1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a4,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_FWSLC]	= 0x0038,
205 	[TSU_VTAG0]	= 0x0058,
206 	[TSU_ADSBSY]	= 0x0060,
207 	[TSU_TEN]	= 0x0064,
208 	[TSU_POST1]	= 0x0070,
209 	[TSU_POST2]	= 0x0074,
210 	[TSU_POST3]	= 0x0078,
211 	[TSU_POST4]	= 0x007c,
212 	[TSU_ADRH0]	= 0x0100,
213 
214 	[TXNLCR0]	= 0x0080,
215 	[TXALCR0]	= 0x0084,
216 	[RXNLCR0]	= 0x0088,
217 	[RXALCR0]	= 0x008C,
218 };
219 
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 	SH_ETH_OFFSET_DEFAULTS,
222 
223 	[ECMR]		= 0x0300,
224 	[RFLR]		= 0x0308,
225 	[ECSR]		= 0x0310,
226 	[ECSIPR]	= 0x0318,
227 	[PIR]		= 0x0320,
228 	[PSR]		= 0x0328,
229 	[RDMLR]		= 0x0340,
230 	[IPGR]		= 0x0350,
231 	[APR]		= 0x0354,
232 	[MPR]		= 0x0358,
233 	[RFCF]		= 0x0360,
234 	[TPAUSER]	= 0x0364,
235 	[TPAUSECR]	= 0x0368,
236 	[MAHR]		= 0x03c0,
237 	[MALR]		= 0x03c8,
238 	[TROCR]		= 0x03d0,
239 	[CDCR]		= 0x03d4,
240 	[LCCR]		= 0x03d8,
241 	[CNDCR]		= 0x03dc,
242 	[CEFCR]		= 0x03e4,
243 	[FRECR]		= 0x03e8,
244 	[TSFRCR]	= 0x03ec,
245 	[TLFRCR]	= 0x03f0,
246 	[RFCR]		= 0x03f4,
247 	[MAFCR]		= 0x03f8,
248 
249 	[EDMR]		= 0x0200,
250 	[EDTRR]		= 0x0208,
251 	[EDRRR]		= 0x0210,
252 	[TDLAR]		= 0x0218,
253 	[RDLAR]		= 0x0220,
254 	[EESR]		= 0x0228,
255 	[EESIPR]	= 0x0230,
256 	[TRSCER]	= 0x0238,
257 	[RMFCR]		= 0x0240,
258 	[TFTR]		= 0x0248,
259 	[FDR]		= 0x0250,
260 	[RMCR]		= 0x0258,
261 	[TFUCR]		= 0x0264,
262 	[RFOCR]		= 0x0268,
263 	[RMIIMODE]      = 0x026c,
264 	[FCFTR]		= 0x0270,
265 	[TRIMD]		= 0x027c,
266 };
267 
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 	SH_ETH_OFFSET_DEFAULTS,
270 
271 	[ECMR]		= 0x0100,
272 	[RFLR]		= 0x0108,
273 	[ECSR]		= 0x0110,
274 	[ECSIPR]	= 0x0118,
275 	[PIR]		= 0x0120,
276 	[PSR]		= 0x0128,
277 	[RDMLR]		= 0x0140,
278 	[IPGR]		= 0x0150,
279 	[APR]		= 0x0154,
280 	[MPR]		= 0x0158,
281 	[TPAUSER]	= 0x0164,
282 	[RFCF]		= 0x0160,
283 	[TPAUSECR]	= 0x0168,
284 	[BCFRR]		= 0x016c,
285 	[MAHR]		= 0x01c0,
286 	[MALR]		= 0x01c8,
287 	[TROCR]		= 0x01d0,
288 	[CDCR]		= 0x01d4,
289 	[LCCR]		= 0x01d8,
290 	[CNDCR]		= 0x01dc,
291 	[CEFCR]		= 0x01e4,
292 	[FRECR]		= 0x01e8,
293 	[TSFRCR]	= 0x01ec,
294 	[TLFRCR]	= 0x01f0,
295 	[RFCR]		= 0x01f4,
296 	[MAFCR]		= 0x01f8,
297 	[RTRATE]	= 0x01fc,
298 
299 	[EDMR]		= 0x0000,
300 	[EDTRR]		= 0x0008,
301 	[EDRRR]		= 0x0010,
302 	[TDLAR]		= 0x0018,
303 	[RDLAR]		= 0x0020,
304 	[EESR]		= 0x0028,
305 	[EESIPR]	= 0x0030,
306 	[TRSCER]	= 0x0038,
307 	[RMFCR]		= 0x0040,
308 	[TFTR]		= 0x0048,
309 	[FDR]		= 0x0050,
310 	[RMCR]		= 0x0058,
311 	[TFUCR]		= 0x0064,
312 	[RFOCR]		= 0x0068,
313 	[FCFTR]		= 0x0070,
314 	[RPADIR]	= 0x0078,
315 	[TRIMD]		= 0x007c,
316 	[RBWAR]		= 0x00c8,
317 	[RDFAR]		= 0x00cc,
318 	[TBRAR]		= 0x00d4,
319 	[TDFAR]		= 0x00d8,
320 };
321 
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 	SH_ETH_OFFSET_DEFAULTS,
324 
325 	[EDMR]		= 0x0000,
326 	[EDTRR]		= 0x0004,
327 	[EDRRR]		= 0x0008,
328 	[TDLAR]		= 0x000c,
329 	[RDLAR]		= 0x0010,
330 	[EESR]		= 0x0014,
331 	[EESIPR]	= 0x0018,
332 	[TRSCER]	= 0x001c,
333 	[RMFCR]		= 0x0020,
334 	[TFTR]		= 0x0024,
335 	[FDR]		= 0x0028,
336 	[RMCR]		= 0x002c,
337 	[EDOCR]		= 0x0030,
338 	[FCFTR]		= 0x0034,
339 	[RPADIR]	= 0x0038,
340 	[TRIMD]		= 0x003c,
341 	[RBWAR]		= 0x0040,
342 	[RDFAR]		= 0x0044,
343 	[TBRAR]		= 0x004c,
344 	[TDFAR]		= 0x0050,
345 
346 	[ECMR]		= 0x0160,
347 	[ECSR]		= 0x0164,
348 	[ECSIPR]	= 0x0168,
349 	[PIR]		= 0x016c,
350 	[MAHR]		= 0x0170,
351 	[MALR]		= 0x0174,
352 	[RFLR]		= 0x0178,
353 	[PSR]		= 0x017c,
354 	[TROCR]		= 0x0180,
355 	[CDCR]		= 0x0184,
356 	[LCCR]		= 0x0188,
357 	[CNDCR]		= 0x018c,
358 	[CEFCR]		= 0x0194,
359 	[FRECR]		= 0x0198,
360 	[TSFRCR]	= 0x019c,
361 	[TLFRCR]	= 0x01a0,
362 	[RFCR]		= 0x01a4,
363 	[MAFCR]		= 0x01a8,
364 	[IPGR]		= 0x01b4,
365 	[APR]		= 0x01b8,
366 	[MPR]		= 0x01bc,
367 	[TPAUSER]	= 0x01c4,
368 	[BCFR]		= 0x01cc,
369 
370 	[ARSTR]		= 0x0000,
371 	[TSU_CTRST]	= 0x0004,
372 	[TSU_FWEN0]	= 0x0010,
373 	[TSU_FWEN1]	= 0x0014,
374 	[TSU_FCM]	= 0x0018,
375 	[TSU_BSYSL0]	= 0x0020,
376 	[TSU_BSYSL1]	= 0x0024,
377 	[TSU_PRISL0]	= 0x0028,
378 	[TSU_PRISL1]	= 0x002c,
379 	[TSU_FWSL0]	= 0x0030,
380 	[TSU_FWSL1]	= 0x0034,
381 	[TSU_FWSLC]	= 0x0038,
382 	[TSU_QTAGM0]	= 0x0040,
383 	[TSU_QTAGM1]	= 0x0044,
384 	[TSU_ADQT0]	= 0x0048,
385 	[TSU_ADQT1]	= 0x004c,
386 	[TSU_FWSR]	= 0x0050,
387 	[TSU_FWINMK]	= 0x0054,
388 	[TSU_ADSBSY]	= 0x0060,
389 	[TSU_TEN]	= 0x0064,
390 	[TSU_POST1]	= 0x0070,
391 	[TSU_POST2]	= 0x0074,
392 	[TSU_POST3]	= 0x0078,
393 	[TSU_POST4]	= 0x007c,
394 
395 	[TXNLCR0]	= 0x0080,
396 	[TXALCR0]	= 0x0084,
397 	[RXNLCR0]	= 0x0088,
398 	[RXALCR0]	= 0x008c,
399 	[FWNLCR0]	= 0x0090,
400 	[FWALCR0]	= 0x0094,
401 	[TXNLCR1]	= 0x00a0,
402 	[TXALCR1]	= 0x00a4,
403 	[RXNLCR1]	= 0x00a8,
404 	[RXALCR1]	= 0x00ac,
405 	[FWNLCR1]	= 0x00b0,
406 	[FWALCR1]	= 0x00b4,
407 
408 	[TSU_ADRH0]	= 0x0100,
409 };
410 
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413 
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 	struct sh_eth_private *mdp = netdev_priv(ndev);
417 	u16 offset = mdp->reg_offset[enum_index];
418 
419 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 		return;
421 
422 	iowrite32(data, mdp->addr + offset);
423 }
424 
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 	struct sh_eth_private *mdp = netdev_priv(ndev);
428 	u16 offset = mdp->reg_offset[enum_index];
429 
430 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 		return ~0U;
432 
433 	return ioread32(mdp->addr + offset);
434 }
435 
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 			  u32 set)
438 {
439 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 		     enum_index);
441 }
442 
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447 
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 	return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 	struct sh_eth_private *mdp = netdev_priv(ndev);
497 
498 	switch (mdp->speed) {
499 	case 10: /* 10BASE */
500 		sh_eth_write(ndev, GECMR_10, GECMR);
501 		break;
502 	case 100:/* 100BASE */
503 		sh_eth_write(ndev, GECMR_100, GECMR);
504 		break;
505 	case 1000: /* 1000BASE */
506 		sh_eth_write(ndev, GECMR_1000, GECMR);
507 		break;
508 	}
509 }
510 
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 	.chip_reset	= sh_eth_chip_reset,
515 	.set_duplex	= sh_eth_set_duplex,
516 
517 	.register_type	= SH_ETH_REG_FAST_RZ,
518 
519 	.ecsr_value	= ECSR_ICD,
520 	.ecsipr_value	= ECSIPR_ICDIP,
521 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
522 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
523 			  EESIPR_ECIIP |
524 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
525 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
526 			  EESIPR_RMAFIP | EESIPR_RRFIP |
527 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
528 			  EESIPR_PREIP | EESIPR_CERFIP,
529 
530 	.tx_check	= EESR_TC1 | EESR_FTC,
531 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
532 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
533 			  EESR_TDE,
534 	.fdr_value	= 0x0000070f,
535 
536 	.no_psr		= 1,
537 	.apr		= 1,
538 	.mpr		= 1,
539 	.tpauser	= 1,
540 	.hw_swap	= 1,
541 	.rpadir		= 1,
542 	.rpadir_value   = 2 << 16,
543 	.no_trimd	= 1,
544 	.no_ade		= 1,
545 	.hw_checksum	= 1,
546 	.tsu		= 1,
547 };
548 
549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
550 {
551 	sh_eth_chip_reset(ndev);
552 
553 	sh_eth_select_mii(ndev);
554 }
555 
556 /* R8A7740 */
557 static struct sh_eth_cpu_data r8a7740_data = {
558 	.chip_reset	= sh_eth_chip_reset_r8a7740,
559 	.set_duplex	= sh_eth_set_duplex,
560 	.set_rate	= sh_eth_set_rate_gether,
561 
562 	.register_type	= SH_ETH_REG_GIGABIT,
563 
564 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
565 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
566 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
567 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
568 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
569 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
570 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
571 			  EESIPR_CEEFIP | EESIPR_CELFIP |
572 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
573 			  EESIPR_PREIP | EESIPR_CERFIP,
574 
575 	.tx_check	= EESR_TC1 | EESR_FTC,
576 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
577 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
578 			  EESR_TDE,
579 	.fdr_value	= 0x0000070f,
580 
581 	.apr		= 1,
582 	.mpr		= 1,
583 	.tpauser	= 1,
584 	.bculr		= 1,
585 	.hw_swap	= 1,
586 	.rpadir		= 1,
587 	.rpadir_value   = 2 << 16,
588 	.no_trimd	= 1,
589 	.no_ade		= 1,
590 	.hw_checksum	= 1,
591 	.tsu		= 1,
592 	.select_mii	= 1,
593 	.magic		= 1,
594 };
595 
596 /* There is CPU dependent code */
597 static void sh_eth_set_rate_rcar(struct net_device *ndev)
598 {
599 	struct sh_eth_private *mdp = netdev_priv(ndev);
600 
601 	switch (mdp->speed) {
602 	case 10: /* 10BASE */
603 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
604 		break;
605 	case 100:/* 100BASE */
606 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
607 		break;
608 	}
609 }
610 
611 /* R-Car Gen1 */
612 static struct sh_eth_cpu_data rcar_gen1_data = {
613 	.set_duplex	= sh_eth_set_duplex,
614 	.set_rate	= sh_eth_set_rate_rcar,
615 
616 	.register_type	= SH_ETH_REG_FAST_RCAR,
617 
618 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
619 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
620 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
621 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
622 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
623 			  EESIPR_RMAFIP | EESIPR_RRFIP |
624 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
625 			  EESIPR_PREIP | EESIPR_CERFIP,
626 
627 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
628 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
629 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
630 	.fdr_value	= 0x00000f0f,
631 
632 	.apr		= 1,
633 	.mpr		= 1,
634 	.tpauser	= 1,
635 	.hw_swap	= 1,
636 };
637 
638 /* R-Car Gen2 and RZ/G1 */
639 static struct sh_eth_cpu_data rcar_gen2_data = {
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_rcar,
642 
643 	.register_type	= SH_ETH_REG_FAST_RCAR,
644 
645 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
647 			  ECSIPR_MPDIP,
648 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 			  EESIPR_RMAFIP | EESIPR_RRFIP |
652 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
653 			  EESIPR_PREIP | EESIPR_CERFIP,
654 
655 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
656 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 	.fdr_value	= 0x00000f0f,
659 
660 	.trscer_err_mask = DESC_I_RINT8,
661 
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.hw_swap	= 1,
666 	.rmiimode	= 1,
667 	.magic		= 1,
668 };
669 #endif /* CONFIG_OF */
670 
671 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
672 {
