MDO, bit); 1102 } 1103 1104 /* Get bit data*/ 1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1106 { 1107 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1108 1109 if (bitbang->set_gate) 1110 bitbang->set_gate(bitbang->addr); 1111 1112 return (ioread32(bitbang->addr) & PIR_MDI) != 0; 1113 } 1114 1115 /* MDC pin control */ 1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1117 { 1118 sh_mdio_ctrl(ctrl, PIR_MDC, bit); 1119 } 1120 1121 /* mdio bus control struct */ 1122 static struct mdiobb_ops bb_ops = { 1123 .owner = THIS_MODULE, 1124 .set_mdc = sh_mdc_ctrl, 1125 .set_mdio_dir = sh_mmd_ctrl, 1126 .set_mdio_data = sh_set_mdio, 1127 .get_mdio_data = sh_get_mdio, 1128 }; 1129 1130 /* free Tx skb function */ 1131 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only) 1132 { 1133 struct sh_eth_private *mdp = netdev_priv(ndev); 1134 struct sh_eth_txdesc *txdesc; 1135 int free_num = 0; 1136 int entry; 1137 bool sent; 1138 1139 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1140 entry = mdp->dirty_tx % mdp->num_tx_ring; 1141 txdesc = &mdp->tx_ring[entry]; 1142 sent = !(txdesc->status & cpu_to_le32(TD_TACT)); 1143 if (sent_only && !sent) 1144 break; 1145 /* TACT bit must be checked before all the following reads */ 1146 dma_rmb(); 1147 netif_info(mdp, tx_done, ndev, 1148 "tx entry %d status 0x%08x\n", 1149 entry, le32_to_cpu(txdesc->status)); 1150 /* Free the original skb. */ 1151 if (mdp->tx_skbuff[entry]) { 1152 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr), 1153 le32_to_cpu(txdesc->len) >> 16, 1154 DMA_TO_DEVICE); 1155 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1156 mdp->tx_skbuff[entry] = NULL; 1157 free_num++; 1158 } 1159 txdesc->status = cpu_to_le32(TD_TFP); 1160 if (entry >= mdp->num_tx_ring - 1) 1161 txdesc->status |= cpu_to_le32(TD_TDLE); 1162 1163 if (sent) { 1164 ndev->stats.tx_packets++; 1165 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; 1166 } 1167 } 1168 return free_num; 1169 } 1170 1171 /* free skb and descriptor buffer */ 1172 static void sh_eth_ring_free(struct net_device *ndev) 1173 { 1174 struct sh_eth_private *mdp = netdev_priv(ndev); 1175 int ringsize, i; 1176 1177 if (mdp->rx_ring) { 1178 for (i = 0; i < mdp->num_rx_ring; i++) { 1179 if (mdp->rx_skbuff[i]) { 1180 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i]; 1181 1182 dma_unmap_single(&ndev->dev, 1183 le32_to_cpu(rxdesc->addr), 1184 ALIGN(mdp->rx_buf_sz, 32), 1185 DMA_FROM_DEVICE); 1186 } 1187 } 1188 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1189 dma_free_coherent(NULL, ringsize, mdp->rx_ring, 1190 mdp->rx_desc_dma); 1191 mdp->rx_ring = NULL; 1192 } 1193 1194 /* Free Rx skb ringbuffer */ 1195 if (mdp->rx_skbuff) { 1196 for (i = 0; i < mdp->num_rx_ring; i++) 1197 dev_kfree_skb(mdp->rx_skbuff[i]); 1198 } 1199 kfree(mdp->rx_skbuff); 1200 mdp->rx_skbuff = NULL; 1201 1202 if (mdp->tx_ring) { 1203 sh_eth_tx_free(ndev, false); 1204 1205 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1206 dma_free_coherent(NULL, ringsize, mdp->tx_ring, 1207 mdp->tx_desc_dma); 1208 mdp->tx_ring = NULL; 1209 } 1210 1211 /* Free Tx skb ringbuffer */ 1212 kfree(mdp->tx_skbuff); 1213 mdp->tx_skbuff = NULL; 1214 } 1215 1216 /* format skb and descriptor buffer */ 1217 static void sh_eth_ring_format(struct net_device *ndev) 1218 { 1219 struct sh_eth_private *mdp = netdev_priv(ndev); 1220 int i; 1221 struct sk_buff *skb; 1222 struct sh_eth_rxdesc *rxdesc = NULL; 1223 struct sh_eth_txdesc *txdesc = NULL; 1224 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1225 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1226 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1227 dma_addr_t dma_addr; 1228 u32 buf_len; 1229 1230 mdp->cur_rx = 0; 1231 mdp->cur_tx = 0; 1232 mdp->dirty_rx = 0; 1233 mdp->dirty_tx = 0; 1234 1235 memset(mdp->rx_ring, 0, rx_ringsize); 1236 1237 /* build Rx ring buffer */ 1238 for (i = 0; i < mdp->num_rx_ring; i++) { 1239 /* skb */ 1240 mdp->rx_skbuff[i] = NULL; 1241 skb = netdev_alloc_skb(ndev, skbuff_size); 1242 if (skb == NULL) 1243 break; 1244 sh_eth_set_receive_align(skb); 1245 1246 /* The size of the buffer is a multiple of 32 bytes. */ 1247 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1248 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len, 1249 DMA_FROM_DEVICE); 1250 if (dma_mapping_error(&ndev->dev, dma_addr)) { 1251 kfree_skb(skb); 1252 break; 1253 } 1254 mdp->rx_skbuff[i] = skb; 1255 1256 /* RX descriptor */ 1257 rxdesc = &mdp->rx_ring[i]; 1258 rxdesc->len = cpu_to_le32(buf_len << 16); 1259 rxdesc->addr = cpu_to_le32(dma_addr); 1260 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); 1261 1262 /* Rx descriptor address set */ 1263 if (i == 0) { 1264 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1265 if (sh_eth_is_gether(mdp) || 1266 sh_eth_is_rz_fast_ether(mdp)) 1267 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1268 } 1269 } 1270 1271 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1272 1273 /* Mark the last entry as wrapping the ring. */ 1274 if (rxdesc) 1275 rxdesc->status |= cpu_to_le32(RD_RDLE); 1276 1277 memset(mdp->tx_ring, 0, tx_ringsize); 1278 1279 /* build Tx ring buffer */ 1280 for (i = 0; i < mdp->num_tx_ring; i++) { 1281 mdp->tx_skbuff[i] = NULL; 1282 txdesc = &mdp->tx_ring[i]; 1283 txdesc->status = cpu_to_le32(TD_TFP); 1284 txdesc->len = cpu_to_le32(0); 1285 if (i == 0) { 1286 /* Tx descriptor address set */ 1287 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1288 if (sh_eth_is_gether(mdp) || 1289 sh_eth_is_rz_fast_ether(mdp)) 1290 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1291 } 1292 } 1293 1294 txdesc->status |= cpu_to_le32(TD_TDLE); 1295 } 1296 1297 /* Get skb and descriptor buffer */ 1298 static int sh_eth_ring_init(struct net_device *ndev) 1299 { 1300 struct sh_eth_private *mdp = netdev_priv(ndev); 1301 int rx_ringsize, tx_ringsize; 1302 1303 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1304 * card needs room to do 8 byte alignment, +2 so we can reserve 1305 * the first 2 bytes, and +16 gets room for the status word from the 1306 * card. 1307 */ 1308 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1309 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1310 if (mdp->cd->rpadir) 1311 mdp->rx_buf_sz += NET_IP_ALIGN; 1312 1313 /* Allocate RX and TX skb rings */ 1314 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), 1315 GFP_KERNEL); 1316 if (!mdp->rx_skbuff) 1317 return -ENOMEM; 1318 1319 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), 1320 GFP_KERNEL); 1321 if (!mdp->tx_skbuff) 1322 goto ring_free; 1323 1324 /* Allocate all Rx descriptors. */ 1325 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1326 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma, 1327 GFP_KERNEL); 1328 if (!mdp->rx_ring) 1329 goto ring_free; 1330 1331 mdp->dirty_rx = 0; 1332 1333 /* Allocate all Tx descriptors. */ 1334 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1335 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma, 1336 GFP_KERNEL); 1337 if (!mdp->tx_ring) 1338 goto ring_free; 1339 return 0; 1340 1341 ring_free: 1342 /* Free Rx and Tx skb ring buffer and DMA buffer */ 1343 sh_eth_ring_free(ndev); 1344 1345 return -ENOMEM; 1346 } 1347 1348 static int sh_eth_dev_init(struct net_device *ndev) 1349 { 1350 struct sh_eth_private *mdp = netdev_priv(ndev); 1351 int ret; 1352 1353 /* Soft Reset */ 1354 ret = sh_eth_reset(ndev); 1355 if (ret) 1356 return ret; 1357 1358 if (mdp->cd->rmiimode) 1359 sh_eth_write(ndev, 0x1, RMIIMODE); 1360 1361 /* Descriptor format */ 1362 sh_eth_ring_format(ndev); 1363 if (mdp->cd->rpadir) 1364 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR); 1365 1366 /* all sh_eth int mask */ 1367 sh_eth_write(ndev, 0, EESIPR); 1368 1369 #if defined(__LITTLE_ENDIAN) 1370 if (mdp->cd->hw_swap) 1371 sh_eth_write(ndev, EDMR_EL, EDMR); 1372 else 1373 #endif 1374 sh_eth_write(ndev, 0, EDMR); 1375 1376 /* FIFO size set */ 1377 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1378 sh_eth_write(ndev, 0, TFTR); 1379 1380 /* Frame recv control (enable multiple-packets per rx irq) */ 1381 sh_eth_write(ndev, RMCR_RNC, RMCR); 1382 1383 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); 1384 1385 if (mdp->cd->bculr) 1386 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */ 1387 1388 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1389 1390 if (!mdp->cd->no_trimd) 1391 sh_eth_write(ndev, 0, TRIMD); 1392 1393 /* Recv frame limit set register */ 1394 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1395 RFLR); 1396 1397 sh_eth_modify(ndev, EESR, 0, 0); 1398 mdp->irq_enabled = true; 1399 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1400 1401 /* PAUSE Prohibition */ 1402 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | 1403 ECMR_TE | ECMR_RE, ECMR); 1404 1405 if (mdp->cd->set_rate) 1406 mdp->cd->set_rate(ndev); 1407 1408 /* E-MAC Status Register clear */ 1409 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1410 1411 /* E-MAC Interrupt Enable register */ 1412 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1413 1414 /* Set MAC address */ 1415 update_mac_address(ndev); 1416 1417 /* mask reset */ 1418 if (mdp->cd->apr) 1419 sh_eth_write(ndev, APR_AP, APR); 1420 if (mdp->cd->mpr) 1421 sh_eth_write(ndev, MPR_MP, MPR); 1422 if (mdp->cd->tpauser) 1423 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1424 1425 /* Setting the Rx mode will start the Rx process. */ 1426 sh_eth_write(ndev, EDRRR_R, EDRRR); 1427 1428 return ret; 1429 } 1430 1431 static void sh_eth_dev_exit(struct net_device *ndev) 1432 { 1433 struct sh_eth_private *mdp = netdev_priv(ndev); 1434 int i; 1435 1436 /* Deactivate all TX descriptors, so DMA should stop at next 1437 * packet boundary if it's currently running 1438 */ 1439 for (i = 0; i < mdp->num_tx_ring; i++) 1440 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); 1441 1442 /* Disable TX FIFO egress to MAC */ 1443 sh_eth_rcv_snd_disable(ndev); 1444 1445 /* Stop RX DMA at next packet boundary */ 1446 sh_eth_write(ndev, 0, EDRRR); 1447 1448 /* Aside from TX DMA, we can't tell when the hardware is 1449 * really stopped, so we need to reset to make sure. 1450 * Before doing that, wait for long enough to *probably* 1451 * finish transmitting the last packet and poll stats. 1452 */ 1453 msleep(2); /* max frame time at 10 Mbps < 1250 us */ 1454 sh_eth_get_stats(ndev); 1455 sh_eth_reset(ndev); 1456 1457 /* Set MAC address again */ 1458 update_mac_address(ndev); 1459 } 1460 1461 /* Packet receive function */ 1462 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1463 { 1464 struct sh_eth_private *mdp = netdev_priv(ndev); 1465 struct sh_eth_rxdesc *rxdesc; 1466 1467 int entry = mdp->cur_rx % mdp->num_rx_ring; 1468 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1469 int limit; 1470 struct sk_buff *skb; 1471 u32 desc_status; 1472 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1473 dma_addr_t dma_addr; 1474 u16 pkt_len; 1475 u32 buf_len; 1476 1477 boguscnt = min(boguscnt, *quota); 1478 limit = boguscnt; 1479 rxdesc = &mdp->rx_ring[entry]; 1480 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { 1481 /* RACT bit must be checked before all the following reads */ 1482 dma_rmb(); 1483 desc_status = le32_to_cpu(rxdesc->status); 1484 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; 1485 1486 if (--boguscnt < 0) 1487 break; 1488 1489 netif_info(mdp, rx_status, ndev, 1490 "rx entry %d status 0x%08x len %d\n", 1491 entry, desc_status, pkt_len); 1492 1493 if (!(desc_status & RDFEND)) 1494 ndev->stats.rx_length_errors++; 1495 1496 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1497 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1498 * bit 0. However, in case of the R8A7740 and R7S72100 1499 * the RFS bits are from bit 25 to bit 16. So, the 1500 * driver needs right shifting by 16. 1501 */ 1502 if (mdp->cd->hw_checksum) 1503 desc_status >>= 16; 1504 1505 skb = mdp->rx_skbuff[entry]; 1506 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1507 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1508 ndev->stats.rx_errors++; 1509 if (desc_status & RD_RFS1) 1510 ndev->stats.rx_crc_errors++; 1511 if (desc_status & RD_RFS2) 1512 ndev->stats.rx_frame_errors++; 1513 if (desc_status & RD_RFS3) 1514 ndev->stats.rx_length_errors++; 1515 if (desc_status & RD_RFS4) 1516 ndev->stats.rx_length_errors++; 1517 if (desc_status & RD_RFS6) 1518 ndev->stats.rx_missed_errors++; 1519 if (desc_status & RD_RFS10) 1520 ndev->stats.rx_over_errors++; 1521 } else if (skb) { 1522 dma_addr = le32_to_cpu(rxdesc->addr); 1523 if (!mdp->cd->hw_swap) 1524 sh_eth_soft_swap( 1525 phys_to_virt(ALIGN(dma_addr, 4)), 1526 pkt_len + 2); 1527 mdp->rx_skbuff[entry] = NULL; 1528 if (mdp->cd->rpadir) 1529 skb_reserve(skb, NET_IP_ALIGN); 1530 dma_unmap_single(&ndev->dev, dma_addr, 1531 ALIGN(mdp->rx_buf_sz, 32), 1532 DMA_FROM_DEVICE); 1533 skb_put(skb, pkt_len); 1534 skb->protocol = eth_type_trans(skb, ndev); 1535 netif_receive_skb(skb); 1536 ndev->stats.rx_packets++; 1537 ndev->stats.rx_bytes += pkt_len; 1538 if (desc_status & RD_RFS8) 1539 ndev->stats.multicast++; 1540 } 1541 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1542 rxdesc = &mdp->rx_ring[entry]; 1543 } 1544 1545 /* Refill the Rx ring buffers. */ 1546 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1547 entry = mdp->dirty_rx % mdp->num_rx_ring; 1548 rxdesc = &mdp->rx_ring[entry]; 1549 /* The size of the buffer is 32 byte boundary. */ 1550 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1551 rxdesc->len = cpu_to_le32(buf_len << 16); 1552 1553 if (mdp->rx_skbuff[entry] == NULL) { 1554 skb = netdev_alloc_skb(ndev, skbuff_size); 1555 if (skb == NULL) 1556 break; /* Better luck next round. */ 1557 sh_eth_set_receive_align(skb); 1558 dma_addr = dma_map_single(&ndev->dev, skb->data, 1559 buf_len, DMA_FROM_DEVICE); 1560 if (dma_mapping_error(&ndev->dev, dma_addr)) { 1561 kfree_skb(skb); 1562 break; 1563 } 1564 mdp->rx_skbuff[entry] = skb; 1565 1566 skb_checksum_none_assert(skb); 1567 rxdesc->addr = cpu_to_le32(dma_addr); 1568 } 1569 dma_wmb(); /* RACT bit must be set after all the above writes */ 1570 if (entry >= mdp->num_rx_ring - 1) 1571 rxdesc->status |= 1572 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); 1573 else 1574 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); 1575 } 1576 1577 /* Restart Rx engine if stopped. */ 1578 /* If we don't need to check status, don't. -KDU */ 1579 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1580 /* fix the values for the next receiving if RDE is set */ 1581 if (intr_status & EESR_RDE && 1582 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) { 1583 u32 count = (sh_eth_read(ndev, RDFAR) - 1584 sh_eth_read(ndev, RDLAR)) >> 4; 1585 1586 mdp->cur_rx = count; 1587 mdp->dirty_rx = count; 1588 } 1589 sh_eth_write(ndev, EDRRR_R, EDRRR); 1590 } 1591 1592 *quota -= limit - boguscnt - 1; 1593 1594 return *quota <= 0; 1595 } 1596 1597 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1598 { 1599 /* disable tx and rx */ 1600 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1601 } 1602 1603 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1604 { 1605 /* enable tx and rx */ 1606 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1607 } 1608 1609 /* E-MAC interrupt handler */ 1610 static void sh_eth_emac_interrupt(struct net_device *ndev) 1611 { 1612 struct sh_eth_private *mdp = netdev_priv(ndev); 1613 u32 felic_stat; 1614 u32 link_stat; 1615 1616 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR); 1617 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1618 if (felic_stat & ECSR_ICD) 1619 ndev->stats.tx_carrier_errors++; 1620 if (felic_stat & ECSR_MPD) 1621 pm_wakeup_event(&mdp->pdev->dev, 0); 1622 if (felic_stat & ECSR_LCHNG) { 1623 /* Link Changed */ 1624 if (mdp->cd->no_psr || mdp->no_ether_link) 1625 return; 1626 link_stat = sh_eth_read(ndev, PSR); 1627 if (mdp->ether_link_active_low) 1628 link_stat = ~link_stat; 1629 if (!