673 	struct sh_eth_private *mdp = netdev_priv(ndev);
674 
675 	switch (mdp->speed) {
676 	case 10: /* 10BASE */
677 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
678 		break;
679 	case 100:/* 100BASE */
680 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
681 		break;
682 	}
683 }
684 
685 /* SH7724 */
686 static struct sh_eth_cpu_data sh7724_data = {
687 	.set_duplex	= sh_eth_set_duplex,
688 	.set_rate	= sh_eth_set_rate_sh7724,
689 
690 	.register_type	= SH_ETH_REG_FAST_SH4,
691 
692 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
693 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
694 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
695 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
696 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
697 			  EESIPR_RMAFIP | EESIPR_RRFIP |
698 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
699 			  EESIPR_PREIP | EESIPR_CERFIP,
700 
701 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
702 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
703 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
704 
705 	.apr		= 1,
706 	.mpr		= 1,
707 	.tpauser	= 1,
708 	.hw_swap	= 1,
709 	.rpadir		= 1,
710 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
711 };
712 
713 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
714 {
715 	struct sh_eth_private *mdp = netdev_priv(ndev);
716 
717 	switch (mdp->speed) {
718 	case 10: /* 10BASE */
719 		sh_eth_write(ndev, 0, RTRATE);
720 		break;
721 	case 100:/* 100BASE */
722 		sh_eth_write(ndev, 1, RTRATE);
723 		break;
724 	}
725 }
726 
727 /* SH7757 */
728 static struct sh_eth_cpu_data sh7757_data = {
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_sh7757,
731 
732 	.register_type	= SH_ETH_REG_FAST_SH4,
733 
734 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
735 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
738 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
739 			  EESIPR_CEEFIP | EESIPR_CELFIP |
740 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
741 			  EESIPR_PREIP | EESIPR_CERFIP,
742 
743 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
744 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
745 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
746 
747 	.irq_flags	= IRQF_SHARED,
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.hw_swap	= 1,
752 	.no_ade		= 1,
753 	.rpadir		= 1,
754 	.rpadir_value   = 2 << 16,
755 	.rtrate		= 1,
756 };
757 
758 #define SH_GIGA_ETH_BASE	0xfee00000UL
759 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
760 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
761 static void sh_eth_chip_reset_giga(struct net_device *ndev)
762 {
763 	u32 mahr[2], malr[2];
764 	int i;
765 
766 	/* save MAHR and MALR */
767 	for (i = 0; i < 2; i++) {
768 		malr[i] = ioread32((void *)GIGA_MALR(i));
769 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
770 	}
771 
772 	sh_eth_chip_reset(ndev);
773 
774 	/* restore MAHR and MALR */
775 	for (i = 0; i < 2; i++) {
776 		iowrite32(malr[i], (void *)GIGA_MALR(i));
777 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
778 	}
779 }
780 
781 static void sh_eth_set_rate_giga(struct net_device *ndev)
782 {
783 	struct sh_eth_private *mdp = netdev_priv(ndev);
784 
785 	switch (mdp->speed) {
786 	case 10: /* 10BASE */
787 		sh_eth_write(ndev, 0x00000000, GECMR);
788 		break;
789 	case 100:/* 100BASE */
790 		sh_eth_write(ndev, 0x00000010, GECMR);
791 		break;
792 	case 1000: /* 1000BASE */
793 		sh_eth_write(ndev, 0x00000020, GECMR);
794 		break;
795 	}
796 }
797 
798 /* SH7757(GETHERC) */
799 static struct sh_eth_cpu_data sh7757_data_giga = {
800 	.chip_reset	= sh_eth_chip_reset_giga,
801 	.set_duplex	= sh_eth_set_duplex,
802 	.set_rate	= sh_eth_set_rate_giga,
803 
804 	.register_type	= SH_ETH_REG_GIGABIT,
805 
806 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
807 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
808 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
809 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
810 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
811 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
812 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
813 			  EESIPR_CEEFIP | EESIPR_CELFIP |
814 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
815 			  EESIPR_PREIP | EESIPR_CERFIP,
816 
817 	.tx_check	= EESR_TC1 | EESR_FTC,
818 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
819 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 			  EESR_TDE,
821 	.fdr_value	= 0x0000072f,
822 
823 	.irq_flags	= IRQF_SHARED,
824 	.apr		= 1,
825 	.mpr		= 1,
826 	.tpauser	= 1,
827 	.bculr		= 1,
828 	.hw_swap	= 1,
829 	.rpadir		= 1,
830 	.rpadir_value   = 2 << 16,
831 	.no_trimd	= 1,
832 	.no_ade		= 1,
833 	.tsu		= 1,
834 };
835 
836 /* SH7734 */
837 static struct sh_eth_cpu_data sh7734_data = {
838 	.chip_reset	= sh_eth_chip_reset,
839 	.set_duplex	= sh_eth_set_duplex,
840 	.set_rate	= sh_eth_set_rate_gether,
841 
842 	.register_type	= SH_ETH_REG_GIGABIT,
843 
844 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
845 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
846 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
847 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
848 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
849 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
850 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
851 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
852 			  EESIPR_PREIP | EESIPR_CERFIP,
853 
854 	.tx_check	= EESR_TC1 | EESR_FTC,
855 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
856 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
857 			  EESR_TDE,
858 
859 	.apr		= 1,
860 	.mpr		= 1,
861 	.tpauser	= 1,
862 	.bculr		= 1,
863 	.hw_swap	= 1,
864 	.no_trimd	= 1,
865 	.no_ade		= 1,
866 	.tsu		= 1,
867 	.hw_checksum	= 1,
868 	.select_mii	= 1,
869 	.magic		= 1,
870 };
871 
872 /* SH7763 */
873 static struct sh_eth_cpu_data sh7763_data = {
874 	.chip_reset	= sh_eth_chip_reset,
875 	.set_duplex	= sh_eth_set_duplex,
876 	.set_rate	= sh_eth_set_rate_gether,
877 
878 	.register_type	= SH_ETH_REG_GIGABIT,
879 
880 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
881 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
882 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
883 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
886 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
887 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 			  EESIPR_PREIP | EESIPR_CERFIP,
889 
890 	.tx_check	= EESR_TC1 | EESR_FTC,
891 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
892 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893 
894 	.apr		= 1,
895 	.mpr		= 1,
896 	.tpauser	= 1,
897 	.bculr		= 1,
898 	.hw_swap	= 1,
899 	.no_trimd	= 1,
900 	.no_ade		= 1,
901 	.tsu		= 1,
902 	.irq_flags	= IRQF_SHARED,
903 	.magic		= 1,
904 };
905 
906 static struct sh_eth_cpu_data sh7619_data = {
907 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
908 
909 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
910 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 			  EESIPR_CEEFIP | EESIPR_CELFIP |
915 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 			  EESIPR_PREIP | EESIPR_CERFIP,
917 
918 	.apr		= 1,
919 	.mpr		= 1,
920 	.tpauser	= 1,
921 	.hw_swap	= 1,
922 };
923 
924 static struct sh_eth_cpu_data sh771x_data = {
925 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
926 
927 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
928 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
929 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
930 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
931 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
932 			  EESIPR_CEEFIP | EESIPR_CELFIP |
933 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
934 			  EESIPR_PREIP | EESIPR_CERFIP,
935 	.tsu		= 1,
936 };
937 
938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
939 {
940 	if (!cd->ecsr_value)
941 		cd->ecsr_value = DEFAULT_ECSR_INIT;
942 
943 	if (!cd->ecsipr_value)
944 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
945 
946 	if (!cd->fcftr_value)
947 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
948 				  DEFAULT_FIFO_F_D_RFD;
949 
950 	if (!cd->fdr_value)
951 		cd->fdr_value = DEFAULT_FDR_INIT;
952 
953 	if (!cd->tx_check)
954 		cd->tx_check = DEFAULT_TX_CHECK;
955 
956 	if (!cd->eesr_err_check)
957 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
958 
959 	if (!cd->trscer_err_mask)
960 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
961 }
962 
963 static int sh_eth_check_reset(struct net_device *ndev)
964 {
965 	int ret = 0;
966 	int cnt = 100;
967 
968 	while (cnt > 0) {
969 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
970 			break;
971 		mdelay(1);
972 		cnt--;
973 	}
974 	if (cnt <= 0) {
975 		netdev_err(ndev, "Device reset failed\n");
976 		ret = -ETIMEDOUT;
977 	}
978 	return ret;
979 }
980 
981 static int sh_eth_reset(struct net_device *ndev)
982 {
983 	struct sh_eth_private *mdp = netdev_priv(ndev);
984 	int ret = 0;
985 
986 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
987 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
988 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
989 
990 		ret = sh_eth_check_reset(ndev);
991 		if (ret)
992 			return ret;
993 
994 		/* Table Init */
995 		sh_eth_write(ndev, 0x0, TDLAR);
996 		sh_eth_write(ndev, 0x0, TDFAR);
997 		sh_eth_write(ndev, 0x0, TDFXR);
998 		sh_eth_write(ndev, 0x0, TDFFR);
999 		sh_eth_write(ndev, 0x0, RDLAR);
1000 		sh_eth_write(ndev, 0x0, RDFAR);
1001 		sh_eth_write(ndev, 0x0, RDFXR);
1002 		sh_eth_write(ndev, 0x0, RDFFR);
1003 
1004 		/* Reset HW CRC register */
1005 		if (mdp->cd->hw_checksum)
1006 			sh_eth_write(ndev, 0x0, CSMR);
1007 
1008 		/* Select MII mode */
1009 		if (mdp->cd->select_mii)
1010 			sh_eth_select_mii(ndev);
1011 	} else {
1012 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1013 		mdelay(3);
1014 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 static void sh_eth_set_receive_align(struct sk_buff *skb)
1021 {
1022 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1023 
1024 	if (reserve)
1025 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1026 }
1027 
1028 /* Program the hardware MAC address from dev->dev_addr. */
1029 static void update_mac_address(struct net_device *ndev)
1030 {
1031 	sh_eth_write(ndev,
1032 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1033 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1034 	sh_eth_write(ndev,
1035 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1036 }
1037 
1038 /* Get MAC address from SuperH MAC address register
1039  *
1040  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1041  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1042  * When you want use this device, you must set MAC address in bootloader.