(link_stat & PHY_ST_LINK)) { 1630 sh_eth_rcv_snd_disable(ndev); 1631 } else { 1632 /* Link Up */ 1633 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0); 1634 /* clear int */ 1635 sh_eth_modify(ndev, ECSR, 0, 0); 1636 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP); 1637 /* enable tx and rx */ 1638 sh_eth_rcv_snd_enable(ndev); 1639 } 1640 } 1641 } 1642 1643 /* error control function */ 1644 static void sh_eth_error(struct net_device *ndev, u32 intr_status) 1645 { 1646 struct sh_eth_private *mdp = netdev_priv(ndev); 1647 u32 mask; 1648 1649 if (intr_status & EESR_TWB) { 1650 /* Unused write back interrupt */ 1651 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1652 ndev->stats.tx_aborted_errors++; 1653 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1654 } 1655 } 1656 1657 if (intr_status & EESR_RABT) { 1658 /* Receive Abort int */ 1659 if (intr_status & EESR_RFRMER) { 1660 /* Receive Frame Overflow int */ 1661 ndev->stats.rx_frame_errors++; 1662 } 1663 } 1664 1665 if (intr_status & EESR_TDE) { 1666 /* Transmit Descriptor Empty int */ 1667 ndev->stats.tx_fifo_errors++; 1668 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1669 } 1670 1671 if (intr_status & EESR_TFE) { 1672 /* FIFO under flow */ 1673 ndev->stats.tx_fifo_errors++; 1674 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1675 } 1676 1677 if (intr_status & EESR_RDE) { 1678 /* Receive Descriptor Empty int */ 1679 ndev->stats.rx_over_errors++; 1680 } 1681 1682 if (intr_status & EESR_RFE) { 1683 /* Receive FIFO Overflow int */ 1684 ndev->stats.rx_fifo_errors++; 1685 } 1686 1687 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1688 /* Address Error */ 1689 ndev->stats.tx_fifo_errors++; 1690 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1691 } 1692 1693 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1694 if (mdp->cd->no_ade) 1695 mask &= ~EESR_ADE; 1696 if (intr_status & mask) { 1697 /* Tx error */ 1698 u32 edtrr = sh_eth_read(ndev, EDTRR); 1699 1700 /* dmesg */ 1701 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1702 intr_status, mdp->cur_tx, mdp->dirty_tx, 1703 (u32)ndev->state, edtrr); 1704 /* dirty buffer free */ 1705 sh_eth_tx_free(ndev, true); 1706 1707 /* SH7712 BUG */ 1708 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) { 1709 /* tx dma start */ 1710 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 1711 } 1712 /* wakeup */ 1713 netif_wake_queue(ndev); 1714 } 1715 } 1716 1717 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1718 { 1719 struct net_device *ndev = netdev; 1720 struct sh_eth_private *mdp = netdev_priv(ndev); 1721 struct sh_eth_cpu_data *cd = mdp->cd; 1722 irqreturn_t ret = IRQ_NONE; 1723 u32 intr_status, intr_enable; 1724 1725 spin_lock(&mdp->lock); 1726 1727 /* Get interrupt status */ 1728 intr_status = sh_eth_read(ndev, EESR); 1729 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1730 * enabled since it's the one that comes thru regardless of the mask, 1731 * and we need to fully handle it in sh_eth_emac_interrupt() in order 1732 * to quench it as it doesn't get cleared by just writing 1 to the ECI 1733 * bit... 1734 */ 1735 intr_enable = sh_eth_read(ndev, EESIPR); 1736 intr_status &= intr_enable | EESIPR_ECIIP; 1737 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI | 1738 cd->eesr_err_check)) 1739 ret = IRQ_HANDLED; 1740 else 1741 goto out; 1742 1743 if (unlikely(!mdp->irq_enabled)) { 1744 sh_eth_write(ndev, 0, EESIPR); 1745 goto out; 1746 } 1747 1748 if (intr_status & EESR_RX_CHECK) { 1749 if (napi_schedule_prep(&mdp->napi)) { 1750 /* Mask Rx interrupts */ 1751 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1752 EESIPR); 1753 __napi_schedule(&mdp->napi); 1754 } else { 1755 netdev_warn(ndev, 1756 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", 1757 intr_status, intr_enable); 1758 } 1759 } 1760 1761 /* Tx Check */ 1762 if (intr_status & cd->tx_check) { 1763 /* Clear Tx interrupts */ 1764 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1765 1766 sh_eth_tx_free(ndev, true); 1767 netif_wake_queue(ndev); 1768 } 1769 1770 /* E-MAC interrupt */ 1771 if (intr_status & EESR_ECI) 1772 sh_eth_emac_interrupt(ndev); 1773 1774 if (intr_status & cd->eesr_err_check) { 1775 /* Clear error interrupts */ 1776 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1777 1778 sh_eth_error(ndev, intr_status); 1779 } 1780 1781 out: 1782 spin_unlock(&mdp->lock); 1783 1784 return ret; 1785 } 1786 1787 static int sh_eth_poll(struct napi_struct *napi, int budget) 1788 { 1789 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1790 napi); 1791 struct net_device *ndev = napi->dev; 1792 int quota = budget; 1793 u32 intr_status; 1794 1795 for (;;) { 1796 intr_status = sh_eth_read(ndev, EESR); 1797 if (!(intr_status & EESR_RX_CHECK)) 1798 break; 1799 /* Clear Rx interrupts */ 1800 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1801 1802 if (sh_eth_rx(ndev, intr_status, "a)) 1803 goto out; 1804 } 1805 1806 napi_complete(napi); 1807 1808 /* Reenable Rx interrupts */ 1809 if (mdp->irq_enabled) 1810 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1811 out: 1812 return budget - quota; 1813 } 1814 1815 /* PHY state control function */ 1816 static void sh_eth_adjust_link(struct net_device *ndev) 1817 { 1818 struct sh_eth_private *mdp = netdev_priv(ndev); 1819 struct phy_device *phydev = ndev->phydev; 1820 int new_state = 0; 1821 1822 if (phydev->link) { 1823 if (phydev->duplex != mdp->duplex) { 1824 new_state = 1; 1825 mdp->duplex = phydev->duplex; 1826 if (mdp->cd->set_duplex) 1827 mdp->cd->set_duplex(ndev); 1828 } 1829 1830 if (phydev->speed != mdp->speed) { 1831 new_state = 1; 1832 mdp->speed = phydev->speed; 1833 if (mdp->cd->set_rate) 1834 mdp->cd->set_rate(ndev); 1835 } 1836 if (!mdp->link) { 1837 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); 1838 new_state = 1; 1839 mdp->link = phydev->link; 1840 if (mdp->cd->no_psr || mdp->no_ether_link) 1841 sh_eth_rcv_snd_enable(ndev); 1842 } 1843 } else if (mdp->link) { 1844 new_state = 1; 1845 mdp->link = 0; 1846 mdp->speed = 0; 1847 mdp->duplex = -1; 1848 if (mdp->cd->no_psr || mdp->no_ether_link) 1849 sh_eth_rcv_snd_disable(ndev); 1850 } 1851 1852 if (new_state && netif_msg_link(mdp)) 1853 phy_print_status(phydev); 1854 } 1855 1856 /* PHY init function */ 1857 static int sh_eth_phy_init(struct net_device *ndev) 1858 { 1859 struct device_node *np = ndev->dev.parent->of_node; 1860 struct sh_eth_private *mdp = netdev_priv(ndev); 1861 struct phy_device *phydev; 1862 1863 mdp->link = 0; 1864 mdp->speed = 0; 1865 mdp->duplex = -1; 1866 1867 /* Try connect to PHY */ 1868 if (np) { 1869 struct device_node *pn; 1870 1871 pn = of_parse_phandle(np, "phy-handle", 0); 1872 phydev = of_phy_connect(ndev, pn, 1873 sh_eth_adjust_link, 0, 1874 mdp->phy_interface); 1875 1876 of_node_put(pn); 1877 if (!phydev) 1878 phydev = ERR_PTR(-ENOENT); 1879 } else { 1880 char phy_id[MII_BUS_ID_SIZE + 3]; 1881 1882 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 1883 mdp->mii_bus->id, mdp->phy_id); 1884 1885 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 1886 mdp->phy_interface); 1887 } 1888 1889 if (IS_ERR(phydev)) { 1890 netdev_err(ndev, "failed to connect PHY\n"); 1891 return PTR_ERR(phydev); 1892 } 1893 1894 phy_attached_info(phydev); 1895 1896 return 0; 1897 } 1898 1899 /* PHY control start function */ 1900 static int sh_eth_phy_start(struct net_device *ndev) 1901 { 1902 int ret; 1903 1904 ret = sh_eth_phy_init(ndev); 1905 if (ret) 1906 return ret; 1907 1908 phy_start(ndev->phydev); 1909 1910 return 0; 1911 } 1912 1913 static int sh_eth_get_link_ksettings(struct net_device *ndev, 1914 struct ethtool_link_ksettings *cmd) 1915 { 1916 struct sh_eth_private *mdp = netdev_priv(ndev); 1917 unsigned long flags; 1918 int ret; 1919 1920 if (!ndev->phydev) 1921 return -ENODEV; 1922 1923 spin_lock_irqsave(&mdp->lock, flags); 1924 ret = phy_ethtool_ksettings_get(ndev->phydev, cmd); 1925 spin_unlock_irqrestore(&mdp->lock, flags); 1926 1927 return ret; 1928 } 1929 1930 static int sh_eth_set_link_ksettings(struct net_device *ndev, 1931 const struct ethtool_link_ksettings *cmd) 1932 { 1933 struct sh_eth_private *mdp = netdev_priv(ndev); 1934 unsigned long flags; 1935 int ret; 1936 1937 if (!ndev->phydev) 1938 return -ENODEV; 1939 1940 spin_lock_irqsave(&mdp->lock, flags); 1941 1942 /* disable tx and rx */ 1943 sh_eth_rcv_snd_disable(ndev); 1944 1945 ret = phy_ethtool_ksettings_set(ndev->phydev, cmd); 1946 if (ret) 1947 goto error_exit; 1948 1949 if (cmd->base.duplex == DUPLEX_FULL) 1950 mdp->duplex = 1; 1951 else 1952 mdp->duplex = 0; 1953 1954 if (mdp->cd->set_duplex) 1955 mdp->cd->set_duplex(ndev); 1956 1957 error_exit: 1958 mdelay(1); 1959 1960 /* enable tx and rx */ 1961 sh_eth_rcv_snd_enable(ndev); 1962 1963 spin_unlock_irqrestore(&mdp->lock, flags); 1964 1965 return ret; 1966 } 1967 1968 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the 1969 * version must be bumped as well. Just adding registers up to that 1970 * limit is fine, as long as the existing register indices don't 1971 * change. 