1043  *
1044  */
1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1046 {
1047 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1048 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1049 	} else {
1050 		u32 mahr = sh_eth_read(ndev, MAHR);
1051 		u32 malr = sh_eth_read(ndev, MALR);
1052 
1053 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1054 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1055 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1056 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1057 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1058 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1059 	}
1060 }
1061 
1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1063 {
1064 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1065 		return EDTRR_TRNS_GETHER;
1066 	else
1067 		return EDTRR_TRNS_ETHER;
1068 }
1069 
1070 struct bb_info {
1071 	void (*set_gate)(void *addr);
1072 	struct mdiobb_ctrl ctrl;
1073 	void *addr;
1074 };
1075 
1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1077 {
1078 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1079 	u32 pir;
1080 
1081 	if (bitbang->set_gate)
1082 		bitbang->set_gate(bitbang->addr);
1083 
1084 	pir = ioread32(bitbang->addr);
1085 	if (set)
1086 		pir |=  mask;
1087 	else
1088 		pir &= ~mask;
1089 	iowrite32(pir, bitbang->addr);
1090 }
1091 
1092 /* Data I/O pin control */
1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1094 {
1095 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1096 }
1097 
1098 /* Set bit data*/
1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1102 }
1103 
1104 /* Get bit data*/
1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1106 {
1107 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1108 
1109 	if (bitbang->set_gate)
1110 		bitbang->set_gate(bitbang->addr);
1111 
1112 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1113 }
1114 
1115 /* MDC pin control */
1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1117 {
1118 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1119 }
1120 
1121 /* mdio bus control struct */
1122 static struct mdiobb_ops bb_ops = {
1123 	.owner = THIS_MODULE,
1124 	.set_mdc = sh_mdc_ctrl,
1125 	.set_mdio_dir = sh_mmd_ctrl,
1126 	.set_mdio_data = sh_set_mdio,
1127 	.get_mdio_data = sh_get_mdio,
1128 };
1129 
1130 /* free Tx skb function */
1131 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1132 {
1133 	struct sh_eth_private *mdp = netdev_priv(ndev);
1134 	struct sh_eth_txdesc *txdesc;
1135 	int free_num = 0;
1136 	int entry;
1137 	bool sent;
1138 
1139 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1140 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1141 		txdesc = &mdp->tx_ring[entry];
1142 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1143 		if (sent_only && !sent)
1144 			break;
1145 		/* TACT bit must be checked before all the following reads */
1146 		dma_rmb();
1147 		netif_info(mdp, tx_done, ndev,
1148 			   "tx entry %d status 0x%08x\n",
1149 			   entry, le32_to_cpu(txdesc->status));
1150 		/* Free the original skb. */
1151 		if (mdp->tx_skbuff[entry]) {
1152 			dma_unmap_single(&mdp->pdev->dev,
1153 					 le32_to_cpu(txdesc->addr),
1154 					 le32_to_cpu(txdesc->len) >> 16,
1155 					 DMA_TO_DEVICE);
1156 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1157 			mdp->tx_skbuff[entry] = NULL;
1158 			free_num++;
1159 		}
1160 		txdesc->status = cpu_to_le32(TD_TFP);
1161 		if (entry >= mdp->num_tx_ring - 1)
1162 			txdesc->status |= cpu_to_le32(TD_TDLE);
1163 
1164 		if (sent) {
1165 			ndev->stats.tx_packets++;
1166 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1167 		}
1168 	}
1169 	return free_num;
1170 }
1171 
1172 /* free skb and descriptor buffer */
1173 static void sh_eth_ring_free(struct net_device *ndev)
1174 {
1175 	struct sh_eth_private *mdp = netdev_priv(ndev);
1176 	int ringsize, i;
1177 
1178 	if (mdp->rx_ring) {
1179 		for (i = 0; i < mdp->num_rx_ring; i++) {
1180 			if (mdp->rx_skbuff[i]) {
1181 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1182 
1183 				dma_unmap_single(&mdp->pdev->dev,
1184 						 le32_to_cpu(rxdesc->addr),
1185 						 ALIGN(mdp->rx_buf_sz, 32),
1186 						 DMA_FROM_DEVICE);
1187 			}
1188 		}
1189 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1190 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1191 				  mdp->rx_desc_dma);
1192 		mdp->rx_ring = NULL;
1193 	}
1194 
1195 	/* Free Rx skb ringbuffer */
1196 	if (mdp->rx_skbuff) {
1197 		for (i = 0; i < mdp->num_rx_ring; i++)
1198 			dev_kfree_skb(mdp->rx_skbuff[i]);
1199 	}
1200 	kfree(mdp->rx_skbuff);
1201 	mdp->rx_skbuff = NULL;
1202 
1203 	if (mdp->tx_ring) {
1204 		sh_eth_tx_free(ndev, false);
1205 
1206 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1207 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1208 				  mdp->tx_desc_dma);
1209 		mdp->tx_ring = NULL;
1210 	}
1211 
1212 	/* Free Tx skb ringbuffer */
1213 	kfree(mdp->tx_skbuff);
1214 	mdp->tx_skbuff = NULL;
1215 }
1216 
1217 /* format skb and descriptor buffer */
1218 static void sh_eth_ring_format(struct net_device *ndev)
1219 {
1220 	struct sh_eth_private *mdp = netdev_priv(ndev);
1221 	int i;
1222 	struct sk_buff *skb;
1223 	struct sh_eth_rxdesc *rxdesc = NULL;
1224 	struct sh_eth_txdesc *txdesc = NULL;
1225 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1226 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1227 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1228 	dma_addr_t dma_addr;
1229 	u32 buf_len;
1230 
1231 	mdp->cur_rx = 0;
1232 	mdp->cur_tx = 0;
1233 	mdp->dirty_rx = 0;
1234 	mdp->dirty_tx = 0;
1235 
1236 	memset(mdp->rx_ring, 0, rx_ringsize);
1237 
1238 	/* build Rx ring buffer */
1239 	for (i = 0; i < mdp->num_rx_ring; i++) {
1240 		/* skb */
1241 		mdp->rx_skbuff[i] = NULL;
1242 		skb = netdev_alloc_skb(ndev, skbuff_size);
1243 		if (skb == NULL)
1244 			break;
1245 		sh_eth_set_receive_align(skb);
1246 
1247 		/* The size of the buffer is a multiple of 32 bytes. */
1248 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1249 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1250 					  DMA_FROM_DEVICE);
1251 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1252 			kfree_skb(skb);
1253 			break;
1254 		}
1255 		mdp->rx_skbuff[i] = skb;
1256 
1257 		/* RX descriptor */
1258 		rxdesc = &mdp->rx_ring[i];
1259 		rxdesc->len = cpu_to_le32(buf_len << 16);
1260 		rxdesc->addr = cpu_to_le32(dma_addr);
1261 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1262 
1263 		/* Rx descriptor address set */
1264 		if (i == 0) {
1265 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1266 			if (sh_eth_is_gether(mdp) ||
1267 			    sh_eth_is_rz_fast_ether(mdp))
1268 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1269 		}
1270 	}
1271 
1272 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1273 
1274 	/* Mark the last entry as wrapping the ring. */
1275 	if (rxdesc)
1276 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1277 
1278 	memset(mdp->tx_ring, 0, tx_ringsize);
1279 
1280 	/* build Tx ring buffer */
1281 	for (i = 0; i < mdp->num_tx_ring; i++) {
1282 		mdp->tx_skbuff[i] = NULL;
1283 		txdesc = &mdp->tx_ring[i];
1284 		txdesc->status = cpu_to_le32(TD_TFP);
1285 		txdesc->len = cpu_to_le32(0);
1286 		if (i == 0) {
1287 			/* Tx descriptor address set */
1288 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1289 			if (sh_eth_is_gether(mdp) ||
1290 			    sh_eth_is_rz_fast_ether(mdp))
1291 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1292 		}
1293 	}
1294 
1295 	txdesc->status |= cpu_to_le32(TD_TDLE);
1296 }
1297 
1298 /* Get skb and descriptor buffer */
1299 static int sh_eth_ring_init(struct net_device *ndev)
1300 {
1301 	struct sh_eth_private *mdp = netdev_priv(ndev);
1302 	int rx_ringsize, tx_ringsize;
1303 
1304 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1305 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1306 	 * the first 2 bytes, and +16 gets room for the status word from the
1307 	 * card.
1308 	 */
1309 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1310 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1311 	if (mdp->cd->rpadir)
1312 		mdp->rx_buf_sz += NET_IP_ALIGN;
1313 
1314 	/* Allocate RX and TX skb rings */
1315 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1316 				 GFP_KERNEL);
1317 	if (!mdp->rx_skbuff)
1318 		return -ENOMEM;
1319 
1320 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1321 				 GFP_KERNEL);
1322 	if (!mdp->tx_skbuff)
1323 		goto ring_free;
1324 
1325 	/* Allocate all Rx descriptors. */
1326 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1327 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1328 					  &mdp->rx_desc_dma, GFP_KERNEL);
1329 	if (!mdp->rx_ring)
1330 		goto ring_free;
1331 
1332 	mdp->dirty_rx = 0;
1333 
1334 	/* Allocate all Tx descriptors. */
1335 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1336 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1337 					  &mdp->tx_desc_dma, GFP_KERNEL);
1338 	if (!mdp->tx_ring)
1339 		goto ring_free;
1340 	return 0;
1341 
1342 ring_free:
1343 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1344 	sh_eth_ring_free(ndev);
1345 
1346 	return -ENOMEM;
1347 }
1348 
1349 static int sh_eth_dev_init(struct net_device *ndev)
1350 {
1351 	struct sh_eth_private *mdp = netdev_priv(ndev);
1352 	int ret;
1353 
1354 	/* Soft Reset */
1355 	ret = sh_eth_reset(ndev);
1356 	if (ret)
1357 		return ret;
1358 
1359 	if (mdp->cd->rmiimode)
1360 		sh_eth_write(ndev, 0x1, RMIIMODE);
1361 
1362 	/* Descriptor format */
1363 	sh_eth_ring_format(ndev);
1364 	if (mdp->cd->rpadir)
1365 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1366 
1367 	/* all sh_eth int mask */
1368 	sh_eth_write(ndev, 0, EESIPR);
1369 
1370 #if defined(__LITTLE_ENDIAN)
1371 	if (mdp->cd->hw_swap)
1372 		sh_eth_write(ndev, EDMR_EL, EDMR);
1373 	else
1374 #endif
1375 		sh_eth_write(ndev, 0, EDMR);
1376 
1377 	/* FIFO size set */
1378 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1379 	sh_eth_write(ndev, 0, TFTR);
1380 
1381 	/* Frame recv control (enable multiple-packets per rx irq) */
1382 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1383 
1384 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1385 
1386 	if (mdp->cd->bculr)
1387 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1388 
1389 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1390 
1391 	if (!mdp->cd->no_trimd)
1392 		sh_eth_write(ndev, 0, TRIMD);
1393 
1394 	/* Recv frame limit set register */
1395 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1396 		     RFLR);
1397 
1398 	sh_eth_modify(ndev, EESR, 0, 0);
1399 	mdp->irq_enabled = true;
1400 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1401 
1402 	/* PAUSE Prohibition */
1403 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1404 		     ECMR_TE | ECMR_RE, ECMR);
1405 
1406 	if (mdp->cd->set_rate)
1407 		mdp->cd->set_rate(ndev);
1408 
1409 	/* E-MAC Status Register clear */
1410 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1411 
1412 	/* E-MAC Interrupt Enable register */
1413 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1414 
1415 	/* Set MAC address */
1416 	update_mac_address(ndev);
1417 
1418 	/* mask reset */
1419 	if (mdp->cd->apr)
1420 		sh_eth_write(ndev, APR_AP, APR);
1421 	if (mdp->cd->mpr)
1422 		sh_eth_write(ndev, MPR_MP, MPR);
1423 	if (mdp->cd->tpauser)
1424 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1425 
1426 	/* Setting the Rx mode will start the Rx process. */
1427 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1428 
1429 	return ret;
1430 }
1431 
1432 static void sh_eth_dev_exit(struct net_device *ndev)
1433 {
1434 	struct sh_eth_private *mdp = netdev_priv(ndev);
1435 	int i;
1436 
1437 	/* Deactivate all TX descriptors, so DMA should stop at next
1438 	 * packet boundary if it's currently running
1439 	 */
1440 	for (i = 0; i < mdp->num_tx_ring; i++)
1441 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1442 
1443 	/* Disable TX FIFO egress to MAC */
1444 	sh_eth_rcv_snd_disable(ndev);
1445 
1446 	/* Stop RX DMA at next packet boundary */
1447 	sh_eth_write(ndev, 0, EDRRR);
1448 
1449 	/* Aside from TX DMA, we can't tell when the hardware is
1450 	 * really stopped, so we need to reset to make sure.
1451 	 * Before doing that, wait for long enough to *probably*
1452 	 * finish transmitting the last packet and poll stats.
1453 	 */
1454 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1455 	sh_eth_get_stats(ndev);
1456 	sh_eth_reset(ndev);
1457 
1458 	/* Set MAC address again */
1459 	update_mac_address(ndev);
1460 }
1461 
1462 /* Packet receive function */
1463 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1464 {
1465 	struct sh_eth_private *mdp = netdev_priv(ndev);
1466 	struct sh_eth_rxdesc *rxdesc;
1467 
1468 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1469 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1470 	int limit;
1471 	struct sk_buff *skb;
1472 	u32 desc_status;
1473 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1474 	dma_addr_t dma_addr;
1475 	u16 pkt_len;
1476 	u32 buf_len;
1477 
1478 	boguscnt = min(boguscnt, *quota);
1479 	limit = boguscnt;
1480 	rxdesc = &mdp->rx_ring[entry];
1481 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1482 		/* RACT bit must be checked before all the following reads */
1483 		dma_rmb();
1484 		desc_status = le32_to_cpu(rxdesc->status);
1485 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1486 
1487 		if (--boguscnt < 0)
1488 			break;
1489 
1490 		netif_info(mdp, rx_status, ndev,
1491 			   "rx entry %d status 0x%08x len %d\n",
1492 			   entry, desc_status, pkt_len);
1493 
1494 		if (!(desc_status & RDFEND))
1495 			ndev->stats.rx_length_errors++;
1496 
1497 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1498 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1499 		 * bit 0. However, in case of the R8A7740 and R7S72100
1500 		 * the RFS bits are from bit 25 to bit 16. So, the
1501 		 * driver needs right shifting by 16.
1502 		 */
1503 		if (mdp->cd->hw_checksum)
1504 			desc_status >>= 16;
1505 
1506 		skb = mdp->rx_skbuff[entry];
1507 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1508 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1509 			ndev->stats.rx_errors++;
1510 			if (desc_status & RD_RFS1)
1511 				ndev->stats.rx_crc_errors++;
1512 			if (desc_status & RD_RFS2)
1513 				ndev->stats.rx_frame_errors++;
1514 			if (desc_status & RD_RFS3)
1515 				ndev->stats.rx_length_errors++;
1516 			if (desc_status & RD_RFS4)
1517 				ndev->stats.rx_length_errors++;
1518 			if (desc_status & RD_RFS6)
1519 				ndev->stats.rx_missed_errors++;
1520 			if (desc_status & RD_RFS10)
1521 				ndev->stats.rx_over_errors++;
1522 		} else	if (skb) {
1523 			dma_addr = le32_to_cpu(rxdesc->addr);
1524 			if (!mdp->cd->hw_swap)
1525 				sh_eth_soft_swap(
1526 					phys_to_virt(ALIGN(dma_addr, 4)),
1527 					pkt_len + 2);
1528 			mdp->rx_skbuff[entry] = NULL;
1529 			if (mdp->cd->rpadir)
1530 				skb_reserve(skb, NET_IP_ALIGN);
1531 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1532 					 ALIGN(mdp->rx_buf_sz, 32),
1533 					 DMA_FROM_DEVICE);
1534 			skb_put(skb, pkt_len);
1535 			skb->protocol = eth_type_trans(skb, ndev);
1536 			netif_receive_skb(skb);
1537 			ndev->stats.rx_packets++;
1538 			ndev->stats.rx_bytes += pkt_len;
1539 			if (desc_status & RD_RFS8)
1540 				ndev->stats.multicast++;
1541 		}
1542 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1543 		rxdesc = &mdp->rx_ring[entry];
1544 	}
1545 
1546 	/* Refill the Rx ring buffers. */
1547 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1548 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1549 		rxdesc = &mdp->rx_ring[entry];
1550 		/* The size of the buffer is 32 byte boundary. */
1551 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1552 		rxdesc->len = cpu_to_le32(buf_len << 16);
1553 
1554 		if (mdp->rx_skbuff[entry] == NULL) {
1555 			skb = netdev_alloc_skb(ndev, skbuff_size);
1556 			if (skb == NULL)
1557 				break;	/* Better luck next round. */
1558 			sh_eth_set_receive_align(skb);
1559 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1560 						  buf_len, DMA_FROM_DEVICE);
1561 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1562 				kfree_skb(skb);
1563 				break;
1564 			}
1565 			mdp->rx_skbuff[entry] = skb;
1566 
1567 			skb_checksum_none_assert(skb);
1568 			rxdesc->addr = cpu_to_le32(dma_addr);
1569 		}
1570 		dma_wmb(); /* RACT bit must be set after all the above writes */
1571 		if (entry >= mdp->num_rx_ring - 1)
1572 			rxdesc->status |=
1573 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1574 		else
1575 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1576 	}
1577 
1578 	/* Restart Rx engine if stopped. */
1579 	/* If we don't need to check status, don't. -KDU */
1580 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1581 		/* fix the values for the next receiving if RDE is set */
1582 		if (intr_status & EESR_RDE &&
1583 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1584 			u32 count = (sh_eth_read(ndev, RDFAR) -
1585 				     sh_eth_read(ndev, RDLAR)) >> 4;
1586 
1587 			mdp->cur_rx = count;
1588 			mdp->dirty_rx = count;
1589 		}
1590 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1591 	}
1592 
1593 	*quota -= limit - boguscnt - 1;
1594 
1595 	return *quota <= 0;
1596 }
1597 
1598 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1599 {
1600 	/* disable tx and rx */
1601 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1602 }
1603 
1604 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1605 {
1606 	/* enable tx and rx */
1607 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1608 }
1609 
1610 /* E-MAC interrupt handler */
1611 static void sh_eth_emac_interrupt(struct net_device *ndev)
1612 {
1613 	struct sh_eth_private *mdp = netdev_priv(ndev);
1614 	u32 felic_stat;
1615 	u32 link_stat;
1616 
1617 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1618 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1619 	if (felic_stat & ECSR_ICD)
1620 		ndev->stats.tx_carrier_errors++;
1621 	if (felic_stat & ECSR_MPD)
1622 		pm_wakeup_event(&mdp->pdev->dev, 0);
1623 	if (felic_stat & ECSR_LCHNG) {
1624 		/* Link Changed */
1625 		if (mdp->cd->no_psr || mdp->no_ether_link)
1626 			return;
1627 		link_stat = sh_eth_read(ndev, PSR);
1628 		if (mdp->ether_link_active_low)
1629 			link_stat = ~link_stat;
1630 		if (!(link_stat & PHY_ST_LINK)) {
1631 			sh_eth_rcv_snd_disable(ndev);
1632 		} else {
1633 			/* Link Up */
1634 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1635 			/* clear int */
1636 			sh_eth_modify(ndev, ECSR, 0, 0);
1637 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1638 			/* enable tx and rx */
1639 			sh_eth_rcv_snd_enable(ndev);
1640 		}
1641 	}
1642 }
1643 
1644 /* error control function */
1645 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1646 {
1647 	struct sh_eth_private *mdp = netdev_priv(ndev);
1648 	u32 mask;
1649 
1650 	if (intr_status & EESR_TWB) {
1651 		/* Unused write back interrupt */
1652 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1653 			ndev->stats.tx_aborted_errors++;
1654 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1655 		}
1656 	}
1657 
1658 	if (intr_status & EESR_RABT) {
1659 		/* Receive Abort int */
1660 		if (intr_status & EESR_RFRMER) {
1661 			/* Receive Frame Overflow int */
1662 			ndev->stats.rx_frame_errors++;
1663 		}
1664 	}
1665 
1666 	if (intr_status & EESR_TDE) {
1667 		/* Transmit Descriptor Empty int */
1668 		ndev->stats.tx_fifo_errors++;
1669 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1670 	}
1671 
1672 	if (intr_status & EESR_TFE) {
1673 		/* FIFO under flow */
1674 		ndev->stats.tx_fifo_errors++;
1675 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1676 	}
1677 
1678 	if (intr_status & EESR_RDE) {
1679 		/* Receive Descriptor Empty int */
1680 		ndev->stats.rx_over_errors++;
1681 	}
1682 
1683 	if (intr_status & EESR_RFE) {
1684 		/* Receive FIFO Overflow int */
1685 		ndev->stats.rx_fifo_errors++;
1686 	}
1687 
1688 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1689 		/* Address Error */
1690 		ndev->stats.tx_fifo_errors++;
1691 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1692 	}
1693 
1694 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1695 	if (mdp->cd->no_ade)
1696 		mask &= ~EESR_ADE;
1697 	if (intr_status & mask) {
1698 		/* Tx error */
1699 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1700 
1701 		/* dmesg */
1702 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1703 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1704 			   (u32)ndev->state, edtrr);
1705 		/* dirty buffer free */
1706 		sh_eth_tx_free(ndev, true);
1707 
1708 		/* SH7712 BUG */
1709 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1710 			/* tx dma start */
1711 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1712 		}
1713 		/* wakeup */
1714 		netif_wake_queue(ndev);
1715 	}
1716 }
1717 
1718 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1719 {
1720 	struct net_device *ndev = netdev;
1721 	struct sh_eth_private *mdp = netdev_priv(ndev);
1722 	struct sh_eth_cpu_data *cd = mdp->cd;
1723 	irqreturn_t ret = IRQ_NONE;
1724 	u32 intr_status, intr_enable;
1725 
1726 	spin_lock(&mdp->lock);
1727 
1728 	/* Get interrupt status */
1729 	intr_status = sh_eth_read(ndev, EESR);
1730 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1731 	 * enabled since it's the one that  comes  thru regardless of the mask,
1732 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1733 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1734 	 * bit...