1972 */ 1973 #define SH_ETH_REG_DUMP_VERSION 1 1974 #define SH_ETH_REG_DUMP_MAX_REGS 256 1975 1976 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) 1977 { 1978 struct sh_eth_private *mdp = netdev_priv(ndev); 1979 struct sh_eth_cpu_data *cd = mdp->cd; 1980 u32 *valid_map; 1981 size_t len; 1982 1983 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); 1984 1985 /* Dump starts with a bitmap that tells ethtool which 1986 * registers are defined for this chip. 1987 */ 1988 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); 1989 if (buf) { 1990 valid_map = buf; 1991 buf += len; 1992 } else { 1993 valid_map = NULL; 1994 } 1995 1996 /* Add a register to the dump, if it has a defined offset. 1997 * This automatically skips most undefined registers, but for 1998 * some it is also necessary to check a capability flag in 1999 * struct sh_eth_cpu_data. 2000 */ 2001 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) 2002 #define add_reg_from(reg, read_expr) do { \ 2003 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ 2004 if (buf) { \ 2005 mark_reg_valid(reg); \ 2006 *buf++ = read_expr; \ 2007 } \ 2008 ++len; \ 2009 } \ 2010 } while (0) 2011 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) 2012 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) 2013 2014 add_reg(EDSR); 2015 add_reg(EDMR); 2016 add_reg(EDTRR); 2017 add_reg(EDRRR); 2018 add_reg(EESR); 2019 add_reg(EESIPR); 2020 add_reg(TDLAR); 2021 add_reg(TDFAR); 2022 add_reg(TDFXR); 2023 add_reg(TDFFR); 2024 add_reg(RDLAR); 2025 add_reg(RDFAR); 2026 add_reg(RDFXR); 2027 add_reg(RDFFR); 2028 add_reg(TRSCER); 2029 add_reg(RMFCR); 2030 add_reg(TFTR); 2031 add_reg(FDR); 2032 add_reg(RMCR); 2033 add_reg(TFUCR); 2034 add_reg(RFOCR); 2035 if (cd->rmiimode) 2036 add_reg(RMIIMODE); 2037 add_reg(FCFTR); 2038 if (cd->rpadir) 2039 add_reg(RPADIR); 2040 if (!cd->no_trimd) 2041 add_reg(TRIMD); 2042 add_reg(ECMR); 2043 add_reg(ECSR); 2044 add_reg(ECSIPR); 2045 add_reg(PIR); 2046 if (!cd->no_psr) 2047 add_reg(PSR); 2048 add_reg(RDMLR); 2049 add_reg(RFLR); 2050 add_reg(IPGR); 2051 if (cd->apr) 2052 add_reg(APR); 2053 if (cd->mpr) 2054 add_reg(MPR); 2055 add_reg(RFCR); 2056 add_reg(RFCF); 2057 if (cd->tpauser) 2058 add_reg(TPAUSER); 2059 add_reg(TPAUSECR); 2060 add_reg(GECMR); 2061 if (cd->bculr) 2062 add_reg(BCULR); 2063 add_reg(MAHR); 2064 add_reg(MALR); 2065 add_reg(TROCR); 2066 add_reg(CDCR); 2067 add_reg(LCCR); 2068 add_reg(CNDCR); 2069 add_reg(CEFCR); 2070 add_reg(FRECR); 2071 add_reg(TSFRCR); 2072 add_reg(TLFRCR); 2073 add_reg(CERCR); 2074 add_reg(CEECR); 2075 add_reg(MAFCR); 2076 if (cd->rtrate) 2077 add_reg(RTRATE); 2078 if (cd->hw_checksum) 2079 add_reg(CSMR); 2080 if (cd->select_mii) 2081 add_reg(RMII_MII); 2082 add_reg(ARSTR); 2083 if (cd->tsu) { 2084 add_tsu_reg(TSU_CTRST); 2085 add_tsu_reg(TSU_FWEN0); 2086 add_tsu_reg(TSU_FWEN1); 2087 add_tsu_reg(TSU_FCM); 2088 add_tsu_reg(TSU_BSYSL0); 2089 add_tsu_reg(TSU_BSYSL1); 2090 add_tsu_reg(TSU_PRISL0); 2091 add_tsu_reg(TSU_PRISL1); 2092 add_tsu_reg(TSU_FWSL0); 2093 add_tsu_reg(TSU_FWSL1); 2094 add_tsu_reg(TSU_FWSLC); 2095 add_tsu_reg(TSU_QTAG0); 2096 add_tsu_reg(TSU_QTAG1); 2097 add_tsu_reg(TSU_QTAGM0); 2098 add_tsu_reg(TSU_QTAGM1); 2099 add_tsu_reg(TSU_FWSR); 2100 add_tsu_reg(TSU_FWINMK); 2101 add_tsu_reg(TSU_ADQT0); 2102 add_tsu_reg(TSU_ADQT1); 2103 add_tsu_reg(TSU_VTAG0); 2104 add_tsu_reg(TSU_VTAG1); 2105 add_tsu_reg(TSU_ADSBSY); 2106 add_tsu_reg(TSU_TEN); 2107 add_tsu_reg(TSU_POST1); 2108 add_tsu_reg(TSU_POST2); 2109 add_tsu_reg(TSU_POST3); 2110 add_tsu_reg(TSU_POST4); 2111 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) { 2112 /* This is the start of a table, not just a single 2113 * register. 2114 */ 2115 if (buf) { 2116 unsigned int i; 2117 2118 mark_reg_valid(TSU_ADRH0); 2119 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) 2120 *buf++ = ioread32( 2121 mdp->tsu_addr + 2122 mdp->reg_offset[TSU_ADRH0] + 2123 i * 4); 2124 } 2125 len += SH_ETH_TSU_CAM_ENTRIES * 2; 2126 } 2127 } 2128 2129 #undef mark_reg_valid 2130 #undef add_reg_from 2131 #undef add_reg 2132 #undef add_tsu_reg 2133 2134 return len * 4; 2135 } 2136 2137 static int sh_eth_get_regs_len(struct net_device *ndev) 2138 { 2139 return __sh_eth_get_regs(ndev, NULL); 2140 } 2141 2142 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, 2143 void *buf) 2144 { 2145 struct sh_eth_private *mdp = netdev_priv(ndev); 2146 2147 regs->version = SH_ETH_REG_DUMP_VERSION; 2148 2149 pm_runtime_get_sync(&mdp->pdev->dev); 2150 __sh_eth_get_regs(ndev, buf); 2151 pm_runtime_put_sync(&mdp->pdev->dev); 2152 } 2153 2154 static int sh_eth_nway_reset(struct net_device *ndev) 2155 { 2156 struct sh_eth_private *mdp = netdev_priv(ndev); 2157 unsigned long flags; 2158 int ret; 2159 2160 if (!ndev->phydev) 2161 return -ENODEV; 2162 2163 spin_lock_irqsave(&mdp->lock, flags); 2164 ret = phy_start_aneg(ndev->phydev); 2165 spin_unlock_irqrestore(&mdp->lock, flags); 2166 2167 return ret; 2168 } 2169 2170 static u32 sh_eth_get_msglevel(struct net_device *ndev) 2171 { 2172 struct sh_eth_private *mdp = netdev_priv(ndev); 2173 return mdp->msg_enable; 2174 } 2175 2176 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 2177 { 2178 struct sh_eth_private *mdp = netdev_priv(ndev); 2179 mdp->msg_enable = value; 2180 } 2181 2182 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 2183 "rx_current", "tx_current", 2184 "rx_dirty", "tx_dirty", 2185 }; 2186 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 2187 2188 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 2189 { 2190 switch (sset) { 2191 case ETH_SS_STATS: 2192 return SH_ETH_STATS_LEN; 2193 default: 2194 return -EOPNOTSUPP; 2195 } 2196 } 2197 2198 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 2199 struct ethtool_stats *stats, u64 *data) 2200 { 2201 struct sh_eth_private *mdp = netdev_priv(ndev); 2202 int i = 0; 2203 2204 /* device-specific stats */ 2205 data[i++] = mdp->cur_rx; 2206 data[i++] = mdp->cur_tx; 2207 data[i++] = mdp->dirty_rx; 2208 data[i++] = mdp->dirty_tx; 2209 } 2210 2211 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 2212 { 2213 switch (stringset) { 2214 case ETH_SS_STATS: 2215 memcpy(data, *sh_eth_gstrings_stats, 2216 sizeof(sh_eth_gstrings_stats)); 2217 break; 2218 } 2219 } 2220 2221 static void sh_eth_get_ringparam(struct net_device *ndev, 2222 struct ethtool_ringparam *ring) 2223 { 2224 struct sh_eth_private *mdp = netdev_priv(ndev); 2225 2226 ring->rx_max_pending = RX_RING_MAX; 2227 ring->tx_max_pending = TX_RING_MAX; 2228 ring->rx_pending = mdp->num_rx_ring; 2229 ring->tx_pending = mdp->num_tx_ring; 2230 } 2231 2232 static int sh_eth_set_ringparam(struct net_device *ndev, 2233 struct ethtool_ringparam *ring) 2234 { 2235 struct sh_eth_private *mdp = netdev_priv(ndev); 2236 int ret; 2237 2238 if (ring->tx_pending > TX_RING_MAX || 2239 ring->rx_pending > RX_RING_MAX || 2240 ring->tx_pending < TX_RING_MIN || 2241 ring->rx_pending < RX_RING_MIN) 2242 return -EINVAL; 2243 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 2244 return -EINVAL; 2245 2246 if (netif_running(ndev)) { 2247 netif_device_detach(ndev); 2248 netif_tx_disable(ndev); 2249 2250 /* Serialise with the interrupt handler and NAPI, then 2251 * disable interrupts. We have to clear the 2252 * irq_enabled flag first to ensure that interrupts 2253 * won't be re-enabled. 2254 */ 2255 mdp->irq_enabled = false; 2256 synchronize_irq(ndev->irq); 2257 napi_synchronize(&mdp->napi); 2258 sh_eth_write(ndev, 0x0000, EESIPR); 2259 2260 sh_eth_dev_exit(ndev); 2261 2262 /* Free all the skbuffs in the Rx queue and the DMA buffers. */ 2263 sh_eth_ring_free(ndev); 2264 } 2265 2266 /* Set new parameters */ 2267 mdp->num_rx_ring = ring->rx_pending; 2268 mdp->num_tx_ring = ring->tx_pending; 2269 2270 if (netif_running(ndev)) { 2271 ret = sh_eth_ring_init(ndev); 2272 if (ret < 0) { 2273 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", 2274 __func__); 2275 return ret; 2276 } 2277 ret = sh_eth_dev_init(ndev); 2278 if (ret < 0) { 2279 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", 2280 __func__); 2281 return ret; 2282 } 2283 2284 netif_device_attach(ndev); 2285 } 2286 2287 return 0; 2288 } 2289 2290 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2291 { 2292 struct sh_eth_private *mdp = netdev_priv(ndev); 2293 2294 wol->supported = 0; 2295 wol->wolopts = 0; 2296 2297 if (mdp->cd->magic && mdp->clk) { 2298 wol->supported = WAKE_MAGIC; 2299 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0; 2300 } 2301 } 2302 2303 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2304 { 2305 struct sh_eth_private *mdp = netdev_priv(ndev); 2306 2307 if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC) 2308 return -EOPNOTSUPP; 2309 2310 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); 2311 2312 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled); 2313 2314 return 0; 2315 } 2316 2317 static const struct ethtool_ops sh_eth_ethtool_ops = { 2318 .get_regs_len = sh_eth_get_regs_len, 2319 .get_regs = sh_eth_get_regs, 2320 .nway_reset = sh_eth_nway_reset, 2321 .get_msglevel = sh_eth_get_msglevel, 2322 .set_msglevel = sh_eth_set_msglevel, 2323 .get_link = ethtool_op_get_link, 2324 .get_strings = sh_eth_get_strings, 2325 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2326 .get_sset_count = sh_eth_get_sset_count, 2327 .get_ringparam = sh_eth_get_ringparam, 2328 .set_ringparam = sh_eth_set_ringparam, 2329 .get_link_ksettings = sh_eth_get_link_ksettings, 2330 .set_link_ksettings = sh_eth_set_link_ksettings, 2331 .get_wol = sh_eth_get_wol, 2332 .set_wol = sh_eth_set_wol, 2333 }; 2334 2335 /* network device open function */ 2336 static int sh_eth_open(struct net_device *ndev) 2337 { 2338 struct sh_eth_private *mdp = netdev_priv(ndev); 2339 int ret; 2340 2341 pm_runtime_get_sync(&mdp->pdev->dev); 2342 2343 napi_enable(&mdp->napi); 2344 2345 ret = request_irq(ndev->irq, sh_eth_interrupt, 2346 mdp->cd->irq_flags, ndev->name, ndev); 2347 if (ret) { 2348 netdev_err(ndev, "Can not assign IRQ number\n"); 2349 goto out_napi_off; 2350 } 2351 2352 /* Descriptor set */ 2353 ret = sh_eth_ring_init(ndev); 2354 if (ret) 2355 goto out_free_irq; 2356 2357 /* device init */ 2358 ret = sh_eth_dev_init(ndev); 2359 if (ret) 2360 goto out_free_irq; 2361 2362 /* PHY control start*/ 2363 ret = sh_eth_phy_start(ndev); 2364 if (ret) 2365 goto out_free_irq; 2366 2367 netif_start_queue(ndev); 2368 2369 mdp->is_opened = 1; 2370 2371 return ret; 2372 2373 out_free_irq: 2374 free_irq(ndev->irq, ndev); 2375 out_napi_off: 2376 napi_disable(&mdp->napi); 2377 pm_runtime_put_sync(&mdp->pdev->dev); 2378 return ret; 2379 } 2380 2381 /* Timeout function */ 2382 static void sh_eth_tx_timeout(struct net_device *ndev) 2383 { 2384 struct sh_eth_private *mdp = netdev_priv(ndev); 2385 struct sh_eth_rxdesc *rxdesc; 2386 int i; 2387 2388 netif_stop_queue(ndev); 2389 2390 netif_err(mdp, timer, ndev, 2391 "transmit timed out, status %8.8x, resetting...\n", 2392 sh_eth_read(ndev, EESR)); 2393 2394 /* tx_errors count up */ 2395 ndev->stats.tx_errors++; 2396 2397 /* Free all the skbuffs in the Rx queue. */ 2398 for (i = 0; i < mdp->num_rx_ring; i++) { 2399 rxdesc = &mdp->rx_ring[i]; 2400 rxdesc->status = cpu_to_le32(0); 2401 rxdesc->addr = cpu_to_le32(0xBADF00D0); 2402 dev_kfree_skb(mdp->rx_skbuff[i]); 2403 mdp->rx_skbuff[i] = NULL; 2404 } 2405 for (i = 0; i < mdp->num_tx_ring; i++) { 2406 dev_kfree_skb(mdp->tx_skbuff[i]); 2407 mdp->tx_skbuff[i] = NULL; 2408 } 2409 2410 /* device init */ 2411 sh_eth_dev_init(ndev); 2412 2413 netif_start_queue(ndev); 2414 } 2415 2416 /* Packet transmit function */ 2417 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2418 { 2419 struct sh_eth_private *mdp = netdev_priv(ndev); 2420 struct sh_eth_txdesc *txdesc; 2421 dma_addr_t dma_addr; 2422 u32 entry; 2423 unsigned long flags; 2424 2425 spin_lock_irqsave(&mdp->lock, flags); 2426 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2427 if (!sh_eth_tx_free(ndev, true)) { 2428 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2429 netif_stop_queue(ndev); 2430 spin_unlock_irqrestore(&mdp->lock, flags); 2431 return NETDEV_TX_BUSY; 2432 } 2433 } 2434 spin_unlock_irqrestore(&mdp->lock, flags); 2435 2436 if (skb_put_padto(skb, ETH_ZLEN)) 2437 return NETDEV_TX_OK; 2438 2439 entry = mdp->cur_tx % mdp->num_tx_ring; 2440 mdp->tx_skbuff[entry] = skb; 2441 txdesc = &mdp->tx_ring[entry]; 2442 /* soft swap. */ 2443 if (!mdp->cd->hw_swap) 2444 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); 2445 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len, 2446 DMA_TO_DEVICE); 2447 if (dma_mapping_error(&ndev->dev, dma_addr)) { 2448 kfree_skb(skb); 2449 return NETDEV_TX_OK; 2450 } 2451 txdesc->addr = cpu_to_le32(dma_addr); 2452 txdesc->len = cpu_to_le32(skb->len << 16); 2453 2454 dma_wmb(); /* TACT bit must be set after all the above writes */ 2455 if (entry >= mdp->num_tx_ring - 1) 2456 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); 2457 else 2458 txdesc->status |= cpu_to_le32(TD_TACT); 2459 2460 mdp->cur_tx++; 2461 2462 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp))) 2463 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 2464 2465 return NETDEV_TX_OK; 2466 } 2467 2468 /* The statistics registers have write-clear behaviour, which means we 2469 * will lose any increment between the read and write. We mitigate 2470 * this by only clearing when we read a non-zero value, so we will 2471 * never falsely report a total of zero. 2472 */ 2473 static void 2474 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) 2475 { 2476 u32 delta = sh_eth_read(ndev, reg); 2477 2478 if (delta) { 2479 *stat += delta; 2480 sh_eth_write(ndev, 0, reg); 2481 } 2482 } 2483 2484 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2485 { 2486 struct sh_eth_private *mdp = netdev_priv(ndev); 2487 2488 if (sh_eth_is_rz_fast_ether(mdp)) 2489 return &ndev->stats; 2490 2491 if (!mdp->is_opened) 2492 return &ndev->stats; 2493 2494 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); 2495 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); 2496 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); 2497 2498 if (sh_eth_is_gether(mdp)) { 2499 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2500 CERCR); 2501 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2502 CEECR); 2503 } else { 2504 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2505 CNDCR); 2506 } 2507 2508 return &ndev->stats; 2509 } 2510 2511 /* device close function */ 2512 static int sh_eth_close(struct net_device *ndev) 2513 { 2514 struct sh_eth_private *mdp = netdev_priv(ndev); 2515 2516 netif_stop_queue(ndev); 2517 2518 /* Serialise with the interrupt handler and NAPI, then disable 2519 * interrupts. We have to clear the irq_enabled flag first to 2520 * ensure that interrupts won't be re-enabled. 