1735 	 */
1736 	intr_enable = sh_eth_read(ndev, EESIPR);
1737 	intr_status &= intr_enable | EESIPR_ECIIP;
1738 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1739 			   cd->eesr_err_check))
1740 		ret = IRQ_HANDLED;
1741 	else
1742 		goto out;
1743 
1744 	if (unlikely(!mdp->irq_enabled)) {
1745 		sh_eth_write(ndev, 0, EESIPR);
1746 		goto out;
1747 	}
1748 
1749 	if (intr_status & EESR_RX_CHECK) {
1750 		if (napi_schedule_prep(&mdp->napi)) {
1751 			/* Mask Rx interrupts */
1752 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1753 				     EESIPR);
1754 			__napi_schedule(&mdp->napi);
1755 		} else {
1756 			netdev_warn(ndev,
1757 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1758 				    intr_status, intr_enable);
1759 		}
1760 	}
1761 
1762 	/* Tx Check */
1763 	if (intr_status & cd->tx_check) {
1764 		/* Clear Tx interrupts */
1765 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1766 
1767 		sh_eth_tx_free(ndev, true);
1768 		netif_wake_queue(ndev);
1769 	}
1770 
1771 	/* E-MAC interrupt */
1772 	if (intr_status & EESR_ECI)
1773 		sh_eth_emac_interrupt(ndev);
1774 
1775 	if (intr_status & cd->eesr_err_check) {
1776 		/* Clear error interrupts */
1777 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1778 
1779 		sh_eth_error(ndev, intr_status);
1780 	}
1781 
1782 out:
1783 	spin_unlock(&mdp->lock);
1784 
1785 	return ret;
1786 }
1787 
1788 static int sh_eth_poll(struct napi_struct *napi, int budget)
1789 {
1790 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1791 						  napi);
1792 	struct net_device *ndev = napi->dev;
1793 	int quota = budget;
1794 	u32 intr_status;
1795 
1796 	for (;;) {
1797 		intr_status = sh_eth_read(ndev, EESR);
1798 		if (!(intr_status & EESR_RX_CHECK))
1799 			break;
1800 		/* Clear Rx interrupts */
1801 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1802 
1803 		if (sh_eth_rx(ndev, intr_status, &quota))
1804 			goto out;
1805 	}
1806 
1807 	napi_complete(napi);
1808 
1809 	/* Reenable Rx interrupts */
1810 	if (mdp->irq_enabled)
1811 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1812 out:
1813 	return budget - quota;
1814 }
1815 
1816 /* PHY state control function */
1817 static void sh_eth_adjust_link(struct net_device *ndev)
1818 {
1819 	struct sh_eth_private *mdp = netdev_priv(ndev);
1820 	struct phy_device *phydev = ndev->phydev;
1821 	int new_state = 0;
1822 
1823 	if (phydev->link) {
1824 		if (phydev->duplex != mdp->duplex) {
1825 			new_state = 1;
1826 			mdp->duplex = phydev->duplex;
1827 			if (mdp->cd->set_duplex)
1828 				mdp->cd->set_duplex(ndev);
1829 		}
1830 
1831 		if (phydev->speed != mdp->speed) {
1832 			new_state = 1;
1833 			mdp->speed = phydev->speed;
1834 			if (mdp->cd->set_rate)
1835 				mdp->cd->set_rate(ndev);
1836 		}
1837 		if (!mdp->link) {
1838 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1839 			new_state = 1;
1840 			mdp->link = phydev->link;
1841 			if (mdp->cd->no_psr || mdp->no_ether_link)
1842 				sh_eth_rcv_snd_enable(ndev);
1843 		}
1844 	} else if (mdp->link) {
1845 		new_state = 1;
1846 		mdp->link = 0;
1847 		mdp->speed = 0;
1848 		mdp->duplex = -1;
1849 		if (mdp->cd->no_psr || mdp->no_ether_link)
1850 			sh_eth_rcv_snd_disable(ndev);
1851 	}
1852 
1853 	if (new_state && netif_msg_link(mdp))
1854 		phy_print_status(phydev);
1855 }
1856 
1857 /* PHY init function */
1858 static int sh_eth_phy_init(struct net_device *ndev)
1859 {
1860 	struct device_node *np = ndev->dev.parent->of_node;
1861 	struct sh_eth_private *mdp = netdev_priv(ndev);
1862 	struct phy_device *phydev;
1863 
1864 	mdp->link = 0;
1865 	mdp->speed = 0;
1866 	mdp->duplex = -1;
1867 
1868 	/* Try connect to PHY */
1869 	if (np) {
1870 		struct device_node *pn;
1871 
1872 		pn = of_parse_phandle(np, "phy-handle", 0);
1873 		phydev = of_phy_connect(ndev, pn,
1874 					sh_eth_adjust_link, 0,
1875 					mdp->phy_interface);
1876 
1877 		of_node_put(pn);
1878 		if (!phydev)
1879 			phydev = ERR_PTR(-ENOENT);
1880 	} else {
1881 		char phy_id[MII_BUS_ID_SIZE + 3];
1882 
1883 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1884 			 mdp->mii_bus->id, mdp->phy_id);
1885 
1886 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1887 				     mdp->phy_interface);
1888 	}
1889 
1890 	if (IS_ERR(phydev)) {
1891 		netdev_err(ndev, "failed to connect PHY\n");
1892 		return PTR_ERR(phydev);
1893 	}
1894 
1895 	/* mask with MAC supported features */
1896 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1897 		int err = phy_set_max_speed(phydev, SPEED_100);
1898 		if (err) {
1899 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1900 			phy_disconnect(phydev);
1901 			return err;
1902 		}
1903 	}
1904 
1905 	phy_attached_info(phydev);
1906 
1907 	return 0;
1908 }
1909 
1910 /* PHY control start function */
1911 static int sh_eth_phy_start(struct net_device *ndev)
1912 {
1913 	int ret;
1914 
1915 	ret = sh_eth_phy_init(ndev);
1916 	if (ret)
1917 		return ret;
1918 
1919 	phy_start(ndev->phydev);
1920 
1921 	return 0;
1922 }
1923 
1924 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1925 				     struct ethtool_link_ksettings *cmd)
1926 {
1927 	struct sh_eth_private *mdp = netdev_priv(ndev);
1928 	unsigned long flags;
1929 
1930 	if (!ndev->phydev)
1931 		return -ENODEV;
1932 
1933 	spin_lock_irqsave(&mdp->lock, flags);
1934 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1935 	spin_unlock_irqrestore(&mdp->lock, flags);
1936 
1937 	return 0;
1938 }
1939 
1940 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1941 				     const struct ethtool_link_ksettings *cmd)
1942 {
1943 	struct sh_eth_private *mdp = netdev_priv(ndev);
1944 	unsigned long flags;
1945 	int ret;
1946 
1947 	if (!ndev->phydev)
1948 		return -ENODEV;
1949 
1950 	spin_lock_irqsave(&mdp->lock, flags);
1951 
1952 	/* disable tx and rx */
1953 	sh_eth_rcv_snd_disable(ndev);
1954 
1955 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1956 	if (ret)
1957 		goto error_exit;
1958 
1959 	if (cmd->base.duplex == DUPLEX_FULL)
1960 		mdp->duplex = 1;
1961 	else
1962 		mdp->duplex = 0;
1963 
1964 	if (mdp->cd->set_duplex)
1965 		mdp->cd->set_duplex(ndev);
1966 
1967 error_exit:
1968 	mdelay(1);
1969 
1970 	/* enable tx and rx */
1971 	sh_eth_rcv_snd_enable(ndev);
1972 
1973 	spin_unlock_irqrestore(&mdp->lock, flags);
1974 
1975 	return ret;
1976 }
1977 
1978 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1979  * version must be bumped as well.  Just adding registers up to that
1980  * limit is fine, as long as the existing register indices don't
1981  * change.
1982  */
1983 #define SH_ETH_REG_DUMP_VERSION		1
1984 #define SH_ETH_REG_DUMP_MAX_REGS	256
1985 
1986 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1987 {
1988 	struct sh_eth_private *mdp = netdev_priv(ndev);
1989 	struct sh_eth_cpu_data *cd = mdp->cd;
1990 	u32 *valid_map;
1991 	size_t len;
1992 
1993 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1994 
1995 	/* Dump starts with a bitmap that tells ethtool which
1996 	 * registers are defined for this chip.
1997 	 */
1998 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1999 	if (buf) {
2000 		valid_map = buf;
2001 		buf += len;
2002 	} else {
2003 		valid_map = NULL;
2004 	}
2005 
2006 	/* Add a register to the dump, if it has a defined offset.
2007 	 * This automatically skips most undefined registers, but for
2008 	 * some it is also necessary to check a capability flag in
2009 	 * struct sh_eth_cpu_data.
2010 	 */
2011 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2012 #define add_reg_from(reg, read_expr) do {				\
2013 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2014 			if (buf) {					\
2015 				mark_reg_valid(reg);			\
2016 				*buf++ = read_expr;			\
2017 			}						\
2018 			++len;						\
2019 		}							\
2020 	} while (0)
2021 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2022 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2023 
2024 	add_reg(EDSR);
2025 	add_reg(EDMR);
2026 	add_reg(EDTRR);
2027 	add_reg(EDRRR);
2028 	add_reg(EESR);
2029 	add_reg(EESIPR);
2030 	add_reg(TDLAR);
2031 	add_reg(TDFAR);
2032 	add_reg(TDFXR);
2033 	add_reg(TDFFR);
2034 	add_reg(RDLAR);
2035 	add_reg(RDFAR);
2036 	add_reg(RDFXR);
2037 	add_reg(RDFFR);
2038 	add_reg(TRSCER);
2039 	add_reg(RMFCR);
2040 	add_reg(TFTR);
2041 	add_reg(FDR);
2042 	add_reg(RMCR);
2043 	add_reg(TFUCR);
2044 	add_reg(RFOCR);
2045 	if (cd->rmiimode)
2046 		add_reg(RMIIMODE);
2047 	add_reg(FCFTR);
2048 	if (cd->rpadir)
2049 		add_reg(RPADIR);
2050 	if (!cd->no_trimd)
2051 		add_reg(TRIMD);
2052 	add_reg(ECMR);
2053 	add_reg(ECSR);
2054 	add_reg(ECSIPR);
2055 	add_reg(PIR);
2056 	if (!cd->no_psr)
2057 		add_reg(PSR);
2058 	add_reg(RDMLR);
2059 	add_reg(RFLR);
2060 	add_reg(IPGR);
2061 	if (cd->apr)
2062 		add_reg(APR);
2063 	if (cd->mpr)
2064 		add_reg(MPR);
2065 	add_reg(RFCR);
2066 	add_reg(RFCF);
2067 	if (cd->tpauser)
2068 		add_reg(TPAUSER);
2069 	add_reg(TPAUSECR);
2070 	add_reg(GECMR);
2071 	if (cd->bculr)
2072 		add_reg(BCULR);
2073 	add_reg(MAHR);
2074 	add_reg(MALR);
2075 	add_reg(TROCR);
2076 	add_reg(CDCR);
2077 	add_reg(LCCR);
2078 	add_reg(CNDCR);
2079 	add_reg(CEFCR);
2080 	add_reg(FRECR);
2081 	add_reg(TSFRCR);
2082 	add_reg(TLFRCR);
2083 	add_reg(CERCR);
2084 	add_reg(CEECR);
2085 	add_reg(MAFCR);
2086 	if (cd->rtrate)
2087 		add_reg(RTRATE);
2088 	if (cd->hw_checksum)
2089 		add_reg(CSMR);
2090 	if (cd->select_mii)
2091 		add_reg(RMII_MII);
2092 	if (cd->tsu) {
2093 		add_tsu_reg(ARSTR);
2094 		add_tsu_reg(TSU_CTRST);
2095 		add_tsu_reg(TSU_FWEN0);
2096 		add_tsu_reg(TSU_FWEN1);
2097 		add_tsu_reg(TSU_FCM);
2098 		add_tsu_reg(TSU_BSYSL0);
2099 		add_tsu_reg(TSU_BSYSL1);
2100 		add_tsu_reg(TSU_PRISL0);
2101 		add_tsu_reg(TSU_PRISL1);
2102 		add_tsu_reg(TSU_FWSL0);
2103 		add_tsu_reg(TSU_FWSL1);
2104 		add_tsu_reg(TSU_FWSLC);
2105 		add_tsu_reg(TSU_QTAG0);
2106 		add_tsu_reg(TSU_QTAG1);
2107 		add_tsu_reg(TSU_QTAGM0);
2108 		add_tsu_reg(TSU_QTAGM1);
2109 		add_tsu_reg(TSU_FWSR);
2110 		add_tsu_reg(TSU_FWINMK);
2111 		add_tsu_reg(TSU_ADQT0);
2112 		add_tsu_reg(TSU_ADQT1);
2113 		add_tsu_reg(TSU_VTAG0);
2114 		add_tsu_reg(TSU_VTAG1);
2115 		add_tsu_reg(TSU_ADSBSY);
2116 		add_tsu_reg(TSU_TEN);
2117 		add_tsu_reg(TSU_POST1);
2118 		add_tsu_reg(TSU_POST2);
2119 		add_tsu_reg(TSU_POST3);
2120 		add_tsu_reg(TSU_POST4);
2121 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2122 			/* This is the start of a table, not just a single
2123 			 * register.
2124 			 */
2125 			if (buf) {
2126 				unsigned int i;
2127 
2128 				mark_reg_valid(TSU_ADRH0);
2129 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2130 					*buf++ = ioread32(
2131 						mdp->tsu_addr +
2132 						mdp->reg_offset[TSU_ADRH0] +
2133 						i * 4);
2134 			}
2135 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2136 		}
2137 	}
2138 
2139 #undef mark_reg_valid
2140 #undef add_reg_from
2141 #undef add_reg
2142 #undef add_tsu_reg
2143 
2144 	return len * 4;
2145 }
2146 
2147 static int sh_eth_get_regs_len(struct net_device *ndev)
2148 {
2149 	return __sh_eth_get_regs(ndev, NULL);
2150 }
2151 
2152 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2153 			    void *buf)
2154 {
2155 	struct sh_eth_private *mdp = netdev_priv(ndev);
2156 
2157 	regs->version = SH_ETH_REG_DUMP_VERSION;
2158 
2159 	pm_runtime_get_sync(&mdp->pdev->dev);
2160 	__sh_eth_get_regs(ndev, buf);
2161 	pm_runtime_put_sync(&mdp->pdev->dev);
2162 }
2163 
2164 static int sh_eth_nway_reset(struct net_device *ndev)
2165 {
2166 	struct sh_eth_private *mdp = netdev_priv(ndev);
2167 	unsigned long flags;
2168 	int ret;
2169 
2170 	if (!ndev->phydev)
2171 		return -ENODEV;
2172 
2173 	spin_lock_irqsave(&mdp->lock, flags);
2174 	ret = phy_start_aneg(ndev->phydev);
2175 	spin_unlock_irqrestore(&mdp->lock, flags);
2176 
2177 	return ret;
2178 }
2179 
2180 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2181 {
2182 	struct sh_eth_private *mdp = netdev_priv(ndev);
2183 	return mdp->msg_enable;
2184 }
2185 
2186 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2187 {
2188 	struct sh_eth_private *mdp = netdev_priv(ndev);
2189 	mdp->msg_enable = value;
2190 }
2191 
2192 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2193 	"rx_current", "tx_current",
2194 	"rx_dirty", "tx_dirty",
2195 };
2196 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2197 
2198 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2199 {
2200 	switch (sset) {
2201 	case ETH_SS_STATS:
2202 		return SH_ETH_STATS_LEN;
2203 	default:
2204 		return -EOPNOTSUPP;
2205 	}
2206 }
2207 
2208 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2209 				     struct ethtool_stats *stats, u64 *data)
2210 {
2211 	struct sh_eth_private *mdp = netdev_priv(ndev);
2212 	int i = 0;
2213 
2214 	/* device-specific stats */
2215 	data[i++] = mdp->cur_rx;
2216 	data[i++] = mdp->cur_tx;
2217 	data[i++] = mdp->dirty_rx;
2218 	data[i++] = mdp->dirty_tx;
2219 }
2220 
2221 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2222 {
2223 	switch (stringset) {
2224 	case ETH_SS_STATS:
2225 		memcpy(data, *sh_eth_gstrings_stats,
2226 		       sizeof(sh_eth_gstrings_stats));
2227 		break;
2228 	}
2229 }
2230 
2231 static void sh_eth_get_ringparam(struct net_device *ndev,
2232 				 struct ethtool_ringparam *ring)
2233 {
2234 	struct sh_eth_private *mdp = netdev_priv(ndev);
2235 
2236 	ring->rx_max_pending = RX_RING_MAX;
2237 	ring->tx_max_pending = TX_RING_MAX;
2238 	ring->rx_pending = mdp->num_rx_ring;
2239 	ring->tx_pending = mdp->num_tx_ring;
2240 }
2241 
2242 static int sh_eth_set_ringparam(struct net_device *ndev,
2243 				struct ethtool_ringparam *ring)
2244 {
2245 	struct sh_eth_private *mdp = netdev_priv(ndev);
2246 	int ret;
2247 
2248 	if (ring->tx_pending > TX_RING_MAX ||
2249 	    ring->rx_pending > RX_RING_MAX ||
2250 	    ring->tx_pending < TX_RING_MIN ||
2251 	    ring->rx_pending < RX_RING_MIN)
2252 		return -EINVAL;
2253 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2254 		return -EINVAL;
2255 
2256 	if (netif_running(ndev)) {
2257 		netif_device_detach(ndev);
2258 		netif_tx_disable(ndev);
2259 
2260 		/* Serialise with the interrupt handler and NAPI, then
2261 		 * disable interrupts.  We have to clear the
2262 		 * irq_enabled flag first to ensure that interrupts
2263 		 * won't be re-enabled.