2521 */ 2522 mdp->irq_enabled = false; 2523 synchronize_irq(ndev->irq); 2524 napi_disable(&mdp->napi); 2525 sh_eth_write(ndev, 0x0000, EESIPR); 2526 2527 sh_eth_dev_exit(ndev); 2528 2529 /* PHY Disconnect */ 2530 if (ndev->phydev) { 2531 phy_stop(ndev->phydev); 2532 phy_disconnect(ndev->phydev); 2533 } 2534 2535 free_irq(ndev->irq, ndev); 2536 2537 /* Free all the skbuffs in the Rx queue and the DMA buffer. */ 2538 sh_eth_ring_free(ndev); 2539 2540 pm_runtime_put_sync(&mdp->pdev->dev); 2541 2542 mdp->is_opened = 0; 2543 2544 return 0; 2545 } 2546 2547 /* ioctl to device function */ 2548 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2549 { 2550 struct phy_device *phydev = ndev->phydev; 2551 2552 if (!netif_running(ndev)) 2553 return -EINVAL; 2554 2555 if (!phydev) 2556 return -ENODEV; 2557 2558 return phy_mii_ioctl(phydev, rq, cmd); 2559 } 2560 2561 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2562 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp, 2563 int entry) 2564 { 2565 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4); 2566 } 2567 2568 static u32 sh_eth_tsu_get_post_mask(int entry) 2569 { 2570 return 0x0f << (28 - ((entry % 8) * 4)); 2571 } 2572 2573 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2574 { 2575 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2576 } 2577 2578 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2579 int entry) 2580 { 2581 struct sh_eth_private *mdp = netdev_priv(ndev); 2582 u32 tmp; 2583 void *reg_offset; 2584 2585 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2586 tmp = ioread32(reg_offset); 2587 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset); 2588 } 2589 2590 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2591 int entry) 2592 { 2593 struct sh_eth_private *mdp = netdev_priv(ndev); 2594 u32 post_mask, ref_mask, tmp; 2595 void *reg_offset; 2596 2597 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2598 post_mask = sh_eth_tsu_get_post_mask(entry); 2599 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2600 2601 tmp = ioread32(reg_offset); 2602 iowrite32(tmp & ~post_mask, reg_offset); 2603 2604 /* If other port enables, the function returns "true" */ 2605 return tmp & ref_mask; 2606 } 2607 2608 static int sh_eth_tsu_busy(struct net_device *ndev) 2609 { 2610 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2611 struct sh_eth_private *mdp = netdev_priv(ndev); 2612 2613 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2614 udelay(10); 2615 timeout--; 2616 if (timeout <= 0) { 2617 netdev_err(ndev, "%s: timeout\n", __func__); 2618 return -ETIMEDOUT; 2619 } 2620 } 2621 2622 return 0; 2623 } 2624 2625 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg, 2626 const u8 *addr) 2627 { 2628 u32 val; 2629 2630 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2631 iowrite32(val, reg); 2632 if (sh_eth_tsu_busy(ndev) < 0) 2633 return -EBUSY; 2634 2635 val = addr[4] << 8 | addr[5]; 2636 iowrite32(val, reg + 4); 2637 if (sh_eth_tsu_busy(ndev) < 0) 2638 return -EBUSY; 2639 2640 return 0; 2641 } 2642 2643 static void sh_eth_tsu_read_entry(void *reg, u8 *addr) 2644 { 2645 u32 val; 2646 2647 val = ioread32(reg); 2648 addr[0] = (val >> 24) & 0xff; 2649 addr[1] = (val >> 16) & 0xff; 2650 addr[2] = (val >> 8) & 0xff; 2651 addr[3] = val & 0xff; 2652 val = ioread32(reg + 4); 2653 addr[4] = (val >> 8) & 0xff; 2654 addr[5] = val & 0xff; 2655 } 2656 2657 2658 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2659 { 2660 struct sh_eth_private *mdp = netdev_priv(ndev); 2661 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2662 int i; 2663 u8 c_addr[ETH_ALEN]; 2664 2665 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2666 sh_eth_tsu_read_entry(reg_offset, c_addr); 2667 if (ether_addr_equal(addr, c_addr)) 2668 return i; 2669 } 2670 2671 return -ENOENT; 2672 } 2673 2674 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2675 { 2676 u8 blank[ETH_ALEN]; 2677 int entry; 2678 2679 memset(blank, 0, sizeof(blank)); 2680 entry = sh_eth_tsu_find_entry(ndev, blank); 2681 return (entry < 0) ? -ENOMEM : entry; 2682 } 2683 2684 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2685 int entry) 2686 { 2687 struct sh_eth_private *mdp = netdev_priv(ndev); 2688 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2689 int ret; 2690 u8 blank[ETH_ALEN]; 2691 2692 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2693 ~(1 << (31 - entry)), TSU_TEN); 2694 2695 memset(blank, 0, sizeof(blank)); 2696 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2697 if (ret < 0) 2698 return ret; 2699 return 0; 2700 } 2701 2702 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2703 { 2704 struct sh_eth_private *mdp = netdev_priv(ndev); 2705 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2706 int i, ret; 2707 2708 if (!mdp->cd->tsu) 2709 return 0; 2710 2711 i = sh_eth_tsu_find_entry(ndev, addr); 2712 if (i < 0) { 2713 /* No entry found, create one */ 2714 i = sh_eth_tsu_find_empty(ndev); 2715 if (i < 0) 2716 return -ENOMEM; 2717 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2718 if (ret < 0) 2719 return ret; 2720 2721 /* Enable the entry */ 2722 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2723 (1 << (31 - i)), TSU_TEN); 2724 } 2725 2726 /* Entry found or created, enable POST */ 2727 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2728 2729 return 0; 2730 } 2731 2732 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2733 { 2734 struct sh_eth_private *mdp = netdev_priv(ndev); 2735 int i, ret; 2736 2737 if (!mdp->cd->tsu) 2738 return 0; 2739 2740 i = sh_eth_tsu_find_entry(ndev, addr); 2741 if (i) { 2742 /* Entry found */ 2743 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2744 goto done; 2745 2746 /* Disable the entry if both ports was disabled */ 2747 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2748 if (ret < 0) 2749 return ret; 2750 } 2751 done: 2752 return 0; 2753 } 2754 2755 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2756 { 2757 struct sh_eth_private *mdp = netdev_priv(ndev); 2758 int i, ret; 2759 2760 if (!mdp->cd->tsu) 2761 return 0; 2762 2763 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2764 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2765 continue; 2766 2767 /* Disable the entry if both ports was disabled */ 2768 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2769 if (ret < 0) 2770 return ret; 2771 } 2772 2773 return 0; 2774 } 2775 2776 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2777 { 2778 struct sh_eth_private *mdp = netdev_priv(ndev); 2779 u8 addr[ETH_ALEN]; 2780 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2781 int i; 2782 2783 if (!mdp->cd->tsu) 2784 return; 2785 2786 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2787 sh_eth_tsu_read_entry(reg_offset, addr); 2788 if (is_multicast_ether_addr(addr)) 2789 sh_eth_tsu_del_entry(ndev, addr); 2790 } 2791 } 2792 2793 /* Update promiscuous flag and multicast filter */ 2794 static void sh_eth_set_rx_mode(struct net_device *ndev) 2795 { 2796 struct sh_eth_private *mdp = netdev_priv(ndev); 2797 u32 ecmr_bits; 2798 int mcast_all = 0; 2799 unsigned long flags; 2800 2801 spin_lock_irqsave(&mdp->lock, flags); 2802 /* Initial condition is MCT = 1, PRM = 0. 2803 * Depending on ndev->flags, set PRM or clear MCT 2804 */ 2805 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; 2806 if (mdp->cd->tsu) 2807 ecmr_bits |= ECMR_MCT; 2808 2809 if (!(ndev->flags & IFF_MULTICAST)) { 2810 sh_eth_tsu_purge_mcast(ndev); 2811 mcast_all = 1; 2812 } 2813 if (ndev->flags & IFF_ALLMULTI) { 2814 sh_eth_tsu_purge_mcast(ndev); 2815 ecmr_bits &= ~ECMR_MCT; 2816 mcast_all = 1; 2817 } 2818 2819 if (ndev->flags & IFF_PROMISC) { 2820 sh_eth_tsu_purge_all(ndev); 2821 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2822 } else if (mdp->cd->tsu) { 2823 struct netdev_hw_addr *ha; 2824 netdev_for_each_mc_addr(ha, ndev) { 2825 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2826 continue; 2827 2828 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2829 if (!mcast_all) { 2830 sh_eth_tsu_purge_mcast(ndev); 2831 ecmr_bits &= ~ECMR_MCT; 2832 mcast_all = 1; 2833 } 2834 } 2835 } 2836 } 2837 2838 /* update the ethernet mode */ 2839 sh_eth_write(ndev, ecmr_bits, ECMR); 2840 2841 spin_unlock_irqrestore(&mdp->lock, flags); 2842 } 2843 2844 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2845 { 2846 if (!mdp->port) 2847 return TSU_VTAG0; 2848 else 2849 return TSU_VTAG1; 2850 } 2851 2852 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2853 __be16 proto, u16 vid) 2854 { 2855 struct sh_eth_private *mdp = netdev_priv(ndev); 2856 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2857 2858 if (unlikely(!mdp->cd->tsu)) 2859 return -EPERM; 2860 2861 /* No filtering if vid = 0 */ 2862 if (!vid) 2863 return 0; 2864 2865 mdp->vlan_num_ids++; 2866 2867 /* The controller has one