2264 		 */
2265 		mdp->irq_enabled = false;
2266 		synchronize_irq(ndev->irq);
2267 		napi_synchronize(&mdp->napi);
2268 		sh_eth_write(ndev, 0x0000, EESIPR);
2269 
2270 		sh_eth_dev_exit(ndev);
2271 
2272 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2273 		sh_eth_ring_free(ndev);
2274 	}
2275 
2276 	/* Set new parameters */
2277 	mdp->num_rx_ring = ring->rx_pending;
2278 	mdp->num_tx_ring = ring->tx_pending;
2279 
2280 	if (netif_running(ndev)) {
2281 		ret = sh_eth_ring_init(ndev);
2282 		if (ret < 0) {
2283 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2284 				   __func__);
2285 			return ret;
2286 		}
2287 		ret = sh_eth_dev_init(ndev);
2288 		if (ret < 0) {
2289 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2290 				   __func__);
2291 			return ret;
2292 		}
2293 
2294 		netif_device_attach(ndev);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2301 {
2302 	struct sh_eth_private *mdp = netdev_priv(ndev);
2303 
2304 	wol->supported = 0;
2305 	wol->wolopts = 0;
2306 
2307 	if (mdp->cd->magic && mdp->clk) {
2308 		wol->supported = WAKE_MAGIC;
2309 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2310 	}
2311 }
2312 
2313 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2314 {
2315 	struct sh_eth_private *mdp = netdev_priv(ndev);
2316 
2317 	if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2318 		return -EOPNOTSUPP;
2319 
2320 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2321 
2322 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2323 
2324 	return 0;
2325 }
2326 
2327 static const struct ethtool_ops sh_eth_ethtool_ops = {
2328 	.get_regs_len	= sh_eth_get_regs_len,
2329 	.get_regs	= sh_eth_get_regs,
2330 	.nway_reset	= sh_eth_nway_reset,
2331 	.get_msglevel	= sh_eth_get_msglevel,
2332 	.set_msglevel	= sh_eth_set_msglevel,
2333 	.get_link	= ethtool_op_get_link,
2334 	.get_strings	= sh_eth_get_strings,
2335 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2336 	.get_sset_count     = sh_eth_get_sset_count,
2337 	.get_ringparam	= sh_eth_get_ringparam,
2338 	.set_ringparam	= sh_eth_set_ringparam,
2339 	.get_link_ksettings = sh_eth_get_link_ksettings,
2340 	.set_link_ksettings = sh_eth_set_link_ksettings,
2341 	.get_wol	= sh_eth_get_wol,
2342 	.set_wol	= sh_eth_set_wol,
2343 };
2344 
2345 /* network device open function */
2346 static int sh_eth_open(struct net_device *ndev)
2347 {
2348 	struct sh_eth_private *mdp = netdev_priv(ndev);
2349 	int ret;
2350 
2351 	pm_runtime_get_sync(&mdp->pdev->dev);
2352 
2353 	napi_enable(&mdp->napi);
2354 
2355 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2356 			  mdp->cd->irq_flags, ndev->name, ndev);
2357 	if (ret) {
2358 		netdev_err(ndev, "Can not assign IRQ number\n");
2359 		goto out_napi_off;
2360 	}
2361 
2362 	/* Descriptor set */
2363 	ret = sh_eth_ring_init(ndev);
2364 	if (ret)
2365 		goto out_free_irq;
2366 
2367 	/* device init */
2368 	ret = sh_eth_dev_init(ndev);
2369 	if (ret)
2370 		goto out_free_irq;
2371 
2372 	/* PHY control start*/
2373 	ret = sh_eth_phy_start(ndev);
2374 	if (ret)
2375 		goto out_free_irq;
2376 
2377 	netif_start_queue(ndev);
2378 
2379 	mdp->is_opened = 1;
2380 
2381 	return ret;
2382 
2383 out_free_irq:
2384 	free_irq(ndev->irq, ndev);
2385 out_napi_off:
2386 	napi_disable(&mdp->napi);
2387 	pm_runtime_put_sync(&mdp->pdev->dev);
2388 	return ret;
2389 }
2390 
2391 /* Timeout function */
2392 static void sh_eth_tx_timeout(struct net_device *ndev)
2393 {
2394 	struct sh_eth_private *mdp = netdev_priv(ndev);
2395 	struct sh_eth_rxdesc *rxdesc;
2396 	int i;
2397 
2398 	netif_stop_queue(ndev);
2399 
2400 	netif_err(mdp, timer, ndev,
2401 		  "transmit timed out, status %8.8x, resetting...\n",
2402 		  sh_eth_read(ndev, EESR));
2403 
2404 	/* tx_errors count up */
2405 	ndev->stats.tx_errors++;
2406 
2407 	/* Free all the skbuffs in the Rx queue. */
2408 	for (i = 0; i < mdp->num_rx_ring; i++) {
2409 		rxdesc = &mdp->rx_ring[i];
2410 		rxdesc->status = cpu_to_le32(0);
2411 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2412 		dev_kfree_skb(mdp->rx_skbuff[i]);
2413 		mdp->rx_skbuff[i] = NULL;
2414 	}
2415 	for (i = 0; i < mdp->num_tx_ring; i++) {
2416 		dev_kfree_skb(mdp->tx_skbuff[i]);
2417 		mdp->tx_skbuff[i] = NULL;
2418 	}
2419 
2420 	/* device init */
2421 	sh_eth_dev_init(ndev);
2422 
2423 	netif_start_queue(ndev);
2424 }
2425 
2426 /* Packet transmit function */
2427 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2428 {
2429 	struct sh_eth_private *mdp = netdev_priv(ndev);
2430 	struct sh_eth_txdesc *txdesc;
2431 	dma_addr_t dma_addr;
2432 	u32 entry;
2433 	unsigned long flags;
2434 
2435 	spin_lock_irqsave(&mdp->lock, flags);
2436 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2437 		if (!sh_eth_tx_free(ndev, true)) {
2438 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2439 			netif_stop_queue(ndev);
2440 			spin_unlock_irqrestore(&mdp->lock, flags);
2441 			return NETDEV_TX_BUSY;
2442 		}
2443 	}
2444 	spin_unlock_irqrestore(&mdp->lock, flags);
2445 
2446 	if (skb_put_padto(skb, ETH_ZLEN))
2447 		return NETDEV_TX_OK;
2448 
2449 	entry = mdp->cur_tx % mdp->num_tx_ring;
2450 	mdp->tx_skbuff[entry] = skb;
2451 	txdesc = &mdp->tx_ring[entry];
2452 	/* soft swap. */
2453 	if (!mdp->cd->hw_swap)
2454 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2455 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2456 				  DMA_TO_DEVICE);
2457 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2458 		kfree_skb(skb);
2459 		return NETDEV_TX_OK;
2460 	}
2461 	txdesc->addr = cpu_to_le32(dma_addr);
2462 	txdesc->len  = cpu_to_le32(skb->len << 16);
2463 
2464 	dma_wmb(); /* TACT bit must be set after all the above writes */
2465 	if (entry >= mdp->num_tx_ring - 1)
2466 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2467 	else
2468 		txdesc->status |= cpu_to_le32(TD_TACT);
2469 
2470 	mdp->cur_tx++;
2471 
2472 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2473 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2474 
2475 	return NETDEV_TX_OK;
2476 }
2477 
2478 /* The statistics registers have write-clear behaviour, which means we
2479  * will lose any increment between the read and write.  We mitigate
2480  * this by only clearing when we read a non-zero value, so we will
2481  * never falsely report a total of zero.
2482  */
2483 static void
2484 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2485 {
2486 	u32 delta = sh_eth_read(ndev, reg);
2487 
2488 	if (delta) {
2489 		*stat += delta;
2490 		sh_eth_write(ndev, 0, reg);
2491 	}
2492 }
2493 
2494 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2495 {
2496 	struct sh_eth_private *mdp = netdev_priv(ndev);
2497 
2498 	if (sh_eth_is_rz_fast_ether(mdp))
2499 		return &ndev->stats;
2500 
2501 	if (!mdp->is_opened)
2502 		return &ndev->stats;
2503 
2504 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2505 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2506 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2507 
2508 	if (sh_eth_is_gether(mdp)) {
2509 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2510 				   CERCR);
2511 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2512 				   CEECR);
2513 	} else {
2514 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2515 				   CNDCR);
2516 	}
2517 
2518 	return &ndev->stats;
2519 }
2520 
2521 /* device close function */
2522 static int sh_eth_close(struct net_device *ndev)
2523 {
2524 	struct sh_eth_private *mdp = netdev_priv(ndev);
2525 
2526 	netif_stop_queue(ndev);
2527 
2528 	/* Serialise with the interrupt handler and NAPI, then disable
2529 	 * interrupts.  We have to clear the irq_enabled flag first to
2530 	 * ensure that interrupts won't be re-enabled.
2531 	 */
2532 	mdp->irq_enabled = false;
2533 	synchronize_irq(ndev->irq);
2534 	napi_disable(&mdp->napi);
2535 	sh_eth_write(ndev, 0x0000, EESIPR);
2536 
2537 	sh_eth_dev_exit(ndev);
2538 
2539 	/* PHY Disconnect */
2540 	if (ndev->phydev) {
2541 		phy_stop(ndev->phydev);
2542 		phy_disconnect(ndev->phydev);
2543 	}
2544 
2545 	free_irq(ndev->irq, ndev);
2546 
2547 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2548 	sh_eth_ring_free(ndev);
2549 
2550 	pm_runtime_put_sync(&mdp->pdev->dev);
2551 
2552 	mdp->is_opened = 0;
2553 
2554 	return 0;
2555 }
2556 
2557 /* ioctl to device function */
2558 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2559 {
2560 	struct phy_device *phydev = ndev->phydev;
2561 
2562 	if (!netif_running(ndev))
2563 		return -EINVAL;
2564 
2565 	if (!phydev)
2566 		return -ENODEV;
2567 
2568 	return phy_mii_ioctl(phydev, rq, cmd);
2569 }
2570 
2571 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2572 {
2573 	if (netif_running(ndev))
2574 		return -EBUSY;
2575 
2576 	ndev->mtu = new_mtu;
2577 	netdev_update_features(ndev);
2578 
2579 	return 0;
2580 }
2581 
2582 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2583 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2584 					    int entry)
2585 {
2586 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2587 }
2588 
2589 static u32 sh_eth_tsu_get_post_mask(int entry)
2590 {
2591 	return 0x0f << (28 - ((entry % 8) * 4));
2592 }
2593 
2594 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2595 {
2596 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2597 }
2598 
2599 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2600 					     int entry)
2601 {
2602 	struct sh_eth_private *mdp = netdev_priv(ndev);
2603 	u32 tmp;
2604 	void *reg_offset;
2605 
2606 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2607 	tmp = ioread32(reg_offset);
2608 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2609 }
2610 
2611 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2612 					      int entry)
2613 {
2614 	struct sh_eth_private *mdp = netdev_priv(ndev);
2615 	u32 post_mask, ref_mask, tmp;
2616 	void *reg_offset;
2617 
2618 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2619 	post_mask = sh_eth_tsu_get_post_mask(entry);
2620 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2621 
2622 	tmp = ioread32(reg_offset);
2623 	iowrite32(tmp & ~post_mask, reg_offset);
2624 
2625 	/* If other port enables, the function returns "true" */
2626 	return tmp & ref_mask;
2627 }
2628 
2629 static int sh_eth_tsu_busy(struct net_device *ndev)
2630 {
2631 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2632 	struct sh_eth_private *mdp = netdev_priv(ndev);
2633 
2634 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2635 		udelay(10);
2636 		timeout--;
2637 		if (timeout <= 0) {
2638 			netdev_err(ndev, "%s: timeout\n", __func__);
2639 			return -ETIMEDOUT;
2640 		}
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2647 				  const u8 *addr)
2648 {
2649 	u32 val;
2650 
2651 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2652 	iowrite32(val, reg);
2653 	if (sh_eth_tsu_busy(ndev) < 0)
2654 		return -EBUSY;
2655 
2656 	val = addr[4] << 8 | addr[5];
2657 	iowrite32(val, reg + 4);
2658 	if (sh_eth_tsu_busy(ndev) < 0)
2659 		return -EBUSY;
2660 
2661 	return 0;
2662 }
2663 
2664 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2665 {
2666 	u32 val;
2667 
2668 	val = ioread32(reg);
2669 	addr[0] = (val >> 24) & 0xff;
2670 	addr[1] = (val >> 16) & 0xff;
2671 	addr[2] = (val >> 8) & 0xff;
2672 	addr[3] = val & 0xff;
2673 	val = ioread32(reg + 4);
2674 	addr[4] = (val >> 8) & 0xff;
2675 	addr[5] = val & 0xff;
2676 }
2677 
2678 
2679 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2680 {
2681 	struct sh_eth_private *mdp = netdev_priv(ndev);
2682 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2683 	int i;
2684 	u8 c_addr[ETH_ALEN];
2685 
2686 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2687 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2688 		if (ether_addr_equal(addr, c_addr))
2689 			return i;
2690 	}
2691 
2692 	return -ENOENT;
2693 }
2694 
2695 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2696 {
2697 	u8 blank[ETH_ALEN];
2698 	int entry;
2699 
2700 	memset(blank, 0, sizeof(blank));
2701 	entry = sh_eth_tsu_find_entry(ndev, blank);
2702 	return (entry < 0) ? -ENOMEM : entry;
2703 }
2704 
2705 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2706 					      int entry)
2707 {
2708 	struct sh_eth_private *mdp = netdev_priv(ndev);
2709 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2710 	int ret;
2711 	u8 blank[ETH_ALEN];
2712 
2713 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2714 			 ~(1 << (31 - entry)), TSU_TEN);
2715 
2716 	memset(blank, 0, sizeof(blank));
2717 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2718 	if (ret < 0)
2719 		return ret;
2720 	return 0;
2721 }
2722 
2723 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2724 {
2725 	struct sh_eth_private *mdp = netdev_priv(ndev);
2726 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2727 	int i, ret;
2728 
2729 	if (!mdp->cd->tsu)
2730 		return 0;
2731 
2732 	i = sh_eth_tsu_find_entry(ndev, addr);
2733 	if (i < 0) {
2734 		/* No entry found, create one */
2735 		i = sh_eth_tsu_find_empty(ndev);
2736 		if (i < 0)
2737 			return -ENOMEM;
2738 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2739 		if (ret < 0)
2740 			return ret;
2741 
2742 		/* Enable the entry */
2743 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2744 				 (1 << (31 - i)), TSU_TEN);
2745 	}
2746 
2747 	/* Entry found or created, enable POST */
2748 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2749 
2750 	return 0;
2751 }
2752 
2753 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2754 {
2755 	struct sh_eth_private *mdp = netdev_priv(ndev);
2756 	int i, ret;
2757 
2758 	if (!mdp->cd->tsu)
2759 		return 0;
2760 
2761 	i = sh_eth_tsu_find_entry(ndev, addr);
2762 	if (i) {
2763 		/* Entry found */
2764 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2765 			goto done;
2766 
2767 		/* Disable the entry if both ports was disabled */
2768 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2769 		if (ret < 0)
2770 			return ret;
2771 	}
2772 done:
2773 	return 0;
2774 }
2775 
2776 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2777 {
2778 	struct sh_eth_private *mdp = netdev_priv(ndev);
2779 	int i, ret;
2780 
2781 	if (!mdp->cd->tsu)
2782 		return 0;
2783 
2784 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2785 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2786 			continue;
2787 
2788 		/* Disable the entry if both ports was disabled */
2789 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2790 		if (ret < 0)
2791 			return ret;
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2798 {
2799 	struct sh_eth_private *mdp = netdev_priv(ndev);
2800 	u8 addr[ETH_ALEN];
2801 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2802 	int i;
2803 
2804 	if (!mdp->cd->tsu)
2805 		return;
2806 
2807 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2808 		sh_eth_tsu_read_entry(reg_offset, addr);
2809 		if (is_multicast_ether_addr(addr))
2810 			sh_eth_tsu_del_entry(ndev, addr);
2811 	}
2812 }
2813 
2814 /* Update promiscuous flag and multicast filter */
2815 static void sh_eth_set_rx_mode(struct net_device *ndev)
2816 {
2817 	struct sh_eth_private *mdp = netdev_priv(ndev);
2818 	u32 ecmr_bits;
2819 	int mcast_all = 0;
2820 	unsigned long flags;
2821 
2822 	spin_lock_irqsave(&mdp->lock, flags);
2823 	/* Initial condition is MCT = 1, PRM = 0.
2824 	 * Depending on ndev->flags, set PRM or clear MCT
2825 	 */
2826 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2827 	if (mdp->cd->tsu)
2828 		ecmr_bits |= ECMR_MCT;
2829 
2830 	if (!(ndev->flags & IFF_MULTICAST)) {
2831 		sh_eth_tsu_purge_mcast(ndev);
2832 		mcast_all = 1;
2833 	}
2834 	if (ndev->flags & IFF_ALLMULTI) {
2835 		sh_eth_tsu_purge_mcast(ndev);
2836 		ecmr_bits &= ~ECMR_MCT;
2837 		mcast_all = 1;
2838 	}
2839 
2840 	if (ndev->flags & IFF_PROMISC) {
2841 		sh_eth_tsu_purge_all(ndev);
2842 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2843 	} else if (mdp->cd->tsu) {
2844 		struct netdev_hw_addr *ha;
2845 		netdev_for_each_mc_addr(ha, ndev) {
2846 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2847 				continue;
2848 
2849 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2850 				if (!mcast_all) {
2851 					sh_eth_tsu_purge_mcast(ndev);
2852 					ecmr_bits &= ~ECMR_MCT;
2853 					mcast_all = 1;
2854 				}
2855 			}
2856 		}
2857 	}
2858 
2859 	/* update the ethernet mode */
2860 	sh_eth_write(ndev, ecmr_bits, ECMR);
2861 
2862 	spin_unlock_irqrestore(&mdp->lock, flags);
2863 }
2864 
2865 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2866 {
2867 	if (!mdp->port)
2868 		return TSU_VTAG0;
2869 	else
2870 		return TSU_VTAG1;
2871 }
2872 
2873 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2874 				  __be16 proto, u16 vid)
2875 {
2876 	struct sh_eth_private *mdp = netdev_priv(ndev);
2877 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2878 
2879 	if (unlikely(!mdp->cd->tsu))
2880 		return -EPERM;
2881 
2882 	/* No filtering if vid = 0 */
2883 	if (!vid)
2884 		return 0;
2885 
2886 	mdp->vlan_num_ids++;
2887 
2888 	/* The controller has one VLAN tag HW filter. So, if the filter is
2889 	 * already enabled, the driver disables it and the filte
2890 	 */
2891 	if (mdp->vlan_num_ids > 1) {
2892 		/* disable VLAN filter */
2893 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2894 		return 0;
2895 	}
2896 
2897 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2898 			 vtag_reg_index);
2899 
2900 	return 0;
2901 }
2902 
2903 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2904 				   __be16 proto, u16 vid)
2905 {
2906 	struct sh_eth_private *mdp = netdev_priv(ndev);
2907 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2908 
2909 	if (unlikely(!mdp->cd->tsu))
2910 		return -EPERM;
2911 
2912 	/* No filtering if vid = 0 */
2913 	if (!vid)
2914 		return 0;
2915 
2916 	mdp->vlan_num_ids--;
2917 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2918 
2919 	return 0;
2920 }
2921 
2922 /* SuperH's TSU register init function */
2923 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2924 {
2925 	if (sh_eth_is_rz_fast_ether(mdp)) {
2926 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2927 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2928 				 TSU_FWSLC);	/* Enable POST registers */
2929 		return;
2930 	}
2931 
2932 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2933 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2934 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2935 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2936 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2937 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2938 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2939 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2940 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2941 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2942 	if (sh_eth_is_gether(mdp)) {
2943 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2944 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2945 	} else {
2946 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2947 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2948 	}
2949 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2950 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2951 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2952 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2953 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2954 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2955 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2956 }
2957 
2958 /* MDIO bus release function */
2959 static int sh_mdio_release(struct sh_eth_private *mdp)
2960 {
2961 	/* unregister mdio bus */
2962 	mdiobus_unregister(mdp->mii_bus);
2963 
2964 	/* free bitbang info */
2965 	free_mdio_bitbang(mdp->mii_bus);
2966 
2967 	return 0;
2968 }
2969 
2970 /* MDIO bus init function */
2971 static int sh_mdio_init(struct sh_eth_private *mdp,
2972 			struct sh_eth_plat_data *pd)
2973 {
2974 	int ret;
2975 	struct bb_info *bitbang;
2976 	struct platform_device *pdev = mdp->pdev;
2977 	struct device *dev = &mdp->pdev->dev;
2978 
2979 	/* create bit control struct for PHY */
2980 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2981 	if (!bitbang)
2982 		return -ENOMEM;
2983 
2984 	/* bitbang init */
2985 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2986 	bitbang->set_gate = pd->set_mdio_gate;
2987 	bitbang->ctrl.ops = &bb_ops;
2988 
2989 	/* MII controller setting */
2990 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2991 	if (!mdp->mii_bus)
2992 		return -ENOMEM;
2993 
2994 	/* Hook up MII support for ethtool */
2995 	mdp->mii_bus->name = "sh_mii";
2996 	mdp->mii_bus->parent = dev;
2997 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2998 		 pdev->name, pdev->id);
2999 
3000 	/* register MDIO bus */
3001 	if (dev->of_node) {
3002 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3003 	} else {
3004 		if (pd->phy_irq > 0)
3005 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3006 
3007 		ret = mdiobus_register(mdp->mii_bus);
3008 	}
3009 
3010 	if (ret)
3011 		goto out_free_bus;
3012 
3013 	return 0;
3014 
3015 out_free_bus:
3016 	free_mdio_bitbang(mdp->mii_bus);
3017 	return ret;
3018 }
3019 