VLAN tag HW filter. So, if the filter is 2868 * already enabled, the driver disables it and the filte 2869 */ 2870 if (mdp->vlan_num_ids > 1) { 2871 /* disable VLAN filter */ 2872 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2873 return 0; 2874 } 2875 2876 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2877 vtag_reg_index); 2878 2879 return 0; 2880 } 2881 2882 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2883 __be16 proto, u16 vid) 2884 { 2885 struct sh_eth_private *mdp = netdev_priv(ndev); 2886 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2887 2888 if (unlikely(!mdp->cd->tsu)) 2889 return -EPERM; 2890 2891 /* No filtering if vid = 0 */ 2892 if (!vid) 2893 return 0; 2894 2895 mdp->vlan_num_ids--; 2896 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2897 2898 return 0; 2899 } 2900 2901 /* SuperH's TSU register init function */ 2902 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 2903 { 2904 if (sh_eth_is_rz_fast_ether(mdp)) { 2905 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2906 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, 2907 TSU_FWSLC); /* Enable POST registers */ 2908 return; 2909 } 2910 2911 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 2912 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 2913 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 2914 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 2915 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 2916 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 2917 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 2918 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 2919 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 2920 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 2921 if (sh_eth_is_gether(mdp)) { 2922 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */ 2923 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */ 2924 } else { 2925 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 2926 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 2927 } 2928 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 2929 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 2930 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2931 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 2932 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 2933 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 2934 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 2935 } 2936 2937 /* MDIO bus release function */ 2938 static int sh_mdio_release(struct sh_eth_private *mdp) 2939 { 2940 /* unregister mdio bus */ 2941 mdiobus_unregister(mdp->mii_bus); 2942 2943 /* free bitbang info */ 2944 free_mdio_bitbang(mdp->mii_bus); 2945 2946 return 0; 2947 } 2948 2949 /* MDIO bus init function */ 2950 static int sh_mdio_init(struct sh_eth_private *mdp, 2951 struct sh_eth_plat_data *pd) 2952 { 2953 int ret; 2954 struct bb_info *bitbang; 2955 struct platform_device *pdev = mdp->pdev; 2956 struct device *dev = &mdp->pdev->dev; 2957 2958 /* create bit control struct for PHY */ 2959 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 2960 if (!bitbang) 2961 return -ENOMEM; 2962 2963 /* bitbang init */ 2964 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 2965 bitbang->set_gate = pd->set_mdio_gate; 2966 bitbang->ctrl.ops = &bb_ops; 2967 2968 /* MII controller setting */ 2969 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 2970 if (!mdp->mii_bus) 2971 return -ENOMEM; 2972 2973 /* Hook up MII support for ethtool */ 2974 mdp->mii_bus->name = "sh_mii"; 2975 mdp->mii_bus->parent = dev; 2976 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2977 pdev->name, pdev->id); 2978 2979 /* register MDIO bus */ 2980 if (dev->of_node) { 2981 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 2982 } else { 2983 if (pd->phy_irq > 0) 2984 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 2985 2986 ret = mdiobus_register(mdp->mii_bus); 2987 } 2988 2989 if (ret) 2990 goto out_free_bus; 2991 2992 return 0; 2993 2994 out_free_bus: 2995 free_mdio_bitbang(mdp->mii_bus); 2996 return ret; 2997 } 2998 2999 static const u16 *sh_eth_get_register_offset(int register_type) 3000 { 3001 const u16 *reg_offset = NULL; 3002 3003 switch (register_type) { 3004 case SH_ETH_REG_GIGABIT: 3005 reg_offset = sh_eth_offset_gigabit; 3006 break; 3007 case SH_ETH_REG_FAST_RZ: 3008 reg_offset = sh_eth_offset_fast_rz; 3009 break; 3010 case SH_ETH_REG_FAST_RCAR: 3011 reg_offset = sh_eth_offset_fast_rcar; 3012 break; 3013 case SH_ETH_REG_FAST_SH4: 3014 reg_offset = sh_eth_offset_fast_sh4; 3015 break; 3016 case SH_ETH_REG_FAST_SH3_SH2: 3017 reg_offset = sh_eth_offset_fast_sh3_sh2; 3018 break; 3019 } 3020 3021 return reg_offset; 3022 } 3023 3024 static const struct net_device_ops sh_eth_netdev_ops = { 3025 .ndo_open = sh_eth_open, 3026 .ndo_stop = sh_eth_close, 3027 .ndo_start_xmit = sh_eth_start_xmit, 3028 .ndo_get_stats = sh_eth_get_stats, 3029 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3030 .ndo_tx_timeout = sh_eth_tx_timeout, 3031 .ndo_do_ioctl = sh_eth_do_ioctl, 3032 .ndo_validate_addr = eth_validate_addr, 3033 .ndo_set_mac_address = eth_mac_addr, 3034 }; 3035 3036 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 3037 .ndo_open = sh_eth_open, 3038 .ndo_stop = sh_eth_close, 3039 .ndo_start_xmit = sh_eth_start_xmit, 3040 .ndo_get_stats = sh_eth_get_stats, 3041 .ndo_set_rx_mode = sh_eth_set_rx_mode, 3042 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 3043 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 3044 .ndo_tx_timeout = sh_eth_tx_timeout, 3045 .ndo_do_ioctl = sh_eth_do_ioctl, 3046 .ndo_validate_addr = eth_validate_addr, 3047 .ndo_set_mac_address = eth_mac_addr, 3048 }; 3049 3050 #ifdef CONFIG_OF 3051 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3052 { 3053 struct device_node *np = dev->of_node; 3054 struct sh_eth_plat_data *pdata; 3055 const char *mac_addr; 3056 3057 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3058 if (!pdata) 3059 return NULL; 3060 3061 pdata->phy_interface = of_get_phy_mode(np); 3062 3063 mac_addr = of_get_mac_address(np); 3064 if (mac_addr) 3065 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN); 3066 3067 pdata->no_ether_link = 3068 of_property_read_bool(np, "renesas,no-ether-link"); 3069 pdata->ether_link_active_low = 3070 of_property_read_bool(np, "renesas,ether-link-active-low"); 3071 3072 return pdata; 3073 } 3074 3075 static const struct of_device_id sh_eth_match_table[] = { 3076 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 3077 { .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data }, 3078 { .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data }, 3079 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data }, 3080 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data }, 3081 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data }, 3082 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data }, 3083 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data }, 3084 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data }, 3085 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 3086 { } 3087 }; 3088 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 3089 #else 3090 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 3091 { 3092 return NULL; 3093 } 3094 #endif 3095 3096 static int sh_eth_drv_probe(struct platform_device *pdev) 3097 { 3098 struct resource *res; 3099 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 3100 const struct platform_device_id *id = platform_get_device_id(pdev); 3101 struct sh_eth_private *mdp; 3102 struct net_device *ndev; 3103 int ret, devno; 3104 3105 /* get base addr */ 3106 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3107 3108 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 3109 if (!ndev) 3110 return -ENOMEM; 3111 3112 pm_runtime_enable(&pdev->dev); 3113 pm_runtime_get_sync(&pdev->dev); 3114 3115 devno = pdev->id; 3116 if (devno < 0) 3117 devno = 0; 3118 3119 ret = platform_get_irq(pdev, 0); 3120 if (ret < 0) 3121 goto out_release; 3122 ndev->irq = ret; 3123 3124 