3020 static const u16 *sh_eth_get_register_offset(int register_type)
3021 {
3022 	const u16 *reg_offset = NULL;
3023 
3024 	switch (register_type) {
3025 	case SH_ETH_REG_GIGABIT:
3026 		reg_offset = sh_eth_offset_gigabit;
3027 		break;
3028 	case SH_ETH_REG_FAST_RZ:
3029 		reg_offset = sh_eth_offset_fast_rz;
3030 		break;
3031 	case SH_ETH_REG_FAST_RCAR:
3032 		reg_offset = sh_eth_offset_fast_rcar;
3033 		break;
3034 	case SH_ETH_REG_FAST_SH4:
3035 		reg_offset = sh_eth_offset_fast_sh4;
3036 		break;
3037 	case SH_ETH_REG_FAST_SH3_SH2:
3038 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3039 		break;
3040 	}
3041 
3042 	return reg_offset;
3043 }
3044 
3045 static const struct net_device_ops sh_eth_netdev_ops = {
3046 	.ndo_open		= sh_eth_open,
3047 	.ndo_stop		= sh_eth_close,
3048 	.ndo_start_xmit		= sh_eth_start_xmit,
3049 	.ndo_get_stats		= sh_eth_get_stats,
3050 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3051 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3052 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3053 	.ndo_change_mtu		= sh_eth_change_mtu,
3054 	.ndo_validate_addr	= eth_validate_addr,
3055 	.ndo_set_mac_address	= eth_mac_addr,
3056 };
3057 
3058 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3059 	.ndo_open		= sh_eth_open,
3060 	.ndo_stop		= sh_eth_close,
3061 	.ndo_start_xmit		= sh_eth_start_xmit,
3062 	.ndo_get_stats		= sh_eth_get_stats,
3063 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3064 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3065 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3066 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3067 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3068 	.ndo_change_mtu		= sh_eth_change_mtu,
3069 	.ndo_validate_addr	= eth_validate_addr,
3070 	.ndo_set_mac_address	= eth_mac_addr,
3071 };
3072 
3073 #ifdef CONFIG_OF
3074 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3075 {
3076 	struct device_node *np = dev->of_node;
3077 	struct sh_eth_plat_data *pdata;
3078 	const char *mac_addr;
3079 
3080 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3081 	if (!pdata)
3082 		return NULL;
3083 
3084 	pdata->phy_interface = of_get_phy_mode(np);
3085 
3086 	mac_addr = of_get_mac_address(np);
3087 	if (mac_addr)
3088 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3089 
3090 	pdata->no_ether_link =
3091 		of_property_read_bool(np, "renesas,no-ether-link");
3092 	pdata->ether_link_active_low =
3093 		of_property_read_bool(np, "renesas,ether-link-active-low");
3094 
3095 	return pdata;
3096 }
3097 
3098 static const struct of_device_id sh_eth_match_table[] = {
3099 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3100 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3101 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3102 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3103 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3104 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3105 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3106 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3107 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3108 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3109 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3110 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3111 	{ }
3112 };
3113 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3114 #else
3115 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3116 {
3117 	return NULL;
3118 }
3119 #endif
3120 
3121 static int sh_eth_drv_probe(struct platform_device *pdev)
3122 {
3123 	struct resource *res;
3124 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3125 	const struct platform_device_id *id = platform_get_device_id(pdev);
3126 	struct sh_eth_private *mdp;
3127 	struct net_device *ndev;
3128 	int ret;
3129 
3130 	/* get base addr */
3131 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3132 
3133 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3134 	if (!ndev)
3135 		return -ENOMEM;
3136 
3137 	pm_runtime_enable(&pdev->dev);
3138 	pm_runtime_get_sync(&pdev->dev);
3139 
3140 	ret = platform_get_irq(pdev, 0);
3141 	if (ret < 0)
3142 		goto out_release;
3143 	ndev->irq = ret;
3144 
3145 	SET_NETDEV_DEV(ndev, &pdev->dev);
3146 
3147 	mdp = netdev_priv(ndev);
3148 	mdp->num_tx_ring = TX_RING_SIZE;
3149 	mdp->num_rx_ring = RX_RING_SIZE;
3150 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3151 	if (IS_ERR(mdp->addr)) {
3152 		ret = PTR_ERR(mdp->addr);
3153 		goto out_release;
3154 	}
3155 
3156 	/* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3157 	mdp->clk = devm_clk_get(&pdev->dev, NULL);
3158 	if (IS_ERR(mdp->clk))
3159 		mdp->clk = NULL;
3160 
3161 	ndev->base_addr = res->start;
3162 
3163 	spin_lock_init(&mdp->lock);
3164 	mdp->pdev = pdev;
3165 
3166 	if (pdev->dev.of_node)
3167 		pd = sh_eth_parse_dt(&pdev->dev);
3168 	if (!pd) {
3169 		dev_err(&pdev->dev, "no platform data\n");
3170 		ret = -EINVAL;
3171 		goto out_release;
3172 	}
3173 
3174 	/* get PHY ID */
3175 	mdp->phy_id = pd->phy;
3176 	mdp->phy_interface = pd->phy_interface;
3177 	mdp->no_ether_link = pd->no_ether_link;
3178 	mdp->ether_link_active_low = pd->ether_link_active_low;
3179 
3180 	/* set cpu data */
3181 	if (id)
3182 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3183 	else
3184 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3185 
3186 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3187 	if (!mdp->reg_offset) {
3188 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3189 			mdp->cd->register_type);
3190 		ret = -EINVAL;
3191 		goto out_release;
3192 	}
3193 	sh_eth_set_default_cpu_data(mdp->cd);
3194 
3195 	/* User's manual states max MTU should be 2048 but due to the
3196 	 * alignment calculations in sh_eth_ring_init() the practical
3197 	 * MTU is a bit less. Maybe this can be optimized some more.
3198 	 */
3199 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3200 	ndev->min_mtu = ETH_MIN_MTU;
3201 
3202 	/* set function */
3203 	if (mdp->cd->tsu)
3204 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3205 	else
3206 		ndev->netdev_ops = &sh_eth_netdev_ops;
3207 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3208 	ndev->watchdog_timeo = TX_TIMEOUT;
3209 
3210 	/* debug message level */
3211 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3212 
3213 	/* read and set MAC address */
3214 	read_mac_address(ndev, pd->mac_addr);
3215 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3216 		dev_warn(&pdev->dev,
3217 			 "no valid MAC address supplied, using a random one.\n");
3218 		eth_hw_addr_random(ndev);
3219 	}
3220 
3221 	if (mdp->cd->tsu) {
3222 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3223 		struct resource *rtsu;
3224 
3225 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3226 		if (!rtsu) {
3227 			dev_err(&pdev->dev, "no TSU resource\n");
3228 			ret = -ENODEV;
3229 			goto out_release;
3230 		}
3231 		/* We can only request the  TSU region  for the first port
3232 		 * of the two  sharing this TSU for the probe to succeed...
3233 		 */
3234 		if (port == 0 &&
3235 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3236 					     resource_size(rtsu),
3237 					     dev_name(&pdev->dev))) {
3238 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3239 			ret = -EBUSY;
3240 			goto out_release;
3241 		}
3242 		/* ioremap the TSU registers */
3243 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3244 					     resource_size(rtsu));
3245 		if (!mdp->tsu_addr) {
3246 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3247 			ret = -ENOMEM;
3248 			goto out_release;
3249 		}
3250 		mdp->port = port;
3251 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3252 
3253 		/* Need to init only the first port of the two sharing a TSU */
3254 		if (port == 0) {
3255 			if (mdp->cd->chip_reset)
3256 				mdp->cd->chip_reset(ndev);
3257 
3258 			/* TSU init (Init only)*/
3259 			sh_eth_tsu_init(mdp);
3260 		}
3261 	}
3262 
3263 	if (mdp->cd->rmiimode)
3264 		sh_eth_write(ndev, 0x1, RMIIMODE);
3265 
3266 	/* MDIO bus init */
3267 	ret = sh_mdio_init(mdp, pd);
3268 	if (ret) {
3269 		if (ret != -EPROBE_DEFER)
3270 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3271 		goto out_release;
3272 	}
3273 
3274 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3275 
3276 	/* network device register */
3277 	ret = register_netdev(ndev);
3278 	if (ret)
3279 		goto out_napi_del;
3280 
3281 	if (mdp->cd->magic && mdp->clk)
3282 		device_set_wakeup_capable(&pdev->dev, 1);
3283 
3284 	/* print device information */
3285 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3286 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3287 
3288 	pm_runtime_put(&pdev->dev);
3289 	platform_set_drvdata(pdev, ndev);
3290 
3291 	return ret;
3292 
3293 out_napi_del:
3294 	netif_napi_del(&mdp->napi);
3295 	sh_mdio_release(mdp);
3296 
3297 out_release:
3298 	/* net_dev free */
3299 	free_netdev(ndev);
3300 
3301 	pm_runtime_put(&pdev->dev);
3302 	pm_runtime_disable(&pdev->dev);
3303 	return ret;
3304 }
3305 
3306 static int sh_eth_drv_remove(struct platform_device *pdev)
3307 {
3308 	struct net_device *ndev = platform_get_drvdata(pdev);
3309 	struct sh_eth_private *mdp = netdev_priv(ndev);
3310 
3311 	unregister_netdev(ndev);
3312 	netif_napi_del(&mdp->napi);
3313 	sh_mdio_release(mdp);
3314 	pm_runtime_disable(&pdev->dev);
3315 	free_netdev(ndev);
3316 
3317 	return 0;
3318 }
3319 
3320 #ifdef CONFIG_PM
3321 #ifdef CONFIG_PM_SLEEP
3322 static int sh_eth_wol_setup(struct net_device *ndev)
3323 {
3324 	struct sh_eth_private *mdp = netdev_priv(ndev);
3325 
3326 	/* Only allow ECI interrupts */
3327 	synchronize_irq(ndev->irq);
3328 	napi_disable(&mdp->napi);
3329 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3330 
3331 	/* Enable MagicPacket */
3332 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3333 
3334 	/* Increased clock usage so device won't be suspended */
3335 	clk_enable(mdp->clk);
3336 
3337 	return enable_irq_wake(ndev->irq);
3338 }
3339 
3340 static int sh_eth_wol_restore(struct net_device *ndev)
3341 {
3342 	struct sh_eth_private *mdp = netdev_priv(ndev);
3343 	int ret;
3344 
3345 	napi_enable(&mdp->napi);
3346 
3347 	/* Disable MagicPacket */
3348 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3349 
3350 	/* The device needs to be reset to restore MagicPacket logic
3351 	 * for next wakeup. If we close and open the device it will
3352 	 * both be reset and all registers restored. This is what
3353 	 * happens during suspend and resume without WoL enabled.
3354 	 */
3355 	ret = sh_eth_close(ndev);
3356 	if (ret < 0)
3357 		return ret;
3358 	ret = sh_eth_open(ndev);
3359 	if (ret < 0)
3360 		return ret;
3361 
3362 	/* Restore clock usage count */
3363 	clk_disable(mdp->clk);
3364 
3365 	return disable_irq_wake(ndev->irq);
3366 }
3367 
3368 static int sh_eth_suspend(struct device *dev)
3369 {
3370 	struct net_device *ndev = dev_get_drvdata(dev);
3371 	struct sh_eth_private *mdp = netdev_priv(ndev);
3372 	int ret = 0;
3373 
3374 	if (!netif_running(ndev))
3375 		return 0;
3376 
3377 	netif_device_detach(ndev);
3378 
3379 	if (mdp->wol_enabled)
3380 		ret = sh_eth_wol_setup(ndev);
3381 	else
3382 		ret = sh_eth_close(ndev);
3383 
3384 	return ret;
3385 }
3386 
3387 static int sh_eth_resume(struct device *dev)
3388 {
3389 	struct net_device *ndev = dev_get_drvdata(dev);
3390 	struct sh_eth_private *mdp = netdev_priv(ndev);
3391 	int ret = 0;
3392 
3393 	if (!netif_running(ndev))
3394 		return 0;
3395 
3396 	if (mdp->wol_enabled)
3397 		ret = sh_eth_wol_restore(ndev);
3398 	else
3399 		ret = sh_eth_open(ndev);
3400 
3401 	if (ret < 0)
3402 		return ret;
3403 
3404 	netif_device_attach(ndev);
3405 
3406 	return ret;
3407 }
3408 #endif
3409 
3410 static int sh_eth_runtime_nop(struct device *dev)
3411 {
3412 	/* Runtime PM callback shared between ->runtime_suspend()
3413 	 * and ->runtime_resume(). Simply returns success.
3414 	 *
3415 	 * This driver re-initializes all registers after
3416 	 * pm_runtime_get_sync() anyway so there is no need
3417 	 * to save and restore registers here.
3418 	 */
3419 	return 0;
3420 }
3421 
3422 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3423 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3424 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3425 };
3426 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3427 #else
3428 #define SH_ETH_PM_OPS NULL
3429 #endif
3430 
3431 static const struct platform_device_id sh_eth_id_table[] = {
3432 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3433 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3434 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3435 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3436 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3437 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3438 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3439 	{ }
3440 };
3441 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3442 
3443 static struct platform_driver sh_eth_driver = {
3444 	.probe = sh_eth_drv_probe,
3445 	.remove = sh_eth_drv_remove,
3446 	.id_table = sh_eth_id_table,
3447 	.driver = {
3448 		   .name = CARDNAME,
3449 		   .pm = SH_ETH_PM_OPS,
3450 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3451 	},
3452 };
3453 
3454 module_platform_driver(sh_eth_driver);
3455 
3456 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3457 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3458 MODULE_LICENSE("GPL v2");
3459