SET_NETDEV_DEV(ndev, &pdev->dev); 3125 3126 mdp = netdev_priv(ndev); 3127 mdp->num_tx_ring = TX_RING_SIZE; 3128 mdp->num_rx_ring = RX_RING_SIZE; 3129 mdp->addr = devm_ioremap_resource(&pdev->dev, res); 3130 if (IS_ERR(mdp->addr)) { 3131 ret = PTR_ERR(mdp->addr); 3132 goto out_release; 3133 } 3134 3135 /* Get clock, if not found that's OK but Wake-On-Lan is unavailable */ 3136 mdp->clk = devm_clk_get(&pdev->dev, NULL); 3137 if (IS_ERR(mdp->clk)) 3138 mdp->clk = NULL; 3139 3140 ndev->base_addr = res->start; 3141 3142 spin_lock_init(&mdp->lock); 3143 mdp->pdev = pdev; 3144 3145 if (pdev->dev.of_node) 3146 pd = sh_eth_parse_dt(&pdev->dev); 3147 if (!pd) { 3148 dev_err(&pdev->dev, "no platform data\n"); 3149 ret = -EINVAL; 3150 goto out_release; 3151 } 3152 3153 /* get PHY ID */ 3154 mdp->phy_id = pd->phy; 3155 mdp->phy_interface = pd->phy_interface; 3156 mdp->no_ether_link = pd->no_ether_link; 3157 mdp->ether_link_active_low = pd->ether_link_active_low; 3158 3159 /* set cpu data */ 3160 if (id) 3161 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 3162 else 3163 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); 3164 3165 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 3166 if (!mdp->reg_offset) { 3167 dev_err(&pdev->dev, "Unknown register type (%d)\n", 3168 mdp->cd->register_type); 3169 ret = -EINVAL; 3170 goto out_release; 3171 } 3172 sh_eth_set_default_cpu_data(mdp->cd); 3173 3174 /* set function */ 3175 if (mdp->cd->tsu) 3176 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 3177 else 3178 ndev->netdev_ops = &sh_eth_netdev_ops; 3179 ndev->ethtool_ops = &sh_eth_ethtool_ops; 3180 ndev->watchdog_timeo = TX_TIMEOUT; 3181 3182 /* debug message level */ 3183 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 3184 3185 /* read and set MAC address */ 3186 read_mac_address(ndev, pd->mac_addr); 3187 if (!is_valid_ether_addr(ndev->dev_addr)) { 3188 dev_warn(&pdev->dev, 3189 "no valid MAC address supplied, using a random one.\n"); 3190 eth_hw_addr_random(ndev); 3191 } 3192 3193 /* ioremap the TSU registers */ 3194 if (mdp->cd->tsu) { 3195 struct resource *rtsu; 3196 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3197 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu); 3198 if (IS_ERR(mdp->tsu_addr)) { 3199 ret = PTR_ERR(mdp->tsu_addr); 3200 goto out_release; 3201 } 3202 mdp->port = devno % 2; 3203 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER; 3204 } 3205 3206 /* initialize first or needed device */ 3207 if (!devno || pd->needs_init) { 3208 if (mdp->cd->chip_reset) 3209 mdp->cd->chip_reset(ndev); 3210 3211 if (mdp->cd->tsu) { 3212 /* TSU init (Init only)*/ 3213 sh_eth_tsu_init(mdp); 3214 } 3215 } 3216 3217 if (mdp->cd->rmiimode) 3218 sh_eth_write(ndev, 0x1, RMIIMODE); 3219 3220 /* MDIO bus init */ 3221 ret = sh_mdio_init(mdp, pd); 3222 if (ret) { 3223 if (ret != -EPROBE_DEFER) 3224 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret); 3225 goto out_release; 3226 } 3227 3228 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 3229 3230 /* network device register */ 3231 ret = register_netdev(ndev); 3232 if (ret) 3233 goto out_napi_del; 3234 3235 if (mdp->cd->magic && mdp->clk) 3236 device_set_wakeup_capable(&pdev->dev, 1); 3237 3238 /* print device information */ 3239 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 3240 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 3241 3242 pm_runtime_put(&pdev->dev); 3243 platform_set_drvdata(pdev, ndev); 3244 3245 return ret; 3246 3247 out_napi_del: 3248 netif_napi_del(&mdp->napi); 3249 sh_mdio_release(mdp); 3250 3251 out_release: 3252 /* net_dev free */ 3253 if (ndev) 3254 free_netdev(ndev); 3255 3256 pm_runtime_put(&pdev->dev); 3257 pm_runtime_disable(&pdev->dev); 3258 return ret; 3259 } 3260 3261 static int sh_eth_drv_remove(struct platform_device *pdev) 3262 { 3263 struct net_device *ndev = platform_get_drvdata(pdev); 3264 struct sh_eth_private *mdp = netdev_priv(ndev); 3265 3266 unregister_netdev(ndev); 3267 netif_napi_del(&mdp->napi); 3268 sh_mdio_release(mdp); 3269 pm_runtime_disable(&pdev->dev); 3270 free_netdev(ndev); 3271 3272 return 0; 3273 } 3274 3275 #ifdef CONFIG_PM 3276 #ifdef CONFIG_PM_SLEEP 3277 static int sh_eth_wol_setup(struct net_device *ndev) 3278 { 3279 struct sh_eth_private *mdp = netdev_priv(ndev); 3280 3281 /* Only allow ECI interrupts */ 3282 synchronize_irq(ndev->irq); 3283 napi_disable(&mdp->napi); 3284 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR); 3285 3286 /* Enable MagicPacket */ 3287 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); 3288 3289 /* Increased clock usage so device won't be suspended */ 3290 clk_enable(mdp->clk); 3291 3292 return enable_irq_wake(ndev->irq); 3293 } 3294 3295 static int sh_eth_wol_restore(struct net_device *ndev) 3296 { 3297 struct sh_eth_private *mdp = netdev_priv(ndev); 3298 int ret; 3299 3300 napi_enable(&mdp->napi); 3301 3302 /* Disable MagicPacket */ 3303 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0); 3304 3305 /* The device needs to be reset to restore MagicPacket logic 3306 * for next wakeup. If we close and open the device it will 3307 * both be reset and all registers restored. This is what 3308 * happens during suspend and resume without WoL enabled. 3309 */ 3310 ret = sh_eth_close(ndev); 3311 if (ret < 0) 3312 return ret; 3313 ret = sh_eth_open(ndev); 3314 if (ret < 0) 3315 return ret; 3316 3317 /* Restore clock usage count */ 3318 clk_disable(mdp->clk); 3319 3320 return disable_irq_wake(ndev->irq); 3321 } 3322 3323 static int sh_eth_suspend(struct device *dev) 3324 { 3325 struct net_device *ndev = dev_get_drvdata(dev); 3326 struct sh_eth_private *mdp = netdev_priv(ndev); 3327 int ret = 0; 3328 3329 if (!netif_running(ndev)) 3330 return 0; 3331 3332 netif_device_detach(ndev); 3333 3334 if (mdp->wol_enabled) 3335 ret = sh_eth_wol_setup(ndev); 3336 else 3337 ret = sh_eth_close(ndev); 3338 3339 return ret; 3340 } 3341 3342 static int sh_eth_resume(struct device *dev) 3343 { 3344 struct net_device *ndev = dev_get_drvdata(dev); 3345 struct sh_eth_private *mdp = netdev_priv(ndev); 3346 int ret = 0; 3347 3348 if (!netif_running(ndev)) 3349 return 0; 3350 3351 if (mdp->wol_enabled) 3352 ret = sh_eth_wol_restore(ndev); 3353 else 3354 ret = sh_eth_open(ndev); 3355 3356 if (ret < 0) 3357 return ret; 3358 3359 netif_device_attach(ndev); 3360 3361 return ret; 3362 } 3363 #endif 3364 3365 static int sh_eth_runtime_nop(struct device *dev) 3366 { 3367 /* Runtime PM callback shared between ->runtime_suspend() 3368 * and ->runtime_resume(). Simply returns success. 3369 * 3370 * This driver re-initializes all registers after 3371 * pm_runtime_get_sync() anyway so there is no need 3372 * to save and restore registers here. 3373 */ 3374 return 0; 3375 } 3376 3377 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 3378 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) 3379 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) 3380 }; 3381 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 3382 #else 3383 #define SH_ETH_PM_OPS NULL 3384 #endif 3385 3386 static struct platform_device_id sh_eth_id_table[] = { 3387 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 3388 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 3389 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 3390 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 3391 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 3392 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 3393 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 3394 { } 3395 }; 3396 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 3397 3398 static struct platform_driver sh_eth_driver = { 3399 .probe = sh_eth_drv_probe, 3400 .remove = sh_eth_drv_remove, 3401 .id_table = sh_eth_id_table, 3402 .driver = { 3403 .name = CARDNAME, 3404 .pm = SH_ETH_PM_OPS, 3405 .of_match_table = of_match_ptr(sh_eth_match_table), 3406 }, 3407 }; 3408 3409 module_platform_driver(sh_eth_driver); 3410 3411 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 3412 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 3413 MODULE_LICENSE("GPL v2"); 3414